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Abstract 

Ever since the advent of electronic fuel injection, auto manufacturers have been able to 

increase fuel efficiency and power production, and to meet stricter emission standards.  Most of 

these systems use engine sensors (Speed, Throttle Position, etc.) in concert with look-up tables to 

determine the correct amount of fuel to inject. While these systems work well, it is time and 

labor intensive to fine tune the parameters for these look-up tables.  In general, automobile 

manufacturers are able to absorb the cost of this calibration since the variation between engines 

in a new model line is often small enough as to be inconsequential for a specific calibration. 

However, a growing number of drivers are interested in modifying their vehicles with the 

intent of improving performance.  While some aftermarket performance upgrades can be 

accounted for by the original manufacturer equipped (OEM) electronic control unit (ECU), other 

more significant changes, such as adding a turbocharger or installing larger fuel injectors, require 

more drastic accommodations.  These modifications often require an entirely new ECU 

calibration or an aftermarket ECU to properly control the upgraded engine.  The problem is now 

that the driver becomes responsible for the calibration of the ECU for this “new” 

engine.  However, most drivers are unable to devote the resources required to achieve a 

calibration of the same quality as the original manufacturers.  At best, this results in reduced fuel 

economy and performance, and at worst, unsafe and possibly destructive operation of the engine. 

The purpose of this thesis is to design and develop—using machine learning 

techniques—an approximate predictive model from current engine data logs, which can be used 

to rapidly and incrementally improve the calibration of the engine.  While there has been 

research into novel control methods for engine air-fuel ratio control, these methods are 

inaccessible to the majority of end users, either due to cost or the required expertise with engine 
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calibration.  This study shows that there is a great deal of promise in applying machine learning 

techniques to engine calibration and that the process of engine calibration can be expedited by 

the application of these techniques. 
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Chapter 1 Introduction 

1.1  Motivation 

Modern automobiles and their engines are truly astounding works of engineering.  Even 

with well over a hundred years of development, there are improvements being made continually.  

Modern vehicles are designed with the average consumer in mind, which results in a number of 

compromises.  The styling of the vehicle cannot be too radical, or else it will not have broad 

appeal.  The performance of the engine cannot be maximized since it may be required to operate 

in vastly different environments and situations.  The handling of the vehicle must take into 

account the imperfections found on public roadways so as not to transmit too much noise, 

vibration, or harshness (NVH) to the drivers and passengers. 

There is however a small segment of the population that is not satisfied with the results of 

these many compromises.  Therefore, an entire industry has developed to address these needs.  In 

2012 alone, the overall aftermarket sales totaled $307.7 billion [1].  Moreover, as the vehicles 

become more and more complex and dependent on modern technology, the knowledge required 

to modify these vehicles increases. 

  Within the past 30 years, nearly all of the mechanical control systems have been 

replaced with electronic control systems [2].  For example, carburetors have been replaced with 

Electronic Fuel Injection (EFI), and distributors have been replaced by electronic ignition.  No 

longer are customers able to tinker on their vehicles with only simple hand tools.   

When enthusiasts or competitors desire more radical performance, oftentimes the original 

Electronic Control Unit (ECU) is unable to adequately account for the new additions.  This 

requires an aftermarket ECU, which in turn needs to be calibrated in order to control the new 

system. 
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Engine calibration is a long and expensive iterative process [3,4].  Since internal 

combustion engines are extremely non-linear systems, modifying a single variable has far 

reaching consequences.  Whenever a new calibration is developed, it needs to be tested under 

many possible operating conditions in order to ensure peak performance.    

This thesis will explore various approaches to expedite the calibration of electronic fuel 

injection systems using real world data, gathered from the engine being calibrated, to develop a 

model of its modes of operation, and to determine what values to change and how to change 

them, to achieve the desired results. 

1.2  Thesis Organization 

 This thesis consists of five chapters.  Chapter 2 provides the required background 

information on internal combustion engine operation, design, and control systems.  It also covers 

the machine learning techniques used to explore the problem, criteria used to evaluate the 

performance of the machine learning techniques, and related work and current solutions in the 

industry.  Chapter 3 delves into the research methodology used while exploring this issue and the 

specific tools, software, and hardware used.  Chapter 4 presents the experimental results of this 

project.  Chapter 5 discusses the impact of these results, the contributions, the limitations, and 

future extensions to the proposed methodology. 
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Chapter 2 Background and Related Work 

2.1 Internal Combustion Engine Operation 

An internal combustion engine can be thought of as a living, breathing organism.  It 

requires air, fuel, and a way to metabolize that fuel.  Virtually all modern automobiles use 

Electronic Control Units (ECUs) to control the operation of the engine, transmission, antilock 

brakes and other vehicle systems.  Today, nearly every aspect of the engine, especially ignition 

timing and fuel injection, is controlled electronically. 

2.1.1  General Engine Design and Operation  

An Internal Combustion Engine (ICE) converts chemical energy to mechanical energy by 

combusting a traditionally hydrocarbon fuel with ambient oxygen.  The most common operating 

cycle for passenger vehicles today is the spark ignition four-stroke.  This consists of four distinct 

(but possibly overlapping) stages or strokes.  Each thermodynamic cycle begins with the intake 

stroke, where the fuel-air mixture is drawn into the cylinder.  The compression stroke 

compresses this mixture to extract the maximum amount of energy from the fuel.  Next, the 

mixture is ignited, which leads to a drastic increase in temperature and pressure in the cylinder.  

The expansion or power stroke transforms this pressure into mechanical work as the piston 

expands.  Finally, the burned mixture is expelled through the exhaust valve as the piston returns 

to the top of the cylinder, allowing the next cycle to take place (Figure 2.1) [5]. 
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Figure 2.1:  Four-stroke thermodynamic cycle [23] 
 

2.1.2  Rotary Engine Design and Operation 

 

Figure 2.2:  Rotary Engine Rotor [6] 
 

 The Wankel Rotary Engine was patented by Felix Wankel in 1929 and began commercial 

development by Wankel while working at NSU Motorenwerke AG in the 1950s [6].  It differs 

from conventional reciprocating engines in that there are no reciprocating parts (pistons), no 

valve-train, and an unusually high power to weight ratio.  During the 1960s, various automotive 

manufacturers licensed the technology from NSU, specifically Mazda’s precursor corporation 

Toyo Kogyo for their 1967 Cosmo sports car.  While the four-stroke thermodynamic cycle is still 

in use, each stroke occurs in a fixed location in a rotary engine (Figure 2.2).    
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Figure 2.3:  Rotary Engine Operation [6]. 

