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ABSTRACT 

Sister-chromatid cohesion plays a vital role in precise chromosome segregation 

and genome stability. This process is carried out by the cohesin complex and its 

associated proteins. In addition, a growing body of evidence suggests that the 

cohesin complex affects other processes, including gene transcription, DNA 

damage repair, and DNA replication. One piece of evidence for cohesin’s role in 

other processes is that individuals with mutations in the cohesin complex can 

survive, albeit with congenital abnormalities. For example, mutations in ESCO2 

cause Roberts syndrome. ESCO2 is the human homolog of Eco1 in budding 

yeast. Eco1 is a critical acetyltransferase for establishing cohesion during S 

phase and also re-establishing cohesion in G2/M phase in response to DNA 

damage. To identify the roles of the cohesin complex beyond chromosome 

segregation, we have constructed mutations in Eco1 which do not cause gross 

chromosome separation defect. We have shown that DNA damage repair is 

strongly affected in the eco1 mutants and that a specific DNA recombination 

pathway is affected. Further investigation of eco1 mutants showed transcription 

and DNA replication defects genome-wide. Interestingly, deletion of Fob1, a 

nucleolar protein required for replication fork blocking in rDNA region, corrects 

the genome-wide replication defects, nucleolar structure and chromosome 

segregation in an eco1 mutant by allowing bidirectional replication of the rDNA. 

This highlights cohesin’s central role at the rDNA for global control of DNA 

replication and gene expression. Our results demonstrate the diversity of cohesin 

functions and have direct implications for the etiology of human cohesinopathies. 
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CHAPTER 1 

INTRODUCTION 

 

A. THE COHESIN COMPLEX 

Sister-chromatid Cohesion 

Robustness and accuracy of cell division requires not only faithful replication of 

DNA, but also precise segregation of the replicated product, the sister chromatids. 

Walther Fleming’s observations of chromosome segregation in 1878 pointed 

researchers to the importance of precise chromosome segregation. Twenty-five 

years later, Walter Sulton and Theodore Boveri proposed the chromosome 

theory of inheritance, suggesting that genes segregate during chromosome 

segregation because chromosomes physically contain genes. However, the 

mechanism by which sister chromatids perfectly segregate into two daughter 

cells has intrigued scientists for a long time.  In this chapter, I will first introduce 

the cohesin complex, then discuss its functions and regulation, and finally 

discuss how mutations of the genes in the cohesin complex contribute to human 

diseases. 

 

Sister-chromatid cohesion refers to the adherence of replicated sister-chromatids. 

This important physical connection between two sister chromatids ensures their 

precise segregation into two daughter cells. Cohesion begins during S phase of 

the cell cycle, persists through G2 phase, and dissolves during the metaphase-
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to-anaphase transition. An early hypothesis proposed that sister-chromatid 

cohesion was established through DNA catenation with DNA molecules 

topologically interlocked. However, this hypothesis was challenged by the 

discovery that minichromosomes that had completed replication could be 

separated by electrophoresis (Koshland and Hartwell, 1987).  This result strongly 

argued that DNA catenation was removed before the onset of anaphase and 

therefore other forces must hold the two sister-chromatids together and regulate 

sister-chromatid cohesion.  

 

Extensive research, including screening for mutations in yeast that lead to a 

cohesion defect, identified several genes that were involved in the mechanism of 

cohesion. The first gene identified was Mcd1 (mitotic chromosome determinant) 

(Guacci et al., 1997). Missense mutation of coding region of this gene caused 

sister-chromatid cohesion defects and impaired chromosome segregation. This 

result suggested that cohesion might be maintained by a protein. Further 

screening for mutants that affect cohesion indicated that multiple factors 

influence sister-chromatid cohesion (Losada et al., 2000; Michaelis et al., 1997; 

Panizza et al., 2000). It is now well recognized that sister-chromatid cohesion is 

regulated by a protein complex called “cohesin”, which mediates diverse 

chromosomal functions. 
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Cohesin Structure and Function 

The cohesin complex is conserved from prokaryotes to humans (Schleiffer et al., 

2003). In budding yeast, Saccharomyces cerevisiae, the cohesin complex 

contains four subunits: Smc1 and Smc3 (structural maintenance of 

chromosomes), Mcd1 (mitotic chromosome determinant) and Scc3 (sister 

chromatid cohesion) (Guacci et al., 1997; Haering et al., 2004). These four 

subunits form a ring-like structure that embraces the DNA molecules (Xiong and 

Gerton, 2010) (Figure 1.1). 

 

Smc1 and Smc3 are two homologous ATP binding proteins that belong to the 

Structural Maintenance of Chromosomes family (SMC), which also includes 

condensin subunits (Smc2 and Smc4) and Smc5/6 complex components (Smc5 

and Smc6). All SMC proteins help modulate chromosome structure and topology. 

SMC proteins are characterized by ~50 nanometer anti-parallel coiled coils 

flanked by a globular hinge domain and N and C-terminal domains. The N and C-

terminal domains of SMC proteins contain conserved Walker A and Walker B 

ATPase, respectively. The coiled coil and hinge domains are less conserved 

between species compared to the N and C-terminal domain of the SMC proteins. 

The ATPase activity of SMC proteins is important for association of the cohesin 

complex with the chromosome and relocation of the cohesin ring along DNA (Hu 

et al., 2011). 
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In bacteria, a homodimer of SMC proteins forms rather than the heterodimer 

formed in eukaryotes (Hirano, 2005). Null mutations in SMC genes impairs the 

growth of bacteria at temperatures above 23oC and many bacteria cells are 

anucleate, suggesting that the SMC complex in bacteria also play an important 

role in chromosome organization and segregation (Britton et al., 1998; Jensen 

and Shapiro, 1999). In fact, the conservation of the functions of SMC complexes 

is not limited to chromosome segregation.  For example, SMC complexes are 

recruited to the DNA replication origin in bacteria and play a central role in 

organizing origin regions and promoting chromosome replication (Gruber and 

Errington, 2009; Sullivan et al., 2009).  This role of SMC complexes resembles 

the function of SMC complexes in eukaryotes. More interestingly, the SMC 

complexes bind to the ribosome DNA (rDNA) locus and sites of active 

transcription, suggesting the conservation of additional functions from 

prokaryotes to eukaryotes. All of these findings are consistent with the results of 

my experiments on DNA replication and transcription addressed in chapter 3. 
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Figure 1.1 
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Figure 1.1 Schematic illustration of the cohesin 

(A) Schematic illustration of the cohesin SMC heterodimer. An SMC heterodimer 

possesses the hinge domain at one end and ATPase head domain at the other 

connected by a long anti-parallel coiled coil. The heterodimer forms a V-shaped 

structure which is about 50 nm in length. (B) The Kleisin subunit Mcd1 links the 

ATPase containing head domains of Smc1 and Smc3 forming a tripartite ring 

structure. Hydrolysis of ATP is required for cohesion and is important for opening 

and closing the ring from the head. 

(From Xiong & Gerton, 2010) 
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The Mcd1 (also known as Scc1 or Rad21) subunit is a conserved protein, which 

belongs to the kleisin family. Kleisins are a superfamily of bacterial and 

eukaryotic SMC protein partners (Schleiffer et al., 2003). The N terminus of Mcd1 

binds to the head domain of Smc3 while the C terminus binds to the head 

domain of Smc1 (Haering et al., 2002), which links the head of the SMC proteins.  

Electron microscopy reveals that the Smc1-Smc3 heterodimer forms a V-shaped 

structure (Anderson et al., 2002; Haering et al., 2002). Because Mcd1 bridges 

the heads of Smc1 and Smc3, the three proteins are thought to form a circular 

complex (Gruber et al., 2003; Haering et al., 2002; Haering et al., 2004). Mcd1 is 

cleaved by a protease prior to the onset of anaphase, allowing the cohesin ring to 

open and the chromosome to segregate (Hauf et al., 2001; Uhlmann et al., 2000). 

The fourth cohesin subunit, Scc3 (also known as Irr1) binds to Mcd1. Besides 

containing protein-protein interaction HEAT repeats motifs (Huntingtin, elongation 

factor 3 (EF3), protein phosphatase 2A (PP2A), and the yeast kinase TOR1), 

little is known about this subunit. 

 

In addition to the core cohesin complex, several other proteins or protein 

complexes are essential to the function of cohesin complexes. First, accessory 

proteins, which include Pds5 and Wapl (also known as Rad61), are important for 

the maintenance of sister-chromatid cohesion. Second, the cohesin loading 

complex, which contains Scc2 (known as NIPBL in mammalian cells) and Scc4, 

are important for loading of the core cohesin complex onto chromosomes. Finally, 

an acetyltransferase named Eco1 (ESCO1 and ESCO2 in mammalian cells) is 
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important for establishing cohesion in S phase. All these proteins will be 

described in the next chapter for the detailed mechanism of sister-chromatid 

cohesion regulation. Cohesion regulation includes sister-chromatid cohesion 

establishment and maintenance.  Establishment of sister-chromatid cohesion is 

the process of making the core cohesin complex competent to physically bind 

sister chromatids together. Maintenance of sister-chromatid cohesion is the 

process of keeping sister chromatids together by cohesin complex prior to the 

onset of anaphase.  

 

SMC complexes 

Several SMC complexes, including the condensin complex and the SMC5/6 

complex, are structurally related to cohesin but serve different functions. Since 

the sequences these complexes are closely related to cohesin, studying these 

complexes helps further understand the function of cohesin complex. 

 

The condensin complex is a conserved cohesin-related complex, which 

contributes to chromosome condensation and segregation. In contrast to cohesin, 

where research suggests that the complex encircles sister-chromatids until the 

cleavage of Scc1 prior to the onset of anaphase, little is known about how 

condensin interacts with chromosomes (Thadani et al., 2012). Higher eukaryotes 

have two condensin complexes: condensin I and condensin II. Condensin I is 

conserved from budding yeast to human, while condensin II is only found in 

higher eukaryotes (Hirano, 2012). The two condensin complexes have non-
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overlapping functions due to different locations of the complexes.  Condensin II is 

present in the cell nucleus during interphase and it is important for early stages of 

chromosome condensation in prophase, while condensin I enters the nucleus 

only after the nuclear envelope breaks down at the end of prophase to further 

organize chromosomes (Hirano, 2012).  

 

The Smc5/6 complex plays a central role in the maintenance of genome stability. 

The Smc5/6 complex is required for sister chromatid recombination, but it has not 

been studied as extensively as the cohesin and condensing complexes (De 

Piccoli et al., 2006). The Smc5/6 complex is enriched at regulatory region of 

ribosomal DNA (rDNA) and plays a central role in segregation of repetitive 

sequences by promoting the resolution of recombination structures in the 

ribosomal rDNA region (Torres-Rosell et al., 2005).  

 

In addition to condensin complex and Smc5/6 complex mentioned above, there 

are other cohesin related complexes that are comprised of SMC proteins, such 

as the MRN complex which is important for initial processing of DNA double-

strand breaks and the condensin-like dosage compensation complex which is 

involved in dosage compensation, a genetic regulatory mechanism that operates 

to equalize the phenotypic expression.  In general, all these complexes share 

SMC subunits and function in chromosome regulation.  
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B. REGULATION OF COHESIN 

 

As mentioned above, besides four core cohesin subunits, several accessory 

factors are needed throughout the cell cycle for regulation of sister-chromatid 

cohesion.  Proper cohesion function includes four elements: cohesin loading onto 

chromosomes in G1 phase, cohesion establishment during S phase, 

maintenance of cohesion during G2/M phase, and dissolution of the cohesin ring 

during the transition from G2/M phase to anaphase (Figure 1.2).  These 

functions are essential for precise chromosome segregation. Besides 

contributing to chromosome segregation, cohesin serves other important 

functions, which will be discussed in the next section of this chapter. 

 

Cohesin loading 

The cohesin complex traps DNA molecules in a process known as cohesin 

loading. A conserved Scc2-Scc4 complex is required to load the cohesin 

complex onto chromosomes during the G1 phase in budding yeast and telophase 

in higher eukaryotes, prior to DNA replication (Ciosk et al., 2000; Gillespie and 

Hirano, 2004; Takahashi et al., 2004). In budding yeast, Scc2 co-localizes with 

the cohesin complex on chromosomes, especially in the pericentromeric region 

(Kogut et al., 2009), which is also the case in the fly genome (Misulovin et al., 

2008). Although the Scc2-Scc4 complex loads cohesin rings onto the DNA, the 

interaction between DNA and the Scc2-Scc4 complex also requires association 

with the cohesin complex (Fernius et al., 2013).  After cohesin loads onto the 
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chromosomes, cohesin complexes are relocated from the sites of chromosomal 

loading to the other parts of the genome in an ATP hydrolysis dependent 

mechanism (Hu et al., 2011).  However, the detailed mechanism of relocation of 

cohesin complexes on chromosomes is still unclear. 
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   Figure 1.2 
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Figure 1.2 Regulation of cohesin.  

The cohesin complex is loaded onto chromatin in G1 phase by the loading 

complex Scc2-Scc4. During DNA replication, cohesion is established between 

sister chromatids in an acetyltransferase Eco1 dependent mechanism. Cohesion 

is maintained by the proteins Pds5 and Wpl1, during G2/M phase. In mammalian 

cells, arm cohesin is removed during prophase through phosphorylation of Mcd1. 

During the transition from metaphase to anaphase, a protease called separase 

cleaves the Mcd1 subunit, which opens the cohesin ring and allows the 

separation of sister chromatids. 

(From Xiong & Gerton, 2010) 
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Cohesion establishment 

Two of the proteins that regulate human cohesion are ESCO1 and ESCO2. 

Yeast Eco1, the ortholog of human ESCO1 and ESCO2, is an essential gene 

required to establish cohesion in yeast during S phase (Skibbens et al., 1999). 

The N-terminus of Eco1 contains a zinc finger domain, which helps substrate 

recognition (Onn et al., 2009) and the C-terminus of Eco1 contains an 

acetyltransferase domain which is crucial for its acetyltransferase activity (Ivanov 

et al., 2002).  

 

The essential substrate of Eco1 is the cohesin subunit Smc3, which has been 

shown to be acetylated by Eco1 on K112 and K113 (Ben-Shahar et al., 2008; 

Rowland et al., 2009; Zhang et al., 2008). Mutations on residues K112 and K113 

of Smc3 cause precocious sister-chromatid separation (Ben-Shahar et al., 2008), 

while mutations of acetyltransferase domain of Eco1 do not strongly affect sister-

chromatid separation (Gard et al., 2009). It is possible that mutations with 

reduced acetyltransferase activity of Eco1 measured in vitro may retain enough 

catalytic activity in vivo to acetylate a fraction of the Smc3 pool to maintain the 

chromosome segregation activity (Lu et al., 2010). In fact, chromosome 

segregation is affected only if total cohesin levels are decreased to 13% of the 

wild-type cell levels (Heidinger-Pauli et al., 2010). Another possibility is that the 

K112 and K113 mutations in Smc3 affect more functions than establishment of 

sister-chromatid cohesion. Acetylation of Smc3 has been reported to promote 

replication fork progression and regulate the interaction between Smc3, Pds5 
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and Wapl (Figure 1.2) (Terret et al., 2009). In addition to Smc3, Eco1 has other 

substrates such as Mcd1 and Mps3, acetylation of which promote DNA damage 

repair or nuclear organization, respectively (Ghosh et al., 2012; Heidinger-Pauli 

et al., 2008). 

 

Since Eco1 mostly functions in S phase, the activity of Eco1 must be controlled 

during the cell cycle. Eco1 is phosphorylated by Cdk1 after S phase. The 

phosphorylation targets Eco1 to SCF complex (Skp1, Cullin, F-box containing 

complex) for increased ubiquitination and subsequent degradation, thus 

preventing cohesion establishment after S phase (Lyons and Morgan, 2011). 

Eco1 also appears to bind with components of the replication factor C (RFC) 

complex, which enables it to travel with the replication fork in order to promote 

cohesion by acetylation of Smc3 (Kenna and Skibbens, 2003).  

 

Cohesion maintenance 

“Cohesion maintenance” refers to maintaining the cohesive state during G2/M 

phase prior to cleavage of the cohesin complex, which triggers anaphase. 

Several proteins play a central role in maintaining cohesion following S phase, 

including Pds5 and Wapl. Cohesion maintenance during G2/M requires Pds5 

(Hartman et al., 2000; Panizza et al., 2000). Pds5 contains tandem HEAT 

repeats that function as a protein-protein interaction scaffold (Panizza et al., 

2000). Pds5 binds with Mcd1 adjacent to Smc3 which promotes acetylation of 

Smc3 by Eco1 and prevents deacetylation of Smc3 by Hos1/HDAC8 (Chan et al., 
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2013). Higher eukaryotes contain two Pds5 homologs, Pds5A and Pds5B. In 

contrast to the essential role of Pds5 in budding yeast, depletion of Pds5A or 

Pds5B only has a minor effect on sister-chromatid cohesion. This suggests that 

Pds5A and Pds5B have redundancy in their function in sister-chromatid cohesion 

(Zhang et al., 2007).   

 

In addition to Pds5, another cohesin binding protein Wapl (also known as Wpl1 

or Rad61) plays an important role in cohesion maintenance. Wapl is conserved 

from budding yeast to human. In budding yeast, Wapl appears to be a cohesion 

inhibitor since deletion of Wapl suppresses the temperature sensitivity of Eco1 

acetyltransferase mutants (Ben-Shahar et al., 2008; Lu et al., 2010; Rowland et 

al., 2009; Sutani et al., 2009). Overexpression of Wapl has the opposite effect, 

leading to premature separation of sisters. In vertebrates, Wapl also negatively 

regulates sister-chromatid cohesion. 

 

Overall, Pds5 and Wapl work together for the precise regulation of cohesion 

during the cell cycle. In budding yeast, Pds5 and Wapl form a complex to bind 

cohesin complex and inhibit cohesion establishment prior to S phase. Eco1 

establishes cohesion in S phase by temporarily hindering the interaction of the 

Pds5-Wapl complex with cohesin complex through Smc3 acetylation (Sutani et 

al., 2009).  In mammalian cells, Wapl is able to bind with Pds5 and antagonize 

cohesion establishment (Kueng et al., 2006). However, mammalian Wapl also 

forms a complex with Mcd1 and Scc3 and is important for preventing 
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reassociation of the proteins with the cohesin complex following their release 

(Gandhi et al., 2006).  

 

Cohesion dissolution 

The cohesin ring cleaves apart during the transition from G2/M phase to 

anaphase in a process known as “cohesion dissolution”.  During this process, the 

protease separase Esp1 splits the kleisin subunit Mcd1. Cleavage of Mcd1 opens 

the cohesin ring, which allows chromosome separation (Ciosk et al., 1998; 

Funabiki et al., 1996a). Normally, Pds1 (also known as securin) inhibits the 

protease activity of Esp1. Prior to anaphase, however, Pds1 is ubiquitinated and 

degraded through a Cdc20 dependent pathway and Esp1 is activated (Cohen-Fix 

et al., 1996; Funabiki et al., 1996b; Yamamoto et al., 1996a, b). Thus, Esp1 

activation at anaphase onset leads to cleavage of Mcd1, triggering the 

metaphase to anaphase transition. Overall, cohesion dissolution is precisely 

controlled during the cell cycle. 

 

Centromeric cohesin is cleaved by a similar mechanism in mammalian cells and 

budding yeast cells, but the removal of cohesin on chromosome arms is different. 

The removal of arm cohesin in mammalian cells happens during prophase in a 

separase-independent mechanism which depends on polo kinase. Polo kinase 

phosphorylates the kleisin subunit Mcd1 and allows cohesion to dissociate. 

