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SMO-Based Pruning Methods for Sparse Least
Squares Support Vector Machines

Xiangyan Zeng and Xue-wen Chen, Senior Member, IEEE

Abstract—Solutions of least squares support vector machines
(LS-SVMs) are typically nonsparse. The sparseness is imposed by
subsequently omitting data that introduce the smallest training
errors and retraining the remaining data. Iterative retraining
requires more intensive computations than training a single
nonsparse LS-SVM. In this paper, we propose a new pruning
algorithm for sparse LS-SVMs: the sequential minimal opti-
mization (SMO) method is introduced into pruning process; in
addition, instead of determining the pruning points by errors,
we omit the data points that will introduce minimum changes to
a dual objective function. This new criterion is computationally
efficient. The effectiveness of the proposed method in terms of
computational cost and classification accuracy is demonstrated by
numerical experiments.

Index Terms—Least squares support vector machine, pruning,
sequential minimal optimization (SMQ), sparseness.

I. INTRODUCTION

ECENTLY, least squares support vector machines (LS-

SVMs) have been investigated for classification and func-
tion estimation problems [1]-[3]. Instead of solving a quadratic
programming problem as in SVMs, LS-SVMs find the solu-
tions of a set of linear equations [4]. Several numerical algo-
rithms have been proposed for training LS-SVM: Suykens et
al. propose an iterative algorithm based on conjugate gradient
(CG) algorithms [5]; Chu et al. improve the efficiency of the
CG algorithm using one reduced system of linear equations [6];
and Keerthi and Shevade extend the sequential minimal op-
timization (SMO) algorithms to solve the linear equations in
LS-SVMs [7]. These numerical algorithms are computationally
attractive. However, the solutions obtained from these methods
are not sparse.

The sparseness is important for a classifier, as it allows for
fast and accurate evaluation of new data points [8], [10]. To im-
pose sparseness in LS-SVM solutions, pruning mechanism is
generally employed, i.e., the least important points are gradu-
ally omitted from training data and the LS-SVM are retrained
in terms of the remaining data. Motivated by the fact that the
LS-SVM support values are proportional to the errors at the data
points, Suykens et al. propose to prune the samples that have
the smallest absolute support values [8], [9]. This is a simple
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and direct criterion to determine which points are omitted. Ar-
guing that omitting data with small errors in the previous pass
does not reliably predict what the errors will be after the sam-
ples have been omitted, De Kruif et al. propose to select the
samples that bear the smallest errors when they are omitted in
the next pass [10]. When no regularization is applied, i.e., only
the margin is maximized without the consideration of approxi-
mation errors, the derived criterion is the absolute support value,
divided by the diagonal element of the inverse of the kernel ma-
trix. Since the kernel matrix needs to be inverted, the computa-
tional load to determine the pruning points has greatly increased
using this method. The similar cases are other pruning methods
for Gaussian process where calculation of the error induced by
omitting a sample point involves an inverse matrix [11]. A re-
cent paper provides a comparison of various pruning algorithms
and concludes that pruning based on absolute support values is
still most attractive if one takes into account both the computa-
tional costs and classification accuracy [12].

The computational load of pruning algorithms includes the
costs of both determining the pruning points and retraining
LS-SVMs. In these previous researches, however, the impor-
tance of retraining costs has not been studied in detail. In
Suykens’ CG algorithm [5], there are no intermediate variables
cached. While Kruif ef al. argue that the retraining can be done
to only part of the data, their method is based on the assumption
that the kernel matrix is decomposed using Cholesky decompo-
sition [10]. However, it is impractical to store and decompose
kernel matrices for large scale problems.

In this paper, we propose a new pruning scheme for sparse
LS-SVMs. The pruning method is based on Keerthi’s SMO
formulation, which has been successfully applied to find non-
sparse LS-SVM solutions [10]. We formulate SMO techniques
for sparse LS-SVM solutions, since SMO is suitable for large
scale problems and is convenient for timely data updating. In
addition, a new criterion is proposed to select data points that
introduce least changes to a dual objective function. The effec-
tiveness of the proposed method in terms of computational cost
and classification accuracy is demonstrated by numerical exper-
iments.