Figure 2.3 demonstrates the operation of a rotary engine.  The points marked 1-6 

represent the intake stroke, 7-9, the compression stroke and ignition of the mixture, and 10, 11, 

and 12 show the expansion stroke.  Finally, points 13-18 demonstrate the exhaust stroke.   

A number of differences can be seen between reciprocating engines and rotary engines.  

The most obvious feature is that the rotor never changes direction the way a piston does in a 

reciprocating engine.  This leads to a “smooth” engine since there are no vibrations caused by 

reciprocating motion. Furthermore, there is no valve-train used to control engine breathing, but 

rather fixed ports located in the housing for intake and exhaust.  This leads to better engine 

breathing, especially at higher engine speeds.  Also, during each revolution of the crankshaft, one 

complete thermodynamic cycle begins and ends.  The rotor, therefore, rotates at only ⅓ the speed 

of the crankshaft allowing for high engine speeds.  A few disadvantages of the rotary engine 

include difficulty in sealing at the edges of the rotor face, and poor fuel economy and emissions, 

due to incomplete burning of the fuel air mixture caused by a short expansion stroke.  

  



6 
 

2.1.3  Turbocharging  

 A turbocharger is a mechanical device used to recover waste energy from the exhaust 

gases of an internal combustion engine [5,7].  It consists of two main parts, the turbine and the 

compressor.  As figure 2.4 illustrates, hot exhaust gases impinge on the blades of the turbine 

causing it to rotate.  This, in turn, causes the compressor to begin to rotate, causing an increase in 

both the pressure and mass flow rate of the intake air.  By increasing the density of the intake 

charge and its mass flow rate, the engine is able to ingest (and combust) more air than normally 

possible.  Thus, turbocharging is often used to increase the volumetric efficiency (by forcing a 

larger volume of air into the engine), power (by adding additional fuel to compensate for the 

increase airflow), and thermal efficiency of an engine (by recovering waste heat from the exhaust 

gas stream).  The engine industry is currently moving towards downsized, turbocharged engines 

in an effort to maintain power levels and increase fuel efficiency.   

 

Figure 2.4 Turbocharged Rotary Engine [6]. 

2.2  Engine Control Systems 

There are a number of ways in which fuel can be injected into an internal combustion 

engine (ICE).  The oldest method of fuel injection was single point injection, also known as 

throttle body injection.  Continued developments in injector design, fuel pump technology, and 

control systems, have since given rise to continuous injection, where fuel is injected 

continuously but the flow rate is adjusted, multi-point injection, where there are multiple 

injectors placed closer to the intake ports, port fuel injection, where fuel is injected just before 
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the combustion chambers intake port, and direct injection, where fuel is injected directly into the 

combustion chamber [5].  A common feature of all of these systems is that they operate the 

injectors based on pulse width, or the number of milliseconds an injector is open and injecting 

fuel per injection event.  In all but direct injection, there is only one fueling event per 

thermodynamic cycle; direct injection may have multiple injection events per cycle.  The amount 

of fuel injected and ingested by the engine is proportional to the injector “on-time” and therefore 

needs to be adjusted as engine conditions change.  Figure 2.5 shows the inner workings of a fuel 

injector. 

 

Figure 2.5: Automotive Fuel Injector [24]. 
 

2.2.1  Electronic Fuel Injection 

When determining the amount of fuel to be injected, the most important quantity that 

must be measured or calculated is the amount of air, specifically the mass of oxygen, entering the 

engine.  Historically, carburetors were used for this, and being mechanical systems, they would 

add an amount of fuel proportional to the airflow rate past the venturi or narrowing in the 

carburetor [5].  As air passes through the venture, its flow rate would increase and a resulting 

decrease in pressure, due to Bernoulli's Principle, would draw fuel from jets, or orifices in the 

carburetor.  The larger the pressure drop, the more fuel would mix with the airstream.  While this 

is a rather simple system, it does not add precisely measured amounts of fuel, and with 
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increasing demands on fuel economy and emissions, most manufacturers turned to EFI 

(Electronic Fuel Injection) to have more control over the fueling process. 

 

N-Alpha  

 The oldest method of electronic fuel injection N-Alpha, uses only the current engine 

speed (RPM, revolutions per minute) as N and opening angle (Alpha) of the throttle (as reported 

by the Throttle Position Sensor or TPS) to determine how much fuel should be injected [8].  

While this system can work well in some circumstances (e.g., wide-open throttle) it suffers in 

almost every other driving regime since it is not directly measuring or calculating airflow.  It is 

often used in conjunction with one or possibly both of the following control systems.    

MAP 

Manifold Absolute Pressure (MAP) or speed-density systems are an improvement over 

N-Alpha but also do not directly measure airflow [5,7,9,10].  Rather they infer the mass flow rate 

using the relationship described by the Ideal Gas Law: 

         

where n is the number of moles of the gas R is the ideal gas constant, This can be rewritten in 

terms of the mass of the gas  as: 

               

where   is the density of the gas and           is the ratio of R to the molar mass of the gas. 

 In this system, there are sensors that measure intake air temperature (T) and manifold 

absolute pressure (P).  By knowing the Volumetric Efficiency (VE), or the percentage of 

occupied volume versus geometric volume of the engine at various engine speeds, the mass of air 

can be calculated.  Once the mass of air has been determined, it is trivial to add the correct 

amount of fuel to reach the target air-fuel ratio for the operating conditions.  The drawback to 
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this system is that the VE table needs to be properly calibrated for the various RPM and pressure 

ranges in which the engine is expected to operate.  It is this drawback that this thesis seeks to 

address. 

MAF  

Mass Airflow (MAF) is a third system of load control.  These systems directly measure 

the amount of air entering the engine.  This is usually accomplished with a “hot wire sensor”, 

where a filament is held in the intake stream and heated to a constant temperature [7]. The 

amount of electrical current required to maintain this temperature is directly proportional to the 

mass of airflow entering the engine and cooling the wire.  Thus, the mass airflow of the engine 

can be measured directly as the voltage drop caused in the sensor.  This type of sensor is also 

invariant to the density of the incoming air.  Since denser air will provide more cooling of  the 

wire, there is no need for auxiliary sensors. 

