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Abstract 

The herpes simplex virus type I (HSV-1) is a major human pathogen that infects the 

majority of the world’s population. The life cycle of HSV-1 is controlled by interactions 

with its hosts.  Understanding virus-host interactions will be necessary for developing 

new therapeutic and preventive strategies against HSV-1, especially in immuno-

compromised patients and neonates. An interesting aspect of HSV-1 is how it switches 

from a productive (lytic) replication cycle to a lifelong latent infection in the sensory 

neurons; the molecular events involved in this switch are not clearly understood. 

Consequently, the major goal of this thesis is to examine the role and interactions of 

viral and cellular proteins in determining the outcome of viral infection.  In this thesis, I 

studied two viral regulatory immediate early proteins (IE), namely infected cell protein 0 

(ICP0) and infected cell protein 22 (ICP22). Both proteins are required for efficient viral 

replication in vivo. Specifically, I characterized in cell culture and in mice how ICP0’s 

functions are regulated via phosphorylation, and I distinguished the functions between 

ICP22 versus its N-terminally truncated form, US1.5. In the latter experiments, we also 

identified a novel role for ICP22 in counteracting the type I interferon (IFN) response. 

Furthermore, I characterized the viral mutant, KOS-NA that contains novel mutation/s 

within the UL39 gene, which encodes for the large subunit of ribonucleotide reducatese 

enzyme (ICP6).  These mutations in KOS-NA resulted in ICP6 amino acid substitutions 

that reduced its protein levels, and attenuated viral pathogenesis in vivo, making KOS-

NA a potential therapeutic vector in treating HSV-1 diseases.  Lastly, I discovered a new 

relation between the cellular kinase CDK-5, its activating partner p35, and HSV-1 acute 

infection of neurons. Overall, the data presented in this thesis indicates that multiple 



v 

 

viral encoded factors, phosphorylation, cellular factors, and their interactions with one 

another affect the HSV-1 life cycle.     
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Chapter 1 

Introduction 

1.1 Significance of the research 

HSV-1 is a major ubiquitous human pathogen that infects ~80% of the human 

population. Typical HSV-1 infections result in vesicular eruptions around the mouth, 

which are also known as cold sores. In addition, HSV-1 infects the cornea of the eyes 

resulting in keratitis, which in its recurrent form can lead to corneal opacification and 

blindness (1). The life threatening forms of HSV-1 infection are apparent in neonates (2) 

and immunocompromised individuals (3) and can be manifested as encephalitis and 

pneumonia. Although lethal HSV-1 infections are rare, the prevalence of HSV-1 disease 

causes a significant burden on human health. It is notable that even common forms of 

infections are painful and recurrent. With the advent of acyclovir (4), it has been feasible 

to treat HSV-1 infections, although recent data indicates that resistance to acyclovir is 

growing (5).  Furthermore, the lack of effective vaccines to prevent or therapeutically 

treat recurrent HSV-1 infections emphasizes a critical need to understand HSV-1 

replication and pathogenesis. 

 

1.2. HSV-1  

The herpes simplex virus 1 (HSV-1) is an alphaherpesvirus of the herpesviridae 

family. The virus has a large double-stranded DNA genome, which contains ~80 open 

reading frames (ORFs). The DNA core is surrounded by an icosahedral capsid.  The 

nucleocapsid is embedded in an amorphous proteinaceous layer known as the 
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tegument, which is surrounded by a lipid bilayer envelope. The envelope carries viral 

glycoproteins that are required for viral attachment and penetration in the host cell (1). 

Like other herpesviruses, a hallmark of HSV-1 infection is its ability to switch between 

lytic and latent replication cycles. Lytic replication occurs in the epithelial cells and 

fibroblasts at the primary site of infection and sensory neurons.  The latent form of 

infection occurs in the sensory neurons that innervate at the primary site of infection, 

leading to a lifelong infection. During latent infection, no infectious virus is produced.  

Sites of HSV-1 latency include the trigeminal ganglia (TG), superior cervical ganglion, 

and ciliary ganglion among others (6). Latent infections can occasionally be reactivated 

under stress stimuli. 

 

1.3. HSV-1 lytic infection 

Infection is initiated by fusion of the viral envelope with the cellular plasma 

membrane, a process which is facilitated by viral glycoproteins and a subset of cellular 

receptors. The nucleocapsid is transported to the nuclear pore, and the viral DNA is 

then released into the nucleus where transcription is initiated by the host cell RNA 

polymerase II. Viral gene transcription is expressed in a temporal cascade that follows 

the pattern of immediate-early (IE), followed by early (E), and then late (L) genes. 

Generally, the IE proteins have regulatory and immune evasion functions and help 

transactivate the E and L genes. The expression of IE proteins requires the activity of 

the tegument protein, VP16, which recruits the cellular transcription factors Oct-1 and 

HCF to form a complex on IE promoters to activate their transcription (7, 8). The IE 

proteins include: ICP4, an essential transcription factor to stimulate the expression of E 
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and L genes (9-11); ICP27, an essential viral protein that facilitates transport of viral 

messenger RNAs (12); and ICP47, which facilitates evasion of the immune system 

through down-regulation of MHC class I (13). The remaining two IE proteins, ICP0 and 

ICP22, play important roles in HSV replication, and their functions will be discussed in 

more detail later in this chapter. Following IE gene expression, the E proteins are 

synthesized and play direct or indirect roles in viral DNA replication. Lastly, the L 

proteins are assembly factors, structural components of infectious virions, or facilitate 

viral egress.   

 

1.4. Latent infection and reactivation from latency 

Once the virus reaches the sensory nerve endings innervating the primary site of 

infection, the virion envelope is lost, and the viral nucleocapsid surrounded by the 

tegument spreads retrograde to the neuronal cell bodies (14). Once the nucleocapsid 

reaches the neuronal nucleus, the viral DNA is released into the nucleus, and a 

productive replication cycle can occur following the same steps as in infected epithelial 

cell. As a productive replication cycle is lethal to neurons, it has been hypothesized that 

neuronal and viral factors suppress viral replication, leading to a dormant or latent 

infection. One recent report suggests that some neuronal subtypes might support 

productive infection while others might favor latent infection (15). The latent infection is 

characterized by an overall lack of lytic gene expression, with the exception of the 

latency-associated transcripts (LATs) (16). During latency, the latent viral genome is 

maintained as a chromatinized circular episome that doesn’t integrate into the host’s 

genome (17). It has been proposed that histone modifications and epigenetic regulation 
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are one determinant in the switch between productive and latent infection and control 

reactivation from latency (18). In addition, expression of LATs assists in maintaining 

latency by enhancing the survival of the infected neurons (19-22). Currently, the LATs 

appear to be in involved in the expression of non-coding micro-RNA (miRNA) during 

latency (23).   

In response to stressful conditions like UV irradiation or immunosuppression (24, 

25), the latent viral genome in neurons initiates a productive infection, known as 

reactivation, and the virus spreads anterograde to the primary site of lytic infection. 

Besides LATs, the viral factors VP16 (26, 27) and ICP0 (28) are important for enhancing 

HSV-1 reactivation from latency. 

 

1.5. The ocular mouse model for acute infection and latency 

Mice are one of several animal models that have been used extensively to study 

HSV-1 acute replication, latency, and reactivation in vivo. Although mice are not the 

natural host of HSV-1, they recapitulate many aspects of acute infection, latency, and 

reactivation in humans. In addition, mice have been used in studies to test HSV-1 

drugs.  Moreover, many transgenic mouse strains are readily available, which have 

been used to study parts of the HSV-1 life cycle (reviewed in (29)). As will be described 

in this thesis, we used the mouse ocular model of HSV-1 infection to study acute 

infection, latency, and explant-induced reactivation from latency. In this model system, 

mice are infected ocularly with HSV-1, and samples are either collected early (up to 9 

days post-infection) to examine acute replication, or late (28-30 days post-infection) to 

study latency and reactivation. 
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1.6. ICP0 

ICP0 or infected cell protein 0 is a 775 amino acid (AA) IE protein expressed by 

HSV-1. ICP0’s role in viral replication became apparent when ICP0 deletion mutants 

showed reduced growth in cell culture (30). Later studies showed that ICP0 is required 

for an efficient establishment of latency and efficient reactivation (31, 32). Cell culture 

experiments showed that ICP0 transactivates all categories of viral genes (IE, E, and L) 

(33), dissociates components of the subnuclear structure known as nuclear domain 

(ND) 10 (34-38), and directs the degradation of kinetochore proteins, interrupting the 

cell cycle (39-41). ICP0 was shown to contain a RING-finger, which is a structural motif 

found in many E3 ubiquitin (Ub) ligases.  This observation led to studies that showed 

ICP0 colocalizes with polyubiquitin chains, and this activity is dependent on its RING 

finger (42).  Later studies showed that ICP0 is capable of ubiquitinating different cellular 

targets in vitro and in cell culture; targets include p53 (43) and ubiquitin specific 

protease 7 (USP-7) (44). The RING-finger domain of ICP0 has been shown to be 

important for efficient acute viral replication, highlighting the importance of its E3 

ubiquitin ligase activity in viral replication. In addition, ICP0 assists HSV-1 in 

counteracting other intrinsic and innate host defenses that include the DNA damage 

response (45-49), chromatinization or repression of the viral genome (50-54), and the 

activation and establishment of the interferon response (55-59). These activities of ICP0 

require, to a great extent, its RING-finger domain and components of the ubiquitin-

proteasome pathway. 

 

1.6.1. ICP0 and ND10s 
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The nuclear domain 10 (ND10) is a subnuclear organelle that is formed by many 

proteins, with promyelocytic leukemia protein (PML) being a major organizer of ND10 

assembly and the recruitment of other ND10 proteins.  ND10 modulates several cellular 

biological processes including proliferation, senescence, apoptosis, and DNA damage 

(60-64). ND10 possesses intrinsic antiviral properties that target both DNA viruses and 

RNA viruses (65-67). Several ND10 constituent proteins, including PML, Sp100, hDaxx, 

and ATRX have been shown to limit HSV-1 replication (68-70); however, this effect has 

been shown to be counteracted by ICP0.  Specifically, ICP0’s E3 ubiquitin ligase activity 

promotes the disruption of ND10 by mediating the proteolysis (directly or indirectly) of 

SUMO-conjugated isoforms of PML and Sp100 (37, 38, 71-76) or by dissociating the 

ND10 components, hDaxx and ATRX (77).  This disruption of ND10 ultimately 

stimulates viral transcription. ICP0-mediated disruption of ND10 occurs in the context of 

acute viral replication of different cell lines and in the absence of other viral factors, 

indicating that ICP0 alone is sufficient to disrupt ND10s. 

 

1.6.2. ICP0 is required for efficient lytic infection and reactivation from latency 

Mutants lacking ICP0 are defective in viral replication in cell culture, unless cells 

are infected with high multiplicities of infection (MOI) of viral particles. Interestingly, a 

loss in ICP0 expression promotes the silencing of viral gene expression, leading to a 

quiescent infection, and this phenotype can be reversed by the exogenous expression 

of ICP0 (53, 78). In vivo studies have shown that ICP0 is essential for efficient acute 

replication in the eyes and TG of mice. Even when equivalent latent infections can be 

established with wild-type HSV-1 and ICP0-null mutant viruses, an ICP0-null mutant is 



7 

 

also impaired for reactivation from latency (28). Overall, these cell culture and in vivo 

studies indicate that ICP0 stimulates lytic infection and its absence promotes a dormant 

or latent infection. ICP0’s reversal of HSV-1 genome silencing is associated not only 

with ND10 disruption but also its ability to diminish the deposition or accumulation of 

repressive histone markers on viral DNA (50). Moreover, ICP0 interacts with histone 

deacetylases (HDACs), resulting in their relocalization in cells (79). Lastly, a C-terminal 

domain in ICP0 binds to RE1-silencing transcription factor corepressor (CoREST) 

leading to  disruption of the repressor complex REST/CoREST/ HDAC1/2/LSD1, an 

activity which was shown to inhibit silencing of the viral genome (54, 80).  

 

1.6.3. ICP0 and USP-7 

The ubiquitin specific protease 7 (USP-7), also known as herpes-associated 

ubiquitin specific protease (HAUSP), is a 135-KDa cellular protein that was initially 

found to interact with the C-terminus of ICP0 (81, 82).  USP-7 partially colocalizes with 

ND10, a phenotype which is enhanced in the presence of ICP0 (83).  Interrupting ICP0 

and USP-7 binding has been shown to reduce the transactivation activity of ICP0 and 

diminish viral plaque formation without affecting ND10 disruption (84). Interestingly, this 

interaction has been shown to stabilize ICP0 protein levels early during viral infection, 

(85) but later in the viral life cycle, ICP0 directs the ubiquitination and degradation of 

USP-7 (44) and ICP0 phosphorylation appears to play a role in this process (86). 

Furthermore, ICP0 has been shown to recruit USP-7 to the cytoplasm (87). Cytoplasmic 

USP-7 has been shown to interfere with (toll like receptor) TLR signaling, leading to the 

inhibition of NF-kB signaling (87). 
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1.6.4. ICP0 and phosphorylation 

It has been known for some time that ICP0 is modified by phosphorylation (88); 

however, the exact function phosphorylation plays in regulating ICP0 activities is largely 

unknown. The observation that specific cellular kinase inhibitors impair the 

transactivating activity of ICP0 suggested a potential link between phosphorylation and 

this key activity of ICP0 (89). Three regions of ICP0 phosphorylation were identified by 

tandem mass spectrometric analysis and were named regions I, II, and III (90). To 

examine the importance of these phosphorylated regions for the activities of ICP0, the 

phospho-acceptor sites in each of these regions were mutated to alanine, blocking their 

phosphorylation, to create the mutations Phos 1, 2, and 3 (90).  In transient expression 

assays, these phosphorylation mutations affected several properties of ICP0.  

Specifically, clustered mutation of the four phosphorylation sites in region I (Phos 1) 

impaired the ability of ICP0 to dissociate two ND10-associated proteins, PML and 

Sp100 from ND10, reduced its E3 Ub ligase activity, diminished its transactivation 

activity, and impaired HSV-1 acute replication in cell culture (91). Phos 2 was only 

defective in its ability to dissociate Sp100 from ND10. Phos 3, on the other hand, only 

showed different subcellular localization compared to wild type ICP0 and impaired the 

transactivating activity of ICP0 when expressed at high levels. These cell culture studies 

identified region I as having the greatest impact on ICP0 functions and HSV-1 

replication (91, 92).   

One of my thesis projects was to characterize the role these phosphorylated 

regions of ICP0 play in acute in vivo replication and reactivation from latency (Chapter 

2). This study identified regions I and II of ICP0 as being important for acute viral 
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replication and reactivation from latency. A second part of this study was to map which 

specific sites in region I regulate the activities of ICP0, as Phos 1 was mutated for 4 

phosphorylation sites. To address this question, individual and one double-

phosphorylation knockout from region I were generated and tested in cell culture and 

the HSV mouse ocular model of infection. I determined that the residue at serine 224 

modulate the majority of ICP0 functions in region I (Chapter 3). 

 

1.7. Isolation of the mutant virus, KOS-NA 

 During the course of generating the Phos 3 mutant, we isolated a KOS mutant, 

termed KOS-NA (neuro-attenuated) that was severely impaired for acute replication in 

the eyes and trigeminal ganglia (TG) of mice, significantly reduced in its ability to 

establish latency, and was reduced in reactivation from latency by explantation. Given 

the severe attenuation of KOS-NA in mice, we hypothesized that KOS-NA contained a 

secondary set of mutations in one or more key viral genes that regulate HSV-1 

pathogenesis. We then proposed that these secondary mutations will provide insights 

into HSV-1 pathogenesis and may prove useful in developing a vaccine against HSV-1 

infection.  To understand the genetic basis for KOS-NA’s in vivo phenotypes, we 

sequenced the KOS-NA genome relative to wild type parental viral strain KOS (93). We 

discovered nonsynonymous mutations in both the ICP4 IE gene and Glycoprotein I (gI) 

L gene.  Interestingly, the KOS-NA genome contained two nonsynonmyous mutations 

(AA 393, L to P and AA 950, R to H), in the UL39 gene, which encodes the large 

subunit of ribonucleatide reductase, also known as ICP6. ICP6 is a part of an enzyme 

complex that converts ribonucleotides to deoxyribonucleotides (94, 95).  Although this 
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gene is not essential for viral growth in dividing cell lines, it is important for viral 

replication in quiescent cells such as neurons (96, 97).  Several published studies have 

shown that UL39 mutants are severely impaired for viral replication, establishment of 

latency, and/or reactivation in mouse models of HSV-1 replication (98, 99). Given the 

parallels between the in vivo replication phenotypes of published UL39 mutants and 

KOS-NA, we proposed that the two mutated codons in ICP6 of KOS-NA are responsible 

for its attenuated phenotypes.  To test this possibility, we rescued the UL39 mutated 

gene within the KOS-NA genome with a wild type copy of UL39, and introduced the 

KOS-NA UL39 mutations into the wild type genome.  The acute replication of both 

viruses was examined in eyes and TG of mice. Results from these experiments indicate 

that AA 393 and/or 950 of ICP6 are essential for high levels of acute replication in the 

eyes and TG of mice, which facilitates an efficient latent infection (Chapter 4). 

 

1.8. ICP22 

Of the five IE proteins, infected cell protein 22 (ICP22) is the least studied, and its 

functions during viral replication are not fully understood. The basis for this lack of 

knowledge is partially due to an early report that showed ICP22 is dispensable for HSV-

1 replication in African green monkey kidney (Vero) cells (100). Additional studies 

demonstrated that ICP22 is required for efficient replication in select cell lines, including 

primary human and rodent cells, which are designated as restrictive cells (101, 102).  

ICP22 is encoded by the US1 gene and is a 420 AA protein that is post-translationally 

modified by phosphorylation. These phosphorylation events during viral infection result 

in the detection of multiple ICP22 bands by western blots.  Genetic studies have shown 
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that the phosphorylation of ICP22 is primarily mediated through the viral encoded 

kinase, UL13 (103-105). 

A role for ICP22 in viral replication in vivo became evident when ICP22 mutant 

viruses were shown to be neuro-attenuated following intracerebral inoculation in mice 

and limited for acute ocular and ganglionic replication, which impaired the establishment 

of latency (102, 106).  Diminished acute infection of ICP22 mutants was proposed to be 

attributed to two main factors: reduction in L viral protein expression and alterations in 

extracellular virion composition. In restrictive cells, early events of the viral life cycle 

were shown to be unaffected with ICP22 mutants (102, 107). On the other hand, 

expression of a subset of L viral proteins, including US11, UL38, UL41, and glycoprotein 

C, were markedly reduced (101, 108). Virions of the ICP22 truncation mutant, 22/n199, 

were shown to be markedly different from wild type HSV-1 virions. Differences in virion 

protein composition for the mutant were observed with glycoprotein C and a subset of 

tegument proteins.  It was hypothesized that this difference in the virion composition 

enhances viral clearance or reduces virion stability (106).   

Another function reported for ICP22 is its ability to alter the phosphorylation 

status of the C-terminus of the large subunit of the host RNA polymerase II (107, 109, 

110). Although the significance of this function in viral replication is not clear, it has been 

proposed that the altered modification of RNA polymerase II either enhances HSV-1 

genome transcription or suppresses cellular transcription (111).  

 

1.8.1. ICP22 and VICE domains 
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Recently, ICP22 was shown to be required for the formation of the viral induced-

chaperone enriched (VICE) domains (112). Those domains were initially described to 

form in response to viral infection (113, 114) and contain many cellular chaperone 

proteins that include Hsc70, Hsp70, and Hsp90, polyubiquitinated proteins, components 

of the proteasome, and the viral portal protein UL6.  These proteins colocalize with 

ICP22 in the nucleus adjacent to viral replication compartments (RC) (113). 

Consequently, VICE domains are thought to have a role in nuclear protein quality 

control in viral infection (115). Notably, an ICP22 null mutant and several ICP22 

truncation mutants were not able to induce the formation of VICE domains in several 

cell lines. Furthermore, the expression of ICP22 alone is sufficient to induce the 

formation of VICE domains. 

 

1.8.2. US1.5 

Analyzing the functions of ICP22 has been complicated by the co-expression of 

an in-frame N-terminally truncated form, termed US1.5 (116). The US1.5 protein was 

initially proposed to be the product of a transcript, which was distinct from that of ICP22, 

and its translation was reported to initiate at the methionine (M) codon 147 of the ICP22 

open reading frame (ORF) (116). When the expression of US1.5 was examined in 

another study, a second transcript encoded by the US1 gene was not detected (117).  In 

this same report, the ICP22 ORF was mutated, and it was established that expression 

or translation of US1.5 protein originated from the M codon at position 90 in the ICP22 

ORF and not at M147 as previously reported (117). 
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None of the studies conducted to characterize ICP22 have separated its 

functions from those of US1.5. Although viral mutants have been made to express only 

the US1.5 protein, these were engineered based on the previously reported initiation 

codon (i.e., M147) of US1.5 (118, 119). As a part of my thesis, we wanted to examine if 

the functions of ICP22 could be separated from those of US1.5. To test this possibility, I 

made mutant viruses that either express ICP22 by mutating M90, the US1.5 initiation 

codon into alanine (M90A), or only express US1.5, by introducing stop codons upstream 

of M90 (3Xstop). As described in Chapter 5, I tested these mutant viruses for acute 

replication and establishment of latency in the mouse ocular model and viral replication 

and VICE domain formation in cell culture-based assays. Moreover, I examined the 

inhibitory effect of both proteins on the transactivated gene expression of the HSV-1 IE 

protein, ICP0, and whether they contributed to the plating efficiency of HSV-1 in the 

presence and absence of type I interferon (IFN-β). My data indicate that although both 

ICP22 and US1.5 are able to enhance the maximum expression of the late viral proteins 

vhs and gC and inhibit ICP0-mediated gene expression in cell culture, only ICP22 is 

required for efficient acute viral replication and the establishment of latency in vivo, and 

the formation of VICE domains. Additionally, my data demonstrate a new function for 

ICP22 in counteracting the antiviral effects of IFN-β. 

 

1.9. HSV-1 and CDK-5/p35 

A previous study from our laboratory showed that wild-type HSV-1 acute 

replication, latency and reactivation were impaired in the eyes and trigeminal ganglia 

(TG) of p35 knockout mice, a binding and activating partner of CDK-5 (120). 
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Furthermore, when we tried to identify cellular kinases that could potentially 

phosphorylate ICP0 using multiple kinase prediction programs, CDK-5 was listed as a 

potential kinase that could phosphorylate S224 and S371 in regions I and II of ICP0, 

respectively. These observations led me to study the relationship between HSV-1 acute 

infection in neurons and CDK-5 and p35. 

CDK-5 is a neuronal factor that is highly active in post-mitotic neurons and is 

required for neuronal survival during stress (121, 122).  In contrast to other cyclin-

dependent kinases, CDK-5 is not required for the cell cycle progression and in fact 

represses the re-entry of post-mitotic neurons into the cell cycle (123). CDK-5 regulates 

many neuronal processes, including neuronal differentiation and the formation of 

synapses (reviewed in (124)). A unique feature of CDK-5 is that it does not require 

cyclins for its activation.  Instead, one of its binding partners, p35, was found associated 

with CDK-5 in brain extracts, and another, p39, was identified based on its similarity to 

p35; these binding partners can activate its kinase activity and modulate its subcellular 

localization (125-128). These activators have very limited amino acid similarity with 

cyclins (129), suggesting that the activation of CDK-5 by p35 or p39 is mechanistically 

different from other cell cycle-associated CDKs. So far, it is not clear if p35 and p39 

confer different substrate specificity for CDK-5. p39 has been shown to be capable of 

compensating for some, but not all, of the functions of p35, and p35 can compensate for 

the absence of p39, as p39-/- mice have no apparent neuronal phenotypes that are 

different than wild-type mice (130).  The activity of CDK-5 directly correlates with the 

level of its major activator, p35 (131), which is found predominantly in neurons. This 
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likely explains why CDK-5 is highly active in neurons, although it is constitutively 

expressed in many cell types (125, 132). 

