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Phylogenetic systematics demands a general and logically consistent 
analytical framework. To meet that demand, we propose here a system 
of testing phylogenetic hierarchies with the broadest possible diversity 
of evidence.
Traditionally, phylogenetic analyses were based entirely on phenotypic 
evidence derived from such sources as comparative morphology, molec-
ular biology, and ethology, which entailed only a few distinct character 
types. As genomic data have become more readily available, however, 
the diversity of character types has increased dramatically to include 
complex genetic, chromosomal, and even entire genome sequences. 
Fundamentally, there is no evidentiary distinction to be made among 
these sources of information. Logical consistency requires that all evi-
dence be treated equivalently. At present, there is no way to test phylo-
genetic hypotheses with the full diversity of available evidence in a con-
sistent manner, a shortcoming we aim to correct here.
The incorporation of genotypic character types into systematics requires 
a fundamental rethinking of the way phylogenetic hypotheses are tested 
and inferences made. A central distinction in this book is made between 
the static homology approach, where data are encoded (or aligned) in a 
fixed character matrix prior to phylogenetic analysis, and the dynamic 
homology approach, where constraints on possible transformations are 
An Approach to 
Phylogenetics
1
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reduced and characters (transformation series) are inferred a posteriori as 
a result of phylogenetic analysis.
The ideas in this book have been implemented in the computer pro-
gram POY, version 3.012, written by Wheeler and colleagues (Wheeler 
et al. 1996–2003). POY is an open source (ftp://ftp.amnh.org/
pub/molecular/poy) program written in ML and C. Precompiled 
binaries are available for Linux x86, MS-Windows, and Mac OS X. The 
code is fully parallelized (using PVM and MPI) and fault tolerant with 
multiple program options and algorithms to take advantage of a diver-
sity of multiprocessor platforms, including clusters and shared memory 
multiprocessor (SMP) machines. 
In the first part of this book, we discuss the theoretical core of phyloge-
netic systematics as it relates to POY. Given a minimal set of evolution-
ary assumptions, a definable (if large) collection of possible hypotheses 
is tested with evidence derived from observed biological variation. We 
are not attempting to be exhaustive in our discussions, but to focus on 
the issues relevant to POY and its motivation. Readers should go to 
more general sources (e.g. Schuh 2000) for broader treatments.
The second part presents the problems faced by systematic analysis and 
discusses their solutions in both theoretical and practical, applied terms. 
Exact solutions will be few and far between, given the computational 
complexity of the problem. We are limited, largely, to heuristic solutions 
that take advantage of distributed computing. We discuss the trade-offs 
associated with each approach, as well as the optimal search strategies 
given different phylogenetic problems and computer resources.
The third part is a users’ guide for the implementation of these ideas in 
the program POY, including program installation instructions for multi-
ple platforms, descriptions of over 250 user-specified commands, and 
instructions for use.  
Finally, as may be expected in any field of science confronted with new 
problems of unanticipated complexity, a diversity of possible solutions 
exists, and it is only by engaging in open scientific debate that false theo-
ries and logically inconsistent methods are eliminated and progress 
made. Given the infancy of phylogenetic analysis in the genomic era, it 
should come as no surprise that significant disagreements persist among 
the authors of this book. Although some amount of compromise is 
required in collaborative projects, such as this book, and it is impractical 
and inappropriate to debate our differences of opinion exhaustively, we 
believe it would be intellectually dishonest to overlook substantive dis-
agreements altogether. The reader should look to the primary literature 
for more fully developed arguments. Nothing is final and irrefutable in 
science.   We believe our open criticism to be a necessary aspect of the 
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scientific process that is all too often hidden from the reader in an 
attempt to present a unified front.
We would like to acknowledge the contributions and support of the 
institutions and people who made this work possible. Louise Crowley, 
Philippe Grancolas, Cecilia Kopuchian, Diana Lipscomb, Jyrki Muona, 
Kurt Pickett, Stefan Richter, Susanne Schulmeister, and George Wilson 
reviewed drafts of the manuscript in whole or part, offering many help-
ful criticisms. Elizabeth Werby did much to shepherd the production 
from its beginning stages and Tanya Das coordinated final production. 
The work was supported by the NASA Fundamental Space Biology 
Program under the guidance of Melvin Averner, who provided tremen-
dous support and encouragement.  The material was also based upon 
work supported by the U.S. Army Research Laboratory and the U.S. 
Research Office under grant number W911NF-05-1-0271.
Finally, Robert MacElroy, also of the NASA Fundamental Space Biol-
ogy Program, was a great supporter of our research, sharing with us his 
warmth and intelligence. We lost Bob in 2004, and this work is a 
remembrance of him.
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Part I
Phylogenetics





1 Data
Evidence
The fundamental task of systematics is to explain biological variation by 
inferring the phylogenetic relationships among organisms and the 
unique transformation events that link them (Hennig 1966). 
Inference of particular functions, adaptations, mechanisms, and con-
straints, and the many other processes that shaped the evolution of each 
group, can be informed by the results of phylogenetic analysis. How-
ever, evolutionary analysis requires additional assumptions and tests that 
are external to systematics (for example, Farris 1983; Grandcolas and 
D’Haese 2003; Grant and Kluge 2003). 
Operationally, systematics proceeds by gathering data (observations) 
from organisms and coding them into evidence to test competing phy-
logenetic scenarios.  
In principle, any observation of a set of creatures has the potential to 
provide evidence of historical kinship.  However, the most objectively 
critical evidence is derived from those features that are heritable and 
intrinsic to organisms because they reflect the biological continuity 
between ancestor and descendant (Hennig 1966).  Differences in each 
of these features can be traced to specific and unique transformations 
on a cladogram and these transformations allow us to assay the relative 
7
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merits of alternative historical explanations.  All observations are consis-
tent with all scenarios, but not to an equal extent (see Sober 1983).  It is 
this inequality that drives systematic analysis, forms the basis of our 
tests, and elevates general historical statements to testable scientific 
hypotheses. 
A distinction is made between data and evidence. Evidence implies an 
organized set of observations that can be used to test hypotheses. A col-
lection of nucleic acid sequences or statements about an anatomical fea-
ture (for example, biramous appendage) have little meaning or value in 
and of themselves. However, when organized into putatively homolo-
gous features (for example, 18S rRNA or abdominal appendages) these 
observations (data) demand analysis. Coding transforms observation 
into evidence (characters) and allows hypotheses to be weighed quanti-
tatively.

Value of Evidence
At least initially, we must operate under the principle that all evidence is 
possessed of equal value in discriminating among phylogenetic scenar-
ios. That is, information from all sources and collected by any means 
may have value in testing historical hypotheses: the total evidence prin-
ciple (Kluge 1989). This is not to say that all information is equally dis-
criminating, but this cannot be known prior to systematic analysis.
A corollary of this notion is that phylogenetic characters (that is, coded 
observations) do not form logical classes on the basis of their ability to 
differentiate among hypotheses. They can be divided and sorted into all 
variety of functional, structural, or observational classes, but these have 
no bearing on the evidentiary content of the characters themselves. This 
leads to a notion of complete catholicism with respect to sources and 
types of data—provided that they derive from independently heritable 
transformations. Anatomical, behavioral, and genomic features are all, 
on the face of them, informative. There is no reason to segregate char-
acter variants into classes or partitions. There are only those features 
that can objectively distinguish between hypotheses and those that can-
not.