Centromeric cohesion is not dissociate at prophase but remains until the onset of 

anaphase because it is protected from premature dissociation by shugoshin, a 
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protein family crucial for centromeric cohesin protection, and the PP2A 

phosphatase (Kateneva and Higgins, 2009). The difference of cohesion 

dissocation mechanism on chromosome arms suggests a diversified cohesin 

regulation system. 

 

Post-translational modifications and cohesin regulation 

During the cell cycle, multiple post-translational modifications (PTMs) regulate 

chromosome cohesion. PTMs of the cohesin complex and its related proteins 

include: acetylation, phosphorylation, sumoylation, and ubiquitination. As 

mentioned above, acetylation promotes establishment of cohesion.  

Phosphorylation is critical for positive and negative regulation of cohesion. 

Sumoylation and ubiquitination are important for dissolution of cohesion. In this 

section, I will introduce the relationship between post-translational modifications 

and functions of cohesin complex in detail. 

 

Acetylation and deacetylation of the cohesin complex play a crucial role in 

regulating cohesion establishment and cohesin removal. As mentioned above, 

Eco1-dependent acetylation on Smc3 disrupts the association with Pds5 and 

Wapl, allowing cohesion to be established in S phase (Ben-Shahar et al., 2008; 

Terret et al., 2009).  Deacetylation of acetylated Smc3 by Hos1 (known as 

HDAC8 in human) is important for recycling Smc3 for the next cell cycle 

(Beckouet et al., 2010; Borges et al., 2010; Xiong et al., 2010). In addition to 

cohesion establishment, acetylation plays an important role in non-essential 
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cohesin functions, such as DNA damage repair. Instead of Smc3, Eco1 

acetylates the kleisin subunit Mcd1 in response to a DNA double-strand break 

signal (Heidinger-Pauli et al., 2009). 

 

Phosphorylation of cohesin subunits is important for the precise regulation of 

cohesion. As mentioned above, phosphorylation of Mcd1 by Polo kinase in 

mammalian cells helps remove arm cohesin. In fact, phosphorylation has a broad 

impact on cohesion regulation. For example, phosphorylation of cohesin subunits 

also regulates the function of cohesion beyond holding sister-chromatids together. 

In response to DNA damage, Mcd1 is phosphorylated on S83, which promotes 

its acetylation at S84 by Eco1, inducing cohesion establishment during G2/M 

phase (Heidinger-Pauli et al., 2008).  In mammalian cells, Smc1 and Smc3 are 

phosphorylated in response to DNA damage as targets of the ATM kinase (Kim 

et al., 2002; Luo et al., 2008; Yazdi et al., 2002).  In general, phosphorylation of 

cohesin subunits appears to be an important cellular DNA damage response. 

However, the response of the cohesin network to DNA damage is not limited to 

its ability to establish cohesion between sisters.  Phosphorylation of Smc1 and 

Smc3 is important for the intra-S checkpoint activation independent of their role 

in cohesion establishment (Watrin and Peters, 2009). 

 

In addition to acetylation and phosphorylation, ubiquitylation plays an important 

role in cohesin regulation. Besides the ubiquitylation of securin and Eco1 in 

budding yeast mentioned above, ubiquitin-dependent degradation regulates 
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ESCO2 in human cells. The expression level of ESCO2 peaks in S phase and 

levels are undetectable by mitosis. By treating with proteasome inhibitor MG132, 

van der Lelij and colleagues showed that ESCO2 was stabilized in mitotic human 

cells (van der Lelij et al., 2009). The proteins involved in the ESCO2 

ubiquitylation have not been identified, nor have the ubiquitylated residues. 

Nonetheless, these results suggest that ubiquitylation of Eco1 or ESCO2 may be 

a general mechanism of regulating the cohesin network. 

 

Sumoylation is another emerging field of cohesin regulation. Sumoylation of Pds5 

might promote the disruption of cohesion (Stead et al., 2003).  In addition, the 

cohesin complex itself is sumoylated. Sumoylation of the cohesin complex is an 

important step for cohesion establishment, in addition to acetylation of cohesin 

complex by Eco1 (Almedawar et al., 2012). In response to DNA damage, the 

kleisin family member Mcd1 is sumoylated by Mms21. The sumoylation of Mcd1 

will counteract the negative regulator Wapl and help re-establish cohesion in 

G2/M phase (McAleenan et al., 2012; Wu et al., 2012).  Overall, sumoylation of 

cohesin complex seems to promote cohesion and be complementary to 

acetylation and phosphorylation.  

 

Combinations of post-translational modifications are often required for multiple 

functions of the cohesin complex. For example, acetylation and phosphorylation 

are associated with the S phase cohesion establishment, while phosphorylation 

and ubiquitination are coupled with cleavage of cohesin complex prior to 
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anaphase. In higher eukaryotes, the combinations of post-translational 

modifications are even more important for precise control of the functions of 

cohesin complex. There is evidence that specific modifications of cohesin play an 

additional role in checkpoint activation in response to DNA damage, distinct from 

its role in cohesion at DSB sites. This suggests that post-translational 

modifications of cohesin are even more precisely controlled in higher eukaryotes 

than in budding yeast.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



22 

C. FUNCTION OF COHESIN BEYOND SISTER-CHROMATID COHESION 

 

The function of the Cohesin complex is not limited to holding sister-chromatids 

together. Several pieces of evidences suggest it has additional roles. In the 

remaining sections, I will discuss other functions of cohesin in cell physiology.  

These functions include chromosome condensation, gene transcription, DNA 

damage repair, and DNA replication.  Impairment of these functions usually does 

not cause cell lethality. Importantly, disruption of these cohesin functions are 

thought to be the underlying causes for cohesinopathies, a group of human 

diseases that will be discussed in the next chapter.   

 

Chromosome condensation 

Besides mediating inter-chromosomal interaction, cohesin complex has also 

been reported to regulate intra-chromosomal interactions. Chromosome 

condensation is an example of cohesin controlling the intra-chromosomal 

interaction. For example, Cohesin can regulate chromosome condensation by 

influencing the localization of condensin in yeast (Ding et al., 2006; Hartman et 

al., 2000).  In budding yeast, the early step of chromosome condensation may 

require cohesin, since budding yeast do not have a condensin II complex like 

higher eukaryotes for early phase chromosome compaction.  Because cohesin 

and condensin are loaded by the same Scc2-Scc4 complex (D'Ambrosio et al., 

2008), it is possible that the cohesin and condensin complexes interact with each 
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other. Another example of cohesin regulating chromosome condensation occurs 

at the ribosomal DNA (rDNA) locus. The rDNA is a tandemly repeated region of 

the genome where ribosomal RNA is transcribed. In budding yeast, it forms loop-

like structures that are distinct from other regions of the genome. If total cohesin 

levels are systematically reduced to 30% of the wild-type cell levels, then the 

rDNA does not condense (Heidinger-Pauli et al., 2010). In mammalian cells, it is 

reported that deletion of Wapl caused chromosome condensation in interphase 

by regulating the stability of cohesin-DNA interaction (Tedeschi et al., 2013). 

However, the detailed mechanism of how cohesin and condensin regulate 

chromosome condensation differently is unclear. 

 

Gene transcription 

A role for cohesin in controlling gene expression has emerged in the past decade. 

The strongest argument that the cohesin complex regulates gene expression is 

that many cohesin mutants do not show a chromosome segregation defect, but 

instead a gene transcription defect. For example, cells from patients with human 

Cornelia de Lange syndrome (CdLS), a developmental disorder caused by point 

mutations in cohesin or cohesin-related genes, showed no defect in chromosome 

segregation (Liu and Krantz, 2008). Both human cell studies and animal models 

suggest that the pathology is caused by alteration of the transcriptome 

(Kawauchi et al., 2009; Liu et al., 2009). All cell lines from cohesinopathy patients 

showed dysregulated gene expression and it is correrated with phenotypic 
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severity (Liu et al., 2009). Overall, all evidence points to an important role of 

cohesin in genome-wide transcription. 

 

Although cohesin’s regulation of genome-wide transcription is widely-supported, 

the exact mechanism is still strongly debated. One proposed model predicts that 

cohesin directly regulates gene transcription. Evidence that cohesin and its 

associated proteins bind to regions of the genome that are transcriptionally active 

supports this model (Parelho et al., 2008; Wendt et al., 2008; Yan et al., 2013). 

These data suggest the existence of a cohesin-dependent transcription 

mechanism. In further support, cohesin has been reported to bind with paused 

RNA polymerase to regulate transcription elongation (Fay et al., 2011). Research 

has also shown that cohesin regulated RNA polymerase II activity across the 

whole genome (Schaaf et al., 2013). Cohesin is also reported to regulate the 

chromatin conformation at the imprinted H19-IGF2 locus in a CTCF-dependent 

(CCCTC binding factor) mechanism. Deletion of the Mcd1 subunit of cohesin led 

to increased levels of IFG2 mRNA (Nativio et al., 2009). Another study showed 

that cohesin controlled chromosomal cis-interactions at the IFNG locus, which 

affected IFN-γ expression and T-cell development (Hadjur et al., 2009). Cohesin 

is also reported to mediate chromatin interactions at the β-globin locus to 

regulate β-globin expression (Chien et al., 2011). In addition to controlling 

individual loci, cohesin has been shown to regulate pluripotency of embryonic 

stem cells by mediating longer range interactions between distal enhancers and 

pluripotency genes (Kagey et al., 2010). Overall, these data indicate that cohesin 
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regulates gene transcription by modulating chromosome conformation. However, 

a subset of genes are differentially expressed (upregulated or downregulated) in 

cohesin mutants but do not have cohesin binding (Kawauchi et al., 2009; Liu et 

al., 2009). It suggests that additional mechanisms by which cohesin regulates 

global gene transcription might exist besides directly regulating gene expression.  

 

Another model of cohesin’s global gene transcription mechanism has cohesin 

regulating key regulators, which will, in turn, affect the expression of hundreds of 

genes. One possible key regulator could be a transcription factor such as c-Myc. 

Cohesin can directly regulate c-Myc expression and affect the expression of c-

Myc target genes (Rhodes et al., 2010). Another possible key regulator is the 

rDNA locus. A budding yeast model for human cohesinopathies revealed that the 

global gene expression signature indicates translational dysfunction. This 

suggests that the differential gene expression in cohesin mutants might partially 

due to the deficiency of translational function. Further analysis showed that the 

translational dysfunction was caused by deficiency of rDNA transcription (Bose et 

al., 2012).  It is still unclear how cohesin regulates global gene transcription.  My 

study suggests rDNA might be the key regulator for global gene transcription 

regulation. 

 

DNA damage repair 

Sister-chromatid cohesion plays an important role in DNA double-strand break 

repair. The establishment of cohesion in response to DNA damage outside of the 
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period of replication is called “damage-induced cohesion” (Figure 1.3). Damage-

induced cohesion is reported to hold the sister-chromatids together not only at 

the break sites, but also genome-wide, thereby facilitating repair by homologous 

recombination between sister-chromatids.  

 

While the phenomenon of damage-induced cohesion has been documented, the 

mechanism of how cohesion is re-established in response to DNA damaging 

signal is still an open question. Eco1 acetylates Smc3 for the establishment of 

cohesion. However, Mcd1 has been proposed as an alternative target for re-

establishment of sister-chromatid cohesion during DNA double-strand break 

repair.  When an HO break (an DNA double-strand break by the HO 

endonuclease) is induced in budding yeast, cohesion is established at the break 

site (Strom et al., 2004; Unal et al., 2004) and also re-established genome-wide 

through an Eco1 dependent mechanism (Strom et al., 2007; Unal et al., 2007).  

Mutation of putative target residues K84 and K210 of Mcd1 causes defect in 

genome-wide cohesion re-establishment in response to DNA double-strand 

break (DSB) during G2/M phase (Heidinger-Pauli et al., 2009). An K84Q and 

K210Q acetylation mimic mutant of Mcd1 bypasses the need for Eco1, indicating 

Eco1 acetylates Mcd1 on these residues (Heidinger-Pauli et al., 2009).  It is 

interesting to consider how Eco1 functions in G2/M phase in response to a DSB, 

since Eco1 is normally degraded during G2/M phase. A recent report suggests 

that sequential phosphorylation events by Cdk1, Cdc7-Dbf4 and GSK-3 prevent 

degradation of Eco1 in G2/M phase in response to DNA damage (Lyons et al., 
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2013). In contrast to the re-established cohesion in G2/M phase, the cohesive 

cohesin complexes established in S phase are removed to allow the proximity of 

DNA repair machinery (McAleenan et al., 2013). Overall, these results suggest 

that cohesin is necessary for the cellular response to DNA damage signal. 

 

While it is clear that cohesin plays a critical role in the cellular response to a 

mitotic DSB, it is still unclear what effect cohesin has on repair outcome (Dorsett 

and Strom, 2012). Cohesin might direct the choice of repair template, but 

experimental data in support of this hypothesis is lacking. I outline experiments in 

chapter 2 in order to address this question of how cohesin is involved in DSB 

repair. 
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Figure 1.3 
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Figure 1.3 Models of cohesion establishment 

Comparison of establishment of cohesion in S phase and damage-induced 

cohesion in G2/M phase. (a) In G1/S phase, the Scc2-Scc4 complex loads 

cohesin onto the chromosomes. After DNA replication, Eco1-dependent Smc3 

acetylation counteracts the activity of Wpl1 that hinders the establishment of 

cohesion. At this time, the chromatin-bound cohesin is converted to a cohesive 

state. Upon entering G2/M phase, cohesion cannot be re-established because 

the activity of Eco1 decreases and is not high enough to counteract Wpl1. (b) 

When G2/M cells experience a DSB, the DNA damage response pathway 

induces DSB-proximal cohesin loading and then promotes Eco1-dependent 

Mcd1/Scc1 acetylation, which in turn allows cohesion establishment in G2/M 

phase by antagonizing Wpl1. Cohesion is established at the DSB site but is also 

reinforced genome wide. 

(From Xiong & Gerton, 2010) 
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DNA replication 

Cohesin complex is also involved in DNA replication. Cohesion establishment 

occurs during S phase, when Eco1 acetylates cohesin. The coupling of cohesion 

establishment with DNA replication is important to prevent premature separation 

of newly synthesized sister chromosomes. Many results tie cohesion 

establishment to DNA replication. One mechanism for coupling cohesion 

establishment with DNA replication is through interaction of Eco1 with the 

replication fork. Specifically, Eco1 interacts with Replication Factor C (RFC), a 

complex which acts as a clamp loader to load PCNA (proliferating cell nuclear 

antigen) onto chromosomes. PCNA is reported to regulate the establishment of 

sister-chromatid cohesion (Moldovan et al., 2006). In addition, Eco1 is reported 

to act with PCNA and a DNA helicase Chl1 (Skibbens, 2004, 2009). These 

interactions might regulate the activity of Eco1 during cohesion establishment in 

S phase. 

 

The process of cohesion establishment can affect the DNA replication process. 

For example, cells from human Roberts syndrome patients were more sensitive 

to drugs that target S phase, which suggests that replication fork progression is 

affected in cohesin mutant (van der Lelij et al., 2009). Further studies showed 

that DNA replication fork speed was decreased by knocking down ESCO2 using 

RNAi or in RBS patient cells (Terret et al., 2009).  A detailed analysis of cohesin 

and replication in budding yeast suggests cohesin has a direct role in recovery of 

stalled replication forks (Tittel-Elmer et al., 2012). Another study suggested that 
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cohesin complexes organize DNA loops at DNA replication factories to regulate 

DNA replication. Supporting this hypothesis, human cells with Rad21 knocked-

down showed reduced active origins and lengthened chromatin loops (Guillou et 

al., 2010). Nonetheless, the mechanism by which cohesin regulates DNA 

replication is still unclear. More studies are needed to understand how cohesin 

regulates DNA replication, especially in the region where DNA replicates with 

difficulty such as rDNA region and how cohesin coordinate DNA replication and 

transcription (Figure 1.4). My experiments in chapter 3 help address the 

contribution of cohesin to both DNA replication and gene expression. 
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Figure 1.4  
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Figure 1.4 DNA replication and transcription in rDNA locus 

Replication fork barrier (RFB) blocks bidirectional replication fork progression and 

limits DNA replication to the same direction as transcription. Fob1 protein binds 

at RFB site and is essential for the barrier activity. Cohesin complex is recruited 

into the rDNA locus. When rDNA replication fork is progressing, transcription in 

the region cannot take place at the same time. 
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D. THE COHESINOPATHIES 

 

The cohesinopathies refer to human developmental disorders caused by 

mutations in cohesin and associated genes. The cohesinopathies include 

Cornelia de Lange syndrome (CdLS) and Roberts syndrome (RBS).   

 

CdLS is an autosomal dominant genetic disorder caused by mutation of one copy 

of NIPBL, SMC1, SMC3, or HDAC8 (Braunholz et al., 2012; Deardorff et al., 

2012a; Deardorff et al., 2007; Krantz et al., 2004; Lightfoot et al., 2011; Musio et 

al., 2006; Tonkin et al., 2004). A related disorder is caused by mutation of Mcd1 

(Deardorff et al., 2012b). CdLS and the related Mcd1 disorder include growth and 

mental retardation, limb deformities, and craniofacial defects. The severity of 

CdLS can range from a mild disorder of the nervous system to a severe 

multisystem disorder. About 50% of CdLS is caused by mutations in NIPBL. 

Mutations in SMC1, SMC3 and HADC8 only make up a small portion of all 

people who have CdLS and people with these mutations have relatively mild 

symptoms. NIPBL mutation causes a more severe phenotype than the cohesin 

ring mutants. This may be due to NIPBL’s multiple functions in loading both 

cohesin and condensin on chromosomes (D'Ambrosio et al., 2008) and 

responding to DNA damage repair (Lightfoot et al., 2011). About 40% of CdLS 

patients have mutation unidentified. Discovering new gene mutations that are 

associated with CdLS will help elucidate the molecular etiology of this disease.   
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RBS is a rare autosomal recessive disorder caused by mutation of both copies of 

ESCO2 (Vega et al., 2005). Patients have growth and mental retardation, limb 

deformities, and craniofacial defects, and the phenotypes are more severe than 

those observed in CdLS patients. The mutations in ESCO2 associated with 

Roberts syndrome often cause truncation of ESCO2. However, a point mutation 

in the acetyltransferase domain of ESCO2 has been identified (Gordillo et al., 

2008). This suggests that diminished acetyltransferase activity is sufficient to 

cause disease. Cells from RBS patients are sensitive to DNA damage materials 

such as mitomycin C, camptothecin, and etoposide (Gordillo et al., 2008; van der 

Lelij et al., 2009). There is no evidence that mutations in ESCO1 are associated 

with human disease. My work, in combination with the literature, suggests 

ESCO2 may be the primary acetyltransferase for cohesin at the rDNA, while 

ESCO1 may acetylate cohesin in the rest of the genome. Therefore, mutations in 

ESCO1 would be expected to be lethal. 

 

Although mutations in the cohesin network are associated with diseases such as 

RBS and CdLS, it is still unclear how these mutations cause the syndromes. The 

consequence of a chromosome segregation defect, aneuploidy, is usually lethal. 

Consistently, cells from patients with cohesinopathies do not have obvious 

chromosome segregation defects. With the wide array of processes that cohesin 

contributes to, it is important to determine which processes are affected in the 

cohesinopathies. Systematic loss-of-cohesion leads to cessation of cell division 

after a few cell divisions in budding yeast (Heidinger-Pauli et al., 2010). However, 
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in RBS and CdLS patients, the cell division process persists long enough for the 

entire course of development to occur, albeit somewhat disrupted.  