The paper is organized into five sections. Section II intro-
duces LS-SVMs. The proposed pruning algorithm is described
in Section III. In Section IV, we present the experimental results.
Finally, conclusions are drawn in Section V.

II. LS-SVM CLASSIFIERS

Given a training set of N data points {(x1,y1), (X2,

yo), -, (Xn,yn)} where x; € R is the ith input vector and
y; € {x1} is the corresponding target. We employ the idea of
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mapping the data points into a high-dimensional Hilbert space
using a nonlinear function ¢(-). In addition, the dot product in
that high-dimensional space is equivalent to a kernel function in
the input space K (x;,%;) = ¢(x;) - ¢(X;). A linear classifier
in the new space takes the form

y(x) = sign (w - p(x) + ). (1)

In order to obtain the parameters w and b, LS-SVM formu-
lates the problem as

1 1
min <§WTW + 50 21: e?) 2)

subject to the equality constraint y;(w - o(x;) +b) = 1 —
e;, or an equivalent constraint used in [7] and [10]: y; — (W -
»(x;) +b) = e;, where C is a regularization factor and e; is the
difference between the desired output y; and the actual output.
For simplicity, we consider the problem without a bias term, as
did in [7], [13], and [14]. The Lagrangian for problem (2) is

1 1
R(w,e;;04)= §WTW—|—§C Z e?—l—z a; [yi —w-(x;)—e;]

3)
where o are Lagrangian multipliers. The
Karush-Kuhn-Tucker =~ (KKT) conditions for  opti-
mality are

=0 w=) ap(x)
OR _ 0 o;= Cei . (4)

Oe;
oR =0 yi—W-(p(Xi)—eiZO

day;

If the bias term is used in the Lagrangian (2), the KKT condi-
tion will lead to a constraint ) ; @i = 0.1In this case, at least two
Lagrangian multipliers must be updated. Using the constraint
without the bias term makes it possible to update one component
per iteration. In the numerical solution, the KKT conditions are
reduced to a linear system

I
<K+6>a:y (5)

where y = [y1,92, -, y~n]T, @ = [a1, a9, -,ax]?, and
K € RV*N is the kernel matrix. LS-SVM greatly simplifies the
problem by characterizing the solution as a linear system. For
large scale problems, linear system (5) can be efficiently solved
using CG method [5], [6]. A drawback of LS-SVM is that the
sparseness is lost in its solution: from the KKT conditions (4),
every data point contributes to the model and the relative im-
portance of a data point is reflected by its support value. The
sparseness is usually imposed by a pruning process [8].

III. SMO BASED PRUNING METHODS FOR SPARSE LS-SVMS

Pruning is to remove less meaningful data and retrain
LS-SVM on the basis of the remaining points. In fact, it is an
iterative scheme where in each step one has to solve a KKT
system [9]. Although the size of the linear system decreases
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from step to step, pruning is much more costly than training
a nonsparse LS-SVM. A crucial concern for the pruning al-
gorithms is the computational cost, which is related to the
determination of the pruning points and the implementation
of the iterative retraining. In the following, we describe a fast
pruning scheme based on SMO formulation and a new criterion
for determination of the pruning points.

A. SMO Algorithms for LS-SVM

SMO decomposes the optimization problem and solves the
smallest possible optimization problem at every step. In stan-
dard SVM, it works by optimizing two Lagrangian multipliers
at a time with the others fixed [15]. When applied to pruning
LS-SVM solutions, SMO can be simplified to optimize one mul-
tiplier at a time [7]. We now detail the SMO formulation in the
LS-SVM pruning process. By substituting the KKT conditions
(4) into the Lagrangian (3), the dual problem is to maximize the
flowing objective function

max (L(@) = —3 Y~ 3" aio;Qxixj) + Y g ©

where Q(X,,j,Xj) = K(X,‘,,Xj) + 0'7‘,_)'/0, and Oij = life = _]

and 0 otherwise. The KKT conditions for the dual problem are

9L/0a; = 0, whichlead to y; — >, ;Q(x;,%x;) = 0, Vi.
Define

Fi=-

oL al
P = i+ D Qi x;). ™
j=1

Then, the optimality condition is violated if there exists any
index point ¢ that F; # 0.

