
30   |   JOURNAL OF UNDERGRADUATE RESEARCH

An analysis of electromyography as an input 
method for resilient and affordable systems: 
human-computer interfacing using the body’s 
electrical activity
Seth Polsley

Q&A
How did you become involved in doing research?
I started by meeting with EECS faculty whose research I knew about. What does 
your lab do? What position or project do you think would be well-suited to an 
undergraduate? These were the kinds of questions I would ask. They were very 
helpful; professors enjoy talking about their work. But there was one question they 
often asked me that stuck with me: what is it you want to do? From this question  
I realized the most important part of research  —do what you love. Anything can be 
research, provided somebody has an interest to investigate it. Because I had always 
been fascinated by building computer systems that interact naturally with people, I 
thought it would be fun to build a project around this idea. 

How is the research process different from what you expected?
Honestly, I didn’t really know what to expect. I thought working as a “research 
assistant” might be a lot like any other job. In a way that’s true, but I now believe 
research is more like school. There are papers to write, tests to perform, formulae 
to solve... all the sorts of problems I might encounter in the classroom. However, 
there is one important difference, and that is that I was the one deciding the next 
steps. I didn’t have a teacher telling me what to do and when to do it. Rather, I 
had a personal goal of what I wanted to show and had to meet with my mentors 
to work out the plan to get there.

What is your favorite part of doing research?
I love learning, and to me, research is like the opportunity to get paid to learn.  
Of course, there is a lot of work involved, but I feel that it is very rewarding. 
When a research project is complete, you’ve acquired a lot more skill in the field 
and, hopefully, accomplished what you set out to do. 
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ABSTRACT
As hardware continues to become smaller and faster, software becomes more powerful. The continual 
improvements in our technology promise to bring about significant changes in our lives and in how we 
interact with the world around us; new and popular devices with touchscreens and voice interfaces are 
evidence of this. Yet, even the most cutting-edge consumer devices have their limitations. For example, many 
individuals are still unable to use modern computers because of accessibility restrictions. Rehabilitation 
devices, such as robotic orthotics, and military projects, like exoskeletons, have not been fully realized 
using existing tools. Even in the massive computer-gaming industry, a device’s interface can be as much 
a distraction to the player as an aid. An emerging field of interface technology may be able to help 
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INTRODUCTION
In the past few decades, technology 
has significantly altered our lives. 
The digital revolution saw changes 
not only in electronics themselves, 
but also in the way we interact with 
them. Once mostly relegated to office 
workers and hobbyists, computers 
have become vital components of 
nearly every tool we use, and the 
integration of computers into so 
many electronics has paved the way 
for new human-computer interfaces 
as we seek to find better and more 
appropriate ways to control them. For 
example, the keyboard and mouse 
were long the standard in computer 
input technologies, but these devices 
were not very practical as a means 
of controlling telephones. For that 
reason, many modern cell phones 
now use touchscreens to interpret 
user commands. Touchscreens allow 
for very reliable and mobile device 
control, but they necessitate the 
use of hands. To allow hands-free 
control, voice interfaces have become 
increasingly popular in recent years. 
These interfaces have continued 
to advance, and as they improve, 
they have been able to understand 
humans more naturally.

However, even with our 
most advanced consumer-level 
technologies, like digital voice 
assistants and touchscreens, there 
are still those who cannot use 
these devices. Particularly, those 

suffering from physical disabilities 
or certain types of mental disorders 
may be restricted in their ability 
to interact with computers. The 
search for universally accessible 
technology is an open project in the 
scientific community. The continuing 
developments in hardware that 
allow for smaller and more powerful 
devices have led to growing interest 
in a new class of computer interfaces 
[1]. These types of interfaces would 
interact with users solely through 
their bodies’ natural signals. The 
gold standard of this field of devices 
would be a true brain-computer 
interface (BCI). A BCI could, 
theoretically, interpret any user’s 
action by monitoring his or her brain 
activity. Such an interface removes 
accessibility restrictions and has been 
used successfully in a large number 
of studies as evidenced in [2][3][4]
[5] and many more. A BCI would 
supersede all existing technologies 
since it would interpret commands 
directly from the source, our brains. 
BCI is a growing field that shows 
a great deal of promise; within the 
last decade alone, hundreds of new 
laboratories have been created to 
research BCI [6]. Unfortunately, most 
methods of monitoring brain activity, 
such as electroencephalography 
(EEG) or Functional Magnetic 
Resonance Imaging (fMRI), require 
expensive, specialized equipment in 
carefully controlled environments. 

