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OPTIMAL CONTROL FOR A MIXED FLOW
OF HAMILTONIAN AND GRADIENT TYPE
IN SPACE OF PROBABILITY MEASURES

JIN FENG AND ANDRZEJ ŚWIĘCH, WITH APPENDIX B BY ATANAS STEFANOV

Abstract. In this paper we investigate an optimal control problem in the
space of measures on R

2. The problem is motivated by a stochastic interacting
particle model which gives the 2-D Navier-Stokes equations in their vorticity
formulation as a mean-field equation. We prove that the associated Hamilton-
Jacobi-Bellman equation, in the space of probability measures, is well posed
in an appropriately defined viscosity solution sense.

1. Introduction

We consider a system of controlled partial differential equations
∂tρ + div(ρu) = νΔρ + m,(1.1)

u := uρ = −K⊥ ∗ ρ.(1.2)
In the above, x = (x1, x2) ∈ R

2 and ν > 0,

N(x) := − 1
2π

log |x|, K(x) := ∇N(x) = − 1
2π

x

|x|2 , x ∈ R
2 \ {0},

K⊥(x) := JK(x) = ∇⊥N(x), where ∇⊥ = (∂x2 ,−∂x1) = J∇,(1.3)

J :=
[

0 1
−1 0

]
.

Let P(Rd) denote the space of probability measures on R
d and Pp(Rd), and the

space of probability measures on R
d with finite p-th moments. We will introduce

a weighted Sobolev space H−1,ρ(R2) in (1.12) which can be viewed as the tangent
space of P2(R2). The control variable m satisfies m(t) ∈ H−1,ρ(t)(R2), which means
that the control only pushes along tangent directions. This ensures that the dy-
namic is kept on the space of probability measures. The meaning of a solution
to (1.1)-(1.2) is made precise in Definition 1.1. The existence and some regularity
properties of solutions are established in Section 2. Using the tools of calculus on
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3988 JIN FENG AND ANDRZEJ ŚWIĘCH

the space of probability measures, we will later see (Lemma 3.8) that (1.1) can be
rewritten as an abstract evolution equation which is a mixture of a Hamiltonian
flow, a gradient flow, and the control variable m, i.e.

∂tρ = J-gradρe− νgradρs + m,(1.4)

where s : P2(R2) �→ R ∪ {+∞} is the entropy functional (1.15) and e : P2(R2) �→
R ∪ {+∞} is an energy functional (1.17).

To define our optimal control problem, we prescribe an infinitesimal running cost

L(ρ,m) := 1
4ν

‖m‖2
−1,ρ.(1.5)

We refer to (1.11) for the definition of ‖·‖−1,ρ, which is defined for all Schwartz dis-
tributions. Writing the distributional derivative ρ̇ = ∂tρ, provided ρu ∈ L1

loc(R2),
and identifying m with ρ̇ through (1.1), we have

L(ρ, ρ̇) = 1
4ν

‖ρ̇ + div(ρu) − νΔρ‖2
−1,ρ.

In this article, by an action integral, we mean

AT [ρ(·)] :=
∫ T

0
L(ρ(s), ρ̇(s))ds.(1.6)

If u(t)ρ(t) ∈ L1
loc(R2) for t ∈ (0, T ] a.e., then AT is well defined and takes values in

[0,+∞].
Next, we introduce a class of admissible paths, or equivalently controls by the

above identification,

K :=
{
ρ(·) : ρ ∈ C([0,∞);P2(R2)), ∃p : [0,∞) × R

2 �→ R such that

∃0 = t0 < t1 < ... < tn < ..., tn → +∞ such that p ∈ C∞
c ([tn, tn+1] × R

2),(1.7)

n = 0, 1, ..., (ρ,m) solves (1.1) − (1.2) with m = −∇ · (ρ∇p)
}
.

Above, by writing p∈C∞
c ([tn, tn+1]×R

2), n=0, 1, ..., we mean that p∈C∞((tn, tn+1)
×R

2) and it extends to a function in C∞
c ([tn, tn+1] × R

2) for every n. However p
may be discontinuous at the points tn. We set

(1.8) Kρ0 =
{
ρ(·) ∈ K; ρ(0) = ρ0

}
.

We are interested in variational (or control) problems of the type

f(ρ0) := Rαh(ρ0)(1.9)

= sup{
∫ ∞

0
e−α−1s

(
α−1h(ρ(s)) − L(ρ(s), ρ̇(s))

)
ds : ρ ∈ Kρ0}

= sup{
∫ ∞

0
α−1e−α−1s

(
h(ρ(s)) −As(ρ)

)
ds : ρ ∈ Kρ0},

where α > 0 and h is bounded from above. We call f the value function.
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OPTIMAL CONTROL IN SPACE OF MEASURES 3989

1.1. Notation. For ρ, γ ∈ P2(R2), we set

Γ(ρ, γ) := {π(dx, dy) ∈ P(R2 × R
2) : π(dx,R2) = ρ(dx), π(R2, dy) = γ(dy)}.

The Wasserstein order 2 metric d on P2(R2) is defined as

d2(ρ, γ) := inf
{∫

R2×R2
|x− y|2π(dx, dy) : π ∈ Γ(ρ, γ)

}
.(1.10)

(P2(R2), d) is a nonlocally compact, complete separable metric space (e.g. Chapter
7 of Ambrosio, Gigli and Savaré [3]). We define

‖m‖2
−1,ρ := sup

ϕ∈C∞
c (R2)

{2〈ϕ,m〉 −
∫
R2

|∇ϕ|2dρ}, ∀m ∈ D′(R2)(1.11)

and

H−1,ρ(R2) := {m ∈ D′(R2) : ‖m‖−1,ρ < ∞}.(1.12)

Appendix D in Feng and Kurtz [11] discusses some properties of this space and its
relation with the 2-Wasserstein space (P2(R2), d).

For a function f : P2(Rd) �→ (−∞,+∞], its effective domain is

D(f) := {ρ ∈ P2(Rd) : f(ρ) < +∞}.

Let E := P2(R2). Then (E, d) is a complete separable metric space, and this
will be our state space throughout the paper.

We define moment functionals

Mp(ρ) :=
∫
R2

|x|pdρ, p > 0,(1.13)

and the Fisher information functional

I(ρ) :=
∫
R2

|∇ρ|2
ρ

dx = 4
∫
R2

|∇√
ρ|2dx;(1.14)

I(ρ) = +∞ if ρ does not have a Lebesgue density. The equivalence of the two
different expressions above for I, as well as a number of other properties, can be
found in Appendix D.6 in [11]. We also define the entropy functional s : P2(R2) �→
R,

s(ρ) :=
∫
R2

ρ log ρ dx,(1.15)

and s(ρ) = +∞ when ρ does not have Lebesgue density. To see that the above is
well defined, we note the following estimate (see e.g. a remark on page 9 of Jordan,
Kinderlehrer and Otto [18]):

(1.16)
∫
R2

|0 ∨ log ρ|ρ(dx) ≤ C

∫
R2

e−|x|/2dx +
∫
R2

|x|ρ(dx).

Next, we define an internal energy functional on P2(Rd) by

e(ρ) := 1
2
〈N ∗ ρ, ρ〉 = 1

2

∫
R2

∫
R2

N(x− y)ρ(dx)ρ(dy).(1.17)

A cautionary note is necessary here. Consider a more general situation of ρ ∈
M(R2), the space of finite signed measures. Formally, it seems that K = ∇(−Δ)−1
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3990 JIN FENG AND ANDRZEJ ŚWIĘCH

and

e(ρ) = 1
2
〈(−Δ)−1ρ, ρ〉 = 1

2
〈(−Δ)−1ρ, (−Δ)(−Δ)−1ρ〉

= 1
2
‖∇(−Δ)−1ρ‖2

2 = 1
2

∫
R2

|u(x)|2dx.

The above symbolic calculation is not true because in dimension two, (−Δ)−1ρ may
not decay at infinity sufficiently fast to allow integration by parts. For instance,
if ρ has compact support, (3.15) in Majda and Bertozzi [20] gives the following
estimate:

u(x) = 1
2π

(−x2, x1)
|x|2 ρ(R2) + O(|x|−2), for large |x|.

This implies that
∫
R2 |u(x)|2dx = ∞ if ρ(R2) �= 0. However, at least when ρ ∈

P2(R2), e(ρ) ∈ (−∞,+∞] is always well defined. This follows easily from the
inequality N(z) ≥ −C(1 + |z|) for some C > 0.

Finally, the velocity field u = (u1, u2) defined by (1.2) is a vector. In the follow-
ing, we denote the 2 × 2 matrix Du = (∇u1,∇u2).

1.2. Relation with the 2-D incompressible Navier-Stokes equation. In this
section we discuss, rather informally, the motivation behind our optimal control
problem and its connection to a particle model.

Consider the 2-D Navier-Stokes equations

∂tu + (u · ∇)u + ∇p = νΔu, div u = 0, lim
|x|→∞

u(x) = 0,(1.18)

where u = u(t, x) = (u1(t, x1, x2), u2(t, x1, x2)). Taking

μ = curlxu = ∂x2u1 − ∂x1u2,

we arrive at its vorticity formulation

∂tμ + div(μu) = νΔμ, u = −K⊥ ∗ μ.(1.19)

The above is essentially (1.1) with m set to zero. In fact, a refined model at a particle
level can be introduced for which (1.19) is just the mean-field (i.e. law of large
number) limit equation for a collection of stochastic vortex particles interacting
in a particular manner. Ideas of this kind, in the deterministic setting (i.e. with
ν = 0), can be found in Chorin [7] and Lions [19] for the study of an incompressible
Euler equation (see also Majda and Bertozzi [20]). In particular, Lions [19] outlines
a heuristic procedure to motivate the formulation of a class of variational problems
associated with large time coherent structures for such flows.

The stochastic interacting particle system was first introduced in [21] and was
later studied in [22, 23, 24, 25]. Various results about convergence of laws of the
empirical measures (as the number of particles goes to infinity) to the law of the
solution of the vorticity equation, and the propagation of chaos property, have
been proved in the above papers. We refer the readers there for details and further
references.

The stochastic particle particle system is constructed in the following way. Let
there be n1 particles (X1, . . . , Xn1) modeling vortices rotating counterclockwise,
let there be n2 particles (Y1, . . . , Yn2) modeling vortices rotating clockwise, and let
n = n1 + n2 be the total number of particles. As we move to the macroscopic
level, we lose track of individual particles and only see collective effects given by
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OPTIMAL CONTROL IN SPACE OF MEASURES 3991

the number density of two types of vortices, which is represented by the probability
measure

ρn(t, dx, dy) = 1
n1 × n2

∑
i,j

δ(Xi(t),Yj(t))(dx, dy).(1.20)

Two useful functionals of ρn are

(1.21) ρn,+(t, dx) = n−1
1

n1∑
i=1

δXi(t)(dx), ρn,−(t, dy) = n−1
2

n2∑
i=1

δYi(t)(dy),

which are the marginal probabilities of ρn(t, dx, dy). The dynamic of all particles
is defined through a system of stochastic differential equations

dXi = uρn
(Xi)dt +

√
2νdBi,(1.22)

dYj = uρn
(Yj)dt +

√
2νdWj ,(1.23)

where the density dependent vector field

uρn
(z) = −J∇Nn ∗ (n1

n
ρn,+ − n2

n
ρn,−)(z)

= −n−1
n1∑
i=1

J∇Nn(z −Xi) + n−1
n2∑
j=1

J∇Nn(z − Yj).

In the above, (B1, . . . , Bn1 ,W1, . . . ,Wn2) is an R
2n-dimensional standard Brownian

motion and Nn is some Lipschitz smooth potential approximating the Newtonian
potential N in (1.3) with the property ∇Nn(0) = 0.

By Ito’s formula, for each ϕ ∈ C2
c (R2 × R

2),
d〈ϕ, ρn(t)〉 = 〈∇xϕ(x, y)·uρn

(x)+∇yϕ(x, y)·uρn
(y), ρn〉+ν〈Δ(x,y)ϕ, ρn〉dt+dMϕ

n (t),
where Mϕ

n is a martingale with co-quadratic variation

d[Mϕ1 ,Mϕ2 ](t) = 2ν 1
n1 × n2

〈∇(x,y)ϕ1 · ∇(x,y)ϕ2, ρn〉dt.(1.24)

Define

Anf(ρ) = 〈∇x
δf

δρ
(x, y) · uρ(x) + ∇y

δf

δρ
(x, y) · uρ(y), ρ〉 + ν〈Δ(x,y)

δf

δρ
, ρ〉(1.25)

+ 1
n1 × n2

ν

k∑
l,m=1

∂lmψ(〈ϕ1, ρ〉, . . . , 〈ϕk, ρ〉)〈∇ϕl∇ϕm, ρ〉

for smooth test functions

f(ρ) = ψ(〈ϕ1, ρ〉, . . . , 〈ϕk, ρ〉), ψ ∈ C2(Rk), ϕi ∈ C∞
c (R2 × R

2), k = 1, 2, . . . .
(1.26)

Therefore, ρn(t) as a probability measure valued process, with trajectories in
C([0,∞);P(R2 × R

2)), solves the martingale problem given by

f(ρn(t)) −
∫ t

0
Anf(ρn(s))ds = martingale.(1.27)

The process ρn(·) is Markovian. Indeed, the form of (1.25) suggests that the pro-
jection of ρn to a “lower dimensional” subspace of probability marginals (ρ+

n , ρ
−
n ),

where
ρ+
n (t, dx) := ρn(t, dx,R2), ρ−n (t, dy) := ρn(t,R2, dy)
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3992 JIN FENG AND ANDRZEJ ŚWIĘCH

forms a system of Markov processes as well. Its martingale problem generator can
be identified through

Ang(ρ+, ρ−)(1.28)

= 〈∇ δg

δρ+
· uρ, ρ+〉 + 〈∇ δg

δρ−
· uρ, ρ−〉 + ν〈Δ δg

δρ+
, ρ+〉 + ν〈Δ δg

δρ−
, ρ−〉

+n−1
1 ν

k∑
l,m=1

∂lmψ(〈ϕ1, ρ+〉, . . . , 〈φk, ρ−〉)〈∇ϕl∇ϕm, ρ+〉

+n−1
2 ν

2k∑
l,m=k+1

∂lmψ(〈ϕ1, ρ+〉, . . . , 〈φk, ρ−〉)〈∇φl∇φm, ρ−〉

for smooth test functions

g(ρ) = ψ(〈ϕ1, ρ+〉, . . . , 〈ϕk, ρ+〉, 〈φ1, ρ−〉, . . . , 〈φk, ρ−〉),(1.29)

where ψ ∈ C2(R2k), ϕi, φj ∈ C∞
c (R2), k = 1, 2, . . .. Assuming n−1ni → Λi and

considering
μn := n1

n
ρn,+ − n2

n
ρn,−,

then μn → μ at least formally, where μ solves (1.19). To simplify, we consider
the special situation of counterclockwise rotation only, i.e. if Λ− = 0, the limit-
ing martingale problem for (1.27) becomes the Schwartz distributional formulation
of (1.1)-(1.2) with m = 0. This corresponds to letting n = n1 and eliminating
everything involving ρ− component in the above g and Ang.

Therefore, at least from a mathematical point of view, model (1.22)-(1.23) con-
tains more information than the usual Navier-Stokes equation (1.19), which only
expresses the (already averaged) mean-field behavior. One example where such
additional information can be useful is in computing a path space level entropy
(rescaled by particle numbers) in the sense of Boltzmann. The rigorous justifica-
tion of such computation belongs to the probability theory of large deviations. To
be precise, we want to identify a function S which takes values in [0,+∞] and is
defined over Borel sets A in an appropriately defined path space such that
(1.30)
−S(A◦) ≤ lim inf

n→∞
n−1 logP(ρn(·) ∈ A◦) ≤ lim sup

n→∞
n−1 logP(ρn(·) ∈ Ā) ≤ −S(Ā).

In particular, S has a “density” I which is known as the action functional (or rate
function)

S(A) = inf
ρ(·)∈A

I(ρ(·)),

with

(1.31) I(ρ(·)) = − lim
ε→0+

lim
n→∞

n−1 logP(ρn(·) ∈ Bε(ρ(·))) =
∫ T

0
L(ρ(t), ρ̇(t))dt.

We note that S is really a quantity arising from the nonlinear scaling behavior of
the stochastic processes (1.21). It contains information about the limit process
and cannot be obtained from the limiting deterministic 2-D incompressible Navier-
Stokes equations or their vorticity formulation alone. Justification of the limit (1.30)
and identification of the rate function I (and hence S) are related to variational
problems of optimal control nature, which are (1.1)-(1.5) in this specific context.
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OPTIMAL CONTROL IN SPACE OF MEASURES 3993

They can be studied by establishing well posedness of the Hamilton-Jacobi-Bellman
(HJB) equation

(I − αH)f = h(1.32)

for 0 < α < α0 for some α0 > 0, and for a sufficiently large class of h, where the
first order differential operator Hg(ρ) := H(ρ, gradg(ρ)) is an appropriate limit of

Hng = n−1e−ngAne
ng.

See Feng and Kurtz [11] for a general method developed in the context of metric-
space valued Markov processes.

The above H is defined for smooth test functions g of the form (1.29). One can
then extend H in a viscosity extension sense to the H defined in Section 4. This
helps when a convergence theory (Hn converges to H) and a well posedness theory
for the limiting equation need to be studied in one framework altogether. A general
method for doing this is described on pages 111-113 and illustrated in Section 13.3.3
of [11] for a related model. We do not try to investigate whether this approach can
be applied here. Instead, we are only concerned with the well posedness theory
for (1.32). We do it by a direct approach, which is more in line with a more
classical viscosity solution approach. We introduce another class of test functions
(Definition 4.1) on which H (from Section 4) is defined. Our notion of viscosity
solution applies to discontinuous functions. We prove a comparison principle for
the general case of discontinuous sub/supersolutions, and then show, using dynamic
programming principle arguments, that the value function is the unique viscosity
solution of the HJB equation. This has an advantage of avoiding a rather delicate
issue of the continuity of the value function, which we obtain as a byproduct of
the proof of comparison principle. Another feature of our argument is the use of
the Borwein-Preiss [6] variational principle to produce extremal points. This allows
us to perform perturbed optimization based on the use of d2 as part of the test
functions. The whole paper relies heavily on the abstract calculus in the Wasserstein
space based on mass transport techniques whose rigorous theory can be found in
[3]. The chain rule formula (Appendix D) is especially critical for our purposes.
An equation of type (1.32) for which K⊥ (see the definition of H) is replaced by a
smooth kernel has been investigated successfully in the space of measures by Feng
and Katsoulakis [10] (see also [11]). Here, the singularity of K is the main source
of technical difficulties. However, in the proof of comparison, many techniques of
[10] still apply after more or less extensive modifications. To obtain key estimates
we have to proceed through a layer of rather involved approximations and make
extensive use of Sobolev type inequalities to estimate orders of approximation. We
mention that existence of viscosity solutions was not investigated in [10]. In [11], it
was indirectly handled using the properties of Markov processes and large deviation
techniques.