2.2.2  Air-Fuel Ratio 

 Air-Fuel Ratio (AFR) is a measure of the ratio of the mass of air to mass of fuel in a 

mixture.  If a mixture has equal amounts fuel and oxygen, it is said to be a stoichiometric mixture 

[5,7].  This means that there is just enough oxygen present to completely combust the fuel in the 

mixture.  The isooctane combustion reaction below denotes a stoichiometric reaction.   

                                  

While pump gasoline is a composition of various hydrocarbon fuels, it has an 

approximate stoichiometric AFR of 14.7:1; hence, for every gram of fuel, 14.7 grams of oxygen 

are required to ensure complete combustion.  A mixture can be described as lean or rich 

depending on whether there is an excess of oxygen or fuel, respectively.  Lambda (λ), or the air-

fuel equivalence ratio, is a fuel normalized measure of AFR. It is defined as: 
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Therefore, for any fuel,  λ = 1 denotes a stoichiometric mixture,  λ > 1 denotes a lean mixture, 

and λ < 1 a rich mixture.   

 There is no “ideal” AFR.  It greatly depends on the goals of the engine calibrator and the 

design of the engine.  For example, due to gas dissociation effects, maximum power is produced 

slightly rich of stoichiometry with an AFR between 12.5 and 13.3 (λ = 0.85- 0.9) [5].  Likewise 

maximum economy occurs in the lean region of operation, but not all engines can properly ignite 

a lean mixture and less power is produced (Figure 2.6). 

 
Figure 2.6: Power and Economy vs. λ [25].  
Image courtesy of the Wikipedia Foundation, Inc. 
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Figure 2.7: HC-CO-NOx and AFR tradeoff [5]. 

 

Power and economy are not the only factors that must be considered.  As shown in Figure 

2.7, as the mixture is enriched from stoichiometric, there is an increase in hydrocarbon and 

carbon monoxide emissions due to incomplete combustion.  Furthermore, as the mixture is 

leaned from stoichiometric, nitrogen oxide emissions increase, caused by excess air, which is 

~70% nitrogen, and high combustion temperatures.  Emission control is largely the reason why 

modern spark ignition engines attempt to run at stoichiometry, since three-way catalytic 

converters work most efficiently at a stoichiometric AFR [5].   

Additionally, turbocharged spark ignition engines experience elevated chamber 

temperatures and pressures, which contribute towards their propensity for pre-ignition and 

“knock”, the uncontrolled auto-ignition of the fuel air mixture [2,5-10].  Since knock can quickly 

destroy an engine if uncorrected, often times calibrators will enrichen the AFR, using the excess 

fuel as a cooling agent to lower combustion temperatures and mitigate knock. 
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Exhaust Gas Oxygen Sensors 

 Universal Exhaust Gas Oxygen Sensors (UEGO) are sensors placed in the exhaust stream 

that measure the amount of oxygen present in the exhaust gases.  This information is indicative 

of the completeness of the previous combustion event. UEGOs are also useful in determining 

whether an engine is operating lean, rich, or stoich [2,7]. 

 

Figure 2.8: Automotive Fuel Injector [26]. 
 

2.2.3  Industry Standards 

 Currently there is a well-established procedure for engine calibration used in industry but 

most end users do not have access to such advanced technology and equipment. 

Design of Experiments (DOE) 

Design of Experiments is a methodology with the goal of obtaining maximum 

information from the minimum number of experiments [3].  Since ICEs are staggeringly 

multivariate and non-linear, it can be impossible to fully explore the possible space of engine 

calibrations.  For instance, there is not a single ignition timing that will work well for all engine 

speeds, or all load levels.  It depends on the condition of the spark plugs, the properties of the 

fuel, the shape of the combustion chamber, the likelihood of knock, cylinder to cylinder 

variations, etc.  Because of this complexity, it is necessary for calibrators to determine what 

parameters or combination of parameters they will attempt to optimize, and also determine the 

acceptable level of optimization.  Many turn to DOE in an effort to reduce testing to the 

minimum required so that they can reduce cost and time to market.   
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In the aforementioned example, the calibrator may know from previous experience or 

data gathered from a similar engine, the possible range of valid spark advance values.  Then, 

instead of performing a sweep of all values in the range, they may pick key values at uniform 

intervals and only test these.  Once a “good” value has been determined from the above subset, 

further exploration may happen within the narrowed range, or if the results are sufficient, a new 

experiment can be conducted.  Similarly, the timing requirements of an engine at 2000 RPM are 

most likely similar to the timing requirements at 2050 RPM.  So, the calibration space to be 

explored by the calibrator can be divided up appropriately, depending on the calibration goals 

and intended use of the engine.      

2.2.4 Engine Modeling Technologies 

ETAS ASCMO 

ETAS, a subsidiary of the Bosch Group, has developed a software suite, namely,  ETAS 

ASCMO, aimed at providing manufacturers with the ability to accurately model the behavior of 

complex systems such as internal combustion engines [11]. It claims to utilize “newly developed 

statistical learning procedures” [11] that lead to a high model accuracy.  However, the cost to 

license this software puts it outside the grasp of most aftermarket customers. 

   



14 
 

.  

Figure 2.9: ETAS ASCMO [11]. 

 

MATLAB Model Based Calibration Toolbox  

 MATLAB is a popular “high-level language and interactive environment for numerical 

computation, visualization, and programming” [13].  It also has a great number of add-on 

“Toolboxes” enabling specialized functionality for a number of domains.   

The Model-Based Calibration Toolbox™ is squarely aimed at engine calibration and 

simulation.  It uses “statistical modeling and numerical optimization” to design test plans and 

create simulations for ICEs [12,13].  It also features some integration with ETAS software.  The 

disadvantage of this solution, however, is that it again requires paid for licensing, and a deeper 

understanding of programming to take advantage of its more complex features.   Furthermore, its 

model fitting capabilities are limited to “polynomials, splines, radial basis functions, growth 

models, user-defined MATLAB files, and Simulink models” [13], requiring the end user to 

define more complicated models if required. 
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Figure 2.10: MBC Workflow [13]. 

