
A Computational Method for Determining Distributed Aerodynamic Loads on Planforms 

of Arbitrary Shape in Compressible Subsonic Flow 

By: 

Matthew Alan Brown 

B.S. Aerospace Engineering, University of Kansas, 2009 

 

Submitted to the Graduate Degree Program in Aerospace Engineering and the  
Graduate Faculty of the University of Kansas in Partial Fulfillment of the Requirements for the 

Degree of Master of Science in Aerospace Engineering. 
                                                           

 

______________________________________ 

Chairperson: Dr. Ray Taghavi 

 

_____________________________________ 

Dr. Saeed Farokhi 

 

____________________________________ 

Dr. Shawn Keshmiri 

 

 

Date Defended: 12/11/2013 



ii 

 

The Thesis Committee for Matthew Alan Brown  

Certifies that this is the Approved Version of the Following Thesis: 

 

 

 

 

 

 

 

 

 

___________________________________ 

Chairperson: Dr. Ray Taghavi 

 

 

 

       

Date approved: 12/11/2013 

A Computational Method for Determining Distributed Aerodynamic Loads on Planforms 

of Arbitrary Shape in Compressible Subsonic Flow 



iii 

 

Abstract 

The methods presented in this work are intended to provided an easy to understand and easy to 

apply method for determining the distributed aerodynamic loads and aerodynamic characteristics 

of planforms of nearly arbitrary shape.  Through application of the cranked wing approach, most 

planforms can be modeled including nearly all practical lifting surfaces with some notable 

exceptions.  The methods are extremely accurate for elliptic wings and rectangular wings with 

some notable difficulty attributed to swept wings and wings with control surface deflection.  A 

method for accounting for the shift in the locus of aerodynamic centers is also presented and 

applied to the lifting line theory to mitigate singularities inherent in its formulation.  

Comparisons to other numerical methods as well as theoretical equations and experimental data 

suggest that the method is reasonably accurate, but limited by some of its contributing theories.  

Its biggest benefit is its ability to estimate viscous effects which normally require more 

sophisticated models.  



iv 

 

Acknowledgements 

First and foremost I would like to thank my loving soon-to-be wife Chelsea Magruder for her 

undying support while I worked my way through graduate school and my mother for untold 

financial, emotional, and academic advice. Without their seemingly infinite patience I am not 

sure any of this would have been possible.  I would also like to thank Dr. Ray Taghavi for his 

advice and guidance not just on this project, but on countless topics throughout my academic 

career. Also, Dr. Saeed Farokhi and  Dr. Shawn Keshmiri for their advice and support.  Lastly, I 

would like to thank my friends and family who have put up with me for this long.  I know how 

difficult that can be and I do appreciate it. 

  



v 

 

Table of Contents 

Abstract ......................................................................................................................................... iii 

Acknowledgements ...................................................................................................................... iv 

Table of Contents .......................................................................................................................... v 

List of Figures .............................................................................................................................. vii 

List of Symbols ............................................................................................................................. ix 

List of Symbols Cont… ................................................................................................................. x 

List of Symbols Cont… ................................................................................................................ xi 

List of Symbols Cont… ............................................................................................................... xii 

List of Symbols Cont… .............................................................................................................. xiii 

List of Subscripts........................................................................................................................ xiii 

List of Acronyms ........................................................................................................................ xiv 

1.  Introduction ........................................................................................................................... 1 

1.1  Objectives ......................................................................................................................... 1 

1.2  Background ...................................................................................................................... 1 

1.3  Motivation ........................................................................................................................ 2 

2.  Review of Current Literature and Methods ....................................................................... 3 

2.1  Airfoil Analysis ................................................................................................................ 3 

2.2  Lifting Line Theory .......................................................................................................... 6 

2.3  Vortex Lattice Method ..................................................................................................... 9 

2.4  3D Panel Methods .......................................................................................................... 11 

2.5  Navier-Stokes Equations ................................................................................................ 12 

2.6  MIAReX and XFLR5 ..................................................................................................... 14 

2.7  Wind Tunnel Testing ...................................................................................................... 15 

2.8  Conclusions .................................................................................................................... 16 

3.  Theoretical Development .................................................................................................... 17 

3.1  Overview ........................................................................................................................ 17 

3.2  Chord Loading ................................................................................................................ 18 

3.3  Span Loading .................................................................................................................. 28 

3.4  Aerodynamic Center ...................................................................................................... 35 

3.5  Forces, Moments and Coefficients ................................................................................. 40 

4.  Application ........................................................................................................................... 43 

4.1  Computational Considerations ....................................................................................... 43 



vi 

 

4.2  Post Processing and Visualization.................................................................................. 46 

4.3  Advanced Planform Analysis and XFOILultra .............................................................. 52 

5.  Discussion of Results ........................................................................................................... 53 

5.1  Experimental Validation: Extended Tangent Approximation ........................................ 53 

5.2  Theoretical Validation : Elliptic Wing ........................................................................... 54 

5.3  Theoretical and Experimental Validation:  Rectangular Wings ..................................... 57 

5.4  Theoretical and Experimental Validation: Swept Wings ............................................... 62 

5.5  Experimental Validation: Wing with Control Surface Deflection ................................. 69 

5.6  Design Application: The Winglet Problem .................................................................... 74 

6.  Conclusions and Recommendations .................................................................................. 79 

6.1  Conclusions .................................................................................................................... 79 

6.2  Recommendations .......................................................................................................... 80 

7.  References............................................................................................................................. 82 

Appendix A-MATLAB Code ..................................................................................................... 86 

 



vii 

 

List of Figures 

Figure 2.1  Basic Thin Airfoil Theory7 ......................................................................................................... 3 

Figure 2.2  Calculation Scheme of XFOIL14 ................................................................................................ 6 

Figure 2.3  Lanchester/Prandtl Hypothesis7 .................................................................................................. 7 

Figure 2.4  Visual Description of Elliptic Wing Problem7 ........................................................................... 8 

Figure 2.5  Layout of Vortex Lattice System .............................................................................................. 10 

Figure 2.6  Panel Model of MD-11 at Take-Off37....................................................................................... 12 

Figure 2.7  Example of High Fidelity CFD Results40 ................................................................................. 14 

Figure 2.8  Example of High Quality Wind Tunnel Model45 ...................................................................... 16 

Figure 3.1  Comparison of XFOIL to Experimental Data for a NACA 4415 Airfoil ................................. 23 

Figure 3.2  Airfoil Data Extrapolated via Viterna Method, NACA 4415 at Re=3e6 and AR=10 .............. 25 

Figure 3.3  Contribution of Pressure and Friction to Axial Force for NACA 4415 at Re=3e6 .................. 26 

Figure 3.4  Extreme Angle of Attack Flat Plate Pressure and Friction Distribution Assumptions ............. 27 

Figure 3.5  Predicted Pressure and Skin Friction Distribution on NACA4415 at Re=3e6 ......................... 27 

Figure 3.6  Example Wing Vortex System ................................................................................................. 28 

Figure 3.7  Velocity Induced by Horseshoe Vortex .................................................................................... 29 

Figure 3.8  Definition of Discritized Geometric Properties ........................................................................ 31 

Figure 3.9  Dihedral and Incidence Angle Definitions ............................................................................... 32 

Figure 3.10  Küchemann A.C. Shift Parameters ......................................................................................... 37 

Figure 3.11  Extended Küchemann A.C. Shift Parameters ......................................................................... 38 

Figure 3.12  Extended Prandtl Hypothesis .................................................................................................. 41 

Figure 4.1  Cranked Panel Definitions ........................................................................................................ 45 

Figure 4.2  Quad-Mesh Parameters ............................................................................................................. 50 

Figure 4.3  Example of Meshing Procedure Results ................................................................................... 50 

Figure 5.1  Comparison of Tangent Approximations to Experimental Data .............................................. 54 

Figure 5.2  Predicted and Theoretical Circulation on Elliptic Wings, α=5˚, Re=2.4e6 .............................. 56 

Figure 5.3  Predicted and Theoretical Induced Drag Polar for Elliptic Wings, Re=2.4e6 .......................... 57 

Figure 5.4  Predicted and Theoretical Lift Curve Slope for Elliptic Wings, Re=2.4e6 .............................. 57 

Figure 5.5  Predicted and Theoretical Lift Curve Slope for Rectangular Wings, Re=2.4e6 ....................... 58 

Figure 5.6  Calculated Induced Drag Polars for Rectangular Wings, Re=2.4e6 ......................................... 59 

Figure 5.7  Predicted and Experimental Load Distribution on Square Wing, α=4˚ .................................... 59 

Figure 5.8  Predicted and Experimental Load Distribution on Square Wing, α=8˚ .................................... 60 

Figure 5.9  Predicted andExperimental Load Distribution on Square Wing, α=12˚ ................................... 60 



viii 

 

Figure 5.10  Predicted and Experimental Pressure Distribution on Square Wing, α=4˚............................. 61 

Figure 5.11  Predicted and Experimental Lift Curve Slopes for Swept Wings, AR=5.13, Re=2.5e5 ........ 62 

Figure 5.12  Predicted and Experimental Drag Polars for Untapered Wing, AR=5.13, Λ=0˚, Re=2.5e5 .. 63 

Figure 5.13  Predicted and Experimental Drag Polars for Untapered Wing, AR=5.13, Λ=15˚, Re=2.5e5 64 

Figure 5.14  Predicted and Experimental Drag Polars for Untapered Wing, AR=5.13, Λ=30˚, Re=2.5e5 64 

Figure 5.15  Predicted and Experimental Drag Polars for Untapered Wing, AR=5.13, Λ=45˚, Re=2.5e5 65 

Figure 5.16  Predicted and Experimental Normal Force Distribution on Swept Wings, AR=5.13, α=8.5˚ 66 

Figure 5.17  Predicted Pressure Distribution on Untapered Wing, Λ=0˚, AR=5.13, α=8.5˚, Re=2.5e5 ..... 67 

Figure 5.18  Predicted Pressure Distribution on Untapered Wing, Λ=15˚, AR=5.13, α=8.5˚, Re=2.5e5 ... 67 

Figure 5.19  Predicted Pressure Distribution on Untapered Wing, Λ=30˚, AR=5.13, α=8.5˚, Re=2.5e5 ... 68 

Figure 5.20  Predicted Pressure Distribution on Untapered Wing, Λ=45˚, AR=5.13, α=8.5˚, Re=2.5e5 ... 68 

Figure 5.21  Lift and Drag Data for Rectangular Wing with Half-Span Flaps, δf=0˚, AR=3.13 ............... 70 

Figure 5.22  Lift and Drag Data for Rectangular Wing with Half-Span Flaps, δf=10˚, AR=3.13 ............. 70 

Figure 5.23  Lift and Drag Data for Rectangular Wing with Half-Span Flaps, δf=20˚, AR=3.13 ............. 71 

Figure 5.24  Predicted Pressure Distribution on Rectangular Wing with Half-Span Flaps, δf=0˚ ............. 72 

Figure 5.25  Predicted Pressure Distribution on Rectangular Wing with Half-Span Flaps, δf=10˚ ........... 73 

Figure 5.26  Predicted Pressure Distribution on Rectangular Wing with Half-Span Flaps, δf=20˚ ........... 73 

Figure 5.27  APA Predicted Lift and Drag Characteristics of Modified Wing, Sref=91.675 ft2 .................. 75 

Figure 5.28  VLM Predicted Lift and Drag Characteristics of Modified Wing, Sref=91.675 ft2 ................. 75 

Figure 5.29  XFLR5 Predicted Lift and Drag Characteristics of Modified Wing, Sref=91.675 ft2 .............. 76 

Figure 5.30  APA Predicted Pressure and Skin Friction, Unmodified Wing, α=5˚, Re=2.9e6 ................... 77 

Figure 5.31  APA Predicted Pressure and Skin Friction, Wing with Winglet, α=5˚, Re=2.9e6 ................. 77 

Figure 5.32  XFLR5 Predicted Pressure and Skin Friction, α=5˚, Re=2.9e6 .............................................. 78 

  



ix 

 

List of Symbols 

 

Symbol Description Units 

0A  Coefficient of Class-I Drag Polar  ~ 

1A  Coefficient of Class-I Drag Polar  ~ 

2A  Coefficient for Viterna Method  ~ 

AR  Aspect Ratio  ~ 

SA  Area of Surface Element ft2 

2B  Coefficient for Viterna Method ~ 

1CDB  Coefficient of Class-II Drag Polar ~ 

2CDB  Coefficient of Class-II Drag Polar ~ 

3CDB  Coefficient of Class-II Drag Polar ~ 

4CDB  Coefficient of Class-II Drag Polar ~ 

5CDB  Coefficient of Class-II Drag Polar ~ 

DC  Planform Drag Coefficient ~ 
*

DC  Dissipation Coefficient ~ 

iDC  Planform Induced Drag Coefficient ~ 

LC  Planform Lift Coefficient ~ 

lC  Planform Rolling Moment Coefficient ~ 

LC


 Planform Lift Curve Slope rad-1 

0LC  Planform Lift Coefficient at Zero Angle of Attack ~ 

mC  Planform Pitching Moment Coefficient ~ 

0mC  Planform Pitching Moment Coefficient at Zero Angle of Attack ~ 

0mC  Planform Pitching Moment Coefficient at Zero Lift Angle of Attack ~ 

mC


 Planform Pitching Moment Curve Slope rad-1 

YC  Planform Side Force Coefficient ~ 

C  Maximum Shear Stress Coefficient ~ 

'D  Section Lift Force lb/ft 

F


 Global Force Vector lb 

G  Non-dimensional Vortex Strength ~ 

H  Boundary Layer Shape Parameter ~ 
*H  Boundary Layer Shape Parameter ~ 
**H  Boundary Layer Shape Parameter ~ 



x 

 

List of Symbols Cont… 

 

Symbol Description Units 

kH  Boundary Layer Shape Parameter ~ 

J  Newton Corrector Matrix ~ 

'L  Section Drag Force lb 

M


 Global Moment Vector ft-lb 

afM  Number of Spanwise Stations for Surface Plots ~ 

afN  Number of Chordwise Stations for Surface Plots ~ 

panN  Number of Control Points & Elements in Cranked Wing Panel ~ 

xP  Shape Parameter for Tangent Approximation ~ 

zP  Shape Parameter for Tangent Approximation ~ 

R  Residual Vector ~ 

Re  Reynolds Number ~ 
Re  Reynolds Number based on Momentum Thickness of Boundary Layer ~ 

S  Planform Area ft2 

U


 Freestream Velocity Vector ft/s 

sU  Boundary Layer Shape Parameter ~ 

V


 Velocity Vector ft/s 

a


 Spatial Vector for Surface Mesh ft 

b


 Spatial Vector for Surface Mesh ft 

b  Wing Span ft 

c


 Spatial Vector for Surface Mesh ft 

c  Chord ft 

c  Characteristic Chord  ft 

ac  Airfoil Axial Force Coefficient ~ 

dc  Airfoil Drag Coefficient ~ 

maxdc  Maximum Airfoil Drag Coefficient for Viterna Method ~ 

stalldc  Last Available Airfoil Drag Coefficient for Viterna Method ~ 

fc  Skin Friction Coefficient ~ 

lc  Airfoil Lift Coefficient ~ 

lc


 Airfoil Lift Curve Slope rad-1 

mc  Airfoil Pitching Moment Coefficient ~ 



xi 

 

 

List of Symbols Cont… 

 

Symbol Description Units 

nc  Airfoil Normal Force Coefficient ~ 

pc  Compressible Pressure Coefficient ~ 

ipc  Incompressible Pressure Coefficient ~ 

d


 Spatial Vector for Surface Mesh ft 

d

  Vector for Bound Portion of Vortex ft 

e  Planform Efficiency Factor ~ 

f


 Local Force Vector lb 
*
ii  Local Incidence Angle deg 

n  Transition Critera ~ 

n̂  Normal Vector ~ 
q  Freestream Dynamic Pressure psf 

1r  Vector from Node 1i to Control Point j ft 

2r  Vector from Node 2i to Control Point j ft 

cgr  Vector from Control Point j to Center of Gravity ft 

s  Span Coordinate ft 

t̂  Tangent Vector ~ 

aiu


 Local Airfoil Axial Vector ~ 

diu


 Local Airfoil Drag Vector ~ 

eu  Compressible Velocity External to the Boundary Layer ft/s 

eiu  Incompressible Velocity External to the Boundary Layer ft/s 

u  X-Component of Freestream Velocity Vector ft/s 

u


 Non-Dimensional Freestream Velocity Vector ~ 

liu


 Local Airfoil Lift Vector ~ 

niu


 Local Airfoil Normal Vector ~ 

v  Non-Dimensional Induced Velocity Vector ~ 

1v  Sub-Variable of Non-Dimensional Induced Velocity Vector ~ 

2v  Sub-Variable of Non-Dimensional Induced Velocity Vector ~ 

12v  Sub-Variable of Non-Dimensional Induced Velocity Vector ~ 



xii 

 

aiv  Local Velocity in Axial Direction ft/s 

v  Y-Component of Freestream Velocity Vector ft/s 

List of Symbols Cont… 

 

Symbol Description Units 

niv  Local Velocity in Normal Direction ft/s 

iw


 Local Induced Velocity Vector ft/s 

x  X-Coordinate ft/s 

x  Stability Coordinate ft/s 

y  Y-Coordinate ft/s 

z  Z-Coordinate ft/s 

  Circulation Strength ft2/s 

G  Change in Predicted Circulation During Iteration ft2/s 

acx  Shift of Aerodynamic Center in X-Direction ft 

acz  Shift of Aerodynamic Center in Z-Direction ft 

xy  Change of Angle in XY-Plane rad 

yz  Change of Angle in YZ-Plane rad 

  Sweep Angle rad 

  Linearized Influence Matrix rad 

  Stream Function ft2/s 

  Relaxation Factor ~ 

  Angle of Attack deg 

eff  Effective Angle of Attack deg 

ind  Induced Angle of Attack deg 

min  Reflection Point for Viterna Method  deg 

0w
  Planform Zero-Lift Angle of Attack  deg 

stall  Last Available Angle of Attack for Viterna Method  deg 

c  Compressibility Coefficient  ~ 

  Surface Bound Vortex Strength (Airfoil Anlaysis) ft2/s 

  Boundary Layer Thickness ft 
*  Boundary Layer Displacement Thickness ft 

A  Differential Discretized Planform Area ft2 

i  Control Surface Deflection Angle deg 



xiii 

 

  Boundary Layer Coordinate ft 

  Non-Dimensional Term for Lifting Line Theory ~ 

List of Symbols Cont… 

 

Symbol Description Units 

s  Interpolation Factor ~ 

  Boundary Momentum Thickness ft 

  Hyperbolic Blending Function ~ 

  Freestream Atmospheric Density slug/ft3 

  Source Strength ft/s 

  Local Dihedral Angle deg 

  Local Fluid Vorticity ft2/s 

  Upper/Lower Surface ~ 

 

 

List of Subscripts 

 

Subscript Description 

1  Node Point 1, LHS 

2  Node Point 2, RHS 

ac  Aerodynamic Center 

/ 2c  Half-Chord 

/ 4c  Quarter-Chord 

,D d  Due to Drag 

f  Due to Friction 

,L l  Due to Lift 

p  Due to Pressure 

r  At Root 

t  At Tip 

x  In X-Direction 

z  In Z-Direction 

  



xiv 

 

List of Acronyms 

 

Acronym Description 

3DP 3D Panel Method 

APA Advanced Planform Analysis 

BEM Blade Element Momentum Analysis 

CFD Computational Fluid Dynamics 

NACA National Advisory Committee on Aeronautics 

VLM Vortex Lattice Method 

QVLM Quasi-Vortex Lattice Method 
 



1 

 

1. Introduction 

This section summarizes the objectives, background and motivation for the methods presented 

herein. 

 

1.1 Objectives	

The ultimate objective of this research is to improve the preliminary design process by providing 

a simple and easy to understand method for analyzing the aerodynamic characteristics of 

planforms of arbitrary shape.  By improving the accuracy of these models used early in the 

design process it is possible to reduce the amount of redesign and testing usually required later in 

design process, especially for configurations with atypical lifting surfaces.   

 

1.2 Background	

The origin of this method can be traced back to 2011 where it was conceived as a way to 

assemble load sets for Finite Element Analysis (FEA) without the costs associated with 

Computational Fluid Dynamics (CFD) analysis and while still providing impressive 3D images 

that convey a sense of authority to customers and colleagues.  Presented at the 50th AIAA 

Aerospace Sciences Meeting, the original formulation1 was limited to straight taper wings with 

linear twist and neglected such important factors as induced angle of attack, frictional forces, 

control surfaces, and non-linear behavior.  Far from a comprehensive approach, it provided a 

reasonably accurate method to assemble loads for engineering projects and was eventually 

adapted for use with Blade Element Momentum (BEM)2 theory to provide similar load sets for 

wind turbine projects. 

 



2 

 

1.3 Motivation	

Given the limitations of the original formulation it was clear that a more comprehensive 

approach was needed.  Research into ways of extending this method began in the winter of 2012 

and quickly revealed that techniques for determining spanwise load distribution while varied are 

limited to somewhat specific cases.  As a result, many of the classical design methods and 

equations commonly used for estimating forces and moments on lifting surfaces3,4,5 are subject to 

these same limitations as they are based around data gained through application of these 

methods. While adequate for most purposes they do not typically satisfy such cases as winglets, 

non-linear/non-elliptic chord distributions, or non-planar chord lines. 

 

Solutions for the spanwise distributions of these more difficult cases rely on adaptations of 

simpler theories which can be mathematically complex and often overlook important factors 

such as aerodynamic center shift, three dimensional flow, viscosity or compressibility.  There are 

certainly tools capable of some or all of these types of analyses, including Vortex Lattice Method 

(VLM), 3-D Panel Methods (3DP) or CFD.  However, these can often be difficult to use.  It is 

hoped that the methods explained in this work and the accompanying MATLAB6 code provide a 

way to easily incorporate advanced planform analysis techniques into the preliminary design 

process in a meaningful way.  The advanced visualization methods and capability to produce 

fully distributed 3D loads for FEA only add to the applicability of this method. 

 



3 

 

2. Review of Current Literature and Methods  

This section offers a review of relevant literature and methods for the estimation of distributed 

aerodynamic loads.  Methods for estimating span loading, chord loading and fully distributed 

loads are discussed and major advantages and disadvantages of each are identified.  

 

2.1 Airfoil	Analysis	

There are several methods for mathematically resolving chordwise loading of airfoils; however, 

they can be divided into three main camps. The first is classical thin airfoil theory and can be 

found in countless aerodynamics textbooks7,8,9.  It relies on placing a bound vortex filament of 

unknown and varying strength along the camber line of a given airfoil as shown in Figure 2.1.  

By assuming the corresponding stream function follows the camber line and solving for the 

strength distribution which satisfies the Kutta condition, the net potential lift on the airfoil can be 

calculated.  This has the advantage of being very easy to solve and in most cases can be solved 

by hand.  However, traditional formulations neglect the effects of viscosity which can influence 

drag and to a lesser extent the net lift and pitching moment.   

 

Figure 2.1  Basic Thin Airfoil Theory7 



4 

 

A modernized version of thin airfoil theory accounting for the effects of viscosity was proposed 

by Yates10; however, this method is computationally complex and fails to address the 

fundamental flaw of all thin airfoil theories, which is namely airfoil thickness.  Airfoil thickness 

can influence everything from maximum lift and lift curve slope to boundary layer transition and 

flow separation.  These effects are often not negligible and should at least be considered when 

analyzing any airfoil.   

To account for the effects of thickness an approach similar to thin airfoil theory is often used.  

However, instead of a vortex filament bound along the camber line, discrete segments are used 

which approximate the shape of the airfoil.  Along each segment (or panel) is a linear bound 

vortex filament of unknown strength, sometimes assumed to be constant and in other cases 

allowed to vary linearly or even quadradically. This leads to the term ‘panel method’ and 

constitutes the second and most common type of airfoil analysis.  Solutions to the panel method 

problem are found by assuming that the stream function is actually the superposition of the 

stream functions of the freestream cross-flow and each of the bound vortex segments on the 

airfoil surface.   This method quickly surrenders through a simple matrix inversion and results in 

the panel strengths which are easily converted to local velocity and pressure. 

A fundamentally different approach known as conformal mapping relies on the Kutta-Joukowski 

theorem9.  This allows for the known potential function of a rotating circular cylinder in a cross-

flow or other lifting body to be transformed to a given airfoil shape through use of complex 

variables.  While both approaches yield remarkably similar results, neither formulation accounts 

for the effects of viscosity.  In order to do this it is necessary to couple the potential flow 

calculations obtained using conformal mapping or panel methods with some sort of boundary 



5 

 

layer theory.  This most commonly takes the form of the Von Kármán Momentum Integral 

equation9 which relates several characteristics of the boundary layer flow to the nearly potential 

flow outside of the boundary layer. 

Several well known and widely used methods for airfoil design and analysis make use of this 

coupled approach.  The simplest of these methods used by Eppler11 and Hepperle12 take 

advantage of earlier work by Head9 and Thwaites13 who postulated closed form solutions for 

laminar and turbulent boundary layers based largely around empirical evidence gathered from 

extensive experimentation.  Solutions are found by solving for the surface velocity distribution 

then calculating the resulting boundary layer.  This yields several parameters of interest, 

particularly displacement thickness.  An iterative process is setup where the airfoil geometry is 

altered to include the displacement thickness resulting in a more accurate estimate for the next 

round of potential flow calculations.  While reasonably accurate for determining lift and pitching 

moment, the resulting drag calculations are often invalid due to the nature of the closure 

relationships and transition/separation criteria required by Head9 and Thwaites13 which limit the 

applicability of these methods.  The most troublesome aspect of thin airfoil theory and these one-

way coupled approaches is the inability to predict stall and other non-linear behavior inherent to 

all real airfoils. 

A similar yet more accurate method proposed by Drela14,15,16 uses a two-way coupled approach.  

This accounts for the effects of both boundary layer and wake on the flow. This is accomplished 

by placing both surface bound vortices and surface/wake bound source elements as shown in 

Figure 2.2.   Several engineering level codes are available which utilize the two-way coupled 

approach, namely XFOIL17 and MSES18 , the latter being applicable to multi-element airfoils 



6 

 

such as Krueger or slotted flaps.  This two-way approach combined with the more accurate 

closure relationships leads to better prediction of laminar separation bubbles, boundary layer 

transition and flow separation.  While these methods do provide a reliable way to analyze airfoils 

of arbitrary shape, the predictions for drag and stall tend to not coincide with available 

experimental data.  To accurately capture these phenomena usually requires higher order 

numerical analysis or experimental techniques. 

 

Figure 2.2  Calculation Scheme of XFOIL14 

2.2 Lifting	Line	Theory	

As was the case with chordwise loading, calculation methods for spanwise loading are equally 

diverse yet center on a common theme.  Postulated independently by Lanchester19 and Prandtl20; 

these theories are based around the simple concept that the effective angle of attack at any point 

along a finite 3D wing is the sum of the freestream angle of attack and the induced angle of 

attack as illustrated by Figure 2.3. Furthermore, the sectional lift produced is equal to an infinite 

wing at the same effective angle of attack.  By placing bound vortices of unknown strength along 

the wing and employing this hypothesis, it is possible to discritize the geometry and solve for the 

unknown circulation distribution and resulting induced angle of attack. 



7 

 

 

Figure 2.3  Lanchester/Prandtl Hypothesis7 

Prandtl successfully applied this theory to the elliptic wing problem illustrated in Figure 2.4.  

Through some intuitive reasoning he was able to derive a closed form solution that is found in 

most aerodynamic textbooks7,8,9.  However, this solution is a rather unique case and closed form 

solutions do not exist for any other geometry.  A more generalized approach is usually found in 

these same texts which allows for non-elliptic chord distributions, wing incidence and twist as 

well as variation in airfoil geometry.   

Commonly called the general lift distribution method, it is only applicable to wings with no 

sweep or dihedral.  Since most modern lifting surfaces exhibit one or both of these geometric 

properties, this method is far from generic.  Typically, the failure of the ‘General Lift 

Distribution’ method is attributed to its inability to predict spanwise flow; however, this has been 

shown to be false21 with the application of a three-dimensional lifting law rather than the two 

dimensional law used in the general method.  In reality, the pitfall of these methods can be traced 

to their neglect of the influence of a bound vortex on itself27. 



8 

 

 

Figure 2.4  Visual Description of Elliptic Wing Problem7 

Numerous attempts have been made over the years to formulate a more comprehensive theory 

and the most well known of these is the Multhopp22 method.   Based on Gaussian Quadrature, 

this method is computationally complex and rather slow to converge in comparison to other 

methods.  It is also limited in terms of general applicability.  A similar, yet more straightforward, 

approach proposed by Rasmussen & Smith23 was based on Multhopp’s formulation but instead 

relies on Fourier series expansion.  This method allows for sweep, dihedral and arbitrary chord 

distribution, yet it fails to address the case of cranked wings with discontinuities in the quarter 

chord line that do not lie at the plane of symmetry (i.e. non-planar).  This includes cases such as 

wings with winglet, wings with pylon and wing with endplate.  

To analyze these cases, NASA developed several models to help predict the performance of 

arbitrary non-planar wings24,25.  The accuracy of these methods vary with the planform being 

analyzed, but all of the aforementioned methods (including the NASA methods) rely on a two-

dimensional vortex lifting law, the downfalls of which have already been discussed.  While they 

provided a reasonably accurate and widely applicable method, the development of three-

dimensional lifting line theory in the 1990’s26,27 has pushed them into relative obscurity.  



9 

 

This modernized lifting line theory utilizes a three-dimensional vortex lifting law which can 

account for spanwise flow, non-planar effects and self induced velocity.  While mathematically 

this method is applicable to the general case, solutions of the published models exhibit 

singularities that are caused by discontinuities chord line. These discontinuities cause a local 

shift in locus of aerodynamic centers which are normally assumed to be located at the quarter-

chord position for straight wings.  This effect is well known and has been documented in 

countless experiments including the work of Weber & Brebner28 as well as Hall & Rogers29.   

To account for this shift in aerodynamic center in swept wings, the tangent approximation can be 

used.  Presented by Küchemann30 as part of a lifting-line theory for swept wings, the tangent 

approximation has been shown to agree quite well with experimental data.  However, the method 

is only applicable to planar swept wings with no kinks in the quarter-chord line.  The impact of a 

multi-paneled (or cranked) wing and the effects of dihedral are not accounted for limiting the 

usefulness of the tangent approximation.  Considerable effort was expended to locate an all 

encompassing aerodynamic center shift theory that can be applied to the arbitrary case, but none 

was found.  Thankfully, the tangent approximation is simple enough that extension to the general 

case is quite easy and will be discussed in subsequent sections.  Unfortunately, it will also be 

shown that despite mitigating the singularity, the application of the tangent approximate has 

unwanted consequences on the predicted spanwise loading of a given lifting surface. 

2.3 Vortex	Lattice	Method	

Similar in methodology to Lifting Line Theory, the Vortex Lattice Method (VLM) allows for a 

solution which yields both spanwise and chordwise loading.  This is accomplished by placing a 

series of horseshoe vortices along the wing in both the span and chordwise directions effectively 



10 

 

forming a vortex sheet that conforms to the local airfoil camber similar to thin airfoil theory.  

Figure 2.5 shows a simple vortex lattice system for a straight uncambered lifting surface.  As was 

the case with thin airfoil theory, this method neglects the effects of airfoil thickness and offers no 

provisions to solve for frictional forces in its basic form. 

 

Figure 2.5  Layout of Vortex Lattice System 

The origins of VLM are hard to pin down as it seems to have slowly branched out from lifting 

line theory over the course of many years.  It appears the first use of the term ‘Vortex Lattice 

Method’ is attributed to Falkner who wrote what is considered to be the first comprehensive 

paper33 on the subject in 1946.   The method was revised and tweaked over the years by many 

people but did not come into its own until the late 1970s and early 1980s when use of digital 

computers started to become commonplace.  This allowed for greater fidelity and ultimately led 

to its industry wide acceptance.  A detailed discussion of the history of VLM can be found in 

Reference 32. 

Today there are several commercial and open source codes that use some form of VLM.  

VORSTAB34, for example, uses a Quasi Vortex Lattice Method (QVLM) which attempts to 

account for the effects of leading edge suction.   Slightly more modern examples include 



11 

 

Tornado35 and AVL36 which have user friendly Graphical User Interfaces (GUI’s) but yield 

essentially similar results.  While these codes are quite good at analyzing arbitrary lifting 

surfaces for lift, pitching moment and induced drag, they make no attempt to address the impact 

of frictional forces or airfoil thickness and cannot predict stall or flow separation.   

2.4 3D	Panel	Methods	

The relationship of thin airfoil theory and the airfoil panel methods is very much analogous to 

the relationship of VLM and 3DP.  Where VLM relies on vortices bound to the camber line, 3DP 

methods place vortices on the lifting surface and solves for the resulting potential flow.  There 

are a couple of approaches to this but they all solve some form of the Euler equation. 

