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Abstract. Statistical similarities exist between estimating numbers of cryptic animals
and of inconspicuous plants. Without flowers, Mead’s milkweed (Asclepias meadii) is an
unobtrusive prairie plant, and most plants flower irregularly. We used maximum likelihood
to estimate probabilities of survival and detection for milkweeds in annual censuses during
1992–1999. Initially, we assumed no recruitment and fit models to all data and to flowering
plants only. Because plants were marked when located, probabilities of resighting exceeded
those of initial discovery. Plants were most likely to flower and be detected in years when
the prairie was burned. We marked 177 plants in eight years but estimated the 1992 pop-
ulation to be 337 or 191 plants with 166 or 121 surviving to 1999, depending on the data
set. Thus, estimated population size exceeded number of plants seen. Estimated annual
survival probability was generally $0.95, but aggregate survival over eight years predicted
rapid extinction without recruitment. When we included recruitment, estimates of survival
changed little, and estimated population size varied between 118 and 147 individuals.
Discovery of new plants in two additional years (2000 and 2001) appeared to be consistent
with required recruitment, but simple counts of these plants did not track population trends.

Key words: Asclepias meadii; capture–recapture; census; estimation of population size; maximum
likelihood; Mead’s milkweed; probability of detection; survival.

INTRODUCTION

Counting or estimating the numbers of individuals
is one of the central tasks of population ecologists. For
many groups of animals, complete counts are impos-
sible or impractical, and total numbers must be inferred
from the number of individuals that are actually seen
or captured over a series of censuses. If the proportion
of surviving individuals that have been captured,
marked, and subsequently resighted or recaptured is
low (i.e., low detection probability), the estimated pop-
ulation size will be much larger than the count at any
single census. A number of methods have been devel-
oped to estimate population size based on various sta-
tistical models and assumptions regarding population
processes (Pollock et al. 1990). We can treat popula-
tions as closed, with no births or deaths occurring;
alternatively, they can be open to recruitment and loss.
Individuals may all be equally likely to be encountered,
or probabilities of detection may vary with time or
among individuals.

Plants have been assumed easier to count than ani-
mals because plants are stationary. However, many
plants are difficult to detect for a variety of reasons.
For instance, the small yellow lady’s slipper orchid
(Cypripedium calceolus spp. parviflorum) may undergo
periods of dormancy when it has no aboveground struc-
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tures (Shefferson et al. 2001); other examples are dis-
cussed in Lesica and Steele (1994). Similarly, the focus
of this study, Mead’s milkweed (Asclepias meadii Torr.
ex A. Gray), may be undetected in some years either
because it does not produce aboveground structures or
it can exist only as small, nonflowering stems embed-
ded in dense tallgrass prairies (Alexander et al. 1997).
Recently, ecologists have used capture–recapture anal-
yses, developed for animals, to estimate population size
and survival rates for such cryptic plants (Alexander
et al. 1997, Shefferson et al. 2001).

In our previous work (Alexander et al. 1997), we
used mark–recapture methodology to estimate popu-
lation size for a population of Mead’s milkweed in a
4.5-ha area using data from 1992 through 1995. With
our four-year data set, an assumption of a closed pop-
ulation seemed reasonable, because plants had quite
high rates of survival (96.3% per annum) and low rates
of reproduction. That paper reported that the estimated
population size was $50% greater than the total num-
ber of plants that had been marked in four annual cen-
suses. We speculated that, if recruitment were truly
negligible, continued censuses should reveal more
plants but that the total number of marked plants would
reach an asymptote through time. Our study has con-
tinued, making the assumption of no mortality more
tenuous. In this paper, we include data from an addi-
tional four years (total span of eight years, 1992–1999)
and estimate initial population size (e.g., in the year
1992) and subsequent rates of decrease using a model
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of variable rates of survival and detection that depend
on management treatment. That is, we allow the pop-
ulation to be open and plants to be lost, but initially
we retain the assumption of no recruitment to the pop-
ulation, based on low seed production (Kettle et al.
2000) and our inability to observe seedlings. We use
this model to compare estimates of population size and
survival with those from the first four years of study
(Alexander et al. 1997), and we examine the numbers
of newly detected plants for indications that we are
reaching an asymptote in total numbers of plants that
have been discovered. However, the assumption of no
recruitment overestimates survival if there actually is
some recruitment. Therefore, we also estimate survival
based solely on the frequency of resightings, which is
independent of estimates of recruitment or population
size. We then estimate the level of recruitment needed
to sustain the population and compare predictions with
the numbers of newly discovered plants in 2000 and
2001. Finally, we used a model of recruitment and mor-
tality to estimate survival and population size simul-
taneously.