Sources of Evidence
Traditionally, the data used in phylogenetic analysis have been catego-
rized as either morphological or molecular.  Morphological data have 
originated principally from studies in comparative morphology and 
ethology (although the latter are not strictly morphological).  Molecular 
data have originated from studies in molecular biology.  According to 
this categorization, morphological data consist of anatomical features 
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and can include behavior, while molecular data consists of nucleic acids, 
proteins, and genomes.
This distinction has given rise to a number of controversies regarding 
the suitability of each kind of data for phylogenetic analysis. In addition, 
each type of data is regarded as requiring different analytical treatment. 
This difference in treatment principally concerns how comparable char-
acters are identified. On the one hand, morphological characters have 
been treated as a matter of observation, while molecular characters must 
be inferred. Phylogenetic analysis is better served by distinguishing 
between phenotypic and genotypic data.

Phenotypic and genotypic data
Phenotypic data result from the structural and functional characteristics 
that express an organism’s genotype along with the organism’s response 
to its environment. Phenotypic data therefore include morphology and 
behavior as well as many molecular characters, such as amino acid 
sequences or pheromone profiles. Data collected on phenotypes are 
derived from structurally and developmentally complex features, which 
enables testing of each hypothesis of homology in isolation.
However, observed variation may be the result of either heritable trans-
formations or environmental effects. Failure to distinguish between the 
two causes of variation may confound attempts to infer phylogenetic 
relationships.
On the other hand, genotypic evidence represents an organism’s genetic 
material and is therefore directly and entirely transmitted from parent to 
offspring, thus eliminating any concern for the heritability of observed 
variation. Although this is a clear strength of genotypic data, the pecu-
liarities of these features give rise to novel analytical problems. All 
instances of each of the four possible nucleotides are physically indistin-
guishable, regardless of their historical origins: any nucleotide can sub-
stitute directly for any other (there are no intermediate states) and any 
nucleotide can be inserted or deleted. It is therefore impossible to test 
hypotheses of nucleotide homology in isolation. Only the test of charac-
ter congruence can be applied to them.
Until the time when whole genomes are available and can be analyzed 
appropriately and the genetic basis for particular phenotypic variants is 
known and can be traced to unique transformations, combined analysis 
of both sources of evidence provides the strongest test of phylogenetic 
hypotheses.
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Homology
At the level of evidence, cladograms imply statements of homology. 
Alternative cladograms might have alternative optimal homology state-
ments and content.  At a basic level, we differentiate among cladograms 
on their ability to embody the potentially conflicting homology state-
ments of diverse sets of characters.
Features are homologous when their origins can be traced to a unique 
transformation on the branch of a cladogram leading to their most 
recent common ancestor.  There can be no notion of homology without 
reference to a cladogram (albeit implicitly) and no choice among cla-
dograms without statements of homology.
This definition of homology makes no reference to “primary” or “sec-
ondary” homology (de Pinna 1991). In fact, the perspective here rejects 
this distinction entirely. De Pinna (1991: 372) based his distinction on 
the view that homology assessment necessarily requires hypothesis 
“generation and legitimation” in separate steps, the former rooted in 
notions of similarity and the latter based on the simultaneous test of 
character congruence.
All possible hypotheses of homology are defined logically as a function 
of the number of heritable parts identified for each terminal (just as all 
possible cladograms are defined logically as a function of the number of 
terminals; Felsenstein 1978), so no special procedure is required for 
hypothesis “generation.” Likewise, although homology assessment 
often involves a two-stage procedure of first submitting each hypothesis 
of homology to a round of separate tests and then submitting the sur-
viving, constrained set of hypotheses to the test of character congruence 
(that is, “static” homology assessment), this separation is neither a 
methodological nor epistemological necessity. 
POY embodies the concept of dynamic homology (Wheeler 2001a, b) 
in which the test of character congruence is applied to the entire, 
unconstrained set of hypotheses of homology, thereby allowing entire 
transformation series to be discovered on the basis of a single optimality 
criterion. That is, dynamic homology employs the same procedure to 
discover both the character (in the traditional sense) and the character-
state transformations within the character. Since the same optimality cri-
terion is employed in both cladogram assessment and homology assess-
ment, the globally optimal explanation of the observed variation is 
achieved by the minimum-cost cladogram-plus-homology-scheme com-
bination.
In the same way that each cladogram has a (potentially) unique set of 
optimal character origins, each cladogram may have a unique set of opti-
mal correspondences among observed features. Unless these correspon-
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dences are unrestricted and allowed to be optimized together with trans-
formations, biased and conditional results may be obtained. Such bias 
may come from the assumptions of the investigator and his or her 
notions of the appropriateness of comparison, and conditioned on the 
hypotheses most in agreement with the preconceived correspondences 
of “primary” homology.
Dynamic homology is a powerful conceptual approach to the study of 
highly simplified data types, such as DNA and amino acid sequences or 
simple morphological structures like annelid segments, where structural 
or developmental evidence that could allow a defensible choice among 
competing hypotheses of homology is either nonexistent or unavailable.

Suggested Reading
Farris, J. S. 1983. The logical basis of phylogenetic analysis. In N. I. Platnick 

and V. A. Funk (editors), Advances in Cladistics: 277–302. New York: 
Columbia University Press.

Hennig, W. 1966. Phylogenetic Systematics. Urbana: University of Illinois 
Press. 263 pp.

Sober, E. 1983. Parsimony methods in systematics. In N. I. Platnick and V. A. 
Funk (editors), Advances in Cladistics: 37–47. New York: Columbia Uni-
versity Press.

Wheeler, W. C. 2001. Homology and the optimization of DNA sequence data. 
Cladistics 17: S3–S11.
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Cladograms, Trees, and Tree-Shaped Objects
Independent of evidence, a cladogram is a branching diagram that 
depicts the hypothesized phylogenetic (as opposed to ontogenetic or 
tokogenetic) relationships among terminal taxa. They are Steiner or 
Wagner trees in much of the systematics literature, meaning that 
observed taxa (often called operational taxonomic units or OTUs) are 
confined to the tips (leaves) and are not placed at inner nodes. This is 
preferred over Prim networks because
• it allows more parsimonious solutions by optimizing novel character 

combinations to inner nodes as hypothetical taxonomic units (HTUs) 
(Farris 1970),

• and it avoids the problematic assumption that some observed taxa are 
directly ancestral to other observed taxa (Platnick 1977).

Cladograms can either be undirected (unrooted) networks or directed 
(rooted) trees (Farris 1970). Only in the latter case can historical state-
ments be made.
The computer science literature uses “tree” in a slightly different 
context. A tree is a directed, acyclic graph ⎯ in more familiar terms, 
a rooted branching diagram without reticulation. This literature also 
2 Cladograms
13
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uses “network” to mean an undirected cyclic graph ⎯ an unrooted 
branching diagram with reticulation.
In most cases here, we refer to cladograms. We are, however, drawing 
on a large wealth of algorithmic and tree manipulation discussion from 
the computational literature, so we will use these terms more broadly, to 
the point where they are largely interchangeable. “Network” does not 
refer to reticulated graphs in this book, although we use the term only 
rarely and usually describe cladograms as directed or undirected.
Associated with an optimized body of evidence, a directed cladogram 
becomes a summary statement of phylogeny and homology, represent-
ing the historical relationships among both the terminal taxa and the 
individual characters. Cladograms do not confer information about why 
or how particular transformations occurred between ancestor–
descendant pairs. Also, cladograms need not contain specific infor-
mation about ancestor–descendant character transformations. In 
many cases we can determine how costly a cladogram is without ever 
having to determine the precise ancestral reconstructions required by 
a tree ⎯ for example, by only performing down-pass optimization.
The number of possible cladograms is solely a function of the num-
ber of terminals. For n terminals, the number of binary ( bifurcated, 
fully resolved) undirected cladograms is given by (Felsenstein 1978)

