Observation of the Hadronic Transitions $\chi_{b1,2}(2P) \rightarrow \omega Y(1S)$

D. Cronin-Hennessy,1 C. S. Park,1 W. Park,1 J. B. Thayer,1 E. H. Thorndike,1 T. E. Coan,2 Y. S. Gao,2 F. Liu,2 R. Stroynowski,2 M. Artuso,3 C. Boulahouache,3 S. Blusk,3 E. Dambsasuren,3 O. Dorjkhaiдав,3 R. Mountain,3 H. Muramatsu,3 R. Nandakumar,3 T. Skwarnicki,3 S. Stone,3 J. C. Wang,3 A. H. Mahmood,4 S. E. Csorna,5 G. Bonvicini,6 D. Cinabro,6 M. Dubrovin,6 A. Bornheim,7 E. Lipeles,7 S. P. Pappas,7 A. Shapiro,7 W. M. Sun,7 A. J. Weinstein,7 R. A. Briere,8 G. P. Chen,8 T. Ferguson,8 G. Tatishvili,8 H. Vogel,8 M. E. Watkins,8 N. E. Adam,9 J. A. Mueller,19 S. Nam,19 V. Savinov,19 G. S. Huang,20 D. H. Miller,20 V. Pavlunin,20 B. Sanghi,20 E. I. Shibata,20

The only hadronic decays of bottomonium states ($b\bar{b}$ mesons) that have been experimentally observed to date are the $\pi\pi$ transitions among the $Y(nS)$ states [1]. In Fig. 1 we show the spectrum of

The CLEO Collaboration has made the first observations of hadronic transitions among bottomonium ($b\bar{b}$) states other than the dipion transitions among $Y(nS)$ states. In our study of $Y(3S)$ decays, we find a significant signal for $Y(3S) \rightarrow \gamma \omega Y(1S)$ which is consistent with radiative decays $Y(3S) \rightarrow \gamma \chi_{b1,2}(2P)$, followed by $\chi_{b1,2}(2P) \rightarrow \omega Y(1S)$. The branching ratios we obtain are $B[\chi_{b1}(2P) \rightarrow \omega Y(1S)] = (1.63^{+0.35+0.16}_{-0.31-0.15})\%$ and $B[\chi_{b2}(2P) \rightarrow \omega Y(1S)] = (1.10^{+0.32+0.11}_{-0.28-0.10})\%$, in which the first error is statistical and the second is systematic.

DOI: 10.1103/PhysRevLett.92.222002 PACS numbers: 13.25.Gv, 14.40.Gx
Figure 1 (color online). The spectrum of bottomonium states below the B\bar{B} threshold for different J^{PC} combinations. Well-established bottomonium states are indicated by the solid horizontal lines, those that have not been observed experimentally (the \eta_c and h_b states, and two of the three 1D states are indicated by dashed horizontal lines). Dilepton decays of the J^{PC} = 1^{--} states are denoted by the solid lines, while dipion transitions are denoted by dashed lines. The radiative decay Y(3S) \rightarrow \gamma \chi b_{1,2}(2P) is indicated by the dot-dashed line, and the decay \chi b_{1,2}(2P) \rightarrow \omega Y(1S) by the dotted line.

The data set consists of (5.81 \pm 0.12) \times 10^6 Y(3S) decays observed with the CLEO III detector at the Cornell Electron Storage Ring. Charged particle tracking is done by the 47-layer drift chamber and a four-layer silicon tracker which reside in a 1.5 T solenoidal magnetic field. Photons are detected using an electromagnetic calorimeter consisting of 7784 CsI(Tl) crystals distributed in a projective barrel geometry. The particle-identification capabilities of the CLEO III detector (which include a muon system and Ring Imaging Cherenkov detector) are not used in the present analysis.

We begin with events which satisfied the on-line trigger conditions designed to retain 100% of the events containing the two high momentum tracks consistent with the leptonic decay of Y(1S). Events consistent with the final state of \gamma \pi^+\pi^- \pi^0 \ell^+\ell^- are selected from the above on-line trigger sample by requiring in addition to the two high momentum charged and two or three low momentum charged tracks with momenta (0.12 < p < 0.75 GeV/c). The low momentum tracks are required to come from the interaction region using cuts on track quality parameters that were developed by studying charged pion tracks in a sample of events from the kinematically similar decay Y(2S) \rightarrow \pi^+\pi^- Y(1S).