A linearized form of the Euler equation common to fluid dynamics is known as the Prandtl-

Glauert equation and can be found in most aerodynamic textbooks7,8,9.  This is often described as 

the origin of modern Computational Fluid Dynamics (CFD), but this is really not the case.  The 

Prandtl-Glauert equation solves for potential flow, a condition which can never truly exist in 

nature, whereas modern CFD techniques try to solve the continuum mechanics equations.  This 

confusion arises from the fact that post-processing of the two often yield similar images and 

results, such as those shown in Figure 2.6. 



12 

 

 

Figure 2.6  Panel Model of MD-11 at Take-Off37 

Several commercial and open-source 3DP codes are available but the most widely used is called 

VSAERO37.  This software utilizes a one-way coupled approach to solving boundary layer flows 

similar to the Eppler11 method discussed earlier, yet it is not very accurate.  As with all 3D panel 

codes, the ability to predict stall and flow separation is at best limited.  Typically, to accurately 

predict these effects one must resort to the continuum mechanics equations and CFD solvers.  In 

addition, the amount of work required to create the models makes using these methods for 

preliminary design purposes impractical in most cases. 

2.5 Navier‐Stokes	Equations	

In fluid mechanics, the continuum mechanics equations, or also known as transport equations, 

take the form of the Navier-Stokes equations.  Also found in most aerodynamic textbooks7,8,9, 

these equations attempt to explain the physics of moving fluids within the framework of 

Newtonian mechanics.  This is accomplished by simultaneously satisfying the conservation of 

mass, energy and momentum.   



13 

 

Closed form solutions of these equations are only possible for the simplest of cases, such as 

Couette flow, channel flow or laminar pipe flow38.  Solutions for the general case require 

numerical techniques which can be quite involved.  Turbulence models which describe the 

higher order terms of the Navier-Stokes equations are almost always necessary to solve these 

types of problems38.  Unfortunately, no single turbulence model adequately predicts this 

phenomenon in all types of flow environments or scenarios.  This is due in part to the fact that 

these models attempt to explain turbulence that occurs at various scales within all moving fluids, 

but are usually limited to some narrow band of that range.  For example, the microscopic eddies 

created by turbulent mixing of the boundary layer are not adequately explained by turbulence 

models which are capable of describing large eddies like those found in the wake of a boat or an 

airplane. 

There are several commercial and open-source software packages which facilitate solutions to 

the Navier-Stokes equations.  The most well known of these are ANSYS39 Fluent and Star-

CCM+40.  These high-end solvers are the current industry standard for solving most types of 

fluid mechanics problems.  They are capable of handling arbitrary geometries, and with proper 

meshing and boundary conditions, will yield the most accurate computational results of any 

method discussed thus far.  However, successful implementation of these methods requires 

considerable skill and is inappropriate in the preliminary design phase due to the amount of time 

needed to find a solution.  Another point of concern is the computational resources required to 

solve these models, especially for large scale or transient cases, which can be quite large, but 

with future increases in computational power this will become less of a concern. 



14 

 

 

Figure 2.7  Example of High Fidelity CFD Results40 

2.6 MIAReX	and	XFLR5	

One particularly useful tool which is appropriate for preliminary design is known as XFLR541.  

This program contains several analysis tools ranging from airfoil analysis to 3D panel methods 

and is popular in universities all over the world due to its user friendly interface.   It is separated 

into four main analysis types; airfoil analysis, lifting-line theory, VLM and a 3D panel method.  

The airfoil analysis methods utilized in XFLR5 are identical to those found in XFOIL17 with 

many of the same geometric design and post-processing features. 

The lifting line theory used is from an antiquated NACA model42 for which the original 

formulation is not applicable to cranked or non-planar cases.  This is employed within the 

framework of MIAReX43, a computational approach designed to distribute pressure forces along 

a 3D surface from either experimental or computational airfoil data.  It is remarkably similar in 

formulation to the pressure distribution method presented in the original formulation1 of the 

proposed method, yet it is entirely unclear how this is extended to the general case since 

documentation on this software leaves much to be desired. 



15 

 

The exact formulations of the VLM and 3DP codes included in XFLR5 are also unknown, again 

due to poor documentation of the software, though the VLM and 3DP code include options for 

viscous effects and ground effect which suggests more sophisticated models.  Unfortunately, 

they are very temperamental and very rarely if ever allow for the solution to converge.  

Extensive use of this software will be made for comparative purposes without employing these 

troublesome viscous flow options.   

2.7 Wind	Tunnel	Testing	

Even the most sophisticated of computational approaches cannot substitute for actual test data.  

Properly designed and conducted wind tunnel tests can provide chordwise loading and spanwise 

loading as well as global forces and moments.  This data can be collected using any number of 

methods,   many of which are detailed by Barlow, Rae & Pope44.  While undeniably accurate, 

wind tunnel testing is both time consuming and expensive.  Many small budget or limited scope 

projects either reduce or eliminate this process all together, instead opting for CFD or other 

computational methods.  With quality models, such as the one shown in Figure 2.8, costing 

upwards of $100,000 (USD), it is easy to see why wind tunnel testing is never carried out in the 

preliminary design phase.  The costs associated with such an effort would be astronomical.  



16 

 

 

Figure 2.8  Example of High Quality Wind Tunnel Model45 

2.8 Conclusions	

As has been shown, the methods for determining distributed aerodynamic loads on lifting 

surfaces take a variety of forms.  They range from being simple enough that they can be solved 

by hand to requiring massive super computers and hours of computational time to converge.  

Depending on the application and current design phase, one or more may be appropriate, yet in 

the preliminary design phase few solutions exist which are arbitrary and easily understood, let 

alone applied.  It will be shown that by combining some of the more simple loading theories, a 

more complex understanding can be developed and incorporated into the preliminary design 

process which rivals that of the higher fidelity methods in some limited respects. 

 

  



17 

 

3. Theoretical Development 

This section summarizes the theoretical development of the proposed method.  A general 

overview is offered followed by formulations of the various components that make up the 

method and concludes with a discussion of the calculation of forces, moments and their 

respective coefficients. 

3.1 Overview	

The methodology outlined in the following sections describes a process by which planforms of 

arbitrary shape can be analyzed in a quick and effective manner.  By themselves, the methods 

employed are easy to understand, but when combined into a cohesive theory, they provide a 

powerful computational tool for aerodynamicists and aircraft designers.  The theory centers on 

the use of a lifting line method, solutions to which provide angle of attack distributions that are 

used to generate local lift and drag data as well as pressure and frictional force distributions.  

This can come from any resource (computational or experimental) capable of resolving 

chordwise loading, yet the accuracy of the airfoil methods directly impact the accuracy of the 

final results resulting in a trade-off between flexibility and accuracy.   

While wind tunnel testing provides accurate and reliable data, the expense and lack of 

comprehensive databases of experimental results make application to the general case 

impossible.  However, by utilizing any one of the numerical approaches discussed in Section 2.1, 

almost any airfoil section can be analyzed with varying degrees of accuracy.  At a minimum, the 

airfoil pressure distribution and lift coefficient at several angles of attack and comparable 

Reynolds number must be known.  If skin friction distributions or drag and moment coefficients 

are also known, additional post processing is possible.  



18 

 

3.2 Chord	Loading	

To achieve the objectives stated in Section 1.1, XFOIL v6.917 has been selected as the preferred 

analysis tool.  It is capable of analyzing airfoils of arbitrary shape over a reasonable range of 

angle of attack and Mach number.  The geometry modification routines contained within XFOIL 

allow for plain control surface deflections (i.e. aileron, plain flap, flaperon, etc…), further 

extending the applicability of the software, but it unfortunately does not provide a complete 

picture.  By making some simple assumptions and applying the Viterna method47 for 

extrapolating airfoil data, it is possible to fill in the gaps and obtain a more complete answer.   

The two-way coupled analysis in XFOIL17 is discussed in detail by Drela14,16 so only the basic 

equations and governing principles are discussed here.  What makes XFOIL a two-way coupled 

analysis is the fact that the potential flow calculations account for boundary layer and wake 

effects by use of additional source distributions as depicted by Figure 2.2.  The stream function 

governing the potential solution is given by Equation 114 and is the superposition (or sum) of the 

freestream stream function and the stream functions of the surface bound vortices and 

surface/wake bound source elements. 

         1 1
, ln

2 2xyx y u y v x s r s ds s s ds  
            (1) 

In turn, the equations governing the viscous flow are dominated by a compressible version of the 

Von Kármán Momentum Integral equation, shown below in Equation 214.  However, this 

requires an accompanying shape parameter integral that relates the shape of the boundary layer 

to the external potential flow and is given by Equation 314. 



19 

 

2(2 )
2

fe
e

e

cd du
H M

d u d

 
 
            (2) 

  *

*
** * *2 1 2

2
fe

D
e

cdH du
H H H C H

d u d


 

            (3) 

A third governing equation for the viscous flow equations is also required, yet its form and 

function vary depending on whether the boundary layer is laminar or turbulent.  Prior to 

transition when the boundary layer is still considered laminar, this takes the form of the shear 

stress lag equation given by Equation 414 and is used until the amplification factor, n , equals a 

user specified value, critn , indicating transition. 

   Re
,

Re k k

dn dn d
H H

d d d





 
         (4) 

After transition, the boundary layer is considered turbulent and Equation 4 is replaced by the 

maximum shear stress rate equation given by Equation 514. 

 
2

*

4 1 1
5.6 2

3 2 6.7EQ

f k e
t t

k e

cdC H du
C C

C d H u d




 
  

          
     

    (5) 

The systems of linear ODE’s formed by Equations 2 through 5 contain a total of ten unknowns 

requiring seven separate closure relationships.   These are empirical formulas derived from a 

combination of solutions to the Falkner-Skan equation and experimental observations14.  These 

are documented in detail by Drela & Giles16, but the general relationships of the variables can be 

separated into shape parameter functions (Equation 6) which relate various features of the 



20 

 

boundary layer to each other and coefficient functions (Equation 7) which relate the features of 

the boundary layer to its quantifiable values.   

*

**

*

( , )         

( , Re , )
Shape Parameters

( , )        

( , , )  

k e

k e

k e

S k

H f H M

H f H M

H f H M

U f H H H




 
 
 

       (6) 

 
 

*

*, , ,

Coefficeints , Re ,  

( , , )      

EQ k S

f k e

S fD

C f H H H U

c f H M

C f U C c







 
 
 

       (7) 

Solutions are obtained by coupling Equation 1 with Equations 2 through 7 as follows.  To begin, 

an initial estimate of the stream function (Equation 1) is made assuming inviscid potential flow 

with no source distribution (i.e. 0  ).  This yields vortex panel strengths along the airfoil 

which are converted to incompressible velocity and pressure coefficient using Equations 8 and 

914.  If desired, corrections for compressibility can be made using the Kármán-Tsien correction 

(Equations 10 through 13) 14.  However, these equations are only applicable for freestream Mach 

numbers up to about 0.5 where local surface velocity can spike into the supersonic regieme.   

The drag calculations also make no provisions for wave drag which can dominate the total 

planform drag in the transonic regieme (around Mach 0.7). 

ie ju             (8) 

 2
1

ip jc              (9) 



21 

 

 1
2

i

i

p
p

p
c c c

c
c

c
  


 

         (10) 

 
2

1

1

ei c
e

ei
c

u
u

u

U









 
  

 

          (11)  

21c M              (12)  

 

2

2
1

c

c

M




           (13)  

Using the initial estimate for the potential flow that rolls out of either Equation 8 or 11, the 

corresponding boundary layer properties can be calculated using Equations 2 through 7.  From 

these results the mass deficit caused by the boundary layer is found from Equation 1414 and 

applied to Equation 1.   The process then starts again, this time accounting for the influence of 

the boundary layer and wake on the potential function.      

 *
e

d
u

d
 


           (14) 

The potential function which results from the recalculation is used to determine the velocity and 

surface pressure coefficient along the airfoil surface and wake via Equations 1514 and 9, 

respectively. This is followed by compressibility corrections (if desired) via the Kármán-Tsien 

relationship given by Equations 10 through 13.  



22 

 

      for airfoil

ˆ  for wake
i

j
eu

n

 
 

         (15) 

The boundary layer properties are again estimated using Equations 2 through 7 and the process is 

repeated until the predicted source and vortex strengths converge to within some acceptable 

tolerance.  This results in pressure coefficient and skin friction coefficient distributions as well as 

boundary layer properties along the airfoil surface.  XFOIL assumes that the contribution of 

friction to lift and pitching moment is negligible and calculates the corresponding lift and 

moment coefficients using Equations 1646 and 1746.     

l pc c dx             (16) 

 
/4

0.25
cm p pc c x dx c ydy              (17) 

Since friction cannot be neglected when considering drag, XFOIL17 calculates total profile drag 

using the Squire-Young formula given by Equation 1846.  The contribution of friction is 

determined by integrating the skin friction coefficient around the airfoil as shown by Equation 

1946.  Unfortunately, a similar calculation of pressure drag is not possible as it is swamped by 

numerical noise.  Instead, the pressure drag is calculated by assessing the difference between 

profile drag and skin friction drag as shown by Equation 2046. 

5

2

2

wake

wake

H

e
d

u
c

U





 
  

 
          (18) 

fd fc c dx             (19) 



23 

 

p fd d dc c c             (20) 

Where; 

cos sinx x y             (21) 

Typical results for a NACA 4415 airfoil at varying Reynolds numbers are shown in Figure 3.1 

with comparisons to experimental data.  While not perfect, the results show reasonable 

agreement with experimental data, especially in the region of linear lift, making its application 

appropriate in the preliminary design phase. 

 

Figure 3.1  Comparison of XFOIL to Experimental Data for a NACA 4415 Airfoil 

The lift and drag coefficients can be rotated into the airfoil coordinate system (i.e. normal and 

axial force) using the Equation 22.  This holds true whether considering frictional and pressure 

forces individually or as a whole, allowing for complete breakdown of normal force, axial force, 

lift and drag into their respective pressure and friction components.   

-10 -5 0 5 10 15 20
-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

Angle of Attack,  [deg]

S
ec

tio
n

 L
ift

 C
o

ef
fic

ie
n

t, 
c

l [~
]

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Section Lift Coefficient, c
l
 [~]

S
ec

tio
n

 D
ra

g 
C

oe
ffi

ci
e

nt
, c

d [~
]

 

 
XFOIL, Re=3e6
XFOIL, Re=6e6
XFOIL, Re=9e6
Ref. 48, Re=3e6
Ref. 48, Re=6e6
Ref. 48, Re=9e6



24 

 

cos sin

sin cos
n l

a d

c c

c c

 
 

    
        

        (22) 

Unfortunately, XFOIL does not typically converge at large positive or negative angle of attack.  

However, by applying the Viterna method47 for extrapolating airfoil data it is possible to have a 

reasonable estimate for the behavior of the airfoil at these extreme angles.  Originally developed 

as an alternative to the tip and hub loss models used in BEM analysis, it utilizes flat plate theory 

and empirical assumptions gained through examination of experimental data.  The method has 

been shown to provide good results for rotors in either partial or total stall47.  Applying these 

techniques to non-rotating lifting surfaces seems like a natural extension and might provide for 

some limited insight into deep stall behavior of lifting surfaces. 

The application of the Viterna method is very straight forward.  It requires an existing set of 

airfoil data, in this case calculated using XFOIL such as that shown in Figure 3.1.  Extrapolation 

of the data from stall to 90is accomplished using Equations 2347 and 2447. 

max

2
2sin cosd dc c B            (23) 

max

2

2

cos
sin2

2 sin
d

l

c
c A




           (24) 

Where; 

max
1.11 0.018dc AR           (25) 

 
max2 2

sin
sin cos

cosstall

stall
d d stall stall

stall

A c c
 


         (26) 



25 

 

max

2

2

sin

cos
stalld d stall

stall

c c
B





          (27) 

The aspect ratio term of Equation 25 is a carryover from the BEM application where finite blade 

length affects the flat plate assumption.  This can either be the aspect ratio of the lifting surface 

or a recommended default value of 10.  The actual value makes little impact on the final results.  

For α > 90˚ and α < αmin the calculated values are reflected.  A scaling factor of 0.7 is applied to 

the reflected lift values to account for cambered airfoils.  If the airfoils are uncambered the 

scaling factor is assumed to be 1.0 and the left hand reflection point shifts from αmin to α = 0˚.  

Figure 3.2 shows the results of the Viterna method applied to a NACA 4415 airfoil. 

 

Figure 3.2  Airfoil Data Extrapolated via Viterna Method, NACA 4415 at Re=3e6 and AR=10 

The Viterna method does not make any provisions for pressure or skin friction distributions; 

however, by making a few simple assumptions it is possible to provide a reasonable estimate 

which meets the results predicted using the Viterna method.  From examining a plot of the 

contributions of pressure and friction to axial force, it is clear that it is dominated by pressure as 

evidenced by Figure 3.3.  Furthermore, the variation in the axial friction force tends to be quite 

-2

-1

0

1

2

S
ec

tio
n

 L
ift

 C
o

ef
fic

ie
n

t, 
c

l [~
]

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180
0

0.5

1

1.5

Angle of Attack,  [deg]S
ec

tio
n

 D
ra

g 
C

oe
ffi

ci
e

nt
, c

d [~
]

  Extent of 
XFOIL Data

  Extent of 
XFOIL Data



26 

 

small and can be assumed to be constant and equal to the mean of the available values.  Keeping 

the assumption in place that the frictional contribution to lift is negligible, it is possible to apply 

the inverse of Equation 22 to decompose the extrapolated axial force, normal force, lift and drag 

into their respective pressure and frictional contributions. 

 

Figure 3.3  Contribution of Pressure and Friction to Axial Force for NACA 4415 at Re=3e6 

From the extrapolated coefficients, it is possible to assign pressure and skin friction distributions 

based on the assumption of simple separated flat plate flow as illustrated by Figure 3.4.  While 

not an accurate representation of the true physics, it provides a reasonable estimate for early in 

the design process.  What this implies is that the suction surface of the flat plate experiences 

completely separated flow resulting in ambient pressure. This requires the pressure surface to 

produce all of the normal pressure forces on the plate.  In addition both surfaces of the plate 

experience constant skin friction of equal magnitude and both pressure and frictional 

distributions must integrate via Equations 28 and 29 to match the extrapolated and decomposed 

Viterna results for normal pressure and axial friction forces. 

-10 -5 0 5 10 15 20
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

Angle of Attack,  [deg]

S
ec

tio
n

 A
xi

al
 F

or
ce

 C
oe

ffi
ci

e
nt

, c
a [~

]

 

 
Pressure
Friction



27 

 

 

Figure 3.4  Extreme Angle of Attack Flat Plate Pressure and Friction Distribution Assumptions 

pn pc c dx             (28) 

fa fc c d x             (29) 

Finally, the pitching moment coefficients for the extrapolated data are calculated using Equation 

17.  Figure 3.5 shows the predicted pressure and skin friction distributions on a NACA 4415 

airfoil at a moderate and extreme angle of attack calculated using the methods outlined above for 

XFOIL and the Viterna method with extrapolated distributions. 

 

Figure 3.5  Predicted Pressure and Skin Friction Distribution on NACA4415 at Re=3e6 

-4

-2

0

2

P
re

ss
u

re
 

C
oe

ffi
ci

e
nt

, c
p [~

]

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-5

0

5

10

15

20
x 10

-3

X-Coordinate, x/c [~]

S
ki

n
 F

ri
ct

io
n 

C
oe

ffi
ci

e
nt

, c
f [~

]

=10 deg

=60 deg



28 

 

3.3 Span	Loading	

The lifting line theory selected for the proposed method is the Phillips27 method and is based on 

the 3D vortex lifting law.  It is a simple and elegant method capable of providing extremely 

useful results. The theory centers on placing a series of discrete horseshoe vorticies along the 

wing and equating the lift calculated using the 3D vortex lifting law with the section lift 

calculated using the methods outlined in Section 3.2.  Figure 3.6 shows a typical wing vortex 

system.  Essentially, this amounts to a vortex-lattice method constrained to only one chordwise 

element with the effects of camber, flap deflection and airfoil thickness being adequately 

modeled using airfoil data.  

 

Figure 3.6  Example Wing Vortex System 

When applied to a differential segment containing the bound portion of a horseshoe vortex, the 

3D vortex lifting law takes the form of Equation 3027.  This is equated to the lift force created on 

that differential element of the wing based on the available airfoil data via Equation 31. 



29 

 

 
v

F V dv df V d       
           (30) 

21

2 ldf V c A 
 

          (31) 

The induced velocity created by any horseshoe vortex i of strength  at any point in space j is 

given by Equation 3227 and illustrated by Figure 3.7.  Setting Equation 30 equal to Equation 31, 

substituting Equation 32 and non-dimensionalizing the results yields the governing equation for 

this lifting line theory as given by Equation 3327.   

     
1 2 1 22 1

2 2 2 1 1 1 1 2 1 2 1 2

( )( )

4
i

i

r r r ru r u r
V

r r u r r r u r r r r r r r
 

 

    
   

       

      
                  (32) 

 
1

2 , ,Re
i

N

ji j i i l i i i
j

u v G G c  


 
   

 


 
        (33) 

 

Figure 3.7  Velocity Induced by Horseshoe Vortex 

 



30 

 

The remaining terms of Equation (33) are defined as follows: 

U
u

U







            (34) 

i i

d
c

A





 
           (35) 

i
i

i

G
c U 


             (36) 

11

1

tan
i

i

N

ji j n
j

i N

ji j a
j

u v G u

u v G u









  
   

     
   

   





  

  
        (37) 

 , 2 1 124
i

j i

c
v v v v


            (38) 

Where; 

 
1

1
1 1 1

u r
v

r r u r







 

 
              (39) 

 
2

2
2 2 2

u r
v

r r u r







 

 
              (40) 

 
1 2 1 212

1 2 1 2 1 2

0                                for i = j

( )( )
    for i j

r r r rv

r r r r r r


      

   
     

        (41) 



31 

 

The geometric properties used to non-dimensionalize Equation 33 are defined by Equations 42 

and 43, refer to Figure 3.8  for details. 

   2 21 2
2 1 2 12

i i

i i i ii

c c
A y y z z


           (42) 

2 2
1 1 2 2

1 2

2

3
i i i i

i i

i

c c c c
c

c c

 



          (43) 

 

Figure 3.8  Definition of Discritized Geometric Properties 

The local normal and axial unit vectors are calculated using the local incidence and dihedral 

angle as defined by Equation 44 and 45.  Figure 3.9 shows definitions of local incidence and 

dihedral angle.  It is important to note that the incidence and dihedral angle definitions differ 

slightly from their traditional definitions.  The dihedral angle changes sign depending on whether 

the wing station is on the positive or negative y-axis.  Similarly, the wing incidence is defined as 



32 

 

the opposite of the angle the chord line makes with the x-axis, yet it does not change sign 

depending on its position along the y-axis. 

* *

* *

1 0 0 cos 0 sin 0

0 cos sin 0 1 0 0

0 sin cos sin 0 cos 1
i

i i

n i i

i i i i

i i

u

i i

 
 

    
          
           


     (44) 

* *

* *

1 0 0 cos 0 sin 1

0 cos sin 0 1 0 0

0 sin cos sin 0 cos 0
i

i i

a i i

i i i i

i i

u

i i

 
 

    
          
          


     (45) 

 

Figure 3.9  Dihedral and Incidence Angle Definitions 

Because Equation 33 is non-linear, it requires application of the Newton corrector method to 

obtain solutions.  This in turn requires an initial estimate for the non-dimensional circulation 

strengths G which can be obtained by linearizing Equation 33 to yield Equation 4627.  This linear 

function provides a reasonable first guess for most situations and provides nearly exact answers 



33 

 

for simple planforms in the linear range of lift.  However, it does require the linearization of the 

airfoil lift curve into lift curve slope and zero lift angle of attack. 

 
1

2
i i i

N

i i l ji ni j l ni o
j

u G c v u G c u u
 

  


     
    

      (46) 

The Newton corrector method is applied by requiring the difference between the left and right-

hand side of Equation 33 to go to zero as shown by Equation 4727.  Successive estimates for G 

are found by enforcing the Newton corrector equation shown below in Equation 4827. 

 
1

( ) 2 , ,Re
i

N

i ji j i i l i i i i
j

f G u v G G c  


 
     

 
 R

 
     (47) 

f
G

G


  


R            (48) 

Written in matrix form this becomes; 

    G J  R           (49) 

     G G G              (50) 

Where; 

 
1

f
J

G

    
           (50) 



34 

 

     

     

2 2

2 2

2
            

2
2  

i

i

i ji i ai ji ni ni ji ail
i

i i ai ni

ij

i ji i ai ji ni ni ji ail
i i

i i ai ni

w v v v u v v uc
G for i j

w v v
J

w v v v u v v uc
w G for i j

w v v









     
  

 
 

    
    

     


     




   (51) 

1

N

i ji j i
j

w u v G 


 
   
 


           (52) 

1

N

ni ji j ni
j

v u v G u


 
   
 

            (53) 

1

N

ai ji j ai
j

v u v G u


 
   
 

            (54) 

Solutions are found by getting an initial estimate for G from Equation 46.  Written in matrix 

form, this quickly surrenders to matrix inversion as shown by Equations 55 through 57. 

 
 

,

2   

                   

i

i

i l ji ni i

i j

l ji ni j

u c v u G for i j

c v u G for i j






       
  

  

        (55) 

 
i ii l ni oH c u u


  

 
         (56) 

     1
G H

            (57) 

This initial estimate for G is used to compute Equation 47 at each of the N control points.  This is 

followed by computation of the corrector matrix via Equation 51 and a new estimate for G via 

Equation 50 which is then used to recompute Equation 47 and the process is repeated until the 

absolute maximum value of the residual vector R is less than some acceptable tolerance.  The 



35 

 

final values for G can be used to compute aerodynamic forces and pressure & shear distributions.  

However, as stated previously, the lifting line theories based on the 3D lifting law exhibit a 

singularity for swept wings and wings with dihedral which must be accounted for.  Phillips27 

suggests that this singularity can be mitigated by accounting for aerodynamic center shift, but 

this will later be shown to overestimate the downwash in the region of the shift raising the 

question of how this singularity should actually be handled. 

3.4 Aerodynamic	Center		

The phenomenon of aerodynamic center shift is nothing new.   It has been well documented in 

the work of countless engineers.  Unfortunately, little research into aerodynamic center shift 

caused by dihedral or combinations of sweep and dihedral has been conducted with almost all 

work being focused on the effects of sweep angle.  A method for estimating the aerodynamic 

center shift on swept planar wings offered by Küchemann30 has been shown to agree quite well 

with experimental results.  However, it cannot be applied to any case other than swept planar 

wings. 

From examination of the assumptions and methods used by Küchemann30, it is possible to 

formulate an equivalent theory for the general case that accounts for the effects of sweep and 

dihedral as well as being applicable to the general cranked case.  Küchemann surmised that the 

root aerodynamic center shift caused by sweep is linearly proportional to the sweep angle 

increasing to a maximum of 25% chord at 90˚ sweep as given by Equation 5830.  Furthermore, 

the aerodynamic center shift at the wing tip is governed by a similar relationship shown in 5930.  

Away from the root and tip, the aerodynamic center approaches the quarter chord line 

hyperbolically as governed by Equations 6030 and 6130. 



36 

 

2

2

c
rac

r

x

c 


            (58) 

2

2

c
tac

t

x

c 


             (59) 

  2 2

2 2

2
tan tan

1 2 2
c c

c c

r
r r

y y
y

c c
  

  
      

      (60) 

  2 2

2 2

2

tan tan2 21 2 2
c c

c c

t
t t

b b
y y

y
c c

  

    
   

  
  

     (61) 

The locus of aerodynamic centers can then be calculated along the entire wing using Equations 

62 and 63 which yield results similar to Figure 3.10.  Applying this theory to Equation 33 

effectively negates the singularity caused by planar swept wings.  Curiously, if this theory is 

applied to a straight tapered wing with zero quarter-chord sweep, the results violate the general 

lift distribution theory which is considered to be accurate for such cases.   Therefore care must be 

taken when applying this approach at low sweep angles. 

     
r tac ac r ac tx y x y x y              (62) 

 
 
 

   
 
 

4

4

4

c

c

c

acac

ac

ac

x y x yx y

y y y y

z y z y

   
       

   
    

        (63) 



37 

 

 

Figure 3.10  Küchemann A.C. Shift Parameters 

Extension to the general cranked case is possible by assuming that the numerical singularities 

induced by sweep angle are similar to those caused by dihedral angle and as such can be 

accounted for in a similar way.  This assumption is seen to be valid by examining the results of 

Equation 33 for wings with sweep and dihedral separately without correcting for aerodynamic 

center shift.  Furthermore, it is assumed that the aerodynamic center shift at any panel root or tip 

is caused by the total change in sweep or dihedral angle rather than the magnitude of the sweep 

or dihedral angle of that panel, unless at the free tips of the lifting surface.   

To avoid the anomaly associated with unswept tapered wings inherent to Küchemann’s 

formulation, the quarter-chord angles are used rather than the half-chord angles which cause the 

theory to fail.  This does cause a slight difference in the results, particularly for panels with low 

aspect ratio.  However, this difference is seen to have a negligible effect on the results.  Figure 



38 

 

3.11 illustrates the aerodynamic center shift of a typical cranked wing of M-1 panels with 

important defining parameters. 

 

Figure 3.11  Extended Küchemann A.C. Shift Parameters 

The aerodynamic center shift at any defining panel station i is defined by the change of the in-

plane angle at that station as defined by Figure 3.11 and Equations 64 and 65.   

4
ji

xyac

i

x

c






            (64) 

4
ji

yzac

i

z

c






            (65) 



39 

 

The hyperbolic blending functions take a similar form to Equations 60 and 61, replacing the y-

coordinate for the span coordinate s as defined by Figure 3.11. 

 
2

1
i i i

i i
x x x

i i

s s s s
s P P

c c


  
   

 
       (66) 

 
2

1
i i i

i i
z z z

i i

s s s s
s P P

c c


  
   

 
       (67) 

Where; 

4
tan

2
i

i

i

xy
x

xy

P



 

    
         (68) 

4
tan

2
i

i

i

yz
z

yz

P



 

    
         (69) 

This leads to the aerodynamic center shift and locus functions as follows: 

   
1

i i

M

ac xy x
i

x s s 


            (70) 

   
1

i i

M

ac yz z
i

z s s 


            (71) 

 
 
 

   
 

   

4

4

4

c

c

c

acac

ac

ac ac

x s x sx s

y s y s

z s z s z s

   
       

        

        (72) 



40 

 

3.5 Forces,	Moments	and	Coefficients	

The ultimate goal of coupling the theories documented in the preceding sections is to calculate 

the aerodynamic properties of lifting surfaces.  As such, the results of the lifting line theory do 

not offer much insight on their own.  Further post-processing is needed to obtain the forces, 

moments and coefficients which characterize the aerodynamics of the lifting surface.  Combining 

Equations 30 and 32 yields expressions for the force and moment on any differential spanwise 

segment as given by Phillips27 via Equations 73 and 74, yet these equations only provide a partial 

answer. 

1
i

N
i j

l i ji i
j j

f U v
c

 


  
     

 


 
         (73) 

   
i i i il cg l m i i ai nim r f q c c A u u   

   
       (74) 

To get a complete picture we must also include drag.  By extending Prandtl’s hypothesis that the 

sectional lift on a 3D wing acts perpendicular to the local velocity vector to also include the 

assumption that drag acts parallel to the velocity vector, we can estimate the drag of the wing 

using a similar approach. Figure 3.12 illustrates the extended Prandtl hypothesis.  This allows for 

the drag on a spanwise differential element to be calculated using Equation 75.  Equation 76 

offers a similar formulation for lift which is equivalent to Equation 73. 

i i id d i df q c Au
 

          (75) 

i i il l i lf q c Au
 

          (76) 



41 

 

Where; 

i

i

i

l
l

l

f
u

f



             (77) 

 
0 1 0

1 0 0

0 0 0
i id lu u

 
   
  

           (78) 

 

Figure 3.12  Extended Prandtl Hypothesis 

Combining Equations 75 and 76 with Equation 74 yields an expression for the differential 

moment inclusive of drag.  It is important to note that it is possible to use the decomposed 

coefficients discussed in Section 3.2 to calculate the force and moment contributions from 

friction or pressure independently.   

   
i i i i il cg l d m i i ai nim r f f q c c A u u

      
           (79) 



42 

 

The total forces and moments are found by summing the differential contributions of each 

spanwise segment as governed by Equations 75, 76 and 79.  This takes the form of Equations 80 

and 81. 

