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NONPARAMETRIC TESTS OF
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ZHIJIE XIAO
Boston College

This paper considers testing for moment condition instability for a wide variety
of models that arise in econometric applications. We propose a nonparametric test
based on smoothing the moment conditions over time. The resulting test takes the
form of a U-statistic and has a limiting normal distribution. The proposed test statis-
tic is not affected by changes in the distribution of the data, so long as certain simple
regularity conditions hold. We examine the performance of the test through a small
Monte Carlo experiment.

1. INTRODUCTION

Many econometric models are estimated by imposing some population moment
conditions on the sample. An important assumption in these models is that the
moment condition holds throughout the entire sample. Given that this assumption
is important to further analysis of the model, a number of tests for moment condi-
tion stability have been proposed. In particular, Andrews and Fair (1988) proposed
Wald, likelihood ratio-type, and Lagrange multiplier-type tests, and Ghysels and
Hall (1990) proposed a predictive test for the case where the structural break
date is known. These techniques are also extended to the case with unknown
breakpoint by Andrews (1993), Andrews and Ploberger (1994), Sowell (1996),
Ghysels, Guay, and Hall (1997), and Hall and Sen (1999a): By calculating a cho-
sen statistic for each possible breakpoint, a sequence of statistics can be obtained
and a test for structural change with unknown breakpoint can be constructed based
on a function of the sequence. The literature on testing for structural breaks is vast;
in addition to the above-mentioned work, an incomplete list includes Mankiw and
Shapiro (1986), Ploberger and Kramer (1996), Kuan (1998), Vogelsang (1997,
1998), Bai and Perron (1998), Hall and Sen (1999b), Hansen (2000), and Maynard
and Shimotsu (2009). Some tests that involve nonparametric estimation include
Hidalgo (1995) and Inoue (2001).

In this paper we consider the inference problem of testing for moment
(or conditional moment) instability. The proposed tests are nonparametric. In
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particular, we construct test statistics based on smoothing the moment conditions
over time. The approach follows the idea of Robinson (1989), who develops a
kernel-based nonparametric approach to estimating time-varying parameters in
a linear regression model. We propose a test of the stability of the population
moment condition based on this idea. Our tests take a U-statistic form, and we
show that the statistics have an asymptotic normal distribution.

The contribution of this paper is to provide tests of moment stability for a wide
variety of conditional models that arise in econometric applications. The proposed
test is not affected by changes in the distribution of the data, so long as the mo-
ment conditions tested are not violated and certain regularity conditions hold.
A leading example covered by our model is the inference problem of structural
change of unknown timing in regression models. In this example, our primary in-
terest is usually on the constancy of regression parameters, and not particularly
concerned with the distribution of the regressors. Most existing tests (see, inter
alia, Andrews, 1993; Andrews and Ploberger, 1994) are based on the assumption
that the regressors are stationary and thus cannot discriminate between instability
of parameters and structural change in the distribution of the regressors. Hansen
(2000) proposes a “fixed regressor bootstrap” test for parameter constancy in re-
gression models that allows for structural change in the marginal distribution of
the regressors. When specialized to the regression models, the current paper pro-
vides an alternative test for this inference problem1.

The rest of the paper is organized as follows: In Section 2 we introduce the
model and propose a test for conditional moment instability. The asymptotic the-
ory is provided in Section 3. A generalization to dependent moments is studied
in Section 4. We present the results from a small Monte Carlo study in Section 5,
and Section 6 concludes. The proofs are given in the Appendix.

2. THE MODEL

Given observed data {zt , t = 1, . . . ,T }, we consider a parametric model with pop-
ulation moment conditions:

E(m(zt ,θ0)) = 0, (2.1)

where θ is a p×1 vector of parameters and m is an L ×1 vector where L ≥ p. We
estimate the model using, say, the generalized method of moments (GMM). Thus,
the parameters, θ , are estimated under the assumption that the population moment
condition is not time varying, and hence zero for all time periods. This assumption
is crucial to further analysis of the model. We are interested in whether or not
the moment conditions (2.1) indeed hold over time. In this paper, we propose a
nonparametric test to check the moment stability.

Many important inference problems can be expressed in the form of moment in-
stability. For example, the well-known problem of structural change in regression
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models can be rewritten into a form covered by our model. Consider the linear
regression model

yt = x�
t θ +ut ,

and suppose that we are interested in whether or not θ is constant. To reformulate
it into an inference problem of moment stability, let zt = (yt , x�

t )� and

m(zt ,θ) =
(

yt − x�
t θ
)

xt .

Then, under the null hypothesis that θ is constant, the moment condition (2.1)
holds for all t . Otherwise, for any vector θ of constants, E(m(zt ,θ)) �= 0 for some
nonnegligible fraction of the sample. Most studies in the literature consider the
case where the distribution of xt is assumed to be stationary. Furthermore, we
may allow for changes in distribution of xt but focus our interest on the constancy
of parameters θ . In this case our model reduces to a conditional model similar to
that of Hansen (2000).

The test that we propose to check moment instability is a variant of nonpara-
metric conditional moment tests as developed in Fan and Li (1999), Hjellvik,
Yao, and Tjøstheim (1998), Lavergne and Vuong (2000), Li and Wang (1998),
and Zheng (1996), among others.

For convenience of our analysis, we introduce some notation. We use the nota-
tion mt = m(zt ,θ), and denote the density of mt by ft (mt ), where the subscript
t in ft indicates that the density may be time varying. In addition, we use the
notation μ(t) for E(mt ) to indicate that E(mt ) may be time varying (under the
alternative of moment instability). Thus,

μ(t) = E(mt ) =
∫ ∞
−∞

mt ft (mt )dmt .

The null hypothesis of interest here is one of moment stability:

H0 : There exists a θ such that μ(t) = 0 almost everywhere (a.e.),

and the alternative hypothesis is: H1 : μ(t) �= 0 for some nonnegligible fraction
of the sample. Suppose that

1

T

T

∑
t=1

m�
t μ(t)

p→ λ.

Notice that under the null hypothesis, we have λ = 0. Under regularity conditions
limiting the dependence of mt and bounding the variances, it is easy to show that

1

T

T

∑
t=1

m�
t μ(t) = 1

T

T

∑
t=1

μ(t)�μ(t)+op(1). (2.2)
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Then λ = 0 implies that μ(t) = 0 almost everywhere. If λ �= 0, then μ(t) �= 0 for
some nonnegligible fraction of the sample.

We want to base a statistic on the quantity λ that requires an estimate of μ(t).
Following Robinson (1989), we can view the moment conditions as depending on
the scaled time index t/T . That is, we denote μ(t) = μ( t

T ). This representation
allows for more points to accumulate near a given t as T grows to infinity. In
this way, we can consistently estimate μ( t

T ) using a leave-one-out version of the
kernel-based Priestley–Chao (1972) estimator

μ̂(t) = 1

T h

T

∑
s �=t

K

(
t − s

T h

)
m̂s, (2.3)

where h is a bandwidth parameter, m̂t = m(zt , θ̂T ) is an estimate of mt using a
preliminary estimate of θ , and K (·) is a kernel function. This estimator essentially
takes averages of ms points with s close to t . A smaller bandwidth uses the points
where s is closer to t and a larger bandwidth uses more points. The proposed test
statistics are based on the above kernel-smoothed estimator. We propose a test
for conditional moment stability and consider its asymptotic distribution in the
next section, and study the inference problem of testing for moment condition
instability in general dynamic models in Section 4.