METHODS

Study organism and site

Mead’s milkweed is a clonal perennial of tallgrass
prairies in the central United States. These milkweeds
are long-lived; for example, plants have persisted for
decades in mowed hay meadows, where sexual repro-
duction is prevented by the mowing schedule (Bowles
et al. 1998). Betz (1989) suggested that individual
plants might live for a century or more. Further, there
are low rates of seed production on our 4.5-ha study
area (Kettle et al. 2000). Over an eight-year span,
,20% of flowering plants produced seeds; and, for five
of these years, fewer than five follicles (seed pods) were
produced on the entire site. Seedlings may take 15 yr
to reach reproductive size (Bowles et al. 2001). Burning
seems to increase production of both flowers and fol-
licles. Mead’s milkweed was once found throughout
Midwestern prairies, but is now federally listed, due
in part to destruction of habitat (Betz 1989, Bowles et
al. 1998). In this paper, we follow Alexander et al.
(1997) and Kettle et al. (2000) in referring to clusters
of stems within 1.25 m as a single plant. At our site,
extensive clonal spread does not occur. The maximum
span of a plant was less than 1.7 m, and plants were
usually separated by several meters. Our choice of 1.25
m was arbitrary, but based on knowledge that rhizomes
can extend up to 1 m (M. L. Bowles, personal com-
munication).

Our study site is on the University of Kansas Field
Station and Ecological Reserves, 12 km northeast of
Lawrence, Kansas, USA (Alexander et al. 1997, Kettle
et al. 2000). Most plants were located on the Rocke-
feller Native Prairie tract, which has never been
plowed, but a few plants occur on an adjoining area of

reseeded prairie. The prairie has been mowed and
burned periodically since at least 1930. Most recently,
it has been burned in March or April of even numbered
years, before the emergence of Mead’s milkweeds, to
discourage the growth and spread of woody plants
(Kettle et al. 2000).

Census

Annual surveys for individual plants were conducted
from 1992 to the present (see Alexander et al. 1997
and Kettle et al. 2000 for details). In early June, field
crews systematically searched the entire area. Plants
were marked with flags when found, and locations were
plotted using a preexisting coordinate system. Subse-
quent surveys involved intensive search at each loca-
tion where a plant had been found, as well as systematic
search for new plants. Annual surveys were conducted
using consistent methods and sampling intensity; one
of us (W. D. Kettle) oversaw all surveys, whereas G.
Pittman led the field crews since 1994 and made de-
cisions regarding identity of individual plants. Despite
intensive search, plants were not seen in every year
between their first and last discovery. Hence each in-
dividual plant generated a ‘‘capture history’’; that is,
each plant was represented by a series of ones and zeros
denoting whether it had been seen or not in a particular
year (see the Appendix).

Annual survey data were explored in several ways.
First, we examined a plot of cumulative number of
plants discovered over time for evidence of an asymp-
tote. Second, we plotted the total number of plants seen
in each year, looking for evidence of population per-
sistence or decline. Third, in our earlier paper (Alex-
ander et al. 1997), we were intrigued by whether the
very large number of newly discovered plants in 1994
(an unusual year in which burning was preceded by
extraordinarily heavy rainfall in 1993; Kettle et al.
2000) constituted a subclass of the population that
flowered infrequently. Thus, we compared the subse-
quent frequency of flowering of plants first seen in 1994
with those of plants seen in 1994 and before by using
x2 and Kruskal-Wallis tests.