We select events that contain an Y(1S) candidate by requiring that the two high momentum tracks in the event have an invariant mass in the range 9300 to 9600 MeV, consistent with the Y(1S) mass. We make no additional cuts on track quality variables for the lepton candidate tracks, and we do not attempt to distinguish to which dilepton final state (electron or muon) the Y(1S) candidate has decayed. The invariant mass requirement alone provides a nearly background free sample, and imposition of cuts to further identify the tracks as leptons only leads to larger systematic uncertainties and reduced signal efficiency without much improvement in signal quality.

We require events to have three or four showers in the calorimeter, each of which has E > 30 MeV, and is not matched to any charged track. Two of these showers must form an invariant mass within 3 standard deviations (3\sigma) of the known \pi^0 mass. These candidates are kinematically constrained to the known \pi^0 mass, in order to improve the momentum resolution of the \pi^0 candidates. In addition to the two showers that correspond to the \pi^0, events must contain an isolated photon candidate, between 50 and 250 MeV in energy, that does not form an invariant mass within 8 MeV (1.5\sigma) of the \pi^0 mass with any other shower. Furthermore, we require that the polar angle (\theta) of the third shower satisfies |cos\theta| < 0.804, the angular region in which CLEO's energy resolution is best. We allow events to contain up to one additional shower in the range |cos\theta| < 0.804. In addition, we allow for the possibility of one “spurious” charged track candidate in addition to the four “signal” tracks. Such spurious tracks may arise from failures in pattern recognition or from delta rays. Spurious showers may arise from synchrotron radiation from the e^\pm beams or as a result of random noise in the calorimeter. If a given event yields more than one candidate due to the presence of an additional shower or track, we choose the candidate for which the sum of
energies of all final state particles is nearest the mass of \(Y(3S) \).

Because there is no phase space for a pair of kaons for decays in which an \(Y(1S) \) is present, we assume that the low momentum charged tracks are pions. The invariant mass of the \(\pi^+ \pi^- \pi^0 \) combination, plotted in Fig. 2, exhibits a clear enhancement at the mass of \(\omega \), \(M(\omega) = 0.783 \text{ GeV} \) [7].

To complete the reconstruction of the full decay chain, \(Y(3S) \rightarrow \gamma \omega Y(1S) \rightarrow \gamma \pi^+ \pi^- \pi^0 \ell^+ \ell^- \), we require that the \(\chi^2 / \text{d.o.f.} \) be less than 2 for a kinematic fit of \(\pi^+ \pi^- \pi^0 \) constrained to the \(\omega \) mass, and subsequently that the mass [8] recoiling against the kinematically fitted \(\omega \) candidate and the photon lies within \(50 \text{ MeV} \) of \(M(Y(1S)) = 9.460 \text{ GeV} \) [7].

The simplest explanation for the observed events is the decay sequence \(Y(3S) \rightarrow \gamma \chi_b, \) with \(\chi_{b1,2}(2P) \rightarrow \omega Y(1S) \). The lowest mass \(\chi_b(2P) \) state, \(\chi_{b0}(2P) \), lies below threshold for decay to \(\omega Y(1S) \). In principle, a transition through the \(n_b(3S) \) state (see Fig. 1) is possible, but this state has never been observed, and, furthermore, the energy of the photon in the decay \(Y(3S) \rightarrow \gamma n_b(3S) \) is expected to be below the range of observed energies in the data.

Backgrounds from ordinary udsc quark pair production are extremely small because of the presence of the \(Y(1S) \rightarrow \ell^+ \ell^- \) decay in the signal sample. The only significant source of background \(Y(1S) \) expected is known cascades from \(Y(3S) \). The final state of \(\gamma \pi^+ \pi^- \pi^0 Y(1S) \) may be reached through

\[
Y(3S) \rightarrow \gamma \chi_b(2P), \quad \chi_b(2P) \rightarrow \gamma Y(2S),
\]

\[
Y(2S) \rightarrow \pi^+ \pi^- Y(1S),
\]

or

\[
Y(3S) \rightarrow \pi^0 \pi^0 Y(2S), \quad Y(2S) \rightarrow \pi^+ \pi^- Y(1S).
\]

In the first case, the final state of interest can be produced by the addition of a spurious shower in the calorimeter. In the second case, it may be reached by the loss of one photon from one of the neutral pions due to acceptance or energy threshold.