The SMO algorithm works by optimizing only one «; at a
time keeping the others fixed, i.e., a is adjusted by a step ¢ as
follows:

;" = «a; +t; and oY = oy, Vj # i 8)
The update of «; causes the change of all the F};

FPY = Fj + (0™ — i) Qi w;), Vj )
and, thus, the dual objective function value.

To derive the optimal step t and the stopping conditions, we
define the dual as a function of ¢

f() =L@ () and f(0)=L(0).  (10)
Maximizing f(¢) leads to the optimal step
—F;
t = 11

Q) (b

and the change to the dual is
new N\ Fi2
(@) = flos) = goi—s. (12

Therefore, at each step of the SMO algorithm, one chooses a
point i that has the largest value of F?/2Q(x;, ;) and update
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a; using (8) and (11). The Duality gap is used as a termination
criterion for the iterative algorithm

Dgap::?R—L:E(ai (Fi— %) +%e?> <elL
’ (13)
where R is the primal cost defined in (3), L is the dual objective
function value, and ¢ is a positive constant. The error term can
be computed by

c

Compared to CG methods, SMO is more computationally ef-
ficient for large scale problems. F; and Q(z;, z;) are cached in
SMO algorithm, which allows for implementing the efficiently.

B. Pruning Algorithms

The criterion for determination of pruning points is a crucial
factor in pruning process. In this section, we detail a new cri-
terion that is directly based on the dual objective function and
easy to compute in SMO formulation.

To derive the proper criterion for pruning, the dual objective
function (6) is rewritten using the definition of F;

L(a) = %Zai(yi -

%

F). (15)

If a sample k is removed from the training set, the new objec-
tive function is given as

1
A YOV nJ/
L) =33 ailyi= F) (16)
i#Ek
where o/ = (Oél,---,Olk,17ak+17-'-,OZN> and FLI = FL' —

arQ(zi, x,).

Along with the idea of SMO, we consider that the removal of
a sample k does not directly affect the support values of other
samples, but it introduces the update of all F;, which leads to a
difference in the objective function

d(L) = % Z ai(yi — F;) — % Z ai (yi — FY)

; ik
1 1
=5 Oli(yi—Fi)+§Oék(yk—Fk)
ik
1 !
-z (6% (yi Fi)
2 ¢
i#£k
1 , 1
=5 2 i (B = F) + Son(yr — Fi)
ik

= — % (Z Qs xp) — aiQ(J}k,J?k))

1
+ iak(yk — Fy)

1

= S 03 Q(wk, wx) — ar Fy.

; a7)
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To minimize the change of the dual objective function due to
the pruning, we omit the sample k that has the smallest value
of (1/2)a3Q(x, wx) — ap F. This is consistent with the opti-
mization goal of LS-SVM to maximize the objective function.
Since F; and Q(x;,x;) are cached in SMO algorithm, the re-
training is expected to be more computationally efficient with
the proposed criterion.

Note that pruning one sample and then retraining is not effi-
cient for large scale problems. Therefore, the retraining is done
after a set of samples are removed. Defining the number of sam-
ples left out in a retraining loop as pruning step (PS), we give
the pruning algorithm as follows.

Step 1) Train the initial nonsparse LS-SVMs using the
SMO formulation as described in Section III-A.
Repeat Step 3) and Step 4) until the defined termi-
nation condition is satisfied.

Step 2)

Step 3) Repeat the following inner loop by ps times:

. remove a sample k from the training set using
criterion (17);

. update F;, Vi # k, of the remaining samples in

the training set using F} = F; — apQ(zi, xx),
where k is the omitted data point.
Retrain the LS-SVM using the SMO formu-
lation based on the support values a and the
updated F of the remaining data set, where
/ (1, -+, Qp_1,Qt1, - -,an), and

(84 =
F'=(F, - Fy_y, Fiq, 0 Fy).