Models

Because all living plants were not seen in each sur-
vey, we used statistical methods, originally developed
for estimating survival and numbers from capture–re-
capture of animals (see Nichols [1992] for an over-
view), to estimate population size and yearly survival
for Mead’s milkweed. In our previous study, spanning
four years, we assumed that no plants died or were
recruited, and used statistical models for closed pop-
ulations (Otis et al. 1978, White et al. 1982) to estimate
population size (Alexander et al. 1997). With an ad-
ditional four years of data, the assumption of no mor-
tality was questionable, so we wanted to estimate sur-
vival and initial (1992) population size simultaneously,
while retaining the assumption of no recruitment. We
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FIG. 1. The number of flowering and nonflowering plants of Asclepias meadii detected during 1988–2001. In even years
(noted by B), the prairie was burned in April, prior to the emergence of stems of A. meadii. We included data from 1988–
1991 surveys (see Kettle et al. 2000), which were less intensive but similar to those in this study.

estimated population size in 1999 by multiplying initial
size by subsequent survival rates. The proportion of
organisms that were alive but overlooked or dormant
in a single survey was estimated from the proportion
of organisms that were missed in that survey but known
to survive because they were found subsequently. Thus
proportional survival is a population statistic, and as
in animal studies (Pollock et al. 1990), individual or-
ganisms that are not seen need not be categorized as
dead, dormant, or undetected for other reasons. Be-
cause all plants that were seen were assumed to be alive
at the start of the study, our procedure produced esti-
mates of maximum survival and minimum probabilities
of discovery. That is, a plant first seen in 1995 was
counted as surviving without detection from 1992 to
1995.

To understand our modeling exercise, it is important
to briefly summarize our earlier results and approach.
In both Alexander et al. (1997) and Kettle et al. (2000),
we found probabilities of discovery of plants varied
temporally, and more plants were detected in years with
spring burns (Fig. 1). Detection probability also varied
among plants, and probabilities of resighting plants
were greater than probabilities of initial discovery. Our
first statistical model (Mtbh) in Alexander et al. (1997)
included variation among plants and years and between
first and subsequent sightings, but did not allow esti-
mation of population size. We were able to simplify
that model by using counts of flowering plants (i.e.,
1’s in a capture history denote a flowering plant, where-
as 0’s refer to both nonflowering and undetected
plants), which reduced the discrepancy between prob-

abilities of first and subsequent sightings and allowed
estimation of population size.

To extend this approach for an additional four years,
we retained some of the above biological features: i.e.,
that initial probabilities of finding plants were much
lower than probabilities of resighting, that plants would
be more likely to be found in growing seasons follow-
ing spring burning, and that recruitment was negligible.
We also expected that probabilities of survival probably
differed from year to year, but we had no hypotheses
as to the impact of burning or other environmental
influences on survival. This led to a statistical model
of year-specific probabilities of survival and four prob-
abilities of ‘‘capture’’—initial discovery in years with
and without burns and subsequent discovery, with and
without fire. Unfortunately, we were unable to fit such
a model using MARK (White 1999) or other software
packages that were available to us. Therefore, we wrote
a BASIC program to find the maximum-likelihood es-
timators (MLEs) for the parameters of our statistical
model (see the Appendix). Following our earlier ap-
proach (Alexander et al. 1997), we analyzed the data
set with all plants, as well as a second data set in which
only flowering plants were noted as present. Use of a
flowering data set lessened the distinction between ini-
tial discovery and resighting, and we fit a model with
only three probabilities of being seen—years with
spring burning, years without fire, and 1994, the un-
usual year noted earlier. Both of our approaches (all
plants and only flowering plants) were designed to es-
timate the size of the same population, i.e., the number
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FIG. 2. The cumulative number of plants of Asclepias meadii detected during 1992–2001. In even years (noted by B),
the prairie was burned in April, prior to the emergence of stems of A. meadii.

of mature plants (but not seedlings or juveniles, which
cannot be detected in our surveys).

We generated jackknifed standard errors for all es-
timates by sequentially omitting each plant that was
observed from a data set, generating MLEs, and cal-
culating the standard deviation among estimates for
each parameter. When we jackknifed the entire data
set, several capture histories led to excessively large
estimates of population size, and we arbitrarily set these
estimates to 1177 (5 1000 more plants than we actually
observed). We tested our computer program by mod-
ifying it to fit several models that we could also fit in
MARK, and we obtained identical (to three decimal
places) results using both programs. Because the order
of grid search through the 11- or 12-dimensional pa-
rameter space might have influenced our result, we fit
each model five additional times using random orders
for the parameters other than population size. Each run
gave identical MLEs.