3. A NONPARAMETRIC TEST OF CONDITIONAL
MOMENT STABILITY

We first consider the case that mt is a martingale difference sequence (E(mt |
F t−1−∞) = 0), and test for conditional moment stability. Many econometric models
impose some conditional moment assumptions on the sample. For example, ratio-
nal expectations-based economic models often imply that the conditional expec-
tation of some variable, conditional on past information, is zero. For this reason,
testing conditional moment stability is in and of itself interesting and important,
and worthy of discussion separately. We propose a test for conditional moment
stability in this section and extend our analysis to general moment stability infer-
ence in the next section.

The proposed test is motivated based on our discussion in the previous section,
in particular, by plugging the nonparametric estimator (2.3) into equation (2.2).
Thus, the proposed test statistic is based on the following quantity:

λ̂T = 1

T 2h

T

∑
t=1

T

∑
s �=t

K

(
t − s

T h

)
m̂�

t m̂s .

To facilitate asymptotic analysis of the proposed test statistic under the null, we
introduce the following assumptions.

Assumption 1. Let F t
s = σ(ms, . . . ,mt ), E(mt |F t−1−∞) = 0 and E(mt m�

t ) =
�( t

T ) < ∞. In addition, �(v) is a continuous function on v ∈ (0,1).
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Assumption 2. The process {(zt )} is absolutely regular. That is,

β(τ) = sup
s
E

{
sup

A∈G∞
s+τ

|P(A|Gs−∞)− P(A)|
}

→ 0, as τ → ∞,

where Gt
s is the σ -field generated by {(zj ) : j = s, . . . , t}. For a constant δ > 0,

∑∞
τ=1 τ 2β(τ)δ/(1+δ) < ∞.

Assumption 3. ∇m(zt , ·) and ∇2m(zt , ·) represent the first and second deriva-
tives of m(zt , ·). They are bounded by a function Mg(zt ) that has finite second
moments.

Assumption 4.

max{M1, M2, M3, M4, M5} < ∞
where Mi , i = 1, . . . ,5 are defined in the Appendix.

Assumption 5.
√

T (θ̂T − θ0) = Op(1).

Assumption 6. K (u) is a density function such that K (0) ≥ K (u) for all u, and∫
K (u)2du < ∞.

Assumption 7. h → 0, T h2 → ∞.

Assumption 1 states that mt is a martingale difference sequence. We allow that
the variance of the moment conditions may be time-varying, but continuous. For
this purpose, following the literature of nonparametric estimation, we restandard-
ize the time index so that they are on a compact set [0,1], and assume that the vari-
ance function is continuous on [0,1]. Assumption 2 limits the dependence found
in the data, zt , which is used to form the moment conditions. Absolute regularity,
or beta mixing, is a condition that is stronger than α-mixing but weaker than φ-
mixing. See Fan and Li (1997) for a list of well-known processes that satisfy abso-
lute regularity, and Fan and Li (1999) and Li and Wooldridge (2002) for studies of
nonparametric estimation with absolutely regular processes. Notice that as stated,
absolute regularity does not require stationarity. That is, the mixing coefficients
are the sup over s of all events that are τ units of time apart. This means that the
expectation may vary over different values of s, and we take the largest as the β
coefficient. A simple example is an independent process with some heteroskedas-
ticity. This is a very important distinction since many tests of structural change
are not robust to, say, a simple mean or variance change in the regressors. Hansen
(2000) provides a thorough analysis of tests for structural change when there is
a change in the marginal distribution of regressors. Assumption 3 is standard in
nonparametric conditional moment tests such as Fan and Li (1999). In Assump-
tion 4 we have several moment conditions. Notice that although we do not require
stationarity, our moment conditions in Assumption 4 rule out unit root processes
or trending regressors. In addition, this assumption requires slightly more than
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eighth moments for the data. Assumption 5 is a high-level assumption stating that
the parameters of the model are estimated at rate T 1/2. The limiting distribution
of θ̂T does not affect the distribution of our test since we are using nonparametric
estimation of the residuals. The rate of convergence of the nonparametric estima-
tion procedure is slower than T 1/2, so that the final limiting distribution is not
affected by the distribution of θ̂T . Assumptions 6 and 7 are standard assumptions
in the kernel regression literature.

THEOREM 3.1. Suppose that Assumptions 1–7 hold. Then

T h1/2λ̂T

σ̂

d→ N (0,1),

where

σ̂ 2 = 2

T 2h

T

∑
t=1

T

∑
s �=t

K

(
t − s

T h

)2(
m̂�

t m̂s

)2

is a consistent estimate of σ 2 = 2
∫ 1

0 K (u)2du
∫ 1

0 trace(�(v)�(v))dv .

The proof of the theorem uses the U-statistic structure of the statistic. As in
Hall (1984) and Hjellvik et al. (1998), we show that a martingale central limit
theorem applies. However, in our case the arguments of the kernel function are
deterministic, and results for strictly stationary series do not apply. Moreover, we
allow for the distribution of the data to vary over time.

The limiting distribution of the standardized statistic is standard normal. This
limiting result is robust to changes in the mean or variance of the data provided
that the moment condition tested does not change (E(mt ) = 0) and that the mo-
ment conditions in Assumption 4 still hold. One implication is that when the tested
moment conditions fail to hold over the entire sample, we can attribute a rejection
of the test to parameter instability. We explore this important special case in a
Monte Carlo experiment in Section 5.

The proposed testing statistic has a similar structure to the U-statistic tests pro-
posed by Zheng (1996) and Li (1999). Although we do not explore local power in
this paper, we conjecture that following a similar analysis, our test will also have
power against local alternatives that are Op(T −1/2h−1/4).

An important issue in the calculation of our tests is the choice of bandwidth
parameter. The conditions of the theorem only provide a range of possible band-
width choices. In this paper we follow Zheng (1996) and Li (1999) in that we
explore several choices of bandwidth to examine the sensitivity of size and power
for the tests. An alternative strategy was suggested by Horowitz and Spokoiny
(2001). They propose calculating the supremum of nonparametric tests over a
range of possible bandwidth parameters as a test statistic. This approach may be
possible with our test. However, the distribution would change, and the proofs
would become much more complicated. We leave this idea for future research.
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4. TESTING MOMENT STABILITY WITH DEPENDENCE
IN THE MOMENTS

An important assumption that we imposed in the previous section is that mt is a
martingale difference sequence. This type of test is of interest in practice because
many econometric models are estimated by imposing some conditional moment
assumptions. In this section we relax the assumption that mt is a martingale differ-
ence sequence and extend our analysis to inference problems of moment stability
for general dynamic models where mt are allowed to be serially correlated. To
accommodate this extension, we need to modify our assumptions and the test
statistic.