 

 

2.3 Machine Learning Techniques 

2.3.1 Machine Learning 

Machine Learning has been defined by Arthur Samuel as a “Field of study that gives 

computers the ability to learn without being explicitly programmed” [14].  All machine learning 

algorithms attempt to determine rules or define relationships in the data that are presented to 

them for training.  By generalizing over these training samples, the idea is that they will later be 

able to correctly classify or make some prediction when presented with a novel sample.   

2.3.2 Weka 

 Weka [15] is a suite of tools for machine learning.  Written in Java, it contains tools to 

aid in preprocessing of data, data analysis, data visualization, and predictive modeling, 

specifically, classification, regression, and association rules.  It is often used to rapidly prototype 

and explore machine learning applications for new fields and datasets [15].  
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2.3.3 Decision Trees  

 Decision Trees are a method of classification or regression which operate by determining 

the most important attributes in the data set and partitioning the data with respect to key values 

for that attribute [16].  A common method of determining “importance” of attributes is by 

calculating the information gain of the attribute.  The information gain for attribute A is defined 

as:   

              ∑                [16] 

where H denotes information entropy of set S defined as:  

        ∑                  [16] 

By using information gain, the algorithm attempts to discover which attributes most closely 

describe the desired decision value and also which attribute values correspond to that decision.   

 

Figure 2.11: Titanic Survival Rate Decision Tree [27]. 
 

Decision trees have a number of advantages over other learning algorithms.  They are 

easy to understand and justify.  Being a “white-box” model, end users are able to examine the 

various steps that the algorithm takes when making a decision. This gives users more 

information about the underlying dataset and builds confidence in the system.  Decision trees 

also perform well with large datasets of both numerical and symbolic data.  However, unless care 
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is taken to employ good training and/or pruning techniques, it can be easy for decision trees to 

become overly complex and overfit the training data.  Also to ensure a globally optimal tree can 

be very computationally intensive, so most algorithms use local heuristics and are not guaranteed 

to generate globally optimal results.  

2.3.4 Artificial Neural Networks 

 Artificial Neural Networks (ANNs) attempt to mimic the workings of a biological brain.  

All ANNs have the same basic component, namely,  neurons, which are interconnected units of 

computation that receive signals, perform some processing, and propagate the results to other 

neurons in the network [16].  Most ANNs have a shared hierarchy.  They have an input layer of 

neurons that receive the input samples, a variable number of hidden layers, with a varying 

number of neurons per layer, and finally, an output layer containing at least one neuron.   

 

Figure 2.12 : Neural Network Structure [28] 
 

 All hidden layer and output layer neurons have weights associated with all inputs 

received by that neuron; this can be thought of as the strength of the connection between those 

neurons.  Additionally, each neuron has an activation function that determines the output value 
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of that neuron based on the inputs it receives.  Commonly, this takes the form of a sigmoid 

function, such as:  

    
 

     
 

The advantage of using a non-linear activation function for a neuron is that the output is 

always bounded, in the above example, between 0 and 1 [16].  This prevents a single neuron 

from dominating the output of the entire network and allows the network more flexibility when 

being trained on more complex data sets. 

Training a neural network involves two main steps: (1) showing the network a training 

sample, and based on the networks output, (2) updating the weights for each neuron based on the 

amount of error between the networks output and the “true” output for that sample.  A common 

method of updating weights is called backpropagation, where the amount of error between the 

target output and the actual output is used to update the neuron weights one layer at a time from 

the output layer back to the input layer [16].    

There are a few disadvantages to using neural networks.   Once trained, a neural network 

becomes a “black-box” classifier.  That is, they may perform well at classification or regression, 

but contribute little to the fundamental understanding of the data.  It is unknown which features 

are highly relevant and which are irrelevant.  Without experimentation, it is often difficult or 

impossible to determine how many neurons and how many hidden layers are needed to find an 

optimal solution for the current problem [16].  Finally, ANNs are prone to overfitting if great 

care is not taken during validation; overfitting is synonymous with memorization of the input 

data and leads to poor testing performance.   
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2.4 Analysis Techniques  

Machine Learning techniques’ success can be measured in a number of ways: (1) how 

long it takes to train the algorithm, (2) the accuracy rate of the algorithm, and (3) whether or not 

the algorithm can perform well on testing data.  This thesis will use the following methods for 

evaluating model performance.  

2.4.1 Ten-Fold Testing 

 Ten-Fold Testing is a specific instance of k-fold cross-validation, a method for training 

machine learning algorithms where the dataset is first divided into ten distinct “folds” [16].  

After the dataset has been partitioned, the algorithm is trained with the first nine partitions and 

the tenth partition is left for model validation.  The process is then repeated, where a different 

fold is held back for validation until the process is complete.  This way, each sample participates 

during validation (nine times) when they were not used during training.  This allows for a more 

complete measure of the model’s accuracy for all data points and aims to avoid overfitting the 

training data, which usually results in poor testing performance.  

2.4.2 Regression Model Performance Evaluation 

 The following techniques are statistical measures of how well a regression model fits the 

original dataset. 

Pearson Product-Moment Correlation Coefficient 

The Pearson product-moment correlation coefficient is a statistical measure of a 

regression model’s “fit” to the data set [16].  The value ranges from -1 to 1 with the following 

meanings:   

1 : perfect positive correlation, 0 : no correlation, -1 : perfect negative correlation.  It is defined 

as:  
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Where cov(X,Y) is the covariance between populations X and Y and σ represents that population’s 

standard deviation.  For most regression models, the task is to model the existing data as closely 

as possible; thus, a correlation coefficient close to 1 is desired.  However, another measure of 

model accuracy is needed since different datasets may have the same correlation coefficient but 

have a vastly different “shape” as demonstrated in Figure 2.13. 

 

Figure 2.13: Anscombe’s Quartet [29] 
 

Mean Absolute Error 

Mean absolute error, MAE, is a calculated value that is used to measure the amount of 

error between the model’s prediction and the ground truth. Defined as: [16] 

         ∑       
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Where n is the number of samples,    is the model’s predicted value, and    is the actual value.  

Mean absolute error is a useful measure for determining how far the model’s prediction deviates 

from the true value.  However, it does not tell whether the error was an overestimation  or 

underestimation of the true value, only the aggregate magnitude.  