CDK-5 has been shown to play important roles in both neuronal survival and 

death. Inactivation of CDK-5 has been shown to trigger neuronal death (133-136). On 

the other hand, the survival activity of CDK-5 is evident when neurons are stressed, and 

several studies showed that CDK-5 counteracts DNA damage-induced neuronal 

apoptosis (137-141). Interestingly, CDK-5 hyperactivity, which is observed when CDK-5 

couples with p25, an N-terminal truncated form of p35 catalyzed by the protease calpain 

(124, 142), is associated with neuronal death and neurodegenerative diseases 

(reviewed in (124)).    

Chapter 6 examines the effect HSV-1 acute infection of neurons has on p35 and 

CDK-5. I observed that viral infection upregulates p35 protein levels and changes the 

localization of CDK-5 from the nucleus to the cytoplasm. Consequently, I hypothesized 

that p35 upregulation supports viral infection, as it will stabilize and enhance the pro-

survival activities of CDK-5 in response to the stress triggered via HSV-1 infection.  

While HSV-1 infection triggers DNA damage response in non-neuronal cells in culture 

(143-145), a previous study indicated that HSV-1 does not trigger a DNA damage 

response in cultured neurons (144).  My goal was to determine if components of the 

DNA damage response were altered or activated in neurons by HSV-1 during acute 

infection in vivo. HSV-1 positive neurons showed extensive γH2AX staining, a marker of 

the DNA damage response. Interestingly, when I looked at poly ADP-ribose 

polymerase-1 (PARP-1), a downstream DNA damage response marker shown to be 

activated in response to HSV-1 (49), PARP-1 localization changed from nuclear staining 
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in uninfected neurons to cytoplasmic in HSV-1-positive neurons. Consequently, I 

propose a model in which HSV-1 infection activates components of the cellular DNA 

damage response during acute infection of neurons. This activation, in turn, increases 

p35 protein levels and the cytoplasmic localization of CDK-5 stimulates neuronal 

survival or anti-apoptotic signaling (Chapter 6).  
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Chapter 2 

Herpes Simplex Virus Type 1 ICP0 Phosphorylation Site Mutants are Attenuated 

for Viral Replication and Impaired for Explant-Induced Reactivation 

 

This chapter is modified from the published article: J Virol. 2011 

Dec;85(23):12631-7 

Co-authors 

 Thornton W. Thompson, Anna S. Kushnir, Steve D. Haenchen, Adam M. Bayless, 

Joshua G. Hilliard, Malen A. Link, Lisa A. Pitcher, Emma Loveday, Priscilla A. 

Schaffer 

 

2.1 Abstract 

In cell culture experiments, phosphorylation appears to be a critical regulator of 

the herpes simplex virus type 1 (HSV-1) immediate-early (IE) protein, ICP0, which is an 

E3 ubiquitin ligase that transactivates viral gene expression.  Three major regions of 

phosphorylation in ICP0 (amino acids 224-232, 365-371, and 508-518) have been 

identified, and mutant viruses that block phosphorylation sites within each region 

(termed Phos 1, 2, and 3) have been constructed.  Previous studies indicated that 

replication of Phos 1 is significantly reduced compared to wild-type virus in cell culture 

(C. Boutell, et al., J. Virol. 82:10647-56, 2008). To determine the effects these 

phosphorylation site mutations have on the viral life cycle in vivo, mice were ocularly 

infected with wild-type HSV-1, the Phos mutants, or their marker-rescue counterparts. 

Subsequently, viral replication, establishment of latency, and viral explant-induced 
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reactivation of these viruses were examined.  Relative to wild-type virus, Phos 1 eye 

titers were reduced as much as 7- and 18-fold on days 1 and 5 post-infection, 

respectively.  Phos 2 eye titers, on the other hand were reduced by 6-fold on day 1 

post-infection.   Phos 1 and 2 trigeminal ganglia titers were reduced as much as 16- and 

20-fold, respectively, on day 5 post-infection.  Additionally, the reactivation efficiencies 

of Phos 1 and 2 were impaired relative to wild-type HSV-1, although both viruses 

established wild-type levels of latency in vivo.  The acute replication, latency, and 

reactivation phenotypes of Phos 3 were similar to wild-type HSV-1.  We conclude from 

these studies that phosphorylation is likely a key modulator of ICP0’s biological activity 

in a mouse ocular model of HSV-1. 
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2.2 Materials and Methods 

Cell Lines and Viruses: Vero cells (African green monkey kidney cell line) and 

L7 (Vero cells that contain the ICP0 gene) were cultured in Dulbecco’s modified Eagle’s 

medium (DMEM) supplemented with fetal bovine serum (FBS), 100 µg/ml penicillin, 100 

units/ml streptomycin, and 2mM L-Glutamine as previously described (146, 147), except 

5% FBS was used in our experiments.  The wild-type HSV-1 (strain KOS), 7134 (an 

ICP0-null mutant virus), Phos 1, 2, and 3, and their respective marker-rescue viruses 

(Phos 1, 2, and 3 MR) were propagated and titered as previously described (91, 147, 

148).  

  

Ocular Infection of Mice: CD-1 out-bred female mice (6-7 weeks old) were 

obtained from Charles Rivers Laboratories (Shrewsbury, MA) and cared for according to 

Guide for the Care and Use of Laboratory Animals (149), and the protocol for their use 

was approved by University of Kansas Institutional Animal Care and Use Committee.  

Mice were infected as previously described (150).  Briefly, mice were anesthetized by 

intraperitoneal injection with ketamine (100 mg/kg of body weight) and xylazine (6.6 

mg/kg of body weight).  Corneas were scarified with a 26-gauge needle and infected 

with one of 8 viruses (KOS, 7134, Phos 1, Phos 2, Phos 3, Phos 1 MR, Phos 2 MR, or 

Phos 3 MR) at 2 x 105 PFU of virus per eye in 3 µl medium.   

 

Determination of Viral Titers in Eyes and Trigeminal Ganglia (TG):  On 

indicated days 0-9 post-infection, eye swabs and TG samples were collected.  For eye 

swabs, a sterile cotton-tipped swab was moistened with Vero cell medium. Tear film 
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was collected by swabbing each eye, placing the swab in 500 µl growth medium. For 

TG samples, the mice were euthanized by CO2 asphyxiation, and the TG were removed 

and placed in microfuge tubes with 500 µl 1% FBS growth medium and 100 µl of 1 mm 

glass beads. These samples were homogenized using a Mini-Beadbeater 8 (BioSpec, 

Bartlesville, OK).  In all cases, the wild-type and MR viruses were titered on Vero cells, 

and mutant viruses were titered on L7 cells.  Statistical analyses for acute viral titers 

were performed using the Student’s t -test.   

 

Latent Viral Genome Loads in TG: At 30 days post-infection, latently infected 

TG were collected, and DNA was isolated from each TG as reported by Halford, et al. 

(151).  PCR primers for the HSV-1 UL50 gene (152) and the mouse adipsin gene (153) 

were used to amplify viral DNA sequences and as a loading control for cellular DNA, 

respectively.  Real time PCR samples were performed in a total volume of 25 µl 

containing FastStart SYBR Green Master (Rox) (Roche, Indianapolis, IN) and primers 

[300 nM] in an ABI Prism 7500 real-time PCR system (Applied Biosystems, Foster City, 

CA).  UL50 PCR samples contained 125 ng of DNA per reaction, adipsin PCR samples 

contained 10 ng of DNA per reaction, and all samples were analyzed in duplicate or 

triplicate.  Standard curves for each PCR condition were carried out as described (153) 

to quantify the relative amount of viral DNA present in each sample relative to adipsin, 

using the 2(ΔΔCt) method (154).  One-way ANOVA was used to determine statistically 

significant differences in latent viral DNA loads.   
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Viral Explant-Induced Reactivation Studies:  Thirty days post-infection, 

latently infected mice were sacrificed, each trigeminal ganglion was collected and cut 

into 8 approximately equal pieces, and all 8 pieces were cultured in a well in 24-well 

plates (155), with each well containing Vero cells in 1.5 ml of Vero cell medium.  The 

cultures were sampled daily (150 µl per sample) up to 16 days for the presence of 

infectious virus by cytopathic effect on Vero cell monolayers (for KOS  and Phos 1, 2, 

and 3 MR) or L7 cell monolayers (for 7134 and Phos 1, 2, and 3).  Vero cell medium 

(300 µl/well) was added to each explant culture every other day.  After taking samples 

on day 10 post-explantation, cultures were heat-shocked at 43º C for 3 h to provide an 

added stimulus for reactivation.  Statistically significant differences for viral reactivation 

were determined using the Fisher’s Exact Test. The mortality of mice ocularly infected 

with all viruses ranged from 0-19%.  

 

2.3 Results 

Mutations in Phos 1 and 2 impair viral replication in the eyes.  We have 

previously shown that cluster mutations in one of three phosphorylated regions of ICP0 

(Fig. 2.1) altered several properties of the protein and at least one ICP0 phosphorylation 

mutant (Phos 1) was impaired for viral replication in cell culture (90, 91).  To determine 

whether the relative replication efficiencies of the Phos mutant viruses were altered in 

vivo, we used the mouse ocular model of HSV latency and reactivation.  Initially, to 

examine acute replication at the periphery, CD-1 mice were infected with 2 x 105 PFU of 

virus per eye, and eye swabs were taken up to 9 days post-infection.  Viral titers were 

determined by standard plaque assay.  Viral replication for wild type HSV-1 (KOS) was 



22 

 

biphasic in the eye, peaking on days 1 and 5 post-infection, which has been observed in 

other studies (156, 157); this increase in ocular replication on day 5 is likely attributed to 

viral spread from the TG back to the eye (158).  As shown in Fig. 2.2A, the replication of 

Phos 1 was reduced relative to KOS, on days 1 and 5 post-infection, with a 7-fold 

reduction (P=0.047) on day 1 and an 18-fold reduction (P=0.01) on day 5 (Fig. 2.2A).  

Interestingly, Phos 2 replication was only diminished 6-fold (P=0.039) on day 1 post-

infection. In contrast to the first two mutants, the replication of Phos 3 was comparable 

to KOS on all days tested (Fig. 2.2A).  In the case of Phos 1 and 2, their replication was 

not as reduced as that of the ICP0 null mutant, 7134, which reached a 64-fold decrease 

on day 5 post-infection.  As expected, the marker-rescue (MR) viruses (Phos 1 MR, 

Phos 2 MR, and Phos 3 MR) replicated at levels similar to KOS (Fig. 2.2B).  

Collectively, these data indicate that the mutations in Phos 1 and 2 impair viral 

replication in the eyes. 

 

Phos 1 and 2 are diminished for acute replication in the trigeminal ganglia 

(TG).  To determine if the Phos mutations affected productive infection in the sensory 

neurons, viral replication of the Phos mutant viruses was monitored in the TG of ocularly 

infected mice.  For TG titers on days 3 and 5 post-infection, Phos 1 replication was 

diminished 7-fold (P=0.01) and 16-fold (P=0.00009), respectively, compared to KOS 

(Fig. 2.3A).  In the case of Phos 2, viral titers were reduced 18-fold day 3 post-infection 

(P=0.04) and 20-fold day 5 post-infection. (P=0.0002) (Fig. 2.3A).  Decreases in the TG 

viral titers of Phos 1 and Phos 2, however, did not approach those of 7134, which were 

reduced as much as ~2000-fold days 3-7 post-infection.  The acute replication of Phos 



23 

 

3, however, showed no significant difference when compared with the wild-type virus 

(Fig. 2.3A).    Titers of the Phos MR viruses were comparable to KOS (Fig. 2.3B).  Our 

results show that the Phos 1 and 2 mutations impair acute viral replication in the TG, 

whereas the Phos 3 mutation does not influence the viral growth in the TG. 

 

The Phos mutants are not impaired in establishing a latent infection. To 

quantify the amount of viral DNA present in latently infected neurons, TG were collected 

30 days post-infection and assayed for the presence of HSV-1 DNA by real time PCR.  

As shown in Fig. 2.4, the relative amounts of latent viral DNA present in TG were 

comparable to KOS for all of the Phos mutants.  7134 was the only virus that showed a 

significant reduction (11-fold, P<0.05) in viral DNA levels relative to KOS, and this 

reduction corresponded with previously published studies (28, 151).  As expected, there 

were no appreciable differences in the latent viral genome loads among Phos 1 MR, 

Phos 2 MR, Phos 3 MR, and KOS.  

 

          Phos 1 and 2 show reduced efficiencies of explant-induced reactivation 

from latency. The efficiencies and kinetics of explant-induced reactivation from latency 

were established for all viral groups by collecting latently infected TG 30 days post-

infection and culturing them ex vivo.  Samples were examined daily for cytopathic effect, 

which indicates reactivation of virus from latent TG, and the total percentage of 

reactivating samples per virus was determined.  In our initial set of studies, we 

examined the rates of reactivation for KOS, 7134, and the Phos mutants.  KOS began 

to reactivate on day 3 post-explant (p.e.) at 66% and reached 100% reactivation by day 
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5 p.e. (Fig. 2.5A).  Compared with KOS, Phos 1 and 2 reactivated at reduced rates of 

33% (P=0.0003) and 50% (P=0.0009) respectively, on day 5 p.e. (Fig. 2.5A).  Phos 3 

reactivated efficiently achieving 85% (P=0.15) reactivation efficiency on day 5 p.e., 

which was comparable to KOS (Fig. 2.5A).  7134 reactivated on day 10 p.e. and after 

heat shock reached its highest levels (58.8%) on day 16 p.e. (Fig. 2.5A).  Notably, the 

reactivation phenotypes of Phos 1 and 2 were intermediate to those of KOS and 7134.  

In a second set of studies, we examined the reactivation efficiencies of the Phos 

mutants relative to their MR viruses.  The MR viruses behaved as expected, rapidly 

reactivating from days 2-5 p.e., eventually reaching efficiencies of 87-92% by day 5 p.e. 

(Fig. 2.5B).  In contrast, Phos 1 reached a peak efficiency of 48% by day 11 p.e. 

(P=0.0002) and Phos 2 peaked at 68% by day 11 p.e. (P=0.01) (fig. 2.5B). Phos 3 

reactivation rate resembled its MR virus with a rate of 85% on day 5 p.e., and reached 

100% at the end of the study (Fig. 2.5B).  These explant-induced reactivation studies 

show that the frequencies and kinetics of reactivation are altered for two of the Phos 

mutants, with Phos 1 showing the greatest deficiency followed by Phos 2. 

 

2.4 Discussion 

In this study, we have shown that two ICP0 phosphorylation site mutants are 

impaired for acute replication and explant-induced reactivation using the mouse ocular 

model of HSV infection.  Specifically, Phos 1 and Phos 2 were impaired for acute ocular 

and neuronal replication and explant- induced reactivation from latency. Interestingly, all 

Phos mutants established latency at wild type levels, even though the levels of Phos 1 

and 2 acute replication in the TG were intermediate to wild type HSV-1 and the ICP0 
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null mutant, 7134.  Given that the degree of acute viral replication in the TG correlates 

with the establishment of latency (159, 160), the decreases in Phos 1 and 2 acute 

neuronal replication were, nonetheless, sufficient to allow these viruses to establish 

efficient latent infections.  The life cycle of Phos 3 in mice mirrored wild type HSV-1 in 

our experiments, indicating that phosphorylation of residues in region III of ICP0 (Fig. 

2.1A) is not required for productive infection and explant-induced reactivation in mice.  

Of the Phos mutants examined, Phos 1 was the only mutant to show replication 

deficiencies in cell culture (90, 91) and in vivo, as demonstrated in this report.  Notably, 

Phos 2 had no obvious viral growth defects in cell culture (90, 91); however, decreased 

levels of viral replication and explant-induced reactivation observed with Phos 2 only 

became apparent when tested in the mouse ocular model, highlighting the importance 

of characterizing our mutants in vivo.  While we tested only one viral dose in this study, 

it is possible that the replication, latency, and/or reactivation phenotypes of Phos 1, 2, 

and 3 may be greater or become evident when infecting mice at lower input doses (<2 x 

105 PFU/eye).  Overall, our results suggest that phosphorylation plays an important role 

in the biology of ICP0 to enhance HSV-1 acute replication in vivo and reactivation ex 

vivo.  Studies are being conducted to identify the mechanisms responsible for the in 

vivo phenotypes of Phos 1 and Phos 2. 

           For Phos 1, its mutation lies in the proline-rich transactivation domain and is 

adjacent to the RING-finger domain of ICP0 (Fig. 2.1).  We have previously shown that 

Phos 1 is impaired for ICP0’s E3 ubiquitin ligase activity, dispersal of ND10-associated 

proteins, and transactivator function, in the absence of other viral factors, and has 

enhanced protein stability during viral infection (91).  Thus, defects in Phos 1 auto-
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ubiquitination and its ubiquitination of other cellular target proteins are likely contributors 

to its reduced levels of acute replication and reactivation.  The delay and reduced 

efficiency of explant-induced reactivation observed with Phos 1 could also be linked to 

alterations in viral chromatinization and apoptosis.  ICP0 is known to enhance viral gene 

expression during reactivation, which is associated with a decrease in the 

chromatinization of the viral genome (51, 53). Indeed, unlike wild-type strains of HSV-1, 

a RING-finger mutant of ICP0, which is impaired for ICP0’s E3 ubiquitin ligase activity, 

was unable to induce viral gene expression in quiescently-infected cultures (78).  

Because Phos 1 is defective or diminished for ubiquitin conjugation, Phos 1 may not be 

as proficient as wild-type ICP0 in altering the structure of viral chromatin to promote viral 

transcription and replication.  Lastly, ICP0 has been shown to ubiquitinate the tumor 

suppressor protein, p53 and limit apoptosis in virally-infected cells upon DNA damage 

(43).  Thus, Phos 1 may not efficiently mediate the degradation of p53 or other anti-

apoptotic targets during reactivation, potentially increasing apoptotic signaling, thereby 

reducing the levels and kinetics of reactivation. Clearly, the impairment of these 

activities does not impede Phos 1’s ability to establish an efficient latent infection, which 

is similar to that of KOS. 

The Phos 2 mutation, which is also located in a proline-rich transactivation 

domain of ICP0 (Fig. 2.1), has a minor defect in ocular shedding and is significantly 

defective in neuronal replication and explant-induced reactivation from latency.  These 

results indicate that phosphorylated residues in region II of ICP0 are important for 

efficient viral replication, especially in sensory neurons.  One potential explanation for 

Phos 2’s attenuation in vivo is its ability to differentially affect the dissociation of cellular 
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proteins from ND10. The Phos 2 mutant form of ICP0 is unable to dissociate PML from 

ND10 but is able to dissociate Sp100 from ND10 in a cell type dependent manner (91).  

Thus, the inability of Phos 2 to alter the subcellular localization of PML, which is a part 

of the host’s antiviral response, could diminish its viral replication.  Related to its ND10-

disrupting activity, ICP0 has been described to contain a SUMO interacting motif (SIM) 

in region II (161).  A SIM facilitate interactions with SUMO isoforms or SUMO-

conjugated proteins (reviewed in (162, 163)).  A recent publication showed that 

phosphorylation of SIM domains in at least three cellular proteins, which includes PML, 

significantly enhances their interaction with SUMO isoforms (164).   Thus, in the case of 

Phos 2, blocking phosphorylation in region II may impede this putative SUMO-binding 

activity, affecting its interaction with SUMO-conjugated proteins (such as PML) or 

specific SUMO isoforms. Indeed, in a preliminary experiment, when we incubated 

bacterially expressed GST-tagged SUMO-1 or SUMO-2 with Phos 2 infected Hep-2 

cells, we noticed a significant reduction in the interaction between SUMO-2 and Phos 2 

compared to the wild type interaction (Figure 2.6). Lastly, the Phos 2 mutation lies within 

a region that contains Src homology 3 (SH3) binding motifs, which allow for interaction 

with a subset of Src kinase family members and other SH3 containing proteins (165, 

166).  These kinases and factors play important roles in cell signaling.  It has been 

suggested that the interaction between these factors and ICP0 perturbs normal cell 

signaling.  Thus, Phos 2 might interrupt these interactions in neurons, impairing acute 

replication and explant-induced reactivation.    

Of the three Phos mutants, only mutations in Phos 3 did not influence the 

replication of HSV-1 in vivo, similar to our previously published results in cell culture (90, 
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91).   While mutations in Phos 3 appear to affect its subcellular localization and 

transactivating activity when expressed in transient transfection assays (90), our results 

indicate that the phenotypes observed with Phos 3 in cell-based assays do not impact 

acute infection and latency in vivo, and explant-induced reactivation.  How 

phosphorylation of region III in ICP0 contributes to HSV replication remains to be 

determined.  

It has been demonstrated that phosphorylation state of ICP0 is altered during the 

course of the viral replication cycle (89, 167-170), suggesting that differential 

phosphorylation of ICP0 might activate or inhibit one or more specific functions of this 

key viral regulatory protein.   Consequently, the identity of specific phosphorylation sites 

in regions I and II of ICP0, the potential kinases that phosphorylate these sites, and their 

temporal regulation and roles in ICP0’s functions will likely elucidate new mechanisms 

in the switch between the lytic and latent infections of HSV-1.   

 

Contribution to this work:  

I constructed isolates for Phos 3 virus and Phos 3MR virus, and I reproduced all 

the in vivo data including acute replication, latency (RT PCR assays were done by 

Adam Payless), and reactivation (originally done by the Schaffer lab) assays. I did the 

cell culture experiment shown in Figure 2.6. I analyzed all the new data and performed 

all statistical analyses. 
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2.5 Figures and Figure legends 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Location of ICP0 functional domains, phosphorylation sites, and 

phosphorylation site mutants. A.  The 775 amino acids of ICP0 and the location of its 

major functional domains.  The regions of ICP0 phosphorylation are indicated by bars 

below its structure.  B. Location of the mutated phosphorylation sites for each Phos 

mutant.  The serines (S) or threonines (T) identified within regions I, II, and III 

substitution into alanines (A) in Phos 1, Phos 2, and Phos 3 are underlined.  Phos 1 is 

mutated at S224, T226, T231, and T232. Phos 2 is mutated at S365, S367, and S371. 
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Phos 3 is mutated at S508, S514, S517, and T518.  This figure was modified from 

Davido, et al. (90) and Boutell, et al. (91). 
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Figure 2.2. Viral titers of eye swabs taken at days 1, 3, 5, 7, and 9 post-infection.  

Mice were infected with 2 x 105 PFU per eye, and tear film was collected from each eye 

on the aforementioned days. The amount of infectious virus collected in each sample 

was determined by plaque assay. Results shown are logarithmic means (n=10 eyes per 

group), with the error bars indicating the standard error of the mean (SEM). The 

horizontal dotted lines represent the lower limit of detection. The experiments were 

performed simultaneously for all viral groups, but the results are separated for ease of 

interpretation. (A) KOS, 7134, Phos 1, Phos 2, and Phos 3 titers. (B) KOS and Phos 1 

MR, Phos 2 MR, and Phos 3 MR titers. 
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Figure 2.3. Viral titers of TG collected on days 1, 3, 5, 7, and 9 post-infection.  

Mice were infected with 2 x 105 PFU per eye, and TG were collected on the indicated 

days. TG were then homogenized and the amount of infectious virus present was 

determined by plaque assay. Results shown are logarithmic means (n=10 TG per 

group), with the error bars indicating the SEM. The horizontal dotted lines represent the 

lower limit of detection. The experiments were performed simultaneously for all groups, 

but the results are separated for ease of interpretation. (A) KOS, 7134, Phos 1, Phos 2, 

and Phos 3 titers. (B) KOS, Phos 1 MR, Phos 2 MR, and Phos 3 MR titers. 
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Figure 2.4.  Viral genome loads in latent TG. Mice were infected with 2 x 105 

PFU per eye, and TG were collected 30 days post-infection, with the exception of one 

set of KOS samples taken 21 days post-infection.  DNA was extracted from latent TG, 

and the amount of HSV-1 DNA present was determined by real time PCR (n=4-10 TG 

per group).  The graph shown is the relative fold reduction in viral DNA levels for each 

virus compared to KOS by the 2(Ct) method for the basis of comparison, and the viral 

DNA level for KOS was given the value of 1.  Mock-infected samples were below the 

limit of detection (data not shown). 
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Figure 2.5. Virus explant-induced reactivation from latent TG.  Mice were 

infected with 2 x 105 PFU per eye.  On day 30 post-infection, TG were collected and 

explanted onto Vero cells. The time required for each virus to reactivate from the latent 

TG was determined by assaying the culture medium daily for the presence of infectious 

virus. Each time point represents the cumulative percentage of samples that reactivated 

(n=19-20 TG per group).  Two groups of experiments are shown. (A) KOS, 7134, and 

phosphorylation site mutants. (B) Phosphorylation site mutants and MR viruses.  The 

arrows at the top of both graphs indicate that after day 10, samples were heat shocked 

at 43ºC for 3h. 