In designing a test for conditional moment stability, we use a leave-one-out
estimator (2.3). In order to extend our test for moment stability and to the case
that mt is serially correlated, we propose the following leave-k-out estimator,

μ̃(t) = 1

T h ∑
s /∈B(t)

K

(
t − s

T h

)
m̂s,

where B(t) = [t − T h2, t + T h2] is a growing neighborhood around (t) and h2 is
a bandwidth parameter that satisfies the assumption that h2/h → 0, as T → ∞.
To this end, the proposed test statistic2 is

λ̃T = 1

T 2h

T

∑
t=1

∑
s /∈B(t)

K

(
t − s

T h

)
m̂�

t m̂s .

We modify Assumptions 1 and 7 as follows.

Assumption 1′. E(mt ) = 0 and E(mt m�
t ) = �( t

T ) < ∞. In addition, �(v)
is a continuous function on v ∈ (0,1). The process {(mt )} is absolutely regular.
That is,

β(τ) = sup
s
E

{
sup

A∈G∞
s+τ

∣∣∣P(A|Gs−∞
)

− P(A)
∣∣∣}→ 0, as τ → ∞,

where Gt
s is the σ -field generated by {(mj ) : j = s, . . . , t}. For a constant δ > 0,

∑∞
τ=1 τ 2β(τ)δ/(1+δ) < ∞.

Assumption 7′. As T → ∞, h → 0, h2 → 0, h2/h → 0, T h2 → ∞, and
T 4h5

2 → ∞.

THEOREM 4.1. Suppose that Assumptions 1′, 2–6, and 7 ′ hold, then

T h1/2λ̃T

σ̂

d→ N (0,1),
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where

σ̂ 2 = 2

T 2h

T

∑
t=1

∑
s /∈B(t)

K

(
t − s

T h

)2(
m̂�

t m̂s

)2

is a consistent estimate of σ 2 = 2
∫ 1

0 K (u)2du
∫ 1

0 trace(�(v)�(v))dv .

Even though β mixing processes include many standard cases in econometrics
(such as autoregressive moving average (ARMA) models with some restrictions
on the density), it may be possible to extend our results to more general cases.
Chen and Fan (1999) suggest that many of their results for U-statistics can be
extended to near-epoch-dependent processes.3 We leave this direction for future
research.

5. MONTE CARLO

We examine the finite sample performance of our proposed statistic using a small
set of Monte Carlo experiments. Our test is applied to the moment condition
E(xtεt ) = 0, and we wish to see how our test compares to other tests in detecting
a structural change in regression parameters. In the first set of experiments, we
examine the size of our test using the model

yt = α0 +α1xt + εt .

Initially, we consider four specifications of the model. In case 1, εt is homoskedas-
tic and follows a standard normal distribution and xt follows a t-distribution with
five degrees of freedom. This case is denoted iid in our tables. Following Hansen
(2000), we also treat several cases involving heteroskesticity in εt and changes in
the distribution of xt . In case 2, εt ∼ N (0,1+0.25x2

t ), and we denote this as het
in the tables. For case 3, εt again follows the distribution in case 2 but now there
is a mean shift in xt so that

xt =
{

ηt for t < 0.5T

ηt +5 for t ≥ 0.5T,

where ηt follows a t-distribution with five degrees of freedom. We label this case
by hetmb for heteroskedasticity mean break. Case 4 uses a similar specification
for εt and ηt , but now there is a change in the variance of xt so that

xt =
{

ηt for t < 0.5T

5ηt for t ≥ 0.5T,

and this case is denoted hetvb. For case 5, we allow for xt to have an autoregres-
sive structure. In particular,

xt = ωt +ρxt−1 + εt ,
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where ρ = 0.7 and

ωt =
{

0 for t < 0.5T

5 for t ≥ 0.5T .

This case corresponds to a break in an autoregressive process, and we label the
results arbreak in the table. It is well documented that an autoregressive process
with a break is often mistaken for a unit root process (see Perron, 1989). We
consider this case to see what happens to all of the tests under this type of change
in the marginal distribution of xt .

Without loss of generality, we set the values of α0 = 1 and α1 = 1. We com-
pare our nonparametric moment stability test, denoted NPMS, to some other
standard tests. Our test requires the choice of a bandwidth. To determine the
sensitivity of our test, we include three bandwidth choices, h = 0.125 × T −1/5,
h = 0.25 × T −1/5, and h = 0.5 × T −1/5, all of which are larger than the band-
width parameters used in the first set of experiments. The three bandwidths gen-
erate tests indexed as NPMS1, NPMS2, and NPMS3. We also consider other tests.
First, we include the SupF test analyzed by Andrews (1993) and others. Essen-
tially, this test is calculated by dividing the sample into two parts and testing that
α0 and α1 are identical in each part of the sample. The data are broken into two
parts beginning with 15% of the data until 85% of the data, and the maximum
of all the F tests becomes the statistic. In addition, we conduct a Wald test in the
same manner but we use a heteroskedasticity-consistent covariance matrix when
calculating the variances of the estimated α parameters. Finally, following Hansen
(2000), we include a fixed regressor bootstrap version of the SupF test, which we
denote HetBoot in our tables. The number of bootstrap replications is set to 1,000.
For all experiments, the number of replications for each test is 2,000. The results
for the size experiment appear in Table 1. In the independent and identically dis-
tributed (i.i.d.) case, we note that with the exception of the SupWald test, all of the
tests have good size or are conservative. As the bandwidth gets larger, the NPMS
test becomes more conservative. This in and of itself is not a problem so long as
power does not suffer. We will explore this possibility later in the paper. In gen-
eral, the tests improve as the sample size increases. In the heteroskedasticity case,
the results are slightly different. The fixed regressor bootstrap is slightly over-
sized, and the size gradually improves as the sample size increases. The SupF test
is oversized, and the effect gets worse as the sample size increases. The SupWald
test is initially oversized and has worse performance than the SupF test. However,
as the sample size increases, the SupWald has better size as the improved estima-
tion of the heteroskedasticity-consistent covariance matrix helps reduce the ini-
tial size distortion. The nonparametric moment stability tests are conservative for
all of the bandwidth choices in this first experiment. Moreover, the test becomes
more conservative as the bandwidth size increases. When there is heteroskedastic-
ity and a change in the mean of the regressors, the results are magnified. The SupF
and SupWald tests are severely oversized. These results match the findings given
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TABLE 1. Empirical size