The pruning iteration is terminated when a fixed percentage
of training data is omitted, or when a criterion exceeds a pre-
defined threshold. The termination criterion can be cross-vali-
dation error or an error term associate with the support value
of the omitted point. To simplify the comparison of different
pruning methods, we use the computational costs in pruning a
fixed percentage of data. In conventional pruning schemes, the
PS (3) only omits selected data points without updates to the
remaining samples. Our algorithm updates F; of the remaining
samples after each point is omitted. Therefore, the criterion used
to determine the pruning points is computed based on the timely
updated F'. For the retraining, we adopt the alpha seeding tech-
nique to make use of the results from the present loop to ini-
tialize the next one [16]. The initial estimates of the alpha values
in the LS-SVM training are set not to zero but to the support
values of the previous training.

Step 4)

IV. NUMERICAL EXPERIMENTS

In this section, the proposed method is implemented and
tested on three benchmark datasets: Image, Splice and Wave-
form. Detailed information about the datasets can be found
at http://ida.first.gmd.de/~raetsch/data/benchmarks.htm. The
radial basis function K(x;,x;) = exp(—|x; — x;||*/20?%)
is used as the kernel function. For each dataset, we use the
parameter o2 suggested in [6] and [7]. We will compare the
proposed pruning methods to CG methods in terms of both
computational cost and classification accuracy.
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TABLE 1
COMPUTATIONAL COSTS OF NONSPARSE LS-SVM MEASURED BY NUMBER OF
KERNEL EVALUATIONS: EACH UNIT CORRESPONDS TO 10% EVALUATIONS.

02 age = 27183, 02, = 29.9641, AND 02 o = 1.822]
C=1 C=10 C=100 C=1000
Data Sets
SMO CG SMO CG SMO CG SMO CG
Image
Training-size=1300, 7.19 | 3042 | 34.84 | 89.57 263.75 | 284.76 2000.73 948.09
dimension=18
Splice
Training-size=1000, 3.15 7.50 | 5.84 21.00 11.78 43.00 37.39 60.50
dimension=60
Waveform
Training-size=400, 0.69 1.36 | 3.56 3.84 16.02 9.6 33.52 15.6
dimension=21
TABLE II

COMPUTATIONAL COSTS OF PRUNING 780 SAMPLES FROM IMAGE
DATASET MEASURED BY NUMBER OF KERNEL EVALUATIONS: EACH
UNIT CORRESPONDS TO 10® EVALUATIONS. THE ABSOLUTE SUPPORT
VALUE (SMO-SV) AND THE PROPOSED CRITERION (SMO-NEW) ARE
USED IN SMO PRUNING WITH C' = 10

Pruning
step 60 50 40 30 25 20 15 10 5
SMO-new 26.86 | 2823 | 33.11 | 37.53 | 40.39 | 4291 46.03 54.13 65.26
SMO-sv 65.54 70.52 86.08 99.01 106.40 | 119.77 | 137.75 155.51 186.73
CG 299.52 | 345.27 | 461.45 | 587.73 | 679.52 | 870.25 | 1133.92 | 1652.99 | 3104.92

A. Computational Costs of Pruning

In the following experiments, the SMO and CG algorithms
are used to train initial nonsparse LS-SVM and then the cor-
responding pruning schemes are applied to omitting the less
important points. For the CG algorithm, selection of pruning
points is based on the absolute support values and alpha seeding
is also utilized in the CG algorithm [17]. For the SMO algo-
rithm, two criteria are tested for choosing pruning points. One
is the absolute support value (SMO-sv) and the other is the pro-
posed criterion (SMO-new). Although the same algorithm is
used for SMO-sv and SMO-new, different samples are selected
and omitted by the two criteria. Therefore, the retraining time
will be different for these two methods due to the convergence
speed. All the three schemes do not need additional computa-
tional cost to determine pruning points.

As a basis for the comparisons, Table I shows the computa-
tional costs of nonsparse LS-SVM solutions of SMO and CG al-
gorithms at different values of parameter C'. Since the extremely
small and large C' values are usually of little interest, we list the
computational costs at 1, 10, 100 and 1000. The results are con-
sistent with Keerthi’s conclusion that SMO algorithm is efficient
at medium C values, but its increase in computational costs at
large C' values is sharper than CG algorithm [7].