Finally, we remark that equations of type (1.1)-(1.2), with K⊥ replaced by vari-
ous other kernels and with possibly different diffusion terms, have recently appeared
in modeling of biological aggregation (swarming, schooling, flocking, etc.) and other
pattern formation models that incorporate aggregative and dispersive types of be-
havior. We refer for instance to [5, 28] and the references therein for more. In
these models the motions of individuals are represented by deterministic or sto-
chastic particle systems similar to the one described here in Section 1.2, and the
continuum equations are their mean field limits. The general framework developed
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3994 JIN FENG AND ANDRZEJ ŚWIĘCH

in this paper could potentially apply to such problems which have similar Hamil-
tonian/gradient structure. This however has to be investigated on a case-by-case
basis, as our analysis of the control problem and the associated HJB equation re-
lies heavily on many special properties of equation (1.1)-(1.2), in particular the
orthogonality of J-gradρe and gradρs.

1.3. Solution of the control equation. We make precise sense of what we mean
by (1.1)-(1.2).

Definition 1.1 (Weak solution). (ρ,m), ρ : [0,+∞) �→ P2(R2), is said to be a
(weak) solution to (1.1) provided that

(1) ρ ∈ C([0,∞),P(R2));
(2) for each 0 < t < ∞, ρ ∈ L2([0, t], L2(R2)) and m ∈ L2([0, t], H−1,ρ(R2));
(3) for all 0 ≤ s < t < ∞ and ϕ = ϕ(t, x) ∈ C∞

c ([0,∞) × R
2),

〈ϕ(t), ρ(t)〉 − 〈ϕ(s), ρ(s)〉

(1.33)

=
∫ t

s

(∫
x∈R2

(∂rϕ(r, x) +∇ϕ(r, x) · u(r, x) + νΔϕ(t, x))ρ(r, dx)+〈m(r), ϕ(r)〉
)
dr.

If we restrict (1.1) to the time interval [0, T ], we require test functions ϕ to be in
C∞

c ([0, T ] × R
2).

We recall that in the definition above 〈m(r), ϕ(r)〉 is understood in the distribu-
tional sense. Since (see [11], Appendix D5) there exists v(t) such that m(r) = −∇·
(ρ(r)v(r)), where

∫
|v|2ρ < +∞, we have 〈m(r), ϕ(r)〉 =

∫
∇ϕ(r, x) ·v(r, x)ρ(r, dx).

Remark 1.2. Recall that u = −K⊥ ∗ρ. If for each 0 < t < ∞, ρ ∈ L2([0, t], L2(R2)),
then by (7.27) we know that ρ|u| ∈ L1([0, t]×R

2), and it then follows that the term∫ t

s

∫
R2(∇ϕ) · udρdr in (1.33) is well defined.

Existence and regularity estimates for the solution to (1.1) are established in
Section 2.

1.4. Main result. Let H, the test functions and the notion of the viscosity solu-
tion for (1.32) be defined according to Section 4. The main result of this article
is the following well posedness of (1.32), which follows from the conclusions of
Corollary 5.3 and Theorem 6.3.

Theorem 1.3. Let α > 0 and h ∈ Cb(E) be uniformly continuous on finite level
sets of s+M2. Then equation (1.32) has a unique bounded viscosity solution which is
given by the value function f = Rαh in (1.9). The solution is uniformly continuous
on finite level sets of s + M2.

2. Existence and regularity for the controlled

partial differential equation

Let p ∈ C∞
c ([0,∞) × R

2). We define
m := −∇ · (ρ∇p), v(t, x) := ∇xp(t, x).

We construct a solution of (1.1)-(1.2) with initial condition ρ(0) = ρ0 through
a stochastic particle method and prove some regularity results. For results on
approximations of the uncontrolled version of (1.1)-(1.2) by an interacting particle
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system we refer to [21, 22, 23, 24, 25], and for general results about existence and
uniqueness of solutions of the 2-D vorticity equation we refer to [13, 20] and to [14],
where existence of solutions was shown when the initial vorticity was a finite Radon
measure.

We introduce a controlled version of (1.22-1.23) but with only counter-clockwise
rotating particles
(2.1) dXi = uGn∗ρn(t)(Xi)dt + v(t,Xi)dt +

√
2νdBi, Xi(0) = X0i, i = 1, ..., n,

where X0i, i = 1, 2, ..., are i.i.d. random variables with law ρ0 defined on the same
probability space as the Brownian motions Bi, i = 1, 2, .... Moreover, we choose
a specific Nn := Gn ∗ N with Gn defined as follows. Let J(z) : R

2 �→ R+ be
a radial symmetric C∞ function with support on [−1, 1]2,

∫
J(z)dz = 1. Let

Jδ(z) := δ−2J(δ−1z) and δn → 0 be such that nδ2
n → ∞ (e.g. δn = n−1/3). With a

slight abuse of notation, we also denote Jn = Jδn . Finally, Gn := Jn∗Jn. Therefore
uGn∗ρn(t)(x) = −(K⊥ ∗Gn) ∗ ρn(x).

Recall that solutions of (2.1) define measures

ρn(t) = 1
n

n∑
i=1

δXi(t)(dx).

Define

(2.2) en(ρn(t)) := 1
2
〈Nn ∗ ρn(t), ρn(t)〉 = 1

2n2

n∑
i,j=1

Nn(Xi(t) −Xj(t)).

Lemma 2.1. Let M2(ρ0) < +∞ and s(ρ0) < +∞. Then limn→∞ d(ρn(0), ρ0) = 0
a.s., and

E[M2(ρn(0))] = M2(ρ0),(2.3)
lim

n→+∞
E[en(ρn(0))] = e(ρ0).(2.4)

Proof. For every ϕ satisfying (1 + |x|2)−1ϕ ∈ Cb(R2), we have
E[|ϕ(X0i)|] ≤ C[1 + E[|X0i|2]] = C[1 + M2(ρ0)] < ∞.

By the strong law of large numbers,

lim
n→∞

∫
R2

ϕ(x)ρn(0)(dx) = lim
n→∞

1
n

n∑
i=1

ϕ(Xi0) =
∫
R2

ϕ(x)ρ0(dx) a.s.

This implies that ρn converges to ρ0 in the 2-Wasserstein distance almost surely.
Equality (2.3) follows by direct verification:

E[M2(ρn(0))] = 1
n

n∑
i=1

E[|X0i|2] = M2(ρ0).

As regards (2.4), using (2.2) we have

E[en(ρn(0))]= 1
2n2

n∑
i,j=1,i 	=j

E[Nn(X0i−X0j)]+
1
2n

Nn(0)= n2 − n

2n2 en(ρ0)+
1
2n

Nn(0).

Since |Jδ| ≤ Cδ−2 and is equal to zero when |x| > δ, an easy calculation involving
a change to polar coordinates gives us |Nn(0)| ≤ −C log δn. Moreover, by Lemma
7.4, en(ρ0) → e(ρ0) as n → +∞. Therefore (2.4) follows. �

Licensed to Univ of Kansas. Prepared on Mon Jun 30 12:31:46 EDT 2014 for download from IP 129.237.46.100.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



3996 JIN FENG AND ANDRZEJ ŚWIĘCH

By the existence theory for stochastic differential equations with Lipschitz coef-
ficients, the above finite system has a unique solution on any finite time interval.

Then by Ito’s formula, for each 0 < t ≤ T , ϕ ∈ C2
c ([0, T ] × R

2),
d〈ϕ, ρn(t)〉 = 〈∂tϕ, ρn〉dt + 〈−div(ρn(uGn∗ρn

+ v)) + νΔρn, ϕ〉dt + dMϕ
n (t)(2.5)

= 〈∂tϕ + (uGn∗ρn
+ v) · ∇ϕ + νΔϕ, ρn〉dt + dMϕ

n (t),
where

Mϕ
n (t) =

√
2νn−1

n∑
i=1

∫ t

0
∇ϕ(r,Xi(r)) · dBi(r).

We recall that for 0 ≤ s < t ≤ T , Mϕ
n,s(t) := Mϕ

n (t) − Mϕ
n (s) is a martingale for

t ≥ s with quadratic variation

(2.6) [Mϕ
n,s](t) = 2νn−1

∫ t

s

∫
R2

|∇ϕ(r, x)|2ρn(r, dx)dr.

Taking expectation in the integral form of (2.5) we have for 0 ≤ s < t ≤ T
(2.7)

E〈ϕ(t), ρn(t)〉 − E〈ϕ(s), ρn(s)〉 = E

∫ t

s

[〈ϕr + ∇ϕ · (uGn∗ρn
+ v) + νΔϕ, ρn(r)〉]dr.

In the following, when we view P(Rd) as a metric space, the metric is always
taken to be a fixed one that gives the weak convergence of probability measure
topology (i.e. the narrow convergence topology). When we view Pp(Rd) as a
metric space, however, the metric is always the p-Wasserstein metric.
Lemma 2.2. Let M2(ρ0) < +∞, s(ρ0) < +∞, T > 0 and p ∈ C∞

c ([0,∞)×R
2) be

given. Then there exists ρ(·) ∈ C([0, T ];P(R2)) such that (ρ,−∇ · (ρ∇p)) is a weak
solution of (1.1) on [0, T ] and ρ(0) = ρ0. Moreover, for every 0 ≤ t ≤ T

(2.8) M2(ρ(t)) ≤ (M2(ρ0) + (‖v‖2
∞ + 4ν + C2)t)et

and ∫ T

0
‖ρ(r)‖2

2dr < +∞.(2.9)

In particular M2(ρ(t)) is continuous at 0. We also have ρ(·) ∈ C([0, T ];Pq(R2)) for
0 ≤ q < 2.
Proof. We will show that the family {ρn(·) : n = 1, 2, . . .} as C([0, T ];P(R2))
valued random variables is tight, and we will obtain ρ(·) in a limit which will be
made precise later.

We consider second moment estimates first. We note that the set
KC = {ρ ∈ P(R2) : M2(ρ) ≤ C}

is compact in P(R2) with the weak (narrow) convergence topology. By Ito’s formula

dM2(ρn(t)) = 2〈x · (uGn∗ρ + v), ρn〉dt + 4νdt + dNn(t)

(2.10)

≤ M2(ρn(t))dt +
∫
R2

|v(t, x)|2ρn(t, dx)dt + εn(t)dt + 4νdt + dNn(t),

where

εn(t) := −
∫
R2

∫
R2

(x− y) ·K⊥
n (x− y)ρn(t, dx)ρn(t, dy)(2.11)
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and the local martingale Nn(t) has quadratic variation

[Nn](t) = 8νn−1
∫ t

0

∫
R2

|x|2ρn(r, dx)dr.

The inequality above follows because, denoting Kn = Gn ∗K,∫
R2

x · uGn∗ρn
(x)ρn(t, dx)

= −
∫
R2

x · (K⊥
n ∗ ρn)(x)ρn(t, dx)

= −
∫
R2

∫
R2

((x− y) + y) ·K⊥
n (x− y)ρn(t, dx)ρn(t, dy)

= εn(t) −
∫
R2

∫
R2

y ·K⊥
n (x− y)ρn(t, dx)ρn(t, dy)

= εn(t) −
∫
R2

y · uGn∗ρn
(y)ρn(t, dy),

where we used the fact that K⊥
n (−z) = −K⊥

n (z). If we replaced Kn in (2.11) by K,
then εn(t) would become zero because z ·K⊥(z) = 0. This identity does not hold
when K is replaced by Kn. However, we have the following estimate. We notice
that

z ·K⊥
n (z) =

∫
R2

z ·K⊥(z − y)Gn(y)dy

=
∫
R2

y ·K⊥(z − y)Gn(y)dy =
∫
|y|≤2/n

y ·K⊥(z − y)Gn(y)dy.

Therefore

|εn(t)| ≤ ‖z ·K⊥
n (z)‖∞ ≤ sup

|y|≤2/n
|yGn(y)| sup

z∈R2

∫
|y|≤2/n

|K⊥(z − y)|dy

≤ C1n sup
z∈R2

∫
|y|≤2/n

1
|z − y|dy ≤ C1n

∫
|y|≤2/n

1
|y|dy ≤ C2.

Denote the stopping time

τn,C = inf{t > 0 : M2(ρn(t)) > C}.
Then by the optional sampling theorem and Grownwall’s inequality, we have

E[M2(ρn(τn,C ∧ T ))] ≤ (M2(ρ0) + (‖v‖2
∞ + 4ν + C2)T )eT ,

implying

lim
C→∞

sup
n

P(τn,C ≤ T ) ≤ lim
C→∞

sup
n

P(M2(ρn(τn,C ∧ T )) ≥ C)

≤ lim
C→∞

sup
n

C−1
E[M2(ρn(τn,C ∧ T ))] = 0.

In the above, we note that for each n fixed, since v and K∗Gn are globally Lipschitz,
M2(ρn(t)) ∈ C([0, T ];R). We obviously also have for t ≤ T

(2.12) E[M2(ρn(t))] ≤ (M2(ρ0) + (‖v‖2
∞ + 4ν + C2)t)et.

In summary, a compact containment condition is satisfied, i.e.

lim
C→∞

sup
n

P(∃t ∈ [0, T ], ρn(t) �∈ KC) = 0.
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3998 JIN FENG AND ANDRZEJ ŚWIĘCH

Next, we prove that for each ϕ ∈ C∞
c (R2), {ρϕn(t) = 〈ϕ, ρn(t)〉 : n = 1, 2 . . .}

is tight in C([0, T ];R). Then by Jakubowski [17], we conclude that {ρn(·) : n =
1, 2, . . .} is tight in C([0, T ];P(R2)). Since |〈ϕ, ρ〉| ≤ ‖ϕ‖∞, it is sufficient to have
the following uniform modulus of continuity estimate:

E[|〈ϕ, ρn(t + h) − ρn(t)〉|] ≤ Ch1/4.(2.13)

For the sufficiency, see Theorems 8.6 and 8.8 in Chapter 3 of Ethier and Kurtz [9].
We use the martingale characterization (2.5) to obtain such an estimate. However,
because of the singularity in uJn∗ρn

, we first need another energy estimate.
Notice that dNn(Xi(t) −Xi(t)) = 0 and that ‖Jn‖∞ ≤ C3δ

−2
n ; hence |Gn(0)| ≤

C3δ
−2
n . By Ito’s formula, we have (recall definition (2.2))

den(ρn(t)) = 〈(∇Nn ∗ ρn(t)) · (∇⊥Nn ∗ ρn(t) + v(t)), ρn〉dt
(2.14)

+ νn−2
∑
i 	=j

ΔNn(Xi −Xj)dt + dMe
n(t)

= 〈(∇Nn ∗ ρn(t)) · v, ρn〉dt− νn−2
∑
i 	=j

Gn(Xi −Xj)dt + dMe
n(t)

≤ C1,ν‖Jn ∗ ρn‖3/2
2 dt− ν‖Jn ∗ ρn‖2

2dt + C3νn
−1δ−2

n dt + dMe
n

≤ C2,νdt−
ν

2
‖Jn ∗ ρn‖2

2dt + C3νn
−1δ−2

n dt + dMe
n.

In the above, the first inequality follows from

〈(∇Nn ∗ ρn) · v, ρn〉 = 〈K ∗ (Jn ∗ ρn), Jn ∗ (ρnv)〉(2.15)
≤ ‖(χÕ)K ∗ (Jn ∗ ρn)‖2‖Jn ∗ (ρnv)‖2 ≤ C‖Jn ∗ ρn‖1/2

2 ‖Jn ∗ ρn‖2,

where Õ = {x : dist(x,O) < 1} is the fattening of a bounded open subset O
containing the support of v (equivalently, p) by the support of all mollifiers Jn and
where χA is the characteristic function of a set A, and the last step above follows
from (7.4).

The martingale

Me
n(t) =

√
2νn−2

∑
i,j

∫ t

0
∇Nn(Xi −Xj)dBi =

√
2νn−1

∑
i

∫ t

0
(∇Nn ∗ ρn)(Xi)dBi

has quadratic variation

[Me
n](t) = 2νn−2

∑
i

∫ t

0
|∇Nn ∗ ρn(Xi(r))|2dr

= 2νn−1
∫
R2

∫ t

0
|uGn∗ρn(r)(x)|2ρn(r, dx)dr.

Therefore, taking expectation in the integral form of (2.14) and combining the
result with (2.12) yields
(2.16)

E[en(ρn(T ))+M2(ρn(T ))+ν

2

∫ T

0
‖Jn∗ρn(r)‖2

2dr] ≤ E[en(ρn(0))]+eTM2(ρ0)+Cν,p,T .
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Since polynomial growth at infinity dominates logarithmic growth, en + M2 ≥ c >
−∞, and thus we have

(2.17) ν

2
E[
∫ T

0
‖Jn ∗ ρn(r)‖2

2dr] ≤ E[en(ρn(0))] + eTM2(ρ0) + Cν,p,T .

Similar to (2.15), we have

|〈∇ϕ · uGn∗ρn
, ρn〉| ≤ C‖Jn ∗ ρn‖3/2

2 .

Consequently,

E[
∫ t

s

|〈∇ϕ · uGn∗ρn
, ρn〉|dr] ≤ C|t− s|1/4.

Applying the above estimate to (2.5) we easily obtain (2.13).
As mentioned before, by a combination of Theorems 3.8.6 and 3.8.8 of [9] and by

[17], we conclude that the family of probability distributions/laws on P(C([0, T ];
P(R2))) for random variables {ρn(·) : n = 1, 2, . . .} is tight. By the Pohorov
theorem, the family of probability laws is relatively compact in the topology of weak
convergence of probability measures. We select a convergent subsequence and, with
a slight abuse of notation, we still label the subsequence by n. By the Skorohod
representation theorem (e.g. Theorem 3.1.8 in [9]), we can construct a canonical
probability space on which random variables ρ, ρ̃n, n = 1, 2, ..., are defined, with
the property that ρ̃n has the same law as ρn for n = 1, 2, ... and such that

(2.18) ρ̃n → ρ a.s. in C([0, T ];P(R2)) as n → +∞.

We observe that (2.7), (2.12), (2.17) hold for ρ̃n, while we cannot replace ρ by ρ̃n
in (2.5). We will first pass to the limit in (2.12) and (2.17). Since M2 is lower semi-
continuous with respect to weak convergence of probability measures (i.e. narrow
convergence), we have by Fatou’s lemma E[M2(ρ(t))] ≤ lim infn→∞ E[M2(ρ̃n(t))]
which, together with (2.12), gives us

(2.19) E[M2(ρ(t))] ≤ (M2(ρ0) + (‖v‖2
∞ + 4ν + C2)t)et.

By (2.4), E[en(ρ̃n(0))] → e(ρ0). Finally, since for h ∈ L2(R2)

‖h‖2
2 = sup

ψ∈Cc(R2)

[
2
∫
R2

hψ dx− ‖ψ‖2
2

]
,

we have for every ψ ∈ Cc(R2)

lim inf
n→∞

‖Jn ∗ ρ̃n(r)‖2
2 ≥ lim inf

n→∞

[
2
∫
R2

Jn ∗ ρ̃n(r)ψ dx− ‖ψ‖2
2

]
.

But

lim
n→∞

∫
R2

Jn ∗ ρ̃n(r)ψ dx = lim
n→∞

∫
R2

ρ̃n(r)Jn ∗ ψ dx = lim
n→∞

∫
R2

ρ(r)ψ dx,

so we have

‖ρ(r)‖2
2 = sup

ψ∈Cc(R2)

[
2
∫
R2

ρ(r)ψ dx− ‖ψ‖2
2

]
≤ lim inf

n→∞
‖Jn ∗ ρ̃n(r)‖2

2.