These limitations are currently 
preventing BCI from spreading much 
beyond the world of research.

There are many other options 
than BCI that could make technology 
more accessible. Heart rate monitors 
in watches are an example of 
consumer devices that interact with 
the user based on his or her body’s 
signals [7]. These rely on sensors 
that are inexpensive and reliable, 
in many kinds of environments 
[8]. The existence of such devices 
demonstrates that the hardware and 
software for more natural interfaces 
are available. One technology that 
may be viewed as an intermediary to 
BCI is electromyography (EMG), the 
subject of this analysis. EMG is the 
measurement of electrical activity 
across muscle groups. To understand 
why EMG is beneficial, recall that 
BCI often uses EEG. EEG measures 
the electrical activity of the brain. The 
popular, non-invasive techniques do 
this through an array of electrodes 
placed on the scalp. Unfortunately, 
these signals are difficult to acquire 
outside of controlled conditions, due 
to signal attenuation caused by the 
skull. Conversely, muscular electrical 
activity is much more pronounced, 
making it easier to detect. In fact, 
in many BCI applications, EMG is 
considered interference because it is 
so strong compared to EEG [9]. The 
relative strength of EMG enables 
EMG-based systems to use less 

solve some of these problems: natural interfaces that seamlessly interpret our bodies’ biological signals. 
Electromyography (EMG), the recording and processing of muscular electrical activity, is one of these 
technologies. EMG shows a lot of promise, especially in rehabilitation and accessibility, but it has yet to 
become a mainstream technology. This work studies EMG through the construction of an EMG-based 
interface, considering its cost and reliance. The analysis seeks to determine the plausibility of implementing 
EMG systems in consumer devices, as well as examining some of its potential when applied to new 
problems.

Keywords—electromyography (EMG), neural network, Fourier transform, signal classification, human-
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expensive hardware. The stronger 
signal acquired by EMG is also more 
noise-tolerant than EEG.

Not only can EMG be more 
affordable and reliable than EEG, it 
also offers some of the advantages 
of BCI. One prominent example 
is in the field of physical therapy 
and rehabilitation. EEG has been 
successfully applied to a number of 
rehabilitation applications. EMG 
is also applicable to this field [10]
[11][12]. Furthermore, EMG could 
be paired with types of robotic 
orthotics to aid in rehabilitation 
for individuals suffering from more 
severe conditions, such as spinal 
cord injury [13]. The applications 
are not just limited to therapy. 
Specialized hardware like braces and 
exoskeletons could be driven by EMG, 
giving the operator a much more 
intuitive control than an interface 
using levers and buttons. Virtual 
reality systems, video games, and 
even general computer interfaces 
could employ EMG to give users an 
immersive and natural experience. It 
would be challenging to apply most 
modern interface technologies to 
many of these applications, yet BCI 
and EMG-based systems would be 
well-suited to them.

EMG is a very promising field 
for its combination of low-cost 
and reliability with a number of 
the advantages of more difficult 
interface methods such as EEG. This 
promise bears investigating and is 
the impetus behind this analysis. This 
paper outlines the construction of a 
very basic, end-to-end EMG system. 
In developing and building the final 
system, factors such as cost and 
noise-tolerance are considered. The 
resulting construct is also tested on 
a specific problem—distinguishing 
between two distinct movements of 
the arms. These tests are primarily 
intended to be demonstrative, not 
fully investigative of the developed 
system’s capabilities; as discussed, 
there are of course many other 
possible applications.

METHODOLOGY
In order to analyze the effectiveness 
of EMG with regard to its cost and 
reliability, a complete EMG system 
was constructed. The developed 
system was composed of three 
primary components: the hardware, 
middleware, and software. Figure 
1 shows an overview of the system. 
Briefly, the hardware is a small 
circuit that acquires the raw EMG 
signal. Middleware is being used in 
this case as a general term for all of 
the operations performed between 
the hardware and software; in this 
problem, the most important action 

is the analog-to-digital conversion 
(ADC) at a given sampling rate. The 
software is the portion of the system 
that does meaningful operations 
on the EMG data. In the tests 
performed, the software determines 
when muscle movement occurs and 
classifies the activity. A more detailed 
discussion of each section follows.