An important factor influencing the computational costs of
pruning is the PS. Generally, a smaller PS is computationally
less efficient, because given a fixed number of samples to be
pruned away, smaller PS results in a larger number of retraining
loops. We have carried out experiments to test the increase of
pruning costs with a decrease of the PS. As an example, the costs
of pruning 780 samples from Image dataset at different PS are
shown in Table II, where C is set to 10. In SMO pruning, each
loop of retraining is to modify «; based on the cached F}, j =
1,2,---, N and, thus, converges faster for smaller PS. On the
other hand, CG pruning does not cache intermediate results and
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TABLE III
CLASSIFICATION ERROR RATES OF CG PRUNING ON INDEPENDENT TEST
DATASETS (THE ERROR RATES WITH THE FULL TRAINING DATASETS
ARE TAKEN AS 1). 70% OF THE TRAINING DATA ARE REMOVED AT
DIFFERENT PS. C' = 10

Pruning step
Dataset 1% 2% 5% 7% 10% 14%
Image 1.099 1.331 1.562 5.266 12.783 12.785
Splice 1.320 1.284 1.348 1.529 1.4837 1.7283
Waveform 1.182 1.234 1.256 1.321 1.369 1.347

7

x10
12 T T T T T

Number of kernel evaluations

Training set reduction rates (%)

Fig. 1. Computational costs of pruning image dataset with C' = 1.

most calculation needs to be repeated. Therefore, the increase in
the computational cost of CG pruning at small PS values is much
sharper. Furthermore, the SMO-new algorithm is more than two
times faster than the SMO-sv at all the PS.

Although larger PS lead to fewer numbers of retraining and,
thus, lower computational costs, the classification performance
often degrades with the increase of PS. Table III shows the
classification performance of different PS, where 70% of the
training data are removed and the error rates of the remaining
datasets have been divided by the error rates of the full training
datasets. With a reasonable PS of 5% of training data, we com-
pare the performance of the three methods on the three datasets.
Starting from the complete nonsparse LS-SVM solution, we
omitted 10%, 20%, ---, 70% of training data sequentially.
Generally, SMO algorithms outperform the CG algorithm and
SMO-new is the fastest as shown in Fig. 1 which gives a plot of
the computational costs of pruning Image dataset with C' = 1.

The differences between the three methods are considerably
large for small to medium C' values. The computational costs
with different C values of 1, 10, 100, and 1000 are summa-
rized in Table I'V. For instance, in the case of Image dataset with
reduction rates = 10% and C = 1, SMO-new algorithm is 40
times faster than CG and is 10 times faster than SMO-sv. On
Waveform dataset of small size, CG pruning is slightly faster
than SMO pruning at large C values. Thus, the cost superiority
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TABLE IV
COMPUTATIONAL COSTS OF PRUNING BENCHMARK DATASETS MEASURED BY
NUMBER OF KERNEL EVALUATIONS: EACH UNIT CORRESPONDS TO 10°
EVALUATIONS. THE PS Is EQUAL TO %5 TRAINING SAMPLES. THE
ABSOLUTE SUPPORT VALUE (SMO-SV) AND THE PROPOSED CRITERION
(SMO-NEW) ARE USED IN SMO PRUNING

