PERIPARTUM CARDIOMYOPATHY: PREDICTORS OF RECOVERY

BY

JAYASREE PILLARISITTI

Submitted to the graduate degree program in Clinical Research and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Master of Science.

__

Chairperson Edward Ellerbeck, MD, MPH

__

James Vacek, MD, MS

__

Dhanunjaya Lakkireddy, MD

Date Defended: July 9th 2013
The Thesis Committee for Jayasree Pillarisetti
certifies that this is the approved version of the following thesis:

PERIPARTUM CARDIOMYOPATHY: PREDICTORS OF RECOVERY

Edward Ellerbeck, MD, MPH

Date approved: 7/24/2013
Abstract

Introduction: Peripartum Cardiomyopathy (PPCM) is a rare, poorly understood disease process with significant clinical implications in pregnant women during and after delivery. Improvement in left ventricular (LV) ejection fraction (EF) varies widely and few studies exist that define predictors of improvement in LV function in this sub population. The use of implantable cardioverter defibrillator (ICD) has also not been clearly understood in this population.

Methods: A retrospective study was conducted at 2 academic centers between January 1st 1999 and December 31st 2010. Clinical and demographic variables and delivery records of patients with a discharge or outpatient diagnosis of PPCM (ICD9 -674.5) were reviewed. Patients were followed over time until December 31st 2012 to assess improvement in LV function.

Results: The total sample comprised 100 patients of whom 55% were African Americans, 39% were Caucasians and 6% were Hispanic with mean age of 30±6 years. The mean time to diagnosis after delivery was 1.1±4 weeks. Mean EF at diagnosis was 28±9%. Forty two percent of patients showed some improvement in LVEF over a mean duration of 33±21 months. Postpartum diagnosis (HR 3, p=0.01) and Caucasian/Hispanic race (HR 2.2, p=0.01) were predictors of LVEF improvement. Only 7 of the 58 patients (12%) who did not improve their EF, had ICD implanted. There were 11 deaths with a trend towards higher mortality in those that did not display improved LV function (15% vs. 5%, p=0.1).

Conclusions: More than one-third of the women with PPCM improve LV function with delayed recovery noted in the majority of these women. Caucasians and those diagnosed postpartum seem to be most likely to recover. ICDs were underutilized for primary prevention of sudden cardiac death in this population.
Acknowledgements

I would like to thank all the investigators who have helped me in obtaining this data and made this research feasible

I would like to thank Dr. Dhanunjaya Lakkireddy, my research mentor for his professional guidance and valuable support and Dr. James Vacek for his valuable criticism and constructive recommendations on this project

I would like to thank Dr. Carl Weiner for taking the time to edit this manuscript

Special thanks should be given to Dr. Edward Ellerbeck, my thesis chair for offering his time, his feedback and critical insight into the data analysis

Last but not the least, I would like to thank my parents, my husband and my daughter without whose support this work could not have been accomplished
Table of contents:

Acceptance Page-----------------------------------ii
Abstract---iii
Acknowledgements------------------------------------iv
Table of Contents-----------------------------------v
Introduction--1
Methods ---2
Results--4
Discussion---10
Conclusions --14
References ---15
Table 1---6
Table 2---6
Table 3---7
Figure 1---4
Figure 2---4
Figure 3---7
Figure 4---9
Figure 5---10
Introduction:

Peripartum cardiomyopathy (PPCM) is a rare, life threatening disease characterized by the development of heart failure in the last month of pregnancy or within 5 months of delivery (1, 2). The reported incidence shows significant geo-demographic variation from 1 in 500 live births in Haiti to 1 in 4000 live births in the USA (3 -6). Identified risk factors for PPCM include multiparity, advanced maternal age, twins, preeclampsia, gestational hypertension and African-American race (7-10).