Hardware
The goal in the hardware phase 

of the project was to build an 
inexpensive yet functional EMG 
sensor. While there are some EMG 
schematics available online, such as 
the Advancer Technologies sensor 
seen in [14], many of these heavily 
pre-process the signal. The few 
sensors that are available for some 
consumer applications often only 
measure a single value, which is the 
amplitude of voltage across a muscle. 
Recording only the level of muscle 
activation removes a lot of potentially 
useful information from the signal; 
it certainly reduces the number of 
techniques that could be used with 

EMG that are found in current EEG 
systems, like spectral analysis. With 
the motivation of maintaining as 
much information from the original 
signal as possible, the final circuit 
was relatively simple. The circuit 
schematic is shown in Fig. 2.

The essential piece of the circuit 
is an instrumentation amplifier. 
Instrumentation amplifiers are 
ideal for this type of application 
because they measure the voltage 

Fig. 1 Block-level view of the EMG movement classifier.

Fig. 2 Schematic of the instrumentation amplifier used as an EMG sensor.
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between two points without heavily 
contaminating the signal. The 
amplifier’s design is based on the 
discussion provided in [15]. TL084s 
were used as the op-amps because 
their JFET-based implementation 
helps to reduce current leakage 
on the input. Certain component 
values were selected based on 
recommendations provided in 
[16]. The resistors R2 and R3 were 
responsible for determining the gain, 
and their values were selected for 
a gain of 820, boosting the signal 
strength significantly. A large gain 
was preferred so that small muscle 
movements could be easily detected. 
Following the acquisition and 
amplification, some minor filtering 
is performed using a passive high 
pass filter with a cutoff frequency 
near 10 Hertz (Hz). This filter reduces 
the low-frequency components of 
the signal and is primarily intended 
to remove noise introduced by the 
sensor’s batteries. More extensive 
filtering could be applied to examine 
specific bands, but in keeping with 
the goal of maintaining as much of 
the original signal as possible, no 
more filtering was done at this point.

There are three electrodes used 
as the input to the circuit: a global 
ground and two placed side-by-side 
across the muscle group of interest. 
The two electrodes on the muscle are 
used to find the voltage across the 
region of interest. This voltage is then 
referenced to the global ground. The 
signal goes through the amplification 
and filtering, and the final analog 
signal is sent on to the middleware.

Middleware
The middleware is the portion 
between the hardware and software. 
It abstracts all of the hardware away 
by providing digital measurements 
at a requested rate. A Bluetooth-
enabled Arduino microcontroller, the 
BLUNO, was used for this part of 
the system. The BLUNO’s ADC can 
sample analog signals between 0 and 
5 Volts (V), converting them into a 

digital value with 10 bits of resolution; 
these parameters were quite sufficient 
for this problem. The BLUNO 
sends the digital value over a serial 
connection, either USB or Bluetooth. 
The USB interface was used in this 
project, even though the Bluetooth 
interface could be used for wireless 
applications. As an Arduino-based 
device, the BLUNO was programmed 
in the C language with a process that 
listened for new connections and 
would stream the EMG signal at the 
defined sampling rate.

Software
The software used the EMG data 
to assemble a feature vector and 
classify the user actions through a 
neural network.
1. Building the Feature Vector
A feature vector is a matrix of values, 
ideally those that are the most 
distinct across a number of different 
classes, used by a classification 
algorithm to learn and classify data. 
Since the task was to distinguish 
between movements, a feature 
vector had to be built to represent 
movements in a classifiable manner. 
Using thresholding, whenever a 
measurement above the threshold 
of 0.5 V is detected on the amplified 
signal, the next 120 milliseconds (ms) 
are assumed to be the beginning of 
an action. This time window was 
selected based on prior research 
suggesting there is up to an 80ms 
delay between when the electrical 
activity of a movement becomes 
recordable and when the movement 
actually begins to occur [17]. Of 
course, a 120ms window adds at least 
40ms of delay over the body’s natural 
one, with some extra latency due to 
sampling rate and processing time, 
but a 40ms delay is sufficient in most 
user applications. Indeed, delays of 
approximately this length are found in 
many consumer-level interfaces such 
as keyboards and touchscreens [18].

The collected samples in the 
120ms window are then transformed 
using the Discrete Fourier Transform 

(DFT). The DFT, a form of spectral 
analysis, alters the signal so that 
levels of activation of certain 
frequencies may be examined. The 
DFT is also the reason a 120ms 
window was selected instead of 
an 80ms one, since the number 
of samples in the time window 
determines the resolution of the 
transformed signal, and the 120ms 
window contains more samples. To 
further increase the resolution of 
the DFT, the window is padded to 
twice its original size using zeros. The 
resulting resolution is the Nyquist 
frequency divided by twice the 
original number of samples (Nyquist_
frequency/[2*time_window*sample_
rate]). The Nyquist frequency is 
always half the original sampling 
rate because half the values returned 
by the DFT are complex. With a 
sample rate of 256 Hz, the resolution 
was approximately 2 Hz. Figure 
3 demonstrates construction of a 
feature vector.