 

 



35 

 

 

 

 

 

 

 

 

Figure 2.6. Phos 2 interaction with Sumo-1 and Sumo-2. Hep-2 cells were 

infected at MOI of 5 with KOS or Phos 2 for 6 hours. Extracts were incubated 

with 1 µg bacterially expressed, GST-tagged, Sumo-1 or Sumo-2 and 

Glutathione magnetic beads overnight. ICP0 levels pulled down with each 

sample were determined by western blot.   
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Chapter 3 

N-terminal phosphorylation sites of herpes simplex virus 1 ICP0 differentially 

regulate its activities and enhance viral replication. 

 

This chapter is modified from the published article: J Virol. 2013 Feb;87(4):2109-

19. 

Co-author 

Thornton W. Thompson 

 

3.1 Abstract 

The herpes simplex virus type 1 (HSV-1) infected cell protein 0 (ICP0) is an 

immediate early phospho-protein that transactivates viral gene expression.  Evidence 

suggests that phosphorylation regulates the functions of ICP0 and three regions 

(termed I, II, and III) in the protein are known to be phosphorylated.  Mutation of the 

putative phosphorylation sites within region I, termed Phos 1, which lies in the N-

terminal portion of ICP0, impairs the E3 Ub ligase and ND10-disrupting activities of 

ICP0 in cell culture and diminishes viral replication.  To identify the specific 

phosphorylation site(s) or residues responsible for the phenotypes observed with Phos 

1, Specifically, serine 224 and threonine 226, which have been shown to be 

phosphorylated in cell culture by tandem mass spectrometric analyses (M.C. Smith, 

W.S. Lane, and D.J. Davido, unpublished data; M.S. Chaurushiya, A. Aslanian, and 

M.D. Weitzman, unpublished data), as well as the potentially phosphorylated threonines 

231 and 232. individual potentially phosphorylated residues within region I were 

http://www.ncbi.nlm.nih.gov/pubmed/23221554
http://www.ncbi.nlm.nih.gov/pubmed/23221554


37 

 

mutated to alanine (S224A, T226A, T231A, and T232A), as well as one double mutant 

(S224A/T226A).  Tissue culture studies demonstrated that the S224A, S224A/T226A, 

T231A, and T232A mutations were unable to dissociate the cellular protein, PML, from 

ND10s, whereas the S224A/T226A mutation was defective in its ability to dissociate the 

cellular protein, Sp100, from ND10s.  Additionally, S224A and S224A/T226A mutations 

were impaired for ICP0’s transactivation activity. The S224A and S224A/T226A mutant 

forms were more stable than wild type ICP0, suggesting that their ability to auto-

ubiquitinate was limited.  Moreover, one ICP0 ubiquitination target, USP7, was also 

more stable after infection with these two mutants.   Lastly, the S224A and 

S224A/T226A mutant viruses were reduced for viral replication in cell culture and in 

vivo.  Our data indicate that of the four serines and threonines identified in region I, 

serine 224 has the greatest impact on ICP0 functions and viral replication. Interestingly, 

a combined mutation of this site with the threonine 226 site further reduced the 

transactivation activity of ICP0 and impaired its ability to dissociate Sp100 from ND10.  

Our results strongly suggest a model in which specific amino acids in region I can 

differentially regulate ICP0 activities that are subsequently required for efficient viral 

replication. 
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3.2 Materials and Methods 

Cells and viruses. Vero, Hep-2, and HeLa cells were obtained from the 

American Type Culture Collection  (ATCC) and grown in Dulbecco’s modified Eagle’s 

medium (DMEM) supplemented with 5% fetal bovine serum (FBS), 2 mM L-glutamine, 

100 µg/ml penicillin, and 100 U/ml streptomycin as previously described (171). L7 cells, 

a Vero cell line stably transfected with HSV-1 ICP0 gene, were grown in the same 

medium as Vero cells and used to titer all the ICP0 mutant viruses, including the ICP0 

null mutant, 7134 (32). The wild type strain KOS (passage 11) and marker rescue (MR) 

viruses were titered on Vero cells.  

 

Construction of region I phosphorylation mutations.  The plasmid, pAlter-1 + 

ICP0, was used to make all region I mutations using the pAlter Site-directed 

Mutagenesis Kit according to the manufacturer’s protocol (Promega). Primers (IDT) 

used for the mutagenesis are: S224A (5’-GGGCCCTGTCGCCCAC-3’), T226A (5’-

GTCGCCCACCCACCC-3’), S224A/T226A (5’-GGGCCCTGTCGCCCACCCACCC-3’), 

T231A (5’-CTGAGCCGGCCACGGA-3’), T232A (5’-CTGAGCCCACCGCGGA-3’), 

where the underlined text is the mutated codon or codons. Each primer was constructed 

such that a restriction enzyme site was created or eliminated. Mutations were identified 

by restriction enzyme digest analyses and were confirmed by DNA sequencing. The 

double mutant was made as these sites are phosphorylated in HSV-1 ICP0 and are 

conserved between HSV-1 and HSV-2 (M.C. Smith and D.J. Davido, unpublished data).  
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Generation of ICP0 phosphorylation mutant viruses. Region I mutant viruses 

were created by marker transfer. Briefly, Vero cells were plated on 60 mm dishes at 

4x105 cells per plate and 24 h later, cells were co-transfected with 1 µg of 7134 viral 

DNA and 2.5 µg of pAlter-1 expressing mutant forms of ICP0 digested with EcoR1 and 

HindIII. Transfections were done using Fugene 6 or Fugene HD (Roche) at a ratio of 3:1 

(µl transfection reagent : µg DNA) according to the manufacturer’s recommendations. 

Mutants were identified by blue/white selection. White plaques were picked and purified 

in at least 3 rounds in the presence of X-gal. Insertion of region I mutations were initially 

identified by PCR and restriction enzyme digestions (Figure 3.3) and confirmed by 

restriction enzyme digestion and Southern blot analyses. Marker rescue viruses, were 

generated by co-transfecting the mutant viral genomic DNA with pAlter-1+ ICP0 plasmid 

digested with EcoRI and HindIII. Rescuants were identified by PCR amplification of 

region I and restriction enzyme and/or Southern blot analyses. All the marker rescue 

viruses were plaque purified at least 3 times. 

 

Immunofluorescence studies. i) ND10 and ICP0 staining. Hep-2 cells were 

plated on glass coverslips in 12-well plates for 24 h (5x104 per well). Cells were then 

transfected with 1 µg of plasmid DNA with Fugene 6 or Fugene HD using a 3:1 dilution 

ratio as described above. Sixteen to eighteen h post-transfection, cells were fixed with 

5% formaldehyde and 2% sucrose in phosphate buffered saline (PBS) for 5 min, 

washed with PBS, and permeabilized in 0.5% NP-40 and 10% sucrose in PBS for 15 

min at 4ºC. Cells were washed and blocked with PBS-FB (1% fetal bovine serum + 1% 

bovine serum albumin + 0.05% sodium azide) for 1 h at 37ºC. The primary antibodies 
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used were: ICP0 mouse monoclonal (11060 sc-53070, Santa Cruz Biotechnology) 

diluted 1:500 and PML rabbit polyclonal (A301-167A, Bethyl Laboratories) diluted 1:100 

or Sp100 rabbit polyclonal (AB1380, Chemicon International) diluted1:100. Cells were 

incubated in primary antibodies for 30 min at 37ºC then washed at least 3 times. Each 

secondary antibody was added for 30 min at 37ºC. The secondary antibodies used 

were: donkey anti-rabbit dy594 (Jackson Immunoresearch, cat. no. 711-515-152) 

diluted 1:1000 and donkey anti-mouse dy488 (Jackson Immunoresearch, cat. no 715-

295-151) diluted 1:1000. Cells were then washed 3 times with PBS, mounted with 

Prolonged Antifade Kit (Invitrogen) and examined with immunofluorescence microscopy 

(Nikon Eclipse TE-2000-U4). 

 ii) Subcellular localization of ICP0. HeLa and Hep-2 cells were infected at an 

MOI of 4 with KOS, 7134, Phos1, or each region I phosphorylation mutant for 4 and 8 h 

and fixed, permeabilized, and stained for ICP0 as described above.  

iii) PIAS-1 localization. Hep-2 cells were plated (5x104 per well) on glass 

coverslips in a  24-well plate for 24 h. The cells were then transfected with 0.5 µg of 

plasmid DNA using Fugene HD at a 3:1 diluting ratio. Sixteen h post-transfection, 

samples were fixed with 4% formaldehyde in PBS for 15 min and blocked for 1 h in 5% 

normal goat serum and 0.2% Triton X-100 diluted in PBS. The ICP0 mouse monoclonal 

(11060, sc-53070, Santa Cruz Biotechnology) was diluted 1:500 and the PIAS-1 primary 

rabbit polyclonal antibody, kindly provided by Dr. Yoshi Azuma, was diluted 1:200 and 

the staining proceeded as described in the ND10 and ICP0 staining section. 
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Luciferase assays. Vero, Hep-2, or HeLa cells were plated at 5x104  cells per 

well in 24 well-plates for 24 h. Cells were co-transfected with 50 ng of the reporter 

plasmid (VP16 promoter- luciferase construct) (172) alone or with 100 ng of pAlter-1 

(empty plasmid), pAlter-1+ICP0, or pAlter-1 expressing each of region I site mutation 

and salmon sperm DNA was added for a total of 1 µg per well. Transfections were 

performed according to the manufacturer’s protocol using Fugene HD or X-tremeGENE 

9 at a ratio of 3:1. Cells were transfected for 48 h, wells were washed with PBS, and 

each well was then harvested in 100 µL of 1X passive lysis buffer (PLB; cat. no E1941, 

Promega) by rocking at room temperature for 15 min. Samples were harvested in a 

microfuge tube, vortexed for 30 sec, and briefly centrifuged at room temperature. 

Twenty micro liters of each sample was used for each assay. Luciferase assays were 

conducted using the Promega Luciferase Assay System 1000 (cat. no E4550): 100 µL 

of luciferase assay reagent was added per sample and a 2-sec delay before a10-sec 

read (Biotec Synergy, HT multicode microplate reader). Light units are displayed as 

percentages normalized to the wild type value and statistical analyses were performed 

using the Mann-Whitney U test. 

 

Western blot and immunoprecipitation analyses.  i) ICP0 stability: 1x105  

HeLa or Hep-2 cells were plated per well of a 12-well plate. Twenty four hours post-

plating, cells were infected at an MOI of 2 for each virus in triplicate wells. Samples were 

harvested at 4, 6, and 8 h post-infection in 50 µL 1X Laemmeli buffer (100ºC) 

supplemented with 1X protease inhibitors (Leupeptin 1µg/mL, Aprotinin 1µg/mL, PMSF 

1mM) and 1X phosphatase inhibitor cocktail (Sigma, cat. no. P2850) with the 6 and 8 h 
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samples treated with 100 µg/ml of cycloheximide (CHX) at the 4 h time point. Samples 

were heated at 95ºC for 5 min, vortexed, and centrifuged. Ten µl/sample was loaded on 

a 6% SDS PAGE gel, and ran at 120V for 1 h. Proteins were transferred to 

nitrocellulose membranes using a semidry transfer unit (GE Health Care, cat. no. 

TE77). Each membrane was blocked in 2% nonfat dried milk in TBS and 0.05% Tween-

20 (TBS-T) for 1 h at room temperature and then cut into two parts to probe for ICP0 

and β-Actin. To detect ICP0, the mouse monoclonal antibody 11060 (Santa Cruz 

Biotechnology, cat. no. sc-53070) was diluted 1:1000 in 2% nonfat dried milk in TBS-T 

overnight at 4ºC. β-Actin was detected with a rabbit polyclonal antibody (Santa Cruz 

Biotechnology, cat. no. sc-1616) diluted 1:1000 in 2% nonfat dried milk in TBS-T). The 

membranes were washed 3 times in TBS-T, and secondary antibodies were added: 

peroxidase conjugated goat antirabbit (Jackson Immunoresearch, cat. no 111-035-144) 

diluted 1:1000 and peroxidase conjugated goat antimouse  (Jackson Immunoresearch 

cat. no. 205-035-108) diluted 1:1000 at room temperature for 1 h. Membranes were 

washed 3 times in TBS-T and developed using SuperSignal West Pico 

chemiluminescent substrate (Thermo Fisher Scientific, cat. no. 34087). Pictures 

captured with a Kodak 4000R image station, and the band intensities were measured by 

densitometry.  

ii) USP-7 levels. Hep-2 or HeLa cells were infected and samples were processed 

as described in the ICP0 stability experiment except that the cells were not treated with 

cycloheximide. Samples were separated on 10% SDS PAGE gels and membranes 

were blocked in 5% BSA in TBS containing 0.1% Tween-20 for 1 h at room 

temperature. Probing for USP-7 was performed using the rabbit monoclonal antibody 
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HAUSP (Cell Signaling cat. no.4833) diluted 1:1000 in 5% BSA in TBS containing 0.1% 

Tween at 4º C overnight.  

iii) PIAS-1 protein levels. Infection of Hep-2 or HeLa cells, sample processing, 

and transfer of proteins to membranes were performed as described in the USP-7 

studies, except blocking was done in 5% milk in TBS with 0.1% Tween-20 for 1 h at 

room temperature. The PIAS-1 primary rabbit polyclonal antibody used was kindly 

provided by Dr. Yoshi Azuma and diluted at 1:500. 

iv) USP-7 interaction studies. Hep-2 or HeLa cells were plated in 60 mm dishes 

at 5x105 cells per plate. Twenty four hours later, the cells were mock infected or infected 

with KOS or Phos1 at MOI of 5 for 4 h. Plates were washed once with PBS and cells 

were harvested in 100 µL of a buffer containing 100 mM Tris-HcL pH 8, 50 mM NaCl, 

10% glycerol, 20 mM β-mercaptoethanol, and 1% Nonidet P-40 with protease and 

phosphatase inhibitors as described above. Samples were sonicated at 100 W for 30 

sec, incubated on ice for 30 min, and centrifuged at 15K rpm for 10 min at 4ºC. 50 µL 

protein G Dynabeads (Invitrogen, cat. no.77149610) were incubated, after aspirating the 

beads buffer, with 200 µL of PBS with 0.05% Tween-20 and 4 µL of an ICP0 rabbit 

polyclonal antibody (Pacific Immunology) by rotating for 1 h at room temperature. Beads 

bound to the antibody were washed with PBS and 0.05% Tween-20 and incubated with 

the sample lysates, rocking at 4ºC overnight. The beads were then washed twice with 

PBS-Tween and transferred to new tubes. Fifty microliters of 1X Laemmeli buffer 

(100ºC) with protease and phosphatase inhibitors were added to each sample and 

samples were boiled for 5 min, vortexed, boiled again, and vortexed twice for 1 min 
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each. Western blot analyses were performed as described in the USP-7 section and 

band intensities were measured by densitometry. 

De novo viral replication assays. The assays were done as previously 

described (91). Briefly, Vero cells were plated in 12-well plates (1x105 cells per well) for 

24 h. Two hours before transfection, fresh Vero cells medium was added to each well. 

Transfections were done in duplicate using 125 ng infectious viral DNA and 625 ng 

salmon sperm DNA per well, diluted in OPTIMEM (Invitrogen). Fugene 6 or Fugene HD 

was used for transfections at a 3:1 ratio (µl transfection reagent : µg DNA). The 

transfection mix was added to each well which contained 0.5 ml OPTIMEM for 5 h at 

37ºC, and replaced with fresh Vero cells medium. Samples were harvested 48 h later. 

Wild type virus was titered on Vero cells, and all ICP0 mutants were titered on L7 cells. 

The replication of KOS was given 100% value and all the mutant viruses replication was 

normalized to KOS. Statistical analyses were performed using the Mann-Whitney U test. 

 

Acute viral replication in trigeminal ganglia (TG) and eyes.  Infections were 

done as previously published (92). Briefly, CD-1 outbred female mice (6-7 weeks old) 

were purchased from Charles Rivers Laboratories (Shrewsbury, MA) and cared for 

according to Guide for the Care and Use of Laboratory Animals (173).  The protocol for 

using these mice is approved by the University of Kansas Institutional Animal Care and 

Use Committee.  Mice were anesthetized by intraperitoneal injection of ketamine (75-

100 mg/kg of body weight) and xylazine (10 mg/kg of body weight).  Corneas of mice 

were scarified with a 26-gauge needle and infected with KOS, 7134, Phos 1, S224A, 

T226A, S224A/T226A, T231A, T232A, or each marker rescue virus at 2x105 PFU of 
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virus per eye in 3-5 µl medium. To determine the acute titers in the trigeminal ganglia, 

the mice were euthanized by CO2 asphyxiation at day 5 post-infection, and TG were 

removed and placed in microfuge tubes containing 500 µl 1% FBS growth medium and 

100 µl of 1 mm glass beads. Samples were homogenized with a Mini-Beadbeater 8 

(BioSpec).  To determine the acute titers in the eyes, the mice eyes were swabbed 

using cotton tipped swabs at day 5 post-infection, and the swabs were placed in 

microfuge tubes containing 500 µl of 5% FBS growth medium.  The wild type and 

rescuants viruses were titered on Vero cells, and all ICP0 mutant viruses were titered 

on L7 cells.  Statistical analyses were performed using the Student’s t-test. 

 

3.3 Results 

Dissociation of two ND10 components are differentially regulated by 

distinct phosphorylation sites in region I of ICP0. In a previous study, we showed 

that Phos 1 is unable to dissociate PML and Sp100 from ND10 relative to the wild type 

ICP0 in transient transfection assays (91). To determine which sites in the Phos 1 

mutant form of ICP0 mediate the dissociation of these two proteins, we transfected Hep-

2 cells with plasmids that express each region I phosphorylation site mutation or the 

double mutation (see Fig. 3.1), and the localization of ICP0 and PML or ICP0 and 

Sp100 were examined by immunofluorescence. As shown in Fig. 3.2A, wild type ICP0 

did not colocalize with PML, dispersing it from ND10.  Of the region I mutant forms that 

were examined, only T226A behaved like the wild type ICP0. As previously reported 

(91), Phos 1 was unable to efficiently dissociate PML from ND10 (Fig. 3.2A and 3.2C). 

All other region I phosphorylation site mutant forms of ICP0 (S224A, S224A/T226A, 
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T231A, and T232A) were as impaired as Phos 1 in dispersing PML from ND10.  Of 

these mutants, T232A colocalized with PML, but PML staining appeared to be less 

intense than the mock transfected cells, indicating that this mutant form of ICP0 may 

retain a degree of PML dissociating activity.  For Sp100, all region I phosphorylation site 

mutants were capable of dissociating Sp100 from ND10 similar to wild type ICP0, with 

the exception of the double mutant S224A/T226A, which behaved like Phos1 and was 

unable to disperse Sp100 (Fig. 3.2B and 3.2D). Our data show that different 

phosphorylation residues in region I of ICP0 regulate the dissociation of PML from 

ND10 compared to the dissociation of Sp100 in Hep-2 cells. 

 

The transactivation activity of ICP0 is regulated by serine 224. A previous 

report indicated that Phos 1 is reduced for ICP0’s transactivation activity in cell culture 

(90). To test the transactivation activity of region I phosphorylation site mutant forms of 

ICP0, Vero cells were transfected with HSV-1 VP16 promoter-luciferase reporter 

construct either alone or in combination with a plasmid expressing wild type ICP0 or 

each region I mutation. Forty-eight hours post-transfection, cells were lysed and 

assayed for luciferase activity, with the wild type ICP0 given a value of 100%. As 

expected, Phos 1 was unable to efficiently induce the expression of the VP16 promoter, 

and its induction ability was at 16% the level of the wild type ICP0 (P= 0.029) (Fig. 3.3).  

Of all the mutations that were tested, only S224A and S224A/T226A showed a 

significant decrease in transactivation activity, with levels that were 43% (P=0.02) and 

17% (P=0.02) of wild type ICP0, respectively. T226A, T231A, and T232A were not 

impaired for inducing the VP16 promoter. Thus, S224 contributes to ICP0’s 
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transactivation activity in combination with T226 to enable the maximal transactivation 

function of ICP0. Similar results were observed in two other cell lines (HeLa and Hep-2 

cells, data not shown). 

 

Construction of region I mutant viruses.  In order to characterize the role 

region I sites have in the context of lytic replication, our region I mutations were 

introduced into the viral genomes as described in the Materials and Methods section, to 

create mutant viruses . The ICP0 null mutant, 7134, was used to make each mutant by 

marker transfer.  For each mutant, a marker rescue virus was made to ensure that any 

observed phenotype is not due to secondary mutations in the viral genome. Insertion of 

restriction digestion sites when making each mutant helped us identify mutant viruses 

either by Southern blot analysis or PCR (Fig. 3.4).  

 

De novo replication of S224A and S224A/T226A mutant viruses is reduced.  

Phos 1 was shown to be impaired for de novo replication in tissue culture (91), 

consequently, we wanted to determine which region I site(s) is/are responsible for this 

phenotype. To initially answer this question, we examined de novo replication of region I 

mutant viruses, as ICP0 significantly enhances viral replication in this assay (10). Vero 

cells were transfected with infectious viral DNA from wild type HSV-1 (strain KOS), the 

ICP0 null mutant, 7134, or each phosphorylation site mutant. In the absence of the HSV 

IE transactivator VP16, ICP0 transactivating activity is required for high levels of de 

novo replication (32). As expected, 7134 viral replication was reduced by 105-fold 

relative to KOS, similar to a previous report (91). Phos 1 mutant showed a decrease of 
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14-fold, and of region I phosphorylation site mutants, only S224A and S224A/T226A 

showed significant reductions of 9-fold and 16-fold, respectively (P=0.009 for both), 

relative to KOS (Table. 3.1). Taken together, our data indicate that the S224 is required 

for efficient de novo viral replication.  

 

Serine 224 regulates the E3 ubiquitin ligase activity of ICP0. i) ICP0 protein 

stability. The Phos 1 mutant form of ICP0 was previously shown to have greater stability 

than wild type ICP0 (91), indicative of alterations in ICP0’s E3 ubiquitin ligase activity. 

To identify sites in region I that contribute to Phos 1’s stability, we infected HeLa cells in 

triplicate with KOS, Phos 1, or each region I mutant. After 4 hours of infection, one well 

was harvested, and the remaining two wells were blocked with the protein synthesis 

inhibitor, cycloheximide, for additional 2 and 4 hours and subsequently harvested. ICP0 

and actin protein levels were examined by western blot. As shown in Fig. 3.5, Phos 1, 

S224A, and S224A/T226A were more stable than the wild type ICP0. The phenotype 

observed with these three mutants suggests that S224 controls the auto-ubiquitination 

of ICP0. Similar results were observed in Hep-2 cells (H. H. Mostafa and D. J. Davido, 

unpublished data).  

ii) USP-7 levels. To confirm that mutations in Phos1, S224A, and S224A/T226A 

impaired ICP0’s E3 ubiquitin ligase activity, we examined the protein levels of another 

target of ICP0 ubiquitination, USP-7. In this experiment, HeLa cells were mock infected 

or infected with KOS, 7134, Phos 1, S224A, or S224A/T226A for 4, 6, and 8 hours. The 

cells were then harvested, and the protein levels of USP-7, ICP0, and actin were 

determined by western blot. As was previously reported for wild type HSV-1 infections 
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(44), KOS infection resulted in a reduction in the USP-7 protein levels (Fig. 3.6).  In 

contrast, USP-7 protein levels over time were comparable in mock, 7134, Phos 1, 

S224A, and S224A/T226A infected cells (Fig. 3.6). As it has been shown before that the 

interaction between ICP0 and USP-7 mediates stabilization of ICP0 early during lytic 

infection (85), we wanted to address the possibility that the higher stability of the Phos1 

mutant form and/or the higher stability of USP-7 following Phos 1 infection may be due 

to alterations in the interaction between Phos 1 and USP-7. For this experiment, we 

took KOS- or Phos 1-infected cell extracts from HeLa cells 4 hours post-infection and 

determined the extent that USP-7 co-immunprecipitated with ICP0 in these extracts.  