Despite the recognition of this disease as a separate entity in 1937 (1), the mortality rates are still not well characterized (8-19) ranging from 4 % to 50% (2, 8-19). At least a quarter of deaths in PPCM are caused by ventricular tachyarrhythmias (16). Sudden cardiac death in these young women could potentially be averted by implantation of a cardioverter-defibrillator (ICD) and cardiac resynchronization (CRT) devices may reduce progression to end stage myocardial dysfunction. ACC/AHA/ESC 2009 guidelines recommend implantation of an ICD for primary prevention of sudden cardiac death in all patients with EF≤ 35% (20).To date, there are no studies that report the use of ICD or CRTD for primary prevention in this population. PPCM is also reported to be associated with a higher likelihood of recovery of left ventricular (LV) function than cardiomyopathy from other causes (2,10,17,19,21). Thus, predicting who recovers from the disease helps determine who might best benefit from an ICD implantation. Previous studies have shown that baseline LV ejection fraction (EF) >30%, LVEDD < 5.5cm, older age and Caucasian race predicted recovery of LV function (22-29). However these are single center studies with small sample sizes of ≤ 55 patients or the information was obtained from other countries and surveys that are subject to ascertainment, recall and selection bias.
We thus wanted to study the mortality and LV recovery rates and examine the ICD implantation rates at tertiary academic centers that offer a good mix of patients of different ethnicities. We sought to identify the predictors for LV recovery and the current rates of ICD use.

Methods:

This is a retrospective study conducted at two large tertiary care academic centers, University of Kansas, Kansas City and Detroit Medical Center, Detroit where cardiovascular and high risk pregnancy services are available. IRB approval was obtained from both institutions.

Patients: All patients > 18 years of age who were diagnosed with postpartum/peripartum cardiomyopathy at the 2 centers were studied. The medical records of these patients were identified by using ICD-9 diagnostic codes for PPCM (674.50, 674.51, 674.52, 674.53, 674.54) that were used for discharge diagnoses from the hospital and/or ambulatory clinic visits. At University of Kansas, medical records were obtained for patients diagnosed between January 1st 2004 and August 31st 2010. At the Detroit Medical Center, records were obtained for patients that were diagnosed with PPCM between January 1st 1999 and December 31st 2010. All delivery records and follow-up encounters were reviewed for clinical and demographic information. Patients with a history of prior cardiomyopathy from other causes or structural heart disease were excluded. Each patient was followed until December 2012 for any improvement in EF. The date of the last echo was considered as the last follow-up date for those without any improvement in EF. Time to recovery was noted for patients who had improvement in LV function. ICD implantation was also noted. All-cause mortality was obtained from the social security death index and confirmed by chart review when available.
Assessment of Ejection fraction (EF): EFs at the time of diagnosis of PPCM were recorded and termed as baseline EF. Each patient was followed over time to assess EF and the EF from the last echocardiogram report was noted for those without LV improvement. For patients who had an improvement in EF, the EF and the time to improvement in EF were noted.

Definition of improvement: An EF > 50% at follow-up was considered as complete recovery. If the EF remained < 35%, it was considered as no improvement. If the follow-up EF was between 35% and 50% the improvement was considered partial provided that there was > 10% positive change from baseline.

If patients had either partial or complete improvement they were included in the ‘any’ improvement category used for the analysis.

Statistical analysis: Statistical analysis of the data was performed using SAS version 9.3 (SAS Inc, North Carolina, USA). Chi square was used for comparisons of categorical data and Student’s t-test for continuous parameters. A Cox proportional hazards model was used to assess the predictors for any improvement in EF after adjusting for significant covariates. Univariate predictors were initially obtained and if p<0.1, they were included in the multivariate analysis. Baseline EF was tested both as a continuous variable as well as a categorical variable (EF < 30% and > 30%) to see if it predicted recovery or mortality. Statistical significance was considered present when p < 0.05 in the multivariate analysis. The model fit was tested using the test for proportionality. Kaplan Meier curves for improvement in EF and mortality were constructed for the entire population.
Results:

The flowchart of cohort assembly is illustrated in figure 1. The final cohort consisted of 100 patients with a mean age of 30±6.5 years. Mean duration of follow-up was 35±21 months. African-Americans predominated in the sample (55%) with 39% Caucasians and 6% Hispanics.