Combining these facts with (2.17) and using Fatou’s lemma, we thus obtain

ν

2
E[
∫ T

0
‖ρ(r)‖2

2dr] ≤ e(ρ0) + eTM2(ρ0) + Cν,p,T .(2.20)
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We will now pass to the limit in (2.7) for ϕ ∈ C∞
c ([0, T ] × R

2). Following the
proof of Lemma 7.1 we introduce a radial cutoff function φ ∈ C∞

c (R2), 0 ≤ φ ≤ 1,
φ(x) = 1 for |x| ≤ 1 and φ(x) = 0 for |x| ≥ 2 and define φr(x) = φ(x/τ) for τ > 0.
Then defining K1,τ = −φτK

⊥,K2,τ = −(1 − φτ )K⊥,

uGn∗ρ̃n
= −K⊥ ∗Gn ∗ ρ̃n = K1,τ ∗Gn ∗ ρ̃n + K2,τ ∗Gn ∗ ρ̃n.

We know that there is a set of full measure such that ρ̃n(·)(ω) → ρ(·)(ω) in
C([0, T ];P(R2)). For ω in this set we have the following. Since ‖K2,τ ∗ Gn −
K2,τ‖∞ → 0 as n → +∞, ‖K2,τ ∗ Gn ∗ ρ̃n(r)(ω) → K2,τ ∗ ρ̃n(r)(ω)‖∞ → 0 as
n → +∞ for every r ∈ [0, T ]. Also, since K2,τ ∗ ρ̃n(r)(ω) are equibounded and
equicontinuous, we observe that K2,τ ∗ (̃r)ρn(ω) → K2,τ ∗ ρ(r)(ω) locally uniformly
as n → +∞ for every r ∈ [0, T ].

Using these, the inequality ‖∇ϕ·K2,τ ∗Gn∗ρn‖∞ ≤ C‖K2,τ‖∞ and the Lebesgue
dominated convergence theorem, it is then easy to see that for 0 < r < T,

(2.21)
∫ t

s

〈∇ϕ ·K2,τ ∗Gn ∗ ρ̃n, ρ̃n(r)〉dr →
∫ t

s

〈∇ϕ ·K2,τ ∗ ρ, ρ(r)〉dr a.s.

and

(2.22) E[
∫ t

s

〈∇ϕ ·K2,τ ∗Gn ∗ ρ̃n, ρ̃n(r)〉dr] → E[
∫ t

s

〈∇ϕ ·K2,τ ∗ ρ, ρ(r)〉dr].

By Young’s inequality we have ‖∇ϕ · K1,τ ∗ Jn ∗ ρ̃n‖2 ≤ Cτ‖Jn ∗ ρ̃n‖2. Thus
|〈∇ϕ ·K1,τ ∗Gn ∗ ρ̃n, ρ̃n〉| = |〈K1,τ ∗ Jn ∗ ρ̃n, Jn ∗ (ρ̃n∇ϕ)〉| ≤ Cτ‖Jn ∗ ρ̃n‖2

2, which,
using (2.17), yields

(2.23) E[
∫ t

s

|〈∇ϕ ·K1,τ ∗Gn ∗ ρ̃n, ρ̃n(r)〉|dr] ≤ CτE[
∫ t

s

‖Jn ∗ ρ̃n(r)‖2
2dr] ≤ C1τ.

Since by the same argument we also have

(2.24) E[
∫ t

s

|〈∇ϕ ·K1,τ ∗ ρ, ρ(r)〉|dr] ≤ CτE[
∫ t

s

‖ρ(r)‖2
2dr] ≤ C1τ,

sending n → ∞ and then τ → 0 gives us

(2.25) E[
∫ t

s

〈∇ϕ · uGn∗ρ̃n
, ρ̃n(r)〉dr] → E[

∫ t

s

〈∇ϕ · uρ, ρ(r)〉dr].

Moreover, (2.21), (2.23), (2.24) and standard arguments also imply that there is a
subsequence nk such that

(2.26)
∫ t

s

〈∇ϕ · uGnk
∗ρ̃nk

, ρ̃nk
(r)〉dr →

∫ t

s

〈∇ϕ · uρ, ρ(r)〉dr as k → +∞ a.s.

Similar convergences of the other terms in (2.7) are easy consequences of the fact
that ρ̃n(·) → ρ(·) a.s. in C([0, T ];P(R2)) and the Lebesgue dominated convergence
theorem. In the end we obtain

(2.27) E[〈ϕ, ρ(t)〉 − 〈ϕ, ρ(s)〉 −
∫ t

s

[〈ϕt + ∇ϕ · (uρ + v) + νΔϕ, ρ(r)〉]dr] = 0
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and, for a subsequence nk,

lim
k→+∞

[
〈ϕ, ρ̃nk

(t)〉−〈ϕ, ρ̃nk
(s)〉−

∫ t

s

[
〈ϕt +∇ϕ · (uGnk

∗ρ̃nk
+ v)+ νΔϕ, ρ̃nk

(r)〉
]
dr

]

= 〈ϕ, ρ(t)〉 − 〈ϕ, ρ(s)〉 −
∫ t

s

[〈ϕt + ∇ϕ · (uρ + v) + νΔϕ, ρ(r)〉]dr a.s.

(2.28)

By (2.6), (2.7), (2.27), (2.28) and Fatou’s lemma we now obtain

Var
[
〈ϕ, ρ(t)〉 − 〈ϕ, ρ(s)〉 −

∫ t

s

[〈ϕt + ∇ϕ · (uρ + v) + νΔϕ, ρ(r)〉]dr
]

= Var
[

lim
k→+∞

[
〈ϕ, ρ̃nk

(t)〉 − 〈ϕ, ρ̃nk
(s)〉

−
∫ t

s

[
〈ϕt + ∇ϕ · (uGnk

∗ρ̃nk
+ v) + νΔϕ, ρ̃nk

(r)〉
]
dr

]]

≤ lim inf
k→∞

Var
[
〈ϕ, ρ̃nk

(t)〉 − 〈ϕ, ρ̃nk
(s)〉

−
∫ t

s

[
〈ϕt + ∇ϕ · (uGnk

∗ρ̃nk
+ v) + νΔϕ, ρ̃nk

(r)〉
]
dr

]

= lim inf
k→∞

Var
[
〈ϕ, ρnk

(t)〉 − 〈ϕ, ρnk
(s)〉

−
∫ t

s

[
〈ϕt + ∇ϕ · (uGnk

∗ρnk
+ v) + νΔϕ, ρnk

(r)〉
]
dr

]

= lim inf
k→∞

[Mϕ
nk,s

](t) ≤ lim inf
k→∞

2νT‖∇ϕ‖2
∞nk

−1 = 0.(2.29)

This, together with (2.27), shows that for every 0 ≤ s < t ≤ T and every ϕ ∈
C∞

c ([0, T ] × R
2),

(2.30) 〈ϕ, ρ(t)〉 − 〈ϕ, ρ(s)〉 =
∫ t

s

[〈ϕt + ∇ϕ · (uρ + v) + νΔϕ, ρ(r)〉]dr, a.s.

It now remains to use that a.s. ρ(·) ∈ C([0,∞);P(R2)) and invoke a separability
and continuity argument, together with (2.20) and estimates of Lemma 7.5, to
conclude that there is a set of full measure such that (2.30) is satisfied for every
0 ≤ s < t ≤ T and every ϕ ∈ C∞

c ([0, T ] × R
2), i.e. that a.s. (ρ,−∇ · (ρ∇p)) is a

weak solution of (1.1) on [0, T ].
Finally, by (2.19) and (2.20), we can choose a trajectory ρ(·) := ρ(·)(ω) which

satisfies (2.8) and and (2.9). The continuity of M2(ρ(t)) at 0 follows from (2.8) and
the lower semicontinuity of M2 with respect to narrow convergence since ρ(t) → ρ0
narrowly as t → 0. The fact that ρ(·) ∈ C([0,∞);Pq(R2)) for each q < 2 is
standard. �

Once we know that the weak solution we constructed is in L2([0, T ], L2(R2)), one
can study its further regularity properties by classical and semigroup techniques (see
for instance [13] and the references therein). We do not do it here since we are only
interested in estimates and formulas for M2, s and d2.
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4002 JIN FENG AND ANDRZEJ ŚWIĘCH

Before we proceed to the next lemma we need to introduce another mollifier. Let
0 < γ < 1 and G ∈ C∞(R2) be a radial, positive function such that G(x) = ce−|x|γ

for |x| > 1, where c is chosen so that
∫
G(x)dx = 1. We set

Gδ(x) = δ−2G(x
δ
).

We then mollify ρ into ρδ(t, x) = Gδ ∗ ρ(t, x) > 0 for every t ≥ 0.

Lemma 2.3. There exists Cδ > 0 depending only on δ and sup0≤t≤T M2(ρ(t)) such
that

(2.31) | log ρδ(t, x)| ≤ C(1 + |x|γ).

Proof. We have by Jensen’s inequality

Cδ ≥ log ρδ(t, x) = log
(∫

R2
Gδ(x− y)ρ(t, y)dy

)

≥
∫
R2

(logGδ(x− y))ρ(t, y)dy

≥ −
∫
R2

cδ(1 + |x|γ + |y|γ)ρ(t, y)dy ≥ −Cδ(1 + |x|γ).

�

Lemma 2.4. Let ρ(·) ∈ C([0, T ];P(R2)) be such that (ρ,−div(ρv)), v = ∇p solves
(1.1)–(1.3) in the weak sense and let s(ρ(0)) < +∞,

(2.32) sup
0≤t≤T

M2(ρ(t)) +
∫ T

0
‖ρ‖2

2dt < ∞,

and

(2.33) lim
t→0

M2(ρ(t)) = M2(ρ(0)).

Set

At(ρ(·)) = 1
4ν

∫ t

0

∫
R2

|v(s, x)|2ρ(t, x)dxds.

Then ρ ∈ AC((0, T );P2(R2)), and for 0 ≤ s < t ≤ T and some constant C = Cν >
0,

M2(ρ(t)) ≤ (M2(ρ(0)) + 4νAt(ρ) + 4νt)et,(2.34)

s(ρ(t)) + ν

2

∫ t

0
I(ρ(r))dr ≤ s(ρ(0)) + CAt(ρ(·)),(2.35)

M2(ρ(t)) −M2(ρ(s)) =
∫ t

s

(
4ν + 2

∫
R2

x · vρdx
)
dr,(2.36)

s(ρ(t)) − s(ρ(s)) = −ν

∫ t

s

I(ρ(r))dr +
∫ t

s

(∫
R2

v · ∇ρ

ρ
dρ
)
dr.(2.37)
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Proof. Let

uδ(t, x) = Gδ ∗ (ρu)(t, x)
ρδ(t, x)

, vδ(t, x) = Gδ ∗ (ρv)(t, x)
ρδ(t, x)

.

Then, using the definition of a weak solution, it is easy to see that for every ϕ ∈
C∞

c (R2) and for 0 < t ≤ T ,
∫
R2

ρδ(t, x)ϕ(x)dx−
∫
R2

ρδ(0, x)ϕ(x)dx

=
∫
R2

∫ t

0
[νΔρδ − div(ρδ(uδ + vδ))](r, x)ϕ(x)drdx.(2.38)

Since Δρδ = (ΔGδ) ∗ ρ, div(ρδuδ) = (∇Gδ) ∗ (ρu), div(ρδvδ) = (∇Gδ) ∗ (ρv), and
using (7.27), we get that for every s ∈ (0, T ), x, z ∈ R

2,
∫
R2

|Δρδ(s, y)|dy ≤ Cδ, |Δρδ(s, x) − Δρδ(s, z)| ≤ Cδ|x− z|,
∫
R2

|div(ρδuδ)(s, y)|dy ≤ Cδ

∫
R2

|u(s, y)|ρ(s, y)dy ≤ Cδ‖ρ2(s)‖2,

|div(ρδuδ)(s, x) − div(ρδuδ)(s, z)| ≤ Cδ‖ρ2(s)‖2|x− z|,∫
R2

|div(ρδvδ)(s, y)|dy ≤ Cδ

∫
R2

|v(s, y)|2ρ(s, y)dy ≤ Cδ,

|div(ρδvδ)(s, x) − div(ρδvδ)(s, z)| ≤ Cδ

∫
R2

|v(s, y)|2ρ(s, y)dy|x− z| ≤ Cδ|x− z|.

Therefore defining hδ(s, x) := [νΔρδ − div(ρδ(uδ + vδ))](s, x), we see that for every
t ∈ (0, T ), x, z ∈ R

2,
∣∣∣∣
∫ t

0
hδ(s, x)ds−

∫ t

0
hδ(s, z)ds

∣∣∣∣ ≤ C̃δ|x− z|,

and for every z ∈ R
2, hδ(s, z) ∈ L1(0, T ). Thus (2.38) implies that for every

0 < t ≤ T, z ∈ R
2,

ρδ(t, z) − ρδ(0, z) =
∫ t

0
hδ(s, z)ds,

i.e. the function ρδ(·, z) is absolutely continuous on [0, T ] for every z ∈ R
2.

Therefore, setting F (r) = r log r, we can write

s(ρδ(t)) − s(ρδ(0)) =
∫
R2

(F (ρδ(t, x)) − F (ρδ(0, x)))dx(2.39)

=
∫
R2

∫ t

0
F ′(ρδ(r, x))

(
νΔρδ(r, x) − div(ρδ(r, x)(uδ(r, x) + vδ(r, x)))

)
drdx.

We notice that because of (2.32) the integral in (2.39) is finite. We will demonstrate
it only for the term

∫ ∫
F ′(ρδ(r, x))div(ρδ(r, x)uδ(r, x))drdx, as the other terms are
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easy. First we notice that by Lemma 2.3,
|F ′(ρδ(r, x))| = | log ρδ(t, x) + 1| ≤ C(1 + |x|γ) ≤ C(1 + |x|) ≤ C(1 + |x− y| + |y|)
for every r ∈ (0, T ), x, y ∈ R

2. Thus, by (2.32) and (7.2),∫ T

0

∫
R2

|F ′(ρδ(r, x))div(ρδ(r, x)uδ(r, x))|drdx

≤
∫ T

0

∫
R2

∫
R2

C(1 + |x− y| + |y|)|∇Gδ(x− y)|ρ(r, y)|u(r, y)|dydrdx

≤
∫ T

0

∫
R2

Cδ(1 + |y|)ρ(r, y)|u(r, y)|dydr

≤ Cδ

∫ T

0

[∫
R2

(1 + |y|)2ρ(r, y)dy
] 1

2

‖ρ(r)‖
1
2
2 ‖u(r)‖4ddr ≤ Cδ

∫ T

0
‖ρ(r)‖2 < +∞.

We want to integrate by parts in (2.39), i.e. we want to write

s(ρδ(t)) − s(ρδ(0))

(2.40)

=
∫ t

0
lim

R→∞

∫
BR

F ′′(ρδ(r, x))
(
− ν|∇ρδ(r, x)|2 + ρδuδ · ∇ρδ + ρδvδ · ∇ρδ

)
dxdr

=
∫ t

0
lim

R→∞

∫
BR

(
− ν

|∇ρδ|2
ρδ

+ (uδ + vδ) · ∇ρδ

)
dxdr

≤
∫ t

0
lim

R→∞

(
−ν

∥∥∥∥ |∇ρδ|√
ρδ

∥∥∥∥
2

L2(BR)
+
√

2
∥∥∥∥ |∇ρδ|√

ρδ

∥∥∥∥
L2(BR)

(∫
R2

(|uδ|2 + |vδ|2)dρδ
)1

2
)
dr

≤ −ν

2

∫ t

0
I(ρδ)dr + Cν

∫ t

0

∫
R2

(|uδ|2 + |vδ|2)dρδdr.

We notice that the last line of (2.40) is well defined, as by Lemma 8.1.9 of [3],
together with (2.32) and Lemma 7.5, we have

lim
δ→0

∫ t

0

∫
R2

(|uδ|2 + |vδ|2)dρδdr =
∫ t

0

∫
R2

(|u|2 + |v|2)dρdr

≤
∫ t

0

(
C‖ρ‖2

2 +
∫
R2

|v|2dρ
)
dr.(2.41)

Assuming for a moment that integration by parts was allowed in (2.40), we pass
to the limit there as δ → 0. It is easy to see that

√
ρδ(r) →

√
ρ(r) in L2(R2)

as δ → 0. Thus, using the weak sequential lower semicontinuity of the norm and
Fatou’s lemma we obtain

lim sup
δ→0

−
∫ t

0
I(ρδ(r))dr = − lim inf

δ→0

∫ t

0
‖|∇
√
ρδ(r)|‖2

2dr

≤ −
∫ t

0
lim inf
δ→0

‖|∇
√

ρδ(r)|‖2
2dr ≤ −

∫ t

0
‖|∇
√

ρ(r)|‖2
2dr = −

∫ t

0
I(ρ(r))dr.(2.42)

Now, since F (ρ(0)) ∈ L1(R2), using Jensen’s inequality

s(ρδ(0)) =
∫
R2

F (Gδ ∗ ρ(0))dx ≤
∫
R2

Gδ ∗ F (ρ(0))dx,
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which yields
(2.43)

lim inf
δ→0

−s(ρδ(0)) ≥ − lim
δ→0

∫
R2

Gδ ∗ F (ρ(0))dx = −
∫
R2

F (ρ(0))dx = −s(ρ(0)).

Finally, using Fatou’s lemma we have

(2.44) s(ρ(r)) ≤ lim inf
δ→0

s(ρδ(r)).

Therefore letting δ → 0 in (2.40) and applying (2.41)-(2.44) we obtain

(2.45) s(ρ(t)) + ν

2

∫ t

s

I(ρ(r))dr ≤ s(ρ(0)) + C1,ν

(
At(ρ(·)) +

∫ t

0
‖ρ‖2

2dxdr
)
.

Let us now justify that we can integrate by parts in (2.40). We can pass from
the first to the second line in (2.40) if we can show that for every s the boundary
integral

(2.46)
∫
∂BR

(log(ρδ(s)) + 1)(∇ρδ(s) −Gδ ∗ (ρu)(s) −Gδ ∗ (ρv)(s)) · ndσ(x)

goes to 0 as R → ∞, where n is the exterior unit normal vector on ∂BR. Since
|∂BR| = 2πR and | log(ρδ(s)) + 1| ≤ C(1 +Rγ) on ∂BR, this will be achieved if we
can show that

(2.47) |∇ρδ(s, x)| + |Gδ ∗ (ρu)(s, x)|+ |Gδ ∗ (ρv)(s, x)| ≤ C

|x|1+γ+ε

for some ε > 0 and all x ∈ R
2, where C is some constant which may depend on s.

Let τ = 1 + γ + ε < 2. We will use the fact that for every x, y ∈ R
2,

|x|τ ≤ C(|x− y|τ + |y|τ ).