Fig. 3 A visual representation of building 
the feature vector
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2. Classifying Movements
Classification is performed by 
a neural network with variable 
layer sizes. Neural networks are 
mathematical constructs that use 
layers of artificial “neurons” to learn 
how to classify some given data. For 
these tests, the input layer consisted 
of thirty neurons, the number of 
samples in the DFT, eight hidden 
neurons, and two output neurons. 
Only two outputs were necessary 
because the classifier was being 
used to discriminate between two 
movements; more movements could 
be added, but would require more 
output neurons.

Neural networks use supervised 
machine learning algorithms to 
classify signals, so before any 
meaningful results could be obtained, 
the network had to be trained. 
Training is implemented as an 
automated process wherein the user 
is instructed which action to perform 
and when. Training may be done 
in real-time or in batches because 
the software includes an additional 
feature of saving all the collected 
EMG data, along with the trained 
neural network’s weights, at the end 
of each session. This information 
could be used for later batch training 
to improve classification accuracy. 
The trained network is loaded 
at the start of each new session, 
allowing the same network to be 
used repeatedly, whether training or 
classifying.

The final part of the software that 
merits discussion is the interface. 
Three plots are used to provide 
users with feedback and report the 
classification results. The first plot 
is a live graph of the acquired EMG 
data, which serves as a visual of 
muscle activity over time. The second 
plot is the DFT used for movement 
classification. The DFT demonstrates 
how much each frequency 

contributes to the muscle movement, 
dependent on the resolution of the 
transform. The final graph is used 
for classification reporting. The 
output from a neural network is 
the probability that a given input 
belongs to a specific class, and by 
taking the maximum output, the 
most likely class can be found. Thus, 
a plot of the output is not needed, 
since only the class must be reported. 
However, the plot provides the user 
with more information by indicating 
how certain the network is of a given 
input. Information like this can be 
helpful in determining how much 
more training is needed, especially 
when the training is performed live.

The resulting system is pictured 
in entirety in Fig. 4. As shown, the 
hardware phase was implemented 
on a breadboard, with clips for the 

leads to electrodes. The BLUNO’s 
ADC is directly connected to the 
output of the sensor, and a USB 
connection links the software to the 
other components.

RESULTS
By this point, the discussion has 
included the construction of an 
inexpensive EMG sensor built from 
a few circuit components and a 
microprocessor. The next phase of the 
analysis was to explore the capabilities 
of the sensor through testing. The test 
selected for this examination was the 
discrimination between two distinct 
movements of the bicep.

First, the electrodes were placed 
on the arm as shown in Fig. 5, with 
the ground electrode placed on the 
elbow. Areas over bones are ideal 
grounding points since there is little 
interference from the muscles in 
these regions [16]. Once attached to 
the EMG system, with the software 
launched, the training could begin. 
In these tests, all training was done 
over a set of live sessions, where 

the experimenter was connected 
directly to the system performing 
the indicated actions. As anticipated, 
the network was not able to classify 
correctly during the early part of the 
training, but after several hundred 
examples, classification accuracy 
increased noticeably. Following 
training, the resulting network could 
be tested on only its classification  
 

Fig. 4 The completed and assembled 
EMG system

Fig. 5 Electrode placement for the experiments
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accuracy. Six trials were run in all; 
Table 1 reports the individual trial 
accuracies. An average of all six trials 
indicated an accuracy of 74 ± 6 %.

Figures 6a and 6b show the 
average-case DFT for both classified 
actions. The first action in Fig. 6a, 
which was sustained holding of an 
outstretched arm, demonstrates 
a roughly exponential drop in 
frequency activation, which is a 
typical phenomenon observed in 
EMG and EEG [19]. The second 
action seen in Fig. 6b, which was 
making a clenched fist, has a very 
different DFT. Notably, there is 
more activity in some of the higher 
frequencies, while frequencies 
around the 10 - 20 Hz range are 
more suppressed. These differences 
were sufficient for the neural network 
to distinguish between the two 

activities in most cases, and they 
demonstrate some of the potential of 
EMG to broader applications. If most 
movements have a relatively distinct 

DFT, a neural 
network or other 
classifier would be 
able to differentiate 
between such 
movements.