When accounting for the amount of Phos 1 that was immunoprecipitated, our data show 

that Phos 1 pulled down USP-7 to similar extent as wild type ICP0 ( Fig. 3.7).  

Consequently, this data does not support the hypothesis that an increase in Phos 1 

stability is mediated by an increase in its interaction with USP-7.  Similar results were 

obtained from Hep-2 cells (H. H. Mostafa and D. J. Davido, unpublished data). Taken 

together, our results support the conclusion that the three mutants: Phos 1, S224A, and 

S224A/T226A, have impaired E3 ubiquitin ligase activity and indicate that S224 

regulates this activity of ICP0. 

 

The subcellular localization of region I phosphorylation mutants is similar 

to the wild type ICP0: to examine the possibility that these mutant forms of ICP0 may 

be altered in their subcellular localization altering the activities of ICP0, HeLa and Hep-2 

cells were infected with the KOS, Phos 1, and each of region I phosphorylation site 

mutants. The localization of ICP0 was determined at 4 and 8 hours post-infection. All 
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the mutants showed similar localization patterns to wild type ICP0 in the two cell lines 

tested, with primarily nuclear localization at 4 hours post-infection and both nuclear and 

cytoplasmic localization at 8 hours post-infection (Fig. 3.8).  

 

Serine 224 is required for efficient acute viral replication in mice trigeminal 

ganglia (TG).  We previously showed that Phos1 replication in the trigeminal ganglia 

during the acute phase of infection was significantly reduced relative to the wild type 

KOS, with the maximal decrease observed at day 5 post-infection (92). To test which 

residues in region I are required for efficient in vivo replication, CD-1 mice were infected 

with KOS, Phos1, each region I phosphorylation site mutant, and its marker rescue 

virus.  Five days post-infection, mice were swabbed and then were sacrificed, TG were 

explanted, and the acute viral replication was monitored by standard plaque assay. 

Acute replication in the eyes on day 5 showed only a slight reduction in the acute 

replication of the S224A mutant (5-fold, P=0.005) and Phos 1 (11-fold, P=0.00012), 

whereas all the other region I mutants replicated to levels of wild type HSV-1 (H.H. 

Mostafa and D.J. Davido, unpublished data). For productive infection of the trigeminal 

ganglia, as expected, 7134 and Phos 1 were significantly reduced (650-fold, P=1.2x10-

18 and 11-fold, P=2x10-6, respectively) in their replication relative to KOS (Fig. 3.9A).  

S224A and S224A/T226A replication were reduced by 48-fold (P=1.9x10-11) and 15-fold 

(P=1.8x10-8), respectively, whereas the replication of T226A, T231A, and T232A (Fig. 

3.9A) and the marker rescue viruses (Fig. 3.9B) was similar to KOS. Our results 

demonstrate that S224 enhances productive infection in the TG of mice.  
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3.4 Discussion 

Phosphorylation is a post-translational modification that regulates the activities of 

many viral proteins (174, 175). ICP0 has been shown to be heavily phosphorylated (88) 

and previous studies from our lab strongly support the hypothesis that phosphorylation 

regulates its activities (90-92). Because putative phosphorylation sites of Region I in 

ICP0 have been shown to play an important role in regulating its activities and viral 

replication, we performed mutagenesis of specific site or sites in this region to identify 

residues that are required for the activities of ICP0.  Specifically, Region I has been 

shown to be phosphorylated at one or two residues (90), and it has been recently 

determined by our lab and other investigators that S224 and T226 sites are 

phosphorylated. Characterization of these mutations in the absence of other viral factors 

indicates that S224 phosphorylation is important for efficient PML dissociation from 

ND10 (Fig. 3.2A and 3.2C), and it appears that the phosphorylation of either S224 or 

T226 is sufficient for efficient Sp100 dissociation (Fig. 3.2B and 3.2D). Interestingly, 

T231 and T232 also play an important role in the dissociation of PML (Fig. 3.2A and 

3.2C) but neither is required for Sp100 dissociation (Fig. 3.2B and 3.2D), suggesting a 

potential structural role for these residues in dissociating PML from ND10.  S224 is also 

required for optimal levels of ICP0-mediated transactivation activity in luciferase reporter 

assays (Fig. 3.3). In the context of viral infections, we showed that the S224 is important 

for an efficient E3 ubiquitin ligase activity (Figs. 3.5 and 3.6), and for viral replication 

both in tissue culture (Table 3.1) and in mice trigeminal ganglia (Fig. 3.9A). Our data 

highlights that S224, which is in close proximity to the RING-finger motif of ICP0 (Fig. 

3.1), as the residue in region I which has the major impact on ICP0’s activities. 



52 

 

To understand the mechanism by which phosphorylation regulates ICP0’s 

functions, particularly its E3 Ub ligase activity, we propose the hypothetical model 

shown in Figure 3.10.  As a RING-finger-containing E3 ubiquitin ligase, ICP0 acts as a 

scaffold, binding both the E2 ubiquitin conjugating (Ubc) enzyme and it substrates, 

thereby facilitating the ubiquitin-chain transfer and conferring substrate specificity. Given 

that phosphorylation regulates the action of many E3 ubiquitin ligases, activating (176, 

177) or inactivating them (178), it is possible that the E3 Ub ligase activity of ICP0 is 

regulated by phosphorylation, enhancing its contact with a particular substrate or E2 

enzyme (Fig. 3.10A).  Our data demonstrate that Phos 1 is not detectably altered in its 

interaction with USP-7 compared to wild type ICP0 (Fig. 3.7). Although this does not 

exclude the possibility that phosphorylation in region I can affect the binding of ICP0 to 

other target substrates, it suggests the other possibility that phosphorylation promotes 

ICP0’s interaction with a particular E2 Ubc enzyme. In a preliminary experiment, we 

examined the colocalization between wild type ICP0 or Phos 1 with the E2 enzyme, 

UbcH5a. UbcH5a has been shown to be one of two E2 Ubcs of ICP0 that direct 

ubiquitination of selected ICP0 targets in vitro and in cell culture (43, 179, 180). Our 

initial results show that where there was extensive colocalization between wild type 

ICP0 and UbcH5a, whereas Phos 1 did not extensively colocalize with UbcH5a (Fig. 

3.11).  This suggests that Phos 1 may be impaired in its interaction with UbcH5a 

compared to the wild type ICP0. When we tested the colocalization of region I 

phosphorylation site mutations and UbcH5a, the S224A and the S224A/T226A mutants 

behaved like Phos 1 and showed reduced colocalization with the flag tagged UbcH5a 

(Fig 3.12A and B). This suggests that the S224 site might be required for an efficient 
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interaction with the E2 enzyme UbcH5a. Ongoing studies will determine the extent 

region I plays in facilitating ICP0’s interaction with the E2 Ubc enzymes, such as 

UbcH5a and will specifically test the role of S224 site in facilitating such interaction.  

The increased stability of Phos 1 may also be attributed to alterations in its interactions 

with the E2 enzymes or the cellular E3 ubiquitin ligase, SIAH-1.   In the latter case, the 

binding of SIAH-1 to ICP0 has been shown to decrease the stability of ICP0 (181).  This 

raises the question of whether the Phos 1 mutant form of ICP0 is diminished for SIAH-1-

binding, resulting in a more stable protein. This argument is supported by a recent 

publication showing that ICP0’s binding to another cellular E3 ubiquitin ligase, RNF8, is 

dependent on ICP0 phosphorylation (182).  Interestingly, the phosphorylation of ICP0 at 

an N-terminal residue specifically directed the degradation of RNF8, whereas the 

degradation of other ICP0 targets was unaffected. In addition, it is unclear whether ICP0 

induces its own ubiquitination intramolecularly or intermolecularly, as it contains a 

dimerization domain and was shown to multimerize (183).  Auto-ubiquitination has also 

been observed with the ICP0 orthologue from varicella zoster virus, ORF61 (37, 38, 72, 

74-76).   Thus, the relationship between phosphorylation and SIAH-1 binding and ICP0 

auto-ubiquitination remain to be determined (Fig. 3.10B).  

The impairment of PML and Sp100 dissociation was observed with Phos 1 and 

other region I phosphorylation site mutations in the absence of other viral factors in 

transient transfection assays (Fig. 3.2 and (91)) but not during the course of viral 

infection (H.H. Mostafa and D.J. Davido, unpublished data and (91)).  These results 

indicate that other viral factors and/or the level of their expression likely compensate for 

region I Phosphorylation mutation’s defect to dissociate these two ND10-associated 



54 

 

proteins, which is linked to their degradation. On the other hand, although it has been 

shown before that the dispersal of PML and Sp100 mediated by ICP0 is dependent on 

the E2 enzyme UbcH5a in cell culture (179), ICP0 was unable to ubiquitinate 

SUMOylated PML in vitro (180). This latter result suggests that other factors are 

required for the ubiquitination of PML, and potentially Sp100, mediated by ICP0.   Our 

data show that the individual phosphorylation mutants differ in their regulation of PML 

versus Sp100. A similar result was observed in a previous study from our laboratory in 

which another ICP0 phosphorylation mutant, Phos 2, could dissociate Sp100 but not 

PML from ND10 (91) in transient transfection assays. For our region I mutant forms of 

ICP0, we hypothesize that distinct cellular factors regulate PML’s dissociation compared 

to that of Sp100. In an attempt to determine what factors could potentially contribute to 

ICP0’s directed PML dissociation, we looked at PIAS-1 staining pattern, protein levels, 

and interaction with ICP0 after transient transfection and infection. The E3 SUMO-ligase 

PIAS-1 has recently been shown to regulate the degradation of PML (184), and its loss 

results in increased PML stability. Our studies showed that the expression of wild type 

ICP0 or Phos 1 did not influence the staining of PIAS-1 in transient assays (Fig. 3.13A) 

or PIAS-1 protein levels during infection (Fig. 3.13B).  We did not detect interactions 

between the ICP0 and PIAS-1 by co-immunoprecipitation assays (data not shown). We 

propose that the dissociation of PML directed by ICP0 is not dependent on interacting 

with PIAS-1.  

 Many questions remain as to how phosphorylation regulates the activities of 

ICP0. For example, how does phosphorylation of ICP0 differentially regulate its 

activities during acute infection in vivo? And what are the kinases that contribute to 
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ICP0’s phosphorylation? Previous work has shown that the phosphorylation status of 

ICP0 is altered along the course of the viral replication (88, 168) and that its 

phosphorylation status is dependent on the viral kinase UL13 (185) and cellular cyclin-

dependent kinases (cdks) (89).  Ongoing work in our lab is aimed at identifying the 

kinases that phosphorylate and control the activities of ICP0 

 

Contribution to this work: 

I performed and analyzed the data for all of the experiments presented in this 

chapter, constructed the T226A and T226A MR viruses, and generated second isolates 

for most region I phosphorylation mutants. 
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3.6 Tables 

 

Virus Viral titer as a relative % to 

KOS 

Fold difference relative to 

KOS 

KOS 100  

7134 0.0002 ↓5x105 

Phos 1 6.9 ↓14.5 

S224A 11.1 ↓9.05 

T226A 79.9 ↓1.25 

S224A/T226A 6.2 ↓16.1 

T231A 128.2 ↑0.78 

T232A 130.3 ↑0.77 

 

Table 3.1. De novo replication of region I mutants. Vero cells were transfected 

with infectious viral DNA for Wt HSV-1 (strain KOS), an ICP0 null mutant (7134), and 

region I mutants. At 48 h post-transfection, cells were harvested and titered by standard 

plaque assay. The data are shown both as the percentage of replication relative to the 

wild type KOS and as a fold reduction relative to KOS. Mutants that were significantly 

reduced for viral replication relative to KOS were tested with two independent viral DNA 

preparations. The experiment was repeated five times, and the data presented are the 

mean values. 
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3.7 Figures and Figure legends 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Region I phosphorylation site mutations. (A) ICP0 functional domains 

with three characterized phosphorylation regions (I, II, and III), adapted from (90) (B) 

The amino acid sequence of region I and each region I phosphorylation site mutant.  All 

mutated residues are underlined. The slash mark in region I indicates the boundary 

between the second and third exons of ICP0. 
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Figure 3.2. Region I phosphorylation site mutations and ND10 staining. A) 

Localization of PML and ICP0 or region I phosphorylation site mutant forms of ICP0. 

Hep-2 cells were transfected with plasmids expressing wild type (Wt) ICP0, Phos 1, 

each region I phosphorylation site mutation, and the double site mutation. Sixteen hours 

post-transfection, the cells were fixed and stained for ICP0 and PML and examined by 

fluorescence microscopy. B) Localization of Sp100 and ICP0 or region I mutant forms of 

ICP0. Hep-2 cells were transfected with plasmids expressing Wt ICP0, Phos 1, each 

region I phosphorylation site mutation, and the double site mutation. Sixteen hours post-

transfection, the cells were fixed and stained for ICP0 and Sp100 and examined by 

fluorescence microscopy. . C) Graph indicating the percent of ICP0-expressing cells 

that colocalized with PML. D) Graph indicating the percent of ICP0-expressing cells that 

colocalized with Sp100. In both experiments, at least 100 ICP0-expressing cells were 

examined for each mutant form of ICP0. 
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Figure 3.3. Transactivation activity of region I phosphorylation site mutations. 

Vero cells were transfected with an HSV-1 reporter plasmid (50 ng, pGL3-VP16) and a 

plasmid expressing Wt ICP0, Phos1, each of region I phosphorylation site mutation, or 

the double site mutation for 48 hours. Luciferase assays of cell extracts were performed 

to monitor ICP0’s transactivating activity.  * Mann-Whitney U test; P < 0.05. The error 

bars indicate the standard error of the mean (SEM) for all samples. 
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Figure 3.4. Construction of region I ICP0 phosphorylation mutant viruses. Region 

I phosphorylation mutant viruses were constructed by marker transfer as described in 

the Materials and Methods section. A) The restriction enzyme digestion pattern with the 

fragment lengths (shown as base pairs) of KOS and region I phosphorylation mutants. 

Note that S224A/T226A contains both BfaI and NgoMIV sites. The restriction pattern 

shown for S232A mutant is from a PCR product. B) Southern blot, lanes 1-5, in order, 

are KOS, Phos 1, T226A, S224A/T226A, and T231A cut with NgoMIV. Lanes 6-9, in 

order, are KOS, Phos 1, S224A, and S224A/T226A cut with BfaI. C) 12% 

polyacrylamide gel of KOS (lane 1) and T232A (lane 2) PCR products digested with 

SacII. 
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Figure 3.5. ICP0 stability of region I phosphorylation site mutants.  HeLa cells 

were infected at an MOI of 2 with the indicated virus. Four hours post-infection, cells 

were harvested, and duplicate samples were treated with cycloheximide  (CHX, 100 

µg/ml) and harvested at 6 and 8 hours post-infection. ICP0 and actin levels were 

determined by western blot analyses. 
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Figure 3.6. USP-7 degradation by region I phosphorylation site mutants.  HeLa 

cells were mock infected or infected at an MOI of 2 with KOS, 7134, Phos 1, S224A, 

and S224A/T226A viruses for 4, 6, and 8 hours. ICP0, USP-7, and actin protein levels 

were determined by western blot analyses. 
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Figure 3.7. Interaction of ICP0 and Phos 1 with USP-7. HeLa cells were mock 

infected (lanes 1 and 4), infected with KOS (lanes 2 and 5), or Phos 1 (lanes 3 and 6). 

Four hours post-infection, ICP0 was immuno-precipitated, and the levels of ICP0 and 

USP-7 were analyzed by western blot.  
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Figure 3.8.The subcellular localization of region I phosphorylation site mutants’ 

ICP0 protein. HeLa and Hep-2 cells were infected with KOS or each region I 

phosphorylation mutant for 4 and 8 hours. The cells were fixed, stained for ICP0, and 

examined by fluorescence microscopy. 
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Figure 3.9. Acute replication of region I phosphorylation site mutants in 

trigeminal ganglia (TG) of mice at day 5 post-infection. CD-1 mice were infected with 2 x 

105 PFU per eye. Five days post-infection, mice were sacrificed, and TG were removed 

and homogenized, and viral titers were determined by standard plaque assays. A) 

Replication of region I phosphorylation site mutants. B) Replication of region I 

phosphorylation mutants marker rescue viruses. * Student’s t test P< 0.05. Error bars 

represent the SEM. The dashed line is the minimum limit of detection. n=8 mice/virus. 
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Figure 3.10. Hypothetical Models of how ICP0’s E3 ubiquitin ligase activity is 

controlled by phosphorylation. A) Phosphorylation can either regulate ICP0’s interaction 

with a target substrate or an E2 ubiquitin (Ub)-conjugating enzyme. B) ICP0’s 

ubiquitination is regulated by phosphorylation that enhances the intra-molecular or inter-

molecular auto-ubiquitination or binding to cellular E3 ubiquitin ligases, such as SIAH-1.  
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Figure 3.11. colocalization of ICP0 and Phos 1 with UbcH5a. Hep-2 cells were 

transfected with a flag tagged UbcH5a expressing plasmid and mock or co-transfected 

with a plasmid expressing wt ICP0 or Phos 1 . 24 hours post transfection, cells were 

fixed and stained for ICP0 and UbcH5a and examined by fluorescence microscopy. 

Around 50 cells expressing both ICP0 and UbcH5a were examined for both wt ICP0 

and Phos 1 transfected cells. 
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Figure 3.12.  A) Region I phosphorylation site mutations and UbcH5a staining. 

Hep-2 cells were transfected with a flag tagged UbcH5a expressing plasmid and mock 

or co-transfected with a plasmid expressing wt ICP0, Phos 1, or each region I 

phosphorylation site mutation . 24 hours post transfection, cells were fixed and stained 

for ICP0 and UbcH5a and examined by fluorescence microscopy. B) Graph indicating 

the percent of ICP0-expressing cells that colocalized with UbcH5. Around 30 ICP0- and 

UbcH5a- coexpressing cells were examined for each mutant form of ICP0. 

  

B 
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Figure 3.13. Localization of ICP0 with PIAS-1 and the effect of KOS and Phos 1 

viral infection on PIAS-1 protein levels. A) Hep-2 cells were mock transfected or 

transfected with plasmids expressing Wt ICP0 and Phos 1. Sixteen hours post-

transfection the cells were fixed and stained for ICP0 and PIAS-1 and examined by 

fluorescence microscopy, B) Hep-2 cells were mock infected or infected with KOS and 

Phos 1 at an MOI of 2 for 4, 6, and 8 hours. ICP0, PIAS-1, and actin protein levels were 

determined by western blot analyses 
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Chapter 4 

Two Amino Acid Substitutions in Herpes Simplex Virus 1 ICP6 Impair Acute Viral 

Replication in Mice, Limiting The Establishment of Latency and Explant-Induced 

Reactivation. 

 

Co-authors 

 Thornton W. Thompson, Steve D. Haenchen, Joshua G. Hilliard, Stuart J. 

Macdonald, Lynda A. Morrison 

4.1. Abstract 

In the process of generating HSV-1 phosphorylation mutants in the viral 

regulatory gene, infected cell protein 0 (ICP0), we also isolated a Phos 3 (refer to 

chapter 2) phosphorylation mutant which we termed KOS neuro-attenuated (KOS-NA) 

that was severely impaired for acute replication in the eyes and trigeminal ganglia (TG) 

of mice, significantly defective in establishing a latent infection, and reactivated poorly 

from explanted TG. Given the severe attenuation of KOS-NA relative to Phos 3 in mice, 

we hypothesized that KOS-NA contained a secondary set of mutations in one or more 

key viral genes that regulate HSV-1 pathogenesis.  Notably, we postulated that these 

secondary mutations will provide insights into HSV-1 pathogenesis and would be useful 

in developing therapeutic interventions against HSV-1 (e.g., vaccine).  To understand 

the genetic basis for KOS-NA’s in vivo phenotypes, we sequenced its genome relative 

to its wild type parental virus, strain KOS (93). While we discovered two set of 

nonsynonymous mutations in the ICP4 and gI genes of the KOS-NA genome, we also 

identified two nonsynonmyous mutations (aa 393, L to P and aa 950, R to H), in the 
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UL39 gene, which encodes the large subunit of ribonucleatide reductase, also known as 

ICP6. ICP6 is a part of an enzyme complex that converts ribonucleotides to 

deoxyribonucleotides (94, 95).  Although this gene is not essential for viral growth and 

replication in dividing cell lines, it is important for viral replication in quiescent cells such 

as neurons (96, 97), and several published studies have shown that UL39 mutants are 

severely impaired for viral replication, establishment of latency, and/or reactivation in 

murine models of HSV-1 replication (98, 99). Given the parallels between the in vivo 

replication phenotypes of published UL39 mutants and KOS-NA, we proposed that the 

two mutated codons in UL39 of KOS-NA are responsible for its attenuated phenotypes. 

To test this possibility, we rescued the UL39 mutated gene within the KOS-NA 

genome with a wild type copy of UL39 (KOS-NAR), and we independently introduced 

the mutated copy of the UL39 from the KOS-NA genome into the wild type KOS 

genome (UL39 L393P/R950H).  The acute replication of both viruses was examined in 

eyes and TG of mice. Results from these experiments indicate that aa 393 and 950 of 

ICP6 are essential for high levels of acute replication in the eyes and TG of CD-1 mice, 

which facilitates the establishment of an efficient latent infection.  
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4.2. Materials and Methods 

Cell Lines and Viruses. Vero cells and L7 (ICP0-containing Vero cells) were 

cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 5% fetal 

bovine serum (FBS),  100 µg/ml penicillin, 100 units/ml streptomycin, and 2mM L-

Glutamine. The wild-type HSV-1 strain KOS, 7134 (an ICP0-null mutant virus), KOS-

NA, KOS-NA marker rescue (MR), UL39 L393P/R950H, and HrR3 R viruses were 

propagated and titered as previously described (186, 187).  

 

High throughput sequencing of KOS-NA genome: We characterized the 

secondary mutations in the KOS-NA viral genome via whole genome sequencing as 

previously described for the wild type strain KOS (188). Briefly, genomic DNA from the 

strain was isolated from infected Vero cells, and used to construct a standard Illumina 

library. Following sequencing, the raw unpaired 42-bp reads were passed through the 

SolexaQA perlscripts to remove low quality reads (189), and aligned against both the 

Rhesus macaque and human genomes using Bowtie (190) to eliminate any reads 

derived from the Vero cell host. The remaining high-quality reads were de novo 

assembled with Velvet (191), and contigs >100-bp were assembled against the 

reference HSV-1 strain 17 syn+ genome using Seqman pro (DNASTAR, Inc.). The final 

KOS-NA genome is 152,011-bp, has 13 shorts gaps totalling 1,582-bp exclusively at 

variable number tandem repeat (VNTR) regions, and was sequenced to an average 

per-bp coverage of 3,104X. 

We transferred annotation from the reference genome strain 17 syn+ using RATT 

(192), and confirmed the final KOS-NA annotation manually. To identify and 
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characterize nucleotide differences between KOS and KOS-NA we aligned the 

genomes using FSA (193) and applied a custom R script [www.r-project.org]. We 

identified 34 SNPs discriminating the strains, including 17 nonsynonymous changes 

residing in six genes, and 11 short (1-4bp) insertion-deletion events, all present outside 

of coding regions. 