Figure 1: Flow chart of patients

Figure 2: Time of Diagnosis (in weeks) of PPCM for each patient
Maternal and Fetal Characteristics: Preeclampsia was diagnosed in 36%; 61% were multiparous. The majority of patients were diagnosed after delivery (71%). The mean time to diagnosis of PPCM was 1.1±4 weeks. Figure 2 shows the time to diagnosis for each patient. Forty patients had preterm delivery prior to 37 weeks and tocolytic agents were used in 9. The cesarean section rate was 56%. Three women had stillbirths. The mean birth weight of the neonates was 3±0.92kg. Thirty five women had subsequent pregnancies. Mean NYHA class was 2±1.2. Thirty percent (30%) of patients were in NYHA class I, 15% in class II, 45% in class III and 8% in class IV. There were 4 patients with QRS duration > 120ms at baseline. Among patients who did not recover LV function, one woman had a ventricular assist device implanted. Two women were listed for heart transplantation.
Table 1: Baseline characteristics of all patients

<table>
<thead>
<tr>
<th>Variables</th>
<th>Total (N=100)</th>
<th>Improvement (N=42)</th>
<th>No improvement (N=58)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>30±6.5</td>
<td>30±7</td>
<td>30±6.2</td>
<td>0.7</td>
</tr>
<tr>
<td>Race (%) (African-American)</td>
<td>55</td>
<td>48</td>
<td>65</td>
<td>0.09</td>
</tr>
<tr>
<td>Baseline EF (%)</td>
<td>28±9.9</td>
<td>29±9</td>
<td>28±10</td>
<td>0.9</td>
</tr>
<tr>
<td>Diabetes (%)</td>
<td>29</td>
<td>23</td>
<td>32</td>
<td>0.3</td>
</tr>
<tr>
<td>Hypertension (%)</td>
<td>33</td>
<td>35</td>
<td>31</td>
<td>0.8</td>
</tr>
<tr>
<td>Gestational hypertension(%)</td>
<td>33</td>
<td>33</td>
<td>32</td>
<td>0.9</td>
</tr>
<tr>
<td>Preeclampsia (%)</td>
<td>36</td>
<td>40</td>
<td>32</td>
<td>0.4</td>
</tr>
<tr>
<td>Hyperlipidemia (%)</td>
<td>9</td>
<td>7</td>
<td>10</td>
<td>0.6</td>
</tr>
<tr>
<td>Multiparity (%)</td>
<td>61</td>
<td>52</td>
<td>67</td>
<td>0.12</td>
</tr>
<tr>
<td>Tobacco abuse (%)</td>
<td>30</td>
<td>39</td>
<td>24</td>
<td>0.12</td>
</tr>
<tr>
<td>Alcohol (%)</td>
<td>11</td>
<td>14</td>
<td>8</td>
<td>0.3</td>
</tr>
<tr>
<td>Cesarean section (%)</td>
<td>56</td>
<td>59</td>
<td>54</td>
<td>0.46</td>
</tr>
<tr>
<td>Family history of cardiomyopathy(%)</td>
<td>13</td>
<td>14</td>
<td>12</td>
<td>0.7</td>
</tr>
<tr>
<td>Left atrium enlarged (%)</td>
<td>64</td>
<td>64</td>
<td>63</td>
<td>0.9</td>
</tr>
<tr>
<td>postpartum diagnosis (%)</td>
<td>71</td>
<td>83</td>
<td>62</td>
<td>0.02</td>
</tr>
<tr>
<td>QRS duration (ms)</td>
<td>85±18</td>
<td>83±21</td>
<td>86±16</td>
<td>0.4</td>
</tr>
<tr>
<td>Creatinine (mg/dl)</td>
<td>0.8±0.7</td>
<td>0.82±0.2</td>
<td>0.9±0.9</td>
<td>0.6</td>
</tr>
<tr>
<td>Hemoglobin (mg/dl)</td>
<td>10.7±1.7</td>
<td>10.7±1.5</td>
<td>10.8±1.8</td>
<td>0.6</td>
</tr>
<tr>
<td>Betablocker (%)</td>
<td>82</td>
<td>89</td>
<td>78</td>
<td>0.2</td>
</tr>
<tr>
<td>ACEI/ARB (%)</td>
<td>85</td>
<td>83</td>
<td>86</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Table 2: Distribution of baseline Ejection Fraction against follow-up Ejection Fraction