(Eq 2.1)

and for directed cladograms by

(Eq 2.2)

The number of possible cladograms therefore increases explosively as 
taxa are added to an analysis. For a given matrix of static homology 
statements, finding the optimal cladogram is an NP-complete problem 
(Garey and Johnson 1977; Garey et al. 1977). Heuristic solutions are 
therefore required to analyze data sets composed of more than about 20 
taxa.
Choice among cladograms is mediated by optimizing the evidence on 
cladograms and calculating the minimum cost in terms of weighted 
transformations required to explain the observed variation in light of 
background knowledge. That is, cladograms differ in their ability to 
explain conflicting evidence in a single historical scenario. Optimality 
criteria measure this ability quantitatively and permit the relative evalua-

2n 5–( )!
2n – 3 n – 3( )!
-----------------------------

2n 3–( )!
2n – 2 n – 2( )!
-----------------------------
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tion of cladograms. Cladograms are ranked and optimal solutions identi-
fied through these values.
POY is mainly concerned with parsimony as an optimality criterion, val-
uing, as it does, simplicity. The cladogram that minimizes transforma-
tions to explain the observed variation is the simplest, maximizes evi-
dential congruence, and has greatest explanatory power. There is also, 
however, some ability to evaluate cladograms comparatively in terms of 
their likelihood scores, where the cladograms that maximize the likeli-
hood are preferred. 
Cladograms and trees are branching diagrams that depict the histori-
cal relationships among taxa as inferred from critical evidence and 
have associated optimality values. That is, they participate in hypoth-
esis testing through the optimality values and are directly supported 
by evidence. Although they are most clearly exemplified by most parsi-
monious and maximum likelihood trees, they include the results of min-
imum  evolution, including neighbor joining (Saitou and Nei 1987) and 
minimum percent standard deviation (Fitch and Margoliash 1967). In 
each of these examples, there is a direct and unequivocal relationship 
between a body of evidence and the tree or cladogram.
These are contrasted by what we refer to as tree-shaped objects, which 
are branching diagrams that look like and are often interpreted as if they 
were cladograms or trees, but have altogether different purposes and 
empirical bases. These primarily include diagrams meant to summarize 
the results of explicit phylogenetic analysis, most notably the strict con-
sensus, MrBayes trees (Huelsenbeck and Ronquist 2003), parsimony 
jackknife trees (Farris et al. 1996), and supertrees (for example, Bininda-
Emonds et al. 2002). The strict consensus representation is objectively 
interpretable as a summary of the clades that are unambiguously sup-
ported by the evidence, and as such is a valuable tool in systematics. 
MrBayes and parsimony jackknife trees are majority rule summaries of 
the frequency of clades in a sample of trees. Supertrees are intended to 
depict the results of analyses involving overlapping sets of terminals.
None of these different kinds of summaries maximizes an underlying 
optimality criterion. It is widely recognized that the strict consensus rep-
resentation is a suboptimal explanation of the evidence—that is, it 
requires more steps than any one of the fundamental cladograms (for 
example, Kluge 1989), that supported groups can have a lower resam-
pling frequency than unsupported groups (Goloboff et al. 2003a), and 
that these depictions should not be interpreted as cladograms or trees. 
However, it is frequently overlooked that the MrBayes solution suffers 
from the same analytical problem as the jackknife. That is, the Monte 
Carlo Markov Chain algorithm generates a sample of cladograms and is 
meant to estimate the posterior probabilities of clades, not trees. As a 
majority-rule representation, the MrBayes topology may not be the 
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maximum posterior probability cladogram, and the groups it shows 
as being recovered in high frequency can actually be unsupported by 
the Bayesian optimality criterion.
With supertrees, the gulf between evidence and summary depictions 
increases even more. Because they are intended to summarize the results 
of different analyses, it is possible for the source trees to have been 
inferred under contradictory optimality criteria—indeed, this is actually 
seen by some authors as a strength of supertrees. Of course, that alone 
is not necessarily an inappropriate procedure. However, at least some 
proponents of supertrees encourage their interpretation as actual 
hypotheses of phylogeny— that is, as cladograms or trees equipped 
with optimality values, branch lengths, and support metrics adequate 
to test competing evolutionary scenarios (for example, Bininda-
Emonds et al. 2002). Such interpretations are indefensible, as no sci-
entific test is possible in the absence of a clear link to empirical evi-
dence— that is, an evidence-based optimality criterion. The per-
ceived need for supertree methods is that
• the amount of systematic data available outstrips present computa-

tional abilities
• the obstacles to combining evidence from different sources cannot be 

overcome.
A recurring theme in this book is that data set size affects only the 
exhaustiveness of analysis, not the ability to analyze it in a logically con-
sistent manner. Likewise, all veritable evidence can be combined in 
simultaneous ( that is, supermatrix) analysis.

Terms and Notation
Navigating efficiently through descriptions of cladograms and their 
manipulations requires terminology. As with the cladogram/tree discus-
sion, there is a rich lexicon of descriptive terms, illustrated in Figure 2.1 
on page 17.

OTU (operational taxonomic unit)     Taxon selected for phyloge-
netic study, generally based on observed or inferred characteristics; 
terminal taxon; leaf.

HTU (hypothetical taxonomic unit)     The inferred internal verti-
ces or nodes of a cladogram. These are often interpreted as ancestors, 
but are, in reality, abstractions whose features are constructed to maxi-
mize the optimality criterion.

Node     A vertex on a cladogram. All HTUs and OTUs are nodes.
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Branch      The path connecting two nodes; edge.

Root     The basalmost, ur-node of a cladogram.

Binary     Describes a fully dichotomous, resolved node or cladogram.

Polytomy     An internal node that is not binary.

Cost     The value of the optimality criterion of a cladogram. This 
equals the number of steps (transformations, changes) or length in 
equally weighted parsimony analysis or weighted sum of transforma-
tions more generally. In maximum likelihood analysis, cladogram cost is 
reported as the absolute value of the log likelihood score.

Synapomorphy     A transformation on a branch that leads to an HTU.

Autapomorphy     A transformation on a branch that leads to an OTU.

Homoplasy     Nonminimal transformations of a character on a cla-
dogram.

Figure 2.1: Cladogram terms and notation.

Root

HTU

Polytomy

OTU

Node

Bra
nch

Branch
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3 Analysis
Cladograms and Data
Cladograms explain and summarize character state transformations. 
Coded data are fitted to a scenario in order to optimize a specified crite-
rion.  Desirable or “best” cladograms are chosen by this same criterion 
through relative evaluation of alternative scenarios.  In POY, this crite-
rion is usually simplicity or parsimony.  Other criteria exist, such as like-
lihood, and most of the issues discussed here apply equally well to these 
other optimality criteria.
Systematic analysis is dominated by two problems. First, how costly is a 
specific cladogram? And second, which cladogram best optimizes a 
given cost function? The first topic is referred to most frequently as 
character optimization, while the second is referred to as cladogram or 
tree search.
In systematics, optimization refers to the fitting of characters to 
cladograms on the basis of an objective criterion. Cladistic parsimony 
optimization involves minimizing the number of ad hoc hypotheses 
on a cladogram (Farris 1983). Character optimization forms the 
foundation for much of evolutionary biological studies, and the 
cladograms upon which they are optimized is obviously central. 
19
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These operations are the intellectual and operational basis of all areas 
of historical biology. 
Observations are coded into evidence in a myriad of ways.  Each charac-
ter coding scheme relies on distinct assumptions that result in different 
quantitative optimizations of a given character based on the optimality 
criterion and the cladogram.  These choices may affect not only the type 
and number of transformations on a specific cladogram, but also which 
cladogram is deemed best or optimal.  POY implements a variety of 
character type or coding optimizations, striving for maximum interpre-
tive flexibility.  