Root Mean Squared Error 

Root mean squared error, or RMSE 

       √∑
        

 

 

   

  

Where n is the number of samples,    is the model’s predicted value, and    is the actual value 

[16].  

RMSE is more sensitive to large differences between the predicted value and the actual 

value.  It is also more heavily influenced by “outliers” and often useful when the application 

cannot tolerate “large” prediction errors. 

Relative Absolute Error and Root Relative Squared Error 

Relative absolute error (RAE) is computed by dividing the MAE generated by the model 

by the MAE obtained with using the population mean as the prediction value:  

         ∑
       

       

 

   

  

Root relative squared error (RRSE) is similar to RAE in that it compares the model’s 

prediction performance with using a fixed prediction of the data’s mean. 

          √∑
          

         

 

   

  



22 
 

Both are an indication of whether the model’s prediction is more accurate than if the mean of the 

population had been used for prediction [16].   

2.5 Related Work 

 There has been some previous exploration of calibration and control of ICE with various 

machine learning techniques in the past.  Wang et al., (2006), and Zhai and Yu, () have explored 

the use of neural networks for steady state AFR control in engine simulations [4,18].  Vong 

Wong and Li, (2006), and Wong, et al. (2012), have explored the use of neural networks along 

with LS-SVM for prediction of engine power and torque and AFR control respectively using real 

world data [19,20]. Wong, (2012), experimented with compensation map calibration but did not 

attempt base map calibration [3].  However, all of the previous experiments have been performed 

on naturally aspirated four cylinder engines.  These works show that the concept in itself is not 

novel, and has shown promise when used on different engine configurations, but has not yet been 

applied to turbocharged engines or Wankel rotary engines. Furthermore, the previous work was 

accomplished in a laboratory environment, which sophisticated and precise testing equipment, 

whereas this thesis will explore what can be accomplished with only the simple addition of a 

readily available exhaust gas oxygen sensor. 
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Chapter 3 Research Methodology 

3.1 Data Collection Process 

 The data for this work was collected using a 1993 Mazda RX-7 equipped with a 13B-

REW two-rotor Wankel rotary engine featuring sequential twin-turbochargers (Figure 3.1).  The 

original ECU has been replaced by a programmable A’PEXi Power FC unit (Figure 3.1) [30].  

Additionally an FC-Datalogit data acquisition system allows the end user to interact with the 

Power FC ECU directly using a laptop and Windows software package FC-Edit (Figure 3.1) 

[21].  Finally, an aftermarket Lambda sensor [31] was installed and integrated with the FC-

Datalogit to be able to determine the engines air-fuel ratio by measuring the oxygen content of 

the exhaust gasses.  Numerous other enhancements have been made to the intake, exhaust, 

cooling, and fueling systems which require the engine’s calibration to be updated. 

This particular engine management system has a myriad of tables and options to 

configure in order to properly calibrate an engine, including:  Water Temperature Correction, 

Accelerator Enrichment, Throttle Position vs. Injection, Injection vs. Intake Temperature, etc.  

However, the most important and time-consuming table to calibrate is the “Base Map.”  The base 

map is a 20 x 20 table (Figure 3.2) where the horizontal axis is engine speed and the vertical axis 

is Pressure in Manifold (PIM).   
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Figure 3.2:  Base Map. 

 

The ranges and increments of this table can be modified by the user but the default 

settings were used in this experiment.  The default ranges for this table for engine speed start at 

400 RPM and increase in increments of 400 until 8000 RPM (N01-N20) and from 1000 to 24000 

PIM, in increments of 1000.  The Power FC documentation states that a PIM value of 10,000 is 

equal to 1 kg/cm
2
, so it can be inferred that any row below P10 is a “vacuum” region, where the 

pressure is less than atmospheric (i.e., “throttled”) [9,10,21].  Likewise, any row above and 

including P10 is where the pressure in the manifold is greater than or equal to atmospheric 

pressure (i.e., “unthrottled” or “boosted”).  The values in this table represent the milliseconds 

that a fuel injector needs to open.  For example, at P10-N05, atmospheric pressure and ~2000 

RPM, each cycle requires 5.592 milliseconds of on-time.  Actual fuel deliver depends on injector 

size and fuel line pressure. 
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Figure 3.3:  Engine Operating Regimes [9].  

 In Figure 3.3, shows the same table as Figure 3.2 but with the various operating regimes 

highlighted.  The shaded section in the upper left corner is the engine idling and startup region.  

Here, torque requirements are low and just enough fuel is added to keep the engine running.  The 

rectangle in the upper right represents part-throttle cruising area.  This is the area that is most 

often used in everyday driving, low to moderate load and low to high engine speeds.  The 

triangular area in the lower left is high load (wide open throttle) and low engine speed.  Since 

this is a turbocharged engine, there is not enough energy in the exhaust gasses to adequately spin 

up the turbocharger in this region, so it is unlikely that the engine will ever operate in this area.  

Finally, the square in the lower right is the high-load high engine speed region.  This is where the 

most power is produced and peak chamber pressures occur [9,10].   

The values in each cell of the base map correspond to injector “on-time” in milliseconds, 

or how long the injector should remain open to provide adequate fueling [9,10].  Further 

complicating matters, RX-7s are equipped with a staged fuel injection system.  The reason for 

this is that if each rotor were equipped with a single injector in the intake port, that injector 
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would be required to service three rotor faces (cylinders in a conventional engine).  To meet 

fueling requirements at high engine speed this would require an oversized injector, but larger 

injectors are more difficult to control during low load and low engine speeds, and they may 

provide more fuel than required.  With staged injection, the engine uses a single small injector, 

550 cc/min, for each rotor during low load and low engine speed operation.  When more fuel is 

required, the secondary injectors, which were originally 850 cc/min but have since been replaced 

with 1680 cc/min units, begin to operate in parallel with the primary injectors to meet fueling 

needs [9,10].  This complicates calibration, since larger injectors deliver greater quantities of fuel 

at lower pulse widths.    

Data was gathered on 74 different channels for approximately 40 minutes of mixed city 

and highway driving.  The goal while gathering data was to “exercise” the engine and try to have 

it operate in as many  cells of the base map as possible to determine the overall accuracy of the 

supplied base map.  Figure 3.4 shows the cumulative average AFR for each cell of the base map.  