<table>
<thead>
<tr>
<th>Baseline Ejection Fraction</th>
<th>Follow-up EF <20%</th>
<th>Follow-up EF 20%-30%</th>
<th>Follow-up EF 31%-50%</th>
<th>Follow-up EF >50%</th>
<th>Percent improved (per study definition)</th>
</tr>
</thead>
<tbody>
<tr>
<td><20%</td>
<td>n=8</td>
<td>n=2</td>
<td>n=2</td>
<td>n=1</td>
<td>n=3/13 (23%)</td>
</tr>
<tr>
<td>20%-30%</td>
<td>n=10</td>
<td>n=7</td>
<td>n=12</td>
<td>n=13</td>
<td>n=22/42 (52%)</td>
</tr>
<tr>
<td>31%-50%</td>
<td>n=7</td>
<td>n=13</td>
<td>n=16</td>
<td>n=9</td>
<td>n=17/45 (38%)</td>
</tr>
</tbody>
</table>
LV recovery: Forty two of 100 patients (42%) had ‘any’ improvement in EF over a mean duration of 33±21 months. Of these patients, 23 women had complete improvement while 19 had partial recovery of LV function. Baseline characteristics of patients with and without improvement in EF are shown in table 1. The distribution of baseline EF versus follow-up EF is shown in table 2. The mean baseline EF was 28±9.9%. The mean EF at follow-up for the entire group was 34±18% during a mean follow-up duration of 35±21 months. Figure 3 demonstrates the range of improvement in EF that occurred with different baseline EFs of < 20%, 20 to 30% and >30%.

![Box and Whisker plot](image)

Figure 3: Box and Whisker plot of follow-up EF against baseline EF

Table 3: Multivariate predictors of LV recovery

<table>
<thead>
<tr>
<th>Predictors</th>
<th>Hazard Ratio</th>
<th>95% Confidence interval</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Race (African-American vs other)</td>
<td>0.45</td>
<td>0.2-0.8</td>
<td>0.01</td>
</tr>
<tr>
<td>Postpartum Diagnosis</td>
<td>3</td>
<td>1.2-7</td>
<td>0.01</td>
</tr>
<tr>
<td>Diabetes</td>
<td>0.4</td>
<td>0.2-1</td>
<td>0.06</td>
</tr>
</tbody>
</table>
In women who had any improvement (partial and complete) in LV function, the mean baseline EF was 29±8% and the mean follow up EF was 52±5%. The mean baseline EF in patients with complete recovery was 30±9% and the mean follow-up EF was 56% over a mean of 26±22 months. Of these, only 4 women had complete improvement within 6 months. Delayed complete recovery beyond 6 months was noted in 83% (n=19/23) of patients. The mean baseline EF in patients with partial improvement was 30±9% and the mean follow-up EF was 48% and was achieved after a mean of 40±17 months. Univariate and multivariate analysis of predictors of LV recovery (any improvement) revealed that race (Caucasians and Hispanics) and postpartum diagnosis were the predictors of LV recovery while there was a trend for no improvement in LV function in patients with diabetes (See table 3). A Kaplan-Meier curve for recovery of LV function is shown in figure 4.