Implications of Coding Methods
As discussed above, observations themselves cannot be used to test 
hypotheses.  An intermediate, coding step is required.  Since the choice 
of a coding method imposes rules and behaviors on the data, they have 
a huge impact on analysis. 
POY implements a variety of coding methods and techniques of analy-
sis.  Currently, there are five general data codings:
• Additive (Farris 1970)
• Nonadditive (Fitch 1971)
• Matrix or Sankoff (Sankoff and Rousseau 1975)
• Sequence (dynamic homology; Wheeler 2001a, b)
• Chromosomal (Wheeler, submitted).
The last two require heuristic solutions, a number of which are imple-
mented in POY. The specifics of their analysis are described in Chapter 
5 Character Optimization.

Additive
First described for binary characters, Farris (1970; see also Kluge and 
Farris 1969) defined the procedure for optimizing qualitative characters 
(0, 1, 2, et seq.) where the cost of transformation between states, 
expressed as steps, is the additive distance between them. Hence, a 
transformation between states 1 and 4 would have a cost of 3. One 
implication of this form of coding is that each state subsumes the previ-
ous. The states form a linear transformation series where each state logi-
cally contains all the previous states and homologies. For example,

Code Description
0 Absence of antennae
1 Presence of simple antennae
2 Presence of antennae with bristles
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State 2 (antennae with bristles) implies that there must be antennae in 
the first place in order to have these bristles. Due to the nested aspect of 
the states in this character type, states (other than the most derived, 
which is always evidence for monophyly) can imply paraphyletic groups.
This form of character is most frequently used for qualitative anatomi-
cal and other nonsequence data.

Nonadditive
Fitch (1971) described a procedure to optimize nucleotide sequence 
characters that made no assumptions about the ordering of states 
(“unordered”).  This procedure applies equal costs to all possible 
transformations, irrespective of their distance or difference.  All 
states may transform into each other and no nested homology rela-
tionships among states are implied.  As such, each shared state is evi-
dence of a monophyletic group.
Although this form of character was originally described for nucleotide 
and protein sequence data, it is used for a broad variety of qualitative 
data.

Matrix or Sankoff
Sankoff and Rousseau (1975) used dynamic programming to describe 
the general case of multistate qualitative characters.  This technique 
enables the investigator to assign arbitrary transformation (that is, edit) 
costs between states.  The method is a more general approach and can 
express additive and nonadditive characters as special cases.  For the 
case above,

These matrix characters are most often used in analyses of prealigned 
molecular sequence data. Transition– transversion cost ratios and 
indel or gap costs can be specified as a 5 5 matrix of transformation 
costs. The following matrix has a transition cost of 1, a transversion 
cost of 2, and an indel cost of 4.

    Additive
    Non-

  additive    Arbitrary
State State State

0 1 2 0 1 2 0 1 2

St
at

e 0
- 1 2

St
at

e 0
- 1 1

St
at

e 0
- 1 4

1 1 - 1 1 1 - 1 1 1 - 3

2 2 1 - 2 1 1 - 2 4 3 -

×
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Although, in principle, these cost matrices are not limited by 
metricity (triangle inequality, including symmetry), significant issues 
are created by nonmetric transformation matrices (Wheeler 1993). 
These are encountered most commonly in situations where investiga-
tors treat indels (that is, gaps) as missing data, since indel transforma-
tions are given zero cost. 

Sequence
These characters consist of unaligned molecular sequence data, usually 
nucleic acids.  Given the lack of an a priori homology scheme, not only 
do the transformations between nucleotide states vary with the topol-
ogy on which they are optimized, but the correspondences (homolo-
gies) do as well.  The task of optimizing these characters, assigning 
dynamic homology is doubly difficult.
The correspondences among homologues must be determined and 
evaluated simultaneously with transformations and usually requires heu-
ristic solutions.  Traditionally, this type of information has been sub-
jected to multiple alignment prior to coding and analysis by nonaddi-
tive or matrix optimization that avoid computational complexities in 
optimization.  Optimization heuristics were proposed by Wheeler 
(1996), but discussion of these features in the multiple alignment 
context go back to Sankoff (1975).
Like cladogram search, the solution to the general problem of deter-
mining HTU sequences on a given cladogram is NP-complete (refer 
to “P, NP, and NPC” on page 24). POY offers four heuristic procedures 
to solve this problem:
• Direct optimization (Wheeler 1996)
• Iterative-pass optimization (Wheeler 2003b)
• Fixed-states optimization (Wheeler 1999a)
• Search-based optimization (Wheeler 2003c).
Although search-based optimization can, in principle, guarantee an 
exact solution (if through brute force), this is unlikely to be practical for 
real data. 

A C G T -
A - 2 1 2 4
C 2 - 2 1 4
G 1 2 - 2 4
T 2 1 2 - 4
- 4 4 4 4 -
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The four methods can be divided into two general approaches:
• Direct optimization (DO) and iterative-pass optimization (IP) strive 

to construct HTU sequences such that the overall cladogram is of 
minimal length.  This is done through modified two- and three- 
dimensional string matching, respectively.

• Fixed-states optimization (FSO) and search-based optimization 
(SBO) draw optimal HTU sequences from a pool of predeter-
mined sequences. This can be a small (FSO) or large (SBO) collection 
of candidate sequences. Dynamic programming (as in matrix charac-
ters above) is used to identify the best HTU sequences and determine 
cladogram cost. 

Chromosomal
The chromosomal character type optimizes nucleotide and locus-level 
variation simultaneously. This is accomplished without genomic annota-
tion (basically, locus-level alignment homology statements) and in a 
topology-specific manner.
Chromosomes can be thought of as linear or circular strings of 
sequence characters.  In addition to the transformation events opti-
mized under sequence character coding (nucleotide insertion, deletion, 
and substitution), a chromosome can suffer sequence character origin, 
loss, and rearrangement (movement from one place to another).  The 
chromosomal character type extends the dynamic homology framework 
to “loci” or the homologies among the sequence characters them-
selves.  As such, it adds yet another level of complexity and heurism to 
analysis.  POY currently implements this optimization procedure using 
breakpoint analysis, chromosomal direct optimization, and a fixed-
states approach.  
Currently, this character type is most used for analysis of complete mito-
chondrial, bacterial, and viral genomes.