Backgrounds produced through either of these two processes are removed by excluding events in which the mass recoiling against the two charged pions in the \(Y(3S) \) reference frame is consistent (i.e., between 9.78 and 9.81 GeV) with the hypothesis that the \(\pi^+ \pi^- \) system is recoiling against \(Y(2S) \) in the process \(Y(3S) \rightarrow X + Y(2S) \rightarrow X + \pi^+ \pi^- Y(1S) \).

Two other decay sequences can yield the final state of \(\gamma \pi^+ \pi^- \pi^0 Y(1S) \): the decay \(Y(3S) \rightarrow \pi^0 \pi^0 Y(1S) \), with the \(Y(2S) \) decaying either to \(\pi^0 \pi^0 Y(1S) \), or to \(\gamma \chi_b(1P) \) followed by \(\chi_b(1P) \rightarrow \gamma Y(1S) \). In each of these cases, however, the charged pions have momenta too low to produce false \(\omega \) candidates for the signal decay chain.

In order to evaluate background, we generated a GEANT [9] Monte Carlo sample for the channel \(Y(3S) \rightarrow \gamma \chi_{b1,2}(2P), \chi_{b1,2}(2P) \rightarrow \gamma Y(2S), \) \(Y(2S) \rightarrow \pi^+ \pi^- Y(1S) \), corresponding to \(21.5 \pm 3.1 \times 10^6 \) \(Y(3S) \) decays, or \(4.53 \pm 0.65 \text{ times our data set} \). The uncertainty on the equivalent number of \(Y(3S) \) decays is due to the error on the branching ratios needed to convert our number of generated events to the equivalent number of \(Y(3S) \) decays. This Monte Carlo sample produced one event that satisfied our selection criteria. We therefore expect \(0.22 \pm 0.03 \text{ events due to this source} \). We also generated a Monte Carlo sample of \(Y(3S) \rightarrow \pi^0 \pi^0 Y(2S), \ Y(2S) \rightarrow \pi^+ \pi^- Y(1S) \), corresponding to \(540 \times 10^6 \) \(Y(3S) \) decays, or \(11.3 \pm 2.3 \text{ times our data set} \). From this sample, a total of nine events passed our selection. In our data set, we thus expect \(0.08 \pm 0.01 \text{ events due to this source} \). To account for the background, we subtract the expected contribution of 0.30 events from the observed yield. We conservatively set a systematic error of \(\pm 0.15 \text{ events due to this subtraction} \).

To evaluate the signal detection efficiency \(\epsilon \), we generated 150 000 Monte Carlo events for each of \(\chi_{b1}(2P) \) and \(\chi_{b2}(2P) \), proceeding through the sequence \(Y(3S) \rightarrow \gamma \chi_{b1,2}(2P) \rightarrow \gamma \omega Y(1S) \rightarrow \gamma \pi^+ \pi^- \pi^0 \ell^+ \ell^- \), and uniform angular distributions for the \(Y(3S) \rightarrow \gamma \chi_{b1,2}(2P) \) and \(Y(1S) \rightarrow \ell^+ \ell^- \) decays. The masses for all particles in the decay chain were taken from Ref. [7].

The analysis cuts described above are applied to these samples, and we obtain \(\epsilon(\chi_{b1}(2P)) = (6.81 \pm 0.07 \%) \) and \(\epsilon(\chi_{b2}(2P)) = (6.23 \pm 0.06 \%) \), including all selection criteria, acceptance, and trigger efficiencies. We apply an additional relative systematic error of \(+0.9 \% \) to the efficiency in order to account for the possibility that the \(Y(1S) \) retains the initial polarization of the \(Y(3S) \).
In order to illustrate the purity of the signal, in Fig. 3, we present a scatter plot of the mass recoiling against the \(\omega \gamma \) system versus the dilepton invariant mass for all events subject to all the cuts discussed above, except those on the variables plotted. The final \(E_\gamma \) spectrum is shown in Fig. 4. The observed yield has possible contributions from both decay sequences involving \(\chi_{b1}(2P) \) and \(\chi_{b2}(2P) \) intermediate states.