T SupF SupWald HetBoot NPMS1 NPMS2 NPMS3

iid 50 0.046 0.313 0.049 0.031 0.024 0.015
100 0.050 0.172 0.057 0.031 0.024 0.020
200 0.045 0.102 0.057 0.044 0.036 0.023
800 0.049 0.068 0.060 0.035 0.032 0.022

het 50 0.148 0.384 0.085 0.036 0.028 0.017
100 0.178 0.222 0.076 0.037 0.031 0.019
200 0.232 0.143 0.074 0.041 0.037 0.024
800 0.309 0.074 0.049 0.040 0.035 0.026

hetmb 50 0.208 0.435 0.078 0.032 0.028 0.012
100 0.228 0.254 0.071 0.041 0.028 0.016
200 0.225 0.161 0.061 0.033 0.029 0.015
800 0.275 0.096 0.055 0.036 0.032 0.021

hetvb 50 0.578 0.995 0.118 0.027 0.020 0.010
100 0.714 0.999 0.096 0.026 0.031 0.014
200 0.775 1.000 0.067 0.030 0.023 0.010
800 0.915 0.999 0.052 0.031 0.029 0.022

arbreak 50 0.073 0.512 0.024 0.031 0.027 0.010
100 0.062 0.307 0.037 0.034 0.029 0.012
200 0.069 0.214 0.039 0.040 0.033 0.014
800 0.075 0.121 0.044 0.049 0.038 0.026

in Hansen (2000) for a similar experiment design. The nonparametric moment
stability tests are still conservative as expected, since the assumptions of our
theorem allow for such changes in the distribution of xt . The arbreak specification
seems to affect the SupWald test the most, however; as the sample size increases,
the effect is once again mitigated by the improved estimation of the covariance
matrix.

These results of the experiment, particularly those when there is a change in the
distribution of the regressors, reveal an advantage in the new nonparametric tests.
Notice that the SupWald and SupF tests are extremely oversized in the presence
of a change in distribution of regressors, while the proposed nonparametric tests
are not. Hence, when the SupWald and SupF tests are used, a change in the distri-
bution of xt will be incorrectly interpreted as a change in the model through the
parameter α. This interpretation is false since the response of yt to changes in xt

has not changed. Therefore, our nonparametric tests are useful in differentiating
between changes in α and changes in the mean or variance of the regressors. The
fixed regressor bootstrap of Hansen (2000) provides some protection against this
phenomenon as well.

The model we consider in the second experiment is the same as the first with
two exceptions. First, the regressors are governed by the autoregressive process

xt = 0.5xt−1 +ηt .
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Second, the error process is given by

εt = ρεt−1 +ut ,

where ut are i.i.d. and N (0,1). As shown in Theorem 4.1, it is possible to modify
the nonparametric moment stability test so that it is valid given a certain amount
of dependence in the moments. The modification of the leave-k-out estimation
requires a second bandwidth. We set this as h2 = h ×T −1/5 so that the conditions
of Assumption 7′ are satisfied.

It is well known that as the dependence increases, the optimal bandwidth should
increase for nonparametric estimation. In light of this fact, we consider three
bandwidths with h = T −1/5, h = 1.5× T −1/4, and h = 2× T −1/5. The tests asso-
ciated with these bandwidths are denoted NPMS4, NPMS5, and NPMS6. Altman
(1990) shows that the optimal bandwidth in nonparametric regression with depen-
dent data should be proportional to(

γ0 +2
∞
∑
i=1

γi

)1/5

T −1/5,

where γi is the i th covariance. We approximate this quantity in a similar fashion
to Andrews (1991) using a plug-in method based on a first-order autoregressive
process. That is, we assume

mt = φmmt−1 +ηt ,

where the variance of ηt is given by σ 2
η . This assumption is only used for the

bandwidth selection. Then the optimal bandwidth is proportional to(
ση

(1−φm)2

)1/5

T −1/5.

We denote the test associated with this data-dependent bandwidth as NPMSD.
The SupF test and the fixed regressor bootstrap of Hansen (2000) are not appli-

cable here since εt is not a martingale difference sequence. However, we include
the SupF test for comparison purposes.4 The SupWald test can be modified to
make it asymptotically valid for such an experiment. This requires the use of
a heteroskedaticity autocorrelation consistent (HAC) covariance matrix for the
regression parameters. We choose the HAC given in Andrews (1991), which uses
a quadratic spectral kernel with the corresponding data-dependent bandwidth.5

The results appear in Table 2.
From the results, we see that size generally increases as ρ increases. For the

SupWald test, performance is very bad for small sample sizes but improves rapidly
as sample size increases. The size for SupF worsens as the sample size increases.
The leave-k-out version of the nonparametric moment stability tests is conser-
vative for small values of ρ but has a larger size distortion as ρ increases. The
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TABLE 2. Size for dependent errors

ρ T SupF SupWald NPMS4 NPMS5 NPMS6 NPMSD

0.30 50 0.203 0.571 0.043 0.050 0.050 0.008
0.30 100 0.200 0.394 0.057 0.054 0.054 0.006
0.30 200 0.215 0.262 0.053 0.057 0.051 0.008
0.30 400 0.228 0.174 0.057 0.049 0.045 0.012
0.30 800 0.262 0.125 0.063 0.044 0.041 0.014
0.50 50 0.382 0.703 0.056 0.071 0.080 0.014
0.50 100 0.468 0.553 0.080 0.082 0.078 0.013
0.50 200 0.467 0.347 0.081 0.082 0.103 0.013
0.50 400 0.501 0.236 0.102 0.084 0.089 0.021
0.50 800 0.519 0.132 0.092 0.087 0.087 0.027
0.70 50 0.662 0.832 0.069 0.108 0.123 0.023
0.70 100 0.729 0.681 0.108 0.132 0.138 0.024
0.70 200 0.780 0.506 0.133 0.137 0.149 0.028
0.70 400 0.795 0.327 0.171 0.148 0.162 0.032
0.70 800 0.829 0.217 0.147 0.132 0.138 0.054

data-dependent bandwidth version of the test appears to have the best perfor-
mance. Of the tests considered here, it is least likely to be oversized.

To explore power properties, we let the slope parameter vary so that

α1 =
{

0 for t = 1, . . . ,0.5T

γ for t = 0.5T +1, . . . ,T .

The error and regressor processes are as given in the first experiment, where the
error is i.i.d., and we set T = 100. The size-adjusted power curves appear in
Figure 1. We notice that size-adjusted power for the nonparametric moment stabil-
ity tests improves as the bandwidth gets larger and that for the largest bandwidth,
the test is competitive in terms of power. However, this may be purely an artifact
of the size adjustment. That is, the nonparametric moment stability test with the
largest bandwidth is the most undersized, so that the correction gives the largest
power increase to this test. To explore this possibility, we show the raw power for
our tests in Figure 2. Notice that when γ is zero, we plot the size and the NPMS3
test has the smallest size. However, even when raw power is examined, the power
is greatest for the most undersized test (NPMS3). Therefore, we conclude the high
power of this test is not solely an artifact of the size adjustment. The larger power
for the more conservative test (using the larger bandwidth) is unexpected, but this
is a small sample phenomenon. Evidently, for the larger bandwidth, the numerator
of our test statistic is more sensitive to changes in α than the denominator in small
samples.
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FIGURE 1. Size-Adjusted power

FIGURE 2. Unadjusted power

6. CONCLUSION

The tests proposed in this paper have several desirable properties. First, the limit-
ing distribution is standard normal even if there is a change in mean or variance
in the data. This eliminates the need for a bootstrapping procedure to obtain
first-order asymptotics. The first version of the test (which is appropriate when
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the moments are martingale differences) is conservative yet has power against a
variety of structural changes in parameters. In our Monte Carlo experiment, we
found that the bandwidth choice that makes the test the most conservative (under
the null) does not necessarily have the lowest size unadjusted power. The second
version of the test is applicable when there is dependence in the moments. We
find that this test has better size properties than the competing tests, but all of the
tests have size distortions when there is more dependence.