Training set reduction rates by pruning (%)
10 20 30 40 50 60 70
SMO-new | 052 151 2.82 4.04 5.20 6.17 691
C=1 SMO-sv 542 10.15 13.99 16.89 18.99 20.41 21.23
CG 21.62 42.96 59.86 71.76 80.17 85.67 88.73
SMO-new | 239 6.53 11.47 17.04 21.83 2572 28.42
Cc= SMO-sv 17.09 31.44 4232 51.49 57.59 61.41 64.21
Image 10 G 7288 | 139.58 | 19206 | 23011 | 25634 | 27271 | 281.53
SMO-new | 1535 46.54 8579 | 126.17 | 173.07 | 21069 | 236.67
= SMO-sv_| 50.97 11237 | 14355 | 18749 | 237.15 | 27865 | 309.13
10° G 244.69 | 45931 | 630.60 | 75537 | 84022 | 889.61 916.24
SMO-new | 175.07 | 40495 | 747.03 | 115051 | 1484.63 | 1783.62 | 201527
C= SMO-sv | 20894 | 48820 | 898.85 | 1251.61 | 1660.12 | 1977.85 | 2235.67
10° G 837.92 | 1563.43 | 2114.39 | 250531 | 2764.51 | 291575 | 2999.41
SMO-new | 138 3.00 4.65 591 6.78 7.34 7.64
C=1 SMO-sv 2.95 5.35 7.21 8.59 9.56 10.19 10.59
G 6.80 12.94 17.67 21.19 23.68 25.12 2597
SMO-new | 229 5.03 734 9.26 10.72 11.71 1229
. C= SMO-sv 511 9.15 12.32 14.74 16.47 17.59 18.24
Splice 10 G 18.79 34.09 46.72 55.51 60.84 63.66 6521
SMO-new | 431 9.07 12.76 15.60 17.57 19.02 19.79
C= SMO-sv 827 14.81 20.19 24.01 26.72 2824 29.18
10 G 42.53 78.36 10520 | 121.96 130.63 | 13482 | 13675
SMO-new | 630 1347 18.48 2231 24.91 26.90 27.85
Cc= SMO-sv 10.91 19.85 27.12 31.84 36.67 38.61 39.80
10° G 57.68 10541 | 13814 | 16039 | 173.63 | 17830 | 180.44
SMO-new | 0.09 028 045 0.62 0.77 0.88 0.95
C=1 SMO-sv 0.62 113 1.52 1.81 2.03 2.18 227
G 1.02 2.00 2.80 342 3.86 4.13 429
SMO-new | 0.87 1.96 3.14 4.20 4.95 5.48 5.85
C= SMO-sv 1.98 339 451 555 6.39 6.96 734
Waveform | G 389 726 9.96 11.93 13.26 14.03 14.45
SMO-new | 5.09 11.75 1801 22,86 26.54 29.07 30.72
C= SMO-sv 6.35 1329 19.58 24.76 28.74 31.42 33.56
10% CcG 10.25 18.91 2547 30.17 33.38 3523 36.20
SMO-new | 15.40 3341 4828 59.16 67.50 72.96 76.38
Cc= SMO-sv | 1722 35.86 50.37 61.96 70.11 76.11 79.56
10° CG 16.97 30.98 4137 4847 53.05 55.69 57.03

of SMO to CG is more significant in pruning than it is in non-
sparse training. Considering the relative low efficiency of the
nonsparse SMO at large C' values and on small size datasets,
we note that the proposed pruning algorithm performs well in
these cases.

It is interesting to analyze the change of the computational
costs at different reduction rates. Subtracting the adjacent
columns gives the computational costs of pruning 10% data
at different stages. From Table III, for the CG algorithm with
C = 1 and the image dataset, the cost is 21.62 for pruning the
first 10% data, 21.34 for the second 10% data, 16.9 for the third
10% data, and 3.06 for the last 10% data. Thus, the cost of
pruning the first 10% training data is the most expensive due to
the large number of training data. Similar results are observed
at most C values for SMO-sv algorithms. For SMO-new algo-
rithms, however, the cost of pruning the first 10% data is less
expensive in most cases. Fast convergence of retraining in the
proposed method indicates that the omitted samples have little
information. In pruning algorithms, the samples omitted in the
(i — 1)th loop should be less important than those omitted in the
ith loop. Therefore, the (¢ — 1)th loop converges faster than the
ith loop, if we ignore the data size difference. Since the number
of training data is decreased sequentially, the computational
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TABLE V
CLASSIFICATION ERROR RATES OF INDEPENDENT TEST DATASETS. THE
TRAINING SETS ARE REDUCED AT A PS OF 5% TRAINING SAMPLES. THE
OPTIMAL PARAMETER C' IS DETERMINED BY 20-FOLD CROSS VALIDATION

Training set reduction rates by pruning (%)

