
On the Kalman Filter and Its Variations

By

Theodore S. Lindsey

Submitted to the Department of Mathematics
and the Graduate Faculty of the University of Kansas

in partial fulfillment of the requirements for the degree of
Master of Arts

Prof. Bozenna Pasik-Duncan, Chair

Prof. Tyrone Duncan

Prof. Xuemin Tu

Date defended: April 18, 2014

The Thesis Committee for Theodore S. Lindsey certifies
that this is the approved version of the following thesis:

On the Kalman Filter and Its Variations

Prof. Bozenna Pasik-Duncan, Chair

Date approved: April 23, 2014

ii

Abstract

The objective of this paper is to explore the standard Kalman filter and

two non-linear variations. Additionally, we will discuss the derivation of the

Kalman filter using Newton’s method. Next we will consider the implemen-

tation of both the Extended Kalman filter and the Unscented Kalman filter,

paying special attention to the cases where the Unscented Kalman filter per-

forms better than the Extended Kalman filter. Finally, we will make a com-

parison between these two Kalman filter variations and consider a few other

modifications to the standard Kalman filter.

iii

Acknowledgements

I would first like to thank my advisor, Prof. Bozenna Pasik-Duncan,

for guiding and supporting me through this process.

I wish to thank Prof. Tyrone Duncan and Prof. Xuemin Tu for serving

on my Thesis Committee.

I would also like to thank the KU Mathematics faculty as a whole for

providing instruction and advice.

I would like to recognize Yi Cao for his assistance with the implemen-

tation of the Extended Kalman filter and the Unscented Kalman filter in

MATLAB.

I wish to thank my undergraduate advisor Andrew Parker for his inspi-

ration and mentorship as I worked on my bachelor’s degree and since then.

I would like to thank Mark Yannotta for inspiring me to study mathe-

matics when I was uncertain of my academic interests and attempting to find

an area of study for a 4-year degree.

Finally, I would like to thank my mother and father for their encour-

agement and support of my education; especially my mother, who originally

encouraged me to approach the world with curiosity and wonder through her

teaching. Also, I would like to thank my wife who supported me through the

entire process, and who’s encouragements made this thesis possible.

iv

Contents

On the Kalman Filter and Its Variations 1

0.1 Introduction - Filtering . 1

0.2 Introduction - Kalman Filter . 2

0.3 Standard Kalman Filter . 2

0.4 Extended Kalman filter . 5

0.5 Unscented Kalman Filter . 6

0.6 Kalman Filter via Newton’s method . 7

0.7 Implementation and Comparison of Two Kalman Filter Extensions 10

0.8 Future Investigations: Several Kalman Filter Modifications 15

0.9 Concluding Remarks . 16

References 19

Appendix 20

0.10 Non-Linear Kalman Filter Runner . 20

0.11 Extended Kalman Filter Implementation . 22

0.12 Unscented Kalman Filter Implementation . 24

v

0.1 Introduction - Filtering

The essence of a filter is to determine the states of a system (say, xk) which are not

directly observed by forming estimates of the states based on outputs from the system

(say, zk) which are effected by the states of the system (xk). Generally, there are three

goals of filtering. When working towards first goal, we want to know information about

the state of a system (eg velocity or position). In the second, we want to control a system

described by a state space model in which case we use state feedback controls which take

the form uk = u(k, xk) (often, xk isn’t known, so system state estimates are used for this,

too). When working towards the third goal, we want to replace the state space model

with an equivalent model, such as an ARMAX system or an innovations-from state-space

model. [4, p.100,127]

When approaching the filtering problem, we aim to estimate the value of a random

variable Y0 given a set of random variables Y1, . . . , Yn who’s values we have observed.

We use Y⃗ T = ⟨Y0, . . . , Yn⟩ to represent a vector random variable with a particular joint

distribution. Y⃗ T = ⟨Y1, . . . , Yn⟩ represents the observed vector. When evaluating our fil-

ter, we want to minimize the mean squared error between our estimator g(Y) and the

random variable Y0: E [Y0 − g(Y)]2. According to Davis, Vinter [4], the mean squared

error is minimized by g(Y) = E [Y0∣Y] = ∫
∞

−∞
y0dFY0∣Y (y0∣Y). Unfortunately, this isn’t

easy to work with, and will likely cause issues when attempting to compute it, so in-

stead, we consider the linear estimation given by g(Y) = α1Y1 + α2Y2 + ⋅ ⋅ ⋅ + αnYn. Now,

E [Y0 − g(Y)]2 = E
n

∑
i,j=0

αiαjYiYj =
n

∑
i,j

αiαjE [YiYj] (we define α0 = −1). We can think

of this estimation as a projection of our random variable Y0 onto our observations. [4,

p.100-101]

Also of note is that, as we go through this process, we would like to record a history

of our system states Xk. In order to accomplish this, we will approach filtering with a

recursive algorithm which will consider the system state Xk and observation Yk+1 and

estimate of the system state, Xk+1.