The Cδ’s below are generic constants and may differ from line to line.
(1) We have, since ‖v‖∞ < ∞,

|x|τ (|∇ρδ(s, x)| + |Gδ ∗ (ρv)(s, x)|)

≤
∫
R2

C(|x− y|τ + |y|τ )(|∇Gδ(x− y)| + Gδ(x− y)|v(s, y)|)ρ(s, y)dy

≤ Cδ(s) + Cδ(s)
∫
R2

|y|τρ(s, y)dy ≤ Cδ(s)(1 + M2(ρ(s))) ≤ Cδ(s).

(2) Using generalized Hölder inequality and (7.2),

|x|τ |Gδ ∗ (ρu)(s, x)| ≤
∫
R2

C(|x− y|τ + |y|τ )|Gδ(x− y)||u(s, y)|ρ(s, y)dy

≤
∫
R2

Cδ(1 + |y|τ )|u(s, y)|ρ(s, y)dy ≤ Cδ‖ρ(s)‖2

+Cδ

(∫
R2

|y|2ρ(s, y)dy
) τ

2
(∫

R2
|ρ(s, y)| 32 dy

) 2−τ
3

‖u‖ 6
2−τ

≤ Cδ‖ρ(s)‖2 + Cδ(1 + ‖ρ(s)‖
2(2−τ)

3
2 ‖ρ(s)‖1− 2−τ

3
2 )

≤ Cδ(1 + ‖ρ(s)‖1+ 2−τ
3

2 ) ≤ Cδ(1 + ‖ρ(s)‖2
2).
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This completes the proof of (2.47).
With the above estimate, we can now improve (2.45) by getting rid of the∫ t

0 ‖ρ‖2
2dr term. Since

‖ρ̇‖−1,ρ ≤ ‖div(ρv)‖−1,ρ + ‖νΔρ‖−1,ρ + ‖div(ρu)‖−1,ρ

≤ (
∫
R2

|v|2dρ)1/2 + ν(I(ρ))1/2 + (
∫
R2

|u|2dρ)1/2,

by Lemma 7.5 we have ∫ T

0
‖ρ̇‖−1,ρdr < ∞.

By Theorem 8.3.1 of [3], ρ ∈ AC((0, T );P2(R2)). We can now apply the chain rule
of Lemma 7.17 and the convexity results regarding M2 and s of Lemma 7.18 in the
Appendix to obtain the following.

Since I(ρ(r)) < ∞ for a.e. r ∈ (0, T ), by Lemma 7.6,
∫
R2 u · ∇ρdx = 0, and by

Lemma 7.7,
∫
R2 x · udρ = 0. Also, since M2(ρ(t)) is continuous at 0, (2.45) implies

that s(ρ(0)) is continuous at 0. Therefore we have for 0 ≤ s < t ≤ T ,
M2(ρ(t))

= M2(ρ(s)) +
∫ t

s

∫
R2

(
4ν + 2x · (u + v)ρ

)
dxdr

= M2(ρ(s)) +
∫ t

s

∫
R2

(
4ν + 2x · vρ

)
dxdr

≤ M2(ρ(s)) + 4ν(t− s) + 2
∫ t

s

(√
M2(ρ(r))

√∫
R2

|v|2dρ(r)
)
dr

≤ M2(ρ(s)) + 4ν(t− s) +
∫ t

s

(∫
R2

|v|2dρ(r) + M2(ρ(r))
)
dr.

The required estimate now follows from Gronwall’s inequality.
On the other hand,

s(ρ(t)) = s(ρ(s)) +
∫ t

s

∫
R2

(
− ν

|∇ρ|2
ρ

+ (v + u) · ∇ρ
)
dxdr

= −ν

∫ t

s

I(ρ(r))dr +
∫ t

s

(∫
R2

v · ∇ρ

ρ
dρ
)
dr

≤ s(ρ(s)) +
∫ t

s

(
− νI(ρ(r)) +

√
I(ρ(r))

√∫
R2

|v|2dρ(r)
)
dr

≤ s(ρ(s)) − ν

2

∫ t

s

I(ρ(r))dr + Cν

∫ t

s

∫
R2

|v|2dρ(r)dr.

�
Lemma 2.5. Let ρ(·), v be as in Lemma 2.4. Then

(2.48) −1
2
d2(ρ(t), σ)+ 1

2
d2(ρ(s), σ) =

∫ t

s

∫
R2

∇pρ(r),σ(x) ·(ν∇ρ

ρ
+u+v)ρ(r, dx)dr

for all 0 ≤ s < t ≤ T and σ ∈ P2(R2) with s(σ) < ∞. In the above, pρ(r),σ is
the difference of two convex functions defining Brenier’s optimal transport map in
Theorem D.25 (Appendix D) of [11].
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Proof. The result follows from Lemmas 7.17 and 7.18 in the Appendix. �

We can now state the following existence result.

Corollary 2.6. Let ρ0 ∈ P2(R2) be such that s(ρ0) < +∞. Let p : [0,∞)×R
2 → R

be such that there exists a sequence 0 = t0 < t1 < ... < tn < ..., tn → +∞ such that
p ∈ C∞

c ([tn, tn+1]×R
2) for n = 0, 1, .... Then there exists ρ(·) ∈ C([0,+∞);P2(R2))

such that (ρ,−∇ · (ρ∇p)) is a weak solution of (1.1) on [0,∞) and ρ(0) = ρ0.
Moreover, if ρ(·) ∈ Kρ0 , then ρ(·) satisfies (2.34)-(2.37) and (2.48) for every 0 ≤
s < t < ∞, and

(2.49) d(ρ(t), ρ0) ≤ C1

(
C2 + s(ρ0) + M2(ρ0) +

∫ t

0

∫
R2

|∇p|2dρdr
) 1

2 √
t

for 0 < t ≤ 1.

Proof. The result follows from Lemmas 2.2, 2.4, and 2.5 and the definition of a
weak solution which allows us to patch together solutions obtained on intervals
[0, t1], [t1, t2], .... Estimate (2.49) is the consequence of estimates (2.34), (2.35),
(7.26), and the characterization of the 2-Wasserstein distance; see for instance [3],
(8.0.3), page 168. �

3. The controlled PDE as a mixture of controlled gradient

and Hamiltonian flows

It is useful to adapt a geometric point of view for interpreting (1.1). The goal is
to discover a gradient and Hamiltonian flow structure of (1.1) and rewrite it as an
abstract evolution equation (3.23) in the Wasserstein space (P2(R2), d). To achieve
this, we need to invoke some results in optimal mass transport theory [3], [29].

3.1. A differential calculus on P2(R2). Following Otto [26], we formally view
(P2(R2), d) as an infinite-dimensional Riemannian manifold with tangent space
TρP2(R2) at ρ modeled by using H−1,ρ(R2). Let function f : P2(R2) �→ R∪ {±∞}
and ρ0 ∈ E. This allows us to define the notion of gradient.

Definition 3.1 (Gradient). For each p ∈ C∞
c (R2), let ρp = ρp(t, x), t ≥ 0, be

defined according to

∂tρ
p(t) + div(ρp∇p) = 0, ρp(0) = ρ0.

The gradient of f evaluated at ρ0, written as gradf(ρ0), is said to exist if and only
if it can be identified as the unique element in the Schwartz space D′(R2) satisfying

lim
t→0+

f(ρp(t)) − f(ρ0)
t

= 〈gradf(ρ0), p〉, ∀p ∈ C∞
c (R2).

Following Gangbo, Kim and Pacini [12], and Ambrosio and Gangbo [2], we
introduce the notion of a symplectic gradient.

Definition 3.2 (Symplectic gradient). For each p ∈ C∞
c (R2), let ρp = ρp(t, x), t ≥

0, be defined according to

∂ρp(t) + ∇ · (ρp(J∇p)) = 0, ρp(0) = ρ0.
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4008 JIN FENG AND ANDRZEJ ŚWIĘCH

The symplectic gradient of f evaluated at ρ0, written as J-grad f(ρ0), is said to
exist if and only if it can be identified as the unique element in the Schwartz space
D′(R2) satisfying

lim
t→0+

f(ρp(t)) − f(ρ0)
t

= 〈J-gradf(ρ0), p〉, ∀p ∈ C∞
c (R2).

Example 3.3. Let ϕi ∈ C∞
c (R2), k = 1, 2, . . .. We denote

�ϕ = (ϕ1, . . . , ϕk), �ψ = (ψ1, . . . , ψk).

For smooth test functions of the form

f(ρ) = h(〈ρ, ϕ1〉, . . . , 〈ρ, ϕk〉) = h(〈ρ, �ϕ〉),(3.1)

where h ∈ C1(Rk), we define the unconstrained first order variational derivative

δf

δρ
=

k∑
i=1

∂ih(〈ρ, �ϕ〉)ϕi.

Then

gradρf = −div(ρ∇δf

δρ
).(3.2)

Next, we consider functionals e, s, d2(·, γ),M2 as defined in (1.12), (1.15), (1.10),
(1.13). The functionals M2, d

2(·, γ) are continuous, and e, s are lower semicontinu-
ous on the metric space (P2(R2), d). In addition, by Theorem D.28 on page 381 of
Feng and Kurtz [11] (also Lemma 10.4.4 of [3]),

gradρ s(ρ) = −Δρ, if s(ρ) < ∞,(3.3)
gradρ d

2(ρ, γ) = −2div(ρ∇pρ,γ), if ρ, γ have Lebesgue densities.(3.4)

In the above,

pρ,γ(x) := 1
2
|x|2 − ϕρ,γ(x),

where ϕρ,γ is the convex function defining Brenier’s optimal transport map as in
the Kantorovich duality formulation of the 2-Wasserstein metric (e.g. Theorems
D.20 and D.25 in [11]). Let O be the interior of the convex hull of the support of
ρ; ∇pρ,γ is only defined in O. But ρ(O) = 1 and

(3.5)
∫
R2

|∇pρ,γ(x)|2ρ(dx) =
∫
R2×R2

|x− y|2πρ,γ(dx, dy) = d2(ρ, γ) < ∞.

So, taking ρ∇pρ,γ to be zero off the support of ρ, ρ∇pρ,γ ∈ L1(R2) and ∇·(ρ∇pρ,γ) ∈
D′(R2). Thus (3.5) means that

(3.6) ‖gradρd
2(ρ, γ)‖2

−1,ρ = 4d2(ρ, γ), if ρ, γ have Lebesgue densities.

Direct calculation reveals that

gradρ M2(ρ) = −div(2xρ).(3.7)

We also refer to a broader class of examples given in Theorem 10.4.13 in [3]. Re-
garding e we have the following result.
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Lemma 3.4. Let ρ0 ∈ P2(R2) be such that ‖ρ0‖2 < ∞. Then

gradρ0
e(ρ0) = −div(ρ0∇Uρ0),(3.8)

J-gradρ0
e(ρ0) = −div(ρ0uρ0),(3.9)

where Uρ0 = N ∗ ρ0.

Proof. Let ξ = ∇p : R2 �→ R
2 be a vector field such that p ∈ C∞

c (R2). We define a
corresponding flux {Φ(t) : t ∈ R} by

∂tΦ(t, ·) = ξ ◦ Φ(t, ·), t ∈ R, Φ(0, x) = x.

Let
∂tρ + div(ρξ) = 0, ρ(0) = ρ0.

By [3], chapter 8, we know that ρ ∈ AC((0,∞);P2(R2)) and ρ(t) = Φ(t)#ρ0 in
the sense of a change of variable formula such that for every nonnegative Borel
measurable function ϕ,

(3.10)
∫
R2

ϕ(y)ρ(t, dy) =
∫
R2

ϕ(Φ(t, x))ρ0(dx).

We notice that since Φ(t) is smooth and Φ(0, x) = x, hence for τ > 0 small enough
and 0 ≤ t < τ ,

detDΦ(t, x) ≥ ε0 for some ε0 > 0.

Therefore, since Φ(t) is a diffeomorphism, (3.10) implies that for 0 ≤ t < τ ,

ρ(t,Φ(t, x)) = ρ0(x)[detDΦ(t, x)]−1.

Therefore
(3.11)
1
ε0
‖ρ0‖2

2 ≥
∫
R2

|ρ0(x)|2
detDΦ(t, x)

dx =
∫
R2

|ρ(t,Φ(t, x))|2detDΦ(t, x)dx =
∫
R2

|ρ(t, y)|2dy,

which implies that
sup

0≤t<τ
‖ρ(t)‖2 < ∞.

It is also easy to see that
sup

0≤t<τ
M2(ρ(t)) < ∞.

Recall that en(ρ) = 1/2〈Nn ∗ ρ, ρ〉, where Nn = N ∗Gn = N ∗ Jn ∗ Jn and Jn is
a standard mollifier defined in Section 2. We notice that

en(ρ(t)) = 1
2

∫
R2

∫
R2

Nn(Φ(t, x) − Φ(t, y))ρ0(y)ρ0(x)dydx,

and thus, by the dominated convergence theorem, we easily obtain the fact that
limt→0 en(ρ(t)) = en(ρ0).

By Lemma 7.18 in the Appendix, en is λ-convex. By the chain rule in Lemma
7.17,

(3.12) en(ρ(t)) = en(ρ0) +
∫ t

0

∫
R2

(∇Nn ∗ ρ(r)) · ξdρ(r)dr.
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By Lemma 7.4, limn→∞ en(ρ(t)) = e(ρ(t)) and limn→∞ en(ρ0) = e(ρ0). Also, since
∇Nn = ∇N ∗Gn, using Hölder inequality and (7.4), we obtain∣∣∣∣

∫ t

0

∫
R2

(∇Nn ∗ ρ(r)) · ξdρ(r)dr −
∫ t

0

∫
R2

(∇N ∗ ρ(r)) · ξdρ(r)dr
∣∣∣∣

≤
∫ t

0
‖ρ(t)‖2‖(∇N ∗ (Gn ∗ ρ(t) − ρ(t))) · ξ‖2dr

≤ C

∫ t

0
‖Gn ∗ ρ(t) − ρ(t)‖1/2

2 dr → 0 as n → ∞.

Thus, letting n → ∞ in (3.12) we arrive at

(3.13) e(ρ(t)) = e(ρ0) +
∫ t

0

∫
R2

(∇N ∗ ρ(r))ξdρ(r)dr.

We now claim that
∫
R2(∇N ∗ ρ(r))ξdρ(r) is continuous in r ≥ 0. To see this, we

first note that by the change of variables,∫
R2

(∇N ∗ ρ(r))ξdρ(r)

= 1
2

∫
R2

∫
R2

∇N(Φ(r, x) − Φ(r, y))(ξ(Φ(r, x))− ξ(Φ(r, y)))ρ0(x)ρ0(y)dxdy.

Second, by the Lipschitz continuity of ξ,

|(ξ(x)− ξ(y))∇N(x− y)| ≤ C, for some C > 0.

Hence the continuity of
∫
R2(K ∗ ρ(r))ξdρ(r) in r follows by the dominated conver-

gence theorem.
Consequently,

lim
t→0+

t−1(e(ρ(t)) − e(ρ(0))) =
∫
R2

ξρ0(x)(∇N ∗ ρ0)dx,

which shows (3.8). The proof of (3.9) is virtually the same. �

We recall that condition ‖ρ0‖2 < ∞ in the above lemma is weaker than I(ρ0) <
∞ since ‖ρ0‖2

2 ≤ C(1 + I(ρ0)).

3.2. Several useful identities and estimates. We now give several estimates
regarding gradρs, gradρM2, gradρe, and J-gradρe. For ρ ∈ P2(R2) we denote by
Pρ to be the projection operator of L2(ρ) functions on to the subspace

L2
∇(ρ) ≡ {∇ϕ : ϕ ∈ C∞

c (R2)}L
2(ρ)

.

Then
(L2

∇(ρ))⊥ = {v ∈ L2(ρ) : div(ρv) = 0}.
Moreover,

〈−div(ρu),−div(ρv)〉−1,ρ =
∫
R2

(Pρu)(Pρv)dρ =
∫
R2

vPρudρ =
∫
R2

uPρvdρ.

See Section 8.4 of [3].
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Lemma 3.5. Assume that ρ ∈ P2(R2) satisfies I(ρ) < ∞ and that γ1, γ2, ... are as
in Definition 4.1. Then:

‖gradρs‖2
−1,ρ = I(ρ),(3.14)

‖J-gradρe‖2
−1,ρ =

∫
R2

|Pρuρ|2ρ(dx) ≤ C(1 + I(ρ)),

‖gradρM2(ρ)‖2
−1,ρ = 4M2(ρ),(3.15)

‖gradρ

∞∑
k=1

βkd
2(ρ, γk)‖2

−1,ρ = 4‖
∞∑
k=1

βk∇ ·
(
ρ∇pρ,γk

)
‖2
−1,ρ(3.16)

≤ 4

( ∞∑
k=1

βk

)( ∞∑
k=1

βk‖∇ ·
(
ρ∇pρ,γk

)
‖2
−1,ρ

)

= 4

( ∞∑
k=1

βk

) ∞∑
k=1

βkd
2(ρ, γk)

and

〈gradρs(ρ), J-gradρe(ρ)〉−1,ρ = −
∫
R2

∇ρ ·K⊥ ∗ ρ dx = 0,(3.17)

〈gradρs(ρ), gradρ

∞∑
k=1

βkd
2(ρ, γk)〉−1,ρ = 2

∞∑
k=1

βk

∫
R2

∇ρ · ∇pρ,γkdx,(3.18)

〈gradρs(ρ), gradρM2(ρ)〉−1,ρ = 2
∫
R2

∇ρ · x dx = −4,(3.19)

〈J-gradρe(ρ), gradρM2(ρ)〉−1,ρ = −2
∫
R2

K⊥ ∗ ρ · xρ dx = 0,(3.20)

〈J-gradρe(ρ), gradρ

∞∑
k=1

βkd
2(ρ, γk)〉−1,ρ = −2

∞∑
k=1

βk

∫
R2

K⊥ ∗ ρ · ∇pρ,γkρ dx,

(3.21)

〈gradρM2(ρ), gradρ

∞∑
k=1

βkd
2(ρ, γk)〉−1,ρ = 2

∞∑
k=1

βk

∫
R2

x · ∇pρ,γkρ dx.(3.22)

Proof. (3.14) follows from Theorem D.45 of [11]. (3.15) follows from Lemmas 3.4
and 7.5. (3.15) and (3.16) follow from (3.7) and (3.4). (3.17) follows from (3.3) and
Lemmas 3.4 and 7.6. (3.19) follows from (3.3), (3.7) and integration by parts, and
(3.20) follows from Lemma 7.7. The remaining formulas are also straightforward
using (3.4). �

We will see in Section 3.3 (equation (3.23)) that the controlled PDE system (1.1)-
(1.3) is just a mixture of a controlled Hamiltonian flow and an antigradient flow.
Here we provide some estimates for each term of the flow which will be crucial in the
proof of the comparison principle. First, an adaptation of the results in Theorem
D.50 of [11] (see Remark D.51 there) gives the following monotonicity estimate for
gradρs.

Lemma 3.6. For ρ, γ ∈ P2(R2) satisfying I(γ) + I(ρ) < +∞,

〈−gradρs, gradρd
2〉−1,ρ + 〈−gradγs, gradγd

2〉−1,γ ≤ 0.
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Unfortunately, we do not have such a monotonicity property for the Hamiltonian
term J-gradρe. However, we have the following approximate result.