Computational Issues
The two fundamental problems mentioned above, cladogram cost and 
cladogram search, each present complexities.  This situation is made 
more difficult by the fact that they occur as a nested pair.  Determining 
the cost of a given cladogram is repeated over all cladograms during the 
search process to yield the optimal or best scenario.
Three problems addressed by POY are members of a set of classically 
difficult computational challenges. The calculation of the cost of a given 
cladogram for unaligned sequence data, the calculation of transforma-
tion costs between chromosomal character states, and the search for the 
optimal cladogram are all NP-complete.
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P, NP, and NPC
Computational problems are classified according to the time complexity 
of their algorithmic solutions.  Put simply, problems are “easy” or 
“hard.”
Easy problems are those for which there exists a polynomial time algo-
rithmic solution (P). By this, we mean that there exists an algorithm that 
can solve the problem in time O (n k )  for some constant k.
Hard problems (NP or nondeterministic polynomial time) require 
super-polynomial time to solve, but if given a solution, the solution can 
be verified in polynomial time.  NP-complete problems (NPC) exist in a 
nether world where no known polynomial time solutions exist, but there 
is no proof of their nonexistence either (Figure 3.1).  These problems 
are frequently combinatorially explosive, with solution spaces increasing 
at a factorial pace.  Furthermore, there are a large number of NPC prob-
lems (for example, traveling salesman, circuit design, scheduling), and if 
a polynomial time solution were found for any of them, it would apply 
to all (Cormen et al. 2001).

NPC problems are hard in the computational sense. Unfortunately, we 
are saddled with them. This has two practical implications for systematic 
research. The first is that we will almost never be dealing with exact 
solutions to any of our problems. Heuristics will drive our analysis. As 
heuristic procedures improve, so will our analyses. The second is the 
employment of parallel computation to analyze large and complex data 
sets.

P

NPC
NP

Figure 3.1: A vision of the relationship among P, NP, and NPC held by most 
computer scientists.
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Techniques

Exact methods
Although the general problems we discussed here have no prospect 
of an exact solution, certain, likely small cases can be tractable. For 
these situations, it may well be possible to explicitly enumerate all 
possible solutions. For eight terminal taxa, there are only 10,395 pos-
sible unrooted cladograms. Searching through such a space for an 
optimal solution would not be terribly taxing. Analogously, a linear 
chromosome with eight gene regions would allow 40,320 possible 
orderings of loci. Certainly a large number, but not impossibly so.
Such brute force methods rapidly become unworkable as the size of 
the problem increases. Two techniques in general use, however, 
enable the analysis of somewhat larger data sets. Dynamic program-
ming (used in character optimization) and branch-and-bound tech-
niques (used in cladogram search) implicitly enumerate and examine 
all possible solutions without actually visiting each scenario. Both 
methods evaluate partial, subsolutions that allow the algorithms to 
exclude large areas of unprofitable search space, making exact solu-
tions tractable for larger problems. These eventually reach their limit 
and maintain utility predominantly in small analytical studies as 
opposed to those with the hundreds to thousands of taxa commonly 
studied in real data sets.

Heuristic methods
Approximate or heuristic solutions provide systematics with its 
usable results. Many of the heuristic approaches taken in cladogram 
search are well known: branch swapping, random addition of taxa, 
simulated annealing in the form of the ratchet and tree drifting, and 
genetical algorithms as in tree fusing. Each of these techniques aids 
in the searching of cladogram space and attempts to move solutions 
from locally to more globally optimal solutions. 
Cladogram cost heuristics are of two types:
• First, there are techniques like direct optimization and iterative-

pass optimization that break the problem down into a series of two 
(direct optimization) or three (iterative-pass optimization) node 
comparisons, calculating locally optimal solutions, which generate 
total cladogram costs.

• A second approach is embodied by fixed-states and search-based 
optimization that reduce the world of possible HTU sequence 
solutions to tractable, but informative sets.  These sequence solu-
tions are then applied using dynamic programming to calculate the 
overall cladogram cost.
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Parallel Computation
Given the use of randomization, and the huge size of cladogram 
space, the cladogram search problem is often labeled “embarrassingly 
parallel.” By this is meant that the problem is ripe for analysis by dis-
tributed, concurrent computation. Integrating heuristic solutions effi-
ciently in a parallel environment is often not quite so trivial. Signifi-
cant effort is employed to make use of multiprocessor systems for 
systematic analysis. Parallel strategies implemented in POY are dis-
cussed in Chapter 8 Parallel Processing.

Integration of Heuristic Analysis
Systematics has become a highly technical field in data collection, 
analysis, and interpretation. Many decisions are required to code data 
and appropriately apply this evidence to evaluate cladograms. 
Although fundamentally a series of transitive pairwise hypothesis 
tests, the evaluation process integrates to complex algorithmic search 
procedures. Optimal cladograms are found through exploration of 
the linked dynamics of search, transformation, and homology.

Suggested Reading
Cormen, T. H., C. E. Leiserson, and R. L. Rivest. 2001. Introduction to 

algorithms, second edition. Cambridge, MA: MIT Press. 1180 pp.

Farris, J. S. 1983. The logical basis of phylogenetic analysis. In N. I. Platnick 
and V. A. Funk (editors), Advances in Cladistics: 277–302. New York: 
Columbia University Press.

Sankoff, D. and P. Rousseau. 1975. Locating the vertices of a Steiner tree in 
arbitrary space. Mathematical Programming 9: 240–246.

Wheeler, W. C. 1996. Optimization alignment: the end of multiple sequence 
alignment in phylogenetics? Cladistics 12: 1–9.

Wheeler, W. C. 1999. Fixed character states and the optimization of molec-
ular sequence data. Cladistics 15: 379–385.

Wheeler, W. C. 2003. Iterative pass optimization of sequence data. Cladis-
tics 19: 254–260.

Wheeler, W. C. 2003. Search-based optimization. Cladistics 19: 348–355.



Part II
POY





4 Overcoming 

Limitations in 
Phylogenetics
Systematics achieves objective knowledge through hypothesis testing 
and, as in any other scientific discipline, makes two elementary demands 
on any investigation.

Repeatability     Minimally, analytical procedures must be transparent, 
clear, and specific in how they treat data, as this is necessary to allow 
other investigators to repeat the analysis and test claimed results.

Epistemological coherence     For scientific inferences to be valid, 
they must be methodologically, theoretically, and philosophically consis-
tent.  Empirical investigations must be firmly rooted in notions of evi-
dence and inference, and they must describe and defend what is done, 
what is assumed, and why.
These two requirements, although crucial in science, are compromised 
by procedures such as manual (“by-eye”) alignment of sequences, recod-
ing of gaps, and nonobjective exclusion of data. These actions are 
common, but inject unnecessary irreproducibility through subjective 
and inconsistent methodologies.
29
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Alignment
Conventional analysis of DNA sequence data is based on a prelimi-
nary step of positional homology identification commonly referred to 
as multiple sequence alignment. The alignment of DNA or amino 
acid sequences, in the form of a matrix of static “primary” homolo-
gies, or fixed alignment, conventionally constitutes the first of a two-
step process in phylogenetic analysis. The second step is cladogram 
searching. Cladogram searching never tests the hypothesis of homol-
ogy made by the initial alignment. As a consequence, the fixed align-
ment is treated as prior, or background, knowledge. However, nucle-
otide homologies are cladogram specific and cannot be treated 
objectively as knowledge obtained independently of phylogenetic 
analysis.
Two-step analysis is by far the most commonly used methodology, 
but nucleotide homology is necessarily topology dependent, regardless 
of the alignment or optimization algorithm.  Consequently, impaired 
optimality or logical inconsistency may be introduced when sequence 
homology assessment is broken into two independent steps.  This sepa-
ration of alignment and cladogram searching is a less efficient means of 
discovering the globally optimal solution and often leads to incompati-
bility of the optimality criteria applied at different stages of analysis. 
Commonly, indel information is treated differently in the homology 
(alignment) step and subsequent cladogram searching, as when gaps are 
given some cost (as a fifth state) during the alignment but treated as 
missing data during the cladogram search.
While highly sophisticated cladogram searching algorithms have been 
developed and widely adopted, there has been less attention paid to 
the optimization of sequence data. By integrating homology identifi-
cation and cladogram searching into the single phylogenetic frame-
work advocated here and implemented in POY, inconsistencies are 
removed and the search for optimal cladograms is performed more 
efficiently.