Unfortunately, we run into a problem if we are at time n and we would like to estimate

the random variable Y0 at time n (we’ll call this Y0,n). We’ll use Y1, . . . , Yn to come up with

1

an estimate. The problem is that in order to achieve this estimation, we end up needing to

invert increasingly larger (n×n) covariance matrices (designated by Pn = cov (Y1, . . . , Yn))

due to the fact that we want a historical record of past system states (X1 through Xn).

In order to approach this in a recursive manner rather than by referencing every previous

Yk, we can, in the simplest case, use the recursion Yo,n+1 = anY0,n + bnYn+1, that is, the

estimate in question is a linear combination of the current measurements with the previous

estimate (this is the idea upon which the Kalman filter is based). [4, p.112]

0.2 Introduction - Kalman Filter

The Kalman filter is a method by which we can estimate unknown system states from

noisy (indirect, inaccurate, or uncertain) observations. The Kalman filter is the optimal

estimator for gaussian noise. [5]

Many variations of the Kalman filter are used. Each addresses particular problems

that arise in the implementation of the standard Kalman filter when applied to particular

types of problems. Many of the variations are vulnerable to certain situations as well. In

particular, we will focus on the standard Kalman filter, the Extended Kalman filter, the

Unscented Kalman filter, and the derivation of the Kalman filter via Newton’s method.

We will then look at implementations of a couple of these variations and then discuss the

best applications and weaknesses for each variation.

0.3 Standard Kalman Filter

Consider the system

xk+1 = A(k)xk +B(k)uk +C(k)wk

and

yk =H(k)xk +G(k)wk

2

with “{wk}, an l-vector white-noise process with unit covariance (EwkwT
k = Il) and the

initial random variable x0 is uncorrelated with wk, with known mean and covariance m0,

P0, respectively. The coefficient matrices A(k), etc, may be time-varying, as indicated

by their dependence on k.” [4, p.117]

Then, for the above system and assumptions, “the estimator x̂k∣k−1 {the estimate of

the current system state given previous information} satisfies the recursive equation

x̂k+1∣k = A(k)x̂k∣k−1 +B(k)uk +K(k) [yk −H(k)x̂k∣k−1]

for k = 0,1, . . .

x̂0∣−1 =m0

The n × r gain matrix K(k) is given by

K(k) = [A(k)P (k)HT (k) +C(k)GT (k)] [H(k)P (k)HT (k) +G(k)GT (k)]−1

where P (k) is the error covariance P (k) = E [(xk − x̂k∣k−1)(xk − x̂k∣k−1)T], P (k) satisfies

the recursive Riccati equation

P (k + 1) = A(k)P (k)AT (k) +C(k)CT (k) − [A(k)P (k)HT (k) +C(k)GT (k)]

[H(k)P (k)HT (k) +G(k)GT (k)]−1 ⋅ [A(k)P (k)HT (k) +C(k)GT (k)]T

P (0) = P0

The innovations process vk ∶= yk −H(k)x̂k∣k−1 is a wide-sense white-noise {a sequence of

random variables with mean zero and finite variance} process with covariance function

E [vkvTj] = [H(k)P (k)HT (k) +G(k)GT (k)] δkj. If in addition to the above assumptions

(x0,w0,w1, . . .) are jointly normally distributed, so that in particular {wk} is a Gaussian

white-noise process, then x̂k∣k−1 = E [xk∣yk−1].” [4, p.118]

The Kalman filter operates in a recursive fashion in an effort to estimate certain states

3

of a system, given noisy measurements. It does this by minimizing the mean-squared error

of the current state estimate. The Kalman filter compares the estimate based on previous

states to the noisy measurement-based state information in an attempt to correct errors

in previous estimates and to mitigate noise in current observations. For non-gaussian

noise (but with a given mean and standard deviation), the Kalman filter is the best

linear estimator. [7, p.4]

The Kalman filter takes previous estimates along with the current observations as

the inputs. The recursion operates in a two-step process: the prediction step and the

correction step. First, the Kalman filter performs a “time update” (the prediction step)

by taking estimated knowledge of the current state, say Xk and, using the physical model

of the system, it predicts the future system state, giving Xk+1∣k = FkXk+Gkuk (where Fk is

the state transition model, Xk is the “true” current system state, Gk is the input matrix,

and uk is the input control). With the state prediction, the Kalman filter then predicts

the expected measurement reading, giving Zk+1∣k = HkXk+1∣k. From here, the Kalman

filter then performs a “measurement update” (the correction step) in which it compares

the predicted measurement Zk+1∣k to the actual measurements, Zk+1 which gives us the

measurement residual, Vk+1 = Zk+1−Zk+1∣k. Next, the measurement residual is used to find

the new corrected measurement-based state estimate, Xk+1 =Xk+1∣k+Wk+1vk (where Wk+1

is the Kalman gain, vk+1 is the residual), which we accept as the new “true” system state

and then repeat the process. The process in which we find the Kalman gain is the more

complicated portion of this step. First, we calculate the state estimate (or prediction)

covariance, Pk+1∣k = FkPk∣kF
′
k+1+Qk+1 (where Pk∣k is the previous state covariance and Qk+1

is the process noise covariance). Using the State estimate covariance, we then calcuate

the measurement prediction covariance, Sk+1 = Hk+1Pk+1∣kH
′
k+1 +Rk+1 (where Rk+1 is the

measurement noise covariance). Finally, we find the Kalman gain, Wk+1 = Pk+1∣kH
′
k+1S

−1
k+1.