     
1 1 1

i i i i

N N N

L D l d l d
i i i

F F F f f f f
  

       
     

      (80) 

 
1

i i

N

L D l d
i

M M M m m


   
    

        (81) 

The aerodynamic force and moment coefficients are in turn calculated using Equations 82 and 

83. 

 cos 0 sin

0 0 0

sin 0 cos

D

Y

L

C
F

C
q S

C

 

 

 


 

   
      
       


        (82) 

 l

m
MAC

n

C
M

C
q Sc

C 

 
   
  


          (83) 

Where; 

/2

/2
1

cos
Nb

i ib
i

S cdy A 




           (84) 

 2

2 1/2 2 1

/2

1

1

cos

i i

N

ib
i

MAC Nb

i i
i

c y y
c c dy

S A 








 





       (85) 



43 

 

The induced drag can be estimated by considering only lift forces LF


in Equation 82.  Ignoring 

lift and side-force this becomes Equation 86.    

cos sin
x zL L

D i

F F
C

q S

  



 
  
 

        (86) 

  

4. Application 

This section summarizes the application and practical aspects of the theory outlined in Section 0.  

Special considerations relating to the computational approach are discussed followed by a 

discussion of post-processing and visualization techniques.  This is concluded with a brief 

overview of a MATLAB code implementing the methods discussed. 

4.1 Computational	Considerations	

There are several special considerations which must be made when applying the theories and 

methods outlined in the Section 3.  First and foremost is the flexibility of the model, particularly 

the lifting line theory. While it can be applied to systems of interacting lifting surfaces with 

arbitrary and dynamically varying shapes, finding an algorithm or set of algorithms to explain all 

possibilities is virtually impossible.  However, by applying the cranked wing model most shapes 

and nearly all practical planforms can be approximated if not defined explicitly.  Figure 4.1 

defines the basic parameters of a cranked wing.  Each panel end point is defined by a quarter 

chord location, an airfoil section, incidence angle and a chord length.  Each panel also has a 

characteristic sweep and dihedral angle which is assumed constant at each point in that panel.  

Airfoil properties and incidence angle are assumed to vary linearly along the panel.   The 



44 

 

distribution of points along the panel is of critical importance and Phillips27 suggests that a 

cosine distribution will yield the smallest numerical error.  

1 cos

2s

 
            (87) 

The left and right nodes of the bound vortex segments as well as each control point location are 

then assigned a linear location in  -space as specified by Equations 88 through 90.   

1 0, ,  ... ,
i

pan panN N

  
 

  
  

        (88) 

2

2
,  ... ,

i

pan panN N

  
 

  
  

         (89)  

3
,  ... ,

2 2 2j
pan pan panN N N

   
 

  
  

        (90) 



45 

 

 

Figure 4.1  Cranked Panel Definitions 

However, Equations 88 through 90 only yield numbers between 0 and 1 adhering to the cosine 

distribution of Equation 87.  To apply this distribution to an arbitrary line in 3D-Cartesian space 

between endpoints xyz1 and xyz2, Equation 91 is used.  Where xyzi is the point corresponding to 

the ith element of ηs located between xyz1 and xyz2.    

1 2 1

1 2 1

1 2 1

i

i

i s

i

x x x x

y y y y

z z z z


        

                  
                

        (91) 



46 

 

Similarly, relationships which allow for the interpolation of airfoil geometry, lift, drag and 

pitching moment, as well as pressure and skin friction distributions to any interior point, can be 

established using Equations 87 and 90.  These all take a form similar to Equation 91, but 

substitute the xyz locations for the appropriate parameters.  For example, the section lift 

coefficient at any point along the cranked panel can be calculated using the lift coefficients of the 

cranked panel end points at the local angle of attack as shown by Equation 92.  If interpolating 

pressure or skin friction distributions along the panel it is necessary that the values at the panel 

endpoints come from identical x/c locations and be from the same surface (i.e. upper vs. lower) 

and takes the form of Equation 93. 

       
1 2 1i il i l i s l i l ic c c c                (92) 

       
1 2 1

, , , , , , , ,
i i

x x x x
c c c cp i p i s p i p ic c c c                (93) 

Another area of importance regarding the calculation is the convergence of Equation 33.  This 

typically requires that new estimates for G are highly under relaxed.  Recommended values for 

the relaxation factor Ω of Equation 50 range between 0.7 and 0.9 in most cases and convergence 

tolerances of 0.001 to 0.0001 are easily met.    

4.2 Post	Processing	and	Visualization	

The forces, moments and coefficients calculated with the equations in Section 3.5 can be used 

and understood in a variety of ways.  An exhaustive discussion of what is possible is not feasible.  

However, some basic aerodynamic properties of interest can be extracted and used at various 

phases in the design process, particularly preliminary design.  The most basic aerodynamic 



47 

 

properties of any lifting surface are its linearized values, such as lift curve slope, zero lift angle 

of attack and so on.  These values are calculated from the coefficients which result from applying 

the proposed methods to a range of angles of attack within the linear range.  Assuming 

coefficients are known at -6, -3, 0, 3 and 6 degrees angle of attack, the lift curve and lift at zero 

angle of attack can be found by applying a 1st order polynomial fit via the least-squares method 

which takes the form of Equation 94.  From these results, the zero-lift angle of attack is found 

using Equation 95. 

0L L LC C C

            (94) 

0

0w

L

L

C

C





            (95) 

The Class-I drag polar can be found in a similar fashion by applying the least-squares method to 

an equation of the form dictated by Equation 96.  The coefficients of this regression yield zero-

lift drag coefficient and the span efficiency factor via Equations 97 and 98. 

2
0 1D LC A A C            (96) 

0 0DC A            (97) 

1

1
e

A AR
            (98) 

The linearized pitching moment curve is found in the same manner as the linearized lift curve by 

applying a 1st order polynomial fit via the least-squares method.  This takes the form of Equation 

99 and in turn the zero-lift pitching moment is found via Equation 100. 



48 

 

0m m mC C C

            (99) 

00o wm m mC C C

            (100) 

Similarly, the Class-II drag polar is found by applying the least-squares method to a 5th order 

polynomial of the form given by Equation 99 to a set of aerodynamic coefficients ranging from -

10 to +10 degrees angle of attack.   

 
0

2 3 4 5
1 2 3 4 5D L D CD L CD L CD L CD L CD LC C C B C B C B C B C B C          (101) 

Visualization of the distributed loads is easily accomplished using commercial plotting software 

packages such as Tecplot51.  By applying a quad-mesh to the lifting surface and using the 

methods discussed in Section 4.1, the pressure and skin friction at any point on the surface can 

be determined.  This in turn allows for the local forces to be calculated using the surface panel 

area along with the normal and tangent unit vectors.  To create the quad-mesh, the airfoil 

coordinates at each station along the cranked panel are interpolated using Equation 102 then 

scaled using the local chord. 

       1 2 1, , , ,
i

i x x x x
c c c cs

z z z z

c c c c
      

           (102) 

Following interpolation and scaling of the airfoil coordinates, they are rotated to the proper 

incidence and dihedral angle via Equation 103 and then transformed to the quarter-chord location 

via Equation 104. 



49 

 

* *

* *

1 0 0 cos 0 sin

0 cos sin 0 1 0 0

0 sin cos sin 0 cos

i i

i i

i i i irotated scaled

x i i x

y

z i i z

 
 

      
              

              

    (103) 

1
4rotated c

x x x

y y y

z z z

     
           
          

         (104) 

Applied to each of the control point locations, this results in a series of xyz points describing the 

Cartesian geometry of each wing station.  The coordinates used in XFOIL calculations start at 

the trailing edge of the upper surface, go through the leading edge and terminate at the trailing 

edge of the lower surface.  For the quad-meshing procedure to be applied it is necessary for all 

airfoil sections which describe the geometry of each cranked panel to have the same number of 

defining points.  For a panel with Maf airfoils defining its shape with Naf coordinates defining 

each airfoil, the following algorithm is used to generate the connectivity list.  Figure 5.1 defines 

the parameters of interest for the quad-mesh procedure with wing surface conceptualized as a 

rectilinear grid on a flat plane. Figure 4.3 shows the results of the meshing procedure applied to 

an arbitrary wing. 

for j=1:Maf 
    for k=1:Naf-1 
      pt1= k+j*Naf-Naf 
      pt2= k+1+j*Naf-Naf 
      pt4= k+(j+1)*Naf-Naf 
      pt3= k+1+(j+1)*Naf-Naf 
    end 
end 
 



50 

 

 

Figure 4.2  Quad-Mesh Parameters 

 

Figure 4.3  Example of Meshing Procedure Results 

 

This results in af afN M points at which the pressure and skin friction are calculated using the 

method outlined in Section 4.1.  For each of the  1af afN M  quad elements defined by points  

1-4, the panel normal and tangential unit vectors are found via Equations 105 and 106 while the 

surface panel area is found via Equation 107. 

 1
ˆ

2
n a b c d              (105) 



51 

 

 
0 1 0

ˆ ˆ1 0 0

0 0 0

t n

 
   
  

          (106) 

sA a b            (107) 

Where; 

2 1

2 1

2 1

x x

a y y

z z

   
       
      

          (108) 

4 1

4 1

4 1

x x

b y y

z z

   
       
      

          (109) 

3 2

3 2

3 2

x x

c y y

z z

   
       
      

          (110) 

3 4

3 4

3 4

x x

d y y

z z

   
       
      

          (111) 

This allows for the pressure and skin friction to be decomposed into fx, fy, fz  or fx/As, fy/As, fz /As at 

each of the points on the surface yielding data useful for FEA analysis via Equation 112.   



52 

 

   ˆˆ
x

y s

z

f

f p n t A

f


 
       
  

            (112) 

4.3 Advanced	Planform	Analysis	and	XFOILultra	

The methods outlined in Sections 3.1 through 4.2 have been implemented into a pair of 

MATLAB6 codes called Advanced Planform Analysis and XFOILultra (see Appendix A) with 

each containing several subroutines.  XFOILultra operates XFOIL17 in batch mode by 

constructing a text based input file, executing the file and importing the results to MATLAB.  

This is done for angles of attack ranging from  -10 to +20 degrees followed by extrapolation 

using the Viterna method.  This yields a complete breakdown of aerodynamic coefficients and 

pressure and friction distributions which are then passed to Advanced Planform Analysis.   

Geometry, operating condition, calculation settings and post processing options for Advanced 

Planform Analysis are contained within a spreadsheet. All geometry definitions assume the 

cranked wing method and results are displayed in both textual and graphical format.  Surface 

plots are created by generating Tecplot input files which conform to the quad-meshing procedure 

already discussed. 

  



53 

 

5. Discussion of Results 

This section summarizes the results obtained using Advanced Planform Analysis (APA) for 

several lifting surface types including elliptic wings, straight wings, swept wings, wings with 

winglet and wings with control surface deflection along with a comparison of the extended 

tangent approximation.  Comparisons to experimental or theoretical data are offered whenever 

possible along with comparisons to results gained using the VLM and 3DP tools contained 

within XFLR541. 

5.1 Experimental	Validation:	Extended	Tangent	Approximation	

If the A.C. shift theory proposed in Section 3.4 is applied to the planar swept wing case of 

Küchemann, the theory yields remarkably similar results as evidenced by Figure 5.1 while at the 

same time effectively mitigating the singularities inherent to Equation 33 when applied to the 

cranked wing case.  One curious result is that for planforms with large dihedral angles, it is 

possible for the locus of aerodynamic centers to exist outside of the lifting surface mold lines.  

Extensive wind tunnel testing or CFD analysis is needed to truly validate this method; however, 

it seems a reasonable approach to mitigate the effects of troublesome numerical singularities 

inherent to the lifting line theory.   

 



54 

 

 

Figure 5.1  Comparison of Tangent Approximations to Experimental Data 

For the special case of untapered planar wings, the extended tangent approximation reduces to 

Küchemann’s tangent approximation exactly.  Yet, for wings with taper disagreement arises with 

the differences becoming more extreme for wings with large taper or low aspect ratio where the 

difference between quarter-chord sweep angle and half-chord sweep angle can be quite 

significant.  Nevertheless, the extended tangent approximation matches available experimental 

data with exceptional accuracy and effectively mitigates the singularity of the lifting line method 

for cranked wings.  

5.2 Theoretical	Validation	:	Elliptic	Wing		

Prandtl’s classic closed form solution to the elliptic wing problem can be found in many 

textbooks and provides a simple and accurate method to check the results of APA.  For a straight 

wing with an elliptic chord distribution given by Equation 1137, the circulation distribution along 

the wing is assumed to also be elliptic and is given by Equation 1147. 

 
2

1 2r

y
c y c

b
    
 

          (113) 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

Span Location,  = 2y/b [~]

A
er

o
dy

n
am

ic
 C

en
te

r 
S

h
ift

,  
 

x ac
/c

r [~
]

 

 
Kuchemann (Ref. 30)   AR=8,  =0.50

Proposed Method        AR=8,  =0.50

Exp. Data (Ref. 49)      AR=8,  =0.50

Kuchemann (Ref. 30)   AR=3,  =0.45

Proposed Method        AR=3,  =0.45

Exp. Data (Ref. 50)      AR=3,  =0.45



55 

 

 
2

0 1 2
y

y
b

     
 

          (114) 

Where; 

0 2 L

S
U C

b 


          (115) 

The planform lift coefficient is found from Equation 1167 with the planform lift curve slope 

dictated by Equation 1177.  This assumes that the airfoil section is constant along the wing with 

no twist or incidence. 

 
wL L oC C


   `          (116) 

1

l
L

l

c
C

c

AR











          (117) 

The induced drag of an elliptic wing is found by applying Equation 1187 to the calculated 

planform lift coefficient.  An interesting consequence of Prandtl’s solution is that the downwash 

along the wing is constant leading to fact that the planform zero-lift angle of attack for the wing 

is the same as that of the airfoil section used as illustrated by Equation 119. 

2

i

L
D

C
C

AR
            (118) 

0 0w
             (119) 



56 

 

A comparison of the predicted results to Prandtl’s solution reveals that APA handles the elliptic 

wing problem with exceptional accuracy.  The predicted circulation distributions on elliptic 

wings agree almost exactly with Equation 114.  Figure 5.2  shows the predicted circulation 

distribution on elliptic wings of varying aspect ratio with NACA 2312 airfoil section at 5 degrees 

angle of attack and Reynolds number of 2.4e6. 

 

Figure 5.2  Predicted and Theoretical Circulation on Elliptic Wings, α=5˚, Re=2.4e6 

The small amount of disagreement between Equation 114 and APA can be attributed to the slight 

mismatch in lift coefficient when calculated using linearized properties and when found or 

interpolated from a look up table as is the case with APA.  

The predicted lift curve slope and induced drag polar are also seen to agree almost exactly with 

Equations 116 and 118.  Figure 5.3 and Figure 5.4 show a comparison of induced drag polars and 

lift curve slope for elliptic wings of varying aspect ratio with NACA 2312 airfoil section at a 

Reynolds number of 2.4e6. 

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

120

Span Location, =2y/b [~]

C
irc

ul
a

tio
n

, 
 [f

t2 /s
]

 

 
Eq. 114, AR=4 APA, AR=4 Eq. 114, AR=8 APA, AR=8 Eq. 114, AR=12 APA, AR=12 Eq. 114, AR=16 APA, AR=16



57 

 

 

Figure 5.3  Predicted and Theoretical Induced Drag Polar for Elliptic Wings, Re=2.4e6 

 

Figure 5.4  Predicted and Theoretical Lift Curve Slope for Elliptic Wings, Re=2.4e6 

Again, the small amount of disagreement between Prandtl’s solution and APA can be attributed 

to the slight mismatch in lift coefficient when calculated using linearized properties and when 

found or interpolated from a look up table as is the case with APA.  

5.3 Theoretical	and	Experimental	Validation:		Rectangular	Wings	

A similar comparison can be made to the rectangular wing problem.  Equation 1203 gives a 

common formula used to predict the lift curve slope for straight taper wings with zero to 

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Induced Drag Coefficient, C
Di

 [~]

L
ift

 C
oe

ffi
ci

e
nt

, C
L [~

]

 

 

Eq. 116/118, AR=4 APA, AR=4 Eq. 116/118, AR=8 APA, AR=8 Eq. 116/118, AR=4 APA, AR=12 Eq. 116/118, AR=16 APA, AR=16

4 6 8 10 12 14 16
4.00

4.25

4.50

4.75

5.00

5.25

5.50

5.75

6.00

Aspect Ratio, AR [~]

L
ift

 C
ur

ve
 S

lo
p

e,
 C

L 
 [r

a
d-1

]

 

 
Eq. 117
APA



58 

 

moderate sweep and constant airfoil section.  The lift curve slopes predicted by APA are seen to 

agree quite well with Equation 120 and provides greater accuracy than the VLM and a 3DP tools 

contained in XFLR541.  Figure 5.5 shows a comparison of theoretical and calculated lift curve 

slopes.   

 
2

2

2

2

2 1 tan 4

2

c

L

l

AR
C

AR
c










 
     
 
 

       (120) 

 

Figure 5.5  Predicted and Theoretical Lift Curve Slope for Rectangular Wings, Re=2.4e6 

It is unclear why there is such noticable disagreement between the various methods shown in 

Figure 5.5; however, it is obvious that APA provides a better estimation of the lift curve slope if 

Equation 120 is assumed to be accurate.  A comparison of induced drag polars for rectangular 

wings of varying aspect ratio reveals further agreement between numerical approaches.   The 

induced drag is seen to agree quite well between APA, VLM and 3DP, with some notable 

discrepancy.  Figure 5.6 shows a comparison of induced drag polars for rectangular wings with 

aspect ratios between 4 and 12 at Re=2.4e6 and NACA 2312 airfoil. 

4 6 8 10 12 14 16
3.5

4.0

4.5

5.0

5.5

6.0

Aspect Ratio, AR [~]

W
in

g
 L

ift
 C

u
rv

e
 S

lo
p

e
, C

L 
 [r

a
d-1

]

 

 
Eq. 120
APA
VLM
3DP



59 

 

 

Figure 5.6  Calculated Induced Drag Polars for Rectangular Wings, Re=2.4e6 

Comparison of APA results to experimental data also reveals excellent agreement with accuracy 

exceeding that of 3D panel methods in some respects.  Figure 5.7 through Figure 5.9 show a 

comparison of predicted versus experimental lift and drag distributions along the span of a 

rectangular wing of aspect ratio 6.57 with NACA 0015 airfoil section at Reynolds number of 

2.5e6 and varying angle of attack.  All experimental data comes from Reference 52.  

 

Figure 5.7  Predicted and Experimental Load Distribution on Square Wing, α=4˚ 

0.00 0.01 0.02 0.03 0.04 0.05 0.06
-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Induced Drag Coefficient, C
Di

 [~]

L
ift

 C
oe

ffi
ci

e
nt

, C
L [~

]

 

 

APA, AR=4
VLM, AR=4
3DP, AR=4
APA, AR=8
VLM, AR=8
3DP, AR=8
APA, AR=12
VLM, AR=12
3DP, AR=12

0.0

0.1

0.2

0.3

0.4

S
ec

tio
n

 L
ift

 C
o

ef
fic

ie
n

t, 
c

l [~
]

 

 

Ref. 52
APA
3DP

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Span Location, =2y/b [~]

S
ec

tio
n

 D
ra

g 
C

oe
ffi

ci
e

nt
, c

d [~
]

 

 



60 

 

 

Figure 5.8  Predicted and Experimental Load Distribution on Square Wing, α=8˚ 

 

Figure 5.9  Predicted andExperimental Load Distribution on Square Wing, α=12˚ 

There is reasonable agreement between the predicted and measured values, with some notable 

differences.  First, the section lift and drag coefficients that come from XFOIL rarely agree 

exactly with experimental data.  This is especially true for symmetric airfoils which are 

notoriously difficult to model accurately using XFOIL type methods.  The majority of the 

disagreement in Figure 5.7 through Figure 5.9 can be attributed to this.  However, the spike in 

0.0

0.2

0.4

0.6

0.8

1.0
S

ec
tio

n
 L

ift
 C

o
ef

fic
ie

n
t, 

c
l [~

]

 

 

Ref. 52
APA
3DP

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.00

0.02

0.04

0.06

0.08

0.10

Span Location, =2y/b [~]

S
ec

tio
n

 D
ra

g 
C

oe
ffi

ci
e

nt
, c

d [~
]

 

 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

S
ec

tio
n

 L
ift

 C
o

ef
fic

ie
n

t, 
c

l [~
]

 

 

Ref. 52
APA
3DP

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.00

0.01

0.02

0.03

0.04

Span Location, =2y/b [~]

S
ec

tio
n

 D
ra

g 
C

oe
ffi

ci
e

nt
, c

d [~
]

 

 



61 

 

both section lift and drag evident in the experimental data at the wing tip can likely be attributed 

to increased vortex shedding caused by a blunt wing tip.   This is a condition that cannot be 

accurately modeled using lifting line methods and typically requires CFD or wind tunnel testing 

to quantify.  This increased vortex shedding causes the local induced angle of attack to increase 

causing the spike in measured section properties. 

Further comparison of the predicted and measured chordwise loading further validates the 

accuracy of APA.  Figure 5.10 shows a comparison of predicted and experimental pressure 

distribution at several wing stations for a planform having an aspect ratio of 6.57 and a NACA 

0015 airfoil section at a Reynolds number of 2.5e6 and angle of attack of 4 degrees.  

 

Figure 5.10  Predicted and Experimental Pressure Distribution on Square Wing, α=4˚ 

As evidenced by Figure 5.10, APA makes reasonably accurate estimations of the pressure 

distribution along a majority of the wing and in most cases is more accurate than the 3DP 

methods in XFLR541
.   The most notable disagreements are at the wing tip where the 

aforementioned vortex shedding is not adequately modeled using lifting line theory.   

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-2.0

-1.0

0.0

1.0  

 

-2.0

-1.0

0.0

1.0

-2.0

-1.0

0.0

1.0

-2.0

-1.0

0.0

1.0

-2.0

-1.0

0.0

1.0

0.00 0.25 0.50 0.75 1.00

-2.0

-1.0

0.0

1.0

Chord Station, x/c [~]
0.00 0.25 0.50 0.75 1.00

-2.0

-1.0

0.0

1.0

Chord Station, x/c [~]
0.00 0.25 0.50 0.75 1.00

-2.0

-1.0

0.0

1.0

Chord Station, x/c [~]
0.00 0.25 0.50 0.75 1.00

-2.0

-1.0

0.0

1.0

Chord Station, x/c [~]

P
re

ss
u

re
 C

oe
ffi

ci
e

nt
, c

p [~
]

Ref. 52
APA
3DP

=0.094 =0.238 =0.370 =0.490

=0.597 =0.692 =0.773 =0.843

=0.899 =0.944 =0.974 =0.994



62 

 

5.4 Theoretical	and	Experimental	Validation:	Swept	Wings	

A comparison of predicted, calculated and experimental results for swept wings yields similar, 

yet slightly more varied results.  Figure 5.11 shows a comparison of actual, calculated and 

theoretical lift curve slopes for an untapered wing of aspect ratio 5.13 with NACA 23012 airfoil 

section at a Reynolds number of 2.5e5 and varying sweep angles.  Examination of Figure 5.11 

reveals considerable disagreement between all methods used including experimental sources.  It 

is unclear why the experimental results do not agree with Equation 120 or APA for zero-sweep.  

These have been shown to handle the rectangular wing problem with reasonable accuracy in the 

preceding section.   The further spread of VLM and 3DP results obtained from XFLR541 further 

deepens the mystery; however, it is likely related to the relatively low aspect ratio of the 

planform in question or the low Reynolds number of the wind tunnel tests.  Somewhat better 

agreement is found at higher sweep angles. 

 

Figure 5.11  Predicted and Experimental Lift Curve Slopes for Swept Wings, AR=5.13, Re=2.5e5 

0 5 10 15 20 25 30 35 40 45
3.2

3.4

3.6

3.8

4.0

4.2

4.4

4.6

Quarter-Chord Sweep Angle, c/4
 [deg]

L
ift

 C
ur

ve
 S

lo
p

e,
 C

L 
 [r

a
d-1

]

 

 
Eq. 120
APA
VLM
3DP
Ref. 53



63 

 

Examination of the predicted and measured drag polars shows excellent agreement and begins to 

illustrate the benefits of APA over basic VLM and 3DP for purposes of preliminary design.  

Namely, its ability to estimate viscous effects and their impact on the drag polar. This allows for 

more than just the induced drag polar to be determined.  Figure 5.12 through Figure 5.15 show 

the predicted and measured drag polars for an untapered wing of aspect ratio 5.13 with NACA 

23012 airfoil section at a Reynolds number of 2.5e5 and varying sweep angles.   

 

Figure 5.12  Predicted and Experimental Drag Polars for Untapered Wing, AR=5.13, Λ=0˚, Re=2.5e5 

 

0.0000 0.0125 0.0250 0.0375 0.0500 0.0625 0.0750
-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Drag Coefficient, C
D

 [~]

L
ift

 C
oe

ffi
ci

e
nt

, C
L [~

]

 

 

APA
Ref. 53
VLM, 3DP (C

Di
 only)



64 

 

 

Figure 5.13  Predicted and Experimental Drag Polars for Untapered Wing, AR=5.13, Λ=15˚, Re=2.5e5 

 

Figure 5.14  Predicted and Experimental Drag Polars for Untapered Wing, AR=5.13, Λ=30˚, Re=2.5e5 

0.0000 0.0125 0.0250 0.0375 0.0500 0.0625 0.0750
-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Drag Coefficient, C
D

 [~]

L
ift

 C
oe

ffi
ci

e
nt

, C
L [~

]

 

 

APA
Ref. 53
VLM,3DP (CDi only)

0.0000 0.0125 0.0250 0.0375 0.0500 0.0625 0.0750
-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

Drag Coefficient, C
D

 [~]

L
ift

 C
oe

ffi
ci

e
nt

, C
L [~

]

 

 

APA
Ref. 53
VLM, 3DP (C

Di
 only)



65 

 

 

Figure 5.15  Predicted and Experimental Drag Polars for Untapered Wing, AR=5.13, Λ=45˚, Re=2.5e5 

The agreement of the drag polars predicted by APA and those from Reference 53 is reasonable 

evidence that methods employed for estimating the viscous drag distribution in APA are accurate 

enough for preliminary design purposes.  The zero-lift drag and drag polar trends are adequately 

modeled with decreasing accuracy at higher angles of attack.  Nevertheless, it provides a better 

total estimation of the wing aerodynamics than the VLM and 3DP methods used. 

Despite relative agreement of the lift curve slope and drag polars, the predicted spanwise loading 

seems to not match as well as it did for straight wings.  Figure 5.16 shows the normal force 

distribution on an untapered wing of aspect ratio 5.13 with NACA 23012 airfoil section at a 

Reynolds number of 2.5e5 and angle of attack of 8.5 degrees and varying sweep angles. 

0.0000 0.0125 0.0250 0.0375 0.0500 0.0625 0.0750
-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Drag Coefficient, C
D

 [~]

L
ift

 C
oe

ffi
ci

e
nt

, C
L [~

]

 

 

APA
Ref. 53
VLM, 3DP (CDi only)



66 

 

 

Figure 5.16  Predicted and Experimental Normal Force Distribution on Swept Wings, AR=5.13, α=8.5˚ 

Examination of Figure 5.16 reveals some troubling behavior of the lifting line theory used in 

APA.  While the tangent approximation mitigates the singularities caused by discontinuities of 

the first derivative of the quarter-chord line, it does not adequately predict the downwash near 

these discontinuities.  This leads to an over estimation in angle of attack and ultimately the 

predicted lift.  However, APA still offers a fairly accurate approximation of swept wing 

aerodynamics with exceptional accuracy in the prediction of drag polars and linear lift 

characteristics.  The distributed loads are also predicted with reasonable accuracy, appropriate 

for the preliminary design phase.  Figure 5.17 through Figure 5.20 show the pressure 

distributions predicted using the 3DP tool in XFLR5 and APA. 

0.0

0.5

1.0

 

 
Ref. 53
Panel
APA

0.0

0.5

1.0

1.5

N
or

m
a

l F
o

rc
e

 C
o

e
ffi

ci
en

t, 
c

n [~
]

 

 

0.0

1.0

2.0

 

 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.5

1.0

1.5

Span Location,  = 2y/b [~]

 

 

c/4
 = 0 deg

c/4
 = 15 deg

c/4
 = 30 deg

c/4
 = 45 deg



67 

 

 

Figure 5.17  Predicted Pressure Distribution on Untapered Wing, Λ=0˚, AR=5.13, α=8.5˚, Re=2.5e5 

 

Figure 5.18  Predicted Pressure Distribution on Untapered Wing, Λ=15˚, AR=5.13, α=8.5˚, Re=2.5e5 

 



68 

 

 

Figure 5.19  Predicted Pressure Distribution on Untapered Wing, Λ=30˚, AR=5.13, α=8.5˚, Re=2.5e5 

 

Figure 5.20  Predicted Pressure Distribution on Untapered Wing, Λ=45˚, AR=5.13, α=8.5˚, Re=2.5e5 



69 

 

As expected, there is not perfect agreement between the pressure distributions predicted using 

3D panel methods and those obtained from APA. The exaggerated downwash of the lifting line 

theory causes noticeable disagreement at the wing root.  At large enough sweep angles this can 

cause the local angle of attack to push into the post-stall region resulting in the application of the 

assumed Viterna distributions.  This is evidenced by the solid color strips located at the root of 

the wing on the left hand side of Figure 5.20.  Nevertheless, the predicted distributions are 

reasonable and certainly accurate enough for preliminary design purposes.  Especially in light of 

the results of Section 5.3 which showed APA to be more accurate than the panel method in 

XFLR5 for rectangular wings and the exceptional accuracy of the drag polar predictions for 

swept wings discussed earlier in this section.  

5.5 Experimental	Validation:	Wing	with	Control	Surface	Deflection		

The analysis of lifting surfaces with control surface deflection is easily handled by the current 

method but with varying degrees of accuracy.  This is accomplished by using the geometry 

modification functions built into XFOIL to alter the airfoil coordinates to approximate the 

deflected section geometry.  XFOIL then analyzes the airfoil as usual, but this analysis is limited 

to plain flaps, ailerons or similar type controls with deflections less than 30 degrees. Figure 5.21 

through Figure 5.23 show the lift curves and drag polars for a rectangular wing of aspect ratio 

3.13 with NACA 64A010 airfoil section equipped with inboard half-span plain flaps at Reynolds 

number of 4.5e6 and deflection angles of 0˚, 10˚ and 20˚. 



70 

 

 

Figure 5.21  Lift and Drag Data for Rectangular Wing with Half-Span Flaps, δf=0˚, AR=3.13 

 

Figure 5.22  Lift and Drag Data for Rectangular Wing with Half-Span Flaps, δf=10˚, AR=3.13 

-10 -5 0 5 10 15 20
-1.0

-0.5

0.0

0.5

1.0

1.5

Angle of Attack,  [deg]

L
ift

 C
oe

ffi
ci

e
nt

, C
L [~

]

 

 

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18

Drag Coefficient, C
D

 [~]

Ref. 54
APA
VLM
3DP

-10 -5 0 5 10 15 20
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Angl e of Attac k ,  [deg]

L
ift

 C
oe

ffi
ci

e
nt

, C
L [~

]

 

 

0.00 0.02 0.04 0.06 0.08

Drag Coefficient, C
D

 [~]

Ref. 54
APA
VLM
3DP



71 

 

 

Figure 5.23  Lift and Drag Data for Rectangular Wing with Half-Span Flaps, δf=20˚, AR=3.13 

 

It is obvious from inspection of Figure 5.21 through Figure 5.23 that there is considerable 

disagreement in the predicted lift curve slope between the numerical methods and the 

experimental results.  Furthermore, APA does not begin to capture any stall behavior.  However, 

results from the XFLR5 panel model, APA and the experimental results tend to agree on the zero 

angle of attack lift coefficient with considerable error noted in the VLM model for flap 

deflections of 20 degrees.  There is a considerable spread in the predicted lift curve slopes with 

APA exhibiting the most error.  That being said, the drag polars predicted using APA agree more 

closely with the experimental data and effectively captures the trend of the drag data with some 

notable offset.  This offset could be attributed to a number of things including the accuracy of the 

XFOIL results, the effects of gap on the control surfaces or other brackets or mounts used to 

position the control surfaces of the wind tunnel model. 

-10 -5 0 5 10 15 20
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Angle of Attack,  [deg]

L
ift

 C
oe

ffi
ci

e
nt

, C
L [~

]

 

 

0.00 0.02 0.04 0.06 0.08 0.10

Drag Coefficient, C
D

 [~]

Ref. 54
APA
VLM
3DP



72 

 

This offset might be attributed to XFOIL’s notorious reputation for handling symmetric airfoils 

which often under estimates drag and over estimates lift. It might also be attributed to effects not 

properly modeled using XFOIL.  Nevertheless, APA provides a somewhat reasonably accurate 

method for determining the effect of control surface deflections on a given planform, especially 

in light of the spread of the results from the other numerical methods.  A comparison of pressure 

distributions predicted using APA and 3DP tool in XFLR541 are offered in Figure 5.24 through 

Figure 5.26 at an angle of attack of 0 degrees. 