 

Construction of UL39 mutant and rescue viruses: KOS-NA contains 

mutations in ICP0 phosphorylation sites and was constructed as previously described in 

(86, 91, 92). To generate The UL39 L393P/R950H mutant, The UL39 gene was cloned 

out of the KOS-NA viral genome using BglII and KpnI sites and ligated into pSP72 using 

the same sites (pSP72:UL39). Vero cells were plated on 60 mm dishes at 4x105 cells 

per plate. Twenty-four h post-plating, cells were co-transfected with 1 µg of viral DNA 

from HrR3 (96), which contains a lacZ insertion in UL39, and 2.5 µg pSP72:UL39 

plasmid digested with BglII and KpnI. Transfections were performed using Fugene HD 

(Roche) at a ratio of 3:1 (µl of transfection reagent to µg of DNA) based on 

manufacturer recommendations. Mutants were identified by blue/white selection in the 

presence of X-gal. White plaques were isolated, and viral isolates containing the two 

mutated sites were screened with the PCR amplification refractory mutation system 

(ARMS) technique using the following primers: codon 393 site; WT (L393) primer (5’- 

CTGGACGTTCCTCCGGTACT -3’),  P393mutant primer (5’- 

CTGGACGTTCCTCCGGTACC -3’), common primer (5’- 

TGGAAGACGGACTCCATGTAG -3’);codon 950 site; WT (R950) primer (5’-

CGTGTTTCATCATGCTCTAGC-3’), H950 mutant primer (5’-
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CGTGTTTCATCATGCTCTAGT-3’), and common primer (5’-

TGCACACGGCCTGCCTGAAGCT-3’).  Candidates were confirmed by DNA 

sequencing. Correct insertion of the gene into the viral genome was confirmed by XhoI 

digest followed by Southern blot analysis (Data not shown). The KOS-NAR virus was 

generated by co-transfection of 1 µg of KOS-NA viral DNA and 2.5 µg of pKHF plasmid 

(96), which contains  WT UL39, digested with EcoRI and XbaI. Plaques were picked 

randomly and screened with the PCR ARMS technique as described above. 

Confirmation of the rescue of the mutation was performed by PCR, followed by 

sequencing and Southern blot analyses using the restriction enzyme, BamHI (Heba H. 

Mostafa and David J.Davido, unpublished data). The HrR3R (rescue) virus was 

constructed by cotransfecting Vero cells with 1µg of HrR3 viral DNA and 2.5µg of pKHF 

plasmid digested with EcoRI and XbaI. Rescuants were identified by blue/white 

selection and confirmed by Southern blot analysis by digesting the viral DNA with XhoI 

(Data not shown). 

 

Ocular Infection of Mice. CD-1 out-bred female mice (6-7 weeks old) were 

obtained from Charles Rivers Laboratories (Shrewsbury, MA), cared for according to 

Guide for the Care and Use of Laboratory Animals (194), and infected as previously 

described (92). Briefly, mice were anesthetized by intraperitoneal injection of ketamine 

(75-100 mg/kg of body weight) and xylazine (10 mg/kg of body weight).  Corneas were 

scarified with a 26-gauge needle and were infected with (KOS, 7134, KOS-NA, KOS-

NAR, UL39 L393P/R950H, or HrR3 R) at 2 x 105 PFU of virus per eye in 3-5 µl medium.  
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Determination of Viral Titers in Eyes and Trigeminal Ganglia (TG). Four 

hours and 1, 3, 5, 7, and/or 9 days post-infection (post infection), eye swabs and/or TG 

samples were collected. For eye swabs, tear film was collected by swabbing the eye 

with cotton-tipped swabs and placed in microfuge tubes containing 500 µl 5% FBS 

growth medium. For TG samples, the mice were sacrificed by CO2 asphyxiation, and 

the TG were removed and placed in microfuge tubes with 500 µl growth medium and 

100 µl of 1 mm beads. These samples were homogenized using a Mini-Beadbeater 8 

(BioSpec, Bartlesville, OK). In all cases, the wild-type,UL39 L393P/R950H, and HrR3R 

viruses were titered on Vero cells, and KOS-NA and KOS-NAR viruses were titered on 

L7 cells. Statistical analyses were performed using student’s t test. 

 

Latent Viral Genome Loads in TG. At 28-30 days post infection, latently 

infected TG were collected, and DNA was isolated from each TG as previously reported 

(195).  PCR primers for the HSV-1 UL50 gene and the mouse adipsin gene were used 

to amplify viral DNA and as a loading control for cellular DNA, respectively (92). Real 

time PCR samples were performed in a total volume of 25 µl containing FastStart SYBR 

Green Master (Rox) (Roche, Indianapolis, IN) and primers [300 nM] in an ABI Prism 

7500 real-time PCR system (Applied Biosystems, Foster City, CA). UL50 PCR samples 

contained 125 ng of DNA per reaction, adipsin PCR samples contained 10 ng of DNA 

per reaction, and all samples were analyzed in duplicate or triplicate.  Standard curves 

for each PCR condition were carried out as described before (92) to quantify the 

amount of viral DNA present in each sample relative to the adipsin gene using the 2–ΔΔct 

method. Statistical analyses were performed using one-way ANOVA test. 
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Viral explant-induced reactivation studies.  Days 28-30 post infection, latently 

infected mice were sacrificed, each TG was collected and cut into 8 pieces, and 

cultured on Vero cells in a well of 24-well plates. Each well contained 1.5 ml of Vero 

cells medium. The cultures were sampled daily for up to 16 days for the presence of 

infectious virus by cytopathic effect on Vero cells for KOS and on L7 cells for KOS-NA 

and 7134 infected samples. At day 10 post-explantation, cultures were heat-shocked at 

43º C for 3 h as an additional stimulus for reactivation. Statistical analyses were 

performed using the Fisher’s exact test. 

 

Western blot and immunoprecipitation analyses.  i) ICP6 and UL40 protein 

levels: 1x105  Vero cells were plated per well of a 12-well plate. Twenty four hours post-

plating, cells were infected at an MOI of 2 for each virus. Samples were harvested 24h 

post-infection in 50 µL 1X Laemmeli buffer (100ºC) supplemented with 1X protease 

inhibitors (Leupeptin 1µg/mL, Aprotinin 1µg/mL, PMSF 1mM). Samples were heated at 

95ºC for 5 min, vortexed, centrifuged, and loaded on a 4-12% gradient  gel (Invitrogen), 

and ran at 120V for 1 h. Proteins were transferred to nitrocellulose membranes using a 

semidry transfer unit (GE Health Care, cat. no. TE77). Each membrane was blocked in 

5% bovine serum albumin (BSA) in TBS and 0.1% Tween-20 (TBS-T) for 1 h at room 

temperature. 

Primary antibodies:  ICP0: mouse monoclonal antibody 11060 (Santa Cruz 

Biotechnology, cat. no. sc-53070) diluted 1:1000. β-Actin:  rabbit polyclonal antibody 

(Santa Cruz Biotechnology, cat. no. sc-1616) diluted 1:1000. ICP6: mouse monoclonal 
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antibody diluted 1:100. UL40: mouse monoclonal antibody kindly provided by Dr. 

Everett diluted 1:250 

Primary antibodies were incubated overnight at 4°C then the membranes were 

washed 3 times in TBS-T, and secondary antibodies were added: peroxidase 

conjugated goat antirabbit (Jackson Immunoresearch) diluted 1:1000 and peroxidase 

conjugated goat antimouse  (Jackson Immunoresearch) diluted 1:1000 at room 

temperature for 1 h. Membranes were washed 3 times in TBS-T and developed using 

SuperSignal West Pico chemiluminescent substrate (Thermo Fisher Scientific, cat. no. 

34087). Pictures captured with a Kodak 4000R image station.  

ii) ICP6 interaction studies. Vero cells were plated in 60 mm dishes at 5x105 cells 

per plate. Twenty four hours later, the cells were mock infected or infected with KOS at 

MOI of 2 or KOS-NA at MOI of 5 for 24 h. Cells were harvested in 100 µL of a buffer 

containing 100 mM Tris-HcL pH 8, 50 mM NaCl, 10% glycerol, 20 mM β-

mercaptoethanol, and 1% Nonidet P-40 with protease inhibitors as described above. 

Samples were sonicated at 100 W for 30 sec, incubated on ice for 30 min, and 

centrifuged at 15K rpm for 10 min at 4ºC. 50 µL protein G Dynabeads (Invitrogen) were 

incubated, after aspirating the beads buffer, with 200 µL of PBS with 0.05% Tween-20 

and 5 µL of an ICP6 mouse monoclonal antibody (Kindly provided by Dr. Everett) by 

rotating for 1 h at room temperature. Beads bound to the antibody were washed with 

PBS and 0.05% Tween-20 and incubated with the sample lysates, rocking at 4ºC 

overnight. The beads were then washed twice with PBS-Tween and transferred to new 

tubes. Fifty microliters of 1X Laemmeli buffer (100ºC) with protease inhibitors were 

added to each sample and samples were boiled for 5 min, vortexed, boiled again, and 



81 

 

vortexed twice for 1 min each. Western blot analyses were performed as described in 

the previous section. 

 

4.3. Results 

Mutations in KOS-NA impair acute viral replication in the eyes and 

trigeminal ganglia (TG). We initially examined acute replication of KOS-NA at the 

periphery in ocular epithelia.  For these experiments, CD-1 mice were infected with 2 x 

105 PFU of wild type HSV-1 (KOS), the ICP0 null mutant, 7134, and KOS-NA per eye.  

7134 was used as an attenuated virus control in these experiments. Eye swabs from 

mice were taken at days 1, 3, 5, 7, and 9 post infection.  Viral titers were determined by 

standard plaque assay.  As shown in Figure. 4.1A, the replication of KOS-NA on days 1 

and 3 post infection was 79-fold (t test, p=0.015) and 25-fold (t test, p=0.006) lower than 

KOS, respectively. On day 5 post infection, no KOS-NA infectious virus was detected 

(1000-fold decrease compared to KOS, t test, p=3.9 x 10-5), which was followed by 11-

fold reduction on day 7 post infection.  Interestingly, the replication of KOS-NA was 

more impaired than the ICP0-null virus, 7134, on days 3, 5, and 7 post infection. When 

acute replication in neurons of the TG was examined, KOS-NA showed no detectable 

replication for all the time points examined.  Relative to KOS titers, these represented 

decreases of at least 3981-, 5011-, and 63-fold on days 3, 5, and 7 post infection (t test, 

p=1.4 X 10-5, 3.5 X 10-9, and 2.5 X 10-5, respectively). 7134, as expected, was capable 

of replicating in TG neurons of CD-1 mice, albeit poorly (Figure. 4.1B)(92).   
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Mutations in KOS-NA reduced the establishment of latency. To quantify the 

relative amount of viral DNA present in latently infected neurons, TG were collected at 

days 28-30 post infection and assayed for the presence of HSV-1 DNA using 

quantitative real time PCR. As shown in Figure. 4.2, the amounts of latent viral DNA 

present in TG were significantly reduced for KOS-NA (64-fold, one way ANOVA, 

p<0.05) and 7134 (12-fold, one way ANOVA, p<0.05) relative to the level of KOS.  

 

The efficiency of KOS-NA reactivation is reduced. To determine if the efficiency 

and kinetics of reactivation from latency were altered for KOS-NA, the latent TG of all 

viral groups were collected on days 28-30 post infection and subsequently cultured by 

explantation.  Samples were examined daily for cytopathic effect to monitor reactivation, 

and the rate of reactivation and total percentage of reactivating samples were 

determined for KOS-NA and 7134 mutants relative to KOS.  KOS began to reactivate on 

day 3 post-explant at 66% and reached 100% reactivation by day 5 post explant 

(Figure. 4.3). KOS-NA reactivation peaked at day 4 post explant, maintaining a 

reactivation efficiency of 8% throughout the study (Fisher’s Exact Test, p < 0.0001) 

(Figure. 4.3). 7134 reactivated on day 10 post explant, and after heat shock reached its 

highest levels (73%) on day 16 post explant (Figure. 4.3). The defect in establishing an 

efficient latent infection and reactivation from latency with KOS-NA is likely attributed to 

its impaired acute replication phenotype in the eyes and TG as has been observed with 

other HSV-1 mutants (31, 160). 
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Whole genome sequencing of KOS-NA mutant. As our published ICP0 

phosphorylation study showed (92), the ICP0 phosphorylation site mutant, Phos 3, was 

not impaired for acute replication in eyes or TG of mice, the establishment of latency, or 

reactivation. The differences in the pathogenesis between Phos 3 and KOS-NA strongly 

suggested that KOS-NA contained secondary mutations in its viral genome.  To 

characterize the secondary mutations in KOS-NA responsible for its highly attenuated 

phenotypes, we sequenced its viral genome in the same manner as KOS (93). 

Consequently, the genomes of KOS-NA and KOS were aligned using fast statistical 

alignment (FSA) to identify nucleotide polymorphisms between these two viruses (99). 

The alignment of these genomes revealed that KOS-NA contained 5 nonsynonymous 

mutations in three genes; UL39 which encodes ICP6, US7 which encodes viral 

glycoprotein I, and RS1 which encodes the viral transcriptional regulator, ICP4.  

 

Construction of KOS-NAR, UL39 L393P/R950H, and HrR3 R viruses. Because 

the acute replication, latency, and explant reactivation capabilities of KOS-NA were 

remarkably similar to the UL39 mutant viruses in mice (98), we hypothesized that the 

amino acid substitutions, L393P and R950H, in the open reading frame of ICP6 were 

responsible for KOS-NA attenuated pathogenesis. To address this, we rescued the 

UL39 gene of the KOS-NA with a wild type copy, and we introduced the KOS-NA 

mutated UL39 gene into the genome of the HrR3 virus, an ICP6::lacZ insertion mutant 

(96). As a control, we also generated an HrR3 rescue (R) virus where we rescued the 

ICP6::lacZ gene with a wild type copy of UL39. We then tested these viruses for acute 

replication in mice eyes and trigeminal ganglia. 
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Mutations in the UL39 are responsible for the reduced acute replication 

phenotype of KOS-NA. To establish that the mutations identified in the UL39 gene of 

KOS-NA virus resulted in its attenuated pathogenesis, we tested the acute replication 

potential of KOS-NAR and UL39 L393P/R950H in the eyes and TG of mice. As shown 

in Figure 4.4A,  UL39 L393P/R950H replicated to comparable levels of KOS-NA and 

was reduced by 347-, 32-, and 501-fold relative to KOS at days 1, 3, and 5 post 

infection (t test, p=5.5X10-7, p=1.2X10-7, and p=3.3X10-9), respectively. When the 

growth of the rescue viruses, KOS-NAR and HrR3 R, was examined in this set of 

experiments, they replicated to levels comparable to KOS (Figure 4.4A).  

When the TG replication of these viruses was monitored in TG at day 5 post 

infection we couldn’t detect any viral replication of UL39 L393P/R950H (1412 fold 

reduction relative to KOS, t test p=6.7X10-15) (Figure 4.4B). Acute replication of KOS-

NAR and HrR3 R was comparable to KOS (Figure 4.4B). Day 5 was picked to analyze 

the acute replication in TG as it showed the maximum fold reduction between KOS-NA 

and KOS (Figure 4.1B), however we also tested the acute replication phenotype of 

UL39 L393P/R950H in TG at day 3 post infection and we couldn’t detect any viral 

replication at this time point either (Data not shown). 

 

Mutations in the UL39 lead to less ICP6 protein levels without affecting the 

interaction between the two subunits of the ribonucleotide reductase 

To understand the mechanism by which mutations within the UL39 gene impact the 

functions of ICP6, we initially wanted to examine the ICP6 protein levels after KOS-NA 

infection versus KOS. As shown in figure 4.5A, the ICP6 protein levels after KOS-NA 
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infection were significantly reduced relative to those produced by KOS. The UL40 

protein, levels on the other hand, produced by both viruses were comparable (Figure 

4.5A). This indicates that mutations in aa393 and/or aa950 sites of ICP6 reduce the 

stability of ICP6 protein. Interestingly, when we tried to look at the interaction kinetics 

between ICP6 produced by KOS-NA with UL40 versus the wild type interaction kinetics 

by immuno-precipitating UL40, we were unable to pull down detectable amounts of 

UL40 protein. Furthermore, in one set of experiments we infected with KOS-NA at an 

MOI higher than KOS, trying to have more expressed ICP6/UL40. Under these 

conditions we could only detect a very faint UL40 band and a faint band of ICP6 after 

immuno-precipitating UL40, compared to KOS. This indicates that the reduced ICP6 

protein levels in case of KOS-NA might be influencing the tertiary structure of UL40 and 

this is why it was difficult to pull it down with our antibody. On the other hand, 

apparently, the mutations in the KOS-NA UL39 gene are not affecting the interaction 

with UL40, indicated by the faint ICP6 band pulled down with UL40 (Figure 4.5B).  

 

 

4.4. Discussion 

In this study, we have isolated a virus which carries two nonsynonymous 

mutations L393P and R950H in the UL39 gene, which encodes for the large subunit of 

ribonucleotide reductase. KOS-NA containing these mutations is significantly reduced in 

its acute replication in mice eyes and TG, is greatly impaired in its ability to establish 

latency, and can poorly reactivate from a latent infection after explant-induced 

reactivation. 
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The HSV-1 ribonucleotide reductase belongs to class I of Ribonucleotide 

reductases that have a heterodimeric structure which is active in the α2β2 configuration 

(196-200), similar to mammalian and bacterial ribonucleotide reductases.  The large 

subunit contains the catalytic and allosteric site, which confers substrate specificity. The 

smaller subunit on the other hand is responsible for generation of free radicals that are 

required for substrate activation (201). Viruses mutated in the UL39 gene have been 

shown to replicate normally in dividing cells at 37ºC, where the reductase activity is 

compensated by the cellular homolog. On the other hand, the viral reductase activity 

becomes important for viral DNA replication in neurons, non-dividing cells, or at 

elevated temperatures (e.g., 41ºC) (96). Of relevance to our study, this enzyme complex 

is essential for efficient in vivo acute replication, establishment of latency, and 

reactivation from latency (98). Characterization of ICP6 revealed that it is expressed 

early, before its small subunit partner, during viral infection in cell culture (202-205) and 

contains an extra N-terminal domain that is not required for HSV’s ribonucleotide 

reductase activity (206). This N-terminal domain has been shown to possess anti-

apoptotic (207, 208), chaperone-like (209), and protein kinase activities (210). 

Additionally, ICP6 has been shown to be a target of the HSV directed cytotoxic T 

lymphocytes, a function which was shown to be largely conferred by a single amino acid 

(211). 

Previous studies showed that the N-terminal region of ICP6 is required for 

interdomain linking (212) and that the interaction with the smaller subunit of 

ribonucleotide reductase is conferred by its C-terminal region (213). Amino acid 

sequence alignment studies indicate that the 393 site is not conserved between strain 
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KOS and other HSV strains; syn17+ (HSV-1), McKrae (HSV-1) and HG52 (HSV-2).  

Like KOS-NA, a proline is encoded at amino acid 393 in these latter strains (Figure 5). 

This lack of conservation could exclude the 393 site from being responsible for the 

phenotypes observed with KOS-NA. On the other hand, the 950 site is conserved 

between all of the HSV-1 and HSV-2 strains we examined (i.e., KOS, syn17+, McKrae 

and HG52) (Figure 5) as well as VZV (214). Moreover, it was shown previously that a 

single aa mutation in the 961 site of HSV-1 ICP6 (215) reduced the ribonucleotide 

reductase activity of the enzyme (216). Although this site has been shown to be 

important for the two subunit interactions, it was previously concluded that this effect 

might be indirect because blocking this site using antisera didn’t affect the interaction 

between the two subunits in the wild type virus (215). Consistent with this study, our 

interaction studies suggested that the R950H mutation doesn’t interfere with the 

interaction between ICP6 and UL40 (Figure 4.5B) however, it is probably responsible for 

reduced ICP6 protein stability (Figure 4.5A). Of note, the 950 site is close to aa 960 to 

963, a region which has been identified as block 10 and highly conserved between viral 

and cellular ribonucleotide reductases (214). Although The 950 site has been shown 

through our sequence alignment to be surrounded by highly conserved regions between 

HSV strains (Figure 4.5), these regions were less conserved when we aligned the 

protein with eukaryotic ribonucleotide reductase, CMV (data not shown), and VZV (214). 

Interestingly, R 950 was still conserved between all of them. This highlights the 

functional importance of this site and indicates that R 950 is the most likely cause of the 

KOS-NA phenotypes.  
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Because studies showed that lack of a US7 gene can also attenuate the acute 

viral replication in sensory ganglia and CNS of mice without having a great effect in cell 

culture (217), we tested the effect of introducing the KOS-NA US7 mutation to the 

genome of our phosphorylation mutant, Phos 3. Our results didn’t show any effect of 

introducing this mutation to the Phos 3 virus, which was able to acutely replicate 

efficiently both in mouse eyes and TG, comparable to the wild type KOS (data not 

shown). 

 

Contribution to this work: 

I assisted in identifying the KOS-NA mutations, constructed KOS-NAR, UL39 

L393P/R950H, and HrR3R viruses, tested them in vivo, and conducted the cell culture 

western blot, and co-immunoprecipitation studies. 
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4.5 Figures and Figure legends 

 

 

 

Figure 4.1. Acute replication of KOS-NA. A) Acute replication of KOS-NA in 

mice eyes. Mice were infected with 2 x 105 plaque forming units per eye, and tear film 

was collected from each eye on days 1,3,5,7, and 9. The amount of infectious virus 

collected in each sample was determined by plaque assay. B) Acute replication of KOS-

NA in mice TG. Mice were infected as described above and TG were collected on the 

indicated days. TG were then homogenized and the amount of infectious virus present 

was determined by plaque assay.  In both A and B results shown are logarithmic means 

(n=6 sample per group per time point), with the error bars indicating the SEM. The 

horizontal dotted lines represent the lower limit of detection.  
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Figure 4.2.  Viral genomic loads in latent TG. Mice were infected with 2 x 105 

plaque forming units per eye, and TG were collected 28-30 days post infection. DNA 

was extracted from latent TG, and the amount of HSV-1 DNA present was quantified by 

real time PCR (n=4-10 TG per group). Results shown are the fold reduction compared 

to KOS. 
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Figure 4.3. Explant induced reactivation of KOS-NA. Mice were infected with 2 

x 105 plaque forming units per eye. On day 28-30 post infection, TG were collected and 

explanted onto Vero cells. The time required for each virus to reactivate from the latent 

TG was determined by assaying the culture medium daily for the presence of infectious 

virus. Each time point represents the cumulative percentage of samples that reactivated 

(n=19-20 TG per group).  The arrow at the top of the graph indicates that after day 10, 

samples were heat shocked at 43ºC for 3h. 
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Figure 4.4. Mutations in the UL39 gene are responsible for the reduced 

acute replication phenotype of KOS-NA.  A) Acute replication of KOS-NAR, UL39 

L393P/R950H, and HrR3 R in mice eyes. Mice were infected with 2 x 105 plaque 

forming units per eye, and tear film was collected from each eye after 4 hours and  days 

1,3, and 5 post infection. The amount of infectious virus collected in each sample was 

determined by plaque assay. B) Acute replication of KOS-NAR, UL39 L393P/R950H, 

and HrR3 R in mice TG at day 5 post infection. Mice were infected as described above 

and TG were collected. TG were then homogenized and the amount of infectious virus 

present was determined by plaque assay.  In both A and B results shown are 

logarithmic means and the error bars indicate the SEM (n=8 samples per group per time 

point). The horizontal dotted lines represent the lower limit of detection. 
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Figure 4.5. KOS-NA ICP6 protein levels and interaction with UL40. A) Vero 

cells were infected at MOI of 2 with KOS or KOS-NA for 24 hours. Infected monolayers 

were harvested and the indicated proteins were examined by western blot analyses. 