To obtain branching fractions for the \(\chi_{b2}(2P) \) and \(\chi_{b1}(2P) \) transitions, we perform a maximum likelihood fit of the \(E_\gamma \) spectrum. The expected photon spectra for \(Y(3S) \) transitions to \(\chi_{b2}(2P) \) and \(\chi_{b1}(2P) \) were obtained from the signal Monte Carlo samples, and the observed \(E_\gamma \) spectrum was then fit to normalized Monte Carlo line shapes with intensities (or yields) for \(\chi_{b1}(2P) \) and \(\chi_{b2}(2P) \) as the free parameters. We obtain yields of 32.6\(^{+6.9}_{-6.1} \) and 20.1\(^{+3.4}_{-3.1} \) events, respectively. These yields have statistical significances of 10.2\(\sigma \) and 5.2\(\sigma \), respectively, obtained by comparing the likelihood of our final fitted yield to those of fits with zero signal events. The histogram resulting from the best fit is shown superimposed on the data in Fig. 4.

The expected background contribution of 0.30 events is subtracted from the fitted yield by assuming that it scales as the ratio of the individual yields to the total yield.

We thus obtain the following product branching ratios, using the detection efficiency and number of \(Y(3S) \) decays discussed above:

\[
\mathcal{B}[Y(3S) \rightarrow \gamma \chi_{b1}(2P)] \times \mathcal{B}[\chi_{b1}(2P) \rightarrow \omega Y(1S)] \times \mathcal{B}[\omega \rightarrow \pi^+ \pi^- \pi^0] \times \mathcal{B}[Y(1S) \rightarrow \ell^+ \ell^-] = (0.82^{+0.17}_{-0.15} \pm 0.06) \times 10^{-4},
\]

(1)

and

\[
\mathcal{B}[Y(3S) \rightarrow \gamma \chi_{b2}(2P)] \times \mathcal{B}[\chi_{b2}(2P) \rightarrow \omega Y(1S)] \times \mathcal{B}[\omega \rightarrow \pi^+ \pi^- \pi^0] \times \mathcal{B}[Y(1S) \rightarrow \ell^+ \ell^-] = (0.55^{+0.16}_{-0.14} \pm 0.04) \times 10^{-4},
\]

(2)

in which the first uncertainty is statistical and the second is systematic.

The statistical error of nearly 20% is dominant. Systematic error contributions to the above product of branching ratios are the following: 2% uncertainty in the number of \(Y(3S) \), 1% per charged track (a total of 4%) for track finding, 5% for \(\pi^0 \) reconstruction, 2% for radiative \(\gamma \) reconstruction, 1% for Monte Carlo statistics, \(^{+3\%}_{-0\%} \) for the assumption of uniform \(Y(1S) \rightarrow \ell^+ \ell^- \) angular distribution, and 0.5% for background subtraction.

These contributions, added in quadrature, result in an overall relative systematic error of \(^{+3\%}_{-7\%} \).

FIG. 3. Plot of dilepton invariant mass versus the \(\omega \gamma \) recoil mass, for data events subject to the final set of cuts, with the exception of the cuts on the two variables plotted. The number of events represented by each square size are indicated in the boxed legend.