 

So, what is the cause of cohesinopathies? This mystery leads us to sort through 

possible explanations. One possibility is that besides a mild cohesion defect, the 

mutations lead to differential gene expression or DNA damage repair defects, 

which might cause RBS and CdLS. Analysis of cells from RBS patients reveals 

lack of cohesion in heterochromatin regions (Vega et al., 2005). Because 

heterochromatic domains are difficult to replicate, it is possible that inefficient 

replication of these regions is caused by mutation of ESCO2. One of these 

regions, the rDNA region, is highly transcribed. If replication is inhibited, this 

could affect transcription in the region. If rDNA transcription is affected, this could 

signal to hundreds of genes and alter the transcription profile of the genome. The 

lack of understanding of the etiology of the cohesinopathies drives us to explore 

the basic biology of the cohesin complex. The work presented in this thesis 

represents an effort to answer the question how cohesin network promotes DNA 

damage repair, genome-wide transcription and replication.  Our hope is that by 

understanding how cohesin contributes to cellular function we can start to 

appreciate how mutations in cohesin cause human disease. 
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CHAPTER 2 

ECO1 IS IMPORTANT FOR DNA DAMAGE REPAIR IN S. CEREVISIAE 

 

I am the first author and Dr. Matthew Goering is the co-first author of the 

following manuscript: Eco1 is important for DNA damage repair in S. cerevisiae. 

Cell Cycle Volume 9, Issue 16 August 15, 2010. Pages 3315 – 3327. 

 

CONTRIBUTIONS 

 

FIGURE 2.1 Scarlett Gard performed the cohesion assays and Dr. Jennifer 

Gerton contributed the schematic of the Eco1 protein. 

FIGURE 2.2 I performed the in vitro acetylation assays and Dr. Bo Xiong and I 

performed the acetyl-cohesin immunoprecipitation assay. 

FIGURE 2.3 Dr. Matthew Goering performed the growth assay. 

FIGURE 2.4 I performed the growth assay and the overexpression assay and the 

immunoprecipitation assay. 

FIGURE 2.5 Dr. Matthew Goering performed the growth assay and the western 

blot. 

FIGURE 2.6 I performed the mitotic recombination assay and Dr. Jennifer Gerton 

contributed the schematic of the Chromosome V construct. 

FIGURE 2.7 Dr. Matthew Goering performed the meiotic recombination assay 

and Dr. Jennifer Gerton contributed the schematic of the Chromosome V 

construct. 
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ABSTRACT 

 

The cohesin network has an essential role in chromosome segregation, but also 

plays a role in DNA damage repair.  Eco1 is an acetyltransferase that targets 

subunits of the cohesin complex and is involved in both the chromosome 

segregation and DNA damage repair roles of the network.  Using budding yeast 

as a model system, we find that mutations in Eco1, including a genocopy of a 

human Roberts syndrome allele, do not cause gross defects in chromosome 

cohesion.  We examined how mitotic and meiotic DNA damage repair is affected 

by mutations in Eco1.  Strains containing mutations in Eco1 are sensitive to DNA 

damaging agents that cause double-strand breaks, such as X-rays and 

bleomycin.  While meiotic crossing over is relatively unaffected in strains 

containing the Roberts mutation, reciprocal mitotic crossovers occur with 

extremely low frequency in this mutant background.  Our results suggest that 

Eco1 promotes the reciprocal exchange of chromosome arms and maintenance 

of heterozygosity during mitosis. 
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INTRODUCTION 

 

Chromosome cohesion is essential to hold sister chromosomes together from the 

time they are replicated until the time they must be separated at the metaphase 

to anaphase transition.  Cohesion is essential for the accurate attachment of 

chromosomes to the metaphase spindle and their subsequent division.  

Cohesion is mediated by the cohesin complex which consists of four subunits: 

Smc1, Smc3, Scc3, and Mcd1/Scc1/Rad21 (hereafter Mcd1).  There are also 

several cohesin-associated proteins that are important for chromosome cohesion, 

including Eco1/Ctf7 (hereafter Eco1), an acetyltransferase important for the 

establishment of cohesion during S phase (Toth et al., 1999), and Scc2-Scc4, a 

complex required to load the cohesin complex onto chromatin (Ciosk et al., 2000).   

 

Mutation of human ESCO2, a human homolog of yeast ECO1, is associated with 

Roberts syndrome (RBS) (Vega et al., 2005) and mutation of SCC2/NIPBL, 

SMC1, and SMC3 have all been associated with Cornelia de Lange syndrome 

(CdLS) (Deardorff et al., 2007; Krantz et al., 2004; Musio et al., 2006; Tonkin et 

al., 2004).  Together RBS and CdLS syndrome make up the cohesinopathies, 

which are human developmental disorders (Liu and Krantz, 2008; McNairn and 

Gerton, 2008b).  Chromosome segregation defects are not a feature of these 

disorders.  Instead, the molecular etiology is assumed to be related to non-

essential functions of the cohesin network in gene regulation and DNA damage 

repair (McNairn and Gerton, 2008a).   
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Along with chromosome cohesion, the cohesin network has been shown to be 

involved in chromosome condensation (Gard et al., 2009; Guacci et al., 1997), 

gene regulation (Donze et al., 1999; Gard et al., 2009; Rollins et al., 1999), 

subnuclear chromatin organization (Adelfalk et al., 2009; Gard et al., 2009), and 

double-strand break (DSB) repair (Klein et al., 1999; Sjogren and Nasmyth, 

2001).  DSBs are a significant threat to genome stability and can arise from 

endogenous and exogenous sources such as collapsed replication forks and 

exposure to ionizing radiation.  In most eukaryotes, DSBs that arise during S-

phase or G2/M are repaired by homologous recombination (HR).  HR repair of 

DNA damage requires an intact, homologous DNA sequence to serve as a 

template, and during mitosis this is often the sister chromatid resulting in 

genetically silent repair. 

 

When a DSB is induced by the budding yeast site-specific endonuclease HO in 

G2/M, cohesin binds to the region surrounding the break (Strom et al., 2004; 

Unal et al., 2004) in an Scc2-dependent manner (Strom et al., 2007).  Human 

cohesin has been shown to interact with Rad50 and accumulate in regions of 

laser-induced DNA damage during S and G2 phases in a Rad50/Mre11-

dependent manner (Kim et al., 2002).  Furthermore, cohesion is reinforced 

genome-wide in G2/M in response to a single DSB.  This process is dependent 

on the acetyltransferase activity of Eco1 and is referred to as damage-induced 

cohesion (Strom et al., 2007; Unal et al., 2007).  Re-inforcement of cohesion in 
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response to DNA damage has also been shown to occur in human cells (Kim et 

al., 2010).  One target of Eco1 for damage-induced cohesion has been proposed 

to be Mcd1, although acetylation of Mcd1 has never been directly demonstrated 

in vivo (Heidinger-Pauli et al., 2008; Heidinger-Pauli et al., 2009).  Acetylation of 

the cohesin subunit Smc3 has been shown to be critical for S phase coupled 

cohesion and is dependent on Eco1 in vivo (Ben-Shahar et al., 2008; Unal et al., 

2008; Zhang et al., 2008).  Acetylation of Smc3 by ESCO1, a human homolog of 

yeast ECO1, has also been shown to be important for the DNA damage 

response in human cells (Kim et al., 2010).  Additional Eco1 targets have been 

shown in vitro (Ivanov et al., 2002) but their biological significance is unknown. 

 

Eco1 has two primary domains, a zinc finger in the N terminus and an 

acetyltransferase domain in the C terminus. The mutation W539G has been 

shown to abrogate acetyltransferase activity in the context of ESCO2 (Gordillo et 

al., 2008), a human ortholog of yeast ECO1, and this mutation is associated with 

RBS (Vega et al., 2005).  Cells from RBS patients are sensitive to the DNA 

damaging agents mitomycin C, camptothecin and etoposide, while no particular 

sensitivity to UV, ionizing radiation, hydroxyurea or aphidicolin was found 

(Gordillo et al., 2008; van der Lelij et al., 2009).  In budding yeast, mutations in 

the acetyltransferase domain have been shown to strongly reduce 

acetyltransferase activity in vitro (Ivanov et al., 2002) but do not cause high rates 

of chromosome loss (Brands and Skibbens, 2005).  In contrast, mutations in the 

zinc finger (C35Y, H53Y) have some acetyltransferase activity in vitro but still 
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have very high rates of chromosome loss (Brands and Skibbens, 2005).  The 

zinc finger enhances the activity of Eco1 for cohesion, but is not essential for 

interaction with chromatin or protein targets (Onn et al., 2009). 

   

DNA breaks caused by X-ray treatment persist in backgrounds containing 

mutations in the cohesin network (Sjogren and Nasmyth, 2001; Strom et al., 

2004; Unal et al., 2004), suggesting the damage is not efficiently repaired.  

Somewhat paradoxically, it has also been shown that damage-induced cohesion 

is not required for intrachromosomal gene conversion of an HO break, or the 5’ to 

3’ resection of this break (Unal et al., 2004).  Marker loss at the RDN1 locus, 

which is likely due to intrachromosomal or intersister recombination in a haploid, 

is similarly unaffected by mutation of the acetyltransferase domain of Eco1 (Gard 

et al., 2009).  Thus, the exact molecular role of cohesion in DSB repair remains 

mysterious.  One prevailing idea is that cohesin is involved in the process of 

selecting the sister as a template for repair, but this is unsupported by 

experimental evidence.  The effect of cohesion on recombination between 

homologs has never been explored.    

 

We examined how mutations in Eco1 affect interhomolog recombination in S. 

cerevisiae.  We demonstrate that the W216G mutation is a phenocopy of the 

human RBS mutation in that it eliminates acetyltransferase activity in vitro.  Using 

various measures such as in vivo acetylation of Smc3, precocious sister 

separation, and DNA damage sensitivity, we compare four different mutations in 



43 

Eco1.  We then use the RBS mutant, which shows limited precocious sister 

separation but obvious damage sensitivity, to examine the effect on 

recombination.  Following bleomycin treatment, we find a strong deficiency in 

reciprocal crossing over during mitotic growth, which is needed to maintain 

heterozygosity.  In contrast, we find only subtle defects in meiotic recombination.  

These results imply that an Eco1-dependent process is needed for specific 

recombination outcomes, e.g. reciprocal mitotic crossing over, but not for others, 

such as break-induced replication, gene conversion, or meiotic crossing over. 
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RESULTS 

 

Replication-coupled cohesion is mildly affected by mutations in Eco1 

We tested three different mutations in Eco1 for their effect on chromosome 

cohesion: 1) eco1-H53Y, which is expected to disrupt the zinc finger, 2) eco1-ack 

(R222G, K223G), which disrupts acetyltransferase activity, and 3) eco1-W216G, 

which corresponds to the W539G mutation associated with Roberts syndrome 

(Figure 2.1A).  Chromosome cohesion was examined in the Eco1 mutant strains 

in nocodazole-arrested cells using GFP marked telIVR (Figure 2.1B), an arm 

location on ChrIV (Figure 2.1C), and cenIV (Figure 2.1D) (Straight et al., 1996).  

Nocodazole arrests were verified by cytometry.  While the eco1-ack strain shows 

no defect in cohesion, the eco1-W216G mutant has a mild defect in cohesion 

and the eco1-H53Y mutant has a moderate defect in cohesion.  The cohesion 

defect in the eco1-H53Y mutant is consistent with the report of elevated rates of 

chromosome loss in a zinc finger mutant (Brands and Skibbens, 2005).  However, 

this effect (15-20% precocious separation) is not as severe as other mutations 

that can cause as much as 80-90% loss of cohesion.  At 37oC, the eco1-W216G 

strain shows 65% loss of cohesion (Gard et al., 2009).  The eco1-1 allele confers 

severe cohesion defects at 37oC, but also has cohesion defects (~8% higher 

than WT at CenV) even at the “permissive” temperature of 22.5oC (Toth et al., 

1999).  Because this mutant is very temperature sensitive, its phenotype is 

somewhat difficult to compare with eco1-ack, eco1-W216G, and eco1-H53Y, 

which have a permissive temperature of 30oC. 
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Figure 2.1 

Cohesion defects in Eco1 mutant strains.  

(A) The two domains of Eco1 are shown in a cartoon of the gene, and the 

mutations characterized are indicated. (B) Yeast strains were constructed by 

replacing the genomic copy of the indicated allele with a cohesinopathy allele, 

thereby placing the mutant allele under the control of the endogenous promoter 

at the endogenous locus.  Additionally, strains contained lacO repeats on the 

telomere (B), arm (C), or centromere (D) of chromosome IV and a lacI-GFP 

fusion was inducibly expressed in nocodazole-arrested cells at 30oC. The arrest 

was confirmed by cytometry (data not shown).  The number of cells displaying 1 

spot versus 2 spots was counted to determine chromosome cohesion.  At least 

three biological replicates were conducted for each strain and at least 300 total 

cells were counted.  The standard deviation is indicated.  Statistical significance 

was calculated using Fisher’s exact test.   
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Figure 2.1 
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Acetyltransferase activity is compromised by the eco1-W216G (RBS) 

mutation 

In order to compare the acetyltransferase activity of different Eco1 mutants, each 

mutant protein was expressed in E. coli and purified via a GST tag.  

Recombinant protein was incubated with 3H-acetyl-Co-A and a recombinant 

Mcd1 peptide (amino acids 169-337).  As had been previously shown, the eco1-1 

(G211D), and eco1-ack mutations strongly reduce both autoacetylation of Eco1 

and acetylation of an exogenous substrate (Ivanov et al., 2002).  The Eco1-

W216G mutant protein behaved similarly.  However, the H53Y zinc finger 

mutation results in a protein that retains some auto-acetyltransferase activity, but 

has a similar deficiency to the other mutants in terms of acetylation of an 

exogenous substrate (Figure 2.2A).  This protein might be expected to have low 

acetyltransferase activity toward its targets in vivo.  Similar results were obtained 

when acetylation was detected by Western blotting with an anti-acetyl-lysine 

antibody (data not shown).  Thus, all four mutants have severely compromised 

acetyltransferase activity toward a target protein in vitro. 

 

We next checked the expression of the mutants in vivo by adding a 3X FLAG tag 

to the C terminus and immunoblotting.  We find that Eco1-W216G and Eco1-

H53Y are present at much lower levels than wild-type protein (12-fold and 6-fold, 

respectively, Figure 2.2B).  Regrettably, a strain bearing FLAG tagged Eco1-1 is 

inviable, so we were unable to measure the level of this mutant protein in vivo.  

The lower levels of the Eco1-W216G and Eco1-H53Y protein in vivo combined 
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with the lack of acetyltransferase activity measured in vitro suggest these 

mutants might have a stronger phenotype than eco1-ack, whose levels are only 

reduced ~2-fold. 

 

Given the differences in protein levels, we decided to measure the acetylation 

levels of Smc3 in each mutant background in vivo in order to determine their 

“true” acetylation defect.  Acetylation of Smc3 can be detected with an anti-

acetylysine antibody when the cohesin complex is immunoprecipitated from 

whole cell extracts.  We examined Smc3 acetylation using immunoprecipitation 

of either Smc3-HA or Mcd1-18Myc.  Smc3-HA in combination with the eco1-

H53Y mutation is lethal so we could not perform the HA immunoprecipitation in 

this strain.  We found that the level of Smc3 acetylation in eco1-ack is nearly 

wild-type, while the level in the eco1-1 is the lowest.  Acetylation is present at 

intermediate levels in the eco1-H53Y and eco1-W216G mutants (Figure 2.2C).  

The level of acetylation measured in either the Mcd1 or Smc3 pull-down is similar.  

In addition, each of the pull-downs was performed at least twice with similar 

results.  Unfortunately, the level of acetylated Mcd1 cannot be measured in vivo 

since it is not detected with any of the available anti-acetyl-lysine antibodies 

(Heidinger-Pauli et al., 2009).  Although acetylation of an exogenous substrate is 

undetectable in vitro, these mutant Eco1 proteins mediate various levels of 

acetylation in vivo. 
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Figure 2.2 

Acetyltransferase activity associated with Eco1 mutants.   

(A) GST-Eco1 and GST-Mcd1169-337 fusion proteins were expressed in E. coli and 

purified by glutathione-agarose.  Following an in vitro acetylation reaction with 

3H-acetylCoA in which Mcd1 peptide was either included (+) or omitted (-), the 

sample was subjected to autoradiography or Coomassie staining following PAGE.  

Eco1 can autoacetylate (upper band) and can also acetylate Mcd1169-337 (lower 

band). (B) The expression of Eco1 was measured by immunoblotting with α-

FLAG antibody in whole cell yeast extracts.  A 3XFLAG tag was integrated at the 

C terminus of each protein.  50 μg of total protein was loaded per lane.  The 

expression level of each protein is shown normalized to wild-type.  The asterisk 

indicates a non-specific band.  G6PDH serves as a loading control. (C)  The level 

of acetylation of Smc3 was measured in WT, eco1-1, eco1-W216G, eco1-H53Y, 

and eco1-ack mutant strains by pulling down either Smc3-HA with anti-HA beads 

or Mcd1-18Myc with anti-Myc beads from whole cell extracts followed by 

Western blotting with anti-acetyl-lysine antibody.   

 

 

 

 

 

 

 



50 

Figure 2.2 
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DNA damaging agents reduce the growth of strains with mutations in Eco1 

Given the role of the cohesin network in DNA repair, we examined the different 

mutants for damage sensitivity.  The scc2-D730V mutant strain used in this 

assay corresponds to a mutation associated with a second cohesinopathy, 

Cornelia de Lange syndrome.  Since both the eco1-W216G and scc2-D730V 

mutations have been reported to affect chromosome compaction, the scc2-

D730V mutant is meant to serve as a control for any effect of chromosome 

compaction on damage sensitivity.  The scc2-D730V mutation does not cause a 

measurable cohesion defect (Gard et al., 2009).  A rad50Δ mutant serves as a 

radiation sensitive control.  Deletion of RAD61/WPL1 has previously been shown 

to rescue the growth of eco1-1 at 37oC and damage sensitivity associated with 

the eco1-1 mutation (Ben-Shahar et al., 2008).     

 

We examined the sensitivity of the eco1 mutants to different DNA damaging 

agents.  Hydroxyurea (HU) will slow S phase which in turn causes collapsed and 

stalled replication forks.  X-rays and bleomycin will primarily cause DSBs, which 

can occur at any point in the cell cycle.  The eco1-1 mutant strain is sensitive to 

HU, bleomycin, and X-rays.  We find that none of the other 3 eco1 mutants nor 

the scc2 mutant display sensitivity to HU, but eco1-H53Y and eco1-W216G are 

both sensitive to X-rays and bleomycin (Figure 2.3).  The D730V mutation in 

SCC2 does not cause sensitivity to DNA damaging agents.  As previously shown, 

the eco1-W216G mutant does not grow at 37oC (Gard et al., 2009), but growth is 

rescued by deletion of RAD61.  In contrast to what has been reported for eco1-1 
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(Ben-Shahar et al., 2008), deletion of RAD61 does not rescue the damage 

sensitivity of the eco1-W216G strain.  Deletion of RAD61 alone causes very mild 

DNA damage sensitivity, consistent with a previous report (Ben-Shahar et al., 

2008).  Similar results for all mutants were observed in an S288C background 

(data not shown).  
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Figure 2.3 

Eco1 mutants are sensitive to agents that cause DNA double-strand breaks.  

Haploid strains of the indicated genotype were serially diluted, plated, and grown 

on SD complete medium at 23oC, 30oC or 37oC, subjected to 75 Gray of ionizing 

radiation followed by growth at 30oC, or plated onto SD complete medium 

containing 50 or 100 mM hydroxyurea (HU), or 5 or 10 μg/ml bleomycin, followed 

by growth at 30oC.   