At this point, the “true” system state can be calculated by the previous formula, however,

before moving on to the next iteration of the Kalman filter, we will perform one final

calculation: we will find the updated state covariance, Pk+1∣k+1 = Pk+1∣k −Wk+1Sk+1W ′
k+1.

The Kalman filter is most commonly found in use in guidance systems such as in

4

aircraft, watercraft, and spacecraft. In these cases, the Kalman filter will first take

data from sensors, then attempt to filter out the noise and overcome possibly overcome

insufficient information about the system provided by the measurements, and finally,

estimate the position, velocity, etc. An example of the Kalman filter in action is as

follows. Imagine we want to determine the true position of a vehicle as it moves. In order

to do so, we only have a few sensors to work with. First, we have a GPS sensor, which

is not accurate on a local scale, but can give us excellent position information relative to

the size of the globe. Next, we have a compass which can tell us our direction of travel,

but isn’t extremely precise. Last, we have the speedometer of the vehicle, which tells

us the speed. In the first step, the time update step (or prediction step), the Kalman

filter takes the knowledge of our current “true” location and, with a standard Newtonian

motion model, it predicts the future location of the vehicle, Xk+1∣k, given the currently

predicted speed (from speedometer), position (from GPS), heading (from compass), etc.

From there, we also predict the current sensor readings, Zk+1∣k based on the physics

model and the current state. Next, in the measurement correction (or update) step,

the Kalman filter calculates the measurement residual - the difference between predicted

sensor readings and actual (but noisy) sensor readings. Using the measurement residual,

the Newtonian motion model, and state covariance, we then calculate the current “true”

position.

0.4 Extended Kalman filter

The basic Kalman filter is limited to linear systems. In order to estimate the states of

non-linear systems, we must turn to variations of the Kalman filter. In particular, the

Extended Kalman filter and the Unscented Kalman filter are of particular usefulness when

working with non-linear systems [5, p.811][3, p.108]. Both the Extended Kalman filter

and the Unscented Kalman filter allow us to work with non-linear systems, however, the

Unscented Kalman filter will improve upon several flaws in the Extended Kalman filter,

as observed by Wan [12].

5

The Extended Kalman filter is, unlike the standard Kalman filter, a generally biased

estimator of a non-linear system. Moreover, the Extended Kalman filter works to estimate

the system by performing a first-order linearization on the system, for which it is the best

linear unbiased estimator. [5]

The Extended Kalman filter takes the non-linear system and linearizes the system in

the vicinity of the previous state estimate. [3, p.108]

As in the standard Kalman filter, the Extended Kalman filter is a recursive process,

but with an additional step. Each iteration, the Extended Kalman filter first linearizes

the system dynamics in Xk+1 = f (Xk)+wk around the previous state estimate Xk∣k−1. We

take the observations Zk+1 = h (Xk+1)+vk+1. Next, the Extended Kalman filter applies the

prediction step of the filter to the just-calculated linearized system dynamics to obtain

Xk+1∣k = f (Xk) and Pk+1∣k = Jf (Xk)PkJT
f (Xk)+Qk (state prediction and covariance, with

Jf as the Jacobian of f). Then, the Extended Kalman filter linearizes the observation

dynamical system yk = h (Xk)+vk in the vicinity of Xk+1∣k. Finally, the filter updates the

linearized system state, obtaining Xk+1∣k+1 and Pk+1∣k+1. [10, p.2] [9, p.34]

0.5 Unscented Kalman Filter

In order to improve upon the flaw mentioned previously, in which the Extended Kalman

filter has the potential to propagate error through it’s linearization of the non-linear sys-

tem, the Unscented Kalman filter instead uses deterministic sampling and can achieve

3rd order accuracy compared to the Extended Kalman filter’s 1st order accuracy. Addi-

tionally, the Unscented Kalman filter is able to perform the estimation with an algorithm

that is within the same order of complexity as the Extended Kalman filter.