DISCUSSION
Based on the 
results from testing, 
the EMG sensor 
worked well. It was 
fairly inexpensive 
to construct, and 
the parts necessary 
to build the basic 

circuit are easy to find. Also, the 
amplifier’s gain is tiny compared to 
what is required for EEG recording, 
further simplifying design, and the 
sensor did not need to be placed 
inside protective casing. Of course, 
any consumer product using this 
technology would need to enclose 
the sensor in a case, which should 
improve accuracy by shielding it from 
noise, but leaving it exposed in these 
tests demonstrated noise tolerance.

Tests were performed in several 
locations, but none of them were 
in a controlled environment. As 
seen in Fig. 4, the sensor was only 
implemented on a breadboard, and 
the exposed wires would have left 

it open to much more noise than 
a highly-sensitive system, like an 
EEG amplifier, could tolerate. These 
findings are encouraging, since they 
show that EMG-based interfaces 
would likely be very noise-tolerant, 
functioning under many kinds of 
non-ideal conditions. Because the 
hardware is also affordable, EMG 
seems like a promising technology 
that could precede BCI in consumer-
grade applications.

It would be beneficial to explore 
a few possible improvements to 
the implemented system, as they 
could be used to build better EMG 
devices. Most importantly, the 
classification accuracy could be 
improved by building a better feature 
vector. In these tests, the DFT of 
a small time window is all that 
is used. However, in BCI, feature 
vectors are often constructed using 
a variety of techniques, and they 
combine scientific knowledge of 
human physiology to select the best 
features [20]. This is a case where 
EMG technology could benefit from 
the body of work available for EEG. 
Likewise, the classification algorithm 
itself could be improved. Many 
different ones are employed in BCI, 
including neural networks [21], and a 
number of them may also be well-
suited to EMG.

The hardware could be improved 
without much additional cost. Extra 
filtering could be used for better 

Fig. 6a The typical feature vector of the first 
classified movement, the continued holding of 
an outstretched arm

Fig. 6b The typical feature vector of the second 
classified movement, flexing of the arm

Table 1

Classification accuracy across multiple trials

Trial Number Accuracy

1 64.3%

2 77.1%

3 68.5%

4 71.4%

5 75.7%

6 84.3%

Average Accuracy

74 ± 6 %
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noise reduction. Certain frequencies 
could be removed if they were not 
beneficial in a given application. 
Alternatively, all frequencies could 
be removed except for a particular 
bandwidth of interest. As mentioned 
above, enclosing a soldered sensor 
in a shielded case would also 
significantly reduce noise.

It should be noted that the 
software for interpreting and acting 
on EMG signals is completely 
extensible. It was written in python 
and run on a laptop for this analysis, 
but it could be written in C for greater 
speed and run on a standalone 
processor. If the software were run on 
a microcontroller like the BLUNO, all 
of the signal classification could be 
done wirelessly, and any device paired 
over an interface like Bluetooth could 
use that information. For example, 
an exoskeleton could perform the 
same action the user is doing by 
using the interpreted signal from the 
EMG sensor. Even though this study 
focused on movement classification, 
EMG may also be used for movement 
tracking with the inclusion of 

some physiological models, as 
demonstrated in [22]. These 
improvements could make EMG very 
well-suited to exoskeletal control.

This analysis is not fully-
conclusive. EMG is a broad field, and 
there is an extensive body of research 
in the area. There will likely continue 
to be developments in this subject for 
many years, along with continuing 
breakthroughs in EEG and BCI-
related topics. However, the results 
from this cursory study of EMG show 
that the technology is very nearly 
ready to expand outside the world of 
academic research.

To reiterate some of the earlier 
findings, EMG sensors can be built 
that are both affordable and able to 
perform well in varying conditions. 
BCI is not yet to this point, providing 
EMG with the opportunity to reach 
a market that is relatively new and 
untouched. Even though EMG is not 
applicable to all of the possible uses 
of natural interfaces, as BCI would be, 
it would allow for a number of these 
applications to be explored with 
present technology. As evidence of 

this, note that one of the first EMG-
equipped consumer products was 
very recently announced, the Myo 
armband [23]. This band allows users 
to connect to many types of devices 
wirelessly and control them using 
EMG. Based on the findings of this 
analysis, it is likely that more EMG 
devices will be entering consumer 
markets soon. This is an exciting 
technology, and not only will it 
change how a number of existing 
technologies function, but it is bound 
to bring about some new ones that 
were never before possible.
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