We used the estimated survival rates and population
size from the period 1992–1999 to determine the re-
cruitment needed to sustain the population; we then
compared it to the observed new plants in 2000 and
2001. Because the entry of new plants into the popu-
lation meant that our previous estimates of survival
might be positively biased, we also estimated proba-
bilities of resighting and survival based solely on the
frequency of resightings using procedures developed
by Cormack (1964), Jolly (1965), and Seber (1965) and
available in program MARK (White 1999). The Cor-
mack-Jolly-Seber (C-J-S) estimates of survival are in-
dependent of estimates of recruitment or population
size, but they do not provide estimates of initial dis-
covery or of population size (which are interrelated).
Finally, we also estimated population size using a stan-
dard Jolly-Seber model (Model A), which allows re-
cruitment, but does not distinguish between initial and
subsequent probabilities of detection. Because both the
C-J-S and standard Jolly-Seber analyses require data

subsequent to the year of interest, we included surveys
from 2000 and 2001 to estimate 1998–1999 survival;
thus those analyses are performed on slightly different
data sets than the previous models.

RESULTS

The rate of increase in the cumulative number of
plants observed has slowed in recent years, but new
plants were found in both 2000 and 2001 (15 and 2
plants respectively; Fig. 2). Note that in burn years
(even years) higher numbers of plants are seen and
more new plants are discovered (Figs. 1 and 2). The
total number of plants seen fluctuated widely through
the study period (Fig. 1). Plants that first flowered in
1994 and those that flowered in 1994 and before did
not differ in frequency of flowering during 1995–1999
(Kruskal-Wallis H 5 0.39, P 5 0.534) nor in the tem-
poral patterns of flowering over this period (analyses
of frequencies of capture histories; x2 517.23, df 5
19, P 5 0.57).

As we anticipated, estimated probabilities of dis-
covering plants were greater in growing seasons that
followed spring burning, and probabilities of resighting
were much higher than probabilities of initial discovery
for data from all plants (Table 1). Estimates of survival
were relatively high, but varied among years and dif-
fered depending on whether flowering or all plants were
counted as being present. Our C-J-S estimates of sur-
vival, which were independent of estimates of popu-
lation size, were similar to those of our other models
(Table 1). Our maximum-likelihood procedure using
all plants generated an estimate of 337 plants in 1992,
with 166 remaining in 1999. Respective estimates from
data on flowering plants only were 191 and 121, re-
spectively. We also fit a standard Jolly-Seber model
with time-specific rates of survival and detection
(White 1999), which produced an estimate of mean
population size over the eight-year period of 123 (1 SE

ø 5; 1992–1999 numbers are 57, 126, 118, 147, 141,
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TABLE 1. Estimated probabilities of survival and sighting and estimated population size using
data from all plants and from flowering plants only using a model of no recruitment and the
Cormack-Jolly-Seber (C-J-S) model to estimate survival with recruitment independent of
population size.

Parameter

All plants

Estimate 1 SE

Flowering plants

Estimate 1 SE

C-J-S all plants

Estimate 1 SE

1992 numbers
1992–1993 survival
1993–1994 survival
1994–1995 survival
1995–1996 survival
1996–1997 survival
1997–1998 survival
1998–1999 survival
Discovery with spring burn
Discovery without fire
Resighting with spring burn
Resighting without fire
Discovery in 1994

337
0.953
0.999
0.922
0.887
0.858
0.868
0.847
0.179
0.039
0.910
0.753

···

24 828
0.0663
0.0000
0.0736
0.1251
0.1240
0.0761
0.0870
0.4635
0.0240
0.1000
0.0412

···

191
0.999
0.999
0.949
0.869
0.771
0.999
0.999
0.352
0.186

···
···

0.551

13.98
0.2049
0.0000
0.2015
0.3737
0.3524
0.0000
0.0010
0.0890
0.0787

···
···

0.1817

···
0.935
1.000
0.928
0.891
0.863
0.878
0.848

···
···

0.908
0.752

···

···
0.0373
0.0000
0.0296
0.0352
0.0361
0.0388
0.0686

···
···

0.0200
0.0279

···

Notes: The first two columns of standard errors were estimated by jackknifing, i.e., omitting
single plants from the data set. Ellipses indicate parameters that were not in the likelihood
model.