As in the Extended Kalman filter, the Unscented Kalman filter represents the state

distribution with a Gaussian random variable, but instead uses a minimal set of sam-

ple points which accurately represent the mean and covariance of the Gaussian random

variable. When the Unscented Kalman filter propagates this Gaussian random variable

through the system, the sample points also accurately represent the posterior mean and

6

covariance (to the 3rd order), regardless of the non-linearity. [12, p.2]

The principle of the unscented Kalman filter lies in the unscented transformation,

which is a technique for calculating statistics of a random variable which is transformed

in a non-linear manner. The unscented transformation method is preferable to other

methods such as the Monte-Carlo method because it requires far fewer sample points

to provide an accurate propagation. This is largely due to the assumption that we

are working with a Gaussian random variable. For non-Gaussian random variables, the

performance drops to a minimum of second order accuracy.

If we start with the general concept of x̂k = (prediction of xk +Kk [yk − prediction of yk])

and apply the unscented transformation, the unscented Kalman filter is a direct extension.

We now consider the state random variable to be the joining of the original system’s state

and noise. Of particular note is that it is not necessary to explicitly calculate Jacobians

or Hessians in the process of estimating the system state. [12]

Put another way, “The Unscented Kalman filter is founded on the intuition that it

is easier to approximate a probability distribution that it is to approximate an arbitrary

nonlinear function or transformation.” [11]

0.6 Kalman Filter via Newton’s method

In addition to it’s standard derivation, the standard Kalman filter can be derived using

Newton’s root finding method. This derivation uses three main steps: linear estimation,

weighted least squares, and newton method in a recursive least squares approach. [6]

Following the process outlined in Humpherys and West (2009), we start with the

linear system

b = Ax + ε

where b is our set of (imprecise) measurements, x is the set of system states we are

attempting to estimate, ε is the errors in the measurement (mean zero, covariance Q, Q

is positive definite), and A is a known matrix (m × n, rank n). Because we want our

estimator of x (x̂) to be unbiased, we need for E [x̂] = x. Also, since the estimator is

7

linear, we know that x̂ =Kb for some matrix K. With a few substitutions, we see that

E [x̂] = E [Kb] = E [K(Ax + ε)] =KAx +KE [ε] =KAx.

In order for x̂ to be unbiased, then, it is necessary that KA = I. Since A is already

known, we need to find a K which satisfies this. Also of note is that, since we are

looking for the best estimator x̂ of x, we are attempting to minimize E [∥x̂ − x∥2] by our

choice of K. According to Humpherys and West [6, p.3], the K which satisfies both

criteria is K = (ATQ−1A)−1ATQ−1 (recall that A is the known m × n matrix, Q is the

covariance of our measurement error). Then, x̂ = Kb = (ATQ−1A)−1ATQ−1b (recall that

b = Ax plus some error). Swapping b out, we have x̂ = (ATQ−1A)−1ATQ−1 (Ax + ε) =

x + (ATQ−1A)−1ATQ−1ε. The covariance is given by E [(x̂ − x) (x̂ − x)T]

= (ATQ−1A)−1ATQ−1E [εεT]Q−1A (ATQ−1A)−1 = (ATQ−1A)−1.

Newton’s root finding method takes a smooth function f which at some point near

x0 has a root (f (x) = 0 for some x sufficiently close to x0). We require that Df(x) be

non-singular, then we get the recursive process

xn+1 = xn − (Df(xn))−1 f(xn)

and lim
n→∞

xn = x at a quadratic rate.

The point of newton’s method is that if we call an particular objective function, say

J(x), then if we find the root of the derivative (f(x) = ∇J = 0), we will find the local

extreme values. So, using newton’s method, we consider

xn+1 = xn −D2J(xn)−1∇J(xn)

which converges to x̂ (which minimizes the weighted least squares problem) when we

have a sufficiently close initial value x0. It actually turns out that newton’s method is

unnecessarily powerful in terms of it’s rate of convergence, so instead, we will simplify

a few of the computations by instead solving the normal equations (ATWAx̂ = ATWb)

8

directly. If we did use newton’s method, the above expression of xn+1 would converge to

x̂. In any case, we the have

x̂ = x − (D2J)−1 (ATWAx −ATWb) .

Something we have not yet taken into account, though, is that observations of our

system are constantly incoming, as opposed to just looking at a single system state and the

corresponding observations. Again, we want to solve the least squares problem, but now

we introduce a recursive process in order to deal with the steady stream of observation

data. We would like to find the best unbiased linear estimate x̂k of x according to

βk = Akx + εk with βT
k = [b1, b2, . . . , bk], AT

k = [A1,A2, . . . ,Ak], and noise term εk =

[v1, v2, . . . , vk] with each vk having a mean of zero and all uncorrelated and Cov [vj] =

Ri > 0. Also, Ak is full column rank. Then we get the estimate x̂ = max
x

∥βk − Akx∥2Wk

with Wk = Cov [εk]−1 = diag (R−1
1 , . . . ,R

−1
k). As time progresses, the system grows, and

the least squares solution changes. We can, however, use our previous estimate x̂k−1 to

calculate the current estimate x̂k. We can rewrite our estimate element-by-element as