Manual alignment 
The most egregious violation of the criterion of repeatability is man-
ual alignment. Any alignment procedure that depends on the investi-
gator to visually align the hundreds of thousands or even millions of 
nucleotides commonly collected for current studies will be irrepro-
ducible and highly prone to bias, except in the most trivial of cases. 
Simple comparative cases also demonstrate that mechanical editing 
errors, such as deleting or inserting bases, among other problems, 
might well be common (Giribet et al. 2002).
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Manual alignments generally lack any explicit discussion of how they 
are generated or the reasoning behind the chosen hypotheses of 
homology. Most workers who perform manual alignments seem to 
rely on vague notions of subjective pattern recognition, a method 
that lacks any logical connection to hypothesis testing. Alternatively, 
it is common for manual alignments to be informed by consideration 
of secondary structure (e.g., Kjer 1995). Superficially, ribosomal sec-
ondary structure may seem to provide an explicit, repeatable, and 
objectively defensible basis for performing manual alignments. How-
ever, several points should be considered.
First, secondary structure does not actually solve the problem of 
nucleotide homology. At best, it places constraints by establishing 
putative limits between loops and stems, but the nucleotides within 
each of those units must still be homologized (see Giribet 2002).
Second, determination of secondary structure is not nearly as simple 
and unambiguous as many studies suggest. The actual pattern of 
bonding is probabilistic and depends on the minimization of free 
energy and the thermodynamic stability of the resulting structure (see 
Durbin et al. 1998 and Mathews et al. 1999 for reviews). Programs 
explicitly designed to model secondary structure might find multiple, 
equally probable models, but such inherent ambiguities are over-
looked when alignments are performed manually. Indeed, in phyloge-
netic studies, secondary structure is typically inferred by aligning with 
a sequence of “known” secondary structure, although the basis of 
that knowledge remains uncertain in many cases.
Third, although it might be reasonable to expect selective pressures 
to apply to secondary structure interactions (that is, requirements of 
compensatory changes), it is unclear just how relevant those interac-
tions are compared to selective pressures applied at other structural 
levels.
Fourth, and most fundamentally, there is no necessary connection 
between functional considerations, including secondary structure, 
and the concept of homology, which refers strictly to the historical 
identity of objects related through shared transformation events. As 
discussed in the preceding sections, there are a number of biological 
problems that can be approached best by producing similarity-based 
alignments (or thermodynamic models) that aim to detect certain 
kinds of patterns in sequences, but those procedures are irrelevant to 
homology assessment and phylogenetic inference. In light of the 
many epistemological and theoretical shortcomings of the approach, 
manual alignment should be seen as a nonscientific procedure that is 
best avoided.
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Automated multiple sequence alignment 
Automated multiple sequence alignment, using the heuristic algo-
rithms of programs such as Clustal W (Thompson et al. 1994), 
Malign (Wheeler and Gladstein 1994), or others, is a vast improve-
ment over manual alignment. Automated multiple alignment does 
not solve the problem of finding globally optimal cladograms, but it 
is at least repeatable by other investigators. Alignment parameters, 
such as indel cost, are consistently applied over the sequences and are 
reported as part of the analysis. Unfortunately, much of the value of 
automated, explicit alignment procedures is squandered in two ways: 
manual “refinement” of alignments and application of inconsistent 
analytical assumptions in subsequent steps. Many authors might feel 
the necessity of “improving” automated alignments by eye without 
checking whether the correction actually improves the cost of the 
alignment. Hence, the manual alignment does not maximize the same 
criterion.

Exclusion of Data
The expurgation of data sets is another common procedure in phylo-
genetic analysis.  This is most often justified on the basis of “diffi-
culty” in alignment and “noise” in the data.

Alignment problems
Genotypic data that are prealigned, whether manually or using auto-
matic alignment software such as Clustal W and Malign, can display 
regions claimed to be ambiguously aligned. Once such an ambigu-
ously aligned region has been identified, it is usually excluded from 
further analysis. Two obvious concerns arise immediately: the first is 
the basis for identifying the ambiguity of the data, and the second is 
the general question of exclusion of data.
Typically, these regions are identified subjectively as disturbingly 
“ambiguous” on the basis of a single alignment. The criteria are 
invariably subjective. These criteria nearly universally come down to 
length variation. Investigators are uncomfortable with indel-rich 
regions or, worse, primary homologies that do not conform to pre-
conceived notions of relationship (also a common problem during 
manual alignments). Rarely, if ever, are numerical criteria expounded 
to define or remove these regions. When they have been (Gatesy et 
al. 1993; Wheeler et al. 1995), the fraction of truly “alignment unam-
biguous” positions is absurdly small. Homologies in sequence data 
are established as part of a phylogenetic analysis, derived from a spe-
cific cladogram. There is no justification to discard data in systemat-
ics, where the data are the historical variation. Problems of interpre-
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tation lie in the methodology used to analyze the data, not in the data 
themselves.

Noise and saturation
The exclusion of presumably “noisy” positions or even loci has become 
commonplace in molecular sequence-based systematics. Often, “noisy” 
positions or loci are determined a priori, using pairwise comparisons to 
create “saturation” plots (Adkins and Honeycutt 1994; Brown et al. 
1979; Mindell and Thacker 1996). As argued by Allard et al. (1999), 
homoplasy is not uncovered from pairwise divergences, branch lengths, 
or even numbers of changes at a site, but by the actual state changes of 
single characters optimized on a cladogram.
The perceived problem with “noisy” versus “good” data stems from 
a misunderstanding of homoplasy and its informativeness (Källersjö 
et al. 1999). Furthermore, the exclusion of “noisy” data assumes that 
homoplasy necessarily confounds the inference of phylogeny. If 
nucleotide evolution were to occur at random, homoplasy might be 
misinformative, uninformative, or even informative. Wenzel and Sid-
dall (1999) showed via simulation that half the characters in an analy-
sis must be random for there to be a greater than even chance of 
overwhelming even a single unique and unreversed synapomorphy. 
This should not be surprising, considering that, given even a moder-
ate number of randomized sites, there are so many ways to arrange 
the four possible nucleotide states among taxa that the chance of 
forming a pattern such that historically relevant data are contravened 
is extremely low (Wenzel and Siddall 1999).
Exclusion of data is not supported by conceptual or empirical analy-
ses. In some cases, exclusion of whole DNA fragments has been jus-
tified in regions where there are no corresponding regions in other 
taxa (in essence an issue of missing data and autapomorphy), such as 
in novel loops in ribosomal genes or when the loops show enormous 
length variation. This procedure, when used, has been tested empiri-
cally via congruence measures (for example, sequence fragments that 
differ in length by orders of magnitude; Giribet et al. 2000).