142, 129, respectively). In any case, estimated popu-
lation sizes exceeded the observed number of plants
(Table 1, Fig. 1).

DISCUSSION

For cryptic, long-lived plants, long-term monitoring
of populations is essential for both estimation of pop-
ulation size in any one year and interpretation of pop-
ulation trajectories. Our data reveal that probabilities
of flowering and discovery of plants vary among years.
For example many more plants were found in years
following burning. Consequently, simple counts of
plants seen over a series of years are less than the actual
numbers of plants present. Furthermore, counts based
on annual surveys are only loosely related to estimated
population size; hence they are weak indices of pop-
ulation size (Nichols 1992, Slade and Blair 2000). This
dilemma emphasizes the necessity of using statistical
models to estimate numbers. In this study, we used
models suggested by field observations, rather than our
earlier use of models chosen through a selection pro-
cedure (Alexander et al. 1997), but either approach is
an improvement on using simple numbers as an esti-
mate or index of population size.

After reporting a closed population estimate of 219
plants using a four-year data set (Alexander et al. 1997),
we were motivated to continue our study for four more
years to test our prediction that the cumulative number
of plants seen should reach an asymptote near 220
plants. Such an asymptote seems reasonable through
the year 1999 (Fig. 2). Applying the same closed pop-
ulation model (Mth, which incorporates variation in
time and among plants) used by Alexander et al. (1997)
to the entire eight-year data set for flowering plants
yielded an estimate of 239 with a standard error of
17.6. But our estimates of survival (Table 1) were low
enough to negate the assumption of a closed population

over an eight-year period. Our maximum-likelihood
procedure, using counts of all plants, generated an es-
timate of 337 plants in 1992, with 166 surviving until
1999. Respective estimates from the flowering plant
data set were 191 and 121. Considering the respective
standard errors (.20 000 vs. ,14), the latter estimates
are much less sensitive to the frequency of individual
capture histories, and we were more comfortable with
the estimates from the flowering plants. Estimates of
population size using all plants were particularly sen-
sitive to frequencies of several capture histories in-
volving plants first seen in 1994. However, we found
no evidence that plants first flowering in 1994 are un-
usual in subsequent flowering frequency or survival.
Because our model of survival ignored recruitment, our
estimates of numbers, especially early in the study, are
probably positively biased—all plants seen throughout
the study were assumed to be present in 1992. Sub-
sequent data (2000 and 2001) have cast further doubt
on the scenario of sustained decline. In contrast, the
standard Jolly-Seber model permitted unlimited re-
cruitment, so many plants discovered after 1992 were
attributed to recruitment. This model resulted in lower
estimates of population size that averaged only 27 in-
dividuals greater than the number of plants seen. In
years following spring burning, counts were within
four, but not two, standard errors of estimated numbers.

The geometric mean of our estimates of survival rate
(between 0.90 and 0.93, depending on model, Table 1)
seems at odds with higher rates implied by Betz (1989),
but direct comparison is difficult. He stated that plants
observed in 1965 were still present two decades later,
but sample sizes are unclear. Mean annual survival of
0.90 predicts only 12% survival for 20 yr or more, and
0.93 is consistent with 25% of plants surviving that
long. Nevertheless, persistence of plants in hay mead-
ows with no sexual reproduction for decades supports
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higher survival than we found. Tecic et al. (1998) re-
ported that the few fire-managed populations they stud-
ied had fewer ramets per genet than hay meadows; one
hypothesis is that mowing produces more stems per
plant, and that this results in greater survivorship.

Even our highest estimates of survival are so low as
to predict loss of 99% of plants in 60 yr unless there
is modest recruitment. Given a 0.93 survival rate, per
capita annual recruitment of ;7% would be needed to
maintain the population. If our population is between
123 (the average from the standard Jolly-Seber model)
and 144 (the average of the two 1999 estimates from
models ignoring recruitment), this would require 9 to
10 recruits per year, and if the proportion of marked
plants is to remain constant, we should discover 9 or
10 new plants per year. Since this calculation is based
on analyses of 1992–1999 data, we examined the num-
ber of newly discovered plants in two independent
years, 2000 and 2001. We found a total of 15 new plants
in 2000 (a burn year) and 2 in 2001. Hence our recent
rate of discovery of new plants, while not high enough
to assure population stability, is potentially consistent
with a recruitment rate sufficient to sustain our popu-
lation. Similarly, our data could indicate a stable pop-
ulation (Fig. 1), given the similarity in maximum num-
ber of plants seen over several years; but those data
also are consistent with a declining population in which
an increasing proportion of plants are found and
marked through time.