 

Figure 5.24  Predicted Pressure Distribution on Rectangular Wing with Half-Span Flaps, δf=0˚ 

 



73 

 

 

Figure 5.25  Predicted Pressure Distribution on Rectangular Wing with Half-Span Flaps, δf=10˚ 

 

Figure 5.26  Predicted Pressure Distribution on Rectangular Wing with Half-Span Flaps, δf=20˚ 



74 

 

It is obvious from inspection of the predicted pressure distributions that there are severe 

discrepancies between the results of the 3D panel model and APA.  The lifting line theory 

overestimates the change in local angle of attack caused by the deflected surface.  Also, the 

interpolation scheme used to find surface pressure in APA is not ideal for lifting surfaces with 

sudden deflections.  Nevertheless, the predicted distributions are not wholly unreasonable in light 

of the spread predicted lift and drag characteristics.  However, it is obvious that further work is 

needed in this area. 

5.6 Design	Application:	The	Winglet	Problem	

To illustrate the application of APA to a typical design problem, the drag reduction caused by the 

addition of winglets to a given planform is estimated with comparisons made to VLM and 3DP 

tools contained in XFLR541.  The planform to be modified is planar wing with 30 degrees of 

sweep, a taper ratio of 0.3 and a NACA 2312 airfoil section.  The winglet is assumed to increase 

the span by only 7.5% and has sweep and dihedral angle of 60 degrees with a taper ratio of 0.2 

and a NACA 2312 airfoil section and has not been optimized.  The analysis is carried out at 

Reynolds number of 2.9e6 based mean aerodynamic chord of the unmodified planform.  All 

aerodynamic data has been normalized to a reference area of 91.675 ft2.   Figure 5.27 through 

Figure 5.29 show the predicted lift and drag characteristics of the original wing and wing with 

winglet. 



75 

 

 

Figure 5.27  APA Predicted Lift and Drag Characteristics of Modified Wing, Sref=91.675 ft2 

 

 

Figure 5.28  VLM Predicted Lift and Drag Characteristics of Modified Wing, Sref=91.675 ft2 

-10 -5 0 5 10
-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Angle of Attack,  [deg]

L
ift

 C
oe

ffi
ci

e
nt

, C
L [~

]

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050

Drag Coefficent, C
Di

 

 
Original Wing
Wing w/ Winglet

Induced Drag Only

Increase in Zero-Lift
Drag due to Winglet

Total Drag
Reduction
in Cruise

-10 -5 0 5 10 15 20
-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

Angle of Attack,  [deg]

L
ift

 C
oe

ffi
ci

e
nt

, C
L [~

]

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

Drag Coefficent, C
Di

 

 
Original Wing
Wing w/ Winglet



76 

 

 

Figure 5.29  XFLR5 Predicted Lift and Drag Characteristics of Modified Wing, Sref=91.675 ft2 

There is some disagreement in the predicted lift and drag characteristics; however, it is obvious 

that APA has the advantage over simple VLM and the 3DP methods due to its ability to predict 

viscous effects.  Figure 5.27 illustrates both the increase in frictional drag caused by added 

surface area, evident at CL=0, and the reduction in drag at cruise caused by a reduction in 

induced drag.  Neither VLM tool nor the 3DP tool contained in XFLR541 are able to reliably 

account for these frictional forces and are only able to estimate the reduction in induced drag, 

while APA is seen to overestimate the change in lift curve slope caused by the addition of the 

winglets.  This is likely due to errors in downwash predicted by lifting line theory.  Figure 5.30 

and Figure 5.31 show the pressure and skin friction distributions predicted by APA on the 

original wing and wing with winglet at an angle of attack of 5 degrees while Figure 5.32 shows 

the pressure predicted by XFLR5.   

-10 -5 0 5 10 15 20
-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

Angle of Attack,  [deg]

L
ift

 C
oe

ffi
ci

e
nt

, C
L [~

]

0.00 0.01 0.02 0.03 0.04 0.05 0.06

Induced Drag Coefficent, C
Di

 

 

Original Wing
Wing w/ Winglet



77 

 

 

Figure 5.30  APA Predicted Pressure and Skin Friction, Unmodified Wing, α=5˚, Re=2.9e6 

 

Figure 5.31  APA Predicted Pressure and Skin Friction, Wing with Winglet, α=5˚, Re=2.9e6 

 



78 

 

 

Figure 5.32  XFLR5 Predicted Pressure and Skin Friction, α=5˚, Re=2.9e6 

The exaggerated downwash caused by the lifting line theory in APA causes increased angle of 

attack at the wing root.  This results in the low pressure area at the wing apex shown in Figure 

5.30 and Figure 5.31, otherwise there is reasonable agreement between the pressure distributions 

predicted using APA and 3DP tool in XFLR541.  While the skin friction distributions pictured in 

these figures are based solely on the XFOIL results, it does provide some limited insight into the 

transition location of the boundary layer along the wing.  This is evidenced by rapid change in 

skin friction with a small change in chord.  In Figure 5.30 and Figure 5.31 this is evidenced by 

the change from blue to green hue in the skin friction plots. 

 

  



79 

 

6. Conclusions and Recommendations 

This section summarizes the conclusions and recommendations reached as part of the current 

effort.  This includes recommendations for future expansion, research or validation. 

6.1 Conclusions	

The methods explained in this work and employed in the accompanying MATLAB6 code 

provide a way to estimate distributed aerodynamics loads, basic aerodynamic properties, and 

pressure/friction distributions on wings of nearly arbitrary shape in low subsonic compressible 

flow.  This is done with varying degrees of accuracy depending on the shape of the planform 

being analyzed, operating condition, and many other variables.  The biggest limiting factor of 

this method is the selected lifting line theory.  This requires corrections for shift in aerodynamic 

center that exaggerate the predicted downwash and ultimately affect the distributed loads.  

Nevertheless, it is shown to model the elliptic wing problem with considerable accuracy as well 

as the rectangular wing problem with less agreement for the swept wing case and decidedly 

unreliable results when applied to wings with control surfaces. 

For the rectangular wing case, the biggest errors are seen to be caused by blunt wing tips which 

cannot be modeled by this or any other lifting line theory without some form of assumption or 

adjustment.  There are also errors induced by the airfoil data which is limited by the accuracy of 

the XFOIL calculations.  These limitations are well known and serve to reduce the applicability 

of the current method, but it still provides a reasonably accurate and adaptable way to analyze 

wing loading. 

The errors induced in the swept wing analysis are mostly due to the exaggerated downwash 

prediction that rolls out of the lifting line analysis.  This is caused by the application of the 



80 

 

regular or extended tangent approximations which are used to mitigate numerical singularities in 

the lifting line formulation. This suggests that perhaps this method of shifting aerodynamic 

centers is not the best approach, especially if spanwise loading is of interest.  That being said, the 

methods presented here are shown to make very accurate and reliable calculations of the lift-drag 

relationship illustrated by the various drag polars for swept wing presented above.   

There is also a notable limitation of the lifting line theory that is worth mentioning, specifically 

the handling of the inviscid wake.  This is accomplished by the infinite trailing tails of the vortex 

system which point in the direction of the freestream.  However, in reality this inviscid wake 

leaves the trailing edge of the planform at an angle dictated by the local airfoil geometry as 

required by the Kutta-condition at which point it begins bend toward the freestream.  This 

discrepancy in the wake geometry can impact the downwash distribution, particularly for cases 

like wing with control surface or cranked wing.  Since this is a problem for most lifting line 

theories, it may be one that cannot be solved with the approach applied here. 

The methods for distributing pressure and frictional forces explained are also somewhat accurate 

for cases without control surface deflection but are again limited by the accuracy of the lifting-

line theory.  However, in cases with control surface deflection some odd results are observed.  

Further research is needed in this area to determine if this is inherent to the interpolation 

procedure or if it is somehow a product of the lifting-line theory. 

6.2 Recommendations	

Based on the results and conclusion presented here, the following recommendations can be 

made.  First and foremost, is the errors inherent to the lifting line theory and tangent 

approximations must be addressed.  This will improve accuracy of the pressure and shear 



81 

 

distributions as well as the predicted lift and drag characteristics beyond what has already been 

documented.  This may require choosing a completely new lifting line theory or simply 

employing a spline interpolation to smooth over the area affected by the singularity.   Further 

improvements to the lifting line theory might include accounting for fuselage effects and systems 

of interacting lifting surfaces. 

This may also be accomplished by tweaking the extended tangent approximation in some way, 

but it is not clear how this might be accomplished.  Furthermore, CFD or experimental validation 

of the extended tangent approximation as applied to the cranked wing case is needed to truly 

validate this method.    However, the extended tangent approximation does in fact provide a 

reliable way to mitigate the effects of the singularities of the lifting-line theory, exaggerated 

downwash errors aside.   

It would be possible to further expand the applicability of these methods by applying MSES18 

which is capable of multi-element airfoil analysis.  This would allow for the anlaysis of 

planforms with control surfaces such as Krueger flaps, single and double-slotted flaps, leading 

edge slats, and many more.  Unfortunately, increases in accuracy of the airfoil data would require 

complicated and time consuming CFD analysis.  Yet, it is certainly possible to provide input 

options in APA which allow for use of experimental data if it were available. 

It might also be possible to extend these methods to the transient case by applying a dynamic 

stall model and a time marching routine.  However, this should be considered only after 

addressing the other sources of error which have been discussed either through the 

recommendations offered or through some other means. 



82 

 

7. References 

1. Brown, M, Kaushik, B., and Anemaat, W.A., ‘Planform Load Distribution Mapping for Straight 
Tapered Wings with Linear Twist’, AIAA-2012-0396, 50th AIAA Aerospace Sciences Meeting, 
Jan 9-12, 2012, Nashville, TN. 

2. Brown, M. and Carroll, J., ‘BEM + PFDM’, In-House MATLAB Code, DARcorporation, 
Lawrence, KS., 66049, ©2012.  

3. Roskam, J., ‘Airplane Design, Parts II & VI,’ DARcorporation, Lawrence, KS, 66049, ©2005. 

4. Raymer, D., ‘Aircraft Design-A Conceptual Approach’, AIAA Education Series, Air Force 
Institute of Technology, Wright Patterson Air Force Base, Ohio, ©1992 

5. Torrenbeek, E., ‘Synthesis of Subsonic Airplane Design,’ Delft University Press, Delft, The 
Netherlands, ©1982. 

6. ‘MATLAB R2011a, Student Version’, The MathWorks, Inc., Natick, MA., ©2011. 

7.  Anderson., J.D., ‘Fundamentals of Aerodynamics’, 4th Edition, McGraw-Hill, New York, NY, 
©2007. 

8. McCormick, W.B., ‘Aerodynamics, Aeronautics, and Flight Mechanics,’ 2nd Edition, Wiley & 
Sons, Hoboken, NJ, ©1994. 

9. Moran, J., ‘An Introduction to Theoretical and Computational Aerodynamics,’ Dover 
Publications, Inc., Mineola, NY, ©1984. 

10. Yates, J.E., ‘Viscous Thin Airfoil Theory,’ Aeronautical Research Associates of Princeton 
(ARAP), Inc., Princeton, NJ, ©1980. 

11. Eppler, R., and Somers, D.M., ‘A Computer Program for the Design and Analysis of Low-Speed 
Airfoils’. NASA TM-80210, 1980. 

12. Hepperle, M., ‘Javafoil’, Java Script for Airfoil Analysis, www. mh-
aerotools.de/airfoils/javafoil.htm, ©2006. 

13. Thwaites, B., ‘Approximate Calculation of the Laminar Boundary Layer,’ Aeronaut. Q. 1, 245-
280,©1949 

14. Drela, M., ‘XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils’, 
Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, Cambridge, 
MA, ©1989. 

15. Drela, M., ‘Design and Optimization Methods for Multi-Element Airfoils,’ AIAA 93-0969, 
AIAA Aerospace Design Conference, Irvine, CA, ©1993. 



83 

 

16. Drela, M. and Giles, M.B., ‘Viscous-Inviscid Analysis of Transonic and Low Reynolds Number 
Airfoils,’ AIAA 9789-427, AIAA Journal, Vol. 25, No. 10, pp 1347-1355, October, 1987. 

17. Drela, M., ‘XFOIL v6.9,’ Massachusetts Institute of Technology, Department of Aeronautics and 
Astronautics, Cambridge, MA, ©2001. 

18. Drela, M., ‘MSES v3.05’, Massachusetts Institute of Technology, Department of Aeronautics 
and Astronautics, Cambridge, MA, ©2007. 

19. Lanchester, F.W., ‘Aerodynamics: Constituting the First Volume of a Complete Work on Aerial 
Flight,’ A. Constable & Co., Ltd., London, UK. ©1907. 

20. Prandtl, L., ‘Tragflügeltheorie,’ Königliche Gesellschaft der Wissenschaften zu Göttingen, 
©1918. 

21. Saffman, P.G., ‘Vortex Force and Bound Vorticity,’ Vortex Dynamics, Cambridge University 
Press, Cambridge, England, UK, ©1992. 

22. Multhopp, H., ‘Methods for Calculating the Lift Distribution of Wings (Subsonic Lifting Surface 
Theory),’ ARC Technical Report, R&M no. 2884, Aeronautical Research Council, London, 
England, UK, 1955. 

23. Rasmussen, M.L. and Smith, D.E., ‘Lifting-Line Theory for Wings Arbitrary Shaped Wings,’ 
Journal of Aircraft, Vol. 36, No. 2, ©1999, pp. 340-348. 

24. Blackwell, J.A., ‘A Finite-Step Method for Calculation of Theoretical Load Distributions for 
Arbitrary Lifting Surface Arrangements at Subsonic Speeds,’ NASA TN D-5335, National 
Aeronautics and Space Administration, Washington D.C., ©1969. 

25. DeYoung, J., ‘Nonplanar Wing Load-Line and Slender Wing Theory,’ NASA CR-2864, 
National Aeronautics and Space Administration, Washington D.C., ©1977. 

26. Kratz, J. and Plotkin, A., ‘Low Speed Aerodynamics’, Cambridge University Press, Cambridge, 
England, UK, ©1991. 

27. Phillips, W.F. and Snyder, D.O., ‘Modern Adaptation of Prandtl’s Lifting Line,’ Journal of 
Aircraft, Vol. 37, No. 4, ©2000. 

28. Weber, J. and Brebner, G.G., ‘Low Speed Tests on 45-deg Swept-Back Wings. Part 1: Pressure 
Measurements on Wings of Aspect Ratio 5,’ Aeronautical Research Council, RM-2882, London, 
England, UK, ©1958. 

29. Hall, I.M. and Rogers, E.W.E, ‘Experiments with a Tapered Sweptback Wing of Warren 12 
Planform at Mach Numbers between 0.6 and 1.6,’ Aeronautical Research Council, RM-3271, 
London, England, UK, ©1962. 



84 

 

30. Kuchemann, D., ‘A Simple Method for Calculating the Span and Chordwise Loading of Straight 
and Swept Wings of any Given Aspect Ratio at Subsonic Speeds’,  Aeronautical Research 
Council, RM-2935, London, England, UK, ©1956. 

31. Phillips, W.F. and Hunsaker, D.F., ‘Estimating the Subsonic Aerodynamic Center and Moment 
Components for Swept Wings,’ Journal of Aircraft, Vol. 45, No. 3, ©2008. 

32. DeYoung, J., ‘Vortex Lattice Utilization,’ NASA SP-405, National Aeronautics and Space 
Administration, Washington D.C., ©1976. 

33. Falkner, V.M., ‘The Accuracy of Calculations Based on the Vortex Lattice Theory,’ 
Aeronautical Research Council, No. 9621, London, England, UK, ©1946. 

34. Lan, C.E., ‘VORSTAB: A Program for Calculating Lateral-Directional Stability Derivatives with 
Vortex Flow Effect,’ NASA CR-172501, National Aeronautics and Space Administration, 
Washington D.C., ©1985. 

35. Melin, T., ‘Tornado v135’, Vortex Lattice Method Software, Red Hammer Consulting, ©2010. 

36. Drela, M. and Youngren, H., ‘AVL: Athena Vortex Lattice v3.32’, Massachusetts Institute of 
Technology, Cambridge, MA, ©2012. 

37. Anon., ‘VSAERO’, 3D Panel Software, Analytical Methods, Inc., Richmond, WA, ©2013. 

38. Tu, J., Yeoh, G.H., and Liu, C., ‘Computational Fluid Dynamics: A Practical Approach’, 
Elsevier, Burlington, MA, ©2008. 

39. Anon., ‘Fluent,’ CFD Software, ANSYS Corp., Canonsburg, PA, ©2013. 

40. Anon., ‘STAR-CCM+’, CFD Software, CD-Adapco, Melville, NY, ©2013. 

41. Anon., ‘XFLR5 v6.09.01 beta’, GNU General Public License, ©2013. 

42. Sivells, J.C. and Neely, R.H., ‘Method for Calculating Wing Characteristics by Lifting Line 
Theory Using Non-Linear Section Lift Data,’ NACA TN 1269, National Advisory Commite for 
Aerounautics, ©1947. 

43. Scherrer, M., ‘Integral Method over a Wing for Experimental and Xfoil Results: MIAReX v0.9’, 
MATLAB Code, ©2004. 

44. Barlow, J.B., Rae, W.H., and Pope, A., ‘Low-Speed Wind Tunnel Testing,’ 3rd Edition, Wiley-
Interscience, Hoboken, NJ, ©1999. 

45. Anon., Wind Tunnel Model Photograph, www.darcorp.com/Aeronautical_Engineering/Projects/ 
show.php?show=busjet, October, 2013. 



85 

 

46. Drela, M. and Youngren, H., ‘XFOIL 6.9 USER PRIMER’, Massachusetts Institute of 
Technology, Cambridge, MA, ©2001. 

47. Tangler, J.L. and Kocurek, J.D., ‘Wind Turbine Post-Stall Airfoil Performance Characteristics 
Guidelines for Blade-Element Momentun Methods,’ NREL/CP-500-38456, AIAA/NREL, 
©2005. 

48. Abbot, I.H. and Von Doenhoff, A.E., ‘Theory of Wing Sections,’ Dover Publications, Inc., New 
York, NY. ©1949. 

49. Kolbe. C.D. and Boltz, F.W., ‘The Forces and Pressure Distribution at Subsonic Speeds on a 
Plane Wing Having 45˚ Sweepback, Aspect Ratio of 3, and a Taper Ratio of 0.5,’ NACA RM-
451G31, National Advisory Committee for Aeronautics, ©1951. 

50. Graham, R.R., ‘Low-Speed Characteristics of a 45˚ Sweptback Wing of Aspect Ratio 8 from 
Pressure Distribution and Force Tests at Reynolds Numbers from 1,500,000 to 4,800,000,’ 
NACA RM-L51H13, National Advisory Committee for Aeronautics, ©1951. 

51. Anon., ‘Tecplot 360 2010 R1,’ Tecplot, Inc., Bellevue, WA, ©2010. 

52. McAlister, K.W. and Takahasi, R.K., ‘NACA 0015 Wing Pressure and Trailing Vortex 
Mesurements,’ NASA TP 3151, National Aeronautics and Space Administration,. Washington, 
D.C., ©1991. 

53. Jacobs, W., ‘Pressure-Distribution Measurements on Unyawed Swept-Back Wings,’ NACA TM 
1164, National Advisory Committee for Aeronautics, Washington, D.C., ©1947. 

54. Johnson, H.S. and Hagerman, J.R., ‘Wind-Tunnel Investigation at Low Speed of An Unswept 
Untapered Semispan Wing of Aspect Ratio 3.13 Equiped with Various 25-Percent-Chord Plain 
Flaps,’ NACA TN 2080, National Advisory Committee for Aeronautics, Washington, D.C., 
©1950. 

 

 

 



86 

 

Appendix A-MATLAB Code 

function 
[Aero,Geo,OpCon,CalcSet,VarVec,PostPro,Results]=AdvancedPlanformAnalysis(file
name,buff)  
%% Introduction  
% By: Matt Brown 
% Created Fall 2012 - Fall 2013 
% 
% Submitted to the Department of Aerospace Engineering and the Faculty of the 
Graduate School of 
% Engineering at the University of Kansas in Partial Fulfillment of the 
Requirements for the Degree  
% of Master of Science in Aerospace Engineering. 
% 
% Inputs: All inputs are made through spreadsheet 'filename'. Planform 
% definitions are made through the classic cranked wing method and assumes a 
linear change in properties 
% from root to tip of each panel. Controls for postprocessing and calculation 
are defined in the 
% spreadsheet. 
% 
%    Panel ID:  Integer denoting panel of symetric wing planform starting at 
the 
%    root (ID=1) and increasing up to N panels. 
%      
%    Panel Quarter Chord Positions: X,Y,Z locations (in ft) of the panel root 
and 
%    tip quarter chord.  All itermediate points are assumed to lie linearly 
%    between the root and tip.  Ensure that the root of each new panel is 
%    the same as the tip of the preceeding panel. 
%    
%    Panel Geometry: Defines control surface chord ratios, root and tip 
%    chords, incidence and twist for each panel. 
% 
%           c_f/c: Control surface chord ratio, number between 0 and 1 
%           representing the % of the airfoil deflected by the control 
%           surface. 
% 
%           c_r, c_t: Panel Root and Tip Chord in ft 
% 
%           i_r: Panel root incidence in degrees. 
% 
%           epsilon_p: Panel twist in degrees. 
% 
%           Airfoils (Root and Tip): These are names of airfoils either:  
%             a) stored in the Airfoil Database in proper format  
%             b) a 4 or 5 digit NACA airfoil of entered in the form 'NACA 
XXXX' or 'NACA XXXXX'. 
% 
%    Surface Definitions: Defines the control surface type and node density 
%    for each panel. 
% 
%           Ctrl Surf: Dropdown list defines a constant chord ratio aileron 
or plain flap 



87 

 

%           that covers the entire span of the panel.  For a clean section, 
%           select clean 
% 
%           Node Den: Allows you to modify the number of control points on 
%           individual panels.  This is a number greater than 0. 
%                      Ex. 26 Nodes/Panel*0.5 = 13 Panels 
%            
%    Atmospheric Conditions: Defines the properties of the atmosphere used in 
various phases of the calculations. 
%           
%           P_o: Absolute Pressure in psf 
% 
%           T_o: Temperature in R 
% 
%           rho_o: Density in slug/ft^3 
% 
%           R: Gas Constat (use 1716.37 for Air) 
% 
%           gamma: Ratio of Specific Heats (use 1.4 for Air) 
% 
%           nu: Kinematic Viscosity in ft^2/s 
% 
%    Flight Condition: Defines the Sspeed, Angle of Attack, Sideslip Angle 
%    and Control Surface Deflection Angles 
%            
%           KTAS: True Air Speed in Knots 
% 
%           alpha: Angle of Attack in degrees 
%            
%           beta: Angle of Side Slip in degrees 
% 
%           delta_a: aileron deflection angle in degrees 
% 
%           delta_f: flap deflection angle in degrees 
% 
%    Calculation Settings: Defines the Solver Settings for APA 
%           
%          Tolerance: Convergence tolerance for Lifting Line Theory 
% 
%          Relaxation: Relaxation Factor for Lifting Line Theory 
% 
%          Max Iterations: Maximum Iterations for Lifting Line Theory 
% 
%          Number of Elements/Panel: Number of Elements to place on each 
%          panel.  Adjust individual panels using the Node Density 
%          variable. 
% 
%          Chord Distribution: Dropdown list with Linear and Elliptic 
%          Options.  When using Elliptic option, chord distribution is 
%          based soley on root chord input of panel 1.  Define all other 
%          chords equal to the root chord for best xfoil results.  When 
%          using Linear Function, define each panel root and tip with the 
%          appropriate chord based on your CAD or conceptual model. 
% 
%          Transition Criteria: Dropdown list which defines xfoil 



88 

 

%          transition criteria based on operating condition.  Default 
%          setting should be Normal Conditions which gives Ncrit=9. 
% 
%          Compressibility Corrections: Dropdown list with On/Off.  When 
%          turned On, all xfoil results are corrected using standard xfoil 
%          compressibility correction.  When turned off, speed only effects 
%          Reynolds number which impacts transition but not magnitude of 
%          pressure. 
% 
%     Station Plot Settings: Defines the options for the station plots. 
% 
%          Station Locations: An input string wich defines all span 
%          stations between -1 and 1. For example: [0,0.1,0.3] would plot 
%          the selected distributions at 2y/b=0, 0.1 and 0.3 
% 
%     Processing Options: On/Off dropdown lists to select plots and 
%     solvers for postprocessing.  See description in spreadsheet for 
%     details. 
% 
% Outputs: All results are contained in the data structure Results and 
% ploted based on the selected options.  Aditional on screen results are 
% also given. 
% 
  
%% Initialize Buffer if Called 
if strcmp(buff,'On') 
clc 
clear Aero Geo OpCon CalcSet PostPro Results VarVec 
format long 
end 
  
disp('      Welcome to Advanced Planform Analysis v1.0') 
disp('========================================================') 
  
%% Load Input and Calculate Endpoints 
str=horzcat('Loading...       ',filename); 
disp(str) 
[Geo,OpCon,CalcSet,PostPro]=fLoadFile(filename); 
[Geo]=fEndPts(Geo); 
  
%% Calculate Section Aerodynamics 
str=horzcat('Calculating...   ','Section Aerodynamics'); 
disp(str) 
[Geo,Aero]=fAero(Geo,OpCon,CalcSet); 
  
%% Calculate Variables 
str=horzcat('Calculating...   ','Planform Variables'); 
disp(str) 
[VarVec,OpCon,Geo]=fVariables(Geo,Aero,OpCon,CalcSet); 
  
%% Run Selected Solver(s) 
oi=OpCon.Input; 
Results.Type1.poston='off'; 
Results.Type2.poston='off'; 



89 

 

Results.Type3.poston='off'; 
if strcmp(PostPro.Solver.Type1,'On')==1 
  t1=tic; 
  str=horzcat('Solving...       ','Type 1 Analysis'); 
  disp(str)  
  
u1=sqrt((oi.U1*1.68780986)^2/(1+tand(oi.Alpha)^2+tand(oi.Beta)^2))*[1;tand(oi
.Beta);-tand(oi.Alpha)]; 
  vinf=u1/(oi.U1*1.68780986); 
  Results.Type1.vinf=vinf; 
  [ Results.Type1.v ] = fveolocity( VarVec,vinf ); 
  [ Results.Type1.G1,Results.Type1.iter,Results.Type1.conv ] = 
fsolveG(vinf,CalcSet,VarVec,Aero,Results.Type1.v ); 
  Results.Type1.time=toc(t1); 
  if strcmp(Results.Type1.conv,'fail')==1 
    disp('!!!Failed Convergence-Type 1 Analysis. Please Modify Input!!!') 
    Results.Type1.poston='off'; 
  else 
    disp(horzcat('Converged...     Type 1 Analysis.')) 
    disp(horzcat('                 CPU Time: 
',num2str(Results.Type1.time,3),' s')) 
    Results.Type1.poston='on'; 
  end 
end 
if strcmp(PostPro.Solver.Type2,'On')==1 
  t1=tic; 
  str=horzcat('Solving...       ','Type 2 Analysis'); 
  disp(str) 
  a=[-6,-3,0,3,6]; 
  clear vinf v G1 iter conv 
  for i=1:numel(a) 
    u1=sqrt((oi.U1*1.68780986)^2/(1+tand(a(i))^2+0))*[1;0;-tand(a(i))]; 
    vinf{i}=[u1/(oi.U1*1.68780986)];  
    [ v{i} ] = fveolocity( VarVec, vinf{i}); 
    [ G1{i},iter(i),conv{i} ] = fsolveG(vinf{i},CalcSet,VarVec,Aero,v{i} ); 
  end 
  k=1; 
  for i=1:numel(a) 
    if strcmp(conv{i},'pass') 
      pass(i)=1; 
      Results.Type2.vinf{k}=vinf{i}; 
      Results.Type2.G1{k}=G1{i}; 
      Results.Type2.iter(k)=iter(i); 
      Results.Type2.conv{k}=conv{i}; 
      Results.Type2.AoA(k)=a(i); 
      Results.Type2.v{k}=v{i}; 
      k=k+1; 
    else 
      pass(i)=0; 
    end 
  end 
  Results.Type2.time=toc(t1); 
  if sum(pass)<=1 
    disp('!!!Failed Convergence-Type 2 Analysis. Please Modify Input!!!') 
    Results.Type2.poston='off'; 



90 

 

  else 
    disp(horzcat('Converged...     Type 2 Analysis')) 
    disp(horzcat('                 CPU Time: 
',num2str(Results.Type2.time,3),' s')) 
    Results.Type2.poston='on'; 
  end 
end 
if strcmp(PostPro.Solver.Type3,'On')==1 
  t1=tic; 
  str=horzcat('Solving...       ','Type 3 Analysis'); 
  disp(str) 
  a=[-10:20]; 
  clear vinf v G1 iter conv 
  for i=1:numel(a) 
    u1=sqrt((oi.U1*1.68780986)^2/(1+tand(a(i))^2+0))*[1;0;-tand(a(i))]; 
    vinf{i}=u1/(oi.U1*1.68780986);  
    [ v{i} ] = fveolocity( VarVec, vinf{i}); 
    [ G1{i},iter(i),conv{i} ] = fsolveG(vinf{i},CalcSet,VarVec,Aero,v{i} ); 
  end 
  k=1; 
  for i=1:numel(a) 
    if strcmp(conv{i},'pass') 
      pass(i)=1; 
      Results.Type3.vinf{k}=vinf{i}; 
      Results.Type3.G1{k}=G1{i}; 
      Results.Type3.iter(k)=iter(i); 
      Results.Type3.conv{k}=conv{i}; 
      Results.Type3.AoA(k)=a(i); 
      Results.Type3.v{k}=v{i}; 
      k=k+1; 
    else 
      pass(i)=0; 
    end 
  end 
  Results.Type3.time=toc(t1); 
  if sum(pass)<=10 
    disp('!!!Failed Convergence-Type 3 Analysis. Please Modify Input!!!') 
    Results.Type3.poston='off'; 
  else 
    disp(horzcat('Converged...     Type 3 Analysis.')) 
    disp(horzcat('                 CPU Time: 
',num2str(Results.Type3.time,4),' s')) 
    Results.Type3.poston='on'; 
  end 
end 
  
%% Post Processing 
[Geo]=fPlanform(Geo,VarVec); 
% Type 1 Analysis 
if strcmp(Results.Type1.poston,'on') 
  % set variables 
  v=Results.Type1.v; 
  vinf=Results.Type1.vinf; 
  G=Results.Type1.G1; 
  % Solve for AOA & V Dist 



91 

 

  [ alpha_i,alpha_inf,alpha,V,Vdist ] = fPost_alpha( OpCon, VarVec, v, 
vinf,G); 
  % Solve Circulation and Cl, Cdi dist 
  [ Gamma,cl,cdi,clnorm,cdinorm ] = fPost_Gamma(Geo, OpCon,VarVec, v, vinf, 
G, alpha_i); 
  % Solve for Coeff Distributions 
  [ CoeffDist ] = fPost_Aero(Aero,VarVec,alpha); 
  % Get AC locus 
  [ xyzac,dxac,dzac ] = fPost_xzac(VarVec); 
  % Solve for Forces and Moments 
  [ f,F,m,M ] = fPost_forces( OpCon,VarVec,CoeffDist,Gamma,Vdist,v,vinf); 
  F.L=-F.t(3)*cosd(OpCon.Input.Alpha)-F.t(1)*sind(OpCon.Input.Alpha); 
  F.D=-F.t(3)*sind(OpCon.Input.Alpha)+F.t(1)*cosd(OpCon.Input.Alpha); 
  % Solve for Planform Coeff 
  [ Coeff ] = fPost_Coeff( F,M,OpCon,Geo,OpCon.Input.Alpha ); 
  % Display Results 
  fPost_Type1( F,M,Coeff ); 
  % Output Data 
  Results.Type1.alpha=alpha; 
  Results.Type1.alpha_inf=alpha_inf; 
  Results.Type1.alpha_i=alpha_i; 
  Results.Type1.CoeffDist=CoeffDist; 
  Results.Type1.Gamma=Gamma; 
  Results.Type1.cl=cl; 
  Results.Type1.clnorm=clnorm; 
  Results.Type1.cdi=cdi; 
  Results.Type1.cdinorm=cdinorm; 
  Results.Type1.xyzac=xyzac; 
  Results.Type1.dxac=dxac; 
  Results.Type1.dzac=dzac; 
  Results.Type1.f=f; 
  Results.Type1.m=m;  
  % Plots 
  if strcmp(PostPro.LLTplots.AOA,'On')==1 
    createfigure1(VarVec.etam, [ alpha; alpha_i; alpha_inf ]); 
  end 
  if strcmp(PostPro.LLTplots.clcd2d,'On')==1 
     rtc=Results.Type1.CoeffDist; 
     createfigure2(VarVec.etam, [ rtc.cl2d ; rtc.cm2d ], [ rtc.cd2d ; 
rtc.cdp2d ; rtc.cdf2d ]); 
  end 
  if strcmp(PostPro.LLTplots.cnca2d,'On')==1 
     rtc=Results.Type1.CoeffDist; 
     createfigure3(VarVec.etam, [ rtc.cn2d ; rtc.cm2d ], [ rtc.ca2d ; 
rtc.cap2d ; rtc.caf2d ]); 
  end 
  if strcmp(PostPro.LLTplots.Gclcd,'On')==1 
     rt=Results.Type1; 
     createfigure4(VarVec.etam, rt.Gamma, rt.cl, rt.cdi ); 
  end 
  if strcmp(PostPro.LLTplots.fmxyz,'On')==1 
     rtf=Results.Type1.f; 
     rtm=Results.Type1.m; 
     createfigure5(VarVec.etam, [ rtf.p(:,1),rtf.f(:,1) ,rtf.t(:,1) ],... 