 

Figure 2.3 
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In order to pinpoint the relevant acetylation target of Eco1 for damage sensitivity, 

we tried to genetically rescue the damage sensitivity by overexpression of known 

targets.  Acetylation of Mcd1 is thought to be important for cohesion following a 

DSB in G2/M (Heidinger-Pauli et al., 2008), although this post-translational 

modification has never been detected in vivo.  Expression of Mcd1 with 

mutations that mimic acetylation (K84Q, K210Q) bypassed the need for Eco1 for 

DSB-induced cohesion (Heidinger-Pauli et al., 2009).  Smc3 has also been 

shown to be acetylated by Eco1 for S phase cohesion on residues K112 and 

K113 (Ben-Shahar et al., 2008; Rowland et al., 2009; Unal et al., 2008; Zhang et 

al., 2008).  We investigated whether overexpression of MCD1, MCD1K84Q, K210Q, 

SMC3, SMC3K112QK113Q, SMC3K112NK113N, SMC3K113Q, or SMC3K113N would rescue 

the damage sensitivity of the eco1-W216G mutant strain.  We found that 

overexpression of MCD1 or MCD1K84Q, K210Q did not suppress the growth defect 

caused by X-rays (Figure 2.4A).  Neither did overexpression of SMC3 or any of 

the SMC3 mutants (Figure 2.4A).  In conclusion, overexpression of no single 

known target of Eco1 was able to rescue the damage sensitivity of the eco1-

W216G mutant strain.  This result suggests that the expression of the acetylation 

mimic mutations may not sufficiently mimic the acetylated state, or that Eco1 may 

have additional targets for DNA damage repair.   

 

In contrast to the DNA damage sensitivity, overexpression of SMC3K113Q or 

SMC3K113N, but not SMC3, rescued the temperature sensitivity of the eco1-

W216G strain.  The rescue suggests that the primary reason for lethality at 37oC, 
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which is correlated with a strong cohesion defect (Gard et al., 2009), is a deficit in 

acetylation of K113 in Smc3 by Eco1.  These findings echo the rescue of the 

eco1-1 strain with SMC3K113N (Ben-Shahar et al., 2008).  Overexpression of 

SMC3K112NK113N or SMC3K112QK113Q actually inhibited growth of the eco1-W216G 

strain, suggesting that the constituitive acetylation of both residues is problematic, 

similar to findings in a previous report (Unal et al., 2008).   

 

As a control, we overexpressed ECO1, which allows robust growth following 

treatment with X-rays, as expected.  Unexpectedly, overexpression of Eco1-

W216G rescued the temperature sensitivity of the eco1-W216G mutant strain 

(Figure 2.4A), suggesting an abundance of Eco1-W216G is sufficient for its 

essential function in chromosome segregation, but in contrast, it did not suppress 

the damage sensitivity.  Western blot analysis showed that the eco1-W216G 

mutant protein is expressed at high levels (Figure 2.4B), and furthermore, that 

the acetylation of Smc3 is restored by the overexpression (Figure 2.4C).  Thus, 

neither the restoration of acetylated Smc3 nor the expression of the Smc3 

acetylation mimic is able to rescue the damage sensitivity of the eco1-W216G 

mutant. 

 

 

 

 

 



56 

Figure 2.4   

Overexpression of known targets of Eco1 does not suppress the damage 

sensitivity of the eco1-W216G strain.   

(A) An eco1-W216G strain was transformed with plasmids containing various 

genes under the control of a gal promoter or an empty vector (EV).  Strains were 

plated onto gal-ura medium to induce expression and incubated at 30oC, or 

treated with 37.5 Gray of ionizing radiation followed by incubation at 30oC, or 

incubated at 37oC.  (B) Strains with plasmids containing ECO1, eco1-W216G, or 

an empty vector were grown in galactose to examine levels of Eco1 protein using 

anti-Eco1 antibody by Western blot.  Pgk1 serves as a loading control.  “ns” 

indicated a non-specific band.  (C)  From strains containing the plasmids in (B), 

an IP was performed with anti-HA antibody to pull down Smc3, and subsequently 

subjected to Western blotting with anti-acetyl-lysine antibody.  The level of Smc3 

acetylation was quantitated using the level of Smc3 to normalize for IP efficiency, 

and the numbers are shown below each lane. 
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Figure 2.4 
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Eco1 mutants activate the DNA damage checkpoint 

In order to further characterize the DNA damage defect in the Eco1 mutants, we 

analyzed checkpoint function in the mutants.  The sensitivity of eco1 mutants to 

DNA damage may result from either a failure activate the DNA damage 

checkpoint or an inability to repair the damage.  In budding yeast the effector 

kinase, Rad53 (Chk2) is required for checkpoint activity and cell cycle arrest in 

response to DNA damage (Weinert et al., 1994).  Rad53 becomes 

phosphorylated by Mec1 in a Rad9 dependent manner in response to DNA 

double strand breaks (Sanchez et al., 1996).  We monitored cell cycle 

progression and the phosphorylation state of Rad53 following exposure of cells 

to X-rays (Figure 2.5). 
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Figure 2.5   

DNA damage checkpoint response in eco1 mutants.   

(A)  Strains were grown to an OD600 of 0.6 and subjected to 75 Gray of ionizing 

radiation.  Following exposure, cells were plated to YPD plates to measure 

viability.  (B)  Cells were collected for analysis of DNA content by cytometry and 

phosphorylation of Rad53 by Western blotting prior to exposure (0) and at 2 and 

8 hours following exposure. 

 

 

Figure 2.5 
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Rad53 was efficiently phosphorylated following treatment with X-rays in the eco1-

H53Y, eco1-W216G, and eco1-ack mutants, but only the eco1-H53Y and eco1-

W216G mutants held a persistent arrest in G2/M, similar to a rad50Δ mutant 

(Figure 2.5).  In contrast, the eco1-ack mutant behaved more like WT; it did not 

arrest, suggesting it could efficiently correct the damage.  This observation 

supports our finding that eco1-H53Y and eco1-W216G mutant strains are more 

sensitive to genotoxic stress than eco1-ack (Figure 2.3).  A rad9Δ mutant serves 

as a control; Rad53 is not phosphorylated in this mutant and cells do not arrest 

(de la Torre-Ruiz et al., 1998; Weinert and Hartwell, 1988).  We conclude that the 

checkpoint is appropriately activated in the mutants and the sensitivity to ionizing 

radiation is due to a downstream defect.  This observation is consistent with 

damage-induced cohesion being dependent on Mec1 (Unal et al., 2007). 

 

Reciprocal mitotic crossovers require the acetyltransferase activity of Eco1 

While mutations that reduce the acetyltransferase activity of Eco1 have little 

effect on S phase cohesion and chromosome segregation, the same mutations 

(eco1-ack, eco1-203) have been demonstrated to reduce DSB-coupled cohesion 

in G2/M (Unal et al., 2007).  Unfortunately the eco1-W216G mutation in 

combination with the mcd1-1 allele used in the assay developed by the Koshland 

lab to measure damage-induced cohesion is a lethal combination so we cannot 

measure damage-induced cohesion in this manner.  However, since the Roberts 

strain is damage sensitive, we decided to study how this mutation affects 

recombination outcomes in a diploid background. 
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An elegant system has been developed to analyze mitotic recombination in a 120 

kb interval on chromosome V (Barbera and Petes, 2006).  This system takes 

advantage of a variety of heteroallelic selectable markers.  One copy of 

chromosome V contains HIS3, can1-100, and HYG while the second copy of 

chromosome V contains LEU2, SUP4-o (an ochre suppressor) and KAN at the 

same positions.  The background is homozygous for the ade2-1 allele, which 

contains an ochre suppressible mutation.  When ade2-1 is suppressed by SUP4-

o, cells are white, but if the cells lack SUP4-o, they will be red (Figure 2.6A).  

This strain can be used to score break induced replication (BIR), local gene 

conversion (GC), reciprocal crossovers (RCO), and chromosome loss events.   

 

Previously, mitotic recombination following growth on HU was examined 

(Barbera and Petes, 2006).  HU increases the number of recombinants 

approximately 40-fold over the rate of spontaneous mitotic recombination.  When 

the rate of recombination is high, recombination events do not need to be 

selected.  The number of sectored colonies relative to the total number of 

colonies is a direct measure of the frequency of recombination.  After the two 

colored sectors are isolated, these colonies can be further scored for the various 

markers to differentiate types of recombination events.   

 

We grew the diploid WT and eco1-W216G mutant strains on plates containing 

2.5 μg/ml bleomycin to induce a low level of damage.  At this concentration, the 
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eco1-W216G mutant strain can still grow whereas at higher levels, its growth is 

significantly impaired (Figure 2.6B).  Individual colonies were resuspended in 

water and plated to nonselective medium (SD-arg) and screened for colonies 

with red/white sectors.  We find that growth on 2.5 ug/ml bleomycin elevates the 

rate of recombination in a WT strain approximately 120-fold compared to no 

treatment.  Both RCO and BIR events are stimulated on bleomycin in a WT strain. 

However, with HU the ratio of RCO to BIR events is approximately 0.6:1 (Barbera 

and Petes, 2006) while growth on bleomycin causes RCOs to become more 

common than BIR events with a shift in the ratio to 1.8:1.  This is likely related to 

the different types of damage caused by HU and bleomycin.  The overall rate of 

recombination in the eco1-W216G background appears slightly lower than wild-

type (p=0.08, chi square test, Figure 2.6C), suggesting the mutation may 

compromise recombination efficiency. 
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Figure 2.6   

A genetic system to detect mitotic recombination events was used to score 

recombination in the Roberts mutant.   

(A)  Schematic of the markers contained on Chromosome V.  (B)  Diploid strains 

were serially diluted and plated.  The eco1-W216G diploid strains show similar 

sensitivity to bleomycin and ionizing radiation as the haploid strain (Figure 2.3).  

(C)  A wild-type strain and two independent isolates of the Roberts mutant strain 

were grown at room temperature on plates containing 2.5 μg/ml bleomycin.  

Individual colonies were picked and plated onto SD-arg medium.  Sectored 

colonies were scored as previously described (Barbera and Petes, 2006).  “Total 

rate” indicates the total number of recombination events.  These events were 

further broken down into reciprocal crossovers (RCO), break induced replication 

(BIR), local gene conversion (GC), and chromosome loss (Chr loss) based on 

marker scoring.  The results are shown for each of the two mutant strains 

separately and combined (av).  Three independent experiments were performed 

for each strain and the standard deviation is shown.  The p value is derived from 

a chi square test comparing total recombinants – RCOs and RCOs from the WT 

strain to the sum of the same values from the eco1-W216G mutant strains. 
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Figure 2.6   
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Sectored colonies were scored to assess what type of recombination event had 

occurred.  For the WT strain we examined 11,340 total colonies and found 18 

with the phenotype expected for RCO events and 10 with the phenotype 

expected for BIR events.  For the eco1-W216G mutant strain, we examined 

24,489 total colonies and found 6 with the phenotype expected for an RCO event 

and 32 with the phenotype expected for a BIR event.  The drop in RCO events in 

the mutant background is statistically significant at the level of p<0.0001 using a 

chi square test with Yates correction.  Three independent trials were performed 

and the standard deviation is shown (Figure 2.6C).  Chromosome loss events 

were not significantly elevated in the Roberts mutant background, arguing that 

chromosome segregation is not defective, and consistent with the 1 spot-2 spot 

results (Figure 2.1).  The specific effect of the eco1-W216G mutation on 

reciprocal crossovers implies that Eco1 activity is needed for this particular 

recombination outcome in mitotic cells.  Interestingly RCOs seem to be 

particularly important for mitotic repair at the rDNA (Casper et al., 2008).   

 

Eco1 activity is not essential for meiotic crossovers 

The reduction in reciprocal crossovers during mitosis prompted us to examine 

the level of crossovers in meiosis in the Roberts mutant background.  In meiosis, 

programmed DSBs elevate the frequency of recombination 1000-fold.  In addition 

to the markers already described, the strain used was heterozygous for 

URA3/ura3-1 within the 120 kb interval on ChrV and for TRP1 inserted at the 

TAR1 locus within the rDNA (Figure 2.7A).  We wanted to monitor recombination 
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within RDN1 since this is a cohesin binding site (Glynn et al., 2004; Laloraya et 

al., 2000).  In mitosis, the cohesin complex consists of Smc1, Smc3, Scc3, and 

Mcd1/Scc1.  In meiosis, there is a second cohesin complex in which Rec8 

replaces Mcd1 (Klein et al., 1999; Watanabe and Nurse, 1999).  In contrast to 

Mcd1, Rec8 cannot mediate damage-induced cohesion (Heidinger-Pauli et al., 

2008).  Whether or not Eco1 has essential targets in meiosis is an open question. 

 

We examined the meiotic products from a WT strain and a Roberts mutant strain.  

Tetrad formation is reduced in the Roberts mutant relative to the wild-type.  

Furthermore, spore viability is reduced from 96% to 75%.  However, 

recombination as scored in 4-spore tetrads is indistinguishable from WT.  

Although the frequency of aberrant segregation for four different markers is 

elevated in the mutant, these increases are not statistically significant (Figure 

2.7B).  If aberrant segregation is summed for all the loci, the increase becomes 

statistically significant with a P value of 0.012.  Genetic distance, which is a 

measure of the number of crossovers per kb, is similar for three different intervals 

(Figure 2.7C).  Thus, it seems that Eco1 activity is not essential for successful 

meiotic recombination or crossing over. 
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Figure 2.7   

A genetic system to score meiotic recombination was used to analyze 

recombination in the Roberts mutant.   

(A)  Schematic of the markers contained on Chromosome V.  In addition, TRP1 

was inserted into the RDN1 repeat in one parent.  (B)  Aberrant segregation 

(exceptions to 2:2 segregation) of markers was scored for four different positions 

in 305 wild-type and 588 mutant tetrads.  Two independently isolated strains 

were used for each genotype.  Fisher’s exact test indicates no significant 

differences between mutant and wild-type.  (C)  The genetic distance was 

calculated for the three intervals indicated, with the caveat that pink/white color 

was used to score the SUP4-o locus.  Fisher’s exact test indicates no significant 

differences between mutant and wild-type. 
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Figure 2.7   
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DISCUSSION 

We have analyzed and compared four mutations in the essential 

acetyltransferase ECO1; each mutant has a distinct phenotype.  Together these 

mutations can be thought of as a series of weak to strong hypomorphic mutations.  

Three mutations are in the acetyltransferase domain and one is in the zinc finger; 

all four mutations cause deficiencies in acetyltransferase activity in vitro, 

including a mutation that corresponds to the human Roberts syndrome mutation.  

Despite similar deficiencies in acetyltransferase activity in vitro, strains with the 

mutations integrated under the control of the endogenous promoter display 

different levels of Smc3 acetylation in vivo and these levels roughly correlate with 

sensitivity to agents that cause DNA damage, with the eco1-1 mutant being the 

most sensitive, eco1-W216G and eco1-H53Y displaying intermediate sensitivity, 

and eco1-ack showing no detectable sensitivity.  Since acetylation of Smc3 is 

necessary for cohesion, the number of cohesive complexes is likely to be 

reduced in the mutants.  Reducing acetylated complexes may be akin to 

systematically reducing Mcd1 levels, which has recently been argued to reduce 

the number of cohesive complexes (Heidinger-Pauli et al., 2010).  In this case, 

accurate chromosome segregation required much less Mcd1 than DNA repair 

(Heidinger-Pauli et al., 2010), which is consistent with our findings that reduced 

Smc3 acetylation in the eco1-W216G mutant does not affect chromosome 

segregation but this mutation does affect DNA repair.   

 



70 

Growth at 37oC in the eco1-W216G strain was rescued by overexpression of 

ECO1-W216G, SMC3K113Q or SMC3K113N or deletion of RAD61, suggesting these 

genetic manipulations are sufficient for chromosome segregation. In contrast, 

none of these genetic manipulations was able to rescue the damage sensitivity, 

suggesting none of these genetic states are sufficient for an effective response to 

DNA damage.  It is possible that the overexpression of ECO1-W216G, 

SMC3K113Q or SMC3K113N failed to rescue the damage sensitivity because 

acetylation is uncoupled with the damage response.  

 

Given the DNA damage sensitivity of the eco1-W216G strain, we undertook a 

detailed characterization of recombination in this mutant background.  The 

mutant displayed a surprising defect in reciprocal crossing over, suggesting that 

an Eco1-dependent process is required for the exchange of homologous 

chromosome arms.  This defect may be due to a reduction in damage-induced 

cohesion.  The specificity of the effect for mitotic recombination probably reflects 

the different roles of cohesin in the repair of mitotic DSBs and the programmed 

DSBs that occur during meiosis. 

 

When DSBs are repaired by non-reciprocal recombination, such as BIR, instead 

of reciprocal crossovers (RCO), such as in the RBS mutant strain, the net result 

is a greater chance for loss of heterozygosity (LOH).  Although crossing over is a 

rather rare event during mitosis, mechanisms to ensure reciprocity are quite 

important since they allow for the maintenance of two copies of a given allele, 
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rather than a conversion to homozygosity.  Retinoblastoma, a human cancer of 

the retina, provides a compelling example for the importance of maintenance of 

heterozygosity.  When one parent’s contribution of the tumor suppressor Rb1 is 

flawed, this almost invariably results in childhood retinoblastoma due to chance 

LOH events.  Thus, discovering mutations that lead to a bias toward LOH is 

informative since it identifies a potential mechanism by which LOH can occur.  In 

budding yeast that have been aged by multiple passages, the rate of LOH 

increases due to a bias toward non-reciprocal recombination (McMurray and 

Gottschling, 2003), similar to what we observe in the RBS strain.   
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MATERIALS AND METHODS 

GST-fusion protein purification 

An E. coli culture was grown in 1 L of LB with 100 μg/ml ampicillin at 37°C until 

OD600 was 0.3. Then the culture was shifted to 25°C and continued to grow until 

OD600 was 0.6. IPTG was added to 0.3 mM for 3 hours at 25°C. The cells were 

subjected to centrifugation at 5K, 4°C for 5 min and washed with cold PBS.  The 

pellet was resuspended in 30 ml metal lysis buffer (25 mM Hepes, pH7.5, 300 

mM NaCl, 10% glycerol and 1 mM DTT) with protease inhibitors (Roche). Then 

0.5 ml of 500 mg/ml lysozyme was added and mixed by inverting. The mixture 

was incubated 10 minutes on ice and sonicated on ice 5 times for 30 seconds on 

35% power with a 2 minute interval. The lysate was then centrifuged for 20 

minutes 16K at 4°C and was then further centrifuged at 50K for 45 minutes. The 

supernatant was added to glutathione resin and rotated for 2 hours at 4°C. The 

glutathione resin was rinsed with 5 ml metal lysis buffer and protein was eluted 

by adding 1 ml of 10 mM reduced glutathione. 