Each of our results is model dependent. Originally,
when we assumed a closed population, we predicted a
population size of .200 plants (Alexander et al. 1997).
Collecting more data and recognizing significant but
variable rates of mortality led to estimates of initial
(1992) populations .200, but current numbers of
#166. Finally, using models with both recruitment and
mortality led to a scenario of populations that are more
stable, varying between 120 and 145 individuals. While
the estimates of numbers from this latter model appear
most plausible, Jolly-Seber overestimates probabilities
of detection, because that model ignores the fact that
probabilities of discovery of new plants are lower than
those of rediscovery of plants marked by flags. Over-
estimating probabilities of detection leads to under-
estimating population size (Nichols 1992); hence the
Jolly-Seber estimates of population size are likely neg-
atively biased. True population sizes probably fall be-
tween the estimates from the different models.

At this point, we can make predictions that can be
directly tested with subsequent censuses. Under the
scenario of insufficient recruitment, we should find
fewer and fewer new plants in future years. However,
if the population is stationary, the number of new plants
per year should stabilize, and we will continue to find
new plants each year, or at least each burn year. Finally,
it is also possible that recruitment in the population is
episodic, and that years such as 1994 in which large
numbers of unmarked plants were discovered will re-

occur. Thus researchers studying long-lived, cryptic
plants share similar problems with zoologists who rou-
tinely must estimate population abundances from par-
tial censuses—one can not rely on simple counts, and
the lack of precision in estimating numbers in a single
year makes it difficult to interpret population trajec-
tories.
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APPENDIX

Each plant generated a series of ones and zeros indicating
whether or not the plant was seen in each of eight yearly
surveys. For example, a plant seen only in 1993, 1996, and
1998 would be represented by the capture history 01001010.
Using the model described in the methods section and as-
suming all plants were present in 1992, the year of the first
survey considered herein, the probability of this particular
capture history would be the product of probabilities of being
missed in 1992 (a burn year), surviving to 1993, being seen
initially in 1993, surviving to 1994, being missed but sur-
viving in 1994 and 1995, being resighted in 1996, etc. Not
being seen in 1999 could be due to death or surviving and
being missed. In many capture models, these two probabilities
cannot be estimated separately, but because we assume that
the probability of recapture is equal for all years without a
burn, the probability of surviving can be estimated for the
final year. Formally, the probability of capture history
01001010 was given by

P 5 (1 2 C )S C S (1 2 R )S (1 2 R )01001010 b 1 n 2 b 3 n

3 S R S (1 2 R )S R (1 2 S R ) (A.1)4 b 5 n 6 b 7 n

where Pi is the probability of the capture history i, Cb is the
probability of initial discovery in a year with spring burning,
Cn is the probability of initial discovery in a year without
fire, Rb and Rn are probabilities of resighting in years with

and without fire, and Si is the probability of survival in the
year following the ith spring survey. Maximum-likelihood
estimators for population size and probabilities of discovery,
resighting, and survival were found by maximizing the mul-
tinomial likelihood, L, given by

xiL 5 N! x ! P (A.2)@P Pi i1 2
where N is the population size in 1992, Pi is the probability
of the capture history i, and xi is the number of plants with
capture history i. Our computer program found maximum-
likelihood estimates (MLE) by iterating over an 11- or 12-
dimensional grid of possible values for all parameters. All
probabilities started at 0.01 and were incremented by 0.49,
so initially values of 0.01, 0.50, and 0.99 were tried for each.
For each combination of values, we calculated likelihoods
for each population size equal to the number of plants ob-
served and increasing by integer values up to 1000 plants
more than observed. The increment for probabilities was then
halved and a new grid searched with initial values set two
increments below the value associated with the maximum
likelihood. If one of the MLE values was on the edge of the
grid, the grid was centered on that value and the search was
repeated. Increments were halved until they were smaller than
0.001.