92 

 

       [ rtf.p(:,2),rtf.f(:,2) ,rtf.t(:,2) ], [ rtf.p(:,3),rtf.f(:,3) 
,rtf.t(:,3) ]) 
     createfigure6(VarVec.etam, [ rtm.p(:,1),rtm.f(:,1) ,rtm.t(:,1) ],... 
       [ rtm.p(:,2),rtm.f(:,2) ,rtm.t(:,2) ], [ rtm.p(:,3),rtm.f(:,3) 
,rtm.t(:,3) ]) 
  end 
  if strcmp(PostPro.LLTplots.dxzac,'On')==1 
     rt=Results.Type1; 
     createfigure11(VarVec.etam, [ rt.dxac;rt.dzac ], rt.xyzac(:,1), 
rt.xyzac(:,2), rt.xyzac(:,3)) 
  end 
 if strcmp(PostPro.Stationplots.cpf,'On')==1 
     for i=1:numel(PostPro.Station.Location) 
     [ x{i},cp{i},cf{i},p{i},tau{i} ] = fPost_getcpf( 
PostPro.Station.Location(i),VarVec, alpha,Aero,OpCon ); 
     createfigure12(x{i}, cp{i}, cf{i},horzcat(' 2y/b = 
',num2str(PostPro.Station.Location(i),'%3.3f'))) 
     end 
     Results.Type1.Station.x=x; 
     Results.Type1.Station.cp=cp; 
     Results.Type1.Station.cf=cf;   
 end 
if strcmp(PostPro.Stationplots.ptau,'On')==1 
     for i=1:numel(PostPro.Station.Location) 
     [ x{i},cp{i},cf{i},p{i},tau{i} ] = fPost_getcpf( 
PostPro.Station.Location(i),VarVec, alpha,Aero,OpCon ); 
     createfigure13(x{i}, p{i}, tau{i},horzcat(' 2y/b = 
',num2str(PostPro.Station.Location(i),'%3.3f'))) 
     end 
     Results.Type1.Station.x=x; 
     Results.Type1.Station.p=p; 
     Results.Type1.Station.tau=tau;      
end  
afid=1:VarVec.AFID(end); 
if strcmp(PostPro.Surfplots,'On')==1 
    for i=1:VarVec.AFID(end) % assemble xyz and cp p cf tau for each panel 
       [ xyz{i},cp{i},p{i},cf{i},tau{i},Npts(i),Nelem(i),Naf(i)] = 
fPost_PanelData( OpCon,Geo,Aero,VarVec,afid(i),alpha ); 
       Results.Type1.Surf.xyz{i}=xyz{i}; 
       Results.Type1.Surf.cp{i}=cp{i}; 
       Results.Type1.Surf.cf{i}=cf{i}; 
       Results.Type1.Surf.p{i}=p{i}; 
       Results.Type1.Surf.tau{i}=tau{i};    
    end 
    fPost_Tecplot( xyz,cp,cf,p,tau,Nelem,Npts,Naf,filename ); 
     
end    
   
end 
% Type 2 Analysis 
if strcmp(Results.Type2.poston,'on') 
  % set variables 
  for i=1:numel(Results.Type2.AoA) 
  v=Results.Type2.v{i}; 
  vinf=Results.Type2.vinf{i}; 



93 

 

  G=Results.Type2.G1{i}; 
  % Solve for AOA & V Dist 
  [ alpha_i,alpha_inf,alpha,V,Vdist ] = fPost_alpha( OpCon, VarVec, v, 
vinf,G); 
    % Solve Circulation and Cl, Cdi dist 
  [ Gamma,cl,cdi,clnorm,cdinorm ] = fPost_Gamma(Geo, OpCon,VarVec, v, vinf, 
G, alpha_i); 
  % Solve for Coeff Distributions 
  [ CoeffDist ] = fPost_Aero(Aero,VarVec,alpha); 
  % Solve for Forces and Moments 
  [ f,F,m,M ] = fPost_forces( OpCon,VarVec,CoeffDist,Gamma,Vdist,v,vinf); 
  % Solve for Planform Coeff 
  [ Coeff ] = fPost_Coeff( F,M,OpCon,Geo,Results.Type2.AoA(i) ); 
  % Assemble Data 
  CL(i)=Coeff.CL; 
  CD(i)=Coeff.CD; 
  Cm(i)=Coeff.Cm; 
  end 
  % Output Data 
  p=polyfit(Results.Type2.AoA,CL,1); 
  Results.Type2.CLo=p(2); 
  Results.Type2.CLalpha=p(1)*180/pi; 
  Results.Type2.Alpha0=-p(2)/p(1); 
  p=polyfit(Results.Type2.AoA,Cm,1); 
  Results.Type2.Cmalpha=p(1)*180/pi; 
  Results.Type2.Cm0=p(1)*Results.Type2.Alpha0+p(2); 
  p=polyfitn(CL,CD,{'x^2','constant'}); 
  Results.Type2.CDo=p.Coefficients(2); 
  Results.Type2.BCD=p.Coefficients(1); 
  fPost_Type2( Results.Type2,Geo.Planform.AR ) 
end 
% Type 3 Analysis 
if strcmp(Results.Type3.poston,'on') 
  % set variables 
  for i=1:numel(Results.Type3.AoA) 
  v=Results.Type3.v{i}; 
  vinf=Results.Type3.vinf{i}; 
  G=Results.Type3.G1{i}; 
  % Solve for AOA & V Dist 
  [ alpha_i,alpha_inf,alpha,V,Vdist ] = fPost_alpha( OpCon, VarVec, v, 
vinf,G); 
  % Solve Circulation and Cl, Cdi dist 
  [ Gamma,cl,cdi,clnorm,cdinorm ] = fPost_Gamma(Geo, OpCon,VarVec, v, vinf, 
G, alpha_i); 
  % Solve for Coeff Distributions 
  [ CoeffDist ] = fPost_Aero(Aero,VarVec,alpha); 
  % Solve for Forces and Moments 
  [ f,F,m,M ] = fPost_forces( OpCon,VarVec,CoeffDist,Gamma,Vdist,v,vinf); 
  % Solve for Planform Coeff 
  [ Coeff ] = fPost_Coeff( F,M,OpCon,Geo,Results.Type3.AoA(i) ); 
  % Assemble Data 
  Results.Type3.CL(i)=Coeff.CL; 
  Results.Type3.CD(i)=Coeff.CD; 
  Results.Type3.CDi(i)=Coeff.CDi; 
  Results.Type3.Cm(i)=Coeff.Cm; 



94 

 

  Results.Type3.Fx(i)=F.t(1); 
  Results.Type3.Fy(i)=F.t(2); 
  Results.Type3.Fz(i)=F.t(3); 
  end 
  k=find(Results.Type3.AoA>=10); 
  p=polyfit(Results.Type3.CL(1:k),Results.Type3.CD(1:k),5); 
  % Output results 
  Results.Type3.CDo=p(6); 
  Results.Type3.BCD1=p(5); 
  Results.Type3.BCD2=p(4); 
  Results.Type3.BCD3=p(3); 
  Results.Type3.BCD4=p(2); 
  Results.Type3.BCD5=p(1); 
  fPost_Type3( Results.Type3 ) 
  % Plots 
  if strcmp(PostPro.Planformplots.ClvAoA,'On')==1 
     rt=Results.Type3; 
     createfigure7(rt.AoA, rt.CL) 
  end 
  if strcmp(PostPro.Planformplots.CdivAoA,'On')==1 
     rt=Results.Type3; 
     createfigure8(rt.AoA, [rt.CD;rt.CDi] ) 
  end 
  if strcmp(PostPro.Planformplots.CmvAoA,'On')==1 
     rt=Results.Type3; 
     createfigure9(rt.AoA, rt.Cm) 
  end 
  %% 
  if strcmp(PostPro.Planformplots.ClvCd,'On')==1 
     for i=1:numel(Results.Type3.CL) 
     
Results.Type3.CDpolar(i)=Results.Type3.CDo+Results.Type3.BCD1*Results.Type3.C
L(i)+Results.Type3.BCD2*Results.Type3.CL(i)^2+... 
     
Results.Type3.BCD3*Results.Type3.CL(i)^3+Results.Type3.BCD4*Results.Type3.CL(
i)^4+... 
     Results.Type3.BCD5*Results.Type3.CL(i)^5;  
     end 
     createfigure10(Results.Type3.CD, Results.Type3.CL, Results.Type3.CDi, 
Results.Type3.CDpolar) 
  end 
end 
disp('========================================================') 
end 
  
%% Sub-Functions 
function createfigure1(X1, YMatrix1) 
%CREATEFIGURE(X1,YMATRIX1) 
%  X1:  vector of x data 
%  YMATRIX1:  matrix of y data 
  
%  Auto-generated by MATLAB on 11-Oct-2013 12:40:48 
ymax=ceil(max(unique(YMatrix1)))+1; 
ymin=floor(min(unique(YMatrix1)))-1; 
% Create figure 



95 

 

figure1 = figure('Color',[0.800000011920929 0.800000011920929 
0.800000011920929],'Position',[10 520 1600 300],'Name','Angle of Attack 
Distribution'); 
% Create axes 
axes1 = axes('Parent',figure1,'YGrid','on','XGrid','on',... 
  'Position',[0.05 .175 0.85 0.75]); 
box(axes1,'on'); 
hold(axes1,'all'); 
% Create multiple lines using matrix input to plot 
plot1 = plot(X1,YMatrix1,'Parent',axes1); 
ylim([ymin ymax]); 
set(plot1(1),'Marker','o','DisplayName','\alpha'); 
set(plot1(2),'Marker','v','DisplayName','\alpha_i'); 
set(plot1(3),'Marker','square','DisplayName','\alpha_\infty'); 
% Create xlabel 
xlabel('Span Location, \eta = 2y/b'); 
  
% Create ylabel 
ylabel('Angle of Attack, \alpha [deg]'); 
  
% Create legend 
legend1 = legend(axes1,'show'); 
set(legend1,'Location','NorthEastOutside'); 
% Resize the axes in order to prevent it from shrinking. 
set(axes1,'Position',[0.05 .175 0.85 0.75]); 
  
end 
  
function createfigure2(X1, YMatrix1, YMatrix2) 
%CREATEFIGURE(X1,YMATRIX1,YMATRIX2) 
%  X1:  vector of x data 
%  YMATRIX1:  matrix of y data 
%  YMATRIX2:  matrix of y data 
  
%  Auto-generated by MATLAB on 11-Oct-2013 15:22:09 
  
% Create figure 
figure1 = figure('Color',[0.800000011920929 0.800000011920929 
0.800000011920929],'Position',[10 220 1600 600],'Name','2D Lift and Drag 
Distribution'); 
  
% Create axes 
axes1 = axes('Parent',figure1,'YGrid','on','XGrid','on',... 
  'Position',[0.1 0.58 0.83 0.35]); 
box(axes1,'on'); 
hold(axes1,'all'); 
  
% Create multiple lines using matrix input to plot 
plot1 = plot(X1,YMatrix1,'Parent',axes1); 
set(plot1(1),'Marker','o','DisplayName','c_l_(_2_D_)'); 
set(plot1(2),'Marker','square','DisplayName','c_m_(_2_D_)'); 
  
% Create ylabel 
ylabel({'Lift and Moment','Coefficients, c_l & c_m [~]'}); 



96 

 

  
% Create axes 
axes2 = axes('Parent',figure1,'YGrid','on','XGrid','on',... 
  'Position',[0.1 0.13 0.75 0.35]); 
box(axes2,'on'); 
hold(axes2,'all'); 
  
% Create multiple lines using matrix input to plot 
plot2 = plot(X1,YMatrix2,'Parent',axes2); 
set(plot2(1),'Marker','o','DisplayName','c_d_(_2_D_)'); 
set(plot2(2),'Marker','square','DisplayName','c_d_p _(_2_D_)'); 
set(plot2(3),'Marker','v','DisplayName','c_d_f _(_2_D_)'); 
  
% Create ylabel 
ylabel('Drag Coefficients, c_d [~]'); 
  
% Create xlabel 
xlabel('Span Location, \eta = 2y/b [~]'); 
  
% Create legend 
legend1 = legend(axes1,'show'); 
set(legend1,'Location','NorthEastOutside'); 
  
% Create legend 
legend2 = legend(axes2,'show'); 
set(legend2,'Location','NorthEastOutside'); 
% Resize the axes in order to prevent it from shrinking. 
set(axes2,'Position',[0.1 0.13 0.75 0.35]); 
end 
  
function createfigure3(X1, YMatrix1, YMatrix2) 
%CREATEFIGURE(X1,YMATRIX1,YMATRIX2) 
%  X1:  vector of x data 
%  YMATRIX1:  matrix of y data 
%  YMATRIX2:  matrix of y data 
  
%  Auto-generated by MATLAB on 11-Oct-2013 15:22:09 
  
% Create figure 
figure1 = figure('Color',[0.800000011920929 0.800000011920929 
0.800000011920929],'Position',[10 220 1600 600],'Name','2D Normal and Axial 
Force Distribution'); 
  
% Create axes 
axes1 = axes('Parent',figure1,'YGrid','on','XGrid','on',... 
  'Position',[0.1 0.58 0.83 0.35]); 
box(axes1,'on'); 
hold(axes1,'all'); 
  
% Create multiple lines using matrix input to plot 
plot1 = plot(X1,YMatrix1,'Parent',axes1); 
set(plot1(1),'Marker','o','DisplayName','c_n_(_2_D_)'); 
set(plot1(2),'Marker','square','DisplayName','c_m_(_2_D_)'); 



97 

 

  
% Create ylabel 
ylabel({'Normal Force and Moment','Coefficients, c_n & c_m [~]'}); 
  
% Create axes 
axes2 = axes('Parent',figure1,'YGrid','on','XGrid','on',... 
  'Position',[0.1 0.13 0.75 0.35]); 
box(axes2,'on'); 
hold(axes2,'all'); 
  
% Create multiple lines using matrix input to plot 
plot2 = plot(X1,YMatrix2,'Parent',axes2); 
set(plot2(1),'Marker','o','DisplayName','c_a_(_2_D_)'); 
set(plot2(2),'Marker','square','DisplayName','c_a_p _(_2_D_)'); 
set(plot2(3),'Marker','v','DisplayName','c_a_f _(_2_D_)'); 
  
% Create ylabel 
ylabel('Axial Force Coefficients, c_a [~]'); 
  
% Create xlabel 
xlabel('Span Location, \eta = 2y/b [~]'); 
  
% Create legend 
legend1 = legend(axes1,'show'); 
set(legend1,'Location','NorthEastOutside'); 
  
% Create legend 
legend2 = legend(axes2,'show'); 
set(legend2,'Location','NorthEastOutside'); 
% Resize the axes in order to prevent it from shrinking. 
set(axes2,'Position',[0.1 0.13 0.75 0.35]); 
end 
  
function createfigure4(VarVec1, Results1, Results2, Results3) 
%CREATEFIGURE(VARVEC1,RESULTS1,RESULTS2,RESULTS3) 
%  VARVEC1:  vector of x data 
%  RESULTS1:  vector of y data 
%  RESULTS2:  vector of y data 
%  RESULTS3:  vector of y data 
  
%  Auto-generated by MATLAB on 11-Oct-2013 16:16:29 
  
% Create figure 
figure1 = figure('Color',[0.800000011920929 0.800000011920929 
0.800000011920929],'Position',[10 220 1600 600],'Name','Lifting Line Theory 
Results'); 
  
% Create axes 
  
axes1 = axes('Parent',figure1,'YGrid','on','XGrid','on',... 
  'Position',[0.07 0.72 0.9 0.2]); 
box(axes1,'on'); 
hold(axes1,'all'); 



98 

 

  
% Create plot 
plot(VarVec1,Results1,'Parent',axes1,'Marker','o'); 
  
% Create ylabel 
ylabel('Circulation, \Gamma (ft^2/s)'); 
  
% Create axes 
axes2 = axes('Parent',figure1,'YGrid','on','XGrid','on',... 
  'Position',[0.07 0.4 0.9 0.2]); 
box(axes2,'on'); 
hold(axes2,'all'); 
  
% Create plot 
plot(VarVec1,Results2,'Parent',axes2,'Marker','square','Color',[0 
0.498039215803146 0]); 
  
% Create ylabel 
ylabel('Lift Coefficient, c_l [~]'); 
  
% Create axes 
axes3 = axes('Parent',figure1,'YGrid','on','XGrid','on',... 
  'Position',[0.07 0.11 0.9 0.2]); 
box(axes3,'on'); 
hold(axes3,'all'); 
  
% Create plot 
plot(VarVec1,Results3,'Parent',axes3,'Marker','v','Color',[1 0 0]); 
  
% Create xlabel 
xlabel('Span Position, \eta = 2y/b [~]'); 
  
% Create ylabel 
ylabel({'Induced Drag', 'Coefficient, c_d_i [~]'}); 
end 
  
function createfigure5(X1, YMatrix1, YMatrix2, YMatrix3) 
%CREATEFIGURE(X1,YMATRIX1,YMATRIX2,YMATRIX3) 
%  X1:  vector of x data 
%  YMATRIX1:  matrix of y data 
%  YMATRIX2:  matrix of y data 
%  YMATRIX3:  matrix of y data 
  
%  Auto-generated by MATLAB on 11-Oct-2013 18:42:02 
  
% Create figure 
figure1 = figure('Color',[0.800000011920929 0.800000011920929 
0.800000011920929],'Position',[10 220 1600 600],'Name','Force Distribution'); 
  
% Create axes 
axes1 = axes('Parent',figure1,'YGrid','on','XGrid','on','Position',[0.05 0.75 
0.85 0.2]); 
box(axes1,'on'); 



99 

 

hold(axes1,'all'); 
  
% Create multiple lines using matrix input to plot 
plot1 = plot(X1,YMatrix1,'Parent',axes1); 
set(plot1(1),'Marker','o','DisplayName','f_x_p'); 
set(plot1(2),'Marker','square','DisplayName','f_x_f'); 
set(plot1(3),'Marker','v','DisplayName','f_x_t'); 
  
% Create ylabel 
ylabel('Force in X-Dir., f_x [lbs]'); 
  
% Create legend 
legend1 = legend(axes1,'show'); 
set(legend1,'Location','NorthEastOutside'); 
% Resize the axes in order to prevent it from shrinking. 
set(axes1,'Position',[0.05 0.75 0.85 0.2]); 
  
% Create axes 
axes2 = axes('Parent',figure1,'YGrid','on','XGrid','on','Position',[0.05 
0.425 0.85 0.2]); 
box(axes2,'on'); 
hold(axes2,'all'); 
  
% Create multiple lines using matrix input to plot 
plot2 = plot(X1,YMatrix2,'Parent',axes2); 
set(plot2(1),'Marker','o','DisplayName','f_y_p'); 
set(plot2(2),'Marker','square','DisplayName','f_y_f'); 
set(plot2(3),'Marker','v','DisplayName','f_y_t'); 
  
% Create ylabel 
ylabel('Force in Y-Dir., f_y [lbs]'); 
  
% Create legend 
legend2 = legend(axes2,'show'); 
set(legend2,'Location','NorthEastOutside'); 
% Resize the axes in order to prevent it from shrinking. 
set(axes2,'Position',[0.05 0.425 0.85 0.2]); 
  
% Create axes 
axes3 = axes('Parent',figure1,'YGrid','on','XGrid','on',... 
  'Position',[0.05 0.1 0.85 0.2]); 
box(axes3,'on'); 
hold(axes3,'all'); 
  
% Create multiple lines using matrix input to plot 
plot3 = plot(X1,YMatrix3,'Parent',axes3); 
set(plot3(1),'Marker','o','DisplayName','f_z_p'); 
set(plot3(2),'Marker','square','DisplayName','f_z_f'); 
set(plot3(3),'Marker','v','DisplayName','f_z_t'); 
  
% Create xlabel 
xlabel('Span Location, \eta = 2y/b'); 
  



100 

 

% Create ylabel 
ylabel('Force in Z-Dir., f_z [lbs]'); 
  
% Create legend 
legend3 = legend(axes3,'show'); 
set(legend3,'Location','NorthEastOutside'); 
% Resize the axes in order to prevent it from shrinking. 
set(axes3,'Position',[0.05 0.1 0.85 0.2]); 
  
end 
  
function createfigure6(X1, YMatrix1, YMatrix2, YMatrix3) 
%CREATEFIGURE(X1,YMATRIX1,YMATRIX2,YMATRIX3) 
%  X1:  vector of x data 
%  YMATRIX1:  matrix of y data 
%  YMATRIX2:  matrix of y data 
%  YMATRIX3:  matrix of y data 
  
%  Auto-generated by MATLAB on 11-Oct-2013 18:55:01 
  
% Create figure 
figure1 = figure('Color',[0.800000011920929 0.800000011920929 
0.800000011920929],'Position',[10 220 1600 600],'Name','Moment 
Distribution'); 
  
% Create axes 
axes1 = axes('Parent',figure1,'YGrid','on','XGrid','on','Position',[0.075 
0.75 0.85 0.2]); 
box(axes1,'on'); 
hold(axes1,'all'); 
  
% Create multiple lines using matrix input to plot 
plot1 = plot(X1,YMatrix1,'Parent',axes1); 
set(plot1(1),'Marker','o','DisplayName','m_x_p'); 
set(plot1(2),'Marker','square','DisplayName','m_x_f'); 
set(plot1(3),'Marker','v','DisplayName','m_x_t'); 
  
% Create ylabel 
ylabel({'Moment about X','m_x [ft-lbs]'}); 
  
% Create legend 
legend1 = legend(axes1,'show'); 
set(legend1,'Location','NorthEastOutside'); 
% Resize the axes in order to prevent it from shrinking. 
set(axes1,'Position',[0.075 0.75 0.85 0.2]); 
  
% Create axes 
axes2 = axes('Parent',figure1,'YGrid','on','XGrid','on','Position',[0.075 
0.425 0.85 0.2]); 
box(axes2,'on'); 
hold(axes2,'all'); 
  
% Create multiple lines using matrix input to plot 



101 

 

plot2 = plot(X1,YMatrix2,'Parent',axes2); 
set(plot2(1),'Marker','o','DisplayName','m_y_p'); 
set(plot2(2),'Marker','square','DisplayName','m_y_f'); 
set(plot2(3),'Marker','v','DisplayName','m_y_t'); 
  
% Create ylabel 
ylabel({'Moment about Y','m_y [ft-lbs]'}); 
  
% Create legend 
legend2 = legend(axes2,'show'); 
set(legend2,'Location','NorthEastOutside'); 
% Resize the axes in order to prevent it from shrinking. 
set(axes2,'Position',[0.075 0.425 0.85 0.2]); 
  
% Create axes 
axes3 = axes('Parent',figure1,'YGrid','on','XGrid','on','Position',[0.075 0.1 
0.85 0.2]); 
box(axes3,'on'); 
hold(axes3,'all'); 
  
% Create multiple lines using matrix input to plot 
plot3 = plot(X1,YMatrix3,'Parent',axes3); 
set(plot3(1),'Marker','o','DisplayName','m_z_p'); 
set(plot3(2),'Marker','square','DisplayName','m_z_f'); 
set(plot3(3),'Marker','v','DisplayName','m_z_t'); 
  
% Create xlabel 
xlabel('Span Location, \eta = 2y/b'); 
  
% Create ylabel 
ylabel({'Moment about Z','m_z [ft-lbs]'}); 
  
% Create legend 
legend3 = legend(axes3,'show'); 
set(legend3,'Location','NorthEastOutside'); 
% Resize the axes in order to prevent it from shrinking. 
set(axes3,'Position',[0.075 0.1 0.85 0.2]); 
  
end 
  
function createfigure7(X1, Y1) 
%CREATEFIGURE(X1,Y1) 
%  X1:  vector of x data 
%  Y1:  vector of y data 
  
%  Auto-generated by MATLAB on 11-Oct-2013 19:06:06 
  
% Create figure 
figure1 = figure('Color',[0.800000011920929 0.800000011920929 
0.800000011920929],'Position',[10 220 700 500],'Name','Lift Curve'); 
  
% Create axes 
axes1 = axes('Parent',figure1,'YGrid','on','XGrid','on'); 



102 

 

box(axes1,'on'); 
hold(axes1,'all'); 
  
% Create plot 
plot(X1,Y1,'Marker','o'); 
  
% Create xlabel 
xlabel('Angle of Attack, \alpha [deg]'); 
  
% Create ylabel 
ylabel('Lift Coefficient, C_L [~]'); 
  
end 
  
function createfigure8(X1, YMatrix1) 
%CREATEFIGURE(X1,YMATRIX1) 
%  X1:  vector of x data 
%  YMATRIX1:  matrix of y data 
  
%  Auto-generated by MATLAB on 11-Oct-2013 19:25:11 
  
% Create figure 
figure1 = figure('Color',[0.800000011920929 0.800000011920929 
0.800000011920929],'Position',[10 220 700 500],'Name','Drag Curve'); 
  
% Create axes 
axes1 = axes('Parent',figure1,'YGrid','on','XGrid','on'); 
box(axes1,'on'); 
hold(axes1,'all'); 
  
% Create multiple lines using matrix input to plot 
plot1 = plot(X1,YMatrix1,'Parent',axes1); 
set(plot1(1),'Marker','o','DisplayName','C_D'); 
set(plot1(2),'Marker','square','DisplayName','C_D_i'); 
  
% Create xlabel 
xlabel('Angle of Attack, \alpha [deg]'); 
  
% Create ylabel 
ylabel('Drag Coefficient, C_D [~]'); 
  
% Create legend 
legend1 = legend(axes1,'show'); 
set(legend1,'Location','NorthEastOutside'); 
  
end 
  
function createfigure9(X1, Y1) 
%CREATEFIGURE(X1,Y1) 
%  X1:  vector of x data 
%  Y1:  vector of y data 
  



103 

 

%  Auto-generated by MATLAB on 11-Oct-2013 19:06:06 
  
% Create figure 
figure1 = figure('Color',[0.800000011920929 0.800000011920929 
0.800000011920929],'Position',[10 220 700 500],'Name','Moment Curve'); 
  
% Create axes 
axes1 = axes('Parent',figure1,'YGrid','on','XGrid','on'); 
box(axes1,'on'); 
hold(axes1,'all'); 
  
% Create plot 
plot(X1,Y1,'Marker','o'); 
  
% Create xlabel 
xlabel('Angle of Attack, \alpha [deg]'); 
  
% Create ylabel 
ylabel('Pitching Moment Coefficient, C_m [~]'); 
  
end 
  
function createfigure10(Results1, Results2, Results3, Results4) 
%CREATEFIGURE(RESULTS1,RESULTS2,RESULTS3,RESULTS4) 
%  RESULTS1:  vector of x data CD 
%  RESULTS2:  vector of y data CL 
%  RESULTS3:  vector of x data CDi 
%  RESULTS4:  vector of x data CDpol 
  
%  Auto-generated by MATLAB on 12-Oct-2013 10:12:15 
  
% Create figure 
figure1 = figure('Color',[0.800000011920929 0.800000011920929 
0.800000011920929],'Position',[10 220 1000 500],'Name','Drag Polar'); 
  
% Create axes 
axes1 = axes('Parent',figure1,'YGrid','on','XGrid','on'); 
box(axes1,'on'); 
hold(axes1,'all'); 
  
% Create plot 
plot(Results1,Results2,'Parent',axes1,'Marker','o','DisplayName','C_D'); 
  
% Create xlabel 
xlabel('Lift Coefficient, C_L [~]'); 
  
% Create ylabel 
ylabel('Drag Coefficient, C_D [~]'); 
  
% Create plot 
plot(Results3,Results2,'Parent',axes1,'Marker','square','DisplayName','C_D_i'
); 



104 

 

  
% Create plot 
plot(Results4,Results2,'Parent',axes1,'LineStyle','--','DisplayName','Class 
II Drag Polar',... 
  'Color',[0 0 0]); 
  
% Create legend 
legend1 = legend(axes1,'show'); 
set(legend1,'Location','NorthEastOutside'); 
  
end 
  
function createfigure11(VarVec1, YMatrix1, Results1, Results2, Results3) 
%CREATEFIGURE(VARVEC1,YMATRIX1,RESULTS1,RESULTS2,RESULTS3) 
%  VARVEC1:   etam 
%  YMATRIX1:  dxac dzac 
%  RESULTS1:  xac 
%  RESULTS2:  yac 
%  RESULTS3:  zac 
  
%  Auto-generated by MATLAB on 13-Oct-2013 11:36:22 
  
% Create figure 
figure1 = figure('Color',[0.800000011920929 0.800000011920929 
0.800000011920929],'Position',[10 220 1600 600],'Name','Aerodynamic Center 
Shift'); 
  
% Create axes 
axes1 = axes('Parent',figure1,'YGrid','on','XGrid','on',... 
  'Position',[0.13 0.673003802281369 0.775 0.251996197718631]); 
box(axes1,'on'); 
hold(axes1,'all'); 
  
% Create multiple lines using matrix input to plot 
plot1 = plot(VarVec1,YMatrix1,'Parent',axes1); 
set(plot1(1),'Marker','o','DisplayName','\delta x_a_c'); 
set(plot1(2),'Marker','square','DisplayName','\delta z_a_c'); 
  
% Create xlabel 
xlabel('Span Location,  \eta = 2y/b'); 
  
% Create ylabel 
ylabel('AC Shift, \deltax_a_c, \deltaz_a_c [ft]'); 
  
% Create title 
title('AC Shift'); 
  
% Create axes 
axes2 = axes('Parent',figure1,'YGrid','on','XGrid','on',... 
  'Position',[0.13067385444744 0.110266159695817 0.206253369272237 
0.408745247148289]); 
box(axes2,'on'); 
hold(axes2,'all'); 



105 

 

  
% Create plot 
plot(Results1,Results2,'Parent',axes2,'Marker','.','Color',[1 0 0]); 
  
% Create xlabel 
xlabel({'x_a_c Locus [ft]',''}); 
  
% Create ylabel 
ylabel('y_a_c Locus [ft]'); 
  
% Create title 
title('AC Locus -Top View'); 
  
% Create axes 
axes3 = axes('Parent',figure1,'YGrid','on','YDir','reverse','XGrid','on',... 
  'Position',[0.405660377358491 0.106463878326996 0.499326145552564 
0.4106463878327]); 
box(axes3,'on'); 
hold(axes3,'all'); 
  
% Create plot 
plot(Results2,Results3,'Parent',axes3,'Marker','.','Color',[0 0 0]); 
  
% Create xlabel 
xlabel('y_a_c Locus [ft]'); 
  
% Create ylabel 
ylabel('z_a_c Locus [ft]'); 
  
% Create title 
title('AC Locus -Front View'); 
  
% Create legend 
legend1 = legend(axes1,'show'); 
set(legend1,'Location','NorthEastOutside'); 
  
end 
  
function createfigure12(X1, Y1, Results1,location) 
%CREATEFIGURE(X1,Y1,RESULTS1) 
%  X1:  vector of x data 
%  Y1:  cp 
%  RESULTS1:  cf 
  
%  Auto-generated by MATLAB on 13-Oct-2013 14:10:15 
  
% Create figure 
figure1 = figure('Color',[0.800000011920929 0.800000011920929 
0.800000011920929],'Position',[10 220 1600 600],'Name',horzcat('Pressure and 
Friction Coefficient Distribution',location)); 
  
% Create axes 



106 

 

axes1 = axes('Parent',figure1,'YGrid','on','YDir','reverse','XGrid','on',... 
  'Position',[0.13 0.583650190114068 0.775 0.341349809885931]); 
box(axes1,'on'); 
hold(axes1,'all'); 
  
% Create plot 
plot(X1,Y1,'Parent',axes1,'Marker','o'); 
  