NOTES

1. Our model does not consider unit root or trending regressors.
2. As a referee pointed out, there is a connection between our proposed test and long-run variance

estimation of the process mt . Suppose that mt is a scalar process. Then denote the long-run variance
estimator of mt as �̂ = γ̂0 +2∑T −1

j=1 K
( j

hT

)
γ̂j , where γ̂j is the usual j th autocovariance. Then λ̂T =

1
hT �̂. Now define �̂∗ = γ̂0 + 2∑T −1

j=1 K
( j

hT

)
1( j ≤ k)γ̂j , where k is from the leave-k-out estimator.

Then λ̃T = 1
hT

(
�̂− �̂∗). Both �̂ and �̂∗ are estimators of the spectral density at zero, and hence can

be made asymptotically normal given the rates of k and h.
3. See Wooldridge (1994) for a discussion of near-epoch-dependent processes in econometrics.
4. Simulations not shown here indicate that the performance of the fixed regressor bootstrap and

SupF are similar in this design.
5. We use the AR(1) approximation of εt to select the data-dependent bandwidth used in the long-

run variance estimator. This bandwidth diverges at rate T 1/5.
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APPENDIX A. Proofs

We first define the following quantities:

M1 = max{M11, M12},
M11 = sup

s,s′,t

∫ ∣∣∣m�
t msm�

t ms′
∣∣∣1+δ

d F(zt , zs , zs′),

M12 = sup
s,s′,t

∫ ∣∣∣m�
t msm�

t ms′
∣∣∣1+δ

d F(zt , zs′)d F(zs),

M2 = max{M21, M22} ,
M21 = sup

s,t,t ′,r

∫ ∣∣∣m�
t msm�

t ′ mr

∣∣∣2(1+δ)
d F(zt , zs , zt ′ , zr ),

M22 = sup
s,t,t ′,r

∫ ∣∣∣m�
t msm�

t ′ mr

∣∣∣2(1+δ)
d F(zt , zs)d F(zt ′ , zr ),

M3 = max{M31, M32} ,
M31 = sup

r,r ′,s,s′,t,t ′

∫ ∣∣∣m�
t msm�

t ms′m�
t ′ mr m�

t ′ mr ′
∣∣∣(1+δ)

d F(zt , zs , zs′ , zt ′ , zr , zr ′),

M32 = sup
r,r ′,s,s′,t,t ′

∫ ∣∣∣m�
t msm�

t ms′m�
t ′ mr m�

t ′ mr ′
∣∣∣(1+δ)

d F(zt , zs , zs′ , zt ′ , zr )d F(zr ′ ),

M4 = sup
t,s,t ′,s′

E

∣∣∣m�
t msm�

t ms′m�
t ′ msm�

t ′ ms′
∣∣∣ ,

M5 = max{M51, M52},
M51 = sup

s,s′,t,t ′

∫ ∣∣∣∇m�
t ∇mt ′msms′

∣∣∣(1+δ)
d F(zs , zs′ , zt , zt ′),

M52 = sup
s,s′,t,t ′

∫ ∣∣∣∇m�
t ∇mt ′msms′

∣∣∣(1+δ)
d F(zs , zt , zt ′)d F(zs′).

LEMMA A.1. Given Assumptions 1–4, and 6–7,

UT

sT

d→ N (0,1),

where

UT = 1

T h1/2

T

∑
t=2

t−1

∑
s=1

Ktsm�
t ms

and s2
T = E(U2

T ).

Proof. Let

Vt = 1

T h1/2

t−1

∑
s=1

Ktsm�
t ms ,

which is a martingale difference sequence. We need to show
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s−2
T

T

∑
t=2

V 2
t

p→ 1 (A.1)

and

s−4
T

T

∑
t=2

E

(
V 4

t

)
→ 0. (A.2)

First,

s2
T = 1

T 2h

T

∑
t=2

t−1

∑
s=1

K 2
tsE
(

m�
t ms

)2 + 1

T 2h

T

∑
t=2

t−1

∑
t−1

∑
s �=s′

Kts Kts′E
(

m�
t msm�

t ms′
)

= B1 + B2.

We can write B2 as

2

T 2h

T

∑
t=3

t−1

∑
s′=2

s′−1

∑
s=1

Kts Kts′E
(

m�
t msm�

t ms′
)

since we have s < s′ < t . Suppose that s′ − s ≥ t − s′. Now by Lemma (A.2),∣∣∣∣∫ m�
t msm�

t ms′d F(mt ,ms ,ms′)−
∫

m�
t msm�

t ms′d F(mt ,ms′)d F(ms)

∣∣∣∣
≤ M1/(1+δ)

1 β(s′ − s)δ/(1+δ),

Then we have

|B2| ≤ 2

T 2h

T −2

∑
s=1

T −1

∑
s′=s+1

s′+(s′−s)

∑
t=s′+1

Kts Kts′ M1/(1+δ)
1 β(s′ − s)δ/(1+δ)

≤ 2

T 2h

T −2

∑
s=1

T −1

∑
s′=s+1

s′+(s′−s)

∑
t=s′+1

K (0)2 M1/(1+δ)
1 β(s′ − s)δ(1+δ),

since K (0) > Kts . Then

|B2| ≤ 2

T 2h

T −2

∑
s=1

T −1

∑
s′=s+1

(s′ − s)K (0)2 M1/(1+δ)
1 β(s′ − s)δ/(1+δ)

≤ 2

T 2h

T −2

∑
s=1

T −1

∑
τ=1

K (0)2 M1/(1+δ)
1 τβ(τ)δ/(1+δ)

= O
(
(T h)−1

)
,

since ∑∞
τ τβ(τ)δ/(1+δ) ≤ ∞. The case where s′ − s ≤ t − s′ is similar.

Now

E

(
T

∑
t=2

V 2
t − s2

T

)2

= E
(

T

∑
t=2

V 2
t

)2

− s4
T ,
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so we consider

E

(
T

∑
t=2

V 2
t

)2

=
T

∑
t=2

E
(

V 4
t

)
+2∑ ∑

2≤t<t ′≤T

E

(
V 2

t V 2
t ′
)

= 1

T 4h2

T

∑
t=1

t−1

∑
s=1

t−1

∑
s′=1

t−1

∑
r=1

t−1

∑
r ′=1

Kts Kts′ Ktr Ktr ′E
(

m�
t msm�

t ms′m�
t mr m�

t mr ′
)

+ 2

T 4h2

T

∑
t ′=2

t ′−1

∑
t=2

t−1

∑
s=1

t−1

∑
s′=1

t ′−1

∑
r=1

t ′−1

∑
r ′=1

Kts Kts′ Kt ′r Kt ′r ′

×E
(

m�
t msm�

t ms′ m�
t ′ mr m�

t ′ mr ′
)

= C1 +C2.