Jk(x) = 1
2

k

∑
i=1

∥bi − Aix∥2R−1i . The sum portion can be split into Jk(x) = Jk−1(x) + 1
2∥bk −

Akx∥2R−1
k

. After diferentiating and simplifying, we see that this gives the recursive formula

x̂k = x̂k−1 − (D2Jk)−1AT
kR

−1
k (Akx̂k−1 − βk). Simplifying the above (since ∇Jk−1(x̂k−1) = 0,

and choosing x = x̂k−1), we have x̂k = x̂k−1 −KkAT
kR

−1
k (Akx̂k−1 − βk) (with Kk = (D2Jk)−1,

covariance of the estimate). But, K−1
k =K−1

k−1 +AT
kR

−1
k Ak, so Kk = (K−1

k−1 +AT
kR

−1
k Ak)

−1 =

Kk−1 −Kk−1AT
k (W −1

k +AkKk−1AT
k)

−1
AkKk−1. THe recursive least squares method, then,

gives us

Kk =Kk−1 −Kk−1A
T
k (Rk +AkKk−1A

T
k)

−1
AkKk−1

x̂k = x̂k−1 −KkA
T
kR

−1
k (Akx̂k−1 − bk)

9

Putting this all together, we have

Kk = [(Qk−1 + Fk−1Kk−1F
T
k−1)

−1 +HT
k R

−1
k Hk]

−1

x̂k = Fk−1x̂k−1 +Gk−1uk−1 −HkH
T
k R

−1
k [Hk (Fk−1x̂k−1 +Gk−1uk−1) − yk]

[6, p.7]

0.7 Implementation and Comparison of Two Kalman

Filter Extensions

Here, we will compare the effectiveness of the Extended Kalman filter and the Unscented

Kalman filter for the same arbitrarily chosen non-linear system (f(X) = x2;x3; 0.05∗x1 ∗

(x2 + x3), h(x) = x1). In particular, we will compare the computational time for each

filter, and be alert to errors introduced by the Extended Kalman filter estimate that are

not present when using the Unscented Kalman filter estimate and vice versa.

In this particular simulation, we will consider a three system state and we will set the

noise as gaussian with a standard deviation of 0.1. From there, we use both the Extended

Kalman filter and the Unscented Kalman filter to estimate the state of the system, and

compare the results. Our expectation is that the Unscented Kalman filter will preform

better due to the improvements made to it over the Extended Kalman filter regarding

the propagation of error during the linearization in the Extended Kalman filter.

Additionally, we will consider the difference in least squared error between the two

methods to observe where each method performed best. Finally, we will observe the

differances in computation time between the Extended Kalman filter and the Unscented

Kalman filter for this given system. We will first consider time from between 1 and 10,

and then between 1 and 100 (the x-axis is time, the y-axis gives the value of the system’s

state).

Because our system observations provided so little information about the system state,

we see that we had a difficult time estimating the second and third system states in figures

10

Figure 1: N=10; Estimates from both Extended and Unscented Kalman filter
0.0057s to compute EKF, 0.0059s to compute UKF

11

Figure 2: N=10; Comparison between Extended and Unscented Kalman filters
Below the line y = 0 corresponds to a worse estimate by the Unscented Kalman filter, above the line y = 0
corresponds to a worse estimate by the Extended Kalman filter
Note that the MATLAB file nonlinear runner.m can be modified slightly to also display a table of the
results displayed here.

12

Figure 3: N=100; Estimates from both Extended and Unscented Kalman filter
0.043s to compute EKF, 0.047s to compute UKF

13

Figure 4: N=100; Comparison between Extended and Unscented Kalman filters
Below the line y = 0 corresponds to a worse estimate by the Unscented Kalman filter, above the line y = 0
corresponds to a worse estimate by the Extended Kalman filter

14

1 and 3. In figures 2 and 4, we can see that although the Extended Kalman filter and the

Unscented Kalman filter performed similarly, the Unscented Kalman filter had a slight

performance lead over the Extended Kalman filter. Finally, notice that, as we expected,

both filters took similar amounts of time to complete their computations. In the end,

however, the Extended Kalman filter clearly has a slight lead in terms of computational

speed.

It was also observed by LaViola [8] (in an experimental setting) that in certain appli-

cations, the Extended Kalman filter and the Unscented Kalman filter perform similarly.

In particular, he observed that any small benefit he may have gained by using the Un-

scented Kalman filter was greatly outweighed by the extra computational time. In the

simulations which generated figures 1, 2, 3, 4, the difference in computational time was

very slight, however, this is likely due to performing the simulations on such a small

number of data points, in an effort to produce visually significant graphics.

0.8 Future Investigations: Several Kalman Filter Mod-

ifications

Several modifications to the standard Kalman filter are mentioned by Humpherys and

West [6]. Future investigations may explore the extent of potential improvements pro-

vided by these modifications.