% Create ylabel 
ylabel('Pressure Coefficient, c_p [~]'); 
  
% Create axes 
axes2 = axes('Parent',figure1,'YGrid','on','XGrid','on',... 
  'Position',[0.132021563342318 0.157794676806084 0.775 0.348954372623574]); 
box(axes2,'on'); 
hold(axes2,'all'); 
  
% Create plot 
plot(X1,Results1,'Parent',axes2,'Marker','o','Color',[0 0.498039215803146 
0]); 
  
% Create xlabel 
xlabel('Chord Station, x/c [~]'); 
  
% Create ylabel 
ylabel('Skin Friction Coefficient, c_f [~]'); 
  
end 
  
function createfigure13(X1, Y1, Results1,location) 
%CREATEFIGURE(X1,Y1,RESULTS1) 
%  X1:  vector of x data 
%  Y1:  p 
%  RESULTS1:  tau 
  
%  Auto-generated by MATLAB on 13-Oct-2013 14:10:15 
  
% Create figure 
figure1 = figure('Color',[0.800000011920929 0.800000011920929 
0.800000011920929],'Position',[10 220 1600 600],'Name',horzcat('Pressure and 
Friction Distribution',location)); 
  
% Create axes 
axes1 = axes('Parent',figure1,'YGrid','on','YDir','reverse','XGrid','on',... 
  'Position',[0.13 0.583650190114068 0.775 0.341349809885931]); 
box(axes1,'on'); 
hold(axes1,'all'); 
  
% Create plot 
plot(X1,Y1,'Parent',axes1,'Marker','o'); 
  
% Create ylabel 
ylabel('Pressure, p [psf]'); 



107 

 

  
% Create axes 
axes2 = axes('Parent',figure1,'YGrid','on','XGrid','on',... 
  'Position',[0.132021563342318 0.157794676806084 0.775 0.348954372623574]); 
box(axes2,'on'); 
hold(axes2,'all'); 
  
% Create plot 
plot(X1,Results1,'Parent',axes2,'Marker','o','Color',[0 0.498039215803146 
0]); 
  
% Create xlabel 
xlabel('Chord Station, x/c [~]'); 
  
% Create ylabel 
ylabel('Skin Friction, \tau [psf]'); 
  
end 
  
function [Geo,Aero]=fAero(Geo,OpCon,CalcSet) 
%% fAero calculates the section aerodynamics for the root and tip airfoils of 
each panel 
gp=Geo.Panel; 
oi=OpCon.Input; 
csi=CalcSet.Input; 
if strcmp(csi.Compress,'On')==1 
  M1=1.68780986*oi.U1/sqrt(oi.Gamma*oi.Rinf*oi.Tinf); 
else 
  M1=0; 
end 
if strcmp(csi.Transition,'Sailplane/Glider')==1 
  Ncrit=13; 
elseif strcmp(csi.Transition,'Powered Glider')==1 
  Ncrit=12; 
elseif strcmp(csi.Transition,'Clean Wind Tunnel')==1  
  Ncrit=11; 
elseif strcmp(csi.Transition,'Dirty Wind Tunnel')==1 
  Ncrit=4; 
else 
  Ncrit=9; 
end 
[n,m]=size(gp.C1);   
for i=1:m/2 
  Re1=1.68780986*oi.U1*gp.C1(i)/oi.nu; 
  Re2=1.68780986*oi.U1*gp.C2(i)/oi.nu; 
  if Re1<10^6 
    Re1=10^6; 
  end 
  if Re2<10^6 
    Re2=10^6; 
  end 
  if strcmp(gp.CSType{i},'Aileron')==1 
    dfm=oi.da; 
    dfp=-oi.da; 



108 

 

    [ Aero.Polar1{i}, Aero.Dist1{i},Geo.Coord1{i} ] = 
XfoilUltra(gp.AF1{i},M1,Re1,Ncrit,gp.cf_c(i),dfm,10 ); 
    [ Aero.Polar2{i}, Aero.Dist2{i},Geo.Coord2{i} ] = XfoilUltra( 
gp.AF2{i},M1,Re2,Ncrit,gp.cf_c(i),dfm,10 ); 
    [ Aero.Polar1{m-i+1}, Aero.Dist1{m-i+1},Geo.Coord1{m-i+1} ] = 
fXfoilUltra(gp.AF1{m-i+1},M1,Re1,Ncrit,gp.cf_c(m-i+1),dfp,10 ); 
    [ Aero.Polar2{m-i+1}, Aero.Dist2{m-i+1},Geo.Coord2{m-i+1} ] = 
fXfoilUltra( gp.AF2{m-i+1},M1,Re2,Ncrit,gp.cf_c(m-i+1),dfp,10 );   
  elseif strcmp(gp.CSType{i},'Plain Flap')==1 
    df=oi.df; 
    [ Aero.Polar1{i}, Aero.Dist1{i},Geo.Coord1{i} ] = 
XfoilUltra(gp.AF1{i},M1,Re1,Ncrit,gp.cf_c(i),df,10 ); 
    [ Aero.Polar2{i}, Aero.Dist2{i},Geo.Coord2{i} ] = XfoilUltra( 
gp.AF2{i},M1,Re2,Ncrit,gp.cf_c(i),df,10 ); 
    Aero.Polar1{m-i+1}=Aero.Polar2{i}; 
    Aero.Dist1{m-i+1}=Aero.Dist2{i}; 
    Geo.Coord1{m-i+1}=Geo.Coord2{i};  
    Aero.Polar2{m-i+1}=Aero.Polar1{i}; 
    Aero.Dist2{m-i+1}=Aero.Dist1{i}; 
    Geo.Coord2{m-i+1}=Geo.Coord1{i}; 
  else 
    [ Aero.Polar1{i}, Aero.Dist1{i},Geo.Coord1{i} ] = 
XfoilUltra(gp.AF1{i},M1,Re1,Ncrit,0,0,10 ); 
    [ Aero.Polar2{i}, Aero.Dist2{i},Geo.Coord2{i} ] = XfoilUltra( 
gp.AF2{i},M1,Re2,Ncrit,0,0,10 ); 
    Aero.Polar1{m-i+1}=Aero.Polar2{i}; 
    Aero.Dist1{m-i+1}=Aero.Dist2{i}; 
    Geo.Coord1{m-i+1}=Geo.Coord2{i};  
    Aero.Polar2{m-i+1}=Aero.Polar1{i}; 
    Aero.Dist2{m-i+1}=Aero.Dist1{i}; 
    Geo.Coord2{m-i+1}=Geo.Coord1{i};     
  end 
end 
end 
  
function [ c ] = fcross( a,b ) 
%fcross gives the quick cross product of a and b vectors. 
c=[(a(2)*b(3)-a(3)*b(2)),(a(3)*b(1)-a(1)*b(3)),(a(1)*b(2)-a(2)*b(1))]; 
end 
  
function [ c ] = fdot( a,b ) 
%fdot gives the quick dot product of a and b vectors. 
c=a(1)*b(1)+a(2)*b(2)+a(3)*b(3); 
end 
  
function [Geo]=fEndPts(Geo) 
%% fEndPts Assigns End Point Data to build variable vectors 
gi=Geo.Input; 
PID=[fliplr(gi.PanelID),gi.PanelID]; 
m=numel(PID); 
for i=1:m/2 
  k=PID(i); 
  Geo.Panel.ID(i)=PID(i); 
  Geo.Panel.X1{i}=gi.Xt{k}.*[1,-1,1]; 
  Geo.Panel.X2{i}=gi.Xr{k}.*[1,-1,1]; 



109 

 

  Geo.Panel.C1(i)=gi.ct(k); 
  Geo.Panel.C2(i)=gi.cr(k); 
  Geo.Panel.i1(i)=gi.ir(k)+gi.ep(k); 
  Geo.Panel.i2(i)=gi.ir(k); 
  Geo.Panel.AF1{i}=gi.TipAF{k}; 
  Geo.Panel.AF2{i}=gi.RootAF{k}; 
  Geo.Panel.cf_c(i)=gi.cf_c(k); 
  Geo.Panel.PtDen(i)=gi.PtDen(k); 
  Geo.Panel.CSType{i}=gi.CtrSurf{k}; 
end 
for i=m/2+1:m 
  k=PID(i); 
  Geo.Panel.ID(i)=PID(i); 
  Geo.Panel.X1{i}=gi.Xr{k}; 
  Geo.Panel.X2{i}=gi.Xt{k}; 
  Geo.Panel.C1(i)=gi.cr(k); 
  Geo.Panel.C2(i)=gi.ct(k); 
  Geo.Panel.i2(i)=gi.ir(k)+gi.ep(k); 
  Geo.Panel.i1(i)=gi.ir(k); 
  Geo.Panel.AF2{i}=gi.TipAF{k}; 
  Geo.Panel.AF1{i}=gi.RootAF{k}; 
  Geo.Panel.cf_c(i)=gi.cf_c(k); 
  Geo.Panel.PtDen(i)=gi.PtDen(k); 
  Geo.Panel.CSType{i}=gi.CtrSurf{k}; 
end 
for i=1:numel(Geo.Panel.X1) 
  x1=Geo.Panel.X1{i}; 
  x2=Geo.Panel.X2{i}; 
  Geo.Panel.dS(i)=sqrt((x2(2)-x1(2))^2+(x2(3)-x1(3))^2); 
  Geo.Panel.thetaxy(i)=atan2(((x2(1)-x1(1))),((x2(2)-x1(2))))*180/pi; 
  Geo.Panel.thetayz(i)=atan2(((x2(3)-x1(3))),((x2(2)-x1(2))))*180/pi; 
end 
end 
  
function [Geo,OpCon,CalcSet,PostPro]=fLoadFile(filename) 
%% fLoadFile reads the contents of the input spreadsheet filename 
[num1,txt1]=xlsread(filename,'Planform Geometry'); 
[m1,n1]=size(num1); 
for i=1:m1 
  % Load Geometry 
  Geo.Input.PanelID(i)=num1(i,1); 
  Geo.Input.Xr{i}=[num1(i,2),num1(i,3),-num1(i,4)]; 
  Geo.Input.Xt{i}=[num1(i,5),num1(i,6),-num1(i,7)]; 
  Geo.Input.cf_c(i)=num1(i,8); 
  Geo.Input.cr(i)=num1(i,9); 
  Geo.Input.ct(i)=num1(i,10); 
  Geo.Input.ir(i)=num1(i,11); 
  Geo.Input.ep(i)=num1(i,12); 
  Geo.Input.PtDen(i)=num1(i,16); 
  Geo.Input.RootAF{i}=txt1{i+3,13}; 
  Geo.Input.TipAF{i}=txt1{i+3,14}; 
  Geo.Input.CtrSurf{i}=txt1{i+3,15}; 
end 
[num2,txt2]=xlsread(filename,'Operating Condtion and Settings'); 
  % Load Operating Condition and Settings 



110 

 

  OpCon.Input.Pinf=num2(1,1); 
  OpCon.Input.Tinf=num2(2,1); 
  OpCon.Input.Rhoinf=num2(3,1); 
  OpCon.Input.Rinf=num2(4,1); 
  OpCon.Input.Gamma=num2(5,1); 
  OpCon.Input.nu=num2(6,1); 
  OpCon.Input.U1=num2(9,1); 
  OpCon.Input.Alpha=num2(10,1); 
  OpCon.Input.Beta=num2(11,1);  
  OpCon.Input.da=num2(12,1); 
  OpCon.Input.df=num2(13,1);  
  CalcSet.Input.ConvTol=num2(17,1); 
  CalcSet.Input.Relax=num2(18,1); 
  CalcSet.Input.MaxIter=num2(19,1); 
  CalcSet.Input.N=num2(20,1); 
  OpCon.Input.Xcg=str2num(txt2{15,2}); 
  CalcSet.Input.CDist=txt2{22,2}; 
  CalcSet.Input.Transition=txt2{23,2}; 
  CalcSet.Input.Compress=txt2{24,2}; 
  
  [num3,txt3]=xlsread(filename,'Processing Options'); 
  % Load Post Processing Options 
  PostPro.Station.Location=str2num(txt2{27,2}); 
  PostPro.Solver.Type1=txt3{2,2}; 
  PostPro.Solver.Type2=txt3{3,2}; 
  PostPro.Solver.Type3=txt3{4,2}; 
  PostPro.LLTplots.AOA=txt3{7,2}; 
  PostPro.LLTplots.clcd2d=txt3{8,2}; 
  PostPro.LLTplots.cnca2d=txt3{9,2}; 
  PostPro.LLTplots.Gclcd=txt3{10,2}; 
  PostPro.LLTplots.fmxyz=txt3{11,2}; 
  PostPro.LLTplots.dxzac=txt3{12,2}; 
  PostPro.Surfplots=txt3{15,2}; 
  PostPro.Planformplots.ClvAoA=txt3{22,2};   
  PostPro.Planformplots.CdivAoA=txt3{23,2}; 
  PostPro.Planformplots.CmvAoA=txt3{24,2};   
  PostPro.Planformplots.ClvCd=txt3{25,2}; 
  PostPro.Stationplots.cpf=txt3{18,2}; 
  PostPro.Stationplots.ptau=txt3{19,2}; 
  
end 
  
function [ A ] = fmag( a ) 
%fmag gives the magnitude of a 
A=sqrt(a(1)^2+a(2)^2+a(3)^2); 
end 
  
function [Geo]=fPlanform(Geo,VarVec) 
%% fPlanform calculates, the span, planform area, cranked area, aspect ratio, 
and mean aero chord for the planform. 
Geo.Planform.b=2*Geo.Input.Xt{end}(2); 
csq=[VarVec.c1.*VarVec.c1,VarVec.c2(end)^2]; 
dy(1)=0; 
for i=1:numel(VarVec.c1) 



111 

 

  
da(i)=((VarVec.c1(i)*cosd(VarVec.i1(i))+VarVec.c2(i)*cosd(VarVec.i2(i)))/2*Va
rVec.ds(i))*cosd(VarVec.dm(i)); 
  dy(i+1)=VarVec.x2{i}(2)-VarVec.x1{i}(2)+dy(i); 
end 
Geo.Planform.S=sum(da); 
Geo.Planform.Sn=sum(VarVec.dA); 
Geo.Planform.AR=Geo.Planform.b^2/Geo.Planform.S; 
Geo.Planform.MAC=1/Geo.Planform.S*trapz(dy,csq); 
disp('==================== Wing Geometry =====================') 
disp(horzcat('Span, b                = ',num2str(Geo.Planform.b),' ft')); 
disp(horzcat('Reference Area, Sref   = ',num2str(Geo.Planform.S),' sq ft')); 
disp(horzcat('Panel Area, S          = ',num2str(Geo.Planform.Sn),' sq ft')); 
disp(horzcat('Aspect Ratio, AR       = ',num2str(Geo.Planform.AR),' ~')); 
disp(horzcat('Mean Aero Chord, mac   = ',num2str(Geo.Planform.MAC),' ft')); 
end 
  
function [ CoeffDist ] = fPost_Aero(Aero,VarVec,alpha) 
% fPost_Aero calculates the local lift, drag, normal force, axial force, 
% and moment coefficnets from airfoil data linearly interpolating from panel 
end points at the local alpha. 
for i=1:numel(alpha) 
  afid=VarVec.AFID(i); 
  bf=VarVec.bfm(i); 
  a1=Aero.Polar1{afid}; 
  a2=Aero.Polar2{afid}; 
  %cl 
  m1=a1.Cl; % 
  m2=a2.Cl; % 
  c1=interp1(a1.AoA,m1,alpha(i)); 
  c2=interp1(a2.AoA,m2,alpha(i)); 
  c=c1*(1-bf)+c2*bf;  
  CoeffDist.cl2d(i)=c; % 
  %cd 
  m1=a1.Cd; % 
  m2=a2.Cd; % 
  c1=interp1(a1.AoA,m1,alpha(i)); 
  c2=interp1(a2.AoA,m2,alpha(i)); 
  c=c1*(1-bf)+c2*bf;  
  CoeffDist.cd2d(i)=c; % 
  %cn 
  m1=a1.Cn; % 
  m2=a2.Cn; % 
  c1=interp1(a1.AoA,m1,alpha(i)); 
  c2=interp1(a2.AoA,m2,alpha(i)); 
  c=c1*(1-bf)+c2*bf;  
  CoeffDist.cn2d(i)=c; % 
  %ca 
  m1=a1.Ca; % 
  m2=a2.Ca; % 
  c1=interp1(a1.AoA,m1,alpha(i)); 
  c2=interp1(a2.AoA,m2,alpha(i)); 
  c=c1*(1-bf)+c2*bf;  
  CoeffDist.ca2d(i)=c; %   
  %cnf 



112 

 

  m1=a1.Cnf; % 
  m2=a2.Cnf; % 
  c1=interp1(a1.AoA,m1,alpha(i)); 
  c2=interp1(a2.AoA,m2,alpha(i)); 
  c=c1*(1-bf)+c2*bf;  
  CoeffDist.cnf2d(i)=c; %    
  %caf 
  m1=a1.Caf; % 
  m2=a2.Caf; % 
  c1=interp1(a1.AoA,m1,alpha(i)); 
  c2=interp1(a2.AoA,m2,alpha(i)); 
  c=c1*(1-bf)+c2*bf;  
  CoeffDist.caf2d(i)=c; %      
  %cnp 
  m1=a1.Cnp; % 
  m2=a2.Cnp; % 
  c1=interp1(a1.AoA,m1,alpha(i)); 
  c2=interp1(a2.AoA,m2,alpha(i)); 
  c=c1*(1-bf)+c2*bf;  
  CoeffDist.cnp2d(i)=c; %  
  %cap 
  m1=a1.Cap; % 
  m2=a2.Cap; % 
  c1=interp1(a1.AoA,m1,alpha(i)); 
  c2=interp1(a2.AoA,m2,alpha(i)); 
  c=c1*(1-bf)+c2*bf;  
  CoeffDist.cap2d(i)=c; % 
  %clf 
  CoeffDist.clf2d(i)=0; % a necessary assumption 
  %clp 
  m1=a1.Clp; % 
  m2=a2.Clp; % 
  c1=interp1(a1.AoA,m1,alpha(i)); 
  c2=interp1(a2.AoA,m2,alpha(i)); 
  c=c1*(1-bf)+c2*bf;  
  CoeffDist.clp2d(i)=c; %  
  %cdp 
  m1=a1.Cdp; % 
  m2=a2.Cdp; % 
  c1=interp1(a1.AoA,m1,alpha(i)); 
  c2=interp1(a2.AoA,m2,alpha(i)); 
  c=c1*(1-bf)+c2*bf;  
  CoeffDist.cdp2d(i)=c; %  
  %cdf 
  m1=a1.Cdf; % 
  m2=a2.Cdf; % 
  c1=interp1(a1.AoA,m1,alpha(i)); 
  c2=interp1(a2.AoA,m2,alpha(i)); 
  c=c1*(1-bf)+c2*bf;  
  CoeffDist.cdf2d(i)=c; %  
  %cm 
  m1=a1.cm; % 
  m2=a2.cm; % 
  c1=interp1(a1.AoA,m1,alpha(i)); 
  c2=interp1(a2.AoA,m2,alpha(i)); 



113 

 

  c=c1*(1-bf)+c2*bf;  
  CoeffDist.cm2d(i)=c; %   
end 
end 
  
function [ alpha_i,alpha_inf,alpha,V,Vmag ] = fPost_alpha( OpCon, VarVec, v, 
vinf,G) 
%fPost_alpha calculates the angle of attack and velocity distribution for a 
%given G and VarVec 
for i=1:numel(VarVec.cm) 
  alpha_inf(i)=atan2(fdot(vinf,VarVec.un{i}),fdot(vinf,VarVec.ua{i}))*180/pi; 
  for j=1:numel(VarVec.cm) 
    vG(j,:)=v{i,j}*G(j);    
  end 
  svG=[sum(vG(:,1));sum(vG(:,2));sum(vG(:,3))]; 
  
alpha(i)=atan2(fdot(vinf+svG,VarVec.un{i}),fdot(vinf+svG,VarVec.ua{i}))*180/p
i; 
  alpha_i(i)=alpha_inf(i)-alpha(i); 
  V{i}=(vinf+svG)*OpCon.Input.U1*1.68780986; 
  Vmag(i)=fmag(V{i}); 
   
end 
end 
  
function [ Coeff ] = fPost_Coeff( F,M,OpCon,Geo,alpha ) 
%fPost_Coeff calculats the lift, drag, induced drag and side force 
%coefficients as well as pitch, roll and moment coefficients about CG. 
q=0.5*OpCon.Input.Rhoinf*(OpCon.Input.U1*1.68780986)^2; 
S=Geo.Planform.S; 
c=Geo.Planform.MAC; 
AR=Geo.Planform.AR; 
Coeff.CL=(-F.t(3)*cosd(alpha)-F.t(1)*sind(alpha))/(q*S); 
Coeff.CD=(-F.t(3)*sind(alpha)+F.t(1)*cosd(alpha))/(q*S); 
Coeff.CY=(F.t(2))/(q*S); 
Coeff.CDi=((-F.l(3)*sind(alpha)+F.l(1)*cosd(alpha)))/(q*S); 
Coeff.e=(Coeff.CL)^2/(pi*AR); 
Coeff.Cl=M.t(1)/(q*S*c); 
Coeff.Cm=M.t(2)/(q*S*c); 
Coeff.Cn=M.t(3)/(q*S*c); 
  
end 
  
function [ f, F, m M ] = fPost_forces( 
OpCon,VarVec,CoeffDist,Gamma,Vdist,v,vinf) 
%fPost_forces solves for the local and total force and Moment tensors due to 
lift, 
%pressure, friction and total. 
rho=OpCon.Input.Rhoinf; 
Vinf=transpose(vinf*OpCon.Input.U1*1.68780986); 
cd=CoeffDist; 
qinf=0.5*rho*(OpCon.Input.U1*1.68780986)^2; 
for i=1:numel(Gamma) 
  ri=VarVec.xm{i}-OpCon.Input.Xcg; 



114 

 

  for j=1:numel(Gamma) 
    b=Gamma(i)*Gamma(j)/VarVec.cm(j)*v{i,j}; 
    b1(j,:)=[b(1),b(2),b(3)]; 
  end 
  dm{i}=-qinf*cd.cm2d(i)*VarVec.dA(i)*VarVec.cm(i)*VarVec.us{i}; 
  A=Gamma(i)*Vinf; 
  B=[sum(b1(:,1)),sum(b1(:,2)),sum(b1(:,3))]; 
  fint=-rho*fcross(A+B,VarVec.dl{i}); 
  f.l(i,:)=[fint(1),fint(2),fint(3)]; % lift forces (from circ) 
  m.l(i,:)=fcross(ri,fint)+dm{i}; 
  ul=fint/fmag(fint); % unit vector of lift forces 
  fint=(A+B)/Gamma(i); 
  ud=fint/fmag(fint); % unit vector of drag forces 
  
f.p(i,:)=abs(qinf*VarVec.dA(i)*cd.clp2d(i))*ul+abs(qinf*VarVec.dA(i)*cd.cdp2d
(i))*ud;  
  m.p(i,:)=fcross(ri,f.p(i,:))+dm{i}; 
  
f.f(i,:)=abs(qinf*VarVec.dA(i)*cd.clf2d(i))*ul+abs(qinf*VarVec.dA(i)*cd.cdf2d
(i))*ud; 
  m.f(i,:)=fcross(ri,f.f(i,:)); 
  f.t(i,:)=f.p(i,:)+f.f(i,:); 
  m.t(i,:)=fcross(ri,f.t(i,:))+dm{i}; 
   
end 
F.l=[sum(f.l(:,1)),sum(f.l(:,2)),sum(f.l(:,3))]; 
M.l=[sum(m.l(:,1)),sum(m.l(:,2)),sum(m.l(:,3))]; 
F.p=[sum(f.p(:,1)),sum(f.p(:,2)),sum(f.p(:,3))]; 
M.p=[sum(m.p(:,1)),sum(m.p(:,2)),sum(m.p(:,3))]; 
F.f=[sum(f.f(:,1)),sum(f.f(:,2)),sum(f.f(:,3))]; 
M.f=[sum(m.f(:,1)),sum(m.f(:,2)),sum(m.f(:,3))]; 
F.t=[sum(f.t(:,1)),sum(f.t(:,2)),sum(f.t(:,3))]; 
M.t=[sum(m.t(:,1)),sum(m.t(:,2)),sum(m.t(:,3))]; 
  
end 
  
function [ Gamma,cl,cdi,clnorm,cdinorm ] = fPost_Gamma(Geo, OpCon,VarVec, v, 
vinf, G, alpha_i) 
%fPost_Gamma calculates the circulation distribution then calculates the 
%lift and induced drag coefficients from those results based on both local 
%chord and normalized to mac of the wing. 
  
for i=1:numel(VarVec.cm) 
  mac=Geo.Planform.MAC; 
  Gamma(i)=G(i)*VarVec.cm(i)*OpCon.Input.U1*1.68780986; 
  cl(i)=2*G(i); 
  cdi(i)=cl(i)*sind(alpha_i(i)); 
  clnorm(i)=cl(i)*mac/VarVec.cm(i); 
  cdinorm(i)=cdi(i)*mac/VarVec.cm(i); 
end 
end 
  
function [ x,cp,cf,p,tau ] = fPost_getcpf( eta1,VarVec, alpha, Aero,OpCon ) 
%fPost_getcpf returns the cp, cf, pressure and shear  



115 

 

%distributions for a given eta and results set. 
ieta=find(VarVec.etam==eta1); 
qinf=0.5*OpCon.Input.Rhoinf*(1.68780986*OpCon.Input.U1)^2; 
pinf=OpCon.Input.Pinf; 
% find AFID and eta index 
if isempty(ieta)==1 
  Ieta1=find(VarVec.etam<=eta1); 
  if isempty(Ieta1)==1 
    Ieta1=1; 
  end 
  if eta1~=1 
  ieta1=Ieta1(end); 
  ieta2=ieta1+1; 
  else 
  ieta1=Ieta1(end-1); 
  ieta2=ieta1+1;  
  end 
else 
  ieta1=ieta 
  ieta2=ieta; 
end 
AFID1=VarVec.AFID(ieta1); 
ap1=Aero.Polar1{AFID1}; 
ad1=Aero.Dist1{AFID1}; 
ad2=Aero.Dist2{AFID1}; 
% find alpha, blend factors and  
alpha1=interp1(VarVec.etam,alpha,eta1,'spline','extrap'); 
bf1=interp1(VarVec.etam,VarVec.bfm,eta1,'spline','extrap'); 
Aindex1=find(ap1.AoA<=alpha1); 
aindex1=Aindex1(end); 
aindex2=aindex1+1; 
bfa=interp1([ap1.AoA(aindex1) ap1.AoA(aindex2)],[0 1],alpha1,'linear'); 
% get x cp and cf for panel airfoils at specified alpha 
x=ad1.cp(:,1); 
cp11=ad1.cp(:,aindex1+1); 
cp12=ad1.cp(:,aindex2+1); 
cp1=cp11*(1-bfa)+cp12*bfa; 
cp21=ad2.cp(:,aindex1+1); 
cp22=ad2.cp(:,aindex2+1); 
cp2=cp21*(1-bfa)+cp22*bfa; 
cf11=ad1.cf(:,aindex1+1); 
cf12=ad1.cf(:,aindex2+1); 
cf1=cf11*(1-bfa)+cf12*bfa; 
cf21=ad2.cf(:,aindex1+1); 
cf22=ad2.cf(:,aindex2+1); 
cf2=cf21*(1-bfa)+cf22*bfa; 
% interpolate to eta1 
[m1,n1]=size(cp1); 
[m2,n2]=size(cp2); 
cp=cp1*(1-bf1)+cp2*bf1; 
cf=cf1*(1-bf1)+cf2*bf1; 
% dimensionalize 
p=cp*qinf+pinf; 
tau=cf*qinf; 
  



116 

 

end 
  
function [ xyz,cp,p,cf,tau,Npts,Nelem,Naf ] = fPost_PanelData( 
OpCon,Geo,Aero,VarVec,PID,alpha ) 
% fPost_PanelData returns arrays of data for 3D panel plots 
% find panel vector range 
I=find(VarVec.AFID==PID); 
i1=I(1) ; 
i2=I(end); 
k=1; 
xnorm=transpose(Aero.Dist1{PID}.cp(:,1)); 
for i=i1:i2 
  % find blend factor and  dihedral & incidence 
  bf1=VarVec.bf1(i); 
  bf2=VarVec.bf2(i); 
  eta1=VarVec.eta1(i); 
  eta2=VarVec.eta2(i); 
  inc1=VarVec.i1(i); 
  inc2=VarVec.i2(i); 
  d1=interp1(VarVec.etam,VarVec.dm,eta1,'spline','extrap'); 
  d2=interp1(VarVec.etam,VarVec.dm,eta2,'spline','extrap'); 
  % calculate airfoil coordinates 
  Xc1=Geo.Coord1{PID}(:,1); 
  Zc1=-Geo.Coord1{PID}(:,2); 
  Xc2=Geo.Coord2{PID}(:,1); 
  Zc2=-Geo.Coord2{PID}(:,2); 
  [ Zc1 ] = fPost_xnorm( Xc1,Zc1,xnorm ); 
  [ Zc2 ] = fPost_xnorm( Xc2,Zc2,xnorm ); 
  xc1=(xnorm-0.25)*VarVec.c1(i); 
  xc2=(xnorm-0.25)*VarVec.c2(i); 
  zc1=(Zc1*(1-bf1)+Zc2*bf1)*VarVec.c1(i); 
  zc2=(Zc1*(1-bf2)+Zc2*bf2)*VarVec.c2(i); 
  % rotate about incidence 
  xc11=xc1*cosd(inc1)-zc1*sind(inc1); 
  xc21=xc2*cosd(inc2)-zc2*sind(inc2); 
  yc11=transpose(zeros(numel(xc11),1)); 
  yc21=transpose(zeros(numel(xc21),1)); 
  zc11=xc1*sind(inc1)+zc1*cosd(inc1); 
  zc21=xc2*sind(inc2)+zc2*cosd(inc2); 
  % rotate about dihedral 
  xc12=xc11; 
  xc22=xc21; 
  yc12=yc11*cosd(d1)-zc11*sind(d1); 
  yc22=yc21*cosd(d2)-zc21*sind(d2); 
  zc12=yc11*sind(d1)+zc11*cosd(d1); 
  zc22=yc21*sind(d2)+zc21*cosd(d2); 
  % Translate to quarter chord 
  X1=xc12+VarVec.x1{i}(1)-VarVec.dx1ac(i); 
  Y1=yc12+VarVec.x1{i}(2); 
  Z1=zc12+VarVec.x1{i}(3)-VarVec.dz1ac(i); 
  X2=xc22+VarVec.x2{i}(1)-VarVec.dx2ac(i); 
  Y2=yc22+VarVec.x2{i}(2); 
  Z2=zc22+VarVec.x2{i}(3)-VarVec.dz2ac(i); 
  % calculate cp, cf, p and tau 
  [ x1,cp1,cf1,p1,tau1 ] = fPost_getcpf( eta1,VarVec, alpha, Aero,OpCon ); 



117 

 

  if i==i2 
  [ x2,cp2,cf2,p2,tau2 ] = fPost_getcpf( eta2,VarVec, alpha, Aero,OpCon ); 
  end 
  % normalize to xnorm 
  [ cp1 ] = fPost_xnorm( x1,cp1,xnorm ); 
  [ cf1 ] = fPost_xnorm( x1,cf1,xnorm ); 
  [ p1 ] = fPost_xnorm( x1,p1,xnorm ); 
  [ tau1 ] = fPost_xnorm( x1,tau1,xnorm ); 
  if i==i2 
  [ cp2 ] = fPost_xnorm( x2,cp2,xnorm ); 
  [ cf2 ] = fPost_xnorm( x2,cf2,xnorm ); 
  [ p2 ] = fPost_xnorm( x2,p2,xnorm ); 
  [ tau2 ] = fPost_xnorm( x2,tau2,xnorm ); 
  end 
  % bulild output vectors 
  for j=1:numel(xnorm) 
    xyz(k,1:3)=[X1(j) Y1(j) Z1(j)]; 
    cp(k)=cp1(j); 
    cf(k)=cf1(j); 
    p(k)=p1(j); 
    tau(k)=tau1(j); 
    k=k+1; 
  end  
  if i==i2 
  for j=1:numel(xnorm) 
    xyz(k,1:3)=[X2(j) Y2(j) Z2(j)]; 
    cp(k)=cp2(j); 
    cf(k)=cf2(j); 
    p(k)=p2(j); 
    tau(k)=tau2(j); 
    k=k+1; 
  end  
  end 
end 
Npts=k-1; 
Nelem=i2-i1; 
Naf=numel(xnorm); 
end 
  
function fPost_Tecplot( xyz,cp,cf,P,tau,Nelem,Npts,Naf,filename ) 
%fPost_Tecplot generates a tecplot file of the data in XYZ, cp, cf, P, tau. 
m=numel(xyz); 
[cd,Title,x]=fileparts(filename); 
fID= fopen(horzcat('Tecplot Results\',Title,'.tec'),'w'); 
TITLE=horzcat('TITLE="',Title,'"'); 
fprintf(fID,'%s\n',TITLE); 
fprintf(fID,'%s\n','VARIABLES="X [ft]","Y [ft]","Z [ft]","Pressure 
Coefficient[~]","Skin Friction Coefficient [~]","Pressure [psf]","Skin 
Friction [psf]"'); 
for i=1:m 
fprintf(fID,'%s\n',horzcat('ZONE 
F=FEPOINT,ET=QUADRILATERAL,N=',num2str(numel(cp{i}),'%i'),',E=',num2str((Naf(
i)-1)*(Nelem(i)+1),'%i')));  
  xyz1=xyz{i}; 
  c_p=transpose(cp{i}); 