C2 can be decomposed as

C2 = 2

T 4h2

T

∑
t ′=2

t ′−1

∑
t=2

t−1

∑
s=1

t ′−1

∑
r=1

K 2
ts K 2

t ′rE
(

m�
t ms

)2(
m�

t ′ mr

)2

+ 4

T 4h2

T

∑
t ′=2

t ′−1

∑
t=2

t−1

∑
s=1

t−1

∑
s′=1

Kts Kts′ Kt ′s Kt ′s′E
(

m�
t msm�

t ms′m�
t ′ msm�

t ′ ms′
)

+ 2

T 4h2

T

∑
t ′=2

t ′−1

∑
t=2

t−1

∑
t ′−1

∑
t ′−1

∑
s �=r �=r ′

K 2
ts Kt ′r Kt ′r ′E

((
m�

t ms

)2
m�

t ′ mr m�
t ′ mr ′

)

+ 2

T 4h2

T

∑
t ′=2

t ′−1

∑
t=2

t−1

∑
t−1

∑
t ′−1

∑
s �=s′ �=r

Kts Kts′ K 2
t ′rE
(

m�
t msm�

t ms′
(

m�
t ′ mr

)2
)

+ 8

T 4h2

T

∑
t ′=2

t ′−1

∑
t=2

t−1

∑
t−1

∑
t ′−1

∑
s �=s′ �=r

Kts Kts′ Kt ′s Kt ′rE
(

m�
t msm�

t ms′m�
t ′ msm�

t ′ mr

)

+ 2

T 4h2

T

∑
t ′=2

t ′−1

∑
t=2

t−1

∑
t−1

∑
t ′−1

∑
t ′−1

∑
s �=s′ �=r �=r ′

Kts Kts′ Kt ′r Kt ′r ′

×E
(

m�
t msm�

t ms′m�
t ′ mr m�

t ′ mr ′
)

= C21 +C22 +C23 +C24 +C25.

We can write

s4
T = 1

T 4h2

(
T

∑
t=2

t−1

∑
s=1

K 2
tsE
(

m�
t ms

)2
)(

T

∑
t ′=2

t ′−1

∑
s′=1

K 2
t ′s′E
(

m�
t ′ ms′

)2
)

= 2

T 4h2

T

∑
t ′=2

t ′−1

∑
t=2

t−1

∑
s=1

t ′−1

∑
r=1

K 2
ts K 2

t ′rE
(

m�
t ms

)2
E

(
m�

t ′ mr

)2
.
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Then

C21 − s4
T = 2

T 4h2

T

∑
t ′=2

t ′−1

∑
t=2

t−1

∑
s=1

t ′−1

∑
r=1

K 2
ts K 2

t ′r

(
E

(
m�

t ms

)2(
m�

t ′ mr

)2 −E
(

m�
t ms

)2

× E

(
m�

t ′ mr

)2
)

.

Suppose that s < t < r < t ′. By Lemma A.2,∣∣∣∣E(m�
t ms

)2(
m�

t ′ mr

)2 −E
(

m�
t ms

)2
E

(
m�

t ′ mr

)2
∣∣∣∣≤ M1/(1+δ)

2 β(r − t)δ/(1+δ).

Then∣∣∣C21 − s4
T

∣∣∣≤ 2

T 4h2

T

∑
t ′=2

t ′−1

∑
t=2

t−1

∑
s=1

K 2
ts

t ′−1

∑
r=1

K 2
t ′r M1/(1+δ)

2 β(r − t)δ/(1+δ)

∼ 2

T 4h2

T

∑
t ′=2

t ′−1

∑
t=2

t−1

∑
s=1

K 2
ts

= O

(
1

T h

)
,

since

t ′−1

∑
t=2

t−1

∑
s=1

K 2
ts ∼

∫ T

0

∫ t

0
K

(
t − s

T h

)
ds dt = T 2h

∫ 1

0

∫ v/h

0
K (u)du dv = O

(
T 2h
)
.

The cases s < r < t < t ′ and r < s < t < t ′ are similar.
Now we show that C25 → 0. Without loss of generality, suppose that s < s′ and r < r ′

so that s < s′ < t and r < r ′ < t ′. Denote s < s′ < r < r ′ < t < t ′ as case 1 and consider
the following subcases.

Case 1a: s′ − s ≥ max{r − s′,r ′ − r, t − r ′, t ′ − t}
Case 1b: r − s′ ≥ max{s′ − s,r ′ − r, t − r ′, t ′ − t}
Case 1c: r ′ − r ≥ max{s′ − s,r − s′, t − r ′, t ′ − t}
Case 1d: t − r ′ ≥ max{s′ − s,r − s′,r ′ − r, t ′ − t}
Case 1e: t ′ − t ≥ max{s′ − s,r − s′,r ′ − r, t − r ′}.
For case 1a, we have

|C25| = 1

T 4h2

T =5

∑
s=1

T −4

∑
s′=s+1

T −3

∑
r=s′+1

T −2

∑
r ′=r+1

T −1

∑
t=r ′+1

T

∑
t ′=t+1

Kts Kts′ Kt ′r Kt ′r ′

×
∣∣∣E(m�

t msm�
t ms′m�

t ′ mr m�
t ′ mr ′

)∣∣∣
≤ 1

T 4h2

T =5

∑
s=1

T −4

∑
s′=s+1

T −3

∑
r=s′+1

T −2

∑
r ′=r+1

T −1

∑
t=r ′+1

T

∑
t ′=t+1

Kts Kts′ Kt ′r Kt ′r ′ M1/(1+δ)
T 3

×β
(
s′ − s

)δ/(1+δ)
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≤ 1

T 4h2

T =5

∑
s=1

T −4

∑
s′=s+1

(
s′ − s

)2 M1/(1+δ)
3 β

(
s′ − s

)δ/(1+δ)
T −2

∑
r ′=r+1

T

∑
t ′=t+1

Kt ′r ′ K (0)3

= O

(
1

T h

)
.

For case 1b,

|C25| = 1

T 4h2

T =5

∑
s=1

T −4

∑
s′=s+1

T −3

∑
r=s′+1

T −2

∑
r ′=r+1

T −1

∑
t=r ′+1

T

∑
t ′=t+1

Kts Kts′ Kt ′r Kt ′r ′

×
∣∣∣E(m�

t msm�
t ms′m�

t ′ mr m�
t ′ mr ′

)∣∣∣
≤ 1

T 4h2

T =5

∑
s=1

T −4

∑
s′=s+1

T −3

∑
r=s′+1

T −2

∑
r ′=r+1

T −1

∑
t=r ′+1

T

∑
t ′=t+1

Kts Kts′ Kt ′r Kt ′r ′ M1/(1+δ)
3

×β
(
r − s′)δ/(1+δ)

≤ 1

T 4h2

T =5

∑
s=1

T −4

∑
s′=s+1

T −3

∑
r=s′+1

(
r − s′)2 M1/(1+δ)

3 β
(
r − s′)δ/(1+δ)

T

∑
t=1

Kts′ K (0)3

= O

(
1

T h

)
.