 

In vitro acetylation assay 

Purified GST-tagged Eco1p WT, G211D, R222G K223G, W216G and H53Y 

proteins (0.4 µg) were added to HAT buffer (50 mM Tris [pH 8.0], 5% glycerol, 

0.1 mM EDTA, 50 mM KCl, 1 mM DTT, 1mM PMSF and 10 μM 3H-Acetyl-CoA ), 

and incubated with GST-Mcd1169-337 (1 µg) for 60 minutes at 30ºC. Reactions 

were run on SDS-PAGE and analyzed by both Coomassie staining and exposure 

to a Phosphor screen.   
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α-FLAG, α-Eco1, α-Rad53 and α-acetyl-lysine Western blots 

The cell pellet from a 200 ml culture grown to OD600=0.8 in YPD was lysed in 

NP40 Lysis Buffer (50 mM Tris pH 7.5, 150mM NaCl, 10% Glycerol, 1% NP-40)  

by the addition of glass beads and beadbeating for 60 sec 5 times with 2 min 

intervals on ice.  The supernatant was collected and the protein concentration 

was determined using the optical density of a standard curve and Bradford 

reagent.  50 μg of total protein was loaded onto a 4-12% Bis-Tris gel for SDS-

PAGE.  Proteins were transferred to a nitrocellulose membrane followed by 

blocking.  For detection of Eco1-FLAG, α-FLAG antibody (Sigma #F3165) was 

used at a 1:2500 concentration followed by α-Mouse HRP (GE Healthcare 

#NA931V) at a 1:5000 concentration.  For detection of overexpressed Eco1, 

polyclonal α-Eco1 antibody was used at 1:1000 followed by α-rabbit-HRP (GE 

Healthcare #NA934V) at a 1:5000 concentration.  Smc3-HA was pulled down 

from whole cell extracts using anti-HA beads (Roche) and eluted using SDS 

buffer (10 mM Tris pH7.5, 1 mM EDTA, 1% SDS). A cocktail of deacetylase 

inhibitors (100 µM Trichostatin A, 50 mM nicotinamide, 50 mM sodium butyrate) 

was added during the immunoprecipitation process. The eluate was subjected to 

SDS-PAGE. Following transfer to a nitrocellulose membrane and blocking, α-

acetyl-lysine antibody (Cell Signaling #9441) was used at a 1: 1000 

concentration followed by α-Rabbit HRP as above.  Detection was achieved with 

Amersham ECL Plus Western Blotting Detection System (GE Healthcare 

#RPN2132).   
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To detect phosphorylated Rad53, 75 μgs of protein were subjected to SDS-

PAGE.  Following transfer to a nitrocellulose membrane and blocking, α-

phosphoRad53 antibody (Santa Cruz, SC-6749) was used at a concentration of 

1:1000 followed by α-goat-AP (Promega, V1151) at a 1:5000 concentration.  For 

signal detection, BCIP (5-bromo-4-chloro-3-indolyl-phosphate) was used in 

conjunction with NBT (nitro blue tetrazolium) for the colorimetric detection of 

alkaline phosphatase activity in the presence of alkaline phosphatase buffer (100 

mM Tris-HCl [pH 9.0], 150 mM NaCl, 1 mM MgCl2).  

 

Yeast strains and tetrad analysis were constructed and analyzed by standard 

methods. The cohesion assays were carried out as previously described (Gard et 

al., 2009). The assay to select and analyze reciprocal mitotic crossovers has 

been extensively described (Barbera and Petes, 2006). 
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CHAPTER 3 

THE COHESIN ACETYLTRANSFERASE ECO1 COODINATES rDNA 
REPLICATION AND TRANSCRIPTION 

 

I am the first author of the following manuscript: The cohesin acetyltransferase 

Eco1 coordinates rDNA replication and transcription, submitted to EMBO Report.  
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FIGURE 3.1 I performed the GCN4-LacZ assay, FISH assay and Dr. Bo Xiong 

and Dr. Chris Seidel contributed genome transcription analysis. 

FIGURE 3.2 Dr. Jennifer Gerton performed the growth assay. I performed the 

GCN4-LacZ assay. 

FIGURE 3.3 Dr. Bo Xiong and Dr. Chris Seidel contributed genome transcription 

analysis. 

FIGURE 3.4 Bethany Harris performed the growth assay. 

FIGURE 3.5 I performed the FACS analysis and PFGE assay. 

FIGURE 3.6 Bethany Harris and Dr. Kenneth Lee performed ChIP assays. Dr. 

Chris Seidel and I performed DNA sequencing assay and analysis. I performed 

the plasmid transformation assay. 

FIGURE 3.7 Dr. Chris Seidel and I performed DNA sequencing analysis. 

FIGURE 3.8 I performed the ChIP assay and analysis. 
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FIGURE 3.9 Dr. Anita Saraf, Gaye Hattem, and Dr. Laurence Florens contributed 

the proteomic analysis. 

FIGURE 3.10 Bethany Harris performed the EM analysis. I performed the 

western blot and rDNA segregation assay. 
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ABSTRACT 

Eco1 is the acetyltransferase that establishes sister-chromatid cohesion during 

DNA replication. A budding yeast strain with an eco1 mutation that genocopies 

Roberts syndrome displays reduced ribosomal DNA (rDNA) transcription and a 

disrupted transcriptome. We show that deleting FOB1, a gene encoding a 

specific replication fork blocking protein for the rDNA region, rescues rRNA 

production and genome-wide transcriptional defects. Further studies show that 

deletion of FOB1 corrects the genome-wide replication defects, nucleolar 

structure and chromosome segregation in an eco1 mutant by allowing 

bidirectional replication of the rDNA. Our study highlights cohesin’s central role at 

the rDNA for global control of DNA replication and gene expression. 
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INTRODUCTION 

The evolutionarily conserved cohesin complex contributes to chromosome 

function in many ways.  Cohesin contributes to the processes of chromosome 

segregation, DNA replication, chromosome condensation, and DNA damage 

repair. A previous study showed that cohesin mutations reduced ribosomal DNA 

(rDNA) transcription and translation in both budding yeast and human cells (Bose 

et al., 2012). Roberts syndrome is a human disease caused by mutation of 

ESCO2, a homolog of the yeast cohesin acetyltransferase ECO1 gene (Vega et 

al., 2005). Mutations in cohesin are also associated with a second developmental 

disorder, Cornelia de Lange syndrome, as well as myeloid neoplasms (Cancer 

Genome Atlas Research, 2013; Kon et al., 2013; Liu and Krantz, 2008).  These 

diseases are likely to be caused by changes in gene expression, rather than 

chromosome segregation defects (Bose and Gerton, 2010; Liu and Krantz, 2008; 

Liu et al., 2009; Wendt et al., 2008). However, the mechanisms by which the 

cohesin complex influences the whole transcriptome are unclear.  

 

Cohesin binds to the approximately 150 highly transcribed tandem repeats that 

make up the budding yeast rDNA locus (Laloraya et al., 2000).  In fact, cohesin 

binds to the rDNA regions in every eukaryotic genome in which binding has been 

examined.  Active replication challenges this highly transcribed region. Fob1 

controls locus replication in budding yeast, allowing it to occur only in the 

direction of transcription. The replication fork barrier provided by Fob1 ensures 

the replication apparatus will not disrupt transcription of the 35S gene (Brewer 
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and Fangman, 1988; Linskens and Huberman, 1988). A previous genetic 

interaction screen has shown that cohesin mutants require the function of genes 

that mediate replication fork progression (McLellan et al., 2012). Indeed, DNA 

replication forks move more slowly in human ESCO2 mutant cells (Terret et al., 

2009). Moreover, the observation of heterochromatic repulsion in Roberts 

syndrome patient cells suggests that these regions might have cohesion defects 

due to difficulty with replication (Vega et al., 2005). These regions include 

centromeres and the nucleolar organizing centers. In budding yeast, the 

heterochromatic DNA domains include telomeres, the silent mating type loci, and 

the rDNA repeats. The cohesin complex binds adjacent to the replication fork 

barrier site (Laloraya et al., 2000) and is important for replication fork restart 

(Tittel-Elmer et al., 2012).  All together, these results indicate an intimate 

connection between cohesin function and DNA replication, and perhaps a special 

role for cohesin at the rDNA. 

 

In this study, we observed many defects in DNA replication in an eco1 mutant.  

Defects in replication, rRNA production, and gene expression in general, can be 

rescued by allowing replication at the rDNA to become bidirectional in an eco1 

mutant.  While replication defects have also been reported in other cohesin 

mutants (Crabbe et al., 2010; Guillou et al., 2010; Lengronne et al., 2006; Lopez-

Serra et al., 2013; Terret et al., 2009), what has not been appreciated is that the 

replication defects may interfere with transcription of the rDNA region. We 
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propose that replication defects associated with mutations in cohesin have a 

major influence on gene expression. 

 

RESULTS AND DISCUSSION 

FOB1 deletion partially rescues the genome-wide expression pattern in an 

eco1 mutant 

Because Fob1 coordinates transcription and replication at the rDNA locus and 

because FOB1 deletion rescues some phenotypes associated with smc5-smc6 

mutants (Torres-Rosell et al., 2007), we wondered how deletion of FOB1 would 

affect the phenotypes associated with the eco1-W216G mutation.  This mutation 

is associated with decreased acetyltransferase activity in Roberts syndrome 

(Gordillo et al., 2008; Lu et al., 2010).  Gcn4 is a transcriptional activator that is 

translated when translational activity is poor (Hinnebusch, 2005). We initially 

employed a Gcn4-lacZ reporter as an indicator for ribosome function. The eco1-

W216G strain shows a nearly 4 fold increase of β-galactosidase activity 

compared to a wild type strain (Bose et al., 2012). Interestingly, when we deleted 

the FOB1 gene in the eco1 mutant background, β-galactosidase levels were 

reduced (Figure 3.1A). The decrease in β-galactosidase activity suggested that 

the poor translational activity in the eco1-W216G strain was rescued by FOB1 

deletion. Moreover, when the Fob1 protein was over-expressed, the β-

galactosidase activity in the eco1-W216G mutant increased further (Figure 3.2), 

indicating further impaired translational activity.  
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Figure 3.1 

Differential gene expression in the eco1 mutant was partially rescued by 

FOB1 deletion.  

(A) WT and indicated mutant strains were transformed with the p180 plasmid that 

contains Gcn4-lacZ. β-galactosidase activities for each strain were measured in 

triplicate from mid log phase cells grown in YPD + CSM. All values were 

normalized to the level of the WT stain and are shown in arbitrary unit (a.u.). The 

p values were calculated by Student's t test, comparing mutant to wild type. (B) 

Strains with a unique sequence inserted into one rDNA repeat and the indicated 

mutation were measured for their transcription by FISH. For each strain, at least 

three independent cultures were monitored and at least 300 cells per culture 

were quantified. In the plot shown, the dot is the average, the box is the 95% 

confidence standard error, and the horizontal line within the box is the median. 

The p values were calculated by Student's t test, comparing mutant to WT. (C) 

Venn diagrams of upregulated genes and downregulated genes with p < 0.05 in 

the indicated strains are shown. (D) Genes with Gcn4 or Tbp1 binding sites in 

their promoters were assessed as a group in each data set by a gene set 

enrichment test. The resulting p-values are shown as -log10(p-value). The p value 

is calculated by a hypergeometric test using the number of differentially 

expressed genes with the binding site versus the number of genes in the genome 

with the site. 
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Figure 3.1 
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Figure 3.2 

Overexpression of FOB1 impairs growth and increases Gcn4-lacZ 

expression in the eco1-W216G strain. 

(A) Growth assay of WT and eco1-W216G strains with the indicated galactose-

inducible over-expression CEN plasmids or empty vector (EV) on SD-ura and 

gal-ura plates. (B) WT and eco1-W216G strains with Gcn4-lacZ integrated into 

the genome were transformed with the indicated galactose-inducible over-

expression plasmids. β-galactosidase activity for each strain was measured in 

triplicate from mid log phase cells grown in YPD + CSM or YPgal + CSM, as 

indicated. The C193A point mutation in the zinc finger motif of FOB1 has been 

shown to disrupt its association with the RFB.  All values were normalized to the 

level of the WT strain grown in YPD + CSM and are shown in arbitrary units (a.u.). 

The histogram represents the average of four biological replicates. Error bars 

indicate standard deviation. The p value was calculated by Student's t test, 

comparing the level of Gcn4-lacZ with Fob1 over-expression (galactose) to the 

level of Gcn4-lacZ without Fob1 over-expression (glucose) in the eco1-W216G 

strain. 
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Figure 3.2 
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Ribosome function depends on rRNAs that are transcribed from the rDNA locus. 

We speculated that deleting the FOB1 gene rescued the ribosome function in the 

eco1-W216G mutant by rescuing rDNA transcription. In order to directly measure 

rDNA transcription, we used fluorescence in situ hybridization (FISH) to detect 

transcription of a single ribosomal repeat by inserting a unique sequence 

recognizable by a probe (Tan and van Oudenaarden, 2010). As previously 

observed, the rRNA transcript level in the eco1-W216G strain was approximately 

half of the observed value in a WT strain (Bose et al., 2012). However, deleting 

the FOB1 gene in the eco1-W216G strain restored rRNA transcripts to levels 

comparable to a WT strain (Figure 3.1B). For comparison, we measured rRNA 

transcripts in an eco1-W216G rad61Δ double mutant strain. RAD61 is a negative 

regulator for cohesion establishment (Gandhi et al., 2006; Kueng et al., 2006; 

Sutani et al., 2009) and its deletion rescues the temperature sensitivity of the 

eco1-W216G strain, but not the elevated expression from the Gcn4-lacZ reporter 

(Rolef Ben-Shahar et al., 2008). While fob1Δ is expected to have an rDNA-

specific effect, rad61Δ should produce a more general effect on cohesin.  In 

contrast to fob1Δ, rad61Δ did not rescue rRNA transcription in the eco1-W216G 

strain.  

 

Eco1 has other targets in addition to the subunits of the cohesin complex (Ghosh 

et al., 2012; Ivanov et al., 2002). To exclude the possibility that fob1Δ might 

rescue rDNA transcription through a different mechanism, we measured the 

rRNA level in a smc1-Q843Δ fob1Δ double mutant. Smc1 is a subunit of the 
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cohesin complex.  The mutation is a single amino acid deletion that is associated 

with the human developmental disorder Cornelia de Lange syndrome (Bose et al., 

2012).  We found that the decreased rRNA level in the smc1-Q843Δ strain could 

also be rescued by fob1Δ (Figure 3.1B). This further suggests that fob1Δ 

rescues rDNA transcription through a cohesion-related mechanism. 

 

To assess the effect of fob1Δ on genome-wide gene expression in the eco1-

W216G strain, we performed microarray analysis of RNA from the following 

strains: 1) eco1-W216G, 2) eco1-W216G fob1Δ, 3) eco1-W216G rad61Δ, 4) 

fob1Δ, 5) rad61Δ, and 6) WT. Differentially expressed gene sets were selected 

based on a fold change between mutant and WT of at least 1.4 fold and an 

adjusted p-value less than 0.05. We found that the number of differentially 

expressed genes was less in the eco1-W216G fob1Δ strain (504) than in the 

eco1-W216G strain (1210) (Figure 3.3). The eco1-W216G fob1Δ strain also had 

fewer differentially expressed genes than the eco1-W216G rad61Δ strain (843, 

Figure 3.1C, Figure 3.3). Since genes containing Gcn4 and Tbp1 binding sites 

are significantly differentially expressed in the eco1-W216G strain (Bose et al., 

2012), we asked if these targets were less differentially expressed in the double 

mutant strains. Gcn4 and Tbp1 are sequence specific transcriptional activators. 

Tbp1 is a TATA-binding protein that functions with TFIID in the activation of 

eukaryotic genes transcribed by RNA polymerase II. Interestingly, the number of 

differentially expressed genes with these sites was decreased in eco1-W216G 

fob1Δ strain compared to the eco1-W216G and the eco1-W216G rad61Δ strain 
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(Figure 3.1D). Collectively, these experiments suggest that the differential gene 

expression in the eco1-W216G strain may be due in part to reduced levels of 

rRNA. Restoration of rRNA levels significantly rescues the transcriptional profile 

of the mutant.   
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Figure 3.3 

Differentially expressed genes in the indicated strains 

(A) Total number of differentially expressed genes in the indicated strains. (B) 

Venn diagrams of differentially expressed genes with p < 0.05 in the indicated 

strains. 
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Figure 3.3 
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FOB1 deletion rescues DNA replication defects associated with the eco1 

mutation 

The above results prompted us to ask how fob1Δ rescues rDNA transcription in 

the eco1 mutant strain. Given the replication fork blocking activity of Fob1 at the 

rDNA, we speculated that fob1Δ would rescue the eco1-W216G mutant by 

means of a DNA replication mechanism.  

 

To explore DNA replication in the eco1-W216G mutant strain, we first measured 

the cell cycle progression by cytometry analysis. We synchronized the cells in G1 

by α factor treatment and then released them to pass through S phase. In order 

to examine the replication timing difference, we released yeast from G1 phase at 

33°C. This is still a permissive temperature for growth, but the eco1-W216G 

mutation is lethal at 37°C, so we reasoned 33°C might accentuate any phenotype 

(Figure 3.4). Interestingly, after G1 release, a shift in DNA content was observed 

at 20 minutes in the eco1-W216G mutant, which is earlier than WT, indicating 

earlier progression to S phase in the eco1-W216G strain (Figure 3.5A). However, 

both WT and eco1-W216G strains complete the shift to 2N at approximately the 

same time, suggesting the eco1-W216G strain might take longer to complete 

replication than WT. To assess the effect of fob1Δ on cell cycle progression in 

eco1-W216G strain, we also measured cell cycle progression in fob1Δ and eco1-

W216G fob1Δ strains. The earlier initiation of S phase was no longer present in 

the double mutant, indicating the replication defect might be rescued by FOB1 

deletion (Figure 3.5A). 
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Figure 3.4 

Reduced rDNA copy number does not cause a synthetic growth effect in the eco1-

W216G mutant strain. 

Serial dilutions of WT, eco1-W216G, fob1Δ, eco1-W216G fob1Δ, and indicated 

mutant strains with 20 copies or 40 copies of rDNA were spotted onto YPD plates 

at 30° C, 33° C and 37° C. 

 

Figure 3.4 
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Figure 3.5  

DNA replication defects in the eco1 mutant are rescued by FOB1 deletion. 

(A) Each strain was synchronized in G1 using α factor at 30°C, released at 33°C 

and samples were collected at the indicated time points for analysis of DNA 

content by cytometry. (B) Each strain was synchronized in G1 using α factor at 

30°C, released at 33°C, and another dose of α factor was added at 60 min to 

avoid a second round of DNA replication. DNA samples were collected for PFGE 

at the indicated time points.  
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Figure 3.5 
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We next used pulsed field gel electrophoresis (PFGE) to examine DNA 

replication of the above four strains. PFGE is able to distinguish replication status 

because chromosomes cannot migrate into the gel while undergoing replication 

due to replication intermediates.  We synchronized the cells in G1 by α factor 

treatment and then released them, allowing them to pass through S phase, and 

then added another dose of α factor at 60 minutes to prevent a second round of 

DNA replication. At the indicated time points, DNA samples were collected for 

PFGE. Consistent with the above result for cell cycle progression, less 

chromosome migration was detectable at 20 minutes in eco1-W216G strain, 

which is earlier than the WT strain (Figure 3.5B). This result confirmed that DNA 

replication initiated earlier in the eco1-W216G strain, and further demonstrated 

that all chromosomes were affected. Early initiation of DNA replication was no 

longer observed in the eco1-W216G fob1Δ strain (Figure 3.5B), demonstrating 

that the DNA replication defect could be rescued by fob1Δ. These experiments 

suggested that deletion of the rDNA specific fork blocking factor FOB1 was 

rescuing a genome-wide replication defect in the eco1-W216G mutant. 

 

While Fob1 has fork blocking activity, it also regulates recombination and copy 

number at the rDNA. Eco1 plays a role in DNA damage repair and recombination 

(Lu et al., 2010; Strom et al., 2007; Unal et al., 2007). However, the eco1 

mutation does not affect recombination or copy number at the rDNA locus (Bose 

et al., 2012; Gard et al., 2009), nor does it have a synthetic growth defect with 

lower copy number of rDNA (Figure 3.4), suggesting that fob1Δ is unlikely to 
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rescue recombination or copy number issues. In addition, deletion of FOB1 alone 

does not alter the frequency of origin firing in the rDNA or the fraction of active 

rDNA genes (Burkhalter and Sogo, 2004).  Therefore, the most likely mechanism 

by which fob1Δ rescues the DNA replication defect in the eco1-W216G mutant is 

by allowing bidirectional replication at the rDNA. This may promote the 

completion of replication of the rDNA, facilitating efficient transcription of the 

locus. Deletion of FOB1 has also been shown to partially relieve replication 

stress in the smc6-9 mutant at the rDNA locus (Torres-Rosell et al., 2007). Since 

the Smc5-Smc6 complex is a close relative of the cohesin complex, it suggests 

that there might be a shared role for SMC complexes in regulating rDNA 

replication.  