118 

 

  c_f=transpose(cf{i}); 
  P_=transpose(P{i}); 
  tau_=transpose(tau{i}); 
  [m,n]=size(xyz1); 
  for j=1:m 
    n(j)=j; 
    fx=num2str(xyz1(j,1)); 
    fy=num2str(xyz1(j,2)); 
    fz=num2str(xyz1(j,3)); 
    f1=num2str(c_p(j)); 
    f2=num2str(c_f(j)); 
    f3=num2str(P_(j)); 
    f4=num2str(tau_(j)); 
    s=' '; 
    fprintf(fID,'%s\n',horzcat(fx,s,fy,s,fz,s,f1,s,f2,s,f3,s,f4)); 
  end 
  for j=1:Nelem(i)+1 
    for k=1:Naf(i)-1 
      pt1=num2str(k+j*Naf(i)-Naf(i)); 
      pt2=num2str(k+1+j*Naf(i)-Naf(i)); 
      pt4=num2str(k+(j+1)*Naf(i)-Naf(i)); 
      pt3=num2str(k+1+(j+1)*Naf(i)-Naf(i)); 
      fprintf(fID,'%s\n',horzcat(pt1,s,pt2,s,pt3,s,pt4)); 
    end 
  end 
  fprintf(fID,'%s\n',s); 
end 
disp(' ') 
disp('Surface Plots:') 
disp(horzcat('Tecplot File Ready...  ','Tecplot Results\',Title,'.tec')) 
fclose(fID); 
end 
  
function fPost_Type1( F,M,Coeff ) 
%fPost_Type1 displays the results of a Type1 Analysis 
disp('=============== Type 1 Analysis Summary ================') 
disp('Forces:') 
disp(horzcat(' Fx   = ',num2str(F.t(1),'%3.3f'),' lbs,','  Fy = 
',num2str(F.t(2),'%3.3f'),' lbs,','  Fz = ',num2str(F.t(3),'%3.3f'),' lbs')) 
disp(horzcat(' Lift = ',num2str(F.L,'%3.3f'), ' lbs,', '  Drag = 
',num2str(F.D,'%3.3f'), ' lbs,', '  L/D = ',num2str(F.L/F.D,'%3.3f'))) 
disp(' ') 
disp('Moments:') 
disp(horzcat(' Roll  = ',num2str(M.t(1),'%3.3f'),' ft-lbs')) 
disp(horzcat(' Pitch = ',num2str(M.t(2),'%3.3f'),' ft-lbs')) 
disp(horzcat(' Yaw   = ',num2str(M.t(3),'%3.3f'),' ft-lbs')) 
disp(' ') 
disp('Coefficients:') 
disp(horzcat(' CL = ',num2str(Coeff.CL,'%4.4f'),',','  CD = 
',num2str(Coeff.CD,'%4.4f'),',','  CDi = ',num2str(Coeff.CDi,'%4.4f'),'  CY = 
',num2str(Coeff.CY,'%4.4f'))) 
disp(horzcat(' Cl = ',num2str(Coeff.Cl,'%4.4f'),',',' Cm = 
',num2str(Coeff.Cm,'%4.4f'),',',' Cn  = ',num2str(Coeff.Cn,'%4.4f'))) 
  
end 



119 

 

  
function fPost_Type2( rt2,AR ) 
%fPost_Type2 displays the results of Type 2 analysis 
disp('=============== Type 2 Analysis Summary ================') 
disp(horzcat('Linearized Lift and Moment')) 
disp(horzcat(' CLalpha               = ',num2str(rt2.CLalpha,'%4.4f'),' 
\rad')) 
disp(horzcat(' Alpha0                = ',num2str(rt2.Alpha0,'%4.2f'),' deg')) 
disp(horzcat(' Cmalpha               = ',num2str(rt2.Cmalpha,'%4.4f'),' 
\rad')) 
disp(horzcat(' Cm0                   = ',num2str(rt2.Cm0,'%4.4f'))) 
disp(' ') 
disp(horzcat('Class I Drag Polar')) 
disp(horzcat(' CDo                   = ',num2str(rt2.CDo,'%4.4f'))) 
disp(horzcat(' e                     = 
',num2str(1/(rt2.BCD*pi*AR),'%4.4f')));  
end 
  
function fPost_Type3( rt3 ) 
%fPost_Type3 displays the results of Type 3 analysis 
disp('=============== Type 3 Analysis Summary ================') 
disp(horzcat('Class II Drag Polar')) 
disp(horzcat(' CDo        = ',num2str(rt3.CDo,'%4.3e'))) 
disp(horzcat(' BCD1       = ',num2str(rt3.BCD1,'%4.3e')));  
disp(horzcat(' BCD2       = ',num2str(rt3.BCD2,'%4.3e')));  
disp(horzcat(' BCD3       = ',num2str(rt3.BCD3,'%4.3e')));  
disp(horzcat(' BCD4       = ',num2str(rt3.BCD4,'%4.3e')));  
disp(horzcat(' BCD5       = ',num2str(rt3.BCD5,'%4.3e')));  
  
end 
  
function [ vnorm ] = fPost_xnorm( x,v,xnorm ) 
%fPost_xnorm takes vector of distributed airfoil data x vs v and normalizes 
% to xref 
ile=find(x==0); 
inorm=find(xnorm==0); 
xu=x(1:ile); 
vu=v(1:ile); 
xl=x(ile:end); 
vl=v(ile:end); 
xun=xnorm(1:inorm); 
xln=xnorm(inorm:end); 
vnormu=interp1(xu,vu,xun,'spline','extrap'); 
vnorml=interp1(xl,vl,xln,'spline','extrap'); 
vnorm=[vnormu(1:end-1),vnorml(1:end)]; 
  
end 
  
function [ xyzac,dxac,dzac ] = fPost_xzac(VarVec) 
%fPost_xzac returns ac locations and ac shift data at each control point 
%for plotting. 
v=VarVec; 
for i=1:numel(VarVec.cm); 
  dxac(i)=v.dxmac(i); 



120 

 

  dzac(i)=v.dzmac(i); 
  xyzac(i,:)=v.xmq(i,:)+[dxac(i),0,dzac(i)]; 
end 
end 
  
function [ ROT ] = fRotd( i,dihedral ) 
%fRotd creates a rotation matrix from incidence and dihedral angles (given 
%in degrees) 
Rx=[1,0,0;... 
    0,cosd(dihedral),-sind(dihedral);... 
    0,sind(dihedral),cosd(dihedral)]; 
Ry=[cosd(-i),0,sind(-i);0,1,0;-sind(-i),0,cosd(-i)]; 
ROT=Rx*Ry; 
end 
  
function [ G1,iter,conv ] = fsolveG( v_inf,CalcSet,VarVec,Aero,v ) 
%fsolveG executes the basic solver 
  
%% Initial Estimate Linearized System 
for i=1:numel(VarVec.c1) 
  for j=1:numel(VarVec.c1) 
    if i==j 
    F(i,j)=2*fmag(fcross(v_inf,VarVec.dZ{i}))-
VarVec.CLa(i)*fdot(v{i,j},VarVec.un{i}); 
    else 
    F(i,j)=-VarVec.CLa(i)*fdot(v{i,j},VarVec.un{i}); 
    end 
  end 
  H(i,1)=VarVec.CLa(i)*(fdot(v_inf,VarVec.un{i})-VarVec.Ao(i)); 
end 
Gi=inv(F)*H; % Initial Estimate 
R=ones(numel(Gi)); % Initialize Residuals 
G1=Gi; % Set Initial Values 
iter=0; 
while max(abs(R))>CalcSet.Input.ConvTol % check for covnergence 
  iter=iter+1; 
  conv='pass'; 
  if iter > CalcSet.Input.MaxIter; % check for max iterations 
    conv='fail'; 
    break 
  end 
  for i=1:numel(G1) 
    vG=[0;0;0]; 
    for j=1:numel(G1) 
      vG=vG+transpose(v{i,j})*G1(j); 
    end 
    vG=v_inf+vG; 
    w{i}=fcross(vG,VarVec.dZ{i}); 
    vn(i)=fdot(vG,VarVec.un{i}); 
    va(i)=fdot(vG,VarVec.ua{i}); 
    alpha(i)=atan2(vn(i),va(i))*180/pi; 
    afid=VarVec.AFID(i); 
    bf=VarVec.bfm(i); 
    clsp1=spline(Aero.Polar1{afid}.AoA,Aero.Polar1{afid}.Cl); 
    clsp2=spline(Aero.Polar2{afid}.AoA,Aero.Polar2{afid}.Cl); 



121 

 

    cl1=ppval(clsp1,alpha(i)); 
    cl2=ppval(clsp2,alpha(i)); 
    cl(i)=cl1*(1-bf)+cl2*bf; 
    cnsp1=spline(Aero.Polar1{afid}.AoA,Aero.Polar1{afid}.Cnp); 
    cnsp2=spline(Aero.Polar2{afid}.AoA,Aero.Polar2{afid}.Cnp); 
    cn1=ppval(cnsp1,alpha(i)); 
    cn2=ppval(cnsp2,alpha(i)); 
    cn(i)=cn1*(1-bf)+cn2*bf;     
    if alpha(i)>179 
      da=2*pi/180; 
      cl11=ppval(clsp1,180); 
      cl12=ppval(clsp1,179); 
      cl21=ppval(clsp2,180); 
      cl22=ppval(clsp2,179); 
      dcl1=(cl11-cl12)/da; 
      dcl2=(cl21-cl22)/da; 
      dcl(i)=dcl1*(1-bf)+dcl2*bf;       
    elseif alpha(i)<-179 
      da=2*pi/180; 
      cl11=ppval(clsp1,-179); 
      cl12=ppval(clsp1,-180); 
      cl21=ppval(clsp2,-179); 
      cl22=ppval(clsp2,-180); 
      dcl1=(cl11-cl12)/da; 
      dcl2=(cl21-cl22)/da; 
      dcl(i)=dcl1*(1-bf)+dcl2*bf;         
    else 
      da=2*pi/180; 
      cl11=ppval(clsp1,alpha(i)+1); 
      cl12=ppval(clsp1,alpha(i)-1); 
      cl21=ppval(clsp2,alpha(i)+1); 
      cl22=ppval(clsp2,alpha(i)-1); 
      dcl1=(cl11-cl12)/da; 
      dcl2=(cl21-cl22)/da; 
      dcl(i)=dcl1*(1-bf)+dcl2*bf; 
    end 
    F1(i)=2*fmag(w{i})*G1(i)-cl(i); 
    wx(i)=w{i}(1); 
    wy(i)=w{i}(2); 
    wz(i)=w{i}(3); 
    wmag(i)=fmag(w{i}); 
    for j=1:numel(G1) 
      J(i,j)=fdot(2*w{i},fcross(v{i,j},VarVec.dZ{i}))/fmag(w{i})*G1(i)-... 
        dcl(i)*((va(i))*fdot(v{i,j},VarVec.un{i})-... 
        (vn(i))*fdot(v{i,j},VarVec.ua{i}))/(va(i)^2+vn(i)^2); 
      if i==j 
        J(i,j)=J(i,j)+2*fmag(w{i}); 
      end 
    end 
  end 
    R=-transpose(F1); 
    dG=inv(J)*R; 
    G1=G1+CalcSet.Input.Relax*dG; 
end 
end 



122 

 

  
function [ unROT ] = funRotd( i,dihedral ) 
%funRotd creates a rotation matrix for rotating local normal and axial forces 
into the global axis 
Rx=[1,0,0;... 
    0,cosd(-dihedral),-sind(-dihedral);... 
    0,sind(-dihedral),cosd(-dihedral)]; 
Ry=[cosd(i),0,sind(i);0,1,0;-sind(i),0,cosd(i)]; 
unROT=Ry*Rx; 
end 
  
function [VarVec,OpCon,Geo]=fVariables(Geo,Aero,OpCon,CalcSet) 
%% fVariables calculates variable vectors for the lifting line solvers 
gp=Geo.Panel; 
gi=Geo.Input; 
oi=OpCon.Input; 
csi=CalcSet.Input; 
ap1=Aero.Polar1; 
ap2=Aero.Polar2; 
[n,m]=size(gp.C1); 
b=2*gi.Xt{end}(2); 
c0=gi.cr(1); 
k=1; 
k1=1; 
for i=1:m 
  [x1,x2,xm,bf] = fVectorCosSpace(gp.X1{i},gp.X2{i},ceil(csi.N*gp.PtDen(i))); 
  [m1,n1]=size(x1); 
  for j=1:m1 
    if j==1 && i==1  
    VarVec.index(k1)=k; 
    k1=k1+1; 
    end 
    if j==m1 
    VarVec.index(k1)=k; 
    k1=k1+1; 
    end   
    VarVec.x1{k}=x1(j,:); 
    VarVec.x2{k}=x2(j,:); 
    VarVec.xm{k}=xm(j,:); 
    VarVec.ds(k)=sqrt((x2(j,2)-x1(j,2))^2+(x2(j,3)-x1(j,3))^2); 
    VarVec.dsm(k)=sqrt((xm(j,2)-x1(j,2))^2+(xm(j,3)-x1(j,3))^2); 
    VarVec.dl{k}=VarVec.x2{k}-VarVec.x1{k}; 
    VarVec.bf1(k)=bf.one(j); 
    VarVec.bf2(k)=bf.two(j); 
    VarVec.bfm(k)=bf.m(j); 
    VarVec.eta1(k)=2*x1(j,2)/b; 
    VarVec.eta2(k)=2*x2(j,2)/b; 
    VarVec.etam(k)=2*xm(j,2)/b; 
    if strcmp(csi.CDist,'Linear')==1 
      VarVec.c1(k)=gp.C1(i)*(1-VarVec.bf1(k))+gp.C2(i)*VarVec.bf1(k); 
      VarVec.c2(k)=gp.C1(i)*(1-VarVec.bf2(k))+gp.C2(i)*VarVec.bf2(k); 
      
VarVec.cm(k)=2/3*(VarVec.c1(k)^2+VarVec.c1(k)*VarVec.c2(k)+VarVec.c2(k)^2)/(V
arVec.c1(k)+VarVec.c2(k)); 
    else 



123 

 

      VarVec.c1(k)=c0*sqrt(1-VarVec.eta1(k)^2); 
      VarVec.c2(k)=c0*sqrt(1-VarVec.eta2(k)^2); 
      
VarVec.cm(k)=2/3*(VarVec.c1(k)^2+VarVec.c1(k)*VarVec.c2(k)+VarVec.c2(k)^2)/(V
arVec.c1(k)+VarVec.c2(k));       
    end 
    VarVec.dA(k)=(VarVec.c1(k)+VarVec.c2(k))/2*VarVec.ds(k); 
    VarVec.dZ{k}=VarVec.cm(k)*VarVec.dl{k}/VarVec.dA(k); 
    VarVec.i1(k)=gp.i1(i)*(1-VarVec.bf1(k))+gp.i2(i)*VarVec.bf1(k); 
    VarVec.i2(k)=gp.i1(i)*(1-VarVec.bf2(k))+gp.i2(i)*VarVec.bf2(k); 
    VarVec.im(k)=gp.i1(i)*(1-VarVec.bfm(k))+gp.i2(i)*VarVec.bfm(k); 
    VarVec.dm(k)=atan2((VarVec.x2{k}(3)-VarVec.x1{k}(3)),(VarVec.x2{k}(2)-
VarVec.x1{k}(2)))*180/pi; 
    VarVec.un{k}=fRotd(VarVec.im(k),VarVec.dm(k))*[0;0;-1]; 
    VarVec.ua{k}=fRotd(VarVec.im(k),VarVec.dm(k))*[1;0;0]; 
    VarVec.us{k}=fcross(VarVec.ua{k},VarVec.un{k}); 
    VarVec.CLa(k)=ap1{i}.CLalpha.rad*(1-
VarVec.bfm(k))+ap2{i}.CLalpha.rad*VarVec.bfm(k); 
    VarVec.Ao(k)=ap1{i}.Alpha0.rad*(1-
VarVec.bfm(k))+ap2{i}.Alpha0.rad*VarVec.bfm(k); 
    VarVec.PID(k)=gp.ID(i); 
    VarVec.AFID(k)=i; 
    if VarVec.cm(k)<0.1 
      VarVec.cm(k)=0.1; 
    end 
    if VarVec.c1(k)<0.1 
      VarVec.c1(k)=0.1; 
    end 
    if VarVec.c2(k)<0.1 
      VarVec.c2(k)=0.1; 
    end     
    k=k+1; 
  end 
end 
%% Save Quarter Chord Locations 
for i=1:numel(VarVec.x1) 
  VarVec.x1q(i,1)=VarVec.x1{i}(1); 
  VarVec.x1q(i,2)=VarVec.x1{i}(2); 
  VarVec.x1q(i,3)=VarVec.x1{i}(3); 
  VarVec.x2q(i,1)=VarVec.x2{i}(1); 
  VarVec.x2q(i,2)=VarVec.x2{i}(2); 
  VarVec.x2q(i,3)=VarVec.x2{i}(3); 
  VarVec.xmq(i,1)=VarVec.xm{i}(1); 
  VarVec.xmq(i,2)=VarVec.xm{i}(2); 
  VarVec.xmq(i,3)=VarVec.xm{i}(3);  
end 
%% Create Span Dimension 
S=sum(VarVec.ds)/2; 
for i=1:numel(VarVec.x1) 
  if i==1 
    VarVec.s1(i)=-S; 
  else 
    VarVec.s1(i)=VarVec.s2(i-1); 
  end 
  VarVec.s2(i)=VarVec.s1(i)+VarVec.ds(i); 



124 

 

  VarVec.sm(i)=VarVec.s1(i)+VarVec.dsm(i);     
end 
%% Create AC Shift 
for i=1:numel(VarVec.index) 
  if i==1 
  c(i)=Geo.Panel.C1(i); 
  Geo.Panel.dthetaxy(i)=2*(Geo.Panel.thetaxy(1)); 
  Geo.Panel.dthetayz(i)=2*(Geo.Panel.thetayz(1)); 
  elseif i==numel(VarVec.index) 
  c(i)=Geo.Panel.C2(end);   
  Geo.Panel.dthetaxy(i)=-2*(Geo.Panel.thetaxy(end)); 
  Geo.Panel.dthetayz(i)=-2*(Geo.Panel.thetayz(end)); 
  else 
  c(i)=Geo.Panel.C1(i);   
  Geo.Panel.dthetaxy(i)=(Geo.Panel.thetaxy(i)-Geo.Panel.thetaxy(i-1)); 
  Geo.Panel.dthetayz(i)=(Geo.Panel.thetayz(i)-Geo.Panel.thetayz(i-1)); 
  end 
  Geo.Panel.dxac(i)=Geo.Panel.dthetaxy(i)/720*c(i); 
  Geo.Panel.dzac(i)=Geo.Panel.dthetayz(i)/720*c(i); 
end 
for i=1:numel(VarVec.index) 
  if i==1 
    Sref=VarVec.s1(1); 
  else 
    Sref=VarVec.s2(VarVec.index(i)); 
  end 
  if abs(Geo.Panel.dthetaxy(i))<0.01 
    Px=0; 
  else 
    Px=720/Geo.Panel.dthetaxy(i)*tand(Geo.Panel.dthetaxy(i)/2); 
  end 
  if abs(Geo.Panel.dthetayz(i))<0.01 
    Pz=0; 
  else 
    Pz=720/Geo.Panel.dthetayz(i)*tand(Geo.Panel.dthetayz(i)/2); 
  end   
  for j=1:numel(VarVec.s1) 
    if isnan(Pz)==1 
      break 
    end 
  VarVec.Lambdax1(j,i)=sqrt(1+(Px*abs(VarVec.s1(j)-Sref)/c(i))^2)-
(Px*abs(VarVec.s1(j)-Sref)/c(i)); 
  VarVec.Lambdax2(j,i)=sqrt(1+(Px*abs(VarVec.s2(j)-Sref)/c(i))^2)-
(Px*abs(VarVec.s2(j)-Sref)/c(i)); 
  VarVec.Lambdaxm(j,i)=sqrt(1+(Px*abs(VarVec.sm(j)-Sref)/c(i))^2)-
(Px*abs(VarVec.sm(j)-Sref)/c(i)); 
  VarVec.Lambdaz1(j,i)=sqrt(1+(Pz*abs(VarVec.s1(j)-Sref)/c(i))^2)-
(Pz*abs(VarVec.s1(j)-Sref)/c(i)); 
  VarVec.Lambdaz2(j,i)=sqrt(1+(Pz*abs(VarVec.s2(j)-Sref)/c(i))^2)-
(Pz*abs(VarVec.s2(j)-Sref)/c(i)); 
  VarVec.Lambdazm(j,i)=sqrt(1+(Pz*abs(VarVec.sm(j)-Sref)/c(i))^2)-
(Pz*abs(VarVec.sm(j)-Sref)/c(i)); 
  end 
end 
[m,n]=size(VarVec.Lambdax1); 



125 

 

VarVec.dx1ac=zeros(m,1); 
VarVec.dz1ac=zeros(m,1); 
VarVec.dx2ac=zeros(m,1); 
VarVec.dz2ac=zeros(m,1); 
VarVec.dxmac=zeros(m,1); 
VarVec.dzmac=zeros(m,1); 
for i=1:n 
  VarVec.dx1ac=VarVec.dx1ac+Geo.Panel.dxac(i)*VarVec.Lambdax1(:,i); 
  VarVec.dz1ac=VarVec.dz1ac+Geo.Panel.dzac(i)*VarVec.Lambdaz1(:,i); 
  VarVec.dx2ac=VarVec.dx2ac+Geo.Panel.dxac(i)*VarVec.Lambdax2(:,i); 
  VarVec.dz2ac=VarVec.dz2ac+Geo.Panel.dzac(i)*VarVec.Lambdaz2(:,i);   
  VarVec.dxmac=VarVec.dxmac+Geo.Panel.dxac(i)*VarVec.Lambdaxm(:,i); 
  VarVec.dzmac=VarVec.dzmac+Geo.Panel.dzac(i)*VarVec.Lambdazm(:,i); 
end 
for i=1:numel(VarVec.x1) 
  VarVec.x1{i}(1)=VarVec.x1{i}(1)+ VarVec.dx1ac(i); 
  VarVec.x2{i}(1)=VarVec.x2{i}(1)+ VarVec.dx2ac(i); 
  VarVec.xm{i}(1)=VarVec.xm{i}(1)+ VarVec.dxmac(i); 
  VarVec.x1{i}(3)=VarVec.x1{i}(3)+ VarVec.dz1ac(i); 
  VarVec.x2{i}(3)=VarVec.x2{i}(3)+ VarVec.dz2ac(i); 
  VarVec.xm{i}(3)=VarVec.xm{i}(3)+ VarVec.dzmac(i);   
end 
% for k=1:numel(VarVec.c1) 
%     VarVec.dl{k}=VarVec.x2{k}-VarVec.x1{k}; 
%     VarVec.dZ{k}=VarVec.cm(k)*VarVec.dl{k}/VarVec.dA(k); 
%     VarVec.dm(k)=atan2((VarVec.x2{k}(3)-VarVec.x1{k}(3)),(VarVec.x2{k}(2)-
VarVec.x1{k}(2)))*180/pi; 
%     VarVec.un{k}=fRotd(VarVec.im(k),VarVec.dm(k))*[0;0;-1]; 
%     VarVec.ua{k}=fRotd(VarVec.im(k),VarVec.dm(k))*[1;0;0]; 
%     VarVec.us{k}=fcross(VarVec.ua{k},VarVec.un{k}); 
% end 
end 
  
function [ x1,x2,xm,bf ] = fVectorCosSpace( X1,X2,N ) 
%% fVectorCosSpace computes a series of N points using a cosine distribution 
%along the vector between X1 and X2. 
X12=X2-X1; 
aspace1=[0:pi/(N):pi]; 
aspace2=[pi/(2*(N)):pi/(N):pi-pi/(2*(N))]; 
Lspace=(1-cos(aspace1))/2; 
Mspace=(1-cos(aspace2))/2; 
X(:,1)=X1(1)+Lspace.*X12(1); 
X(:,2)=X1(2)+Lspace.*X12(2); 
X(:,3)=X1(3)+Lspace.*X12(3); 
Y(:,1)=X1(1)+Mspace.*X12(1); 
Y(:,2)=X1(2)+Mspace.*X12(2); 
Y(:,3)=X1(3)+Mspace.*X12(3); 
x1=X(1:end-1,:); 
x2=X(2:end,:); 
xm=Y; 
bf.m=Mspace; 
bf.one=Lspace(1:end-1); 
bf.two=Lspace(2:end); 
end 
  



126 

 

function [ v ] = fveolocity( VarVec,v_inf ) 
%fveolocity creates the non-dimensional velocity vectors 
vv=VarVec; 
for i=1:numel(vv.c1) 
  for j=1:numel(vv.c1) 
    r1=vv.x1{j}-vv.xm{i}; 
    r2=vv.x2{j}-vv.xm{i}; 
    R1=fmag(r1); 
    R2=fmag(r2); 
    v1=fcross(v_inf,r2)/(R2*(R2-fdot(v_inf,r2))); 
    v2=fcross(v_inf,r1)/(R1*(R1-fdot(v_inf,r1))); 
    if i~=j 
      v3=(R1+R2)*fcross(r1,r2)/(R1*R2*(R1*R2+fdot(r1,r2))); 
    else 
      v3=0; 
    end 
    v{i,j}=vv.cm(j)/(4*pi)*(v1-v2+v3); 
  end 
end 
  
end 
  
function polymodel = polyfitn(indepvar,depvar,modelterms) 
% polyfitn: fits a general polynomial regression model in n dimensions 
% usage: polymodel = polyfitn(indepvar,depvar,modelterms) 
% Author: John D'Errico 
% Release: 2.0 
% Downloaded from Matlab File Exchange on 10/19/2013 
% Polyfitn fits a polynomial regression model of one or more 
% independent variables, of the general form: 
% 
%   z = f(x,y,...) + error 
% 
% arguments: (input) 
%  indepvar - (n x p) array of independent variables as columns 
%        n is the number of data points 
%        p is the dimension of the independent variable space 
% 
%        IF n == 1, then I will assume there is only a 
%        single independent variable. 
% 
%  depvar   - (n x 1 or 1 x n) vector - dependent variable 
%        length(depvar) must be n. 
% 
%        Only 1 dependent variable is allowed, since I also 
%        return statistics on the model. 
% 
%  modelterms - defines the terms used in the model itself 
% 
%        IF modelterms is a scalar integer, then it designates 
%           the overall order of the model. All possible terms 
%           up to that order will be employed. Thus, if order 
%           is 2 and p == 2 (i.e., there are two variables) then 
%           the terms selected will be: 
% 



127 

 

%              {constant, x, x^2, y, x*y, y^2} 
% 
%           Beware the consequences of high order polynomial 
%           models. 
% 
%        IF modelterms is a (k x p) numeric array, then each 
%           row of this array designates the exponents of one 
%           term in the model. Thus to designate a model with 
%           the above list of terms, we would define modelterms as 
%            
%           modelterms = [0 0;1 0;2 0;0 1;1 1;0 2] 
% 
%        If modelterms is a character string, then it will be 
%           parsed as a list of terms in the regression model. 
%           The terms will be assume to be separated by a comma 
%           or by blanks. The variable names used must be legal 
%           matlab variable names. Exponents in the model may 
%           may be any real number, positive or negative. 
% 
%           For example, 'constant, x, y, x*y, x^2, x*y*y' 
%           will be parsed as a model specification as if you 
%           had supplied: 
%           modelterms = [0 0;1 0;0 1;1 1;2 0;1 2] 
%            
%           The word 'constant' is a keyword, and will denote a 
%           constant terms in the model. Variable names will be 
%           sorted in alphabetical order as defined by sort. 
%           This order will assign them to columns of the 
%           independent array. Note that 'xy' will be parsed as 
%           a single variable name, not as the product of x and y. 
% 
%        If modelterms is a cell array, then it will be taken 
%           to be a list of character terms. Similarly, 
%            
%           {'constant', 'x', 'y', 'x*y', 'x^2', 'x*y^-1'} 
% 
%           will be parsed as a model specification as if you 
%           had supplied: 
% 
%           modelterms = [0 0;1 0;0 1;1 1;2 0;1 -1] 
% 
% Arguments: (output) 
%  polymodel - A structure containing the regression model 
%        polymodel.ModelTerms = list of terms in the model 
%        polymodel.Coefficients = regression coefficients 
%        polymodel.ParameterVar = variances of model coefficients 
%        polymodel.ParameterStd = standard deviation of model coefficients 
%        polymodel.R2 = R^2 for the regression model 
%        polymodel.AdjustedR2 = Adjusted R^2 for the regression model 
%        polymodel.RMSE = Root mean squared error 
%        polymodel.VarNames = Cell array of variable names 
%           as parsed from a char based model specification. 
%   
%        Note 1: Because the terms in a general polynomial 
%        model can be arbitrarily chosen by the user, I must 



128 

 

%        package the erms and coefficients together into a 
%        structure. This also forces use of a special evaluation 
%        tool: polyvaln. 
% 
%        Note 2: A polymodel can be evaluated for any set 
%        of values with the function polyvaln. However, if 
%        you wish to manipulate the result symbolically using 
%        my own sympoly tools, this structure can be converted 
%        to a sympoly using the function polyn2sympoly. 
% 
%        Note 3: When no constant term is included in the model, 
%        the traditional R^2 can be negative. This case is 
%        identified, and then a more appropriate computation 
%        for R^2 is then used. 
% 
%        Note 4: Adjusted R^2 accounts for changing degrees of 
%        freedom in the model. It CAN be negative, and will always 
%        be less than the traditional R^2 values. 
% 
% Find my sympoly toolbox here: 
% 
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=9577
&objectType=FILE 
% 
% See also: polyvaln, polyfit, polyval, polyn2sympoly, sympoly 
% 
% Author: John D'Errico 
% Release: 2.0 
% Release date: 2/19/06 
  
if nargin<1 
  help polyfitn 
  return 
end 
  
% get sizes, test for consistency 
[n,p] = size(indepvar); 
if n == 1 
  indepvar = indepvar'; 
  [n,p] = size(indepvar); 
end 
[m,q] = size(depvar); 
if m == 1 
  depvar = depvar'; 
  [m,q] = size(depvar); 
end 
% only 1 dependent variable allowed at a time 
if q~=1 
  error 'Only 1 dependent variable allowed at a time.' 
end 
  
if n~=m 
  error 'indepvar and depvar are of inconsistent sizes.' 
end 
  



129 

 

% Automatically scale the independent variables to unit variance 
stdind = sqrt(diag(cov(indepvar))); 
if any(stdind==0) 
  warning 'Constant terms in the model must be entered using modelterms' 
  stdind(stdind==0) = 1; 
end 
% scaled variables 
indepvar_s = indepvar*diag(1./stdind); 
  
% do we need to parse a supplied model? 
if iscell(modelterms) || ischar(modelterms) 
  [modelterms,varlist] = parsemodel(modelterms,p); 
  if size(modelterms,2) < p 
    modelterms = [modelterms, zeros(size(modelterms,1),p - 
size(modelterms,2))]; 
  end   
elseif length(modelterms) == 1 
  % do we need to generate a set of modelterms? 
  [modelterms,varlist] = buildcompletemodel(modelterms,p); 
elseif size(modelterms,2) ~= p 
  error 'ModelTerms must be a scalar or have the same # of columns as 
indepvar' 
end 
nt = size(modelterms,1); 
  
% check for replicate terms  
if nt>1 
  mtu = unique(modelterms,'rows'); 
  if size(mtu,1)<nt 
    warning 'Replicate terms identified in the model.' 
  end 
end 
  
% build the design matrix 
M = ones(n,nt); 
scalefact = ones(1,nt); 
for i = 1:nt 
  for j = 1:p 
    M(:,i) = M(:,i).*indepvar_s(:,j).^modelterms(i,j); 
    scalefact(i) = scalefact(i)/(stdind(j)^modelterms(i,j)); 
  end 
end 
  
% estimate the model using QR. do it this way to provide a 
% covariance matrix when all done. Use a pivoted QR for 
% maximum stability. 
[Q,R,E] = qr(M,0); 
  
polymodel.ModelTerms = modelterms; 
polymodel.Coefficients(E) = R\(Q'*depvar); 
yhat = M*polymodel.Coefficients(:); 
  
% recover the scaling 
polymodel.Coefficients=polymodel.Coefficients.*scalefact; 



130 

 

  
% variance of the regression parameters 
s = norm(depvar - yhat); 
if n > nt 
  Rinv = R\eye(nt); 
  Var(E) = s^2*sum(Rinv.^2,2)/(n-nt); 
  polymodel.ParameterVar = Var.*(scalefact.^2); 
  polymodel.ParameterStd = sqrt(polymodel.ParameterVar); 
else 
  % we cannot form variance or standard error estimates 
  % unless there are at least as many data points as 
  % parameters to estimate. 
  polymodel.ParameterVar = inf(1,nt); 
  polymodel.ParameterStd = inf(1,nt); 
end 
  
% R^2 
% is there a constant term in the model? If not, then 
% we cannot use the standard R^2 computation, as it 
% frequently yields negative values for R^2. 
if any((M(1,:) ~= 0) & all(diff(M,1,1) == 0,1)) 
  % we have a constant term in the model, so the 
  % traditional %R^2 form is acceptable. 
  polymodel.R2 = max(0,1 - (s/norm(depvar-mean(depvar)) )^2); 
  % compute adjusted R^2, taking into account the number of 
  % degrees of freedom 
  polymodel.AdjustedR2 = 1 - (1 - polymodel.R2).*((n - 1)./(n - nt)); 
else 
  % no constant term was found in the model 
  polymodel.R2 = max(0,1 - (s/norm(depvar))^2); 
  % compute adjusted R^2, taking into account the number of 
  % degrees of freedom 
  polymodel.AdjustedR2 = 1 - (1 - polymodel.R2).*(n./(n - nt)); 
end 
  
% RMSE 
polymodel.RMSE = sqrt(mean((depvar - yhat).^2)); 
  
% if a character 'model' was supplied, return the list 
% of variables as parsed out 
polymodel.VarNames = varlist; 
end 
% ================================================== 
% =============== begin subfunctions =============== 
% ================================================== 
function [modelterms,varlist] = buildcompletemodel(order,p) 
%  
% arguments: (input) 
%  order - scalar integer, defines the total (maximum) order  
% 
%  p     - scalar integer - defines the dimension of the 
%          independent variable space 
% 
% arguments: (output) 
%  modelterms - exponent array for the model 



131 

 

% 
%  varlist - cell array of character variable names 
  
% build the exponent array recursively 
if p == 0 
  % terminal case 
  modelterms = []; 
elseif (order == 0) 
  % terminal case 
  modelterms = zeros(1,p); 
elseif (p==1) 
  % terminal case 
  modelterms = (order:-1:0)'; 
else 
  % general recursive case 
  modelterms = zeros(0,p); 
  for k = order:-1:0 
    t = buildcompletemodel(order-k,p-1); 
    nt = size(t,1); 
    modelterms = [modelterms;[repmat(k,nt,1),t]]; 
  end 
end 
  
% create a list of variable names for the variables on the fly 
varlist = cell(1,p); 
for i = 1:p 
  varlist{i} = ['X',num2str(i)]; 
end 
end 
  
% ================================================== 
function [modelterms,varlist] = parsemodel(model,p); 
%  
% arguments: (input) 
%  model - character string or cell array of strings 
% 
%  p     - number of independent variables in the model 
% 
% arguments: (output) 
%  modelterms - exponent array for the model 
  
modelterms = zeros(0,p); 
if ischar(model) 
  model = deblank(model); 
end 
  
varlist = {}; 
while ~isempty(model) 
  if iscellstr(model) 
    term = model{1}; 
    model(1) = []; 
  else 
    [term,model] = strtok(model,' ,'); 
  end 



132 

 

   
  % We've stripped off a model term. Now parse it. 
   