ICP0 was used as a loading control for infection B) Vero cells were mock infected or 

infected at MOI of 2 for KOS and 5 for KOS-NA for 24 hours.  UL40 was immuno-

precipitated and the levels of ICP6 and UL40 were analyzed by western blot. 
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Figure 4.6. Sequence alignment of KOS-NA to different HSV strains. 
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Chapter 5 

HSV-1 ICP22 but not US1.5 is Required for Efficient Acute Replication in Mice and 

VICE Domain Formation 

 

This chapter is modified from the published article: J Virol. 2013 Dec; 

87(24):13510-9 

 

5.1 Abstract 

The herpes simplex virus type 1 (HSV-1) immediate early protein, infected cell 

protein 22 (ICP22), is required for efficient replication in restrictive cells, viral induced 

chaperone enriched (VICE) domain formation, and normal expression of a subset of 

viral late proteins.  Additionally, ICP22 is important for optimal acute viral replication in 

vivo. Previous studies have shown that US1, the gene that encodes ICP22, produces an 

in-frame, N-terminally truncated form of ICP22 known as US1.5. To date, studies 

conducted to characterize the functions of ICP22 have not separated its functions from 

that of US1.5. To determine the individual roles of ICP22 and US1.5, we made viral 

mutants that express either ICP22 (M90A) by mutating the US1.5 initiation codon, or 

US1.5 (3Xstop) by introducing stop codons upstream of the US1.5 start codon. Our 

studies showed that, in contrast to M90A, 3Xstop was unable to replicate efficiently in 

the eyes and trigeminal ganglia of mice during acute infection, efficiently establish a 

latent infection, induce VICE domain formation, and was only mildly reduced in its 

replication in restrictive HEL cells and MEFs. Both mutants enhanced the expression of 

the late viral proteins vhs and gC and inhibited viral gene expression mediated by HSV-
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1 infected cell protein 0 (ICP0). When we tested our mutants’ sensitivity to type I 

interferon (IFN-β) in restrictive cells, we noticed that the plating of the ICP22 null (d22) 

and 3Xstop mutants was reduced by adding IFN-β. Overall, our data suggest that US1.5 

partially complements the functions of ICP22. 
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5.2 Materials and Methods. 

Cells and viruses. Vero cells and HEL-299 cells were obtained from the 

American Type Culture Collection (ATCC). Vero cells were grown in Dulbecco’s 

Modified Eagle’s Medium (DMEM) supplemented with 5% fetal bovine serum (FBS), 2 

mM L-glutamine, 100 µg/ml penicillin, and 100 U/ml streptomycin. HEL cells were grown 

in Minimum Essential Medium (MEM) Alpha supplemented with 10% FBS, L-glutamine, 

and antibiotics as described for Vero cells. CD-1 mouse embryonic fibroblasts (MEFs) 

(kindly provided by Dr. Kristi Neufeld) and 129 MEFs (prepared in our laboratory and 

the protocol is approved by the University of Kansas Institutional Animal Care and Use 

Committee) were grown in the same media as Vero cells, except the DMEM was 

supplemented with15% FBS. The wild-type HSV-1 strain KOS (passage 11) was used 

in our study. All the viruses were propagated and titered on Vero cells. 

 

Construction of mutant and marker rescue (MR) viruses. To make our 

mutants in a KOS background, we initially made the ICP22 null mutant, d22, by marker 

transfer. For the construction of this virus, Vero cells were seeded on 60 mm dishes at 

5x105 cells/plate. Twenty-four hours later, cells were co-transfected with 1 µg KOS viral 

DNA and 2.5 µg of AgeI-linearized pUCNS:lacZ plasmid (218) (kindly provided by Dr 

Stephen Rice). Cells were transfected with Fugene HD (Roche) at a ratio of 3:1 (µl 

transfection reagent: µg DNA) according to the manufacturer’s recommendations. 

Mutants were identified by blue/white selection in the presence of X-gal. Blue plaques 

were picked, and plaque purified at least three times. Correct insertion of the mutation 

was confirmed by BamHI digestion of viral DNA and Southern blot analyses (Figure 
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5.1B). To create the M90A and 3Xstop mutant viruses, pAlter-M90A and pAlter-3Xstop 

plasmids (kindly provided by Dr Priscilla Schaffer’s lab) (117) were digested with EcoRI 

and KpnI and co-transfected with d22 viral DNA. White plaques were picked and 

purified at least three times. Correct insertion of M90A mutation was confirmed with 

BamHI and PciI digests and Southern blot analyses (Figure 5.1B). Correct insertion of 

3Xstop mutation was confirmed with SacII digests and Southern blot analyses (Figure 

5.1B). M90AMR and 3XstopMR viruses were made by co-transfecting the 

corresponding mutant viral DNA with the wild-type pAlter-ICP22 plasmid cut with EcoRI 

and KpnI. Plaques were picked randomly, and the rescuants were initially identified by 

PCR and restriction enzyme digestion analyses and rescue by the wild-type ICP22 

sequences were confirmed by Southern blot analyses (data not shown). 

 

Acute viral replication in mice.  Infections were performed as previously 

described (92). Briefly, CD-1 outbred female mice (6-7 weeks old) were purchased from 

Charles Rivers Laboratories (Shrewsbury, MA) and cared for according to Guide for the 

Care and Use of Laboratory Animals (173).  The protocol for using these mice is 

approved by the University of Kansas Institutional Animal Care and Use Committee.  

Mice were anesthetized by intraperitoneal injection of ketamine (75-100 mg/kg of body 

weight) and xylazine (10 mg/kg of body weight).  Corneas of mice were scarified with a 

26-gauge needle and infected with KOS, d22, M90A, 3Xstop, or each MR virus at 2x105 

PFU of virus per eye in 5 µL medium. To determine acute ocular titers, the eyes of 

infected mice were swabbed at 4 hours, days 1, 3, and 5 post-infection using moistened 

cotton tipped swabs, and placed in 500 µL of Vero cells growth medium. To determine 
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acute replication in the trigeminal ganglia, mice were euthanized by CO2 asphyxiation at 

days 3 and 5 post-infection, and TG were removed and placed in 500 µL 1% FBS 

growth medium and 100 µL of 1 mm glass beads. Samples were homogenized with a 

Mini-beadbeater 8 (BioSpec). All viral samples were titered on Vero cells, and 

differences in viral titers were evaluated using the student’s t-test.  

 

Viral pathogenicity scoring. At day 8 post-infection, mice were scored for the 

appearance of gross lesions based on the following scoring system, 0: no signs of 

infection; 1: swollen eyelids; 2: less than 20% removal of hair around the eyes; 3: 20-

70% removal of hair between the eyes; and 4: more than 70% removal of hair between 

the eyes. Statistical analyses were performed using the student’s t-test. 

 

Latent viral genome loads in TG. At day 28 post-infection, TG were collected, 

and DNA was isolated from each TG as previously described (195).  PCR primers 

specific for the HSV-1 UL50 gene were used to measure viral DNA loads (152) and 

primers for mouse adipsin gene were used as a loading control (153).  Real time PCR 

was performed in a total volume of 25 µL per sample of FastStart SYBR Green Master 

(Roche, Indianapolis, IN) and primers in a StepOnePlus Real-Time PCR System 

(Applied Biosystems). For UL50 PCR samples, 125 ng of DNA was used per reaction, 

and for adipsin PCR samples, 10 ng of DNA was used per reaction. All samples were 

analyzed in duplicate.  Standard curves for each PCR condition were carried out as 

described (153) to quantify the amount of viral DNA present in each sample relative to 
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adipsin gene using the 2-ΔΔct method (154).  Statistical analyses were performed using 

the one-way ANOVA test. 

 

Viral yield assays. HEL cells or MEFs were plated at 1x105 cells per well in 12-

well plate. Twenty-four hours later, cells were infected at MOI of 0.1 with each virus. 

One hour after addition of the virus, cells were washed with acid wash buffer for 1 

minute to inactivate any unabsorbed virus, then washed with phosphate buffered saline 

(PBS), and supplemented with HEL or MEF growth medium. Twenty-four hours post-

infection, cells were harvested, and viral yields were determined by standard plaque 

assays. For viral yield assays in the presence of IFN-β, the same protocol was followed 

as above, with the exception that HEL cells and MEFs were pretreated with human IFN-

β (PBL InterferonSource, cat. no 11410-2) or mouse IFN-β (PBL InterferonSource, cat. 

no 12400-1), respectively, at 1000 units per mL for 16 hours before adding the virus.  

The same concentration of IFN-β was added to PBS washes and media during the 

course of infection. 

 

Western blot analysis. HEL cells and MEFs were plated on 12-well plates at 

1x105 cells per well. Twenty-four hours post-plating, cells were infected at an MOI of 2 

for each virus. Samples were harvested at 8 or 24 hours post-infection in 50 µL 1X 

Laemmeli buffer (100ºC) supplemented with 1X protease inhibitors (1µg/mL Leupeptin, 

1µg/mL Aprotinin, 1mM PMSF). Samples were heated at 95ºC for 5 min, vortexed, and 

centrifuged. Ten µl per sample was resolved on a 6% SDS PAGE gel. Proteins were 

transferred to nitrocellulose membranes using a semidry transfer unit (GE Health Care, 
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cat. no. TE77). Each membrane was blocked in 5% bovine serum albumin (BSA) in 

0.1% Tween-20 diluted in tris-buffered saline (TBS-T) for 1 h at room temperature. 

Primary antibodies used were:  ICP22, a rabbit polyclonal antibody 413 produced by 

Bethyl laboratories (117) diluted 1:5000; β-Actin, a rabbit polyclonal antibody (Santa 

Cruz Biotechnology, cat. no. sc-1616) diluted 1:1000; vhs, a rabbit polyclonal antibody 

described in (219) diluted 1:100; and gC, a mouse monoclonal antibody (Santa Cruz 

Biotechnology, cat. no. sc-56982) diluted 1:250.The membranes were washed 3 times 

in TBS-T, and probed with: peroxidase conjugated goat antirabbit (Jackson 

Immunoresearch) diluted 1:1000 and peroxidase conjugated goat antimouse  (Jackson 

Immunoresearch) diluted 1:1000 at room temperature for 1 h. Membranes were washed 

3 times in TBS-T and developed using SuperSignal West Pico chemiluminescent 

substrate (Thermo Fisher Scientific). Images were captured with a Kodak 4000R image 

station, and the band intensities were measured by densitometry using ImageJ. 

 

Immunofluorescence studies. HEL cells or Vero cells were plated on glass 

coverslips in 24-well plates for 24 h (5x104 per well). Cells were then infected at an MOI 

of 0.1. After 24 h of infection, cells were fixed with 4% formaldehyde in phosphate 

buffered saline (PBS) for 15 min at room temperature, washed with PBS, and blocked 

for 1 h in 5% normal goat serum and 0.2% Triton X-100 diluted in PBS at 37ºC. The 

primary antibodies used were: ICP22 rabbit Polyclonal 413 described in our western 

blot studies diluted 1:500 and Hsc-70 rat monoclonal (Stressgen, cat. no SPA-815) 

diluted 1:500.Cells were incubated in primary antibodies for 1 h at 37ºC and then 

washed at least 3 times. Each secondary antibody was added for 1 h at 37ºC. The 
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secondary antibodies used were: goat anti-rabbit dy488 (Jackson Immunoresearch) 

diluted 1:500 and goat anti-rat Alexaflour 568 (Invitrogen) diluted 1:1000. Cells were 

then washed 3 times with PBS, mounted with Prolonged Antifade Kit (Invitrogen) and 

examined with fluorescence microscopy (Nikon Eclipse TE-2000-U4). 

 

Luciferase assays. Vero cells were plated at 5x104 cells per well in 24-well 

plates for 24 h. Cells were co-transfected with 50 ng of the reporter plasmid (VP16 

promoter- luciferase construct) (172) alone or with 100 ng of pAlter-1+ICP0 (pICP0), or 

pAlter-1 that expresses both ICP22 and US1.5 (pICP22), only ICP22 (pM90A) (117), or 

only US1.5 (p3Xstop) (117), all driven by their native promoters, or a combination of 100 

ng of pICP0 and 100 ng of pICP22, pM90A, or p3Xstop. In all cases, salmon sperm 

DNA was added for a total of 1 µg per well. Transfections were performed according to 

the manufacturer’s protocol using Fugene HD at a ratio of 3:1. Cells were transfected 

for 48 h, wells were washed with PBS, and each well was then harvested in 100 µL of 

1X passive lysis buffer (PLB; cat. no E1941, Promega) by rocking at room temperature 

for 15 min. Samples were harvested in microfuge tubes, vortexed for 30 sec, and briefly 

centrifuged at room temperature. Fifty µL of each sample were then added to 50 µL 

luciferase assay buffer (125 mM sodium MES pH 7.8, 25 mM magnesium acetate, 2 mg 

of ATP per mL) as previously described (220). Luciferase assays were conducted using 

the Promega Luciferase Assay System 1000: 50 µL of 1 mM D-luciferin was added per 

sample and a 2-sec delay before a10-sec read (Biotec Synergy, HT multicode 

microplate reader). Light units are displayed as percentages normalized to the pICP0 

values, and statistical analyses were performed using the Mann-Whitney U test. 
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Plaque reduction assays. HEL cells or MEFs were plated in 24-well plates at 

5x104 cells per well for 24 h. Cells were then mock-treated or pre-treated with human 

IFN-β as described above for viral yield assays. Sixteen hours later, cells were infected 

with a serially diluted KOS, d22, M90A, or 3Xstop. At 1 hour post-infection, cells were 

overlaid with 0.5% methylcellulose in the appropriate cell culture medium. Three days 

later, cells were fixed in 4% formaldehyde in PBS for 15 min at room temperature, 

washed with PBS, and stained for 1 hour at room temperature with an anti-HSV-1 

antibody (Dako, cat. no. B0114) diluted 1:350 at room temperature with shaking. Plates 

were washed once with PBS, and incubated with horseradish peroxidase conjugated 

antibody (Jackson Immunoresearch) diluted 1:500 for 1 h at room temperature. Plates 

were washed once with PBS, and plaques were visualized using a peroxidase substrate 

kit, AEC (Vector Laboratories) according to the manufacturer’s recommendations. 

Pictures were taken with a scanner, and the number of pixels within a given plaque (that 

represents its area) was measured by Adobe Photoshop.  Twenty plaques were 

examined for each virus. 

 

5.3 Results 

Construction of ICP22 mutant viruses. In order to separate the functions of 

ICP22 and the US1.5 protein during viral infection, we constructed two mutant viruses. 

The M90A mutant (Figure 5.1A and B) was generated by homologous recombination as 

previously described (117), except we used an ICP22 deletion virus (d22) that we 

generated in a KOS background (Figure 5.1A, B, and C). M90A contains a methionine 

to alanine mutation in codon 90 of ICP22, which is the initiating codon for US1.5 (Figure 
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5.1A and B). Consequently, this mutant expresses ICP22 and not US1.5 (Figure 5.1C) 

(117).The 3Xstop mutant virus was generated similar to the M90A mutant virus. This 

mutant introduces 3 stop codons upstream to the initiation codon of US1.5 (Figure 5.1A 

and B) and expresses the US1.5 protein and not ICP22 (Figure 5.1C). 

 

ICP22 but not US1.5 is required for efficient acute viral replication in vivo. 

Genetic studies have demonstrated the importance of ICP22 for acute replication in vivo 

when the productive replication of various ICP22 mutant viruses were examined in 

different animals models (102, 106, 221). In order to test the individual roles of ICP22 

and the US1.5 protein during acute viral replication in vivo, we used a mouse ocular 

model of HSV-1 infection. The eyes of mice were infected with KOS, d22, M90A, or 

3Xstop and in the case of M90A and 3Xstop, their corresponding marker rescue (MR) 

viruses. Eye swabs were taken at 4 hours and days 1, 3, and 5 post-infection to monitor 

ocular replication, or trigeminal ganglia homogenates were prepared on days 3 and 5 

post-infection to monitor acute replication in neurons. As shown in Figure 5.2A, the 

M90A mutant virus replicated to levels comparable to that of KOS in the eyes of mice 

for all time points tested. In contrast, the replication of the 3Xstop mutant in the eyes 

was significantly reduced relative to KOS on day 1 (17-fold, t test p=0.01) and day 5 

(184-fold, t test p=6.8x10-7) post-infection. The replication of d22 in the eyes of mice 

was significantly reduced at days 1, 3, and 5 post-infection by 1722-, 255-, and 554-fold, 

respectively (t test p=5.9x10-11, 1.7x10-19, and 6.5x10-18). The replication of M90AMR 

and 3XstopMR viruses in the eyes was comparable to KOS (Figure 5.2B). When acute 

replication of the M90A and 3Xstop mutants in TG was examined, only the 3Xstop 
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mutant showed decreased growth at day 3 (59-fold, t test p=3.6x10-5, Figure 5.2C) and 

day 5 (429-fold, t test p=2.3x10-10, Figure 5.2E). The M90A mutant replicated as 

efficiently as KOS on both days (Figure 5.2C and E).  We were unable to detect 

progeny virus in the TG of d22-infected mice on days 3 and 5 post-infection (t test 

p=6.7x10-16 and 3.3x10-18, Figure 5.2C and E). The M90AMR and 3XstopMR viruses 

replicated similar to KOS in TG on both days (Figure 5.2D and F). Thus, ICP22, not 

US1.5, is the major contributor to acute ocular and consequently neuronal replication. 

 

ICP22 but not US1.5 is required for external pathological lesions in mice. 

We scored the pathological lesions caused by the ocular infection of mice with KOS, 

d22, M90A, 3Xstop, M90AMR, and 3XstopMR at day 8 post-infection. The severity of 

infection was ranked on a scale of 0-4 for each group, where “0” indicates no signs of 

infection and “4” indicates more than 70% loss of hair from between the eyes, which is 

the result of scratching or secondary inflammation. As shown in Figure 5.3, the 3Xstop 

mutant behaved like d22 in that it did not show any signs of disease, as both groups 

had pathology scores of 0 (Table 1, t test, p=9x10-5). The M90A mutant, on the other 

hand, behaved similar to KOS and the MR viruses, where inoculated mice showed 

obvious signs of infection (Figure 5.3 and Table 5.1). Our data indicate that, in contrast 

to ICP22, the expression of US1.5 is insufficient to induce signs of viral pathogenesis in 

mice.   

 

ICP22 is required for efficient establishment of latency. To examine the 

ability of our mutants to establish a latent infection, TG from infected mice were 
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collected 28 days post-infection, and viral DNA loads were determined using real time 

PCR. As shown in Figure 5.4, relative to KOS, the 3Xstop mutant was significantly 

reduced for viral DNA levels by 11.5 fold (one way ANOVA, p<0.05). The M90A mutant, 

on the other hand, was able to establish latency comparable to KOS and the MR 

viruses (Figure 5.4). The fold reduction of the d22 mutant was comparable to the mock-

infected mice (≥568-fold, one way ANOVA, p<0.05, Data not shown). The defect in 

establishing an efficient latent infection with both d22 and 3Xstop is likely attributed to 

their impaired acute replication phenotypes in the eyes and TG as has been observed 

with other HSV-1 mutants (31, 160).  

 

ICP22 or US1.5 is sufficient for HSV-1 replication in restrictive cells. It has 

been previously established that ICP22 is required for efficient viral growth in certain cell 

lines, which have been termed “restrictive” cell lines (102). In order to test the roles of 

ICP22 and US1.5 in viral replication in restrictive cells, we performed a viral yield assay 

in HEL cells (102). HEL cells were infected at an MOI of 0.1 with KOS, d22, M90A, or 

3Xstop mutants. At 24 hours post-infection, cells and progeny virus were collected, and 

viral yields were determined with a standard plaque assay. As shown in Figure 5.5, the 

M90A mutant replicated to levels that were comparable to that of KOS; however, d22 

replication was significantly reduced (83-fold, t test p=2.5x10-7). Replication of the 

3Xstop mutant was only modestly impaired relative to KOS (4.5-fold, t test p=0.003) 

(Figure 5.5). The replication of the 3Xstop mutant was also significantly reduced relative 

to the d22 mutant (18.4-fold, t test p=5.5X10-8). Similar results were seen in mouse 

embryo fibroblasts (MEFs) of CD-1 mice strain (Data not shown). These data indicate 
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that ICP22 is sufficient to enhance viral growth in HEL and MEF cells; however, the 

US1.5 protein can, to a great extent, complement the function of full-length ICP22. 

 

Both ICP22 and US1.5 enhance the expression of late viral proteins in cell 

culture. ICP22 has been demonstrated to enhance the expression of a subset of late 

viral proteins, including viral glycoprotein C (gC) and virion host shutoff (vhs) (101, 102, 

107, 108). In order to test the individual roles of ICP22 and US1.5 in the expression of 

late viral proteins, we infected HEL cells with KOS, d22, M90A, and 3Xstop for 24 hours 

and examined vhs and gC protein levels by western blots. When compared to KOS-

infected samples, the expression of gC and vhs was reduced in d22-infected cells but 

not in M90A- or 3Xstop-infected cells (Figure 5.6). Similar results were also observed at 

12 hours post-infection (Data not shown). Our data show that both ICP22 and US1.5 are 

capable of stimulating late viral protein expression.  Analogous results were observed in 

MEFs (CD-1 strain) and Vero cells (Data not shown). 

 

US1.5 does not induce VICE domains. ICP22 has been shown to be required 

for the formation of VICE domains (112) during productive HSV-1 infection. To test the 

individual contributions of ICP22 and US1.5 in the formation of VICE domains, HEL cells 

were mock infected or infected with KOS, d22, M90A, or 3Xstop for 24 hours, and the 

localization of ICP22 and the VICE domain marker, Hsc70, were examined by 

immunofluorescence. Our experiments showed that the M90A mutant was able to form 

VICE domains that appeared identical to KOS (Figure 5.7A and B), in which ICP22 

colocalized with Hsc70 in the nucleus. The 3Xstop mutant, however, was unable to 
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induce Hsc70 puncta (Figure 5.7A and B). Although the US1.5 protein localized to the 

nucleus, it failed to form the speckled pattern of ICP22 staining observed with KOS- and 

M90A-infected nuclei (Figure 5.7A). Notably, the staining pattern of Hsc70 in the 

presence of US1.5 localized to the nucleus, which was different from that of mock- and 

d22-infected cells (Figure 5.7A). This indicates that, although US1.5 fails to induce the 

formation of VICE domains, it is still capable of relocalizing Hsc70 to the nucleus. 

Similar results were observed in Vero cells (Data not shown). 

 

M90A and 3Xstop inhibit ICP0-directed transactivation of an HSV promoter-

luciferase reporter. The IE protein ICP0 is a promiscuous transactivator of all classes 

of HSV-1 genes (222). One published report demonstrated that ICP22 represses ICP0-

transactivated expression of reporter genes in transient transfections (223), which could 

be directly through interfering with ICP0’s transactivation activity, or indirectly by 

reducing ICP0’s expression (224, 225).  To investigate if this inhibitory function is 

carried out by ICP22, US1.5, or both, we performed a luciferase assay to test the effect 

of both proteins on ICP0-mediated gene expression. ICP0 expression led to the 

maximum activity of the VP16 promoter and was given the 100% value (Figure 5.8). 

Neither the pICP22 plasmid (which expresses both ICP22 and US1.5), pM90A, or 

p3Xstop was able to activate VP16 promoter. Combining pICP22, pM90A, or p3Xstop 

with pICP0 led to a significant inhibitory effect on ICP0’s transactivation of the VP16 

promoter (Mann Whitney U-test, p= 0.002). Our results demonstrate that ICP22 and 

US1.5 both have a significant and comparable inhibitory effect on the ICP0-directed 

transactivation in reporter gene experiments. 
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ICP22 but not US1.5 counteracts the effects of interferon-β (IFN-β) in 

restrictive cell lines. In order to understand the reduction in the ability of the 3Xstop 

mutant to replicate acutely in vivo, we wanted to test if there is a relationship between 

ICP22 or US1.5 and the type I IFN response. An earlier publication examined the 

plaquing of an ICP22 null mutant in IFN-treated Vero cells, a cell line permissive for 

ICP22 mutant replication (100), and concluded that ICP22 is not required to counteract 

an established type I IFN response (58).  Consequently, we decided to perform plaque 

reduction assays in a restrictive cell line, HEL cells. Interestingly, we found a noticeable 

reduction in the number of plaques formed by d22 in the presence of IFN-β relative to 

KOS (Table 5.2). The overall size plaque size for d22 was smaller than that of KOS. 