Mortality: The majority of the women were treated with optimal therapy for heart failure (beta-blockers and angiotensin converting enzyme inhibitors (ACEI)/angiotensin receptor blockers (ARBs)). There was no difference in the use of beta-blockers and ACEI/ ARBs in patients with and without recovery of LV function (see table 1). Eleven women died (n=11) during an average follow-up of 29±29 months. Nine were in the group that did not recover. There was a trend towards higher mortality in the group that did not recover their LV function (15% vs 5%, p=0.09). Only 1 had an ICD and died from intractable heart failure. Two other women died from arrhythmic causes while the cause of death is not known in 8 other patients. A Kaplan Meier survival curve for the entire group is shown in figure 5.
Figure 4: Kaplan-Meier curve showing proportion of patients not-improved over time.

ICD use: Thirteen women (n=13) had ICDs implanted at some point including 2 with cardiac resynchronization therapy devices (CRTD). Six women among the 41 who had complete recovery of PPCM received an ICD early in their follow-up (n=6/42, 14%) while 7 (n=7/58, 12%) patients without any EF improvement received ICDs. Fifty four of the 59 patients who did not recover had EF ≤35% and qualified for an ICD device for primary prevention of sudden cardiac death; only 7 (13%) had a device implanted. ICD implantation was for primary prevention in 12 patients and secondary prevention in 1 patient.
Figure 5: Kaplan–Meier survival curve for the entire population

Discussion:

We found that a substantial proportion of patients with PPCM recover LV function (42%), complete recovery occurred in 23%. Our follow-up duration was long enough to note delayed complete recovery of EF beyond 6 months in majority of the patients in both Caucasians and African-Americans (83%). This study underlines the high mortality rate (11%) in these young women. This is the one of the first studies to address ICD use and suggests their underutilization according to guidelines.

PPCM is distinct from other types of heart failure, although the symptoms resemble that of dilated cardiomyopathies. Oxidative stress, genetic susceptibility, auto-immunity and
myocarditis have all been implicated in the pathogenesis (2, 30). Complete recovery of ventricular function occurs in substantial proportion of women which is unusual in other forms of cardiomyopathy (6). Complete recovery was seen in 23% of patients in our study and partial recovery in 19%. Other studies have reported rates complete recovery rates between 20 and 60% (22-30). Factors predictive of recovery suggested in prior studies included baseline ejection fraction ≥30%, LV end diastolic diameter<5.5cm (22-26). All these studies were from single centers that involved less than 55 patients with limited follow-up and none of these studies were controlled for other covariates. The present study is one of the largest studies in the United States with clinical and echocardiographic variables that were included in the model unlike the study by Goland et al that primarily assessed echocardiographic predictors (26). A recent report of 176 South African peripartum cardiomyopathy patients followed only for 6 months concluded that older age and lower LV end systolic diameter but not the EF, predicted recovery (27). However, this may not be applicable to our population given the racial and genetic differences. We did not find age to be a predictor, but did find confirm that race and postpartum diagnosis were predictors. The differences may also be explained by our longer follow-up duration as delayed recovery of EF beyond 6 months has been reported in 3 other recent studies. (18,31,32). Biteker et al (31) noted that only 14% of Turkish women recovered their EF in the first 6 months while another 33% of women recovered beyond 6 months. Modi et al reported a median time to recovery of 54 months in African-American women in the United States (18) while Fett followed 32 PPCM patients in Haiti and found that the mean duration to LV recovery was 35 months (32). This is important to note as some have concluded that EF recovery occurs in the first 6 months and persistence of LV dysfunction beyond 6 months is a marker of worse survival (2). In the present study, complete recovery of EF within 6 months was seen in only 4 patients (17%) while
delayed recovery occurred in 83% of patients. To our knowledge our study is the first to note delayed recovery of EF in Caucasian women with PPCM. The Kaplan-Meier curve in figure 4 shows 10% non-recovery rates after 5 years. Long term follow-up of these patients is thus needed and serial clinical and echocardiographic assessments of LV function recovery should be made.