Smoothed estimates [5, p.808]: Normally, as new system measurements become avail-

able, the standard Kalman filter only updates with the most recent system state estimate.

In this method, we can instead perform smoothing by updating previous states as well.

Whenever we make new observations of our system (say up to time k), we will first update

the estimated states X1, . . . ,XK with the new information. From here, we now use Xk

and the most recent measurement to estimate Xk+1.

Fixed-lag smoothing [5, p.809]: Similar to smoothed estimates, in this technique,

instead of re-estimating all the way back in time to X1, we instead only re-estimate a

fixed amount into the past, up to time l, so we instead use observations up until time k

15

to re-estimate Xk−l through Xk and then we use Xk and the most recent observation to

estimate Xk+1. This saves on the computation of re-estimating ancient estimates of the

system state which aren’t likely to change any more.

Fading memory [5, p.810]: When performing an update to the state space estimate

Xk+1∣k, the standard Kalman filter weights every previous measurement based on their

covariance. In other words, the Kalman filter may consider a measurement from a com-

paratively long time ago to be just as relevant as a measurement which was just taken.

In the case of fading memory, we weight older observations less heavily than newer ob-

servations. Taking the objective function from the Kalman filter derivation, we modify

it slighly into

Jk(zk) =
λk

2
∥x0 − µ0∥2Q−10 + 1

2

k

∑
i=1
λk−i∥yi −Hixi∥2R−1i + 1

2

k

∑
i=1
λk−i∥xi − Fixi−1 −Giui∥2Q−1i

where we call 0 < λ ≤ 1 the forgetting factor, or the factor by which we bias towards

the more recent observations. If λ = 1, then that corresponds to “perfect memory” in

which all measurements are weighted as before. As λ decreases, the method becomes

more “forgetful” as we bias towards more recent measurements.

0.9 Concluding Remarks

In exploring the Kalman filter and several of its variations, we observed the utility and

an application of the standard Kalman filter. We saw how several of the Kalman filter

variants improved upon certain aspects of the Kalman filter, and upon each other. Specif-

ically, we observed an example situation in which the standard Kalman filter works well

in a linear situation, and we saw how the Extended Kalman filter improves upon the stan-

dard Kalman filter by working with non-linear systems through a linearization process.

We then saw how the Unscented Kalman filter improved upon the Extended Kalman

filter due to being able to handle more complicated non-linear systems since it does not

need to linearize the system. Next, we observed a derivation of the standard Kalman

filter using Newtons method. From there, we saw a comparison of the effectiveness of

16

the extended Kalman filter versus the unscented Kalman filter in estimating a non-linear

system. We concluded with proposed investigations into possible improvements of the

standard Kalman filter as suggested by Humpherys and West.

17

Bibliography

[1] Yi Cao. Learning the Extended Kalman Filter, January 2008.

[2] Yi Cao. Learning the Unscented Kalman Filter, January 2008.

[3] Charles Chui and Guanrong Chen. Kalman Filtering: with Real-Time Applications.

Springer, 4 edition, 2009.

[4] M. H. A. Davis and R. B. Vinter. Stochastic Modelling and Control. Chapman and

Hall, 1985.

[5] Jeffery Humpherys, Preston Redd, and Jeremy West. A Fresh Look at the Kalman

Filter. SIAM Review, 54(4):801–823, 2012.

[6] Jeffery Humpherys and Jeremy West. Kalman Filter via Newton’s Method. Control

Systems, IEEE, 30(6):101–106, December 2010.

[7] Lindsay Kleeman. Understanding and Applying Kalman Filtering. July 2007.

[8] Joseph LaViola. A Comparison of Unscented and Extended Kalman Filtering for

Estimating Quaternion Motion. In American Control Conference, 2003. Proceedings

of the 2003. American Control Conference, 2003.

[9] Maria Ribeiro. Kalman and Extended Kalman Filters: Concept, Derivation and

Properties. Pedagogical publications, February 2004.

[10] Gabriel Terejanu. Extended Kalman Filter Tutorial. Technical report, Department

of Computer Science and Engineering, University at Buffalo, Buffalo, New York,

2008.

18

[11] Gabriel Terejanu. Unscented Kalman Filter Tutorial. Technical report, Department

of Computer Science and Engineering, University at Buffalo, Buffalo, New York,

2008.

[12] Eric Wan and Rudolph van der Merwe. The Unscented Kalman Filter for Nonlin-

ear Estimation. In Adaptive Systems for Signal Processing, Communications, and

Control Symposium 2000. AS-SPCC. The IEEE 2000, October 2000.

19

0.10 Non-Linear Kalman Filter Runner

1 % This file runs a simulation of the Extended and Unsecented Kalman ...

filters, both on the same dataset and observations. The ...

implementation of these two filters is provided by Yi Cao (I used ...

this implementation rather than one provided by MATLAB in order ...

to be able to explicityly view the source code.