Furthermore, the reduction in plaque size for d22 was further enhanced by IFN-β 

compared to KOS (46-fold vs. 10-fold, Figure 5.9). For M90A, the reduction in the 

number of plaques in the presence of IFN-β was comparable to KOS (Table 5.2), as 

well as the plaque sizes with and without IFN-β (9-fold). Interestingly, although the 

reduction in the number of plaques formed by 3Xstop after adding IFN-β were 

comparable to KOS (Table 5.2), the plaques appeared smaller than those of KOS only 

after adding IFN-β (37-fold versus 10-fold, Figure 5.9). In order to correlate this 

observation to the in vivo acute replication data, we decided to repeat the same 

experiment in CD-1 MEFs. Our results showed that the size of d22 and 3Xstop plaques 

was markedly smaller than the wild-type plaques, a phenotype that was enhanced in 

IFN-β-treated cells (34-fold and 21-fold, respectively, versus a 2-fold reduction with 

KOS, Figure 5.9). Consistent with these experiments, there was a reduction in the 

number of plaques for d22 and 3Xstop that exceeded the decreases observed for KOS 
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and M90A (Table 5.2).  When we repeated the same experiments on MEFs of 129 

strain, we observed an even further reduction in the number of plaques for d22 and 

3Xstop (Table 5.2). To determine if the plaque reduction phenotype correlated with 

reductions in the viral replication, we performed yield assays in the absence or 

presence of IFN-β.  As shown in Figure 5.10A, reductions in viral replication after the 

addition of IFN-β were similar for KOS, d22, M90A, and 3Xstop mutants (~50-fold 

decrease) on HEL cells and similar results were noticed on 129 MEFs (Data not 

shown). In CD-1 MEFs (Figure 5.10B), IFN-β further impaired d22 replication (140-fold 

compared to 6-fold reduction of KOS), while IFN-β only slightly reduced the growth of 

M90A and 3Xstop compared to KOS (19- and 27-fold respectively). These data indicate 

that ICP22 but not US1.5 is required for efficient plaquing in the restrictive cell lines, HEL 

and MEFs, in the presence of a pre-established interferon response and the degree of 

this requirement is cell type dependent.  

 

5.4 Discussion 

The HSV-1 genome contains ~90 genes, and with some exceptions, each gene 

encodes a single protein. The US1 gene is one such exception, as it codes for two 

proteins: ICP22 and its N-terminally truncated form, US1.5 (116). To date, reports that 

have examined the functions of ICP22 have largely not separated its biological activities 

from those of US1.5. The goal of this study was to characterize the individual 

contributions of ICP22 and US1.5 in the HSV-1 life cycle by generating mutant viruses 

(i.e., M90A and 3Xstop) that can only express one of the two proteins. Our data show 

that the US1.5 protein is dispensable for acute replication in mice and for the induction 
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of VICE domains.  Also, our data indicate that either protein can functionally enhance 

the expression of late viral proteins in cell culture and inhibit ICP0-mediated gene 

expression in transient transfection assays. Additionally, we identified a new role for 

ICP22 in enhancing viral plaquing in the presence of IFN-β, a function that was not fully 

compensated by US1.5 alone. Moreover, as the M90A mutant behaved like KOS in all of 

our assays, this indicates that the point mutation at M90 residue did not have any 

impact on the functional activities of ICP22. 

We did observe that the expression of US1.5 alone (expressed from 3Xstop) was 

marginally reduced for viral replication in restrictive HEL and MEFs cells; however, its 

acute replication in the eyes and TG of mice was remarkably reduced relative to KOS.  

The diminished replication of 3Xstop in TG may be attributed to its reduced ocular 

replication (31), given that the acute TG titers of 3Xstop at days 3 and 5 followed a 

similar trend for replication in the eyes at days 1 and 5 post-infection (Figure 5.2A, C, 

and E). This impaired acute replication phenotype both in the eyes and TG likely 

explains its defect in establishing an efficient latent infection, as similar results have 

been observed with other mutants of HSV-1 (31, 160).  This decrease in the 

establishment of latency by 3Xstop would be expected to negatively impact reactivation. 

For this reason, we did not perform ex vivo reactivation studies with this mutant.  

The deficiency of the 3Xstop mutant in acute replication in vivo suggests that the US1.5 

protein lacks a critical function of ICP22. What could this function be?  A potential 

answer is that it is unable to induce VICE domains (Fig. 5.7A and B).  Notably, our 

results provide a finer map of the region of ICP22 required for VICE domain formation, 

reducing it from the first 146 N-terminal residues as previously described (112) to the 
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first 89 N-terminal amino acids.  Because the functional significance of VICE domains in 

the HSV-1 life cycle is not yet fully understood, it is possible that the requirement of 

VICE domains in viral growth could be cell type dependent and specifically required for 

in vivo replication.  Thus, this defect in the VICE domains observed with the 3Xstop 

virus may contribute to its impaired acute replication in vivo. Additional studies will be 

needed to determine the role VICE domains play in HSV-1 replication and how ICP22 

facilitates their formation. While VICE domain formation is affected in 3Xstop infected 

cells, US1.5 is expected to modify the C-terminus of the large subunit of the host RNA 

polymerase II based on ICP22 mapping studies from Steve Rice’s laboratory, as 

residues 147-420 of ICP22 are sufficient to modify RNA Polymerase II (119).  Although 

the mechanism by which ICP22 alters RNA Polymerase II to enhance viral gene 

expression is unknown, the expected presence of this activity in US1.5 may explain the 

intermediate levels of acute ocular and neuronal replication observed with 3Xstop in 

mice when compared to KOS and d22. 

Although the 3Xstop mutant’s expression levels of US1.5 protein might be lower 

than that of ICP22 expressed either from KOS or M90A (Figures 5.1C and 6), the 

protein is still able to fully carry out some functions of ICP22; these functions include 

enhancing late viral protein expression, inhibiting ICP0 transactivated gene expression, 

and largely enabling efficient viral replication in cell culture. Additionally, we also tested 

if overexpression of US1.5 using the HCMV promoter (117) might lead to VICE domain 

formation in transiently transfected HEL cells.  In contrast to ICP22, we did not detect 

VICE domains in these experiments (data not shown). Thus, while it may be argued that 
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the expression levels of US1.5 dictates its ability to complement ICP22’s functions, this 

latter experiment does not support this possibility. 

Another plausible explanation for the impaired replication of 3Xstop mutant is 

related to the host’s antiviral IFN response.  Specifically, our results demonstrate that 

the 3Xstop and d22 mutants are hypersensitive to IFN-β in cell culture.  Thus, we have 

identified a new function of ICP22, in that it counteracts the effects of this type I IFN. 

Interestingly, this phenotype correlated very well with the impaired replication phenotype 

in the restrictive cell lines HEL and MEFs of the CD-1 mice strain (Figures 5.5 and 5.10) 

and in MEFs of strain 129 and the neuronal cell line, SK-N-SH (data not shown). On the 

other hand, the hypersensitivity of both mutants to IFN-β was not detected in the 

permissive cell line, Vero cells ((58) and data not shown), which are known to have a 

defect in IFN signaling (226). This could explain, in part, the replication phenotypes of 

3Xstop and d22 in mice.  Because the decrease in the plaque sizes observed in plaque 

reduction assays (Figure 5.9) was not accompanied by a similar reduction in viral 

growth (Figure 5.10) after adding IFN-β, this raises the possibility that the observed 

phenotype is due to a defect in cell-to-cell spread rather than a defect in viral replication.  

Whether this function of ICP22 is mediated directly or indirectly through other viral 

factors will require more studies to address this question. In support of this hypothesis, 

we couldn’t detect a complementation of d22 or 3Xstop replication on IFN-α/β receptors 

knockout mice derived MEFs (data not shown). What was intriguing is the effect of d22 

mutant virus on the IFN-β promoter. When we infected the restrictive cell line HepaRG 

(data not shown) which stably expresses IFN-β promotor::luciferase construct with KOS, 

d22, or 3Xstop, we noticed that d22 could induce the IFN-β promoter about 3-fold more 
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than KOS (Figure 5.11). This observation indicates that ICP22 is required for interfering 

with the induction of IFN-β promoter during viral infection and strongly suggest that this 

phenotype is separate from the plaque reduction phenotype mechanistically because 

the 3Xstop couldn’t induce the IFN-β promoter (Figure 5.11). Related to this possibility, 

the reduction in the levels of the late viral protein, vhs, might partially contribute to this 

phenotype in case of d22 mutant. vhs is an endoribonuclease that degrades viral and 

cellular mRNA and is capable of interfering with an interferon induced antiviral state 

(227). This mechanism is not applicable to the 3Xstop phenotype, which is able to 

enhance wild type levels of vhs protein (Figure 5.6). Additionally, there could be a 

potential association between the formation of VICE domains and the interferon 

response based on published reports that have linked the cellular chaperone machinery 

to type I IFN (228-230). 

It is notable that the acute replication of the ICP22 null mutant, d22, was greatly 

reduced in the eyes relative to the 3Xstop mutant both at day 1 and at day 3. 

Consequently, d22 was unable to acutely replicate in TG or establish a detectable latent 

infection in our experiments.  The absence of both ICP22 and US1.5 in d22 significantly 

attenuated lytic and latent infections in mice, which mirrors the in vivo phenotypes of 

other ICP22 mutants (106, 118, 221).  Many of these mutants do not express optimal 

levels of late viral genes, including vhs, US11, and/or gC.  As previously mentioned, it 

has been hypothesized that the expression of these late genes is dependent on VICE 

domain formation and/or the altered modification of the C-terminus of the host RNA 

polymerase II (231).  Ultimately, this defect in late viral gene expression likely reduces 

d22 growth in mice.   Additionally, a reduction in gC levels could thwart the ability of 
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HSV-1 to counteract complement-mediated neutralization (232-235), which might 

further contribute to the defective acute replication phenotype of d22 in vivo. Lastly, the 

composition of virions proteins in the ICP22 mutant, 22/n199, is altered, and this mutant 

replicates poorly in mice (106).  It was hypothesized that 22/n199 virions are less stable 

than wild-type virions, and that this contributes to its in vivo phenotype.   Consequently, 

it is plausible that the composition of d22 virions is similarly altered, and that this 

negatively impacts its replication. 

Our results did not define a unique function for US1.5, or a defect in HSV-1 

replication in its absence. This raises the question of why HSV-1 has evolved to express 

the US1.5 protein. One possibility might be that the viral requirement for US1.5 is 

conditional and is enhanced only under certain circumstances during the HSV-1 life 

cycle.  Moreover, while US1.5 is not required for HSV-1 replication in our assays, a role 

for US1.5 in the HSV-1 life cycle may be apparent in other models systems or in its 

natural host, humans. Finally, since we find that many if not most of the known functions 

of ICP22 can be carried out by US1.5, we propose that US1.5 can serve as a biological 

"backup” for ICP22, should the ribosome readthrough be blocked at the translation 

initiation codon of ICP22. 
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5.6 Tables 

Table 5.1.Viral pathogenesis scoring of wild-type HSV-1 and ICP22 mutants. 

 

Virus KOS d22 M90A M90AMR 3Xstop 3XstopMR 

Score 2.5±0.5 0±0 2.5±0.5 2.33±0.47 0±0 2.5±0.5 

 

Mice were infected per eye with each virus. Eight days post-infection, mice were 

scored for gross pathological lesions from 0 to 4, where 0 indicates no signs of infection 

and 4 indicates >70% removal of the hair between the eyes. n= 5-6 mice per virus, and 

statistical analyses were done using the Student’s t-test. Scores are given ± the 

standard deviation. 

 

Table 5.2. Plaque reduction assays of KOS and ICP22 mutants in the absence and 

presence of IFN-β. 

 

 

Virus 

Ratio –IFN-β/+IFN-β 

HEL MEFs (CD-1) MEFs (129) 

Expt. 1 Expt. 2 Expt. 1 Expt. 2 Expt. 1 Expt. 2 

KOS 6.7 15 6.7 2 37.5 20 

d22 50 133 45.5 20 1100 1400 

M90A 6.7 6.2 4 6.7 27 35 

3Xstop 20 13 14 20 125 175 

 



117 

 

HEL cells or MEFs cells were infected with serially diluted viruses in the absence 

or presence of 1000 U/mL of IFN-β. Three days post-infection, cells were fixed and 

immunostained for plaque formation. Plaques were counted for all samples, and the 

ratios of plaque numbers between untreated and treated plates were determined. The 

data shown are results from two independent experiments for each cell line. 
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6.7 Figures and Figure legends 
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Figure 5.1.  Construction of ICP22 and US1.5 mutant viruses. A) Diagram of 

the HSV-1 genome showing the US1 gene, which encodes ICP22 and US1.5 protein. 

The open boxes denote the repeated sequences flanking the unique long (UL) and 

unique short (US) segments. The ICP22-null mutant, d22 has the lacZ gene (which 

codes for β-galactosidase) inserted in place of the ICP22 ORF. M90A is mutated such 

that only ICP22, but not US1.5, is produced as the initiation codon of US1.5 is mutated to 

alanine. 3Xstop produces only US1.5, but not ICP22, as this mutant has 3 stop codons 

inserted upstream of the initiation codon of US1.5. B) The restriction enzyme digestion 

patterns with the fragment lengths (indicated in base pairs) on the left (B: BamHI, P: 

PciI, S: SacII) and Southern blots shown on the right. The M90A and 3Xstop mutations 

were designed to eliminate a PciI site or add a SacII site respectively. The lanes are: 1 

and 2: KOS and d22, respectively, cut with BamHI; 3 and 4: KOS and M90A, 

respectively, cut with PciI; 5 and 6: KOS and 3Xstop, respectively, cut with SacII. The 

star in the second blot denotes a 1.9 kb BamHI fragment of the opposite US/RS junction 

(119) C) ICP22 and US1.5 protein expression of KOS (lanes 1 and 5), d22 (lanes 2 and 

6), M90A (lanes 3 and 7), and 3Xstop (lanes 4 and 8) mutant viruses 8 hours post-

infection in HEL cells or Vero cells, as determined by western blot analyses. 
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Figure 5.2. Acute replication of M90A and 3Xstop mutants and MR viruses 

in vivo. A and B) Acute ocular replication of M90A and 3Xstop mutants and MR viruses 

in mice. CD-1 mice were infected with 2x105 PFU per eye. At the indicated times points, 

the eyes of mice were swabbed, and viral titers were determined by standard plaque 

assays. C - F) Acute TG replication of M90A and 3Xstop mutants and MR viruses in 

mice. CD-1 mice were infected with 2x105 PFU per eye. On day 3 (C and D) or day 5 (E 

and F) post-infection, mice were sacrificed, TG were removed and homogenized, and 

viral titers were determined by standard plaque assays. * Student’s t-test; P< 0.05 

compared to KOS. Error bars represent the standard errors of the means (SEMs). In all 

cases, the dashed line is the limit of detection. n = 8 samples/virus/time point. 
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Figure 5.3. Gross pathological effects of M90A and 3Xstop mutants and MR 

viruses. CD-1 mice were infected with 2x105 PFU per eye. Eight days post-infection, a 

representative picture from each group of mice infected with the designated virus was 

taken and is shown. 
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Figure 5.4. Establishment of latency of M90A and 3Xstop mutants and MR 

viruses. CD-1 mice were infected with 2x105 PFU per eye. Twenty-eight days post-

infection, mice were sacrificed, TG were removed, and genomic DNA was isolated from 

samples. The amount of HSV-1 DNA present in each sample was quantified by real 

time PCR (n=10-12 TG per group). Results shown are the fold reductions compared to 

KOS. NB. the d22 virus had a fold reduction comparable to the mock infected TG (≥568-

fold, Data not shown). 
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Figure 5.5. Growth of M90A and 3Xstop mutant viruses on HEL cells. HEL 

cells were infected at MOI of 0.1 with the indicated viruses. Twenty-four hours post-

infection, cells were harvested, and viral titers were determined by a standard plaque 

assay. * Student’s t-test; P< 0.05 compared to KOS. Error bars represent the standard 

errors of the means (SEMs). 
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Figure 5.6. Examination of late viral gene expression for M90A and 3Xstop 

mutant viruses. HEL cells were infected at an MOI of 2 with the indicated viruses. 

Twenty-four hours post-infection, cells were harvested, and protein levels from cell 

extracts were determined by western blot analysis. 
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Figure 5.7. ICP22 but not US1.5, induces VICE domain formation. A) HEL 

cells were mock infected or infected with the indicated viruses at an MOI of 0.1. Twenty-

four hours post-infection, cells were fixed and stained for ICP22 and Hsc70 and 

examined by fluorescence microscopy. B) At least 100 cells that express ICP22 and/or 

US1.5 were examined for each virus, and the percentage of these cells that colocalized 

with Hsc70 is shown. 
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Figure 5.8. Inhibition of ICP0’s transactivated gene expression by vectors 

that express either ICP22 or US1.5. Vero cells were transfected with an HSV-1 

reporter plasmid (50 ng, pGL3-VP16) and a plasmid expressing Wt ICP0 (pICP0), both 

ICP22 and US1.5 (pICP22), ICP22 alone (pM90A), or US1.5 alone (p3Xstop) or a 

combination of pICP0 and pICP22, pM90A, or p3Xstop for 48 hours. Cell extracts were 

analyzed in luciferase assays to monitor ICP0’s transactivating activity.  * Mann-Whitney 

U test; P < 0.05 compared to pICP0. The error bars indicate the standard errors of the 

means (SEMs). 
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Figure 5.9. Plaque reduction assays. HEL cells or CD-1 MEFs cells were 

infected with serial dilutions of the indicated viruses in the absence or the presence of 

1000 U/mL IFN-β. Three days post-infection, cells were fixed and immunostained for 

plaque formation.  
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Figure 5.10. Growth of M90A and 3Xstop with and without IFN-β. A) HEL 

cells or B) CD-1 MEFs were infected at MOI of 0.1 in the presence or in the absence of 

1000 U/mL IFN-β with the indicated viruses. Twenty-four hours post-infection, cells were 

collected, and the viral titers were determined by a standard plaque assay. * Student’s t-

test; P< 0.05 compared to KOS. Error bars represent the standard errors of the means 

(SEMs). 
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Figure 5.11. Induction of IFN-β promoter by d22. HepRG cells, stably 

expressing Luciferase under the control of IFN-β promoter, were mock infected or 

infected at MOI of 5 with KOS, d22, or 3Xstop for 24 hours.  Cell extracts were analyzed 

in luciferase assays to monitor the induction of IFN-β promotor.  * Mann-Whitney U test; 

P < 0.05 compared to KOS. The error bars indicate the standard errors of the means 

(SEMs). 
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Chapter 6 

Herpes Simplex virus 1 upregulates the expression of p35 and changes the 

localization of CDK-5 during acute infection of neurons 

 

6.1 Abstract 

We previously reported that the cyclin dependent kinase (CDK)-5 activating 

protein, p35, is an important determinant of acute HSV-1 replication in mice. In order to 

determine the mechanism by which p35 facilitates acute viral replication in neurons, we 

examined the expression and localization of p35 and CDK-5 in response to HSV-1 

acute infection. Our data showed that HSV-1 infection triggers an increase in p35 

protein levels and relocalizes CDK-5 from the nucleus to the cytoplasm in the infected 

trigeminal ganglia (TG) neurons. As CDK-5 is required for neuronal survival after DNA 

damage response, and HSV-1 infection is reported to activate the DNA damage 

response in non-neuronal cell lines, we tested whether HSV-1 infection of TG would 

trigger the DNA damage response. We observed that infected neurons stained positive 

for the DNA damage response marker, γH2AX, which is an early event in the DNA 

damage pathway. On the other hand, where the activated DNA damage response 

proteins are expected to localize in the nucleus, we noticed that the DNA damage 

protein, PARP-1, switched from a nuclear to cytoplasmic localization in HSV-1 infected 

neurons. Consistent with previous studies, we did not detect signs of apoptosis in 

infected TG. Our data suggest a model in which acute viral infection of neurons 

upregulates p35 levels to protect neurons from apoptosis by stabilizing and activating 
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CDK-5 and we propose that the upregulation of p35 is a downstream event to the DNA 

damage response triggered by viral infection. 
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6.2 Materials and Methods 

Cells and viruses. Two human neuroblastoma cell lines, SK-N-SH and Be-(2)-C 

cells, were obtained from the American Type Culture Collection (ATCC). SK-N-SH cells 

were grown in Minimal Essential Medium with Earle's (MEM/EBSS) supplemented with 

10% fetal bovine serum (FBS), 2 mM L-glutamine, 100 µg/ml penicillin, and 100 U/ml 

streptomycin. Be-(2)-C cells were grown in 50% Minimum Essential Medium 

MEM/EBSS and 50% Ham’s F12 supplemented with 10% FBS, and the same 

concentrations of L-glutamine, and antibiotics as described for SK-N-SH cells. Vero 

cells were grown in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 

5% fetal bovine serum (FBS), 2 mM L-glutamine, 100 µg/ml penicillin, and 100 U/ml 

streptomycin. The wild-type HSV-1 strain KOS (passage 11) was used in our study and 

was propagated and titered on Vero cells.  

 

Acute viral infection of mice.  Infections were performed as previously 

described (92, 236). Briefly, CD-1 outbred female mice (6-7 weeks old) were purchased 

from Charles Rivers Laboratories (Shrewsbury, MA) and cared for according to Guide 

for the Care and Use of Laboratory Animals (173).  The protocol for using these mice is 

approved by the University of Kansas Institutional Animal Care and Use Committee.  

Mice were anesthetized by intraperitoneal injection of ketamine (75-100 mg/kg of body 

weight) and xylazine (10 mg/kg of body weight).  Corneas of mice were scarified with a 

26-gauge needle and infected with KOS at 2x105 PFU of virus per eye in 5 µL medium 

or were mock-infected. TG were collected three days post-infection after euthanizing the 

mice by CO2 asphyxiation.  
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TG immunofluoroscence assays. Harvested TG were immediately fixed in 10% 

saline-buffered formalin for 16-20 hours. Tissues were then stored in 70% ethanol at 

4°C until they were embedded in paraffin. TG were sectioned at 7 µm, and all sections 

were incubated in xylene for 10 min, 3 times, and then rehydrated through an ethanol 

series: 100%, 95%, 80%, 70%, and 50%, 5 min each. Sections were then washed in 

methanol + 0.1% Tween 20 for 15 min on a shaker and then washed twice with 

methanol, 5 min each. Sections were then washed on a shaker in methanol + 30% 

hydrogen peroxide (9:1 dilution) for 20 min on the shaker. Samples were boiled in 

citrate buffer (2.1g citric acid and 1.0g NaOH, in 1L of water, final pH 6) for 25 min in a 

microwave on high power. Slides were cooled in running distilled water for at least 5 min 

and washed twice with phosphate buffered saline (PBS), 3 min each. Tissues were 

incubated with permeablization/blocking buffer (1X PBS, 5% normal goat serum, 0.3% 

Triton X-100) for 30 min at room temperature. The primary antibody was diluted in PBS 

(as described below), added to the tissue after removing excess blocking buffer and 

incubated overnight in a humidity chamber at 4°C. Sections were washed  3 times with 

PBS for 2 min each. The secondary antibody was diluted in PBS (as described below) 

and incubated for 1 h at 37°C. Sections were washed in PBS 3 times 2 min each, 

mounted with Prolong Antifade (Invitrogen), and examined with fluorescence 

microscopy (Nikon Eclipse TE-2000-U4). 

Antibodies used. i) Primary antibodies: ICP0 mouse monoclonal (11060 sc-

53070, Santa Cruz Biotechnology) was diluted 1:250; CDK-5 rabbit polyclonal 

(AHP1270, AbD Serotec) diluted 1:250; CDK-5 rabbit polyclonal (C8 sc-173, Santa Cruz 

Biotechnology) was diluted 1:250, and p35 rabbit polyclonal (C19 sc-820, Santa Cruz 
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Biotechnology) was diluted 1:100.  HSV-1 rabbit polyclonal (B0114, Dako) was diluted 

1:250; PARP-1 rabbit polyclonal,was (237) diluted 1:250; and γH2AX mouse 

monoclonal (ab18311, Abcam) was diluted 1:150. ii) Secondary antibodies: donkey anti-

rabbit dy594 Immunoresearch) diluted 1:1000, donkey anti-mouse dy488 diluted 1:500, 

and goat anti-rabbit dy594 diluted 1:1000, all obtained from Jackson Immunoresearch. 