It should be noted that adjacent cells should have similar values.  There should be a general 

“smoothness” in the AFR transition between cells.  An example where this is not the case occurs 

in column N06 between P12 and P13.  The AFR reading jumps from 13.1 to 15.0 indicating that 

this area of the map is not properly calibrated.  Another area that requires calibration is column 

N10 between P09 and P10, with a jump from 15.1 to 10.6 AFR between adjacent cells.  This data 

shows the AFRs produced from the current engine calibration and can be used to determine how 

far the calibration is from ideal and to train our model.   
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 Figure 3.5 is a histogram of how many samples are related to each cell in the base map.  

It illustrates the relative frequency of engine speed and load values.  For example, the large 

number of samples occurring at N02 and P05 show where engine idling usually occurs, 

approximately 800-1000 RPM and 17 inHg vacuum.  The first two P rows, P01 and P02, 

represent closed-throttle deceleration, where the accelerator is not being pressed and the engine 

and vehicle are slowing. this is also the area that corresponds to very high AFRs, since fuel is not 

injected during deceleration.  The main cruising area resides between N04 - N10 (1200 - 4000 

RPM), and P03-P10 (part throttle until slight positive pressure). This also explains why the 

majority of the samples occur in this area, as most driving takes place in this regime.  The bottom 

grouping between P16-P17 represents maximum acceleration, such as merging onto the highway 

from an on-ramp, and the few number of samples in this area are a testament to how infrequently 

maximum power is required during everyday operation.   
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3.2 Preprocessing and Feature Selection 

In addition to AFR, a number of other samples were logged.  A sample of the available 

channels is shown in Figure 3.6.  This original data set required preprocessing to remove 

duplicate channels and non-relevant data.  These include cases when the engine was turned off, 

during deceleration when no fuel is being injected, channels that did not vary throughout the 

drive, etc.  Table 3.1 illustrates the final channels used to train the models. 
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Logged Data Channels 

TimeS 

timestamp 

MAPN 

column reference 

PWS 

power steering sensor 

InjDuty 

injector duty (ms) 

MAPP 

row reference 
NTR 

neutral switch 

RPM 

engine speed 
IGL 

leading spark plug timing 
CLT 

clutch switch 

PIM 

pressure in manifold 

(MAP sensor) 

IGT 

trailing spark plug timing 
STP 

stop sensor 

WtrT 

water temperature (C) 

Inj  
??? 

HWL 

egt warning light 

AirT 

intake air temperature (C) 

Oil 

oil injection 
FPR 

fuel pressure regulator switch 

Knock 

knock sensor value 

PC 

pre-control 

APR - ??? 

Speed 

speed sensor (km/hr) 

InjFrPr 

primary injector on-time 
CCN 

charge control 

WideBand 

AFR sensor 

InjFrSc 

secondary injector on-time 
TCN 

turbo control 

 TPSV 
throttle position sensor voltage 

VTA1 

throttle voltage, full range 

 PIM 

MAP sensor voltage 
VTA2 

throttle voltage, narrow range 

Table 3.1:  Selected Data Channels 
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Due to the location of the UEGO sensor, AFR as recorded in the datalog, actually 

corresponded to events occurring approximately one second, or 10 samples, previously.  Figure 

3.7 shows the time-dependent nature of the exhaust gas sensor.  The top plot is for the exhaust 

gas sensor and the middle and bottom plots represent injector duty and throttle position.    

When the throttle is closed, the injector duty immediately drops to zero.  During this time 

AFR fluctuates briefly before stabilizing at the maximum lean value.  This delay required a 

translation of the AFR signal so that the values would accurately reflect the correct 

thermodynamic cycle.  However, this is a rather simplistic approach, and different approaches 

should be explored in future work to account for engine speeds effect on exhaust gas flow rate. 
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After the redundant or invariant channels and samples had been removed, the raw data 

contained 37 total channels with 23,477 samples.  This data was converted to ARFF file format 

for importation into Weka [15,22].  

3.3 AI Technique Selection 

 A number of machine learning algorithms were evaluated, specifically a few variations of 

decision trees and neural networks.    

3.3.1 Decision Trees 

Weka’s REPTree is an algorithm designed to build regression trees with speed in mind.  

It uses information gain/variance reduction for choosing attributes and prunes the resulting tree 

using “reduced-error pruning” similar to C4.5.  It was chosen for this experiment because it is 

suitable for regression models, as well as classification systems [16]. 

3.3.2 Neural Networks 

Weka’s Multilayer Perceptron ANN is a feedforward, backpropagation neural network 

containing a single fully-connected hidden layer and a single output neuron by default.  It also 

can be used for either classification or regression [16].   

3.4 Fuel Map Correction and Validation 

Once the model has been created and validated, new values for the base map are 

calculated based on the Mazda target AFR map.   
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Figure 3.8: Mazda Factory RX-7 Target AFRs [] 

 

Figure 3.8 shows the target air-fuel ratio map. Since this is an OEM AFR map emissions are a 

primary concern.  Therefore, the dark red high area, which has an AFR of 14.7, corresponds to 

the low load, low engine speed cruising area. As both engine speed (RPM) and load (MAP)  

increase, there is a gradual richening of the AFR, with a steeper increase along the load axis than 

the RPM axis.  Since peak power occurs at approximately 13.1 AFR, the reason for richening 

past this point is most likely knock control and to keep combustion chamber temperatures from 

being excessive. 

Figure 3.9 shows the percent error difference between the measured log average AFR 

values and the Mazda target AFRs.  It has been normalized so that only cells present in the 

datalog are represented.   Red areas indicate sections of the map that are richer than the target 

AFR; blue areas are leaner.   
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Figure 3.9: Percent Error, Measured AFR vs. Mazda Target AFR. 

 

This gives a good indication of how “close” the starting base map is to the target map.  It is 

readily apparent that some sections of the map are far too rich while other adjacent areas are too 

lean.  The goal is to get this map as close to the target AFRs as possible so that the percent 

difference is nearly zero.  