Lemma 3.7. Suppose that ρ, γ ∈ P2(R2) satisfy I(γ)+ I(ρ) < +∞. Then for each
δ > 0 there exists a constant Cδ ≥ 0 such that

〈J-gradρe, gradρd
2〉−1,ρ + 〈J-gradγe, gradγd

2〉−1,γ

≤ δd(ρ, γ)
√
I(ρ) + I(γ)

(
(C̃ + s(ρ) + M2(ρ))

3
2 + (C̃ + s(γ) + M2(γ)) 3

2

)

+ Cδd
2(ρ, γ),

where C̃ is from Lemma 7.16.

Proof. We denote

u(x) = −K⊥ ∗ ρ(x), v(y) = −K⊥ ∗ γ(y).

Let π0 ∈ Γo(ρ, γ), the set of optimal measures. Then by (3.21),

〈J-gradρe, gradρd
2〉−1,ρ + 〈J-gradγe, gradγd

2〉−1,γ

=
∫
R2

∫
R2

(x− y)(u(x) − v(y))π0(dx, dy).

Let Ĵδ be the kernel approximating −K⊥ from Lemma 7.16, i.e. Ĵδ is equal to J̃k
from Lemma 7.15 for large enough k, and let

uδ = Ĵδ ∗ ρ, vδ = Ĵδ ∗ γ.
Since Ĵδ is Lipschitz we have

(z − z′)(Ĵδ(z) − Ĵδ(z′)) ≤ Cδ|z − z′|2

for all z, z′ ∈ R
2. It now follows that∫

(x− y)(uδ(x) − vδ(y))π0(dx, dy)

=
∫
x,y

∫
x′,y′

(x− y)
(
Ĵδ(x− x′) − Ĵδ(y − y′)

)
π0(dx′, dy′)π0(dx, dy)

= 1
2

∫
x,y

∫
x′,y′

(
x− x′ − (y − y′)

)(
Ĵδ(x− x′) − Ĵδ(y − y′)

)
π0(dx′, dy′)π0(dx, dy)

≤ 1
2
Cδ

∫
|x− y|2π0(dx, dy) = 1

2
Cδd

2(ρ, γ).

The second equality above follows from the fact that Ĵδ(−z) = −Ĵδ(z) and sym-
metry of the integral.

On the other hand, by Lemma 7.16,∫
(x− y)

(
(u(x) − uδ(x)) + (v(y) − vδ(y))

)
π0(dx, dy)

≤
√∫

|x− y|2dπ0(dx, dy)
(√∫

|u− uδ|2ρ(dx) +

√∫
|v − vδ|2γ(dy)

)

≤ d(ρ, γ)
√
δ
√
I(ρ) + I(γ)

(
(C̃ + s(ρ) + M2(ρ))

3
2 + (C̃ + s(γ) + M2(γ)) 3

2

)
,

which completes the proof. �
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3.3. Controlled gradient-Hamiltonian flow. Using (3.3), Lemma 3.4, and Cor-
ollary 2.6 we can interpret (1.1) as a controlled gradient-Hamiltonian system.

Lemma 3.8. Let ρ(·) ∈ Kρ0 , where s(ρ(0)) < +∞. Then the weak solution of the
controlled PDE (1.1) can be re-written as a mixture of a Hamiltonian flow, negative
gradient flow, and control variable in the form
(3.23) ∂tρ = J-gradρe− νgradρs + m,

where m = −∇ · (ρ∇p).

4. Viscosity solutions

In this section we introduce the notion of a viscosity solution. We recall that
E = P2(R2). For ρ ∈ E such that I(ρ) < +∞ and m̃ ∈ H−1,ρ, we define

H(ρ, m̃) = sup
m∈H−1,ρ

[
〈J-gradρe− ν gradρs, m̃〉−1,ρ + 〈m, m̃〉−1,ρ −

1
4ν ‖m‖2

−1,ρ

]

= 〈J-gradρe− ν gradρs, m̃〉 + ν‖m̃‖2
−1,ρ.

(4.1)

For p ∈ C∞
c (R2) we denote mp := −∇ · (ρ∇p) ∈ H−1,ρ. We then define

Hp(ρ, m̃) = 〈J-gradρe− ν gradρs, m̃〉−1,ρ + 〈mp, m̃〉−1,ρ −
1
4ν

‖mp‖2
−1,ρ.

We notice that
(4.2) H(ρ, m̃) = sup

p∈C∞
c (R2)

Hp(ρ, m̃).

Let α > 0 and h ∈ Cb(E). We want to show that the value function

(4.3) f(ρ0) = sup
{∫ ∞

0
e−α−1t

(
α−1h(ρ(t)) − L(ρ(t), ρ̇(t))

)
dt : ρ ∈ Kρ0

}

is the unique viscosity solution of the HJB equation
(4.4) f − αH(ρ, gradρf) = h(ρ).

We need to define the notion of a viscosity solution.

Definition 4.1. We say that ψ : E → R ∪ {+∞} is a test function if

ψ(ρ) = θs(ρ) + δM2(ρ) +
∞∑
k=1

βkd
2(ρ, γk) + c,

where 0 < θ < 1, δ > 0, c ∈ R, βk ≥ 0 for k ≥ 1,
∑∞

k=1 βk < +∞, the set
{γk : k ≥ 1} is bounded and every γk has Lebesgue density.

Obviously
∑∞

k=1 βkd
2(ρ, γk) is continuous in E. Since convergence in E implies

convergence of second moments, M2(ρ) is also continuous in E. It is also well known
that s(ρ) is lower semicontinuous in E, for instance using the lower semicontinuity
of relative entropy (see for instance Lemma 1.4.3 of [8]) and continuity of M2(ρ).
In fact, every test function ψ is narrowly lower semicontinuous, and its level sets
{ρ : ψ(ρ) ≤ r} are compact in the narrow topology of E.

We recall that if I(ρ) < +∞, then ρ ∈ D(ψ) and gradρψ(ρ) ∈ H−1,ρ, and then
H(ρ, gradρψ(ρ)) is well defined. Otherwise we set

H(ρ, gradρψ(ρ)) = −∞ if I(ρ) = +∞,
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and for every p ∈ C∞
c (R2),

Hp(ρ,−gradρψ(ρ)) = H(ρ,−gradρψ(ρ)) = +∞ if I(ρ) = +∞.

Definition 4.2. We say that g : E → R is a viscosity subsolution of (4.4) if
whenever (g − ψ)∗ has a local maximum at ρ0 for a test function ψ, we have

(g − ψ)∗(ρ0) + ψ(ρ0) − αH(ρ0, gradρ0
ψ(ρ0)) ≤ h(ρ0).

We say that g : E → R is a viscosity supersolution of (4.4) if whenever (g + ψ)∗
has a local minimum at ρ0 for a test function ψ, we have

(g + ψ)∗(ρ0) − ψ(ρ0) − αH(ρ0,−gradρ0
ψ(ρ0)) ≥ h(ρ0).

A function g : E → R is a viscosity solution of (4.4) if it is both a viscosity
subsolution and a viscosity supersolution of (4.4).

Above, (g − ψ)∗ (respectively, (g − ψ)∗) means the upper (respectively, lower)
semicontinuous envelope of g − ψ.

The reader may wonder what roles the various parts of test functions play. The
part θs(ρ)+ δM2(ρ) plays a role of a cutoff function and a function which will pro-
duce coercive terms in the equation. The functions of the form

∑∞
k=1 βkd

2(ρ, γk)
contain doubling functions and functions which allow us to perform perturbed op-
timization (see the next section). We also mention that the first definition of a
discontinuous viscosity solution, for equations with unbounded terms in a Hilbert
space, was introduced by Ishii in [16].

Remark 4.3. We notice that the above definition of a viscosity solution implies that
ρ0 in the subsolution and the supersolution parts necessarily satisfies I(ρ0) < +∞.
Therefore, in fact, H(ρ0,±gradρ0ψ(ρ0)) is always finite and we don’t have to use
the extensions of H introduced before, and it is enough to use the definition of H
given by (4.1).

5. The comparison principle

In this section we will show a comparison result. We first recall a variational
principle of Borwein-Preiss (see [6], Theorem 2.6 and Remark 2.7) which is stated
here in the form adapted to our case and which can be easily deduced from the
proof of Theorem 2.6 of [6].

Lemma 5.1. Let g : E × E → [−∞,+∞) be upper semicontinuous and such that
g(ρ, γ) = −∞ if either ρ or γ does not have Legesgue density. Let for n ≥ 1,
(ρ0, γ0) be such that

g(ρ0, γ0) > sup
E×E

g − 1
n
.

Then there exist sequences (ρ̃k), (γ̃k) of measures that have Lebesgue densities such
that d(ρ̃k, ρ0) ≤ 1, d(γ̃k, γ0) ≤ 1, k ≥ 1, ρ̃k → ρn, γ̃k → γn for some ρn, γn ∈ E,
and sequences of nonnegative numbers (β1

k), (β2
k) such that

∑+∞
k=1 β

i
k = 1, i = 1, 2,

such that

g(ρn, γn) > sup
E×E

g − 1
n
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and

g(ρn, γn) − 1
n

+∞∑
k=1

β1
kd

2(ρn, ρ̃k) − 1
n

+∞∑
k=1

β2
kd

2(γn, γ̃k)

≥ g(ρ, γ) − 1
n

+∞∑
k=1

β1
kd

2(ρ, ρ̃k) − 1
n

+∞∑
k=1

β2
kd

2(γ, γ̃k),

for all (ρ, γ) ∈ E × E.

Theorem 5.2. Let α > 0 and hi ∈ Cb(E), i = 1, 2. Let f and f be two bounded
functions such that f is a viscosity subsolution of

f − αHf = h1(5.1)
and f is a viscosity supersolution of

f − αHf = h2.(5.2)
Then

lim
R→+∞

lim sup
r→0

{
f(ρ) − f(γ) : (s(ρ) + M2(ρ)) + (s(γ) + M2(γ)) ≤ R, d(ρ, γ) ≤ r

}
≤ lim

R→+∞
lim sup

r→0

{
h1(ρ) − h2(γ) : (s(ρ)+M2(ρ))+(s(γ)+M2(γ)) ≤ R, d(ρ, γ)≤r

}
.

(5.3)

Proof. If (5.3) does not hold, then there exists δ > 0 such that if 0 < β − 1 is
sufficiently small, we have
kβ := lim

R→+∞
lim sup

r→0

{
βf(ρ) −f(γ) : (s(ρ)+M2(ρ))+(s(γ)+M2(γ))≤R, d(ρ, γ)≤r

}

> δ + lim
R→+∞

lim sup
r→0

{
βh1(ρ) − h2(γ) : (s(ρ) + M2(ρ)) + (s(γ) + M2(γ)) ≤ R,

(5.4)

d(ρ, γ) ≤ r
}

= δ + k̃β .

Set for 0 < θ < 1
kβ,θ := lim sup

r→0

{
βf(ρ) − θ(s(ρ) + M2(ρ)) − f(γ) − θ(s(γ) + M2(γ)) : d(ρ, γ) ≤ r

}

= lim sup
r→0

{
(βf − θ(s + M2))∗(ρ) − (f + θ(s + M2))∗(γ) : d(ρ, γ) ≤ r

}
,

kβ,θ,ε := sup
{
(βf − θ(s + M2))∗(ρ) − (f + θ(s + M2))∗(γ) − 1

2ε
d2(ρ, γ)

}
.

We recall that
(5.5) s(ρ) + M2(ρ) ≥ C1 for all ρ ∈ E

for some constant C1, and then it is easy to see that
kβ = lim

θ→0
kβ,θ,(5.6)

kβ,θ = lim
κ→0

kβ,θ,ε.(5.7)

Denote
fβ,θ(ρ) = (βf − θ(s + M2))∗(ρ), f

β,θ
(γ) = (f + θ(s + M2))∗(γ).

We notice that if fβ,θ(ρ) > −∞, then s(ρ) < +∞, and so ρ must be absolutely
continuous with respect to the Lebesgue measure. Also, if f

β,θ
(γ) < +∞, then
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s(γ) < +∞, and thus γ has Lebesgue density. Therefore we can apply Lemma 5.1 to
obtain for n ≥ 1 sequences (ρ̃k), (γ̃k) of measures that have Lebesgue densities such
that ρ̃k → ρn, γ̃k → γn for some ρn, γn ∈ E, where d(ρ̃k, ρn) ≤ 1, d(γ̃k, γn) ≤ 1,
k ≥ 1, and sequences of nonnegative numbers (β1

k), (β2
k) satisfying

∑+∞
k=1 β

i
k = 1,

i = 1, 2, such that

fβ,θ(ρn) − f
β,θ

(γn) − 1
2ε

d2(ρn, γn)

> sup
E×E

{
fβ,θ(ρ) − f

β,θ
(γ) − 1

2ε
d2(ρ, γ)

}
− 1

n
= kβ,θ,ε −

1
n

(5.8)

and

fβ,θ(ρn) − f
β,θ

(γn) − 1
2εd

2(ρn, γn) − 1
n

+∞∑
k=1

β1
kd

2(ρn, ρ̃k) − 1
n

+∞∑
k=1

β2
kd

2(γn, γ̃k)

≥ fβ,θ(ρ) − f
β,θ

(γ) − 1
2ε

d2(ρ, γ) − 1
n

+∞∑
k=1

β1
kd

2(ρ, ρ̃k) − 1
n

+∞∑
k=1

β2
kd

2(γ, γ̃k)

for all (ρ, γ) ∈ E × E. Moreover, it follows from (5.5) and (5.8) that
(5.9) s(ρn) + M2(ρn) ≤ C(θ), s(γn) + M2(γn) ≤ C(θ)
for some constant C(θ) independent of n. It is also a rather straightforward obser-
vation (see [16] for similar arguments) that

lim
ε→0

lim sup
n→∞

1
2ε

d2(ρn, γn) = 0 for every θ,(5.10)

lim
θ→0

lim sup
ε→0

lim sup
n→∞

(θ(s(ρn) + M2(ρn)) + θ(s(γn) + M2(γn))) = 0.(5.11)

To see these, let ρnj → ρn, γn
j → γn be such that

fβ,θ(ρn) = lim
j→+∞

(βf − θ(s + M2))(ρnj ),

f
β,θ

(γn) = lim
j→+∞

(f + θ(s + M2))(γn
j ).

We then have from (5.8) that for large j,

kβ,θ,ε < (βf − θ(s + M2))(ρnj ) − (f + θ(s + M2))(γn
j ) − 1

2ε
d2(ρnj , γn

j ) + 1
n
.

Therefore

kβ,θ,ε + 1
4ε

d2(ρnj , γn
j ) < (βf − θ(s + M2))(ρnj )

− (f + θ(s + M2))(γn
j ) − 1

4ε
d2(ρnj , γn

j ) + 1
n
≤ kβ,θ,2ε + 1

n
,

which implies

(5.12) kβ,θ,ε + 1
4ε

d2(ρn, γn) ≤ kβ,θ,2ε + 1
n
.

Likewise, we obtain

kβ,θ,ε + 1
4ε

d2(ρnj , γn
j ) + θ

2
((s + M2)(ρnj ) + (s + M2)(γn

j )) < kβ, θ2 ,2ε
+ 1

n
,

which, using the lower semicontinuity of s + M2, gives

(5.13) kβ,θ,ε + 1
4ε

d2(ρn, γn) + θ

2
((s + M2)(ρn) + (s + M2)(γn)) ≤ kβ, θ2 ,2ε

+ 1
n
.
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It now remains to take limε→0 lim supn→+∞ in (5.12) and use (5.7), and then take
the limits limθ→0 lim supε→0 lim supn→+∞ in (5.13) and use (5.6) to produce (5.10)
and (5.11), respectively.

We also observe that (5.6), (5.7), (5.8) and (5.10) imply

(5.14) lim
θ→0

lim
ε→0

lim sup
n→∞

(fβ,θ(ρn) − f
β,θ

(γn)) = kβ .

Finally we notice that since s + M2/2 > −c1 for some constant c1 > 0, we have
θM2 ≤ 2θ(s + M2 + c1), and this, together with (5.11), yields

(5.15) lim
θ→0

lim sup
ε→0

lim sup
n→∞

θ(M2(ρn) + M2(γn)) = 0.

Set

ϕ(ρ) =
+∞∑
k=1

β1
kd

2(ρ, ρ̃k), ψ(γ) =
+∞∑
k=1

β2
kd

2(γ, γ̃k).

We can now use the definition of a viscosity solution. We recall that we have
I(ρn) + I(γn) < +∞. For f we obtain

fβ,θ,κ(ρn) − α

[
〈J-gradρne(ρn) − ν gradρns(ρn), θgradρns(ρn)

+ θgradρnM2(ρn) + 1
n

gradρnϕn(ρn) + 1
2ε

gradρnd2(ρn, γn)〉−1,ρn

+ ν

β

∥∥∥∥θgradρns(ρn) + θgradρnM2(ρn) + 1
n

gradρnϕn(ρn)

+ 1
2ε

gradρnd2(ρn, γn)
∥∥∥∥

2

−1,ρn

]
− βh1(ρn) ≤ C1θ,

(5.16)

where C1 is the constant from (5.5). We now estimate, using (3.14)-(3.16), (3.17)-
(3.22), Lemma 7.5, and standard Schwarz’s and Young’s inequalities,

α〈J-gradρne(ρn), θgradρns(ρn)

+ θgradρnM2(ρn) + 1
n

gradρnϕn(ρn) + 1
2ε

gradρnd2(ρn, γn)〉−1,ρn

≤ α
[
〈J-gradρne(ρn), 1

2ε
gradρnd2(ρn, γn)〉−1,ρn

+ 1
n
‖J-gradρne(ρn)‖2

−1,ρn + C

n
‖gradρnϕn(ρn)‖2

−1,ρn

]

≤ α〈J-gradρne(ρn), 1
2ε

gradρnd2(ρn, γn)〉−1,ρn + Cθ

n
(1 + I(ρn)) + C

n
,

(5.17)

− αν〈gradρns(ρn), θgradρns(ρn)

+ θgradρnM2(ρn) + 1
n

gradρnϕn(ρn) + 1
2ε

gradρnd2(ρn, γn)〉−1,ρn

≤ −ανθI(ρn) + 4ανθ + 1
n
I(ρn) + C

n
‖gradρnϕn(ρn)‖2

−1,ρn

− αν〈gradρns(ρn), 1
2ε

gradρnd2(ρn, γn)〉−1,ρn

≤ −
(
ανθ − 1

n

)
I(ρn) + 4ανθ + C

n
− αν〈gradρns(ρn), 1

2ε
gradρnd2(ρn, γn)〉−1,ρn ,

(5.18)
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and

αν

β

∥∥θgradρns(ρn) + θgradρnM2(ρn) + 1
n

gradρnϕn(ρn) + 1
2ε

gradρnd2(ρn, γn)
∥∥2
−1,ρn

i

≤ αν

β

[(
2θ2 + θβ

4

)
I(ρn) +

(
2θ2 + θ

)
M2(ρn) + C

(
θ2 + 1

n2 + 1
n

)

+ 1
ε2

(
1 + C2

(
θ + 1

n

))
d2(ρn, γn)

]
,

(5.19)

where we have estimated

〈θgradρns(ρn) + θgradρnM2(ρn) + 1
n

gradρnϕn(ρn), 1
2εgradρnd2(ρn, γn)〉−1,ρn

≤ θβ

4 I(ρn) + θΨ2(ρn) + 1
n
‖gradρnϕn(ρn)‖2

−1,ρn

+ 1
ε2
C2

(
θ + 1

n

)
‖gradρnd2(ρn, γn)‖−1,ρn .