2 %

3 % Theodore S. Lindsey

4

5 clear

6

7 n=3; %number of state

8 q=0.1; %std of process

9 r=0.1; %std of measurement

10 Q=qˆ2*eye(n); % covariance of process

11 R=rˆ2; % covariance of measurement

12 f=@(x)[x(2);x(3);0.05*x(1)*(x(2)+x(3))]; % nonlinear state ...

equations - Process nonlinear vector function

13 h=@(x)x(1); % measurement equation - ...

Observation nonlinear vector function

14 s=[0;0;0]; % initial state

15 ux=s+q*randn(3,1); %initial state % initial state with noise

16 ex=ux

17

18 uP = eye(n); % initial state covraiance

19 eP = uP

20 N=10; % total dynamic steps

21 uxV = zeros(n,N); %estmate % allocate memory, unscented

22 exV = uxV; % allocate memory, extended

23 sV = zeros(n,N); %actual

24 zV = zeros(1,N); %observations

25

26 eDuration=0; %set timer

27 uDuration=0; %set timer

20

28

29

30 for k=1:N

31 z = h(s) + r*randn; % measurments

32 sV(:,k)= s; % save actual state record

33 zV(k) = z; % save measurment record

34 tic

35 [ex, eP] = ekf(f,ex,eP,h,z,Q,R); % ekf

36 eDuration= eDuration + toc;

37 tic

38 exV(:,k) = ex; % save ekf estimate

39 [ux, uP] = ukf(f,ux,uP,h,z,Q,R); % ukf

40 uDuration= uDuration + toc;

41 uxV(:,k) = ux; % save ukf estimate

42 s = f(s) + q*randn(3,1); % update process

43 end

44

45

46 %calculate least squares

47 iLS = zeros(3,N);

48 eLS = iLS;

49 uLS = iLS;

50 for k=1:N

51 iLS(:,k) = (1/2)*abs(f(sV(:,k)) - zV(k)).ˆ2;

52 eLS(:,k) = (1/2)*abs(f(exV(:,k)) - zV(k)).ˆ2;

53 uLS(:,k) = (1/2)*abs(f(uxV(:,k)) - zV(k)).ˆ2;

54 end

55

56

57 %graph least squares

58 LeastSquares = figure('Position', [100, 100, 900, 900]);

59 for k=1:3

60 subplot(3,1,k)

61 plot(1:N,eLS(k,:)-uLS(k,:),'-')

21

62 title(strcat('(extended least squares) - (unscented least ...

squares), state ',num2str(k)))

63 end

64 print(LeastSquares,'-dpng','-r100','LeastSquares.png')

65

66

67 %graph estimates

68 Estimates = figure('Position', [100, 100, 900, 900]);

69 for k=1:3 % plot results

70 subplot(3,1,k)

71 plot(1:N, sV(k,:), '-', 1:N, zV(:),'.', 1:N, exV(k,:), '--', 1:N, ...

uxV(k,:), '--')

72 %plot(1:N, sV(k,:), '-', 1:N, zV(:),'-')

73 legend('exact','measured','extended','unscented');

74 title(strcat('estimated system parameter, state ',num2str(k)))

75 %legend('exact','measured');

76 end

77 print(Estimates,'-dpng','-r100','Estimates.png')

78

79 disp(strcat('EKF computation time: ',num2str(eDuration),'s'))

80 disp(strcat('UKF computation time: ',num2str(uDuration),'s'))

0.11 Extended Kalman Filter Implementation

[1]

1 function [x,P]=ekf(fstate,x,P,hmeas,z,Q,R)

2 % EKF Extended Kalman Filter for nonlinear dynamic systems

3 % [x, P] = ekf(f,x,P,h,z,Q,R) returns state estimate, x and state ...

covariance, P

4 % for nonlinear dynamic system:

5 % x k+1 = f(x k) + w k

6 % z k = h(x k) + v k

7 % where w ~ N(0,Q) meaning w is gaussian noise with covariance Q

22

8 % v ~ N(0,R) meaning v is gaussian noise with covariance R

9 % Inputs: f: function handle for f(x)

10 % x: "a priori" state estimate

11 % P: "a priori" estimated state covariance

12 % h: fanction handle for h(x)

13 % z: current measurement

14 % Q: process noise covariance

15 % R: measurement noise covariance

16 % Output: x: "a posteriori" state estimate

17 % P: "a posteriori" state covariance

18 % Yi Cao at Cranfield University

19

20 [x1,A]=jaccsd(fstate,x); %nonlinear update and linearization at ...

current state

21 P=A*P*A'+Q; %partial update

22 [z1,H]=jaccsd(hmeas,x1); %nonlinear measurement and linearization

23 P12=P*H'; %cross covariance

24 % K=P12*inv(H*P12+R); %Kalman filter gain

25 % x=x1+K*(z-z1); %state estimate

26 % P=P-K*P12'; %state covariance matrix

27 R=chol(H*P12+R); %Cholesky factorization

28 U=P12/R; %K=U/R'; Faster because of back substitution

29 x=x1+U*(R'\(z-z1)); %Back substitution to get state update

30 P=P-U*U'; %Covariance update, ...

U*U'=P12/R/R'*P12'=K*P12.