For case 1c,

|C25| = 1

T 4h2

T

∑
t ′=6

t ′−1

∑
t=5

t−1

∑
r ′=4

r ′−1

∑
r=3

r−1

∑
s′=2

s′−1

∑
s=1

Kts Kts′ Kt ′r Kt ′r ′

×
∣∣∣E(m�

t msm�
t ms′m�

t ′ mr m�
t ′ mr ′

)∣∣∣
≤ 1

T 4h2

T

∑
t ′=6

t ′−1

∑
t=5

t−1

∑
r ′=4

r ′−1

∑
r=3

r−1

∑
s′=2

s′−1

∑
s=1

Kts Kts′ Kt ′r Kt ′r ′ M1/(1+δ)
3 β

(
r ′ − r

)δ/(1+δ)

≤ 1

T 4h2

T

∑
t ′=6

t ′−1

∑
t=5

t−1

∑
r ′=4

r ′−1

∑
r=3

K (0)3 Kt ′r M1/(1+δ)
3

(
r ′ − r

)2
β
(
r ′ − r

)δ/(1+δ)

= O

(
1

T h

)
.

For case 1d,

|C25| = 1

T 4h2

T

∑
t ′=6

t ′−1

∑
t=5

t−1

∑
r ′=4

r ′−1

∑
r=3

r−1

∑
s′=2

s′−1

∑
s=1

Kts Kts′ Kt ′r Kt ′r ′

×
∣∣∣E(m�

t msm�
t ms′m�

t ′ mr m�
t ′ mr ′

)∣∣∣
≤ 1

T 4h2

T

∑
t ′=6

t ′−1

∑
t=5

t−1

∑
r ′=4

r ′−1

∑
r=3

r−1

∑
s′=2

s′−1

∑
s=1

Kts Kts′ Kt ′r Kt ′r ′ M1/1+δ
3 β

(
t − r ′)δ/(1+δ)
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≤ 1

T 4h2

T

∑
t ′=6

t ′−1

∑
t=5

t−1

∑
r ′=4

M1/(1+δ)
3

(
t − r ′)2 β

(
t − r ′)δ/(1+δ)

T

∑
r=1

Kt ′r K (0)3

= O

(
1

T h

)
.

For case 1e, we consider the second-order statistic of {s′ − s,r − s′,r ′ − r, t − r ′} and
repeat the arguments for cases 1a–1d. Hence, we have shown that C25 → 0.

The term C1 can be decomposed as

C1 = 3

T 4h2

T

∑
t=1

t−1

∑
s=1

t−1

∑
s′=1

K 2
ts K 2

ts′E
(

m�
t ms

)2(
m�

t ms′
)2

+ 6

T 4h2

T

∑
t=1

t−1

∑
s=1

t−1

∑
t−1

∑
r �=r ′

K 2
ts Ktr Ktr ′E

((
m�

t ms

)2
m�

t mr m�
t mr ′

)

+ 1

T 4h2

T

∑
t=1

t−1

∑
t−1

∑
t−1

∑
t−1

∑
s �=s′ �=r �=r ′=1

Kts Kts′ Ktr Ktr ′E
(

m�
t msm�

t ms′m�
t mr m�

t mr ′
)

= C11 +C12 +C13.

Following the method used for C2, we have C11 = O(T −1), C12 = O(T −1), and C13 =
O((T h)−2). In a similar manner, C23 and C24 are at most O((T h)−1). Finally,

|C22| ≤ 4

T 4h2

T

∑
t ′=2

t ′−1

∑
t=2

t−1

∑
t−1

∑
s �=s′

Kts Kts′ Kt ′s Kt ′s′E
∣∣∣m�

t msm�
t ms′m�

t ′ msm�
t ′ ms′

∣∣∣
≤ 4

T 4h2

T

∑
t ′=2

t ′−1

∑
t=2

t−1

∑
t−1

∑
s �=s′

Kts Kts′ Kt ′s Kt ′s′ M4

= O
(

h2
)

.

Combining these results, we have E
(

∑T
t=2 V 2

t − s2
T

)2 = O(h2)+ O((T h)−1) = o(1) so

that (A.1) holds. Since s2
T = O(1) and C1 = O(T −1), (A.2) holds. n

Proof of Theorem 3.1.

ÛT = 1

T h1/2

T

∑
t=2

t−1

∑
s=1

Ktsm̂�
t m̂s

= 1

T h1/2

T

∑
t=2

t−1

∑
s=1

Kts(mt + (m̂t −mt ))
�(ms + (m̂s −ms))

= 1

T h1/2

T

∑
t=2

t−1

∑
s=1

Ktsm�
t ms + 1

T h1/2

T

∑
t=2

t−1

∑
s=1

Ktsm�
t (m̂s −ms)

+ 1

T h1/2

T

∑
t=2

t−1

∑
s=1

Kts(m̂t −mt )
�ms + 1

T h1/2

T

∑
t=2

t−1

∑
s=1

Kts(m̂t −mt )
�(m̂s −ms)

= F1 + F2 + F3 + F4.
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Consider F3. Suppose that L = 1 so that mt is 1×1. Then we can write

m̂t = mt +∇mt (θ0)
(
θ̂T − θ0

)+ (θ̂T − θ0
)�∇2mt (θ̄)

(
θ̂T − θ0

)
,

where θ̄ lies between θ̂T and θ0. Then F3 can be written as

F3 = 1

T h1/2

T

∑
t=2

t−1

∑
s=1

Kts∇mt (θ0)ms
(
θ̂T − θ0

)
+ 1

T h1/2

T

∑
t=2

t−1

∑
s=1

Kts
(
θ̂T − θ0

)�∇2mt (θ̄)ms
(
θ̂T − θ0

)
= F31

(
θ̂T − θ0

)+ (θ̂T − θ0
)�F32

(
θ̂T − θ0

)
.

Now

E

(
F�

31 F31

)
= 1

T 2h

T

∑
t=2

t−1

∑
s=1

T

∑
t ′=2

t ′−1

∑
s′=1

Kts Kt ′s′E
(
∇m�

t (θ0)∇mt ′(θ0)msms′
)

= 1

T 2h

T

∑
t=2

t−1

∑
s=1

K 2
tsE
(
∇m�

t (θ0)∇mt (θ0)m2
s

)
+ 2

T 2h

T

∑
t=2

t−1

∑
s=2

s−1

∑
s′=1

Kts Kts′E
(
∇m�

t (θ0)∇mt (θ0)msms′
)

+ 2

T 2h

T

∑
t=3

t−1

∑
t ′=2

t ′−1

∑
s=1

Kts Kt ′sE
(
∇m�

t (θ0)∇mt ′(θ0)m2
s

)

+ 1

T 2h

T

∑
t=2

T

∑
t ′ �=t

t−1

∑
s=1

t ′−1

∑
s′ �=s

Kts Kt ′s′E
(
∇m�

t (θ0)∇mt ′(θ0)msms′
)

= F311 + F312 + F313 + F314.