Now let δ̃ > 0 be such that

(5.20) δ̃ < (1 − δ̃) − 1 + δ̃

β
.

Then, if
2ανθ2

β
<

ανθ

8
,

Cθ + 1
n

<
ανθ

8
, C2

(
θ + 1

n

)
< δ̃,

we see from (5.16)-(5.19) and (5.15) that

fβ,θ,κ(ρn) − α〈J-gradρne(ρn) − ν gradρns(ρn), 1
2ε

gradρnd2(ρn, γn)〉−1,ρn

+ ανθ

2
I(ρn) − αν(1 + δ̃)

β

1
ε2
d2(ρn, γn) − βh1(ρn) ≤ ω(θ, ε, n),

(5.21)

where limθ→0 lim supε→0 lim supn→∞ ω(θ, ε, n) = 0.
Repeating similar arguments we also obtain

f
β,θ,κ

(γn) + α〈J-gradγne(γn) − ν gradγns(γn), 1
2ε

gradγnd2(ρn, γn)〉−1,γn

− ανθ

2
I(γn) − αν(1 − δ̃) 1

ε2
d2(ρn, γn) − h1(γn) ≥ −ω(θ, ε, n).

(5.22)

Combining (5.21) with (5.22) and using (5.20) yields

fβ,θ,κ(ρn) − f
β,θ,κ

(γn) + ανθ

2
(I(ρn) + I(γn)) + ανδ̃

1
ε2
d2(ρn, γn)

− α〈J-gradρne(ρn) − ν gradρns(ρn), 1
2ε

gradρnd2(ρn, γn)〉−1,ρn

− α〈J-gradγne(γn) − ν gradγns(γn), 1
2εgradγnd2(ρn, γn)〉−1,γn

≤ βh1(ρn) − h1(γn) + ω(θ, ε, n).

(5.23)

It now follows from Lemmas 3.6 and 3.7, together with (5.9), applied with

δ = 2
(C̃ + C(θ)) 3

2

√
νθ

2

√
νδ̃,
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that

fβ,θ,κ(ρn) − f
β,θ,κ

(γn) + ανθ

2
(I(ρn) + I(γn)) + ανδ̃

1
ε2
d2(ρn, γn)

− 2α
√

νθ

2

√
νδ̃

1
ε
d(ρn, γn)

√
I(ρn) + I(γn) − Cθ

1
ε
d2(ρn, γn)

≤ βh1(ρn) − h1(γn) + ω(θ, ε, n),

(5.24)

which, together with (5.10), obviously implies

(5.25) fβ,θ,κ(ρn) − f
β,θ,κ

(γn) ≤ βh1(ρn) − h1(γn) + ω(θ, ε, n).

It now remains to apply limθ→0 lim supε→0 lim supn→∞ to both sides of (5.25) and
invoke (5.10), (5.11) and (5.14) to obtain

kβ ≤ k̃β ,

which contradicts (5.4). �

Corollary 5.3. Let α > 0 and h ∈ Cb(E) and be uniformly continuous on finite
level sets of s + M2. Then the equation f − αHf = h has at most one bounded
viscosity solution. Such a solution is uniformly continuous on finite level sets of
s + M2.

6. Existence of viscosity solutions

We begin with a preliminary lemma.

Lemma 6.1. Let ψ be a test function, p ∈ C∞
c (R2). Then:

(i) (λ, ρ) → 1
λH(ρ, λ gradρψ(ρ)) defined on (0,+∞)×E is upper semicontinuous

at (1, ρ) for every ρ.
(ii) (λ, ρ) → 1

λHp(ρ,−λ gradρψ(ρ)) defined on (0,+∞)×E is lower semicontin-
uous at (1, ρ). In particular, (λ, ρ) → 1

λH(ρ,−λ gradρψ(ρ)) is also lower semicon-
tinuous at (1, ρ).

Proof. We will only show (i), as the proof of (ii) is similar. We recall that if
I(ρ) < +∞, then

gradρs(ρ) = −∇ ·
(
ρ
∇ρ

ρ

)
,

J-gradρe(ρ) = −∇ ·
(
ρ(−K⊥ ∗ ρ)

)
,

gradρM2(ρ) = −∇ · (2xρ) ,

gradρ

∞∑
k=1

βkd
2(ρ, γk) = −2

∞∑
k=1

βk∇ ·
(
ρ∇pρ,γk

)
.

(6.1)

Therefore, using (3.14)-(3.22) and elementary Schwarz and Young inequalities,
if λ is close to 1 so that θ/2 < λθ < (1+θ)/2 we obtain that there exists a constant
Cθ,δ and for every ε > 0 a constant Cε such that

H(ρ, λ gradρψ(ρ)) ≤ −νθ(1 − θ)
4

I(ρ) + ε

∫
R2

|uρ|2ρ dx + εI(ρ)

+ Cε

∞∑
k=1

βkd
2(ρ, γk) + Cθ,δ

(
1 + M2(ρ) +

∞∑
k=1

βkd
2(ρ, γk)

)
.

(6.2)
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Since by Lemma 7.5 ∫
R2

|uρ|2ρ dx ≤ C(1 + I(ρ)),

we therefore obtain that if ε is small enough, then

(6.3) H(ρ, λ gradρψ(ρ)) ≤ −νθ(1 − θ)
8

I(ρ)+Cθ,δ

(
1 + M2(ρ) +

∞∑
k=1

βkd
2(ρ, γk)

)
.

This obviously shows that if ρn → ρ0 and I(ρn) → +∞, then H(ρ, λ gradρψ(ρ)) is
upper semicontinuous at (1, ρ0).

Therefore it remains to show the upper semicontinuity in the case when ρn → ρ0
and supn I(ρn) = R < +∞. In this case all the terms of the Hamiltonian are
bounded, so we can eliminate λ from our considerations and just set λ = 1.

We will be using a result proved in [11] (Lemma D.48), where in our case

∇
√
ρn = ∇ρn

2
√
ρn

⇀
∇ρ0

2√ρ0
= ∇√

ρ0 weakly in L2(R2),(6.4)
√
ρn → √

ρ0 in L2(R2),(6.5)
√
ρn∇pρn,γk → √

ρ0∇pρ0,γk in L2(R2)(6.6)

for every k ≥ 1.
Since ρn → ρ0 in E, ρn have uniformly integrable 2nd moments. This, together

with (6.5), implies that

(6.7) x
√
ρn → x

√
ρ0 in L2(R2).

We now notice that, by (3.14), −‖gradρs(ρ)‖2
−1,ρ = −I(ρ) is upper semicontinu-

ous and, by (3.15) and (3.16), ‖gradρM2(ρ)‖2
−1,ρ and ‖gradρ

∑∞
k=1 βkd

2(ρ, γk)‖2
−1,ρ

are continuous.
We will now show that

(6.8) uρn

√
ρn → uρ0

√
ρ0 in L2(R2).

Let φ ∈ C∞
c (R2) be radial, 0 ≤ φ ≤ 1, φ(x) = 1 for |x| ≤ 1/2 and φ(x) = 0 for

|x| ≥ 1. We set for r > 0, φr(x) = φ(x/r). We decompose −K⊥ = −φrK
⊥ −

(1 − φr)K⊥ =: K1,r + K2,r, which induces the decomposition of uρ into uρ =
u1,r
ρ + u2,r

ρ = K1,r ∗ ρ + K2,r ∗ ρ. Now

‖uρn

√
ρn − uρ0

√
ρ0‖2 ≤ ‖(u1,r

ρn − u1,r
ρ0

)
√
ρn‖2 + ‖(u2,r

ρn − u2,r
ρ0

)
√
ρn‖2

+ ‖uρ0(
√
ρn −√

ρ0)‖2.

Using Hölder inequality and Young’s inequality for convolutions we obtain (see also
(7.10))
(6.9)
‖(u1,r

ρn − u1,r
ρ0

)
√
ρn‖2 ≤ ‖u1,r

ρn − u1,r
ρ0

‖4‖ρn‖1/2
2 ≤ ‖K1,r‖ 4

3
‖ρn − ρ0‖2‖ρn‖1/2

2 ≤ Cr1/2,

‖(u2,r
ρn − u2,r

ρ0
)
√
ρn‖2 ≤ ‖u2,r

ρn − u2,r
ρ0

‖4‖ρn‖1/2
2

≤ ‖K2,r‖4‖ρn − ρ0‖1‖ρn‖1/2
2 → 0 as n → ∞,(6.10)
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and, by (7.2), (7.28) and (6.5),

‖uρ0(
√
ρn −√

ρ0)‖2 ≤ ‖uρ0‖8‖
√
ρn −√

ρ0‖1/2
4 ‖

√
ρn −√

ρ0‖1/2
2

≤ C‖
√
ρn −√

ρ0‖1/2
2 → 0 as n → ∞.(6.11)

Thus (6.8) follows after we let r → 0.
We now notice that

|2
∞∑

k=m

βk

∫
R2

∇ρn · ∇pρn,γkdx| ≤ 2
∞∑

k=m

βk

√
I(ρn)

(∫
R2

|∇pρn,γk |2ρn dx
) 1

2

≤ 2
∞∑

k=m

βk

√
I(ρn) d(ρn, γk) ≤ 2

( ∞∑
k=m

βk

) 1
2 √

I(ρn)

( ∞∑
k=m

βkd
2(ρn, γk)

) 1
2

≤ 2

( ∞∑
k=m

βk

) 1
2 √

R

( ∞∑
k=m

βkd
2(ρn, γk)

) 1
2

≤ ω( 1
m

)

for some modulus ω independent of n, and the same estimate is also true for ρ0.
Therefore continuity of the term in (3.21) is enough to show the continuity of

the partial sums
m∑

k=1

βk

∫
R2

K⊥ ∗ ρn · ∇pρn,γkdx

for every m ≥ 1. This is however clear by (6.6) and (6.8).
The continuity of the term in (3.18) (respectively, (3.22)) follows by the same

argument if we use (6.4) and (6.6) (respectively, (6.6), (6.7)). �

To prove that the value function f is a viscosity solution of (4.4) we will use
the principle of dynamic programming. Its proof follows standard arguments (see
for instance [4]), since our definitions of weak solution of (1.1) and of admissible
trajectories Kρ0 allow us to concatenate admissible trajectories, i.e. if ρ1(·) ∈ Kρ0 ,
ρ2(·) ∈ Kρ1(t) and we define

ρ(τ ) =
{

ρ1(τ ) if τ ∈ (0, t],
ρ2(τ − t) if τ > t,

then ρ(·) ∈ Kρ0 .

Lemma 6.2. The value function f satisfies the dynamic programming principle,
i.e. for every ρ0 ∈ E and t > 0,
(6.12)

f(ρ0) = sup
ρ∈Kρ0

{∫ t

0
e−α−1τ

(
α−1h(ρ(τ ))− L(ρ(τ ), ρ̇(τ ))

)
dτ + e−α−1tf(ρ(t))

}
.

Theorem 6.3. Let α > 0 and h ∈ Cb(E). Then the value function f defined by
(4.3) is a viscosity solution of (4.4).

Proof. We will first show that f is a viscosity subsolution.
Let (f − ψ)∗ have a local maximum at ρ0. Let ρn → ρ0 be such that

f(ρn) − ψ(ρn) ≥ (f − ψ)∗(ρ0) −
1
n2 .
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This implies that

(6.13) f(ρn) − ψ(ρn) → (f − ψ)∗(ρ0)

and

(6.14) f(ρ) − ψ(ρ) ≤ f(ρn) − ψ(ρn) + 1
n2

for ρ in some neighborhood of ρ0. This obviously implies that

(6.15) sup
n

s(ρn) = C0 < +∞.

By the dynamic programming principle, for every n ≥ 1 there exists ρ̃n ∈ Kρn

and a corresponding mpn as in the definition of Kρn such that
(6.16)

f(ρn) ≤
∫ 1

n

0
e−

τ
α

(
α−1h(ρ̃n(τ )) − 1

4ν
‖mpn(τ )‖2

−1,ρ̃n(τ)

)
dτ + e−

1
αn f(ρ̃n( 1

n
)) + 1

n2 .

We notice for future use that a particular consequence of (6.16) and the boundedness
of f and h is that

(6.17) f(ρn) ≤ R1

n
+ f(ρ̃n( 1

n
))

for some constant R1 independent of n. Moreover, it also follows that

(6.18) sup
n

∫ 1
n

0
‖mpn(τ )‖2

−1,ρ̃n(τ)dτ = R2 < +∞

for some R2 ≥ 0. Therefore, (6.15), (6.18) and (2.49) of Corollary 2.6 imply

(6.19) d(ρ̃n(τ ), ρ̃n(0)) ≤ C
√
τ

for some constant C independent of n.
Now, it follows from (6.14) and (6.16) that

f(ρ̃n( 1
n

))(1 − e−
1

αn ) − 2
n2

≤ ψ(ρ̃n( 1
n

)) − ψ(ρ̃n(0)) +
∫ 1

n

0
e−

τ
α

(
α−1h(ρ̃n(τ )) − 1

4ν
‖mpn(τ )‖2

−1,ρ̃n(τ)

)
dτ.

Therefore, using (2.36), (2.37), (2.48) and writing the terms using the abstract
gradient notation (6.1) we obtain

1
nα

f(ρ̃n( 1
n

)) + o( 1
n

)

≤
∫ 1

n

0

([
〈J-gradρ̃n(τ)e(ρ̃n(τ )) − ν gradρ̃n(τ)s(ρ̃n(τ ))

+ mpn(τ ), gradρ̃n(τ)ψ(ρ̃n(τ ))〉−1,ρ̃n(τ) − e−
τ
α

1
4ν

‖mpn(τ )‖2
−1,ρ̃n(τ)

]

+ α−1e−
τ
αh(ρ̃n(τ ))

)
dτ

≤
∫ 1

n

0

(
e−

τ
αH
(
ρ̃n(τ ), e τ

α gradρ̃n(τ)ψ(ρ̃n(τ ))
)

+ α−1e−
τ
αh(ρ̃n(τ ))

)
dτ.
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Multiplying the above inequality by n/α we therefore obtain that there exists tn ∈
(0, 1/n) such that

f(ρ̃n( 1
n

)) + no( 1
n

) ≤ αe−
tn
α H

(
ρ̃n(tn), e

tn
α gradρ̃n(tn)ψ(ρ̃n(tn))

)
+ e−

tn
α h(ρ̃n(tn)),

which, upon using (6.17), gives

(f(ρn) − ψ(ρn)) + ψ(ρn) − αe−
tn
α H

(
ρ̃n(tn), e

tn
α gradρ̃n(tn)ψ(ρ̃n(tn))

)

≤ e−
tn
α h(ρ̃n(tn)) + no( 1

n
).

(6.20)

Therefore we can now pass to lim infn→∞ in (6.20) using ρn → ρ0, Lemma 6.1(i),
(6.13), (6.19), and the lower semicontinuity of ψ to conclude that

(f − ψ)∗(ρ0) + ψ(ρ0) − αH(ρ0, gradρ0
ψ(ρ0)) ≤ h(ρ0).

To show the supersolution property let (f +ψ)∗ have a local minimum at ρ0 and
let ρn → ρ0 be such that

f(ρn) + ψ(ρn) ≤ (f + ψ)∗(ρ0) + 1
n2 .

As before we have
f(ρn) + ψ(ρn) → (f + ψ)∗(ρ0)

and
f(ρ) + ψ(ρ) ≥ f(ρn) + ψ(ρn) − 1

n2

for ρ in some neighborhood of ρ0.
Let p ∈ C∞

c (R2) and let mp = −∇(ρ∇p). By the dynamic programming princi-
ple, if ρ̃n(·) ∈ Kρn corresponds to the control mp, then

f(ρn) ≥
∫ 1

n

0
e−

τ
α

(
α−1h(ρ̃n(τ )) − 1

4ν
‖mn

p (τ )‖2
−1,ρ̃n(τ)

)
dτ + e−

1
αn f(ρ̃n( 1

n
)).

This in particular implies that

(6.21) f(ρn) ≥ f(ρ̃n( 1
n

)) + ω( 1
n

),

where ω( 1
n ) → 0 as n → +∞ which now replaces (6.17). We can now repeat the

steps of the proof of the subsolution property to obtain

f(ρ̃n( 1
n

)) + no( 1
n

)

≥ n

∫ 1
n

0

(
αe−

τ
αHp

(
ρ̃n(τ ), e

τ
α gradρ̃n(τ)ψ(ρ̃n(τ ))

)
+ e−

τ
αh(ρ̃n(τ ))

)
dτ,

which, together with (6.21), implies that

f(ρ̃n( 1
n

)) + no( 1
n

) ≥ αe−
tn
α Hp

(
ρ̃n(tn), e

tn
α gradρ̃n(tn)ψ(ρ̃n(tn))

)
+ e−

tn
α h(ρ̃n(tn))

for some tn ∈ (0, 1/n). Thus again we can send n → +∞ and use Lemma 6.1(ii)
and the lower semicontinuity of ψ to get

(f + ψ)∗(ρ0) − ψ(ρ0) − αHp(ρ0, gradρ0
ψ(ρ0)) ≥ h(ρ0)

for every p ∈ C∞
c (R2). It remains to invoke (4.2) to conclude the proof. �
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4024 JIN FENG AND ANDRZEJ ŚWIĘCH

Remark 6.4. The main differences and difficulties (compared to [11, 10]) in the
proof of the comparison theorem come from the terms involving J-gradρe. They
are a result of the singular nature of the kernel K⊥ and required several new
technical results. In particular, the most difficult result to control terms in (5.23)
were estimated with the help of the key Lemma 3.7. Lemma 3.7, in turn, is proved
using a very technical result about an approximation of the velocity vector field u
(Lemma 7.16), which requires harmonic analysis tools of Appendix B. The terms
involving J-gradρe also needed delicate treatment in the proof of the existence of
viscosity solutions to show the semicontinuity of the Hamiltonian evaluated on test
functions.

7. Appendix

7.1. Appendix A: Estimates regarding 2-D Newtonian and related po-
tentials. Recall that the kernels N and K are defined in (1.3),

U = N ∗ ρ, u = −K⊥ ∗ ρ,
and the 2 × 2 matrix Du = (∇u1,∇u2).

Lemma 7.1. Let ρ ∈ P2(R2). Then:
(1) U ∈ Lp

loc(R2) for p ∈ (1,∞).
(2) u ∈ Lp

loc(R2) for p ∈ (0, 2); indeed, u ∈ L2,∞(R2). Furthermore, ∇U =
K ∗ ρ and u = −J∇U .

(3) Let the singular integral operator P be defined through the principal value
integral as

Pρ(x) = P.V.-
∫
R2

P (x− y)ρ(dy) = lim
ε→0+

∫
|x−y|≥ε

P (x− y)ρ(dy),

with

P (z) = 1
2π

σ(z)
|z|2 , σ(z) = 1

|z|2
[

−2z1z2 z2
1 − z2

2
z2
1 − z2

2 2z1z2

]
.