 

Eco1 regulates origin firing activity 

In what ways could cohesin be regulating the firing of DNA replication origins? To 

address this question, we first investigated origin firing activity at the rDNA region 

of WT and eco1 mutant cells. Chromatin immunoprecipitation for Cdc45, a 

replication initiation factor and an indicator for origin firing (Tanaka et al., 2011; 

Zou et al., 1997), was performed from the WT and eco1 mutant cells. To 

measure the kinetics of Cdc45 binding, we released yeast from G1 arrest at 16°C 

in order to slow down the replication process. As shown in Figure 3.6A, the level 

of Cdc45 binding to the rDNA origin of replication (rARS) in the eco1 mutant 

peaked at 90 minutes, which is earlier than the peak at 105 minutes observed in 

WT cells. This observation indicates that the rARS fires earlier in the eco1 mutant 
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compared to WT. This result is consistent with our observation that DNA 

replication starts earlier in the eco1 mutant.  

 

To study how the eco1 mutation affects replication genome-wide, we measured 

DNA content by deep sequencing of genomic DNA of WT and eco1 cells (Muller 

and Nieduszynski, 2012; Natsume et al., 2013). Samples of genomic DNA were 

collected at 0 and 20 minutes following release from G1 arrest. As shown in 

Figure 3.6B and Figure 3.7A, the pattern of the origin firing is different between 

WT and eco1 strains.  More early origins fire in the WT strain compared to the 

eco1 mutant strain, but late origins fire about equally well in the two strains at 20 

minutes, indicating the origin firing sequence is disrupted in the eco1 mutant.  In 

addition, origin firing in the eco1 mutant occurred not only at origins of replication 

(ARS) sites, but also at non-ARS sites (Figure 3.6B, Figure 3.7B). However, the 

replication from individual sites was generally less pronounced in the eco1 

mutant compared to WT. This might due to the titration of the replication factors 

by the firing of many additional sites. Replication factors can be limiting for 

replication progression (Zhong et al., 2013). 

 

To confirm the origin firing defect in the eco1 mutant, we measured origin activity 

by transforming WT and eco1 mutant strains with plasmids containing 1) no ARS 

sequence, 2) rARS sequence or 3) ARS1 sequence (Kwan et al., 2013). ARS1 is 

a well-studied highly efficient early ARS located on chromosome IV. These 

plasmids enable us to assess the ability of these sequences to promote 
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autonomous plasmid maintenance. In the genome each rDNA repeat contains 

the rARS sequence.  However, in a given cell cycle approximately 1 in 5 of these 

rARSs will fire (Pasero et al., 2002).  We observed more transformants for the 

rARS containing plasmid in the eco1-W216G background compared to WT, using 

the same amount of plasmid DNA (Figure 3.6C), suggesting more firing of this 

ARS in the mutant. There were fewer transformants for the ARS1 containing 

plasmid in the eco1-W216G strain, which is consistent with the result derived 

from sequencing that ARS1 is firing less efficiently in the eco1-W216G mutant 

than in WT (Figure 3.7C). Interestingly, the noARS containing plasmid could be 

replicated with low efficiency in the mutant (Figure 3.6C), further confirming the 

origin fidelity defect observed in genome-wide sequencing. The above results 

suggest that origin firing is regulated by cohesin. 

 

 

 

 

 

 

 

 

 

 

 



98 

Figure 3.6  

Replication origin activity was disrupted by the eco1 mutation.  

(A) ChIP of Cdc45-FLAG was performed with α-Flag antibody and analyzed by 

semiquantitative PCR using primers specific for the rDNA ARS. WT and eco1-

W216G strains with Cdc45-Flag were synchronized in G1 using α factor at 30°C, 

released at 16°C, and samples were collected at the indicated time points. (B) 

Strains were cultured as in Figure 2A. Genomic DNA was collected at 20 min and 

sequenced. The signal intensities relative to a G1 phase strain are shown along 

ChrII of S. cerevisiae. Early and late origins along ChrII are indicated using blue 

and red color, respectively. Origins shown in black indicate the ARS is either 

inactive or replication timing data is not available. The asterisks indicate 

replication at non-ARS sites. The lower panel shows the numbers of early and 

late origins fired in the indicated strains. The number of fired origin was 

calculated by counting the peaks on all chromosomes using a 5kb window 

centered by origin. We observed similar patterns of origin firing in biological 

replicates. The p values were calculated by Student's t test, comparing mutant to 

WT.  (C) DNA origin activity in WT and eco1-W216G strains was measured using 

plasmids. Strains transformed with the indicated plasmid were replica-plated to 

YPD plates with G418 after a day of growth on YPD medium to assess the 

efficiency of origin firing. The number of colonies is shown to the right. The p 

values were calculated by Student's t test, comparing the eco1-W216G mutant to 

WT. 
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Figure 3.6  
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Figure 3.7  

Replication profiles of the indicated strains  

Strains were cultured as in Figure 3.2A. Genomic DNA was collected at 0 and 

20 min and sequenced. The signal intensities relative to a G1 arrested strain are 

shown along ChrII of S.cerevisiae. Early and late origins along ChrII are indicated 

using blue and red color, respectively. Origins shown in black indicate the ARS is 

either inactive or replication timing data is not available. (A) Numbers of early 

and late origin fired in the indicated strains on each chromosome. (B) Numbers 

of replication forks at non-specific sites in the indicated strains. The p values 

were calculated by Student's t-test, comparing mutant to WT. (C) The gray box 

highlights the replication profile of ARS1 on ChrIV. 
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Figure 3.7  
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In order to measure firing of the rARS, we decided to use a BrdU incorporation 

method (Viggiani et al., 2010). The deep sequencing method did not yield 

information about rARS firing because the data was outside the linear range of 

the assay. Cells were arrested in G1 with α factor and then released into medium 

with BrdU. BrdU incorporation was detected using ChIP followed by qPCR.  The 

enrichment for rDNA sequence in the eco1-W216G mutant strain was higher 

than in the WT strain at 20 min, further confirming that the rDNA starts replication 

earlier in the mutant strain (Figure 3.8). However, at the 40 min timepoint, the 

rDNA enrichment in WT is comparable to that of the eco1-W216G strain, 

suggesting replication fork speed at the rDNA region is slower in the mutant than 

WT. In budding yeast a replication fork travels an average of 20 kb, but at the 

rDNA the average distance is closer to 50 kb, making these replication forks 

some of the longest in the genome (Pasero et al., 2002; Tercero and Diffley, 

2001).  Furthermore, although these ARSs fire early, the replication of the region 

continues throughout S phase (Brewer et al., 1980).  The observed defects in 

replication are consistent with the hypothesis that prolonged replication of the 

rDNA could be interfering with its transcription in the eco1-W216G mutant strain. 
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Figure 3.8 

ChIP comparing BrdU incorporation at the rDNA locus in WT and eco1-

W216G strains 

WT and eco1-W216G strain were synchronized in G1 and released in the 

presence of BrdU for 20 and 40 minutes, respectively. Nucleotide incorporation 

was measured by α-BrdU chromatin immunoprecipitation, followed by qPCR 

using primers specific for the rDNA region. Enrichment of BrdU incorporation was 

normalized to the WT strain at 20 min.  The histogram represents three biological 

replicates with PCR for each replicate conducted in duplicate. Error bars indicate 

standard deviation from three independent biological replicates.  The P value is 

calculated by Student’s t-test comparing BrdU incorporation between the WT and 

eco1-W216G strain at 20 minutes and 40 minutes. 

 

Figure 3.8 
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Cohesin is reported to be enriched at replication origins and to spatially organize 

replication factories (Guillou et al., 2010). One possibility is that cohesin directly 

regulates origin firing at ARS sites. Another possible mechanism that has been 

previously suggested is that mutations in cohesin alter the dNTP pool (Lopez-

Serra et al., 2013). It has been shown that increases in the nucleotide pool can 

modulate origin choice and interorigin spacing (Anglana et al., 2003; Gay et al., 

2010). In a genome wide proteomic study of the eco1-W216G strain, we found 

evidence supporting the latter possibility. Many proteins involved in dNTP 

synthesis were present at higher levels in the eco1-W216G mutant, which could 

increase the dNTP pool (Figure 3.9). Once too many regions fire, nucleotide 

pools and replication factors could be depleted such that replication forks cannot 

proceed with optimal speed (Bester et al., 2011). Therefore, cohesin may 

influence origin usage, firing fidelity and timing in part through its effect on gene 

expression.  
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Figure 3.9 

Proteins involved in purine biosynthetic processes are enriched in the 

eco1-W216G strain compared to a WT strain.  

Gene ontology analysis was performed on a filtered list of proteins that showed a 

significant increase or decrease in protein levels between the eco1-W216G 

mutant and the W303a wild-type. The list of proteins from the plgem analysis 

were filtered for a signal-to-noise ratio >|0.2| and a p-value<0.05. An additional 

filter required that the protein be detected in at least two of four wild-type 

samples for the down-regulated proteins and two of four eco1-W216G mutant 

samples in the up-regulated samples. The filtered list was then annotated with 

gene ontology terms using the biomaRt. The resulting list of gene ontology terms 

were summarized using the web-based tool REVIGO by combining terms based 

on semantic similarity using the SimRel similarity measure.  

 

Figure 3.9 
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FOB1 deletion rescues nucleolar morphology and chromosome 

segregation defects associated with the eco1 mutation 

Previous reports used bright field microscopy and indirect immunofluorescence 

to demonstrate that the nucleolar morphology and subnuclear organization of 

chromatin was disrupted in cohesin mutants (Bose et al., 2012; Gard et al., 2009). 

We decided to use a higher resolution method that does not depend on the 

visualization of any particular protein to analyze nucleoli, the home of the rDNA 

repeats. Using electron microsopy, the budding yeast nucleolus can be observed 

as a single dense crescent-shaped structure abutting the nuclear envelop in a 

WT strain. However, in the eco1-W216G strain, the nucleolus is irregularly 

shaped (Figure 3.10A). To assess the effect of fob1Δ on nucleolar morphology, 

we analyzed nucleoli in fob1Δ and eco1-W216G fob1Δ strains. Interestingly, the 

irregular nucleolar morphology in the eco1-W216G strain was rescued by 

bidirectional rDNA replication (Figure 3.10A). In contrast to fob1Δ, rad61Δ had 

less of a rescue effect for nucleolar structure.  The lack of rescue with rad61Δ 

correlates with the lack of rescue for rDNA transcription and the global 

transcriptional profile.  

 

Because cohesion establishment is coupled to DNA replication (Lengronne et al., 

2006; Rolef Ben-Shahar et al., 2008; Unal et al., 2008), we wondered whether 

fob1Δ restored nucleolar morphology by improving the levels of acetylated 

cohesin. To address this question, we measured the acetylation of K112 and 

K113 of Smc3, the lysines targeted by Eco1 for replication-coupled cohesion 
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(Rolef Ben-Shahar et al., 2008; Unal et al., 2008). The acetylation level of Smc3 

was not rescued by fob1Δ (Figure 3.10B). This suggests that the recovery of 

nucleolar morphology in the double mutant is not through restoration of 

acetylation, but is more likely due to the rescue of the replication and 

transcription of the rDNA locus. 

 

Replication stress could induce chromosome segregation defects and induce 

genome instability (Burrell et al., 2013; Chan et al., 2009). To study rDNA 

segregation, we used tetR-GFP to detect tetO repeats (Torres-Rosell et al., 

2007). The operator sequence was inserted in the telomere proximal end of the 

rDNA (Figure 3.10C). We observed that in the eco1-W216G strain, ~50% of 

spots did not segregate correctly. Moreover, DNA was stretched across the bud 

neck region as detected by DAPI staining (Figure 3.10C). This suggests that 

neither the rDNA nor the rest of the genome is segregated efficiently at anaphase. 

Next, we addressed whether the chromosome segregation defects in the eco1-

W216G strain could be rescued by relieving replication defects through fob1Δ. 

We observed that in the eco1-W216G fob1Δ double mutant strain, the 

segregation defect was rescued. This suggests that the replication defect 

induced by eco1 mutation could introduce chromosome segregation defects. 

Replication stress has been reported to cause sister-chromatid bridging, 

especially at fragile loci (Chan et al., 2009). The rDNA locus is one of the most 

fragile sites in the eukaryotic genome and could play a “sensor” role for cellular 

functions (Kobayashi, 2008; Lemoine et al., 2005; Szilard et al., 2010). Our study 
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suggests cohesin acts as a pivotal factor to regulate gene expression and DNA 

replication in the rDNA region and genome-wide.  

 

Mutations in cohesin have been associated with the human developmental 

disorders known as the cohesinopathies (Liu and Krantz, 2008), as well as 

cancer (Cancer Genome Atlas Research, 2013; Kon et al., 2013; O'Neil et al., 

2013; Xu et al., 2011).  Both Roberts syndrome (Bose and Gerton, 2010) and 

cancer are associated with changes in translation (Hsieh et al., 2012). We 

speculate that the replication defects associated with cohesin mutations interfere 

with the transcription of rDNA, leading to transcriptional and translational defects 

that contribute to human disease.  
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Figure 3.10 

FOB1 deletion rescues nucleolar structure and chromosome segregation in 

the eco1 mutant.  

(A) Nucleolar morphology of WT, eco1-W216G, fob1Δ, and eco1-W216G fob1Δ 

strains was examined by EM. The nucleolus is the electron-dense area. At lease 

25 nucleoli were scored per strain. The scale bar represents 0.2 μm. (B) Cohesin 

acetylation in the eco1-W216G is not rescued by FOB1 deletion. The cohesin 

complex was immunoprecipitated with α-Myc affinity gel and was then analyzed 

by western blotting with α-acetyl-lysine antibody for Smc3 acetylation level (upper 

panel). The same immunoprecipitated samples were blotted for α-Myc antibody 

as a loading control (lower panel). (C) Segregation of the tetO:487 tag in WT, 

eco1-W216G, fob1Δ, and eco1-W216G fob1Δ strains was measured. Each strain 

was synchronized in G1 using α factor at 30°C, and released at 33°C. Pictures 

were taken at 80 min after release and all the binucleated were counted to 

determine the segregation of tetO:487. Blue, DNA; green, tetO:487. Error bars 

indicate standard deviation from three independent experiments. At least 150 

cells per strain were counted per experiment. The p values were calculated by 

Student's t test, comparing mutant to WT. 
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Figure 3.10 
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METHODS AND MATERIALS 

Yeast strains and Cell synchronization 

Yeast strains used in this study are listed in Table S1. Exponentially growing 

cells were arrested in G1 phase by the addition of α-factor (1.5×10-8 M final) for 2 

hrs. To release cells from α-factor arrest, cells were spun down and washed 

twice in media containing 0.1 mg/ml Protease (Sigma, P-6911). 

 

FACS and Microscopy 

FACS analysis was performed to analyze cell cycle phase on cells fixed in 70% 

ethanol. Cells were washed with FACS buffer (50 mM Sodium Citrate), treated 

with RNase, stained with Propidium Iodide (4 µg/ml final), and analyzed by using 

a MACSQuant analyzer (Miltenyi Biotech). Fluorescence signal was observed 

using a Zeiss Axiovert 200M microscope (63X objective, NA=1.40). Image 

acquisition and analysis was performed with Axiovision (Carl Zeiss). 

 
Pulse-field gel electrophoresis 

Pulse-field gel electrophoresis was carried out as previously described (Ide and 

Kobayashi, 2010).  

 

β-galactosidase assay 

Yeast cells were grown overnight at 30°C in SD-ura and then diluted to OD600 = 

0.2 in YPD+CSM. Cells were allowed to grow for two generations and were 
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collected. Protein extracts were made by bead beating. β-galactosidase activity 

was measured following standardized protocols, using ONPG (o-nitrophenyl-β-D-

galactopyranoside) as the substrate. 

 
Gene expression analysis 

Gene expression analysis was carried out using Affymetrix Yeast Genome 2.0 

microarrays and following the protocol as previously described (Bose et al., 

2012). 

 

FISH 

FISH experiments were carried out following the protocol as previously described 

(Bose et al., 2012). 

 

Chromatin Immunoprecipitation 

Cells were grown to an OD600 of ~0.6 and fixed in 1% formaldehyde for 15 

minutes. Cells were then lysed for 1 hour at 4°C in Lysis buffer (50mM HEPES 

pH 7.5, 150mM NaCl, 1mM EDTA, 1% Triton X-100, 0.1% Sodium 

Deoxycholate). Lysate was then sonicated using Biorupter (Diagenode) for 30 

minutes, 30 seconds on/off, medium intensity. 2.5µl of α-FLAG antibody (Sigma 

F3165) was added to 400µl of chromatin extract and incubated at 4°C overnight. 

50µl of Protein G Dynabeads (Invitrogen 100-04D) was added incubated at 4°C 

for 2 hours then washed with Lysis buffer, twice in Lysis buffer with 500mM NaCl, 

TEL buffer (0.25M LiCl, 10mM Tris-HCl pH 8.0, 1mM EDTA, 1% NP-40, 1% 
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Sodium Deoxycholate), then twice with 1x TE. Elutions were done by adding 

200µl of Elution Buffer (1% SDS, 250mM NaCl, TE) at 65° with shaking, twice. 

Elutions were combined and treated with Proteinase K (Sigma) for 1 hour at 55°C. 

Crosslinking was then reversed and DNA was extracted. Quantitative PCR was 

performed and analyzed using iCycler iQ real-time PCR detection system (Bio-

rad).  

 
 
Immunoprecipitation and Western blotting analysis 

Cells from a 220 ml culture grown to OD600=0.8 were pelleted and quickly frozen 

in liquid nitrogen. Pellets were suspended in 1 ml Lysis Buffer (50 mM Tris pH 

7.5, 150 mM NaCl, 0.1% NP40, 1 mM DTT, 10% glycerol, and protease inhibitor 

tablet). For the Smc3 acetylation experiment, a cocktail of HDAC inhibitors (10 

µM Trichostatin A, 50 mM nicotinamide, and 50 mM sodium butyrate) was 

contained. Then cells were lysed by adding glass beads followed by beadbeating 

for 60 sec 5 times with 2 min intervals on ice. The supernatant was separated by 

centrifugation at 14K rpm at 4°C for 20 min. Immunoprecipitations were 

performed at 4°C using 30 µl α-HA affinity gel or α-Myc affinity gel (Sigma) 

overnight, followed by 5 washes with wash buffer (50 mM Tris pH 7.5, 150 mM 

NaCl, and 1% Triton X-100) and eluted with 2× SDS buffer (10 mM Tris pH 7.5, 1 

mM EDTA, and 1% SDS). Eluates were loaded onto a 4-12% Bis-Tris gel for 

SDS-PAGE. Proteins were transferred from gels to a nitrocellulose membrane 

(Whatman), followed by blocking. Membranes were blotted with primary 

antibodies with α-HA (Roche, 3F10, #1867423), α-Myc (Covance, #MMS-150P), 
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α-acetyl-lysine (CST, #9441) or α-GST (Covance, #MMS-112P). Detection was 

achieved with Amersham ECL Plus Western Blotting Detection System (GE 

Healthcare #RPN2132).  