Finally, Figure 3.10 shows the three dimensional representation of the fuel injection 

basemap.  These values are roughly equivalent to the volumetric efficiency of the engine, 

multiplied by the fuel equivalence ratio or 1/λ.  It is this table that needs to be properly calibrated 

for the new engine configuration.  As load and engine speed increase, VE increases and with it, 

fueling requirements.  It is also a relatively smooth, continuous, and nearly monotonic surface.  

This is expected since the amount of air an engine consumes should be a function of engine 

speed and throttle position (load).   Also around the 10th PIM row the rate of increase along the 
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PIM axis undergoes a noticeable increase.  Since this is a turbocharged engine, this area of rapid 

increase marks the transition from throttled operation to boosted operation.  Since the 

turbochargers are forcing more air into the engine than would normally be possible, a 

proportional amount of fuel also needs to be added as reflected on the map. 

 

Figure 3.10: Fuel Injection Basemap 
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Chapter 4 Experimental Results 

4.1 Predicting AFR 

 The first attempt to develop a predictive model using the logged engine data was to see if 

the AFR could be predicted.  All models were validated using ten-fold testing.  All channels in 

table 3.1, with the exception of Wideband-AFR, sensor were used as input in an attempt to 

predict the Wideband-AFR value. 

4.1.1 Decision Trees  

 Using the REPTree algorithm in Weka, the results in Table 4.1 were obtained. 

Correlation coefficient 0.872 

Mean absolute error  0.370 

Root mean squared error  0.672 

Relative absolute error 33.81 % 

Root relative squared error 49.15 % 

Total number of instances 23477 

Size 2017 

Training Time 0.8 seconds 

Table 4.1: REPTree (AFR).  
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The results of the REPTree algorithm were slightly improved with Bagging (Bootstrap 

Aggregating).            

Correlation coefficient 0.907 

Mean absolute error 0.325 

Root mean squared error  0.54 

Relative absolute error 31.32 % 

Root relative squared error 42.20 % 

Total Number of Instances 23477 

Size 2419 

Training time 3.92 seconds 

Table 4.2 Bagged REPTree (AFR) 

 

Figure 4.1: Decision Tree Classification Errors (AFR) 
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 While the correlation coefficient was reasonably high, all error measurements were too 

high for usable predictions.  Notably, a large number of prediction errors occurred when 

predicting truly lean samples, the grouping on the far right vertical axis (Figure ), and as 

indicated by the high RMSE.  While there is a nearly linear correlation, the magnitude and of a 

number of the errors prevent this model from being used for meaningful predictions (RRSE 

slightly better than chance) (Table 4.1, Table 4.2). 

 

4.1.2 Neural Networks 

 The multilayer perceptron neural network gave the results shown in Table 4.3 when 

attempting to predict AFR. 

Correlation coefficient 0.802 

Mean absolute error 0.567 

Root mean squared error 0.828 

Relative absolute error 51.84 % 

Root relative squared error 60.58 % 

Total Number of Instances 23477 

Training Time 186 seconds 

Table 4.3 Multilayer Perceptron (AFR) 
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Figure 4.2:  Neural Network Classification Errors (AFR) 

 Figure 4.2 shows the results of the neural network.  The overall predictive value of the 

neural network is far worse, in every regard, when compared with decision trees (Table 4.3).  

Some of the failures were similar, especially considering the extremely lean datapoints, but the 

overall model is less accurate and instead tends to predict a value around ~12.9 AFR for most 

cases.  Clearly, another approach must be taken to find a useable model for engine calibration. 

4.2 Predicting Injector Duty Cycle 

 The next experiment attempted to model injector duty cycle based on the other observed 

data points (Table 3.1).  The motivation for this experiment is that once the model is generated, 

all that is required to determine the new base map is to test the model with fabricated data based 

on the target AFR values taken from the Mazda target AFR map.  
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4.2.1 Decision Trees 

Again Weka’s REPTree was used to model the relationship between injector duty cycle 

and the other monitored channels with the results in Table 4.4. 

Correlation coefficient 0.9981 

Mean absolute error 0.379 

Root mean squared error 0.693 

Relative absolute error 4.21 % 

Root relative squared error 6.20 % 

Total Number of Instances 23477 

Size 1193 

Training Time 0.31 seconds 

Table 4.4 REPTree (Inj. Duty Cycle) 

These results are already significantly better than those obtained by trying to predict 

AFR.  The error rate has dropped precipitously, in the case of RRSE by a factor of 10 (Table 4.4) 

and our model looks to have a much “tighter” linear relationship with the dataset (Figure 4.3).  
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Figure 4.3 Decision Tree Prediction Errors (Inj. Duty Cycle 



46 
 

 

F
ig

u
re

 4
.4

: 
V

is
u
al

iz
at

io
n
 o

f 
D

ec
is

io
n
 T

re
e,

 S
iz

e 
=

 1
1
9
3
 (

In
j.

 D
u
ty

 C
y
cl

e)
 



47 
 

 

Correlation coefficient 0.9898 

Mean absolute error  0.9831 

Root mean squared error 1.5993 

Relative absolute error 10.92 % 

Root relative squared error 14.27 % 

Total Number of Instances 23477 

Size 61 

Training Time 0.21 seconds 

Table 4.5 REPTree, Max Depth = 5 (Inj. Duty Cycle) 

Table 4.5 demonstrates the performance of the REPTree when the depth of the tree is 

limited to only 5.  While this increases the error rate it makes it much easier for the user to 

interpret the results (Figure 4.5).   
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Again bagging was able to improve the performance of the REPTree:  

Correlation coefficient 0.9989 

Mean absolute error 0.2653 

Root mean squared error 0.5161 

Relative absolute error 2.95 % 

Root relative squared error 4.61 % 

Total Number of Instances 23477 

Size 1217 

Training Time 2.86 seconds 

Table 4.6 Bagged REPTree (Inj. Duty Cycle) 

 Table 4.6 shows that Bagging was able to reduce the error rate over the unbagged REPTree with 

regard to every error measure at the cost of an increase in model training time, 2.86 seconds versus 0.31 

seconds (Figure 4.8).  Comparing the visualization of errors, both bagged and unbagged REPTrees, they 

have very similar shapes, with larger errors occurring in more or less the same locations (Figure 43, 

Figure 4.6). 



50 
 

 
Figure 4.6:  Decision Tree Prediction Errors (Inj. Duty Cycle). 