Then as a Schwartz distribution,

Du(x) = (Pρ)(x) + ρ(x)
2

J.(7.1)

In particular, divu = 0.
(4) If ‖ρ‖2 < +∞, then u ∈ Lp(R2) for every p > 2, and

(7.2) ‖u‖p ≤ C‖ρ‖1−2/p
2 ,

which implies that for every p > 2 and ε > 0,

(7.3) ‖u‖p ≤ ε‖ρ‖2 + Cε,p.

Moreover u ∈ L2
loc(R2), and for every R > 0 we have

(7.4) ‖u‖2
L2(BR) ≤ CR‖ρ‖2.

Estimates (7.2)-(7.4) are also true for u = K ∗ ρ.
(5) For each p ∈ (1,∞), there exists a finite Cp > 0,

‖Du‖p ≤ Cp‖ρ‖p.(7.5)
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Proof. Let φ ∈ C∞
c (R2) be a radial function such that 0 ≤ φ ≤ 1, φ(x) = 1 for

|x| ≤ 1 and φ(x) = 0 for |x| ≥ 2. First, we introduce a smooth cut-off function
φB(x) = φ(x/B), B > 0. Then

U = N ∗ ρ = U1,B + U2,B ≡ (φBN) ∗ ρ + [(1 − φB)N ] ∗ ρ.(7.6)

By Young’s inequality for convolution and direct integration,

(7.7) ‖U1,B‖q ≤ ‖φBN‖q‖ρ‖1 = CB,q‖ρ‖1 < ∞, 1 ≤ q < ∞.

Furthermore, because log r ≤ r for r ≥ 1,

(7.8) |U2,B(x)| ≤ C1 +
∫
R2

|x− y||ρ(y)|dy ≤ C2(1 +
∫
R2

|y||ρ(y)|dy + |x|).

Therefore, U ∈ Lp
loc(R2), p ∈ (1,∞).

Similarly,

(7.9) u = −JK ∗ ρ = u1,B + u2,B ≡ −J(φBK) ∗ ρ− J((1 − φB)K) ∗ ρ.

Hence by Young’s inequality,

‖u1,B‖p ≤ ‖φBK‖p‖ρ‖1 < ∞,

‖u2,B‖p′ ≤ ‖(1 − φB)K‖p′‖ρ‖1 < ∞,

1 ≤ p < 2 < p′ ≤ ∞.

Hence u ∈ Lp
loc(R2) for p ∈ (0, 2). Indeed, by assuming ρ(dx) = ρ(x)dx,

|(K ∗ ρ)(x)| ≤ (2π)−1 ∫
R2

1
|y|ρ(x − y)dy, and by an inequality regarding Riesz po-

tential (e.g. Theorem 6.1.3 of Grafakos [15]),

‖K ∗ ρ‖L2,∞(R2) ≤ C‖ρ‖L1(R2).

The general case of ρ without density follows by standard procedure of mollifying
with a smooth convolution kernel.

The conclusion ∇U = K ∗ ρ is standard and follows from Fubini’s theorem and
integration by parts against test functions ϕ ∈ C∞

c (R2) to show the equality in the
distribution sense.

The expression for ∇u in (7.1) is the second part of Proposition 2.20 in [20], which
follows from Proposition 2.17 in [20] and Fubini’s theorem (noting K ∈ L1

loc(R2)).
Regarding (7.2)-(7.4), using Young’s inequality we have for p ≥ 2,

(7.10) ‖u1,B‖p ≤ ‖φBK‖ 2p
p+2

‖ρ‖2 ≤ CB
2
p ‖ρ‖2,

and for 2 < p ≤ ∞,

(7.11) ‖u2,B‖p ≤ ‖(1 − φB)K‖p‖ρ‖1 ≤ CB
2−p
p ,

which gives (7.2) if B = ‖ρ‖−1
2 . In particular,

(7.12) ‖u2,B‖∞ ≤ C

B

for some constant C, so taking B = ‖ρ‖−1/2
2 in (7.10) with p = 2 gives (7.4). (7.3)

follows from (7.2) because for any α ∈ (0, 1) and ε > 0, rα ≤ εr + Cε for r ≥ 0.
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4026 JIN FENG AND ANDRZEJ ŚWIĘCH

The estimate ‖Du‖p ≤ Cp‖ρ‖p follows from the Calderon-Zygmund inequality
‖Pf‖p ≤ cp‖f‖p, p ∈ (1,∞) (or see [13], page 225). �

Using Green’s formula, we can identify that as Schwartz distribution,

(−Δx)N(x− y) = δy(dx).

Therefore, as long as (−Δ)−1 can be reasonably defined (see the next lemma),
(−Δ)−1ρ = N ∗ ρ. The following is Lemma 1.12 of [20]:

Lemma 7.2. Let g ∈ L1(Rd) ∩ C1(R2),
∫
|x|≥1(log |x|)|g(x)|dx < ∞. Then U =

N ∗ g ∈ C2(R2) and −ΔU = g.

Invoking estimate (7.7) for p ∈ (1,+∞] and (7.8), for each B > 1, there exists
CB > 0 such that

e(ρ) = 1
2

∫
R2

U(x)ρ(dx) = 1
2
〈U1,B + U2,B , ρ〉 ≤ CB

(
‖ρ‖p + 1 + M1(ρ)

)
.(7.13)

Finally, if we use the decomposition u = u1,B + u2,B = u1 + u2 as in (7.9), then,
for i = 1, 2,

‖∂iu2‖2 = ‖∂i((1 − φB)K⊥) ∗ ρ‖2 ≤ ‖∂i((1 − φB)K⊥)‖2‖ρ‖1 ≤ Cφ,B,

which, together with (7.5), gives

‖Du1‖2 ≤ C(1 + ‖ρ‖2).(7.14)

We next recall the following Sobolev inequalities in 2 space dimensions.

Lemma 7.3. Let q ∈ [2,∞), q′ ∈ [1, 2]. There exist constants Cq, Cq′ > 0 such
that

‖f‖q ≤ Cq‖f‖W 1,2(R2),(7.15)
‖f‖q′ ≤ Cq′‖f‖W 1,1(R2),(7.16)

and there exists a constant a > 0 such that∫
R2

(e
a

|f(x)|2

‖f‖2
2+‖∇f‖2

2 − 1)dx ≤ 1.(7.17)

Proof. The first two are standard Sobolev inequalities (see for instance Cases B
and C of Theorem 4.12 of Adams and Fournier [1]), and the last one is a version of
Trudinger-Moser’s inequality (e.g. Theorem 8.27 and Section 8.29 in Adams and
Fournier [1]). �

Lemma 7.4. Let M2(ρ) and s(ρ) be finite. Then e(ρ) is well defined and

(7.18) |e(ρ)| ≤ C1 + C2(M2(ρ) + s(ρ)).

Moreover if Nn := Gn ∗ N , where Gn = Jn ∗ Jn and the Jn are defined at the
beginning of Section 2, and en(ρ) := 1/2〈Nn ∗ ρ, ρ〉, then

(7.19) lim
n→∞

en(ρ) = e(ρ).

(Convergence (7.19) is also true if the Gn are replaced by any family of standard
mollifiers with compact support.)
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Proof. To prove (7.18) we will show a stronger statement that if ρ1, ρ2 ∈ P2(R2),
then

(7.20)
∫
R2

ρ1(x)
∫
R2

| log |x− y||ρ2(y)dydx ≤ C1 + C2

2∑
i=1

(M2(ρi) + s(ρi)).

Let φ ∈ C∞
c (R2) be radial, 0 ≤ φ ≤ 1, φ(x) = 1 for |x| ≤ 1/2 and φ(x) = 0 for

|x| ≥ 1. Denote N1(x) = φ(|x|)| log |x||, N2(x) = (1 − φ(|x|))| log |x||. Then
∫
R2

ρ1(x)
∫
R2

N2(x− y)ρ2(y)dydx ≤ C

∫
R2

ρ1(x)
∫
R2

(|x| + |y|)ρ2(y)dydx

≤ C

∫
R2

|x|ρ1(x)dx + C

∫
R2

|y|ρ2(y)dy ≤ C(1 +
2∑

i=1
M2(ρi)).

(7.21)

We now notice that if r, s ≥ 0, then

rs ≤ er + (s log s− s).

Therefore

N1(x− y)ρ2(y) ≤ eN1(x−y) + (ρ2(y) log ρ2(y) − ρ2(y)),

and thus
∫
R2

ρ1(x)
∫
R2

N1(x− y)ρ2(y)dydx ≤ ‖ρ1‖1 sup
x∈R2

∫
R2

N1(x− y)ρ2(y)dy

≤ sup
x∈R2

(∫
B1(x)

eN1(x−y)dy +
∫
B1(x)

(ρ2(y) log ρ2(y) − ρ2(y))dy

)

≤
∫
B1

1
|y|dy +

∫
{ρ2(y)>1}

ρ2(y) log ρ2(y)dy

≤ C + s(ρ2) + M2(ρ2),

(7.22)

where the last inequality follows from (1.16). This gives (7.18).
To show (7.19) we now define

N1,ε(x) = −1/(2π)φ(x/ε) log |x|,
N2,ε(x) = −1/(2π)(1 − φ(x/ε)) log |x|.

Then

en(ρ) =
∫ ∫

(N1,ε ∗Gn)(x−y)ρ(y)ρ(x)dydx+
∫ ∫

(N2,ε ∗Gn)(x−y)ρ(y)ρ(x)dydx.

Since N2,ε∗Gn converges pointwise to N2,ε as n → ∞ and |N2,ε∗Gn(z)| ≤ Cε(1+|z|)
on R

2, by the Lebesgue dominated convergence theorem we get

(7.23) lim
n→∞

∫ ∫
(N2,ε ∗Gn)(x−y)ρ(y)ρ(x)dydx =

∫ ∫
N2,ε(x−y)ρ(y)ρ(x)dydx.
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4028 JIN FENG AND ANDRZEJ ŚWIĘCH

Now arguing as in the proof of (7.20), we obtain for n large enough so that δn < ε,
(7.24)∣∣∣∣
∫ ∫

(N1,ε ∗Gn)(x− y)ρ(y)ρ(x)dydx
∣∣∣∣ =
∣∣∣∣
∫ ∫

N1,ε(y)(Gn ∗ ρ)(x− y)ρ(x)dydx
∣∣∣∣

≤ ‖ρ‖1

2π
sup
x∈R2

∫
Bε

|N(y)|(Gn ∗ ρ)(x− y)dy

≤ 1
2π

sup
x∈R2

(∫
Bε

1
|y|dy +

∫
Bε(x)

(Gn ∗ ρ)(z) log(Gn ∗ ρ)(z)dz
)

≤ ε + 1
2π

sup
x∈R2

∫
Bε(x)

∫
R2

Gn(z − w)(ρ(w) log ρ(w))+dwdz

≤ ε + 1
2π

sup
x∈R2

∫
B3ε(x)

(ρ(w) log ρ(w))+dw := ω(ε),

where ω(ε) → 0 as ε → 0. Above we used Jensen’s inequality to obtain that
(Gn ∗ ρ)(z) log(Gn ∗ ρ)(z) ≤ Gn ∗ (ρ log ρ)(z). Since by the same argument we also
have

(7.25)
∣∣∣∣
∫ ∫

N1,ε(x− y)ρ(y)ρ(x)dydx
∣∣∣∣ ≤ ω(ε),

(7.19) follows from (7.23), (7.24) and (7.25) if we let ε → 0. �

Lemma 7.5. There exists a constant C > 0 such that∫
R2

|u|2dρ ≤ C‖ρ‖2
2 ≤ C(1 + I(ρ))(7.26)

and ∫
R2

|u|dρ ≤ C‖ρ‖2.(7.27)

Proof. By (7.2) ∫
R2

|u|2ρdx ≤ ‖u‖2
4‖ρ‖2 ≤ C‖ρ‖2

2,

and the conclusion now follows since

(7.28) ‖ρ‖2 ≤ C(‖ρ‖1 + ‖∇ρ‖1) ≤ C(1 +
∥∥∥∥∇ρ
√
ρ

∥∥∥∥
2
‖√ρ‖2) = C(1 +

√
I(ρ)).

Now ∫
R2

|u|dρ ≤
(∫

R2
|u|2dρ

) 1
2

‖ρ‖
1
2
1 ≤ C‖ρ‖2.

�

Lemma 7.6. Suppose I(ρ) < ∞. Then∫
R2

|u(x)||∇ρ|(x)dx < ∞

and ∫
R2

u(x) · ∇ρ(x)dx = 0.
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Proof. By Lemma 7.5,
∫
R2

|u||∇ρ|dx ≤
√∫

R2
|u|2dρ

√∫
R2

|∇ρ|2
ρ

dx ≤ C(1 + I(ρ)).

Let Jδ be a standard mollifier with compact support. Set uδ := Jδ ∗ u = −K⊥ ∗
(Jδ ∗ρ). Then uδ ∈ C∞(R2) and, by Hölder’s inequality, (7.2) and ‖Jδ ∗ρ‖2 ≤ ‖ρ‖2,∫

R2
|uδ||∇ρ|dx ≤ ‖uδ‖4‖ρ‖1/2

2 (I(ρ))1/2 ≤ C‖ρ‖2(I(ρ))1/2 ≤ C(1 + I(ρ)),

and similarly ∫
R2

|uδ|ρdx ≤ C‖ρ‖2 ≤ C(1 + I(ρ))1/2.

Also divuδ = Jδ ∗ divu = 0. Moreover,

lim
δ→0

∫
R2

uδ · ∇ρdx =
∫
R2

u · ∇ρdx,

since ∫
R2

|uδ − u||∇ρ|dx ≤ ‖uδ − u‖4‖ρ‖1/2
2 (I(ρ))1/2 → 0 as δ → 0.

Now, using the functions φB from the proof of Lemma 7.1, we have∣∣∣∣
∫
R2

uδ · ∇ρdx

∣∣∣∣ =
∣∣∣∣ lim
B→+∞

∫
R2

φBuδ · ∇ρdx

∣∣∣∣
=
∣∣∣∣ lim
B→+∞

∫
R2

[∇φB · uδ+φBdivuδ] ρdx
∣∣∣∣ ≤ lim

B→+∞

C

B

∫
R2

|uδ|ρdx → 0 as δ → 0.

�

Lemma 7.7. Assume that I(ρ) < ∞. Then∫
R2

x · uρ(x)ρ(dx) = 0.

Proof. The integral is well defined since by Lemma 7.5,
∫
R2 |u|2ρ(dx) < ∞. The

conclusion now follows because∫
R2

x · u(x)ρ(dx) = −
∫
R2

x · (K⊥ ∗ ρ)(x)ρ(dx)

= −
∫
R2

∫
R2

((x− y) + y) ·K⊥(x− y)ρ(dx)ρ(dy)

= −
∫
R2

∫
R2

y ·K⊥(x− y)ρ(dx)ρ(dy) = −
∫
R2

y · u(y)ρ(dy).

�

7.2. Appendix B: A useful inequality regarding the product of functions.
(by Atanas Stefanov) In this section several technical estimates are proved which
are key in proving Lemma 7.16, which is essential in establishing (3.7).

The Fourier transform, denoted by F (acting on Schwartz functions), is defined
via

f̂(ξ) :=
∫
Rd

f(x)e−2πix·ξdx,
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4030 JIN FENG AND ANDRZEJ ŚWIĘCH

whereas the inverse transform F−1 is given by

f(x) =
∫
Rd

f̂(ξ)e2πix·ξdξ.

Let us build the following partition of unity. First take an even Schwartz function
ψ(x) ∈ C∞

c (R1) so that

ψ(ξ) =
{

1, |ξ| ≤ 1,
0, |ξ| > 2.

Introduce a function χ : χ(ξ) = ψ(ξ) − ψ(2ξ). Clearly, for all ξ �= 0, we have
∞∑

k=−∞
χ(2−kξ) = 1.

We define the Littlewood-Paley operators Pk, P≤k, P∼k via the formulas

P̂kf(ξ) = χ(2−kξ)f̂(ξ),

P̂≤kf(ξ) = ψ(2−kξ)f̂(ξ),
P∼k := Pk−2 + . . . + Pk+2.

Occasionally, we denote for simplicity fk := Pkf , f≤k := P≤kf . We collect the
properties of the Littlewood-Paley operators in the following.

Lemma 7.8. We have the integral representation formulas for Pk, P≤k,

Pkf(x) = 2kd
∫
Rd

χ̂(2k(x− y))f(y)dy,

P≤kf(x) = 2kd
∫
Rd

ψ̂(2k(x− y))f(y)dy.

Moreover, we have the following decomposition formula:

(7.29) Pk[fg] =
∑

l≥k+3

Pk[f∼lgl] + Pk[f∼kg≤k+3] + Pk[f≤k+3g∼k].

The former sum corresponds to what is commonly called the high-high interaction
term, while the latter two sums represent are the high-low interaction term and
low-high interaction term, respectively.

Proof. The kernel representation formulas for Pk and P≤k are due to the following
simple properties of the (inverse) Fourier transform:

Pkf = F−1(χ(2−k·)f̂(·)) = F−1[χ(2−k·)] ∗ f = 2kdχ̂(2k·) ∗ f,
and similarly for P≤kf .

Regarding (7.29), we first make the simple observation supp(̂fg) = supp[f̂ ∗ ĝ] ⊆
supp f̂ + supp ĝ. Write

Pk[fg] = Pk[fg∼k] + Pk[f∼kg] + Pk[(f≤k−3 + f≥k+3)(g≤k−3 + g≥k+3)].

In addition, there is the observation that Pk[f>k+3g∼k] = 0 by the observation
above, and hence

Pk[fg∼k] = Pk[f≤k+3g∼k],
Pk[f∼kg] = Pk[f∼kg≤k+3].
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Also Pk[f≤k−3g≤k−3] = 0 = Pk[f≤k−3g≥k+3)]. Finally,

Pk[f≥k+3g≥k+3] =
∑

l≥k+3

Pk[f≥k+3gl] =
∑

l≥k+3

Pk[f∼lgl],

where the first identity is by definition and the second identity follows due to
Pk[f≤l−3gl] = 0 = Pk[f≥l+3gl], whenever l ≥ k + 3.

Putting all terms together yields (7.29). �

Note that, since χ, ψ are even functions, χ̂, ψ̂ are real valued functions.

Definition 7.9. Let ζ : R+ → R+ be an increasing, convex function, ζ(0) = 0,
limr→∞ ζ(r) = +∞. Then, the Orlicz function space Xζ is a Banach space with a
norm given by

‖u‖Xζ
:= inf{λ > 0 :

∫
Rd

ζ( |u(x)|
λ

)dx ≤ 1}.

Let ζ∗ be the Legendre transformation of ζ. Then Xζ∗ is an Orlicz space, too.
We would like to mention the following property (e.g. Proposition 1 on page 58 of
Rao and Ren [27]):

(7.30) sup
x∈Rd

|
∫

u(x− y)v(y)dy| ≤ C‖u‖Xζ∗‖v‖Xζ
.

Note that the version in [27] requires ζ(1)+ ζ∗(1) ≤ 1. We do not require this here,
hence we have a constant C on the right-hand side of the inequality. In the next
lemma, we compute the dual Orlicz function to ϕ(r) = (r2 + 1) log(r2 + 1), which
gives rise to the Orlicz space L2Log(L)(Rn), which is defined as Xϕ, with ϕ(r) =
(r2 + 1) log(r2 + 1). Note that according to the definition ‖ · ‖L2 ≤ C‖ · ‖L2Log(L).