Taxon exclusion
Analogous to the exclusion of sequence regions, taxa are often 
excluded. In the worst cases, available taxa are completely ignored. 
For example, Regier and Shultz (2001) presented a new gene to study 
arthropod phylogeny, elongation factor-2, but avoided inclusion of 
Drosophila melanogaster because the position of this organism did not 
satisfy their phylogenetic expectations.
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In some cases, exclusion of taxa might be justified by using explicit 
procedures such as the relative-rate test (for example, Aguinaldo et al. 
1997). In yet other cases, taxa excluded after a first set of analyses 
show “unacceptable” cladogram topologies (for example, Nardi et al. 
2003). In these cases, an ad hoc explanation is supplied (such as biased 
nucleotide composition, long branch attraction, etc.) to explain the 
unorthodox placement of the taxon in question.
The main problem with excluding taxa from analyses is that it does 
not allow discovery of the phylogenetic position of those taxa. 
Instead of taxon exclusion, it has been repeatedly shown that 
increased taxon sampling is the only method of dealing with unor-
thodox placement of taxa.

POY
POY implements the concept of dynamic homology to overcome the 
limitations in phylogenetics discussed above. It seeks to combine the 
two historically disconnected processes of multiple alignment and 
cladogram searching into one step. Under this concept, intermediate 
alignment steps are avoided by directly assessing the number of evo-
lutionary events—that is, DNA sequence transformations. This is 
accomplished through the generalization of existing character opti-
mization procedures to insertion and deletion events (indels) and 
base substitutions. The crux of the approach is the treatment of 
indels as processes as opposed to the patterns implied by multiple 
sequence alignment (that is, gaps in static or fixed alignment). This 
method generates more efficient explanations of sequence variation 
(shorter, optimal trees) than do multiple alignments and produces 
multiple optimal results if more than a single optimal cladogram/
alignment exists (Wheeler 1996, 2002). Within the framework of 
dynamic homology (for example, direct optimization), for any opti-
mality criterion implemented in POY, insertion/deletion events are 
inferred historical events and used as information along with substi-
tutions when hypothesizing common ancestry.

Optimality criteria and epistemological background
Since POY treats phylogenetic reconstruction as a single-step pro-
cess, it solves the problem of inconsistency generated by conven-
tional procedures that might use contradictory optimality criteria for 
alignment and phylogenetic analysis. Since there are several ways to 
establish homologies, POY offers different rationales to infer homol-
ogies under different optimality criteria: parsimony and maximum 
likelihood.
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In both cladogram searching and character optimization, POY pro-
vides the user with complete control over the search strategies and 
computer resources used, implementing most of the recently devel-
oped algorithms for cladogram searching (such as random addition 
sequences [RAS], subtree pruning and regrafting [SPR], tree bisection 
and regrafting [TBR], ratchet, drift, and tree fusing) and a number of 
unique sequence character optimization algorithms (direct, iterative 
pass, fixed states, and search-based optimization; see Wheeler 1996, 
1999a, 2003b, 2003c).
Here is a brief description of each of the four main sequence charac-
ter optimization methods in POY. The specific algorithms are pre-
sented in Chapter 5 Character Optimization. 

Direct optimization     Direct optimization simultaneously evalu-
ates nucleic acid sequence homologies and cladograms. Homologies 
are revised as POY performs the search, finding the homologies 
(nucleotide-to-nucleotide) that minimize the cladogram cost. It cre-
ates optimal cladograms without using multiple alignments and treats 
indels as phylogenetically informative transformation events.

Iterative pass optimization     Iterative pass overcomes one limita-
tion of direct optimization.  With direct optimization, hypothetical 
ancestral sequences are optimized based only on descendant 
sequences.  Iterative pass optimizes hypothetical ancestral sequences 
based on both descendant and ancestral sequences.  This method is 
also founded on a nucleotide-to-nucleotide dynamic homology 
framework.

Fixed states optimization     Fixed state optimization implements a 
strategy different from direct optimization and iterative pass optimiza-
tion.  Instead of constructing hypothetical ancestral sequences, fixed 
state optimization treats each sequence as a single, multistate character 
(static fragment-to-fragment homology).  The edit cost of transforming 
each sequence/character into every other sequence/character is calcu-
lated as the weighted sum of the independent nucleotide transforma-
tions.  From this cost matrix, the minimum cost cladogram is calculated.

Search-based optimization     Search-based optimization over-
comes a limitation of the fixed states optimization method associated 
with heuristics that are implemented to speed up searches. Search-
based optimization employs enlarged sets of ancestral sequences. 
Frequently, these constitute less costly reconstructions than those of 
direct optimization, iterative pass optimization, and fixed state opti-
mization. In the sense of finding all most-parsimonious trees, search-
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based optimization is the most exhaustive algorithm currently imple-
mented in POY, and potentially the most time-consuming.

Suggested Reading
Giribet, G. and W. C. Wheeler. 1999. On gaps. Molecular Phylogenetics and 

Evolution 13: 132–143.

Giribet, G., W. C. Wheeler, and J. Muona. 2002. DNA multiple sequence 
alignments. In R. DeSalle, G. Giribet, and W. C. Wheeler (editors), 
Molecular Systematics and Evolution: Theory and Practice: 107–114. 
Basel: Birkhäuser Verlag.

Phill ips, A., D. Janies, and W. C. Wheeler. 2000. Multiple sequence 
alignment in phylogenetic analysis. Molecular Phylogenetics and 
Evolution 16: 317–330.

Wheeler, W. C. 1994. Sources of ambiguity in nucleic acid sequence 
alignment. In B. Schierwater, B. Streit, G. P. Wagner, and R. DeSalle 
(edi tors) ,  Molecular  Ecolog y and Evolut ion:  Approaches and 
Applications: 323–352. Basel: Birkhäuser Verlag.



5 Character 

Optimization
This and Chapter 6 Cladogram Searching, present the specification of 
the algorithms currently used in POY. Chapter 5 contains character 
optimization procedures and Chapter 6 contains cladogram search pro-
cedures. Often, details are omitted to improve readability and clarity of 
explanations. The algorithms can be implemented in different ways, 
programming languages, and a diversity of speedups, but such matters 
are out of scope here. Our intention is that the general steps are pre-
sented so that the users of POY will understand their function and be 
able to more effectively exploit program options and strategies. 
The chapter begins with notation and definitions (“Notation and Defi-
nitions” on page 38), followed by the algorithms for qualitative charac-
ter optimization (“Qualitative Character Optimization Algorithms” on 
page 40), those specifically used in the sequence character optimization 
algorithms (“Sequence Optimization Algorithms” on page 45), and 
finally, a brief discussion of the likelihood methods available in POY 
(“Likelihood” on page 57). 
37
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Notation and Definitions 

Notation 
Each algorithm is written using the following atomic elements and nota-
tion:

variables     are text elements that carry a number. The number could 
change during an algorithm execution, and is subject to any valid func-
tion over its domain. Variables will be written in lowercase italics. For 
example, a, b, number_of_taxa. 

logical operators     are premises that control the flow of the algo-
rithm. These will be written in bold. For example, if ... then ... else. 

literals     are constants and predefined values. These are written in sans 
serif type. For example, A, C, G, T, Gap, 5. 

assignment     sets the value of a variable and is represented with the 
arrow symbol ← . It could also assign the output of a function. For 
example, a ←  4 , taxa ← 45.

functions     are algorithms that perform a predefined operation on a 
set of inputs I = 〈i1,  i2,  . . . ,  i k〉  and return a result. Every function is 
named and its result assigned to a variable. Functions will be written in 
italics followed by the set I in parentheses. For example, the_maximum ←
max(a, b, c) stores the maximum value of the set 〈a, b, c〉 in the variable 
the_maximum. 
Common mathematical operations such as addition, multiplication, divi-
sion, and subtraction as well as set operations like union and intersec-
tion are represented with the standard mathematical symbols (+, ×, /, − ,
∩, ∪). 