  % Is it the reserved keyword 'constant'? 
  if strcmpi(term,'constant') 
    modelterms(end+1,:) = 0; 
  else 
    % pick this term apart 
    expon = zeros(1,p); 
    while ~isempty(term) 
      vn = strtok(term,'*/^. ,'); 
      k = find(strncmp(vn,varlist,length(vn))); 
      if isempty(k) 
        % its a variable name we have not yet seen 
         
        % is it a legal name? 
        nv = length(varlist); 
        if ismember(vn(1),'1234567890_') 
          error(['Variable is not a valid name: ''',vn,'''']) 
        elseif nv>=p 
          error 'More variables in the model than columns of indepvar' 
        end 
         
        varlist{nv+1} = vn; 
         
        k = nv+1; 
      end 
      % variable must now be in the list of vars.  
       
      % drop that variable from term 
      i = strfind(term,vn); 
      term = term((i+length(vn)):end); 
       
      % is there an exponent? 
      eflag = false; 
      if strncmp('^',term,1) 
        term(1) = []; 
        eflag = true; 
      elseif strncmp('.^',term,2) 
        term(1:2) = []; 
        eflag = true; 
      end 
  
      % If there was one, get it 
      ev = 1; 
      if eflag 
        ev = sscanf(term,'%f'); 
        if isempty(ev) 
            error 'Problem with an exponent in parsing the model' 
        end 
      end 
      expon(k) = expon(k) + ev; 
  
      % next monomial subterm? 



133 

 

      k1 = strfind(term,'*'); 
      if isempty(k1) 
        term = ''; 
      else 
        term(k1(1)) = ' '; 
      end 
       
    end 
   
    modelterms(end+1,:) = expon;   
     
  end 
   
end 
  
% Once we have compiled the list of variables and 
% exponents, we need to sort them in alphabetical order 
[varlist,tags] = sort(varlist); 
modelterms = modelterms(:,tags); 
  
end 
  
 function [ Polar, Dist,Coord ] = XfoilUltra( Airfoil,M,Re,Ncrit,cfc,df,AR ) 
%XfoilUltra is the call function for a matlab based xfoil interface. 
%Extreme angle of attack data is generated using the Viterna Method and Cp 
%and Cf distributions are estimated using the flat plate assumption when 
%xfoil data is not available.  Make sure that the entire contents of th zip 
%archive are saved in the same directory  as this function. 
% 
  
%% Input Definitions 
%   Airfoil:   This can be either a NACA 4 digit or 5 digit airfoil or an 
%              airfoil saved in the UIUC database included with this code. 
% 
%              Input Format 
%                    NACA 4 Digit: 'NACA nnnn'  ex 'NACA 0012' 
%                    NACA 5 Digit: 'NACA nnnnn' ex 'NACA 23012' 
%                    UIUC Airfoil: 'filename'   ex 'e435' 
% 
%   M:         Mach Number.  This should be less than 0.5 to keep 
%              compressibility corrections to a reasonable level. 
%               
%              Input Format 
%                    m.mmmmmm ex 0.15 
% 
%   R:         Reynolds Number.  This value should be larger than 999,999 
%               
%              Input Format 
%                    rrrrrrrrr ex 1250000 
%                    r.rrrren  ex 1.5e3 
% 
%   Ncrit:     Transition Criteria. 
%                     Situation           Ncrit 
%                     -----------------   ----- 



134 

 

%                     sailplane           12-14 
%                     motorglider         11-13 
%                     clean wind tunnel   10-12 
%                     average wind tunnel     9  (DEFAULT VALUE)  
%                     dirty wind tunnel       4 
%               
%              Input Format 
%                    c.cccccc ex 9.0 
% 
%   cfc:       Control Surface Chord Ratio.  This is the ratio of flap chord 
to total 
%              chord of the control surface.  Set to 0 for normal analysis 
%              or to some value between 0 and 1 for plain control surface 
%              deflection. 
%               
%              Input Format 
%                    f.ffffff ex 0.3 
% 
%   df:        Control Surface Deflection Angle.  Should be kept within +/-15 
degrees  
%              to avoid convergence problems.  Can be up to +/-90 degrees. 
%                           
%              Input Format 
%                    d.dddddd ex 20 
% 
%   AR:        Aspect Ratio.  This is the aspect ratio of the blade used 
%              for the Viterna method extrapolations.  For lifting surface 
%              aerodynamics assume 10 or the aspect ratio of the lifting 
%              surface. 
%                               
%              Input Format 
%                    a.aaaaaa ex 10.5 
% 
% 
%% Output Definitions 
%   Polar:     Lift, Drag, Axial and Normal Force Coefficients due to 
%              pressure and friction for 360 degrees AOA. Polar is a 
%              structured variable with the following fields. AOA<-10 or 
%              AOA>20 are calculated using Viterna Method.  Otherwise data 
%              comes from Xfoil at the specified operating condition. 
%               
%              AoA: Angle of Atack 
%              Cl:  Lift Coefficient 
%              Cd:  Drag Coefficient 
%              Cn:  Normal Force Coefficient 
%              Ca:  Axial Force Coefficient 
%              Cnf: Normal Force due to Friction 
%              Caf: Axial Force due to Friction 
%              Cap: Axial Force due to Pressure 
%              Cnp: Normal Force due to Pressure 
%              Clp: Lift due to Pressure 
%              Clf: Lift due to Friction (assumed to be zero) 
%              Cdp: Drag due to Pressure  
%              Cdf: Drag due to Friction 
%                                          



135 

 

%              Output Format: 
%              All variables are 1D arrays which correspond to the various 
%              values of the AOA array. 
% 
% 
%   Dist:      Distributions for the coefficent of pressure and skin 
%              friction around the specified airfoil at the specified 
operating conditions. 
%              Dist is a structured variable with the following fields. AOA<-
10 or 
%              AOA>20 are assumed constant and calculated from Viterna data.  
Otherwise data 
%              comes from Xfoil. 
%               
%              cp:  Pressure Coefficient 
%              cf:  Skin Friction Coefficient normalized to Uinf not Uinf 
%              of BL. (See XFOIL for more info). 
%                                          
%              Output Format: 
%              All variables are 2D arrays.  The first column are x/c 
%              values and the succesive columns are distributions at x/c 
%              corresponding to the Polar.AOA in order.  
% 
%   Coord:     Airfoil Coordinates. 
%                                          
%              Output Format: 
%              Column 1 is x/c and column 2 is y/c (or z/c). 
% 
%% Sample Call 
% [ Polar, Dist, Coord ] = XfoilUltra( 'NACA 23012',0,1.5e6,9,0,0,10); 
% [ Polar, Dist,Coord ] = XfoilUltra( 'NACA 4412',0.1,3e6,9,0.25,5,10 ); 
%  
%% Define Top Level Function 
format long   
%disp('Running: XfoilUltra') 
[Polar, Dist, Coord] = RunXfoil ( Airfoil,M,Re,Ncrit,cfc,df ); 
% run xfoil 
%disp('Applying: Xfoil Cleanup') 
[ Polar, Dist,Coord ] = CleanUpXfoil( Polar, Dist,Coord ); %clean up xfoil 
results 
%disp('Applying: Viterna Method') 
[ Polar ] = ViternaMethod( Polar,AR ); 
%disp('Applying: Viterna Distributions'); 
[Dist] = ViternaDist( Polar,Dist ); 
[Polar]=LinearAero(Polar); 
[Polar]=Moment(Polar,Dist,Coord); 
%disp('Airfoil Analysis Complete.') 
end 
  
%% Define Subroutines 
% SR1 
function [ Polar,Dist,Coord ] = RunXfoil( Airfoil,M,Re,Ncrit,cfc,df ) 
%RunXfoil Executes Xfoil given Airfoil, M, Re, Ncrit, cfc, and df over a 
%range of angle of attack from -10 to +20 degrees.  All data is written to 
%the working directory, read back in and the files immediately  deleted. 



136 

 

  
%Create Xfoil Input File 
fID= fopen('xfoil.inp','w'); 
  % Determine Airfoil Input Type 
if strncmpi(Airfoil,'NACA ',5)==1 % If NACA Airfoils  
  if numel(Airfoil(6:end))==4 % NACA 4 Digit 
  fprintf(fID,'%4s\n','NACA'); 
  fprintf(fID,'%4s\n',Airfoil(6:end)); 
  elseif numel(Airfoil(6:end))==5 % NACA 5 Digit 
  fprintf(fID,'%4s\n','NACA'); 
  fprintf(fID,'%5s\n',Airfoil(6:end)); 
  else % Error message.   
  disp('Warning: The program only accepts text input for NACA 4 or 5 digit 
airfoils.  Please add coordiantes to database.') 
  disp('Assumption: Ignoring improper airfoil definitions.  Assuming NACA 
0012 Properties.') 
  fprintf(fID,'%4s\n','NACA'); 
  fprintf(fID,'%4s\n','0012');   
  end 
else % If UIUC files 
  file2=horzcat('Airfoil Database\',Airfoil,'.dat'); 
  fid2=fopen(file2); 
  if fid2==-1 % Check for File 
  disp('Warning: Airfoil Not Found.  Please Add Coordinates to Database. 
Assuming NACA 0012 Properties.'); 
  fprintf(fID,'%4s\n','NACA'); 
  fprintf(fID,'%4s\n','0012');  
  else 
  fprintf(fID,'%4s\n','load');   
  fprintf(fID,'%4s\n',file2); 
  end 
  fclose(fid2); 
end 
  % Geometry Assignemnts 
fprintf(fID,'%4s\n','pane'); 
if df~=0 
  fprintf(fID,'%4s\n','gdes'); 
    fprintf(fID,'%4s\n','flap'); 
    fprintf(fID,'%f\n',(1-cfc)); 
    fprintf(fID,'%g\n',999); 
    fprintf(fID,'%f\n',0.5); 
    fprintf(fID,'%f\n',df); 
    fprintf(fID,'%4s\n','exec'); 
    fprintf(fID,'%4s\n',''); 
    fprintf(fID,'%4s\n','pane'); 
end 
  % Operating Parameters 
fprintf(fID,'%4s\n','oper'); 
fprintf(fID,'%4s\n','vpar'); 
fprintf(fID,'%1s\n','n'); 
fprintf(fID,'%f\n',Ncrit); 
fprintf(fID,'%4s\n',''); 
fprintf(fID,'%4s\n','visc'); 
  % Operating Condition 
fprintf(fID,'%f\n',Re); 



137 

 

fprintf(fID,'%1s\n','M'); 
fprintf(fID,'%4f\n',M); 
  % Analysis Parameters 
fprintf(fID,'%9s\n','iter 300'); 
fprintf(fID,'%4s\n','aseq'); 
fprintf(fID,'%1s\n','0'); 
fprintf(fID,'%3s\n','-10'); 
fprintf(fID,'%3s\n','0.5'); 
fprintf(fID,'%4s\n','pacc'); 
  % Set Polar File 
fprintf(fID,'%34s\n','Working Directory\currentpolar.pol'); 
fprintf(fID,'%4s\n',''); 
  % Define AOA's 
astr=cellstr(['-10';'-9 ';'-8 ';'-7 ';'-6 ';'-5 ';'-4 ';'-3 ';'-2 ';'-1 ';'0  
';'1  ';'2  ';'3  ';'4  ';'5  ';'6  ';... 
                      '7  ';'8  ';'9  ';'10 ';'11 ';'12 ';'13 ';'14 ';'15 
';'16 ';'17 ';'18 ';'19 ';'20 ']); 
  % Commands at AOA                  
for i=1:numel(astr); 
  str1M={'a ',astr{i}}; 
  str1=horzcat(str1M{:}); 
  str2M={'Working Directory\a',astr{i},'.cp'}; 
  str2=horzcat(str2M{:}); 
  str3M={'Working Directory\a',astr{i},'.cf'}; 
  str3=horzcat(str3M{:}); 
  fprintf(fID,'%8s\n',str1); 
  fprintf(fID,'%8s\n','cpwr'); 
  fprintf(fID,'%8s\n',str2); 
  fprintf(fID,'%8s\n','dump'); 
  fprintf(fID,'%8s\n',str3); 
end 
  % Clear Buffer and Exit 
fprintf(fID,'%4s\n','pacc'); 
fprintf(fID,'%4s\n',''); 
fprintf(fID,'%4s\n','quit'); 
fclose('all'); 
  
%% Run XFOIL 
[x,y]=system(['xfoil.exe < ' 'xfoil.inp']); 
M=dlmread('Working Directory\currentpolar.pol','',12,0); 
  
%% Read Result Files 
  % Lift and Drag Polars 
Polar.AoA=M(:,1); 
Polar.Cl=M(:,2); 
Polar.Cd=M(:,3); 
Polar.Cdp=M(:,4); 
Polar.Cdf=Polar.Cd-Polar.Cdp; 
Polar.Clf=zeros(numel(Polar.AoA),1); 
Polar.Clp=Polar.Cl; 
Polar.Cn=Polar.Cl.*cosd(Polar.AoA)+Polar.Cd.*sind(Polar.AoA); 
Polar.Cnp=Polar.Clp.*cosd(Polar.AoA)+Polar.Cdp.*sind(Polar.AoA); 
Polar.Cnf=Polar.Clf.*cosd(Polar.AoA)+Polar.Cdf.*sind(Polar.AoA); 
Polar.Ca=-Polar.Cl.*sind(Polar.AoA)+Polar.Cd.*cosd(Polar.AoA); 
Polar.Cap=-Polar.Clp.*sind(Polar.AoA)+Polar.Cdp.*cosd(Polar.AoA); 



138 

 

Polar.Caf=-Polar.Clf.*sind(Polar.AoA)+Polar.Cdf.*cosd(Polar.AoA); 
for i=1:numel(astr); 
  str1M={'Working Directory\a',astr{i},'.cp'}; 
  Mat1=dlmread(horzcat(str1M{:}),'',1,0); 
  if i==1 
  Dist.cp(:,1)=Mat1(:,1); %x/c 
  end 
  Dist.cp(:,i+1)=Mat1(:,2); %cp 
  clear Mat1; 
  str2M={'Working Directory\a',astr{i},'.cf'}; 
  Mat2=dlmread(horzcat(str2M{:}),'',1,0); 
  if i==1 
  iTE=160; 
  Coord=Mat2(1:iTE,2:3); %x/c 
  Dist.cf(:,1)= Mat2(1:iTE,2); %x/c 
  end 
  Dist.cf(:,i+1)=Mat2(1:iTE,7); 
  clear Mat2 
end 
LEcp=find(Dist.cp(:,1)==0); 
if isempty(LEcp)==1 % if x/c zero does not exist in Dist.cp 
  iLEcp=find(Dist.cp(:,1)==min(Dist.cp(:,1))); 
  if numel(iLEcp)>1 % if x/c min is not uniqe insert zero between 
    Dcp=Dist.cp; 
    clear Dist.cp; 
    M1=Dcp(1:iLEcp(1),:); 
    M3=Dcp(iLEcp(2):end,:); 
    M2=(M1(end,:)+M3(1,:))/2+0.000001; 
    M2(1,1)=0; 
    Dist.cp=[M1;M2;M3]; 
  else % if x/c min is unique insert zero after 
    Dcp=Dist.cp; 
    clear Dist.cp; 
    M1=Dcp(1:iLEcp,:); 
    M3=Dcp(iLEcp+1:end,:); 
    M2=(M1(end,:)+M3(1,:))/2+0.000001; 
    M2(1,1)=0; 
    Dist.cp=[M1;M2;M3]; 
  end 
end 
LEcf=find(Dist.cf(:,1)==0); 
if isempty(LEcf)==1 % if x/c zero does not exist in Dist.cp 
  iLEcf=find(Dist.cf(:,1)==min(Dist.cf(:,1))); 
  if numel(iLEcf)>1 % if x/c min is not uniqe insert zero between 
    Dcf=Dist.cf; 
    clear Dist.cf; 
    clear M1 M2 M3 
    M1=Dcf(1:iLEcf(1),:); 
    M3=Dcf(iLEcf(2):end,:); 
    M2=(M1(end,:)+M3(1,:))/2+0.00000001; 
    M2(1,1)=0; 
    Dist.cf=[M1;M2;M3]; 
  else % if x/c min is unique insert zero after 
    Dcf=Dist.cf; 
    clear Dist.cf; 



139 

 

    clear M1 M2 M3 
    M1=Dcf(1:iLEcf,:); 
    M3=Dcf(iLEcf+1:end,:); 
    M2=(M1(end,:)+M3(1,:))/2+0.00000001; 
    M2(1,1)=0; 
    Dist.cf=[M1;M2;M3]; 
  end 
end 
%% Clear Working Directory 
delete('Working Directory/*.cp') 
delete('Working Directory/*.cf') 
delete('Working Directory/*.pol') 
end 
  
%SR2 
function [ Polar, Dist,Coord ] = CleanUpXfoil( Polar, Dist,Coord) 
%CleanUpXfoil checks Polar and Dist for erroneous output and corrects the 
%data if necessary (and possible). 
%% Curve Fit Polar Data 
clspline=spline(Polar.AoA,Polar.Cl); 
cdspline=spline(Polar.AoA,Polar.Cd); 
cnspline=spline(Polar.AoA,Polar.Cn); 
caspline=spline(Polar.AoA,Polar.Ca); 
cdpspline=spline(Polar.AoA,Polar.Cdp); 
cdfspline=spline(Polar.AoA,Polar.Cdf); 
clfspline=spline(Polar.AoA,Polar.Clf); 
clpspline=spline(Polar.AoA,Polar.Clp); 
capspline=spline(Polar.AoA,Polar.Cap); 
cafspline=spline(Polar.AoA,Polar.Caf); 
cnfspline=spline(Polar.AoA,Polar.Cnf); 
cnpspline=spline(Polar.AoA,Polar.Cnp); 
%% Find Failed Convergence From Missing AOAs in Polar 
AOA_Check=[-10:20]; 
TF=ismember(AOA_Check,Polar.AoA);  
j=1; 
k=1; 
for i=1:numel(TF) 
  if TF(i)==0 
    missingindex(j)=i; 
    j=j+1; 
  else 
    gotitindex(k)=i; 
    k=k+1; 
  end 
end 
firstgotit=gotitindex(1); 
lastgotit=gotitindex(end); 
  
%% Extrapolate/Interpolate Data To Missing Points 
for i=1:numel(TF) 
  if TF(i)==0 
    clear Polar 
    Polar.AoA=AOA_Check; 
    Polar.Cl=ppval(clspline,Polar.AoA); 
    Polar.Cd=ppval(cdspline,Polar.AoA); 



140 

 

    Polar.Cn=ppval(cnspline,Polar.AoA); 
    Polar.Ca=ppval(caspline,Polar.AoA); 
    Polar.Clp=ppval(clpspline,Polar.AoA); 
    Polar.Clf=ppval(clfspline,Polar.AoA);  
    Polar.Cdp=ppval(cdpspline,Polar.AoA); 
    Polar.Cdf=ppval(cdfspline,Polar.AoA); 
    Polar.Cnp=ppval(cnpspline,Polar.AoA); 
    Polar.Cnf=ppval(cnfspline,Polar.AoA);  
    Polar.Cap=ppval(capspline,Polar.AoA); 
    Polar.Caf=ppval(cafspline,Polar.AoA); 
    break 
  end 
end 
  
%% Scale Pressure Distribution To Match Polar.Cl 
  % Check for LE at 0,0 in cp dist 
  % Check for LE at 0,0 in Coord 
  LE=find(Coord(:,1)==0); 
  if isempty(LE)==1 %correct if no LE 
    iLEmin=find(Coord(:,1)==min(Coord(:,1))); 
    if Coord(iLEmin,2)>0 
    Matup=Coord(1:iLEmin,:); 
    Matmid=[0,0]; 
    Matlo=Coord(iLEmin+1:end,:); 
    clear Coord 
    Coord=[Matup;Matmid;Matlo]; 
    else 
    Matup=Coord(1:iLEmin,:); 
    Matmid=[0,0]; 
    Matlo=Coord(iLEmin+1:end,:); 
    clear Coord 
    Coord=[Matup;Matmid;Matlo];       
    end 
  end 
 % Scale cp to match cnp and cf to match caf 
  iLEcp=find(Dist.cp(:,1)==0); 
  iLEcf=find(Dist.cf(:,1)==0); 
  xu=linspace(0,Coord(1,1),500); 
  xl=linspace(0,Coord(end,1),500); 
  for i=1:numel(Polar.AoA) 
    cpu=ppval(spline(Dist.cp(1:iLEcp,1),Dist.cp(1:iLEcp,i+1)),xu); 
    cpl=ppval(spline(Dist.cp(iLEcp:end,1),Dist.cp(iLEcp:end,i+1)),xl); 
    cfu=ppval(spline(Dist.cf(1:iLEcf,1),Dist.cf(1:iLEcf,i+1)),xu); 
    cfl=ppval(spline(Dist.cf(iLEcf:end,1),Dist.cf(iLEcf:end,i+1)),xl);  
    Cnp=trapz(xl,cpl)-trapz(xu,cpu); 
    Caf=trapz(xu,cfu)+trapz(xl,cfl); 
    Dist.cp(:,i+1)=Dist.cp(:,i+1)*Polar.Cnp(i)/Cnp; 
    Dist.cf(:,i+1)=Dist.cf(:,i+1)*Polar.Caf(i)/Caf; 
  end 
  
end 
  
%SR3 
function [ dSpline ] = SplineDerivative( Spline ) 
%SplineDerivative calculates the 1st derivative of a pp spline 



141 

 

% Extract Spline Data 
[breaks,coefs,l,k,d] = unmkpp(Spline); 
% Calculate Derivative 
dSpline = mkpp(breaks,repmat(k-1:-1:1,d*l,1).*coefs(:,1:k-1),d); 
end 
  
function [ Polar ] = ViternaMethod( Polar,AR ) 
%ViternaMethod applies the Viterna Method for extrapolating airfoil data 
%beyond stall.  The data is not considered to be accurate, but is necessary 
%so that the iterative calculations will have somewhere to go if they need 
%to go beyond stall.   
  
% Calculate Viterna Parameters 
CDmax=1.11+0.018*AR;  %Assumes infiite aspect ratio (i.e. airfoil). 
alpha_stall=Polar.AoA(end); 
CLstall=Polar.Cl(end); 
CDstall=Polar.Cd(end); 
A2=(CLstall-
CDmax*sind(alpha_stall)*cosd(alpha_stall))*sind(alpha_stall)/cosd(alpha_stall
)^2; 
B2=(CDstall-CDmax*sind(alpha_stall)^2)/cosd(alpha_stall); 
AoA1=[30:5:90]; 
AoA2=[100:10:160]; 
AoA3=170; 
AoA4=180; 
% Extrapolate to 90 
for i=1:numel(AoA1) 
  CL1(i)=CDmax/2*sind(2*AoA1(i))+A2*cosd(AoA1(i))^2/sind(AoA1(i)); 
  CD1(i)=CDmax*sind(AoA1(i))^2+B2*cosd(AoA1(i)); 
end 
% Extrapolate to 160 
for i=1:numel(AoA2) 
  CL2(i)=-0.7*(CDmax/2*sind(2*(180-AoA2(i)))+A2*cosd(180-AoA2(i))^2/sind(180-
AoA2(i))); 
  CD2(i)=CDmax*sind(180-AoA2(i))^2+B2*cosd(180-AoA2(i)); 
end 
% At 180 
  iAoA0=find(Polar.AoA==0); 
  CL4=0; 
  CD4=Polar.Cd(iAoA0); 
% At 170 
CL3=(CL2(end)+CL4)/2; 
CD3=(CD2(end)+CD4)/2; 
  
% Fit New Data 
[m,n]=size(Polar.AoA); 
if m>n % matlab gave a column vector and it must be transposed 
AoAnew=[transpose(Polar.AoA),AoA1,AoA2,AoA3,AoA4]; 
Clnew=[transpose(Polar.Cl),CL1,CL2,CL3,CL4]; 
Cdnew=[transpose(Polar.Cd),CD1,CD2,CD3,CD4];  
else % matlab gave a row vector and you can cat that mat! 
AoAnew=[Polar.AoA,AoA1,AoA2,AoA3,AoA4]; 
Clnew=[Polar.Cl,CL1,CL2,CL3,CL4]; 
Cdnew=[Polar.Cd,CD1,CD2,CD3,CD4];  
end 



142 

 

clspline=spline(AoAnew,Clnew); 
cdspline=spline(AoAnew,Cdnew); 
  
% Extrapolate to -180 
AoA5=[-180:10:-20]; 
CL5=-0.7*ppval(clspline,abs(AoA5)); 
CD5=ppval(cdspline,abs(AoA5)); 
  
% Assemble New Polar 
P=Polar; 
clear Polar 
Polar.AoA=[AoA5,AoAnew]; 
Polar.Cl=[CL5,Clnew]; 
Polar.Cd=[CD5,Cdnew]; 
Polar.Cn=Polar.Cl.*cosd(Polar.AoA)+Polar.Cd.*sind(Polar.AoA); 
Polar.Ca=-Polar.Cl.*sind(Polar.AoA)+Polar.Cd.*cosd(Polar.AoA); 
Polar.Cnf(1:17)=mean(P.Cnf); 
Polar.Cnf(18:48)=P.Cnf; 
Polar.Cnf(48:70)=mean(P.Cnf); 
Polar.Caf(1:17)=mean(P.Caf); 
Polar.Caf(18:48)=P.Caf; 
Polar.Caf(48:70)=mean(P.Caf); 
Polar.Cnp=Polar.Cn-Polar.Cnf; 
Polar.Cap=Polar.Ca-Polar.Caf; 
Polar.Clf=zeros(1,numel(Polar.AoA)); 
Polar.Clp=Polar.Cl; 
Polar.Cdp=Polar.Cnp.*sind(Polar.AoA)+Polar.Cap.*cosd(Polar.AoA); 
Polar.Cdf=Polar.Cnf.*sind(Polar.AoA)+Polar.Caf.*cosd(Polar.AoA); 
end 
  
function [Dist ] = ViternaDist( Polar,Dist ) 
% Calculates cp and cf which give cnp and caf from polar data obtianed 
% using Viterna method. Also corrects assumed caf for direction of surface 
% flow.  This method assumes that the down wind side of the airfoil 
% experiences completely separated flow resulting in cp=0 and cf is assumed 
to be constant 
% with stagnation at the LE or TE.  None of these assumptions are 
% true, but are raeasonable approximations given the data and methods 
% employed.  It is further noted that these AOA's will likely not occur 
% over large portions of the wing under normal conditions.  
  
D=Dist; 
clear Dist 
% For AOA=-180:-20 Cpu=Cp, Cpl=0; 
iLEcp=find(D.cp(:,1)==0); 
[m,n]=size(D.cp); 
Dist.cp(:,1)=D.cp(:,1); 
Dist.cf(:,1)=D.cf(:,1); 
for i=1:17 
  Dist.cp(1:iLEcp,i+1)=-Polar.Cnp(i);  
  Dist.cp(iLEcp+1:m,i+1)=0; 
end 
% For AOA=10:20 Cpu=dist, Cpl=dist; 
  Dist.cp(:,18:48)=D.cp(:,2:end); 
% For AOA=-180:-20 Cpu=Cp, Cpl=0; 



143 

 

for i=49:70 
  Dist.cp(1:iLEcp,i+1)=0; 
  Dist.cp(iLEcp+1:m,i+1)=Polar.Cnp(i); 
end 
  
% For AOA=-180:-20 
[m,n]=size(D.cf); 
for i=1:17 
  Dist.cf(:,i+1)=ones(m,1)*Polar.Caf(i)/2; 
end 
% For AOA=10:20  
  Dist.cf(:,18:48)=D.cf(:,2:end); 
% For AOA=-180:-20 
for i=49:70 
  Dist.cf(:,i+1)=ones(m,1)*Polar.Caf(i)/2; 
end 
end 
  
function [Polar]=LinearAero(Polar) 
%LinearAero calculates lift curve slope and zero lift angle of attack  
i1=find(Polar.AoA==-5); 
i2=find(Polar.AoA==5); 
x=Polar.AoA(i1:i2); 
y=Polar.Cl(i1:i2); 
a=polyfit(x,y,1); 
Polar.CLalpha.deg=a(1); 
Polar.Alpha0.deg=-a(2)/a(1); 
Polar.CLalpha.rad=a(1)*180/pi; 
Polar.Alpha0.rad=Polar.Alpha0.deg*pi/180; 
end 
  
function [Polar]=Moment(Polar,Dist,Coord) 
[m,n]=size(Dist.cp); 
x=Coord(:,1); 
y=Coord(:,2); 
xref=x-0.25; 
yref=y; 
for i=1:n-1 
cpx=-Dist.cp(:,i+1).*xref; 
cpy=-Dist.cp(:,i+1).*yref; 
Polar.cm(i)=trapz(x,cpx)+trapz(y,cpy);   
end 
end 
  
  
 
 
  
  
 
 
  
  