31

32 function [z,A]=jaccsd(fun,x)

33 % JACCSD Jacobian through complex step differentiation

34 % [z J] = jaccsd(f,x)

35 % z = f(x)

36 % J = f'(x)

37 %

38 z=fun(x);

39 n=numel(x);

40 m=numel(z);

23

41 A=zeros(m,n);

42 h=n*eps;

43 for k=1:n

44 x1=x;

45 x1(k)=x1(k)+h*i;

46 A(:,k)=imag(fun(x1))/h;

47 end

0.12 Unscented Kalman Filter Implementation

[2]

1 function [x,P]=ukf(fstate,x,P,hmeas,z,Q,R)

2 % UKF Unscented Kalman Filter for nonlinear dynamic systems

3 % [x, P] = ukf(f,x,P,h,z,Q,R) returns state estimate, x and state ...

covariance, P

4 % for nonlinear dynamic system (for simplicity, noises are assumed ...

as additive):

5 % x k+1 = f(x k) + w k

6 % z k = h(x k) + v k

7 % where w ~ N(0,Q) meaning w is gaussian noise with covariance Q

8 % v ~ N(0,R) meaning v is gaussian noise with covariance R

9 % Inputs: f: function handle for f(x)

10 % x: "a priori" state estimate

11 % P: "a priori" estimated state covariance

12 % h: fanction handle for h(x)

13 % z: current measurement

14 % Q: process noise covariance

15 % R: measurement noise covariance

16 % Output: x: "a posteriori" state estimate

17 % P: "a posteriori" state covariance

18 % Yi Cao at Cranfield University

19

20 L=numel(x); %numer of states

24

21 m=numel(z); %numer of measurements

22 alpha=1e-3; %default, tunable

23 ki=0; %default, tunable

24 beta=2; %default, tunable

25 lambda=alphaˆ2*(L+ki)-L; %scaling factor

26 c=L+lambda; %scaling factor

27 Wm=[lambda/c 0.5/c+zeros(1,2*L)]; %weights for means

28 Wc=Wm;

29 Wc(1)=Wc(1)+(1-alphaˆ2+beta); %weights for covariance

30 c=sqrt(c);

31 X=sigmas(x,P,c); %sigma points around x

32 [x1,X1,P1,X2]=ut(fstate,X,Wm,Wc,L,Q); %unscented ...

transformation of process

33 % X1=sigmas(x1,P1,c); %sigma points around x1

34 % X2=X1-x1(:,ones(1,size(X1,2))); %deviation of X1

35 [z1,Z1,P2,Z2]=ut(hmeas,X1,Wm,Wc,m,R); %unscented ...

transformation of measurments

36 P12=X2*diag(Wc)*Z2'; %transformed ...

cross-covariance

37 K=P12*inv(P2);

38 x=x1+K*(z-z1); %state update

39 P=P1-K*P12'; %covariance update

40

41 function [y,Y,P,Y1]=ut(f,X,Wm,Wc,n,R)

42 %Unscented Transformation

43 %Input:

44 % f: nonlinear map

45 % X: sigma points

46 % Wm: weights for mean

47 % Wc: weights for covraiance

48 % n: numer of outputs of f

49 % R: additive covariance

50 %Output:

51 % y: transformed mean

52 % Y: transformed smapling points

25

53 % P: transformed covariance

54 % Y1: transformed deviations

55

56 L=size(X,2);

57 y=zeros(n,1);

58 Y=zeros(n,L);

59 for k=1:L

60 Y(:,k)=f(X(:,k));

61 y=y+Wm(k)*Y(:,k);

62 end

63 Y1=Y-y(:,ones(1,L));

64 P=Y1*diag(Wc)*Y1'+R;

65

66 function X=sigmas(x,P,c)

67 %Sigma points around reference point

68 %Inputs:

69 % x: reference point

70 % P: covariance

71 % c: coefficient

72 %Output:

73 % X: Sigma points

74

75 A = c*chol(P)';

76 Y = x(:,ones(1,numel(x)));

77 X = [x Y+A Y-A];

26

	On the Kalman Filter and Its Variations
	Introduction - Filtering
	Introduction - Kalman Filter
	Standard Kalman Filter
	Extended Kalman filter
	Unscented Kalman Filter
	Kalman Filter via Newton's method
	Implementation and Comparison of Two Kalman Filter Extensions
	Future Investigations: Several Kalman Filter Modifications
	Concluding Remarks

	References
	Appendix
	Non-Linear Kalman Filter Runner
	Extended Kalman Filter Implementation
	Unscented Kalman Filter Implementation