Error rate(%) 0 10 | 20 [ 3 | 40 | 50 | 60 | 70
SMO-new | 2.07 2.07 2.07 2.07 2.07 1.98 1.98 2.47
Image SMO-sv 2.07 2.07 2.17 237 2.22 222 222 2.67
CG 2.07 | 2.07 | 2.07 | 2.07 [ 198 | 2.07 | 2.17 | 4.85
SMO-new | 10.34 | 10.34 | 1043 | 10.34 | 10.39 | 10.39 | 11.40 | 13.79
Splice SMO-sv 10.34 | 10.11 | 10.16 | 10.20 | 10.80 | 1098 [ 11.67 | 17.56
CG 10.34 | 10.34 | 10.39 | 10.62 | 10.85 | 10.94 | 11.67 | 13.83
SMO-new | 10.08 | 10.08 | 10.13 | 10.19 | 10.13 | 10.30 | 10.56 | 10.43
Waveform | SMO-sv 10.08 | 10.15 | 10.36 | 10.39 | 10.54 | 10.67 | 10.34 | 10.54
CG 10.08 | 10.08 | 10.21 | 10.19 | 10.28 | 10.39 | 10.52 | 10.47

costs determined by the previous two factors have different
peak points in different cases. For example, for image dataset
at C = 10, the SMO-sv algorithm has a cost peak of 17.09 at
10% and the SMO-new algorithm has a peak of 5.57 at 40%.
Since both algorithms start from the same nonsparse solution,
the later peak points indicate that the samples are omitted by
the order of importance and, thus, the computational costs are
less affected by the training data size. The results demonstrate
that the proposed criterion outperforms the absolute support
value in selecting least important samples to omit.

B. Classification Performance

Next, we briefly compare the generalization performance of
the three pruning methods. The 20-fold cross-validation error
is carried out to determine the optimal parameter C' for the ini-
tial nonsparse LS-SVM. Starting from the complete nonsparse
LS-SVM solution, 10%, 20%, - - -, 70% samples are sequen-
tially omitted from the training set at a PS of 5% training sam-
ples. The generalization performance is evaluated by the error
rates of an independent test set for each dataset, as shown in
Table V. From the results, we note that the accuracy differences
among the three methods are very small. Considering the com-
putational costs, SMO pruning based on the proposed criterion
is apparently the most effective. For all the three methods, the
classification accuracies start to degrade after a number of PS.
To improve the accuracy, we can update the regularization pa-
rameter as pointed out in [9].

The sparseness imposed by the pruning methods can be natu-
rally provided by SVM. Next we briefly compare the LS-SVM
pruning method and the SMO algorithm of SVM in terms of
classification accuracy, computational costs and training set re-
duction ability. For the pruning method, the computational cost
is measured by the number of kernel evaluations involved in the
initial training and the pruning process. For SVM, the training
set reduction rate is determined by 1 — R, where R is the ratio be-
tween the number of support vectors and the number of training
data.

From Table VI, we can see that the SMO-new method can
possibly reduce the needed training samples significantly [for
example, for waveform data, the SMO-new method needs only
10% training samples, which is much smaller compared to
standard SVM methods (34%)] and achieves approximately the
same classification accuracy as SVM methods.
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TABLE VI
CLASSIFICATION ACCURACY, COMPUTATIONAL COSTS, AND TRAINING
SET REDUCTION ABILITY OF THE LS-SVM PRUNING METHOD
AND THE SVM METHOD

Training set Number of
Error Rate reduction rates kernel
Error rate(%) (%) evaluations
SMO- SMO- SMO-
new SVM new SVM new SVM
Image 247 2.38 70.00 | 79.00 | 63.26 | 170.85
Splice 10.39 10.11 50.00 | 37.80 1691 | 20.98
Waveform 11.23 10.93 90.00 | 64.00 5.45 5.09

V. CONCLUSION

In this paper, we propose a new pruning scheme for LS-SVM.
Our algorithm is based on SMO formulation, which makes it
possible to use the results of previous passes and leads to effi-
cient retraining. Furthermore, a new criterion is proposed to de-
termine the pruning samples in the SMO algorithm. The new cri-
terion minimizes the change of the dual objective function intro-
duced in pruning, which is easy to calculate and leads to a faster
retraining than the absolute support values. Simulation experi-
ments have been carried out on three benchmark datasets, which
demonstrate that the proposed method is significantly faster than
the pruning based on CG algorithm for large scale problems.
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