Predictors of LV recovery in our study were race and postpartum diagnosis as was previously suggested in other studies (23, 33). There are several possibilities why an antepartum diagnosis could represent a worse outcome. Early presentation could represent more severe disease. Treatment with optimal heart failure medications is limited during pregnancy at a stage when therapy is needed the most. It is also possible that these women had subclinical PPCM with a prior pregnancy that remained undiagnosed and has now progressed to become clinically manifest in the ante-partum stage of the subsequent pregnancy. There was a trend for worse outcomes in patients with diabetes. This association was not reported earlier with PPCM but is true in case of structural heart disease. Prior studies were small and few included clinical variables. With the rising incidence of diabetes in the young population, this association may have now become evident.

Therapy for heart failure consists of optimal medical management and ICD/CRTD for primary prevention of sudden cardiac death (20). More than 80% of the population in our study was on beta-blockers and ACEI/ARBs. Small studies that predated guideline driven heart failure therapy have reported higher mortality rates. Recent studies in the current era including the present study show better outcomes (10, 12, 22). Some new therapies currently under investigation are pentoxiphylline and bromocriptine (34, 35, 36). A very recent prospective study
evaluated treatment with bromocriptine and suggests potential benefit in the European population (36). Cardiac resynchronization therapy has also been shown to be effective in this population (37).

Device therapy for primary prevention of sudden cardiac death in PPCM patients is not specifically addressed in the 2008 device therapy guidelines (38). The present study suggests that devices are underutilized in this population. Another study reported that 7 of 182 patients with PPCM had ventricular arrhythmias and underwent ICD implantation in a tertiary hospital in California, 3 of the ICDs were CRTDs (39). Similarly 3 of 14 patients without improvement underwent ICD implantation in a recent prospective study in Europe (36). Reasons for underutilization of ICDs in the present study are not too clear but possible reasons include lack of specific guidelines on the use of ICDs in PPCM patients, socio-economic factors, patient compliance, access to long term follow-up care and possible follow-up by physicians other than cardiologists who are probably not very familiar with the device indications for primary prevention of sudden cardiac death.

The need and the optimal time for device implantation in women with PPCM is difficult to state since even though delayed EF recovery may occur, risk for sudden death prior to recovery remains a concern. Baseline EF was not shown to be a predictor of recovery of LV function in our study and a few others (4, 18). Although EF was a predictor of improvement in a study by Goland et al, they concluded that baseline EF would not be useful as a marker for early implantation of ICDs since it had limited sensitivity in predicting a lack of EF improvement (29). The largest epidemiological study to date of 680 PPCM patients in North Carolina reported a high mortality rate of 16% (40) in these young women. Sudden death due to ventricular
arrhythmias occurred in 38% of women while 46% died of progressive heart failure and 15%
from unknown causes in a study describing complications of PPCM (39). We thus suggest that
patients with PPCM should undergo ICD implantation if no improvement is detected within the
first 3-6 months, especially in African-American patients who are diagnosed with the disease
antepartum to prevent sudden cardiac death. Subcutaneous ICDs may have a role in this
population with the added advantage of not having an endovascular system and the subsequent
issues related to device extraction especially in those with clinical improvement where a
continued indication for primary prevention ceases to exist (41, 42).

Limitations: This is a retrospective study with a reasonable size. We reported all-cause mortality
and complete data on causes of death was not available in all patients.

Conclusions:

In our study 42% of the women with PPCM improved their LV function with delayed
recovery (>6 months) noted in the majority. Caucasians/Hispanics and those diagnosed
postpartum seem to have the highest recovery rates. ICDs are underutilized for primary
prevention of sudden cardiac death in this population. Future studies should address the
application of ICD and CRT in these women.
References:

37. Mouquet F, Mostefa Kara M, Lamblin N, Coulon C, Langlois S, Marquie C, de Groote P. Unexpected and rapid recovery of left ventricular function in patients with peripartum