FIG. 4. Fitted photon energy spectrum for the final selection of events. The error bars (which correspond to \(\sqrt{N} \)) are intended only to illustrate qualitatively the approximate expectation of the observed bin-to-bin fluctuation. The solid histogram shows contributions for both \(\chi_{b1}(2P) \) and \(\chi_{b2}(2P) \), while the dotted and dashed histograms show the individual \(\chi_{b1}(2P) \) and \(\chi_{b2}(2P) \) contributions, respectively. The kinematic for photon energy of approximately 111 MeV is indicated by the vertical dashed line. The small leakage of the histogram for the \(\chi_{b1}(2P) \) Monte Carlo sample into the forbidden region is due to the finite detector resolution.
Using the present world average branching fractions [7] for \(Y(3S) \rightarrow \gamma \chi_{b1,2}(2P)\), \(Y(1S) \rightarrow \ell^+ \ell^-\) [taken to be twice that of \(Y(1S) \rightarrow \mu^+ \mu^-\)], and \(\omega \rightarrow \pi^+ \pi^- \pi^0\), we obtain
\[
\mathcal{B} [\chi_{b1}(2P) \rightarrow \omega Y(1S)] = (1.63^{+0.35+0.16}_{-0.31-0.12}) \%
\] (3)
and
\[
\mathcal{B} [\chi_{b2}(2P) \rightarrow \omega Y(1S)] = (1.10^{+0.32+0.11}_{-0.28-0.10}) \%
\] (4)
The systematic errors include the additional uncertainty on the branching ratios for \(Y(3S) \rightarrow \gamma \chi_{b1,2}(2P)\), \(\omega \rightarrow \pi^+ \pi^- \pi^0\), and \(Y(1S) \rightarrow \ell^+ \ell^-\), which contribute at the level of 5.9%.

We may also calculate the ratio of \(X_{b2}(2P)\) to \(X_{b1}(2P)\) branching ratios, for which several of the systematic errors discussed above cancel. We obtain this through a maximum likelihood fit to the \(E_r\) spectrum, in which the two free parameters are the sum of yields and the ratio of \(X_{b2}(2P)\) to \(X_{b1}(2P)\) yields. When this fit is performed, we obtain a sum of yields equal to 52.4 \(\pm 7.5\) and a ratio of \(0.62^{+0.27}_{-0.20}\). In order to convert the ratio of yields to the ratio of branching ratios, we multiply the yield ratio by a factor of
\[
\frac{\mathcal{E}[\chi_{b1}(2P)]}{\mathcal{E}[\chi_{b2}(2P)]}.
\]
\[
\mathcal{B} [\chi_{b2}(2P) \rightarrow \omega Y(1S)]/\mathcal{B}[\chi_{b1}(2P) \rightarrow \omega Y(1S)] = 0.67^{+0.30}_{-0.22}.
\] (6)
The only systematic errors which do not cancel in this ratio are the small uncertainties in efficiency and \(Y(3S) \rightarrow \gamma \chi_{b1,2}(2P)\) branching ratios. These are negligible compared to the statistical error obtained from the maximum likelihood fit.

In Ref. [5], Voloshin predicts on the basis of S-wave phase space factors, for \(E_1 \ast E_1 \ast E_1\) gluon configurations expected by the multipole expansion model [4], that
\[
\Gamma [\chi_{b2}(2P) \rightarrow \omega Y(1S)]/\Gamma [\chi_{b1}(2P) \rightarrow \omega Y(1S)] = 1.4.
\] The ratio of full widths \(\Gamma [\chi_{b2}(2P)]/\Gamma [\chi_{b1}(2P)]\) lies in the range of 1.25–1.5, using world average measurements of
\[
\mathcal{B}[\chi_{b1,2}(2P) \rightarrow \gamma Y(1S,2S)]\] and theoretical predictions for the rates \(\Gamma [\chi_{b1,2}(2P) \rightarrow \gamma Y(1S,2S)]\) [10]. Thus, the branching ratios \(\mathcal{B}[\chi_{b1,2}(2P) \rightarrow \omega Y(1S)]\) are expected to be approximately equal. Our measurement is in agreement with this expectation.

In summary, we have made the first observation of the hadronic decays \(\chi_{b1,2}(2P) \rightarrow \omega Y(1S)\) using a sample of
\[(5.81 \pm 0.12) \times 10^6 Y(3S)\] decays collected by CLEO III. We find that the ratio of the measured branching ratios for the two transitions are in agreement with theoretical expectations based on S-wave phase space factors for multipole expansions.

We gratefully acknowledge the effort of the CESR staff in providing us with excellent luminosity and running conditions. This work was supported by the National Science Foundation, the U.S. Department of Energy, the Research Corporation, and the Texas Advanced Research Program.

[8] Throughout this Letter we use the term recoil mass to denote this mass, which is determined by the following formula:
\[
M_{\text{recoil}} = \sqrt{(2E_{\text{beam}} - E_\omega - E_y)^2 - (\vec{p}_\omega - \vec{p}_y)^2}.
\]