 

Western blotting: SK-N-SH and Be-(2)-C cells were plated on 12-well plates at 

1x105 cells per well. Twenty-four hours post-plating, cells were infected at an MOI of 2 

for each virus. Samples were harvested 24 hours post-infection in 50 µL 1X Laemmli 

buffer (238) (100ºC) supplemented with 1X protease inhibitors (1µg/mL Leupeptin, 

1µg/mL Aprotinin, 1mM PMSF). Samples were heated at 95ºC for 5 min, vortexed, and 

centrifuged, and resolved on a gradient 4-12% Bis-Tris gel (Novex). Proteins were 

transferred to nitrocellulose membranes using a semidry transfer unit (GE Health Care, 

cat. no. TE77). Each membrane was blocked in 5% bovine serum albumin (BSA) in 

0.1% Tween-20 diluted in tris-buffered saline (TBS-T) for 1 h at room temperature. 

Primary antibodies used were:  ICP4 mouse monoclonal (H1A021, EastCoast Bio) 

diluted 1:1000, CDK-5 rabbit polyclonal (C8 sc-173, Santa Cruz Biotechnology) diluted 

1:500, p35 rabbit polyclonal (C19 sc-820, Santa Cruz Biotechnology) diluted 1:500, and 

β-Actin, a rabbit polyclonal antibody (sc-1616, Santa Cruz Biotechnology) diluted 

1:1000; The membranes were washed 3 times in TBS-T, and probed with appropriate 

secondary antibodies: peroxidase conjugated goat anti-rabbit (Jackson 

Immunoresearch) was diluted 1:1000 and peroxidase conjugated goat anti-mouse 

(Jackson Immunoresearch) was diluted 1:1000 at room temperature for 1 h. 
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Membranes were washed 3 times in TBS-T and developed using SuperSignal West 

Pico chemiluminescent substrate (Thermo Fisher Scientific). Images were captured with 

a Kodak 4000R image station. 

 

TUNEL assay: Harvested TG were immediately fixed in 10% saline-buffered 

formalin for 16-20 hours. Tissues were then stored in 70% ethanol at 4°C until they 

were embedded in paraffin. TG were sectioned at 7 µm and processed following the 

instructions of Promega DeadEndTM Fluorometric TUNEL system product G3250. 7134, 

an ICP0 null mutant virus, was included as a positive control in our staining as this virus 

has a deletion in LATs as well. 

 

6.3. Results  

HSV-1 infection induces p35 protein levels. We previously showed that HSV-1 

doesn’t replicate efficiently in p35 knockout mice (120). To examine the influence of 

HSV-1 infection on p35 protein during acute infection of TG,  KOS-infected TG were 

harvested 3 days post-infection, and were sectioned and immuno-stained for both the IE 

protein, ICP0, which was used as a marker for productively infected neurons, and p35.  

As shown in Figure 6.1, HSV-1-infected neurons had increased intensity of p35 staining 

compared to uninfected cells, with a distribution that was primarily cytoplasmic. Similar 

phenotype was observed in SK-N-SH cells (data not shown). To confirm that the 

increased intensity for p35 staining was due to elevated p35 protein levels, we 

performed western blots on mock- and KOS-infected SK-N-SH cell extract samples. As 
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shown in Figure 6.2, p35 protein was not detected in the mock-infected cells, whereas it 

was readily detected in HSV-1-infected cells.  

 

HSV-1 infection changes the localization of CDK-5: because the only function 

of p35 identified so far is being the activating partner for CDK-5, we next wanted to test 

the effect of HSV-1 acute infection and the associated p35 upregulation on CDK-5 

protein. To examine the localization of CDK-5 during acute infection in the TG, mice 

were infected with KOS for 3 days, and TG sections from these mice were immuno-

stained for ICP0, and CDK-5. As shown in Figure 6.3, In contrast to the uninfected 

neurons where CDK-5 location was primarily nuclear, HSV-1-infected neurons, which 

stained positive for ICP0, had a CDK-5 localization that was primarily punctate and both 

cytoplasmic and nuclear. In about 30% of the ICP0-positive neurons, CDK-5 colocalized 

with ICP0 in the nucleus but showed punctate staining (Figure 6.3).  

To test whether this phenotype is accompanied by the degradation of CDK-5, we 

looked at CDK-5 protein levels after KOS infection in the neuronal cell line SK-N-SH by 

western blot. As shown in figure 6.3, CDK-5 protein levels were comparable to the 

mock-infected SK-N-SH cells. This indicates that the alteration in CDK-5 localization 

observed in figure 6.4 is likely not accompanied by protein degradation. 

 

HSV-1 infection induces the DNA damage response in TG. In order to test the 

hypothesis that p35 upregulation is a neuronal response to the stress caused by HSV-1 

infection which will benefit the viral replication through stabilization of CDK-5, we 

wanted to examine whether HSV-1 infection triggers a DNA damage response in 
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infected TG. Previous studies showed that HSV-1 infection induces the DNA damage 

response in cell culture, an effect that is counteracted by the viral protein, ICP0 (47).  To 

determine whether HSV-1 infection triggers a similar event in infected neurons, KOS-

infected TG were isolated 3 days post-infection and immunostained with the DNA 

damage marker, γH2AX. γH2AX is a histone variant that is the most proximal marker of 

the DNA damage response and is phosphorylated at serine 139 in response to DNA 

damage (239-241). Our results showed that neurons stained positive for HSV-1 

antigens also stained positive for γH2AX, whereas uninfected neurons had no apparent 

γH2AX staining (Figure 6.4). This data indicates that acute HSV-1 neuronal infection 

triggers the DNA damage response.  

 

HSV-1 infection changes the localization of PARP-1 in acutely infected TG. 

Poly ADP-ribosylation (PAR) is a posttranslational modification which regulates several 

cellular activities, including DNA damage repair. The PAR polymerase, PARP-1, is one 

of 17 PAR enzymes that function to transfer the ADP-ribose group from NAD+ to an 

acceptor protein ((242, 243) and reviewed in (244)).  PARP-1 binds to sites of DNA 

breaks, depending on the degree of its activation, the cell will either progress to DNA 

damage repair or apoptosis. PARP-1 is involved in early recruitment of the MRN 

complex to the sites of DNA damage and is required for rapid accumulation of MRE11 

and NBS1(245). A recent study showed that HSV-1 infection activates PARP-1, a 

phenotype that was dependent on viral DNA replication (49). We examined PARP-1 

expression and subcellular localization in infected TG as a marker for the DNA damage 

response. Once again, KOS-infected TG were harvested at 3 days post-infection and 
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stained for PARP-1 and ICP0.  Un-infected neurons showed PARP-1 nuclear staining, 

whereas HSV-1-infected neurons (ICP0 positive) showed both nuclear and cytoplasmic 

punctate PARP-1 staining (Figure 6.5).  This phenotype suggests that the change in 

PARP-1 localization could be a mechanism by which the virus counteracts the activity of 

PARP-1 in the nucleus to interrupt the DNA damage response. Taken together, our data 

suggest that HSV-1 infection initiates a DNA damage response in neurons, as indicated 

by γH2AX staining, which might be counteracted by viral factor(s) that alter PARP-1 

localization. 

 

6.4. Discussion 

In this study we initially examined the expression and localization of p35 and the 

cellular kinase, CDK-5 in neurons, in response to acute HSV-1 infection.   We showed 

that p35 protein levels increase in response to HSV-1 acute infection of neurons. In 

addition, CDK-5 localization was altered in infected cells (nuclear to nuclear and 

cytoplasmic). CDK-5 is important for neuronal survival in response to stressful 

conditions, including the DNA damage response (137-141). In this context, HSV-1 

infection has been shown to trigger and counteract the DNA damage response in cell 

culture in non-neuronal cell lines (47, 48, 144, 145, 246); however, the induction of the 

DNA damage response in neurons using an animal model of infection has not been 

reported (144).  We demonstrated that the most upstream component of the DNA 

damage response is triggered by HSV-1 in TG (shown as a positive staining of γH2AX), 

which is apparently counteracted at a downstream step (as suggested by a change in 

PARP-1 localization). Our study indicates that HSV-1 has evolved mechanisms to 
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counteract the potential pro-apoptotic pathways and stimulates the pro-survival events 

during an acute infection of neurons.  

What is the mechanism of p35 upregulation during HSV-1 infection?  p35 levels 

are induced secondary to neurotrophic factors that stimulate Extracellular signal 

Regulated Kinase (ERK)1/2, and this requires the activation of the transcription factor 

Egr1 (247-249). Interestingly, a previous report has shown that HSV-1 infection 

activates the ERK/MAPK signaling pathway (250) which may contribute to p35 

upregulation. Moreover, it has been shown that HSV-1 lytic infection induces Egr1 in 

rabbit corneal cells (251). This indicates that enhancing Egr1 in response to HSV-1 

infection may be the causative factor of increased p35 levels observed in our study. 

Moreover, previous reports have shown that p35 expression can be upregulated by 

oxidative stress in a neuroblastoma cell line (252). Oxidative stress may initiate DNA 

damage (253) and is reported to enhance the expression of Egr1 (254). In addition, 

HSV-1 has been shown to induce neuronal oxidative stress (255) in addition to the DNA 

damage response observed in our study. Taken together, oxidative stress and DNA 

damage response during acute HSV-1 infection of neurons may stimulate p35 levels 

through an upregulation of the transcription factor Egr1 (Figure 6.7).  

What are the consequences of CDK-5 localization and p35 upregulation during 

HSV-1 infection? The activity of CDK-5 was shown to directly correlate with the levels of 

its major activator, p35 (131). In addition, the induction of p35 via nerve growth factor 

(NGF)/ ERK pathway has been shown to enhance CDK-5 activity (247). Several studies 

reported that CDK-5/p35 activity counteracts neuronal cell death triggered by the DNA 

damage response (135, 140). Additionally, published reports have indicated that 
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cytoplasmic CDK-5 inhibits apoptosis by preventing neurons from entering mitosis (140, 

256) and its levels are stabilized by p35 (257). The changes in CDK-5 localization and 

induction of p35 are consistent with these data, allowing us to propose a model in which 

HSV-1 stimulates these changes in CDK-5 and p35, stimulating the kinase activity CDK-

5, to protect lytically infected neurons from dying while enhancing latent infections 

(Figure 6.7).  In support of this possibility, we examined acutely infected TG neurons for 

signs of apoptosis 3 days post-infection using TUNEL staining, and we were unable to 

detect apoptotic neurons (Figure 6.6), as has been previously reported in other studies 

(258-260). Furthermore, a previous report from our laboratory showed that p35 (and 

presumably CDK-5) are required for efficient acute ocular and neuronal infection in mice 

(120), indicating that these proteins play an important role in in vivo viral replication.  

Aberrant pro-apoptotic CDK-5 activity can result when p35 is cleaved to create an N-

terminally truncated form, P25 (261), which may induce neuronal death. As the p35 

antibody used in our experiments recognizes p35 and p25, our western blots show that 

only p35 was detected in SK-N-SH and Be-(2)-C cells after HSV-1 infection. This result 

indicates that HSV-1 infection does not appear to stimulate the cleavage of p35 to p25, 

thus avoiding the potential deleterious effects of CDK-5 activation by p25. 

Several questions remain to be answered including how is p35 upregulated and 

by which viral factor(s)?  What viral factor(s) counteract parts of the DNA damage 

response in infected neurons? Is CDK-5 kinase activity needed to phosphorylate and 

modulate viral proteins? Future studies will address these questions.  
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6.6 Figures and Figure legends 

 

 

 

 

 

 

Figure 6.1. p35 localization in response to HSV-1 infection. CD-1 mice were 

infected with 2x105 PFU per eye. Three days post-infection, mice were sacrificed, and 

TG were collected, fixed, paraffin embedded, and processed for immunofluorscence 

staining of ICP0 and p35. UI: an uninfected neuron as indicated by negative staining of 

ICP0 and consistent with our mock-infected TG sections (data not shown). I: infected 

neuron as indicated by positive ICP0 staining.    
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Figure 6.2. p35 and CDK-5 protein levels after KOS infection. SK-N-SH cells 

were mock infected (M) or infected at an MOI of 2 with KOS. Twenty-four hours post-

infection, cells were harvested, and protein levels from cell extracts were determined by 

western blot analysis. 
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Figure 6.3. CDK-5 localization in response to HSV-1 infection. CD-1 mice were 

infected with 2x105 PFU per eye. Three days post-infection, mice were sacrificed, and 

TG were collected, fixed, paraffin embedded, and processed for immunofluorscence 

staining of ICP0 and CDK-5. UI: an uninfected neuron as indicated by negative staining 

of ICP0 and consistent with our mock-infected TG sections (data not shown). I: infected 

neuron as indicated by positive ICP0 staining. Two representative sets of images are 

shown.   
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Figure 6.4. DNA damage response to HSV-1 infection. CD-1 mice were infected with 

KOS at 2x105 PFU per eye. Three days post-infection, mice were sacrificed, and TG 

were collected, fixed, paraffin embedded, and processed for immunofluoroscence 

staining of HSV-1 and γH2AX. UI: un-infected neurons as indicated by negative staining 

of HSV-1 antigens and consistent with our mock-infected TG sections (data not shown). 

I: infected neurons as indicated by positive staining of HSV-1 antigens. 
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Figure 6.5. PARP-1 staining in response to HSV-1 infection. CD-1 mice were 

infected with KOS at 2x105 PFU per eye. Three days post-infection, mice were 

sacrificed and TG were collected, fixed, paraffin embedded, and processed for 

immunofluorscence staining of ICP0 and PARP-1. UI: un-infected neurons as indicated 

by negative staining of ICP0, which is consistent with our mock-infected TG sections 

(data not shown). I: infected neurons as indicated by positive staining of ICP0. 
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Figure 6.6. TUNEL staining in response to HSV-1 infection. CD-1 mice were 

infected with KOS at 2x105 PFU per eye. Three days post-infection, mice were 

sacrificed and TG were collected, fixed, paraffin embedded, and processed for TUNEL 

staining. 7134 is an ICP0 null mutant included as a control.  
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Figure 6.7. Model of p35 upregulation in response to HSV-1 infection. HSV-1 

infection of neurons stimulates the ERK pathway, activates at least one component of 

the DNA damage response, and triggers the oxidative stress response which could lead 

to DNA damage.  This may increase the expression of Egr-1, leading to the induction of 

p35. Elevated p35 protein levels result in the cytoplasmic localization of CDK-5, which 

promotes neuronal survival of the infected cell. 
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Chapter 7 

Discussion 

Virus-host interactions are important for regulating the HSV-1 life cycle. In 

understanding the contribution of viral proteins in this process, I studied the role of two 

key viral IE proteins: infected cell protein 0 (ICP0) and infected cell protein 22 (ICP22). 

Specifically, I examined how ICP0’s functions are regulated via phosphorylation and 

impact HSV-1 infection, and the role of US1.5, truncated form of ICP22, in viral 

replication. I also identified a novel relation between the cellular kinase CDK-5, its 

activating partner p35 and HSV-1 acute infection of neurons. In addition, I characterized 

a novel mutation within the viral encoded protein, ICP6 which led to less stable protein, 

attenuated phenotypes in vivo, and a great protective potential making a virus carrying 

this mutation a great vaccine candidate.  

In this dissertation, I showed that ICP0 phosphorylation regulates several of its 

activity (Chapters 2 and 3). Specifically, one phosphorylation site, S224, appears critical 

for its E3 Ub ligase activity, transactivation activity, and acute viral replication in cultured 

cells and in mice (Chapter 3). We propose a potential mechanism by which 

phosphorylated S224 regulates ICP0’s E3 ubiquitin ligase activity, which is by 

enhancing the contact with the E2 ubiquitin conjugating enzyme, UbcH5a (Chapter 3, 

Figure 3.12). This observation could explain why the Phos 1 and S224A mutations are 

impaired for ICP0’s E3 ubiquitin ligase activity (Chapter 3, Figure 3.10). The diminished 

E3 ubiquitin ligase activity of Phos 1likely explains its reduced ability to enhance acute 

replication and reactivation, while preferentially establishing a latent infection (Chapter 

2). Of note, Phos 1 is impaired in its ability to direct the degradation of USP-7compared 
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to the wild type virus KOS (Chapter 3, Figure 3.6). USP-7 plays a role in transcriptional 

repression through stabilization of polycomb repressive complex (PRC) subunits (262) 

and the repressor element 1-silencing transcription factor (REST) (263). As repression 

of HSV genome is associated with polycomb proteins during viral latency (264, 265). 

Thus, ICP0 phosphorylation may play a role in mediating the degradation of USP7 in 

order to counteract this cellular defense mechanism. ICP0 has been shown to be 

important for reactivation of the quiescent genome (53, 78) by preventing the 

accumulation of repressive histones marks. Moreover, ICP0 interacts with histone 

deacetylases (HDACs) causing their relocalization (79). Furthermore, a C-terminal 

domain in ICP0 binds to the cellular factor RE1-silencing transcription factor 

corepressor (CoREST) causing disruption of the repressor complex REST/CoREST/ 

HDAC1/2/LSD1, an activity which was shown to inhibit silencing of the HSV genome 

(54, 80). Interestingly, the ring finger domain of ICP0 was shown to be critical and more 

important than the CoREST binding domain for disrupting this complex (78). Thus, I 

propose that the inability of Phos 1 to direct the degradation of USP-7 might be related 

to its inability to counteract the cellular transcription repressive mechanisms in acutely 

infected neurons and reactivation (Figure 7.1). Future studies would be to examine the 

capability of Phos 1 in reversing the silencing or inhibiting hetero-chromatinization of 

viral genomes during acute and latent infection.  

In addition to ICP0, I discovered a new role for the viral encoded protein, ICP22, 

in counteracting the type 1interferon (IFN) response. Plaque reduction assays (Chapter 

5, Figure 5.9) showed that the plaque sizes of both d22 (ICP22- / US1.5-) and 3Xstop 

(ICP22-/ US1.5+) mutants were reduced relative to the wild type HSV-1 plaques on 
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several restrictive cell lines. Interestingly, the size of plaques of 3Xstop mutant on HEL 

cells was comparable to the wild type plaques prior to IFN-β treatment. After the 

addition of IFN-β, the plaque sizes of d22 and 3Xstop mutants were remarkably reduced 

compared to wild type HSV-1.Surprisingly, the growth yield assays failed to correlate to 

the plaquing phenotypes in the presence of IFN-β and complementation of viral 

replication was not observed on MEFs of α/β IFN receptors knockout mice (unpublished 

data). These results suggest that plaque size in IFN-β-treated cells can be independent 

from viral replication. Interestingly, these data indicate that IFN-β triggers a cell to cell 

spread restriction factor against HSV-1 that is counteracted directly or indirectly by 

ICP22 (Figure 7.1). In the context of in vivo replication, viral spread from cell to cell is 

very important specifically because HSV-1 spreads locally and doesn’t usually reach the 

blood stream or cause viremia (266). This might explain the difference between the 

phenotypes of ICP22 mutants in cell culture and in vivo. Cell culture studies showed 

only ~100-fold reduction in acute replication of d22 in restrictive cell lines, whereas 

3Xstop replication was reduced 4 fold. In vivo phenotypes were more apparent. 3Xstop 

replication was reduced 17- to 184-fold at days 1 and 5 post-infection in the eyes and 

59-to 429-fold in TG at days 3 and 5 post-infection relative to wild type HSV-1. The d22 

acute replication in the eyes by 1722, 255 and 554 at days 1, 3, and 5 post-infection, 

and acute replication in the TG was undetectable. More experiments are required to 

characterize the IFN stimulated restriction factor/s responsible for limiting HSV-1 cell to 

cell spread. 

Related to an established type I IFN response, I also noticed that ICP22 inhibits 

stimulation of the IFN-β promoter in response to viral infection (Chapter 5, Figure 5.11). 
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This novel phenotype was only apparent when full length ICP22 protein was not 

expressed in cells (data not shown). This may explain the defective replication 

capabilities of d22 in restrictive cell lines and in vivo versus the permissive Vero cells, 

which cannot stimulate type 1 IFNs in response to viral infection  (226) (Figure 7.1). 

In addition, my data confined the region of ICP22 required for the formation of VICE 

domains to the first 89 AA (Figure 7.1) and highlighted that the regulation of the 

translocation of one VICE domains marker, Hsc70, to the nucleus is separate from the 

formation of VICE domains (Chapter 5, Figure 5.7). This observation is important as the 

inability to form VICE domains with the 3Xstop mutant correlated with a decrease in 

acute viral growth in mice, suggesting a possible role for VICE domains in enhancing in 

vivo viral replication. Future studies will examine this possibility. 

Lastly, in examining the contribution of host factors in the HSV-1 life cycle, I 

characterized the interrelationship between HSV-1 acute neuronal infection  and the 

cyclin dependent kinase-5 (CDK-5)/ p35 and DNA damage response (Chapter 6). CDK-

5/p35 are necessary for efficient HSV-1 replication in mice (120), and I wanted to 

examine whether their properties were altered during productive infection in vivo.  Upon 

lytic infection of neurons, I observed an increase in the protein levels of the CDK-5 

activating protein, p35 and a change in the localization of CDK-5 (Chapter 6, Figures 

6.1 and 6.4).  Furthermore, I detected activation of the DNA damage marker, γH2AX 

(Figure 6.7). Studying the role of cellular factors in the HSV-1 replication in neuronal cell 

lines versus neurons in vivo has been challenging as the regulation or properties of the 

cellular factors in HSV-1 replication may not be apparent in proliferating neuroblastoma 

cells.  For instance, we were unable to detect a defect in viral replication when CDK-5 
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was depleted in the neuronal cell line, SK-N-SH (data not shown). This result contrasts 

with the in vivo defect in HSV-1 replication in p35 knockout mice (120). Together these 

observations highlight the great difference between the behavior of post-mitotic neurons 

and neuronal cell lines and indicate that there is a lack of a robust system to study the 

biology of HSV-1 in neurons, which is a great limitation in the HSV-1 field. 

My dissertation illustrates the importance of conducting in vivo studies to 

characterize the biological impact of a certain mutation of a viral encoded protein. E.g. 

KOS.NA behaved like wild type virus in all the cell culture based experiment (data not 

shown) and was severely attenuated in mice with a great protective potential as a 

vaccine (chapter 4 and unpublished data). Additionally, the phosphorylation mutant, 

Phos 2 was not impaired in replication in cell culture (91) and was impaired in acute 

replication in TG and in reactivation from latency (chapter 2). My data also highlights 

that variables exist between different cell lines, a phenotype which was noticed with 

ICP0 mutants as well as ICP22 mutants, and indicates the importance of choosing an 

appropriate cell line when characterizing a particular function or diagnosing the behavior 

of a certain mutant. 
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Figures and Figure legends 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1. Summary and hypothesized models. ICP0 phosphorylation 

enhances the contact with the E2 enzyme, UbcH5a, directing the degradation of USP7. 

Degradation of USP7 inhibits its transcriptional repressive activities and consequently 

reduce viral genome repression and directs the virus to a lytic versus latent infection. 

Phosphorylation of region 2 of ICP0 enhances the contact with Sumo-2 (refer to Figure 

2.6). ICP22 is required for enhancing viral cell to cell spread, counteracting IFN-β 

mediated restriction of cell to cell spread, and inhibiting the activation of IFN-β promoter. 

The first 89 AA of ICP22 are required for the formation of VICE domains (refer to 

Chapter 5). HSV-1 acute infection of neurons induces an upregulation of γH2AX and 
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p35 and changes the localization of CDK-5 (refer to Chapter 6). R950H mutation in 

ICP6 reduces ICP6 protein levels, attenuating acute viral replication, latency, and 

reactivation (refer to Chapter 4). 
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