 
Transmission Electron microscopy 

Cultures were grown in 200 ml YPD to OD600 ~0.8.  Samples were frozen on the 

Leica EM-Pact at ~ 2050 bar, then transferred under liquid nitrogen into 2% 

Osmium Tetroxide/0.1% Uranyl Acetate/Acetone/2% Water and transferred to 

the Leica AFS2.  The freeze substitution protocol started samples at -90° C for 

72 hours, up 5° C an hour, then -20° for 12 hours, up 5° C hourly to 0 ° C for 5 

hours.  Samples were removed from the AFS2 and allowed to come to room 

temperature for 1 hour. Samples went through 3 changes of acetone over 1 hour 

and were then removed from the planchettes. Samples were stepwise embedded 

in acetone/Epon/Araldite mixtures to final 100% Epon/Araldite over several days 

as described previously (McDonald, 1999). Samples were cut into 80 nm section 

on a Leica UC6, stained with Uranyl acetate and Sato’s lead, and imaged on a 

FEI Technai Spirit. 

 

BrdU ChIP 

Exponentially growing cells were synchronized in G1 by α-factor. The cells were 

released from G1 and a final concentration of 800 μg/mL of 5-bromo-

2’deoxyurindine (BrdU) was added into culture. Cell pellets of the WT and eco1 

strains were collected at 20 minutes and 40 minutes, respectively. α-BrdU ChIP 

was performed as described (Viggiani et al., 2010).  
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Mass Spectrometry for proteomics 
 
TCA precipitated pellets were solubilized in Tris-HCl pH 8.5 and 8M urea; TCEP 

(Tris(2-Carboxylethyl)-Phosphine Hydrochloride, Pierce) and CAM 

(Chloroacetamide, Sigma) were added to a final concentration of 5 mM and 10 

mM, respectively. Protein suspensions were digested overnight at 37°C using 

Endoproteinase Lys-C at 1:50 wt/wt (Roche).  Samples were brought to a final 

concentration of 2M urea and 2 mM CaCl2 before performing a second overnight 

digestion at 37°C using Trypsin (Promega) at 1:100 wt/wt. Formic acid (5% final) 

was added to stop the reactions.  Samples were loaded on split-triple-phase 

fused-silica micro-capillary columns (McDonald et al., 2002) and placed in-line 

with linear ion trap mass spectrometers (LTQ, ThermoScientific) coupled with 

quaternary Agilent 1100 or 1200 series HPLCs. A fully automated 10-step 

chromatography run (for a total of 20 hours) was carried out for each sample, as 

described in (Florens and Washburn, 2006), enabling dynamic exclusion for 120 

sec.  The MS/MS datasets were searched using SEQUEST (Eng et al., 1994) 

against a database of 11990 sequences, consisting of 5819 S. cerevisiae non-

redundant proteins, 177 usual contaminants (such as human keratins, IgGs, and 

proteolytic enzymes), and, to estimate false discovery rates, 5995 randomized 

amino acid sequences derived from each non-redundant protein entry. 

Peptide/spectrum matches were sorted, selected and compared using 

DTASelect/CONTRAST (Tabb et al., 2002).  Combining all runs, proteins had to 

be detected by at least 2 peptides, leading to FDRs at the protein and spectral 

levels of 1.14 ± 0.27% and 0.18 ± 0.05%, respectively. To estimate relative 
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protein levels, Normalized Spectral Abundance Factors (dNSAFs) were 

calculated for each detected protein, as described in (Zhang et al., 2010).  

 

Deep sequencing and data analysis 

Deep sequencing was performed on the Illumina HiSeq 2500 system. 

Sequencing libraries were made using the Nextera DNA Sample Preparation Kits 

(Illumina) as advised by the manufacturer. Illumina HiSeq single-end 50 bp 

sequence reads were aligned to the UCSC SaccCer3 genome using bowtie 

v0.12.9 and parameters (-k 1 -m1) which report only unique matches. Read 

counts were summarized on 1kb intervals across the genome using the 

GenomicRanges library from Bioconductor in R, and then normalized to counts 

per million. The log2 ratio of normalized S to G1 phase cells was taken after 

adding 1 to the intervals from each data set to prevent division by zero errors. 

The data was then smoothed in R using loess with a span of 25kb and degree of 

1. The final ratios were multiplied by 1.5 to aid visualization. Custom Perl scripts 

following the previous description (Muller and Nieduszynski, 2012; Natsume et al., 

2013) were used to calculate this ratio. Early and late firing origins are 

determined according to the previous publication (Raghuraman et al., 2001; 

Yabuki et al., 2002).  
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CHAPTER 4 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

Precise chromosome segregation requires the cohesin complex. In addition to 

holding sister chromatids together, evidence suggests that cohesin functions in 

gene transcription, DNA damage repair, and DNA replication. However, these 

additional functions are not fully understood. The interdependence of the 

functions is also intriguing.  We have provided evidence that DNA damage repair, 

especially homologous recombination, is strongly affected in cohesin mutants.  

We have also provided evidence that cohesin controls genome-wide transcription 

through its regulation of transcription and replication at the rDNA locus. This work 

represents a significant step forward in understanding the role of cohesin in cell 

physiology and the molecular mechanisms underlying cohesinopathies. 

 

Eco1 and DNA damage repair 

 

We found that eco1 mutants that do not have gross chromosome segregation 

defects showed varying degrees of DNA damage sensitivity. All the eco1 mutants, 

including the human Roberts syndrome homolog mutant, eco1-W216G, showed 

a decrease in acetyltransferase activity in vitro.  In vivo, the acetylation of Smc3, 

the Eco1 substrate, displayed different levels. These levels roughly correlated 

with the sensitivity of the mutants to DNA damaging agents.  
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We employed an elegant recombination event counting system to further analyze 

the mechanism by which the DNA damage repair is affected in an eco1 mutant 

(Barbera and Petes, 2006). We have shown that a specific DNA recombination 

event, the reciprocal crossover, was strongly affected in the eco1-W216G mutant.  

This data suggests that the exchange of homologous chromosome arms requires 

Eco1 (Figure 4.1). The result strongly supports the argument that cohesin 

regulates recombination pathway choice. 
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Figure 4.1 
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Figure 4.1 Cohesin promotes DNA double-strand break repair 

During DNA double-strand break repair, the break site could be repaired by 

either choosing sister chromatid or homolog chromosome as a template. In our 

model, cohesin complex facilitates both inter-sister and inter-homolog repair by 

bringing sister-chromatids or homologous chromosomes together. 
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The above result suggests that Eco1 is important for DNA damage repair in 

mitosis. We also assessed its role in DNA damage repair in meiosis, a special 

type of cell division necessary for sexual reproduction in eukaryotes. In contrast 

to reduction of crossover formation in mitosis, no difference was observed in an 

eco1-W216G mutant in meiotic recombination, indicating that Eco1 is not 

required for the crossover formation between homologous chromosomes during 

meiosis. Because the DNA double-strand break formation and repair 

mechanisms differ between mitosis and meiosis, it is not surprising that Eco1 

affects one and not the other.  In fact, the primary cohesin complex in meiosis 

uses Rec8 as the kleisin subunit rather than Mcd1, further highlighting that 

meiotic and mitotic recombination require different cohesin functionality.  

However, reduction in sporulation efficiency and spore viability was observed in 

the eco1-W216G mutant in meiosis, suggesting that Eco1 does play a role during 

meiosis. Further studies are needed to characterize alternative substrates of 

Eco1 in mitosis and meiosis. Also, how Eco1 is activated and inactivated in 

response to DNA damage and after DNA damage repair is an important question 

to address.   

 

Our results suggest that Eco1’s role in DNA damage repair is an important area 

for future study, especially to understand the etiology of Roberts syndrome. 

Roberts syndrome is a human developmental disorder caused by mutation of 

ESCO2.  Mutation of ESCO2 is expected to lead to an increase in the pool of 

cohesin that is not acetylated, and is therefore, not cohesive.  Because cohesin 
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can affect so many different biological processes, it is important to discover 

which processes are defective in Roberts syndrome.  

 

DNA damage repair deficiency of ESCO2 mutation might be the cause of 

Roberts syndrome.  Since both Roberts syndrome patient cells and ESCO2 

knockout cells are sensitive to DNA damage materials (van der Lelij et al., 2009; 

Whelan et al., 2012a) and the functions of ESCO2 and ESCO1 are non-

redundant (Kim et al., 2010), it is quite possible that the DNA damage repair 

function of ESCO2 significantly contributes to Roberts syndrome.  The difference 

of functions of ESCO1 and ESCO2 will be further discussed below. 

 

We speculate that ESCO2 mutation might act differently in different tissues.  

DNA damage is prone to occur in tissues that undergo rapid cell proliferation.  

Therefore, if DNA damage is not repaired efficiently, more apoptosis may occur 

in those tissues and cause developmental defects. Further studies are needed to 

understand the role of ESCO2 in DNA damage repair, especially in the tissues 

that undergo rapid cell proliferation using animal models with an ESCO2 

mutation. ESCO2 mutant mice could be used to examine developmental defects 

in different tissues. In addition, DNA damage repair in different ESCO2 mutant 

mice cell types could also be assayed to test the hypothesis that DNA damage 

repair is impaired in rapidly developing cells with an ESCO2 mutation. 

 

 



123 

Role of Eco1 in DNA replication and gene expression   

 

A previous study showed that a budding yeast strain with the eco1-W216G 

mutation, which genocopies the human Roberts syndrome disease allele, 

reduces ribosomal DNA (rDNA) transcription and disrupts the transcriptome 

(Bose et al., 2012). We found that deletion of FOB1, a gene encoding a specific 

replication fork blocking protein for the rDNA region, can both rescue rDNA 

expression and genome-wide transcriptional defects in the eco1-W216G mutant. 

This suggests that Eco1 may regulate transcription genome-wide through its 

effects on a key regulatory locus, the rDNA. Because the rDNA locus is difficult to 

replicate due to its high levels of transcription and its repetitive nature, we argued 

that Eco1 may regulate DNA replication and transcription in the rDNA locus. Our 

studies suggest that the eco1-W216G mutant has not only rDNA replication 

defects but genome-wide replication defects and that the deletion of FOB1 

rescued these defects.  

 

Deletion of FOB1 allows replication at the rDNA locus to occur bidirectionally, 

rather than only in the direction of transcription (Figure 4.2).  In fact, most cells, 

including human cells, employ a replication fork block to prevent DNA replication 

forks from running into RNA polymerase I at the rDNA.  We found that allowing 

bidirectional replication of the rDNA corrected the nucleolar structure and 

chromosome segregation in the eco1-W216G mutant. In this mutant background, 

the benefit of bidirectional replication outweighed its cost.  Our study highlights a 
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possible mechanism for the replication defect reported in Roberts syndrome 

(Terret et al., 2009).  We postulate that these replication defects affect the 

transcription of the rDNA, leading to translational defects and differential gene 

expression that contributes to this developmental disorder.   
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Figure 4.2 
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Figure 4.2 Fob1 deletion promotes bidirectional replication 

Replication fork barrier (RFB) blocks bidirectional replication fork progression. 

Fob1 protein binds at RFB site and is essential for the barrier activity. In eco1 

mutant, DNA replication fork progression is slower comparing to wild type. 

Deletion of Fob1 allows bidirectional replication and promotes DNA replication at 

rDNA locus in eco1 mutant. 
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We speculate that cohesin’s role in regulating DNA replication and gene 

transcription in the rDNA region is conserved across the species. Cohesin binds 

to the rDNA region from bacteria to human (Gruber and Errington, 2009; 

Kasowski et al., 2013; Laloraya et al., 2000; Losada et al., 2000). Since the rDNA 

region is highly transcribed and inherently difficult to replicate due to its highly 

repetitive structure, the coordination of transcription and replication is needed to 

prevent collision of these events. Our study suggests that cohesin and the 

replication fork barrier work together to facilitate both transcription and replication 

in rDNA region. Further studies are needed to understand the detailed 

mechanism of how cohesin coordinates DNA replication and transcription at the 

rDNA locus.  Further experiments could be designed to knockdown TTF-I 

(Transcription Termination Factor, RNA Polymerase I) and assay DNA replication 

and transcription in ESCO2 mutant cells. 

 

Etiology of cohesinopathies 

 

Budding yeast contain only a single enzyme, Eco1, that is involved in the process 

of establishment of sister-chromatid cohesion.  Why do higher organisms need 

two enzymes (ESCO1 and ESCO2) to regulate this process? Although ESCO2 is 

mutated in human Roberts syndrome (RBS), its homolog, ESCO1, has been 

reported to be the major acetyltransferase to acetylate Smc3 (Zhang et al., 2008). 

However, the knowledge of how ESCO1 functionally overlaps with ESCO2 is still 

unknown (Zhang et al., 2008).  Because ESCO1 might play a major role in sister-
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chromatid cohesion but human mutations of ESCO1 have never been reported, it 

is quite possible that mutations in this gene are lethal. Based on this rationale, 

we propose the central hypothesis that ESCO1, but not ESCO2, is the major 

acetyltransferase for the establishment of cohesion. Our study suggests that 

ESCO2 may act more regionally than it was previously thought. ESCO2 may 

specifically function in the heterochromatin region, especially at the rDNA locus, 

to acetylate cohesin. Experiments could be designed by knocking down ESCO1 

and ESCO2 by siRNA, respectively. ESCO1 knockdown should result in 

cohesion defects throughout the genome, whereas ESCO2 knockdown might 

have regional cohesion defect. In support, ESCO2 is enriched in the 

pericentrometric region in mid-late S phase. In addition, lack of cohesin was only 

observed in heterochromatic region of human Roberts syndrome cells that is 

caused by mutation of ESCO2 (Figure 4.3) (Vega et al., 2005; Whelan et al., 

2012b). Further studies are needed to test the hypothesis that ESCO2 is a 

heterochromatin specific acetyltransferase for cohesin. To test this hypothesis, 

ESCO2 can be knocked down by siRNA and chromosomes from a metaphase 

spread of ESCO2 knocked down cells can be assayed for heterochromatic 

repulsion. In addition, the expression of genes near the heterochromatic regions 

can be analyzed. If cohesion is defective in heterochromatic regions, the 

expression of the genes near these regions might also be affected. 
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Figure 4.3 

 

 

 

 

Figure 4.3 Chromosomal repulsion at heterochromatic regions 

Chromosomes derived from a metaphase spread of a RBS patient cell show 

repulsion at heterochromatic regions, which includes pericentric regions and 

ribosomal DNA.  We speculate that the acetylation activity of ESCO2 is 

necessary for cohesion of these regions.  Although both chromosomes are 

derived from the same metaphase spread presented in Vega et al., 2005, the 

one on the left appears normal while the one on the right shows repulsion. 

(From Xu, Lu and Gerton submitted) 
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We speculate that mutations in ESCO2 may affect a particular pool of cohesin, 

the cohesin at heterochromatic regions.  When cohesion at the rDNA is reduced, 

nucleolar structure is disrupted and nucleolar function is less efficient.  In contrast, 

mutations in subunits of the cohesin ring may affect cohesin throughout the 

genome, unless the mutation compromises protein-protein or protein-DNA 

interactions that occur at specific cohesin associated regions.  These mutations 

could have anywhere from undetectable to severe effects on the pool of cohesin 

at the rDNA.  In budding yeast, a mutation in SMC1 that genocopies a mutation 

associated with CdLS causes nucleolar phenotypes that are milder than the eco1 

mutation (Bose et al.; Gard et al., 2009), suggesting some CdLS mutation may 

be associated with defects in nucleolar function.  In zebrafish models for CdLS, 

some mutations appear to be associated with more growth delay and apoptosis 

than others (Deardorff et al.; Ghiselli, 2006; Horsfield et al., 2007; Monnich et al.; 

Muto et al.) and nucleolar function has not been analyzed.  However, if nucleolar 

function is affected by non-ESCO2 mutations, this could potentially contribute to 

the gene expression changes associated with CdLS.   

 

We found cohesion within the rDNA appears to promote nucleolar structure and 

function in budding yeast. Our model is that cohesin regulates loops of the rDNA 

repeats, which are reduced in budding yeast bearing an RBS mutation (Figure 

4.4). These loops together with DNA replication controls transcription of rDNA 

and nucleolar integrity. Given these observations in budding yeast, we speculate 

ESCO2 mutation in human RBS cells affect rDNA region in a similar mechanism. 
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Indeed, study in human RBS cells showed defects in transcription of the rDNA 

(Bose et al., 2012) and highly fragmented nucleoli (Figure 4.5) (Xu et al., 2013). 

Further studies are needed to understand the mechanism of how effects on 

rDNA by cohesin mutants lead to global changes in gene expression and cell 

physiology. 
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Figure 4.4 
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Figure 4.4 Model for the role of cohesion within the nucleolus 

Cohesin binding to the rDNA repeats is evolutionarily conserved from bacteria to 

human cells.  In budding yeast, cohesin binds to the non-transcribed region 

between repeats in such as way that it could trap loops of 35S genes.  The 35S 

gene is transcribed by RNA polymerase I and then cleaved and modified by the 

processome to make 18S, 5.8S, and 25S rRNAs that are included in the large 

(60S) and small (40S) ribosomal subunits.  RNA polymerase III transcribes the 

5S RNA that is included in the large ribosomal subunit.  Cohesion at this region 

could promote transcription by RNA polymerase I as well as the overall structural 

formation of the nucleolus. 

(From Xu, Lu and Gerton submitted) 
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Figure 4.5 
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Figure 4.5 RBS patient cells have highly fragmented nucleoli 

 Skin cells from patients with RBS display defects in the organization of nucleoli, 

specialized nuclear subdomains dedicated to the production of ribosomes.  

Fibrillarin, a nucleolar marker stained with an anti-fibrillarin antibody, is shown in 

green. DNA is stained with DAPI, shown in blue.  Colors were adjusted for 

improved visual presentation.  Top: RBS cells, Bottom: Normal cells.  

(From Xu, Lu and Gerton submitted) 
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Our study suggests that cohesin mutants might have translational defects in 

addition to genome transcription defect, since mutation of cohesin affects rDNA. 

Translational defects are associated with both human developmental disorders 

and cancer.  A recent study found that 13% of AML (acute myeloid leukemia) 

cases were caused by mutations in cohesin genes, including RAD21, STAG2, 

SMC1, and SMC3 (Ley et al., 2013).  In general, AML is not associated with 

abnormal karyotypes, raising the possibility that the cohesin mutations are 

causing transcriptional or translational changes that lead to AML, and 

emphasizing the need to understand the molecular origin of these changes. 

Deregulation of translational controls can promote cellular transformation, tumor 

susceptibility and development by activation of several key oncogenic pathways. 