Lemma 7.10. Let F : R �→ R, h : Rd �→ R be two convex functions with respec-
tive Legendre-Fenchel transforms F ∗ and h∗. Suppose that F is nondecreasing,
limt→∞ F (t) = ∞ and that h is lower semicontinuous. Then

(F ◦ h)∗(y) = inf{F ∗(α) + αh∗(β) : α ∈ R, β ∈ R
d;αβ = y}.

Proof. This is Theorem D.3.5 in Dupuis and Ellis [8]. �

Lemma 7.11.
ϕ∗(s) ≤ 2s2

max(1, log(s))
.

Proof. Take
F (p) = (p + 1) log(p + 1);

then
F ∗(α) = eα−1 − α.

Let h(x) = |x|2/2; then h∗(β) = β2/2. Consequently,
(ϕ)∗(s) = (F ◦ h)∗(s)

= inf{eα−1 − α + α
β2

2
: αβ = s, α, β ∈ R}

= inf
α∈R

{eα−1 − α + s2

2α
}

= eα(s)−1 − α(s) + s2

2α(s)
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4032 JIN FENG AND ANDRZEJ ŚWIĘCH

where α(s) satisfies

eα(s)−1 − 1 = s2

2α2(s)
, implying α(s) > 1.

For α = α(s),

e2α > 2α2(eα−1 − 1) = s2 ⇒ s2 < e2α ⇒ log(s) ≤ α,

eα−1 − α + s2

2α
= s2

α
+ s2

α2 + 1 − α ≤ 2s2

max(1, log(s))
.

�

Proposition 7.12. Let Qk be either Pk or P≤k. Then

(7.31) ‖Qkf‖L∞(Rd) ≤ C
2dk/2√

k
‖f‖L2Log(L)(Rd).

There is the bilinear estimate
(7.32)

‖P>j [uv]‖L2(R2)≤
C

j1/4 (‖∇u‖L2(R2)+‖∇v‖L2(R2))(‖u‖L2Log(L)(R2)+‖v‖L2Log(L)(R2)).

Proof. We start with the proof of (7.31), after which we will be able to deduce
(7.32) as a consequence of it and (7.29). We will give a proof of this only for Pk,
the other one being similar. We have

‖Pkf‖L∞ = sup
x

2kd|
∫
Rd

χ̂(2k(x− y))f(y)dy| ≤ C2kd‖χ̂(2k·)‖Xϕ∗‖f‖L2Log(L)(Rd).

It remains to show that μ = ‖ϕ̂(2k·)‖Xϕ∗ ≤ C2−dk/2k−1/2. From the defining
equation of ‖ · ‖Xϕ∗ , ∫

Rd

ϕ∗(χ̂(2ky)/μ)dy = 1.

We have by Lemma 7.8
2
μ2

∫
Rd

|χ̂(2ky)|2
max(1, ln(|χ̂(2ky)|/μ))

dy ≥ 1.

A change of variables 2ky = z yields the inequality

(7.33)
∫
Rd

|χ̂(z)|2
max(1, ln(|χ̂(z)|/μ))

dz ≥ C2kdμ2.

From (7.33), since the left-hand side is bounded by
∫
Rd |χ̂(z)|2 ≤ C, we immediately

get μ ≤ C2−kd/2. If we feed this estimate back in the left-hand side of (7.33), we
get

C2kdμ2 ≤ C

∫
z:|χ̂(z)|≤2−kd/4

|χ̂(z)|2 + C

k

∫
Rd

|χ̂(z)|2dz ≤ C2−kd/4 + C

k
.

It follows that μ ≤ C2−kd/2k−1/2.
For the proof of (7.32), we write first

P>j [uv] =
∑
k:k>j

Pk[uv].
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Next, for each term Pk[uv], we employ the decomposition (7.29). We have

Pk(uv) =
∑

l≥k+3

Pk[u∼lvl] + Pk[u∼kv≤k+3] + Pk[u≤k+3v∼k].

Since the second and third sums are symmetric in u, v, we consider only one of
them, say Pk[u∼kv≤k+3]. We have by Hölder’s inequality

‖Pk[u∼kv≤k+3]‖L2(R2) ≤ C‖u∼k‖L2(R2)‖v≤k+3‖L∞(R2).

By (7.31), we can estimate ‖v≤k+3‖L∞(R2) ≤ C2kk−1/2‖v‖L2Log(L)(R2), whence we
obtain the estimate

‖Pk[u∼kv≤k+3]‖L2(R2) ≤ C2kk−1/2‖u∼k‖L2(R2)‖v‖L2Log(L)(R2)

≤ Ck−1/2‖∇u∼k‖L2(R2)‖v‖L2Log(L)(R2).

Consequently, we have

‖
∑
k:k>j

Pk[u∼kv≤k+3]‖2
L2 ≤

∑
k:k>j

‖Pk[u∼kv≤k+3]‖2
L2

≤ C‖v‖2
L2Log(L)(R2)

∑
k:k>j

1
k
‖∇u∼k‖2

L2(R2) ≤
C

j
‖v‖2

L2Log(L)(R2)‖∇u‖2
L2(R2),

which shows (7.32) for the high-low terms.
For the high-high interaction term, we estimate by Sobolev embedding and

Hölder’s inequality that

‖Pk[u∼lvl‖L2(R2) ≤ C2k/2‖u∼lvl‖L4/3(R2)

≤ C2k/2‖u∼l‖L2(R2)‖vl‖L4(R2).

We use the Gagliardo-Nirenberg inequality and (7.31) to estimate

‖vl‖L4(R2) ≤ ‖vl‖1/2
L∞(R2)‖vl‖

1/2
L2(R2)

≤ C2l/2l−1/4‖v‖1/2
L2Log(L)(R2)‖v‖

1/2
L2(R2).

Putting all these estimates together, we obtain

‖
∑
k>j

∑
l≥k+3

Pk(u∼lvl)‖2
L2(R2) ≤ C

∑
k>j

‖
∑

l≥k+3

Pk(u∼lvl)‖2
L2(R2)

≤ C‖v‖L2Log(L)(R2)‖v‖L2(R2)
∑
k>j

⎛
⎝ ∑

l≥k+3

2l/2+k/2

l1/4
‖u∼l‖L2(R2)

⎞
⎠

2

≤ C√
j
‖v‖L2Log(L)(R2)‖v‖L2(R2)

∑
k>j

∑
l1,l2≥k+3

2l1/2+l2/2+k‖u∼l1‖L2(R2)‖u∼l2‖L2(R2).

Now, ∑
k>j

∑
l1,l2≥k+3

2l1/2+l2/2+k‖u∼l1‖L2(R2)‖u∼l2‖L2(R2)

≤ C
∑
l1,l2

2l1/2+l2/2+min(l1,l2)‖u∼l1‖L2(R2)‖u∼l2‖L2(R2).
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By symmetry, it will suffice to estimate the sum above with l1 ≤ l2. We have by
Cauchy-Schwartz∑

l1,l2:l1≤l2

2(3l1/2+l2/2)‖u∼l1‖L2(R2)‖u∼l2‖L2(R2)

≤ (
∑

l1,l2:l1≤l2

22l1‖u∼l1‖2
L2(R2)2

−(l2−l1))1/2

× (
∑

l1,l2:l1≤l2

22l2‖u∼l2‖2
L2(R2)2

−(l2−l1))1/2 ≤ C‖∇u‖2
L2(R2).

Thus,

‖
∑
k>j

∑
l≥k+3

Pk(u∼lvl)‖2
L2(R2) ≤

C√
j
‖v‖L2Log(L)(R2)‖v‖L2(R2)‖∇u‖2

L2(R2).

Recalling ‖ · ‖L2 ≤ C‖ · ‖L2Log(L), we conclude (7.32). �

The following estimate will be useful for approximating velocity field u.

Lemma 7.13. Let ϕ ∈ C∞
c and radial, so that suppϕ ⊂ {x : |x| < 1}. Define

g(x) = ∇[ϕ(x) x1

|x|2 ].

Then
‖ĝ‖L∞ ≤ C.

Proof. We have
ĝ(ξ) = −2πiξ1

∫
R2

ϕ(x) x1

|x|2 e
−2πix·ξdx.

If |ξ1| < 100, we have

|ĝ(ξ)| ≤ 200π
∫
R2

|ϕ(x)| 1
|x|dx ≤ 200π × 2π

∫ 1

0
|ϕ(ρ)|dρ < ∞.

Let |ξ1| ∼ 2l, l � 1. Then, since ψ(2lx) +
∑l−1

k=−5 χ(2kx) = 1 on the support of ϕ,
we have

|ĝ(ξ)| ≤ C2l(
∫

|ϕ(x)|ψ(2lx) 1
|x|dx +

l−1∑
k=−5

|
∫

ϕ(x)χ(2kx) x1

|x|2 e
−2πix·ξdx|).

The first integral is estimated easily:∫
|ϕ(x)|ψ(2lx) 1

|x|dx ≤
∫ 2−l+1

0

1
ρ
ρdx ≤ C2−l.

For the second integral, integrate by parts twice in the variable x1. We have∫
ϕ(x)χ(2kx) x1

|x|2 e
−2πix·ξdx = −1

4π2ξ2
1

∫
d2

dx2
1
[ϕ(x)χ(2kx) x1

|x|2 ]e−2πix·ξdx.

Observe that
| −1
4π2ξ2

1
| ≤ C2−2l,

while (recall supp(χ) ⊂ {1/2 < |x| < 2})

| d
2

dx2
1
[ϕ(x)χ(2kx) x1

|x|2 ]| ≤ C23k(|χ(2kx)| + |χ′(2kx)| + |χ′′(2kx)|).

Licensed to Univ of Kansas. Prepared on Mon Jun 30 12:31:46 EDT 2014 for download from IP 129.237.46.100.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



OPTIMAL CONTROL IN SPACE OF MEASURES 4035

Thus, we have

| −1
4π2ξ2

1

∫
ϕ(x)χ(2kx) x1

|x|2 e
−2πix·ξdx| ≤ C2−2l23k

∫ 2−k+1

2−k−1
ρdρ = C2k−2l.

Thus,

|ĝ(ξ)| ≤ C2l(2−l +
l−1∑

k=−5

2k−2l) ≤ C.

�

7.3. Appendix C: Approximation of the velocity field u. First, we have the
following estimate.

Lemma 7.14. There exist constants C1, C2 > 0 such that

‖P>kρ‖2
2 ≤ C1

k1/2 I(ρ)
(
C2 + S(ρ) + M2(ρ)

)2
.

Proof. Without loss of generality, we assume that the right-hand side is finite. We
take u = v = √

ρ in (7.32) and notice that, for ϕ(r) = (1 + r2) log(1 + r2),

‖√ρ‖L2Log(L) ≤ 1 +
∫
R2

ϕ(√ρ)dx ≤ 3 +
∫

((ρ log ρ) ∨ 0)dx ≤ 3 +
∫
ρ(x)≥1

ρ log ρdx,

where the first inequality follows from properties of the Orlicz norm (e.g. Theo-
rem 13 on page 69 of Rao and Ren [27]) and the second inequality follows from

(7.34) ϕ(r) ≤ r2 + r2 log(1 + r2) ≤ r2(1 + 2 log 2) + (r2 log r2) ∨ 0.

Noting that r| log r| ≤ √
r for 0 ≤ r ≤ 1, we get∫

0≤ρ(x)<1
ρ| log ρ|dx ≤

∫
0≤ρ(x)≤e−|x|

+
∫
e−|x|<ρ(x)<1

≤
∫

e−|x|/2dx +
∫

|x|ρ(x)dx ≤ C + M2(ρ).

Thus we conclude that

‖√ρ‖L2Log(L) ≤ C + s(ρ) + M2(ρ).

Since
‖∇√

ρ‖2
2 ≤ I(ρ),

the lemma now follows from (7.32). �

Recall that u = u1,B + u2,B in (7.9) for each B > 0. We approximate u1 = u1,B
by

u≤k,1 = P≤ku1 = P≤k

( (
−φBK

⊥) ∗ ρ) = J≤k,1 ∗ ρ,
where

J≤k,1(x) = F−1
(

̂(−φBK⊥)ψ(2−2k·)
)
(x) =

∫
ξ∈R2

̂(−φBK⊥)(ξ)ψ(2−2kξ)eiξ·xdξ.

We now approximate u by

u≤k,1 + u2 =
(
J≤k,1 − (1 − φB)K⊥

)
∗ ρ =: J̃k ∗ ρ.
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4036 JIN FENG AND ANDRZEJ ŚWIĘCH

Then

Lemma 7.15. For each k, B > 0 fixed, J̃k = J≤k,1 − (1 − φB)K⊥ is Lipschitz
continuous, bounded, and J̃k(−z) = −J̃k(z) for all z ∈ R

2.

Proof. The kernel (1− φB(z))K⊥(z) is Lipschitz. Therefore we only need to verify
the same property for J≤k,1:

|J≤k,1(x) − J≤k,1(y)| ≤
∫
R2

| ̂(−φBK⊥)(ξ)|ψ(2−2kξ)|ξ||x− y|dξ

≤
(∫

|ξ|≤22k+1,ξ∈R2
|ξ||φ̂BK(ξ)|dξ

)
|x− y| ≤ Ck,B|x− y|,

where the last inequality follows because every

‖φ̂BK‖∞ ≤
∫
R2

|φB(z)K(z)|dz < +∞.

The boundedness and antisymmetry of J̃k are straightforward from its definition.
�

We notice that

P>ku1 = −P>k(φBK
⊥) ∗ ρ = −(φBK

⊥) ∗ (P>kρ) = −J(φBK) ∗ (P>kρ)
∇P>ku1 = −P>k∇((φBK

⊥) ∗ ρ)
= −P>k

(
(∇(φBK

⊥)) ∗ ρ
)

= −J(∇(φBK)) ∗ (P>kρ).

Therefore

‖P>ku1‖2 ≤ ‖φBK‖1‖P>kρ‖2.

In addition, by Lemma 7.13, since φB is radial,

‖ ̂∇(φBK)‖∞ < ∞
and

‖∇P>ku1‖2 = ‖(∇(φBK)) ∗ (P>kρ)‖2 ≤ ‖ ̂∇(φBK)‖∞‖P>kρ‖2 ≤ C‖P>kρ‖2.

In summary,

‖u>k,1‖2 + ‖∇u>k,1‖2 ≤ C‖P>kρ‖2.(7.35)

Lemma 7.16. For every δ > 0 there exists a bounded, Lipschitz continuous and
antisymmetric function Ĵδ : R2 �→ R such that for every ρ ∈ P2(R2), the function
uδ = Ĵδ ∗ ρ satisfies∫

R2
|u(x) − uδ(x)|2ρ(x)dx ≤ δI(ρ)

(
C̃ + s(ρ) + M2(ρ)

)3
(7.36)

for some absolute constant C̃.

Proof. We only need to prove the case when I(ρ) < ∞. We set Ĵδ := J̃k, where B
is fixed and k will be chosen later. Then

uδ = u≤k,1 + u2,B = −J
(
P≤k(φBK) + (1 − φB)K

)
∗ ρ

and
u− uδ = u1 − u≤k,1 = u>k,1.
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Let a > 0 be the constant in Moser’s inequality (7.17). It then follows that∫
R2

|u− uδ|2ρ(x)dx =
∫
R2

|u>k,1|2ρ(x)dx

= a−1(‖u>k,1‖2
2 + ‖∇u>k,1‖2

2)
∫
{x:ρ(x)≤1}∪{x:ρ(x)>1}

a|u>k,1(x)|2
‖u>k,1‖2

2 + ‖∇u>k,1‖2
2
ρ(x)dx

≤ a−1C1‖P>kρ‖2
2

(
a +

∫
{x:ρ(x)>1}

a|u>k,1(x)|2
‖u>k,1‖2

2 + ‖∇u>k,1‖2
2
ρ(x)dx

)

≤ a−1C1‖P>kρ‖2
2

(
a +

∫
R2

(e
a|u>k,1(x)|2

‖u>k,1‖2
2+‖∇u>k,1‖2

2 − 1)dx +
∫
{x:ρ(x)>1}

ρ log ρdx
)

≤ C2‖P>kρ‖2
2(C3 + s(ρ) + M2(ρ))

≤ C3

k1/2 I(ρ)(C̃ + s(ρ) + M2(ρ))3.

In the above, the first inequality follows from (7.35), the second from the Legendre
transform identity

(ex − 1)∗ = sup
y

(xy − ey + 1) = x log x− x + 1,

the third follows from (7.17), the fourth from an elementary calculation as in the
proof of Lemma 7.14, and the last from Lemma 7.14. It now remains to take k
sufficiently large. �

7.4. Appendix D: The chain rule. The following is an adaptation of Propo-
sition 10.3.18 of Ambrosio, Gigli and Savaré [3] to special cases which cover our
applications. We restrict our attention to λ-convex functionals on P2(Rd) defined
in Definition 9.1.1 of [3]. This is a notion of convexity along geodesics in the mass
transport sense.

Lemma 7.17. Let f : P2(Rd) �→ (−∞,+∞] be lower semicontinuous and λ-convex.
Assume that D(f) �= ∅ and that there exists ρ0 ∈ D(f) and r0 > 0 such that

inf{f(ρ) : d(ρ, ρ0) ≤ r0} > −∞.

Let ρ(·) ∈ AC((a, b);P2(Rd)) with ρ(t) ∈ D(f), and moreover let
∂tρ + div(ρv) = 0, a < t < b,

hold for some v such that v(r, ·) ∈ L2
∇(ρ(t)) and

∫ b

a

∫
Rd |v(r, x)|2ρ(r, dx)dr < ∞.

Suppose that
gradf(ρ(t)) = −div(ρ(t)u(t)), u(t, ·) ∈ L2

∇(ρ(t))
for a.e. t ∈ (a, b).

Then for every (s, t) ⊂ (a, b),

f(ρ(t)) − f(ρ(s)) =
∫ t

s

∫
Rd

v(r, x) · u(r, x)ρ(r, dx)dr.

Proof. All references (to theorems, lemmas, etc.) below refer to [3].
By Lemma 10.1.3, λ-convexity implies that f is regular in the sense of Definition

10.1.4. By Theorem 4.1.2, λ-convexity in this context also implies that (10.3.1b) is
satisfied. The conclusion follows from Theorem 10.3.18. �
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4038 JIN FENG AND ANDRZEJ ŚWIĘCH

Lemma 7.18. The functions −d2(·, γ) defined in (1.10) (with γ ∈ P2(Rd) fixed),
s(·) in (1.15), en(·) in (2.2) and Mp(·) in (1.13) when p ≥ 1, are all λ-convex, for
some λ ∈ R.

Proof. Again, all the theorems, propositions, etc., in the proof refer to [3].
The case of −d2(·, γ) follows from Theorem 7.3.2; the case of s(·) follows from

Proposition 9.3.9 and Remark 9.3.10; the case of Mp(·) follows from Proposition
9.3.2. The function en(·) is a special case of Example 9.3.4 and Proposition 9.3.5.
Note that Nn(x)+Cn|x|2 is convex for some Cn ≥ 0. See also examples in Chapters
16 and 17 of [29]. �
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