  

  



51 
 

4.2.2 Neural Networks 

 In this instance the multilayer perceptron neural network performed nearly as well as the 

REPTree algorithm, and shows a marked improvement over the first experiment, as shown in 

Table 4.7.  

Correlation coefficient 0.9993 

Mean absolute error 0.2712 

Root mean squared error 0.4514 

Relative absolute error 3.0123 % 

Root relative squared error 4.0292 % 

Total Number of Instances 23477 

Training Time 104 seconds 

Table 4.7 Neural Network (Inj. Duty Cycle) 

 Another interesting feature is that the magnitude of the prediction errors seems to be 

smaller than the errors produced by the decision tree (Figure 4.7 versus Figure 4.6).  However, 

both suffer from possible catastrophic prediction errors towards the right of the graph below the 

linear cluster. 
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Figure 4.7:  Neural Network Prediction Errors (Inj. Duty Cycle) 

 

4.3 Discussion 

The poor performance of the AFR prediction models could be explained by a 

combination of factors.  One issue is there is a false ceiling of the range of values.  Innovate 

Motorsports, the producers of the lambda sensor controller, recommend setting the maximum 

value to the lowest expected AFR that the engine will run on.  However, when no fuel is being 

injected, the engine acts as an air pump, having an effectively infinite AFR.  So, instead of an 

AFR of 16, this value should probably be closer to 20 or even higher.  An attempt was made 

during preprocessing to mitigate this effect, but it may still be present.   Also, the non-monotonic 
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surface described by the Mazda target AFR, and more specifically the greatly irregular surface 

shown in the percent error plot (Figure 3.9) could contribute to the difficulty in predicting AFR 

using only the datalog.  Finally, the model is attempting to predict the AFR of the current base 

map, which is not necessarily calibrated with the same target AFRs as the Mazda target map, and 

may in fact not be associated with a proper starting AFR goal.   

The success of predicting the injector duty cycle can likewise be described by inspecting 

the surface described by the values contained in the injector basemap (Figure 3.10).  Since this 

surface is relatively smooth, it should be much easier to perform regression modeling using data 

collected from the data logs.  Also, injector duty cycle is a calculated parameter that depends on 

the other sensors that are being logged, and is directly related to their values.  Whereas AFR is 

certainly related to injector duty cycle load and engine speed but does not have the same 

monotonic relationship even for well-calibrated engines (Figure 3.8). 

An additional advantage that decision trees have over neural networks is that the output is 

easily understood by end users.  In both the full tree and reduced height tree, it can be easily seen 

which attributes are most important.  They both have throttle position sensor (TPSV) as the first 

split point followed by either RPM or a representation of the load of the engine.  This enables the 

end user or engine calibrator to verify the model’s output using their own intuition rather than 

pouring through the resulting predicted base map looking for errors (Figure 4.8). 
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 Predicting AFR Predicting Inj. Duty Cycle 

Results 
Decision 

Tree 

Decision 

Tree 

(Bagging) 

Neural 

Network 

Decision 

Tree 

Decision 

Tree 

(Bagging) 

Neural 

Network 

Correlation 

Coefficient 
0.8719 0.9072 0.802 0.9981 0.9989 0.9993 

Mean Absolute 

Error 
0.3694 0.3252 0.5665 0.3787 0.2653 0.2712 

Root Mean 

Squared Error 0.6719 0.54 0.828 0.6939 0.5161 0.4514 

Relative 

Absolute Error 
33.8104 % 31.3236 % 51.8462 % 4.2065 % 2.9467 % 3.0123 % 

Root Relative 

Squared Error 49.1539 % 42.2046 % 60.5757 % 6.1939 % 4.6071 % 4.0292 % 

Total Number 

of Instances 23477 23477 23477 23477 23477 23477 

Size 
2017 2419 -- 1193 1217 -- 

Training Time 
0.8 

seconds 

3.92 

seconds 
186 seconds 

0.31 

seconds 

2.86 

seconds 
104 seconds 

Table 4.8:  Results Summary  
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Chapter 5 Conclusion  

5.1 Contributions 

The main contributions of this thesis are the affirmation of the theory that machine 

learning can be used to expedite the engine calibration process.  While the process does not 

produce perfect results, the systems predictions can be used to greatly expedite the calibration 

process, when compared with the usual practice of tuning one load point and engine speed at a 

time.  Also this process enables the end users to drive their vehicle normally, without the express 

intent of calibration, and allows them to focus on the act of driving and roadway traffic.  With 

some improvement in both the predictions and safeguards, it also reduces the dependence on a 

chassis dynamometer and a calibration specialist, either entirely, or by reducing the amount of 

time to arrive at the desired calibration, which can be significantly costly to the end users. 

5.2 Limitations 

It should be noted that this system depends entirely on the sensors that are currently 

equipped on the vehicle.  If there is a problem with the calibration of any of the sensors or if the 

sensors malfunction and produce incorrect output, it could result in dangerously incorrect 

predictions.  There is no validation of sensor output or sanity checking of the input data.  It is 

entirely up to the user to ensure that the model’s output is reasonable.   

Since the model is not perfect, there will occasionally be errors that are a great deal 

different from the required value.  In instances where the error predicts that more fuel be added 

than necessary, this is less of an issue.  However, when it predicts a value that would result in a 

leaner mixture than desired, if the error is not identified, possible engine damage could result.  

This shortcoming could be overcome by some basic “smoothing” of  the predicted fuel map and 

some safeguards to ensure the user is made aware of possible issues with predicted results. 
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5.3 Future work 

While the proposed approach is currently only implemented for prediction and calibration 

of steady state air-fuel ratio, it should be possible to extend the system to make predictions that 

would improve transient response.  Similarly, the addition of a few more sensors, (such as quick 

reaction Exhaust Gas Temperature probes (EGT), or combustion chamber pressure sensors), 

might enable a system similar to this one to be used to optimize the ignition timing of an engine.   

Also more work could be done to simplify and automate the workflow process, from data 

collection to model prediction.  Right now the user must first collect the log data in the vehicle 

and later create a model and generate predictions from the data.   

Currently, this system has only been tested on a single engine.  While it should be able to 

generalize to other ICEs, more testing is required.  And with more testing and data of other ICEs, 

the opportunities for non-parametric or aggregate learning arise. 
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