If we can understand the contribution of translational mechanisms and particular 

key regulatory pathways, such as p53 and mTOR, in Roberts syndrome and 

CdLS, we might also understand how cohesin mutations lead to myeloid 

neoplasms (Kon et al., 2013; Ley et al., 2013).   
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APPRENDIX I. YEAST STRAINS 

Parent 
Strain 

Strain 
Name 

Genotype 

Lu et al, 
2010 

  

W303 SLJ1989 
(NBY292) 

MATa bar1- ura3 leu2 trp1 lys2 ade2 his3::pCUP1-
GFP12-LacI12::HIS3 
telIV::LacO-LEU2 

SLJ1989  JG1592.1, 
JG1592.2 

MATa bar1- ura3 leu2 trp1 lys2 ade2  his3::pCUP1-
GFP12-LacI12::HIS3 telIV::LacO-LEU2 ECO1::eco1-
W216G::HYG 

SLJ1989 JG1599 MATa bar1- ura3 leu2 trp1 lys2 ade2 his3::pCUP1-
GFP12-LacI12::HIS3 telIV::LacO-LEU2 ECO1::eco1-
ack::HYG 

SLJ1989 JG1596 MATa bar1- ura3 leu2 trp1 lys2 ade2 his3::pCUP1-
GFP12-LacI12::HIS3 telIV::LacO-LEU2 ECO1::eco1-
H53Y::HYG 

W303 SLJ1988 
(NBY291) 

MATa bar1- ura3 leu2 trp1 lys2 ade2 his3::pCUP1-
GFP12-LacI12::HIS3  armIV::LacO-URA3 

SLJ1988  SG363.1, 
SG363.2 

MATa bar1- ura3 leu2 trp1 lys2 ade2 his3::pCUP1-
GFP12-LacI12::HIS3  armIV::LacO-URA3 ECO1::eco1-
W216G::HYG 

SLJ1988 SG362.1, 
SG362.3 

MATa bar1- ura3 leu2 trp1 lys2 ade2 his3::pCUP1-
GFP12-LacI12::HIS3  armIV::LacO-URA3 ECO1::eco1-
ack::HYG 

SLJ1988 SG361.3 
(JG1623) 

MATa bar1- ura3 leu2 trp1 lys2 ade2 his3::pCUP1-
GFP12-LacI12::HIS3  armIV::LacO-URA3 ECO1::eco1-
H53Y::HYG 

W303 SLJ1773 MATa bar1-  ura3 leu2 trp1 lys2 ade2 his3::pCUP1-
GFP12-LacI::HIS3 trp1::LACOR-TRP1 

SLJ1773 SG367.1, 
SG367.2 

ECO1::eco1-W216G::HYG 

SLJ1773 SG366.2, 
SG366.5 

ECO1::eco1-ack::HYG 

SLJ1773 SG365.38, 
SG365.39 

ECO1::eco1-H53Y::HYG 

W303 MAB6 Mat α/a can1-100/can1Δ::SUP4-o 
V9229::HYG/V9229::KANMX 
V261553::HIS3/V261553::LEU2 ade2-1/ade2-1  
RAD5+/ RAD5+ 

MAB6 JG493 eco1-W216G-nat/ eco1-W216G-nat 
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JG1613  Mat α/a can1-100/can1Δ::SUP4-o 
V9229::HYG/V9229::KANMX 
V261553::HIS3/V261553::LEU2 ade2-1/ade2-1  
URA3/ura3 tar1-TRP1/TAR1 ECO1-nat/ECO1-nat 

JG1613 JG1614 eco1-W216G-nat/ eco1-W216G-nat 
W303  MATa ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 can1-

100 Δbar1 

 SG156.1 MATa ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 can1-
100 Δbar1 ECO1::eco1-W216G::HYG 

 SG154.2 MATa ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 can1-
100 Δbar1 SCC2::scc2-D730V::HYG 

 JG1595 MATa ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 can1-
100 Δbar1 ECO1::eco1-H53Y::HYG 

 JG1598 MATa ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 can1-
100 Δbar1 ECO1::eco1-ack::HYG 

 MGY152 MATα ECO1::eco1-1 SCC3-HA3-HISMX4 
 MGY151  MATa ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 can1-

100 Δbar1 rad50::KAN 
 SLJ1985  MATa ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 can1-

100 Δbar1 rad9::LEU2 
 SG297.1 MATa ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 can1-

100 Δbar1 rad61::KAN 
 SG272.7 MATa ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 can1-

100 Δbar1 rad61::KAN   ECO1::eco1-W216G::HYG 
 LS1002 MATa ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 can1-

100 Δbar1 pRS316(CEN/ARS, URA3) 
 LS1003 MATa ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 can1-

100 Δbar1 pRS316(pGAL-MCD1, CEN/ARS, URA3) 
 LS1004 MATa ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 can1-

100 Δbar1 pRS316(pGal-MCD1K84Q, K210Q , CEN/ARS, 
URA3) 

 LS1005 MATa ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 can1-
100 Δbar1 ECO1::eco1-W216G::HYG  
pRS316(CEN/ARS, URA3) 

 LS1006 MATa ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 can1-
100 Δbar1 ECO1::eco1-W216G::HYG  pRS316(pGAL-
MCD1, CEN/ARS, URA3) 

 LS1007 MATa ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 can1-
100 Δbar1 ECO1::eco1-W216G::HYG  pRS316(pGAL-
MCD1K84Q, K210Q, CEN/ARS, URA3) 

 LS1046 MATa ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 can1-
100 Δbar1 pRS316(pGAL-ECO1, CEN/ARS, URA3) 
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 LS1047 MATa ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 can1-
100 Δbar1 pRS316(pGAL-SMC3, CEN/ARS, URA3) 

 LS1048 MATa ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 can1-
100 Δbar1 pRS316(pGAL-SMC3K113N, CEN/ARS, 
URA3) 

 LS1049 MATa ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 can1-
100 Δbar1 pRS316(pGAL-SMC3K113Q, CEN/ARS, 
URA3) 

 LS1050 MATa ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 can1-
100 Δbar1 pRS316(pGAL-SMC3K112N, K113N, CEN/ARS, 
URA3) 

 LS1051 MATa ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 can1-
100 Δbar1 pRS316(pGAL-SMC3K112Q, K113Q, CEN/ARS, 
URA3) 

 LS1052 MATa ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 can1-
100 Δbar1 pRS316(CEN/ARS, URA3) 

 LS1053 MATa ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 can1-
100 Δbar1 ECO1::eco1-W216G::HYG  pRS316(pGAL-
ECO1, CEN/ARS, URA3) 

 LS1054 MATa ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 can1-
100 Δbar1 ECO1::eco1-W216G::HYG  pRS316(pGAL-
SMC3, CEN/ARS, URA3) 

 LS1055 MATa ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 can1-
100 Δbar1 ECO1::eco1-W216G::HYG  pRS316(pGAL-
SMC3K113N, CEN/ARS, URA3) 

 LS1056 MATa ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 can1-
100 Δbar1 ECO1::eco1-W216G::HYG  
pRS316(pGAL:SMC3K113Q, CEN/ARS, URA3) 

 LS1057 MATa ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 can1-
100 Δbar1 ECO1::eco1-W216G::HYG  pRS316(pGAL-
SMC3K112N, K113N, CEN/ARS, URA3) 

 LS1058 MATa ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 can1-
100 Δbar1 ECO1::eco1-W216G::HYG  pRS316(pGAL-
SMC3K112Q, K113Q, CEN/ARS, URA3) 
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 LS1059 MATa ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 can1-
100 Δbar1 ECO1::eco1-W216G::HYG  
pRS316(CEN/ARS, URA3) 

BY4742 AM405.4 MATα his3Δ1 leu2Δ0 LYS2 met15Δ0 ura3Δ0 ECO1-
FLAG::KAN 

BY4742 AM415.1 MATα his3Δ1 leu2Δ0 lys2Δ0 MET15 ura3Δ0 
ECO1::eco1-W216G-FLAG::KAN 

BY4742 JG1642 MATα his3Δ1 leu2Δ0 lys2Δ0 MET15 ura3Δ0 
ECO1::eco1-ack-FLAG::KAN 

BY4742 JG1643 MATα his3Δ1 leu2Δ0 lys2Δ0 MET15 ura3Δ0 
ECO1::eco1-H53Y-FLAG::KAN 

Lu et al, 
2013 

  

MAB1 JG1720 MATα ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 can1-100 
V261553::HIS3 GCN4-lacZ::TRP1 

MAB1 JG1721 MATα ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 can1-100 
V261553::HIS3  GCN4-lacZ::TRP1 ECO1:: eco1-
W216G::NAT 

MAB1 JG1736 MATα ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 can1-100 
V261553::HIS3  GCN4-lacZ::TRP1 fob1Δ::KAN 

MAB1 JG1737 MATα ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 can1-100 
V261553::HIS3 GCN4-lacZ::TRP1 ECO1:: eco1-
W216G::NAT fob1Δ::KAN 

W303a LS1069 
 

MATa ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 can1-100 
Δbar1 RDN1::Probe(32)::URA3 

W303a LS1075 MATa ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 can1-100 
Δbar1 RDN1::Probe(32)::URA3 ECO1:: eco1-
W216G::HYG 

W303a LS1091 
 

MATa ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 can1-100 
Δbar1 RDN1::Probe(32)::URA3  fob1Δ::KAN 

W303a LS1092 
 

MATa ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 can1-100 
Δbar1 RDN1::Probe(32)::URA3  ECO1::eco1-
W216G::HYG fob1Δ::KAN 

W303a LS1077 
 

MATa ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 can1-100 
Δbar1 RDN1::Probe(32)::URA3 SMC1::smc1-
Q843Δ::HYG 

W303a LS1086 
 

MATa ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 can1-100 
Δbar1 RDN1::Probe(32)::URA3 SMC1::smc1-
Q843Δ::HYG  fob1Δ::KAN 
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W303a JG680 
 

MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-
11,15 

W303a JG2087.1 
 

MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-
11,15  eco1-W216G::HYG 

W303a JG2087.2 
 

MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-
11,15  eco1-W216G::HYG 

W303a SG156 MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-
11,15  eco1-W216G::HYG 

W303a JG1830 MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-
11,15  fob1Δ::NAT 

W303a BH664 MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-
11,15  Eco1::eco1-W216G::HYG  fob1Δ::KAN 

W303a SG297.1 MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-
11,15  rad61Δ::KAN 

W303a SG272.1 MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-
11,15  Eco1::eco1-W216G::HYG  rad61Δ::KAN 

MMY027 BH685 bar1::HIS3, CDC45-3FLAG::kanMX 

MMY027 BH687.1 bar1::HIS3, CDC45-3FLAG::kanMX  Eco1::eco1-
W216G::HYG 

CG1300 LS1093 
 

TetR-YFP ADE2 TetO(5.6Kb):450Kb-ChrXII URA3  

CG1300 LS1094 
 

TetR-YFP ADE2 TetO(5.6Kb):450Kb-ChrXII URA3  
ECO1::eco1-W216G::HYG 

CG1300 LS1095 
 

TetR-YFP ADE2 TetO(5.6Kb):450Kb-ChrXII URA3  
fob1Δ::KAN 

CG1300 LS1096 
 

TetR-YFP ADE2 TetO(5.6Kb):450Kb-ChrXII URA3  
ECO1::eco1-W216G::HYG fob1Δ::KAN 

W303a LS1064 MATa ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 can1-100 
Δbar1 Mcd1-18myc::TRP1 
 

W303a LS1065 MATa ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 can1-100 
Δbar1 Mcd1-18myc::TRP1 ECO1::eco1-W216G::HYG 
 

W303a LS1089 MATa ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 can1-100 
Δbar1 Mcd1-18myc::TRP1 fob1Δ::KAN 
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W303a LS1090 MATa ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 can1-100 
Δbar1 Mcd1-18myc::TRP1 ECO1::eco1-W216G::HYG 
fob1Δ::KAN 

W303a LS1101 
 

MATa  ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 psi+ RAD5 
URA3::GPD-TK7 

W303a LS1102 
 

MATa  ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 psi+ RAD5 
URA3::GPD-TK7 ECO1::eco1-W216G::HYG 
 

MAB1 JG1768 MATα ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 can1-100 
V261553::HIS3  GCN4-lacZ::TRP1 pBY011(pGAL-FOB1, 
CEN/ARS, URA3) 

MAB1 JG1769 MATα ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 can1-100 
V261553::HIS3  GCN4-lacZ::TRP1 pRS316(CEN/ARS, 
URA3) 

MAB1 JG1770 MATα ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 can1-100 
V261553::HIS3  GCN4-lacZ::TRP1  ECO1:: eco1-
W216G::NAT pBY011(pGAL-FOB1, CEN/ARS, URA3) 

MAB1 JG1771 MATα ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 can1-100 
V261553::HIS3  GCN4-lacZ::TRP1  ECO1:: eco1-
W216G::NAT  pRS316(CEN/ARS, URA3) 

MAB1 JG1786 MATα ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 can1-100 
V261553::HIS3  GCN4-lacZ::TRP1 pBY011(pGAL-
FOB1C193A, CEN/ARS, URA3) 

MAB1 JG1787 MATα ura3-1 leu2,3-112 his3-1 trp1-1 ade2-1 can1-100 
V261553::HIS3  GCN4-lacZ::TRP1  ECO1:: eco1-
W216G::NAT  pBY011(pGAL-FOB1C193A, CEN/ARS, 
URA3) 
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APPRENDIX II. HOS1 AS A DEACETYLASE OF SMC3 

 

WT and eco1-W216G strains expressing Smc3-3HA and the indicated plasmids 

were grown to mid-log phase in gal-ura medium and whole cell extracts were 

used for immunoprecipitation with α-HA affinity gel.  The eluates were subjected 

to Western blotting with either α-AcK antibody (upper) to measure acetylated 

Smc3 or α-HA antibody (lower) to measure total Smc3.  The ratio of signal from 

the upper panel to the lower panel is shown below the panels. 
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APPRENDIX III. FISH METHOD 

 

Materials and Methods 

Yeast cells were grown in CSM-URA at 30°C to an OD600 of 0.4. The cells were 

then fixed by adding formaldehyde to a final concentration of 4% (v/v) for 45 min 

at room temperature with shaking. After three washes with wash buffer (1.2 M 

sorbitol, 0.1 M potassium phosphate, pH 7.5), the cell wall was digested with 0.3 

mg/ml zymolase in spheroplast buffer (1.2 M sorbitol, 0.1 M potassium 

phosphate, 10 mM vanadyl ribonucleoside complex, 0.06 mg/ml PMSF, 28 mM 

β-mercaptoethanol) at 37°C for 45 min. After digestion, the cells were washed 

three times with FISH wash buffer (30% formamide, 2×SCC). The cells were then 

hybridized in 30 µl hybridization solution containing 5 ng/ µl DNA probe in 25% 

(v/v) formamide, 2×SCC, 1 mg/ml BSA (nuclease free), 10 mM vanadyl 

ribonucleoside complex, 0.5 mg/ml salmon sperm DNA and 0.1 g/ml dextran 

sulfate overnight at room temperature. Before imaging, cells were washed twice 

with FISH wash buffer for 30 min and then added to slides pre-coated with Poly-L 

lysine. The probe used for the FISH experiment is a synthesized DNA 

oligonucleotide referring to but modified from previous publication(Tan and van 

Oudenaarden, 2010). The sequence of the oligonucleotide is 5’-

CGGCRGGTAAGGGRTTCCATARAAACTCCTRAGGCCACGA-3’; the ‘R’s 

indicates an amino-dT replacing a regular dT where a fluorescein molecule was 

coupled. The probe was further purified by polyacrylamide gel purification to 

ensure that each amino-dT was coupled with a fluorescein molecule. For FISH 

strain construction, a unique sequence was inserted into one rDNA repeat that 
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can be recognized by FISH probe (Appendix IIIA).  As shown in Appendix IIIA, 

each rDNA transcript can be detected by the FISH probe.  To validate that the 

number of rDNA transcript is linear related with the fluorescence intensity, 

fluorescence intensity from different numbers of rDNA transcript is plotted 

(Appendix IIIB).  rDNA transcript levels of WT and indicated mutants are shown 

in Appendix IIIC and Appendix IIID. 

 

Expanded presentation of the FISH data 

(A) A unique sequence has been inserted into one rDNA repeat in order to 

monitor its transcription by FISH. A representative image from the wild-type strain 

is shown; the scale bar is 5 μm (B) The standard curve shown was used to 

determine how fluorescence intensity relates to number of RNAs. The 

fluorescence for each cell is measured and then binned to show the fraction of 

the population with each RNA number. The fluorescence for 300 cells from 3 

independent cultures for each strain was measured (900 cells total per strain). 

The error bars indicate the standard deviation. (C) Numbers of rDNA transcripts 

in a population of WT, scc2-D730V, eco1-W216G, and smc1-Q843Δ cells. Cells 

were binned based on the number of transcripts per cell. (D) Box plot of rDNA 

transcription of WT, scc2-D730V, eco1-W216G, and smc1-Q843Δ strains. In the 

plot shown the dot is the average, the two lines around it are the standard error, 

and the lowest line is the median. The p value was derived from a two tailed 

Student's t test. 
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APPRENDIX III. CONTINUED 
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APPRENDIX IV. PUBLISHED PAPERS AND MEETING ABSTRACTS 

 
PUBLICATIONS: 
 
Eco1 is Important for DNA Damage Repair in S. cerevisiae 
Shuai Lu, Matthew Goering, Scarlett Gard, Bo Xiong, Adrian J. McNairn, Sue 
Jaspersen and Jennifer L. Gerton 
Cell Cycle 
Volume 9, Issue 16 August 15, 2010 
Pages 3315 - 3327 
DOI: 10.4161/cc.9.16.12673 
 
The cohesin acetyltransferase Eco1 coordinates rDNA replication and 
transcription 
Shuai Lu, Kenneth Lee, Bethany Harris, Bo Xiong, Tania Bose, Anita Saraf, 
Gaye Hattem, Laurence Florens, Chris Seidel, Jennifer L. Gerton 
(Submitted to EMBO Reports) 
 
Hos1 is a lysine deacetylase for the Smc3 subunit of cohesin 
Bo Xiong, Shuai Lu, Jennifer L. Gerton 
Current Biology 
Volume 20, Issue 18 September 28, 2010 
Pages 1660 – 1665 
DOI: 10.1016/j.cub.2010.08.019 
 
Cohesin proteins promote ribosomal RNA production and protein 
translation in yeast and human cells 
Tania Bose, Kenneth K. Lee, Shuai Lu, Baoshan Xu, Bethany Harris, Brian 
Slaughter, Jay Unruh, Alexander Garrett, William McDowell, Andrew Box, Hua Li, 
Allison Peak, Sree Ramachandran, Jennifer L. Gerton 
PLOS GENETICS 
Volume 8, Issue 6 Jun 14, 2012 
Pages e1002749 
DOI: 10.1371/journal.pgen.1002749 
 
Cohesion promotes nucleolar structure and function 
Bethany Harris, Tania Bose, Kenneth K. Lee, Fei Wang, Shuai Lu, Rhonda 
Trimble Ross,Ying Zhang, Sarah L. French, Ann L. Beyer, Brian D. Slaughter, 
Jay R. Unruh, Jennifer L.Gerton 
(Submitted to Molecular Biology of the Cell) 
 
Roberts syndrome-a deficit in acetylated cohesin at heterochromatic 
regions leads to nucleolar dysfunction 
Baoshan Xu, Shuai Lu, Jennifer L. Gerton 
(Submitted to Rare Diseases) 
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MEETING ABSTRACTS AND PRESENTATIONS: 
 
The cohesin acetyltransferase Eco1 promotes DNA damge-induced 
reciprocal mitotic crossovers in S. cerevisiae 
FASEB Summer Research Conference - Genetic Recombination and Genome 
Rearrangements, Snowmass Village, CO (2009). 
 
The cohesin acetyltransferase Eco1 promotes DNA damge-induced 
reciprocal mitotic crossovers in S. cerevisiae 
Midwest Yeast Genetics Meeting, Northwestern University (2009). 
 
The acetyltransferase activity of Eco1 is important for DNA damage repair 
in S. cerevisiae 
Crossroads Student and Postdoctoral Association, Stowers Institute for 
Medical Research, Young Investigators Day (2010). 
 
Studying the role of sister-chromatid cohesion in regulating the dynamics 
of rDNA transcription by transcript counting in single cells 
Crossroads Student and Postdoctoral Association, Stowers Institute for 
Medical Research, Young Investigators Day (2011). 
 
The cohesin acetyltransferase Eco1 regulates replication and segregation 
of ribosomal DNA 
Crossroads Student and Postdoctoral Association, Stowers Institute for 
Medical Research, Young Investigators Day (2012). 
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