For the terms F314, suppose that s < t < s′ < t ′ and that s′ − t ≥ max{t − s, t ′ − s′}. Then

F314 ≤ 1

T 2h

T

∑
t ′=4

t ′−1

∑
s′=3

s′−1

∑
t=2

t−1

∑
s=1

Kts Kt ′s′β
(
s′ − t

)δ/(1+δ) M5

≤ 1

T 2h

T

∑
t ′=4

t ′−1

∑
s′=3

s′−1

∑
t=2

K (0)2 (s′ − t
)
β
(
s′ − t

)δ/(1+δ) M5

= O
(

h−1
)

,

the other cases being similar so that F314 is at most O(1). By Cauchy Schwarz, F311 is
O(1), and F312 and F313 are O(T h). These results imply that F31 is Op(T 1/2h1/2) +
Op(h−1/2). Now

E|F32| ≤ 1

T h1/2

T

∑
t=2

t−1

∑
s=1

KtsE|Mg(zt )|

= O
(

T h1/2
)

,

so that F3 = Op(h1/2)+ Op((T h)−1/2) = op(1). The proof is identical for F2.
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For F4, we follow Fan and Li (1999) and note that∥∥m̂t −mt
∥∥≤ d Mg(zt )

∥∥∥θ̂T − θ0

∥∥∥
for some generic constant d so that

|F4| ≤ 1

T h1/2

T

∑
t=2

t−1

∑
s=1

Ktsd2 Mg(zt )Mg(zs)
∥∥∥θ̂T − θ0

∥∥∥2

= Op

(
h1/2
)

= op(1).

Note that F1 is normally distributed by Lemma A.1 and it is easy to show that the variance
is consistently estimated using σ̂ 2. �

Proof of Theorem 4.1. The proof follows the steps of the proof of Theorem (3.1) in
that m̂t can be replaced by mt . However, we have to now deal with the dependence of the
moment conditions. We write

ŨT = 1

T h1/2

T

∑
t=2

t−T h2

∑
s=1

Ktsm�
t ms .

The summands are no longer a martingale difference since E(m�
t ms |F t−1−∞) �= 0 where

F t−1−∞ = σ(mt−1,mt−2, . . .). We construct martingale differences in the following way.
Let

Vt = 1

T h

t−1

∑
s=1

Ktsm�
t ms

= 1

T h

t−1

∑
s=1

Vts

U∗
T =

T

∑
t=2

(
Vt −E(Vt |F t−1−∞

))
=

T

∑
t=2

V ∗
t

=
T

∑
t=2

t−1

∑
s=1

V ∗
ts ,

so that the summands U∗
T are martingale differences since E

(
V ∗

t |F t−1−∞
)

= 0 by construc-

tion. Hence, we can apply Lemma A.1 to U∗
T . Moreover, we have

U∗
T = ŨT + 1

T h1/2

T

∑
t=2

t−1

∑
s=t−T h2+1

V ∗
ts

− 1

T h1/2

T

∑
t=2

t−T h2

∑
s=1

KtsE
(

m�
t ms

∣∣∣F t−1−∞
)

= ŨT +U∗
1T −U∗

2T .
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First, we have

E

[(
U∗

1T

)2
]

= 1

T 2h
E

[
T

∑
t=2

t−1

∑
s=t−T h2+1

T

∑
t ′=2

t ′−1

∑
s′=t ′−T h2+1

V ∗
ts V ∗

t ′s′

]
.

Just as in the proof of Lemma A.1, the dominant term is of the form

G1 = 1

T 2h

T

∑
t=2

t−1

∑
s=t−T h2+1

E

[(
V ∗

ts
)2]

= 1

T 2h

T

∑
t=2

t−1

∑
s=t−T h2+1

K 2
tsE
[
m�

t ms −E
(

m�
t ms

∣∣∣F t−1−∞
)]2

= 1

T 2h
O
(

T 2h2

)
,

which goes to zero since h2/h → 0, so that U∗
1T

p→ 0.
Now for U∗

2T , we have

E
∣∣U∗

2T

∣∣≤ 1

T h1/2

T

∑
t=2

t−T h2

∑
s=1

E

∣∣∣KtsE
(

m�
t ms

∣∣∣F t−1−∞
)∣∣∣

= 1

T h1/2

T

∑
t=2

t−T h2

∑
s=1

KtsE
∣∣∣E(m�

t ms

∣∣∣F t−1−∞
)

−E
(

m�
t ms

)
+E
(

m�
t ms

)∣∣∣
≤ 1

T h1/2

T

∑
t=2

t−T h2

∑
s=1

Kts

[
E

∣∣∣E(m�
t ms

∣∣∣F t−1−∞
)

−E
(

m�
t ms

)∣∣∣+ ∣∣∣E(m�
t ms

)∣∣∣]

≤ 1

T h1/2

T

∑
t=2

t−T h2

∑
s=1

Kts Mβ(t − s)δ/(1+δ)

= 1

h1/2 O
(
β(T h2)δ/(1+δ)

)
,

where the last inequality comes from Lemma A.0 of Fan and Li (1999) and an appli-
cation of Lemma 1 of Yoshihara (1976). By Assumption 1′, ∑∞

τ=1 τ2β(τ)δ/(1+δ) < ∞,

which implies that β(T h2)δ/(1+δ) = O
[
(T h2)−2−ε

]
for some ε > 0. Hence E|U2T | =

O(h−1/2(T h2)−2−ε), which is o(1) since T 4h5
2 → ∞ and h2/h → 0. �

LEMMA A.2. Let xt1 , xt2 , . . . , xtk (with t1 < t2 < · · · < tk ) be absolutely regular random
vectors with mixing coefficients β. Let h(xt1 , xt2 , . . . , xtk ) be a Borel measurable function,
and let there be a δ > 0 such that

P = max{P1, P2} < ∞,

where

P1 = sup
t1,t2,...,tk

∫ ∣∣h(xt1 , xt2 , . . . , xtk )
∣∣1+δ d F(xt1 , xt2 , . . . , xtk ),

P2 = sup
t1,t2,...,tk

∫ ∣∣h(xt1 , xt2 , . . . , xtk )
∣∣1+δ d F(xt1 , . . . , xtj )d F(xtj+1 , . . . , xtk ).
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Then∣∣∣∣∫ h(xt1 , xt2 , . . . , xtk )d F(xt1 , xt2 , . . . , xtk )

−h(xt1 , xt2 , . . . , xtk )d F(xt1 , . . . , xtj )d F(xtj+1 , . . . , xtk )
∣∣∣≤ 4P1/(1+δ)β

δ/(1+δ)
τ

for all τ = tj+1 − tj .

Proof. The proof is similar to Lemma 1 in Yoshihara (1976) with the exception that
we use the definition of absolute regularity given in Assumption 2, which applies to ob-
servations with heterogeneous distributions. See Lemma 4.1 in Volkonskii and Rozanov
(1961). �
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