Definitions 
The following algorithms deal mainly with structures commonly called 
trees or cladograms. In more technical terms, a binary rooted tree is a con-
nected graph T = (V, E) where V is the set of vertices and E the set of edges, 
such that 
1. there are no cycles in T; 
2. there is only one node with degree 2, and it is called root ;  
3. all the nonroot nodes have degree 3 or 1 if they are internal or terminal

(also called leaves) respectively. 
Vertex and node will be used interchangeably in the text, and will always 
be referring to the operational taxonomic units (OTUs) or hypothetical 
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taxonomic units (HTUs), if the node is a terminal (leaf) or internal 
respectively. Each vertex is described with the following information 
items, represented using dot notation: 

left  is the left descendant of n (htu1.left = a, htu2.left = c in Figure 
5.1). 

right  is the right descendant of n (htu1.right = b, htu2.right = d in Fig-
ure 5.1). 

parent  is the parental node of (htu1.parent  = root, root.parent  = 
empty in Figure 5.1). 

chars  is the set of a character of node n. 

n.left =
empty if n is an OTU

node otherwise

n.right =
empty if n is an OTU

node otherwise

n.parent =
empty if n is the root

node otherwise

n.chars =
observations    if n is an OTU

best_htu(n. left, n.r ight   otherwise

Figure 5.1: A tree example.

root

htu1 htu2

a b c d

 
 ⎩

⎨
⎧

 
 ⎩

⎨
⎧

 
 ⎩

⎨
⎧
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⎨
⎧
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where the best_htu depend on the algorithm being used. See the follow-
ing sections for further details. 

chars contents depend on the type of data being analyzed. For example 
in additive characters, chars maintains intervals, that is, ranges of charac-
ter states that the taxonomic unit could have, but in direct optimization, 
is a complete nucleotide sequence. At the beginning of each section is 
included a precise description of any special conditions for this item. 

cost  is the weighted number of evolutionary steps required in the sub-
tree formed by all the descendants of n. 

where a  → b is the number of evolutionary steps required to transform 
the character a to character b. Note that no node exists outside of a 
given cladogram; therefore, in this context, a node mention implies a 
cladogram definition, even though the topology is not described explic-
itly. 

Qualitative Character Optimization Algorithms 
Given a cladogram C, an optimization algorithm assigns an appropriate 
set of characters to its hypothetical taxonomic units (HTUs) such that 
the total evolutionary cost of the tree is minimized (most parsimonious 
character assignment). Initially, only the OTU characters are defined in 
the tree. For this reason, every optimization algorithm performs two 
steps, a down pass and an up pass (Algorithms 5.1 and 5.2).

Down pass 
In a down pass, the smallest set of possible character states is assigned 
to each node in the cladogram starting in the leaves down to the root 
(and so the term down pass), resulting in the calculation of the cost of 
the most parsimonious assignment of states in for each node. In com-
puter science this way to traverse a tree is called postorder, which can be 
attained by the use of recursive algorithms.

n.cost =

0      if n is an OTU

n.left .cost + n.right.cost +  otherwise
n.chars  →  n.left .chars  +
n.chars  →  n.r ight.chars

 
 
 
 ⎩

⎪
⎪
⎨
⎪
⎪
⎧
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   Recursive Functions 

   A function (algorithm) f (x )  is recursive if has the form 

f (0) = k

 f ( t  + 1)  = g ( t ,  f ( t ) )

   that is, f ( t  + 1)  depends on the value of f ( t )  and another function 
   g (x, y). 

A recursive algorithm simplifies a postorder traversal of a tree. Given a 
the cladogram C=(V, E), applying a function h (n )  on each node v ∈ V 
in postorder, is accomplished by post (n) where 

that is, in order to apply h (n )  in a node n, check whether n is a leaf or 
not.  If it is, then apply the function h (n ) . Otherwise, first apply the 
function to the left and right children of n, and only then calculate h (n ) . 

Up pass 
The set of states on each node during the down pass may leave different 
levels of inconsistencies, depending on each algorithm and character 
types; a second pass, now called up pass, is required to properly assign 
HTU states. 
The up pass consists of applying a function in the nodes of the tree in 
preorder, that is, starting at the root and moving up toward the leaves. 
This is easily accomplished by the use of recursion as well (see previous 
section). Given node n, initially the root of a cladogram, to apply h(n )
use 

that is, after applying h (n ) , perform the same operation in the left and 
right children. If n  is a terminal node, then just apply h (n ) . 

post (n )  =
h (n )     if n is a leaf

    (Eq 5.1)
post (n.le f t) , post (n.right) , h (n )   otherwise

pre (n )  =
h (n )         if n is a leaf

(Eq 5.2)
h (n ) , pre (n.le f t), pre (n.right)   otherwise

 
 ⎩

⎨
⎧

 
 ⎩

⎨
⎧
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This pair of general algorithms will be used not only in the qualitative 
character section but also to the sequence and chromosomal characters. 

Additive characters 
The Additive Characters Optimization was the first formal definition of 
an optimization algorithm, specifically applied for additive characters. It 
was described by Farris (1970), based on a previous definition of Wag-
ner trees (Wagner 1961). It finds one optimization, but not all, as 
pointed out by the author (Farris 1983; Goloboff 1993a). Different 
approaches to find all the possible character optimizations for additive 
characters have also been proposed (Goloboff 1993a; Gladstein 1997), 
but their description is out of scope on this book. 
A character is additive if and only if its transformation costs can be rep-
resented by distances on a line. For example, a transformation from 
state 0 to 6 is counted as adding six steps to the tree, while a transforma-
tion from state 1 to 2 is counted as one step. 
Formally, given an ordered set of states c1,  c2,  . . . ,  c n  of character c the 
evolutionary cost of transforming c i  to c j  is defined as | i  –  j|.
As the character states are ordered, every set of possible states including 
c i  and c j  must include all the intermediate states in between them, and 
so, any operation on such sets must consider this special case (for exam-
ple, ∩, ∪). 
As with any optimization algorithm, two steps are performed, a down 
pass and an up pass (Algorithms 5.1 and 5.2). 

Down pass

This procedure is used to estimate the chars interval on each node that 
leads to the most parsimonious character optimization in a cladogram. 
As the character is additive, the median of every pair of nodes can be 
expressed as an interval between two values, and therefore each chars is 
the smallest interval that is a median between the left and right children 
of a node (Algorithm 5.1). 

Algorithm 5.1 Downpass for the optimization of additive and nonadditive 
characters – Additive_Downpass(n)

Require: n is a node of a cladogram, initially its root
Require: chars is an interval of characters states

if n is not a terminal then
Additive_Downpass(n.left)
Additive_Downpass(n.right)
n.chars ←  n .left.chars ∩ n.right.chars
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if n.chars = ∅ then
n.chars ←  n .left.chars ∪ n.right.chars

end if
end if 

Up pass

This procedure assigns the final characters to each internal node that 
produces the most parsimonious arrangement.

Algorithm 5.2 Uppass for additive characters optimization – 
Additive_Uppass(n)

Require: n is a node of a cladogram, initially its root
Require: n.chars is an interval assigned in Additive_Downpass

if n is not a leaf and is not the root of C terminal then
if n.chars is of the form 〈a, ..., b〉 then

n.chars ←  n.chars ∩ n.parent.chars
end else begin
n.chars ←  n.parent.chars
end if
Additive_Uppass(n.left)
Additive_Uppass(n.right)

end if 

Nonadditive characters 
Fitch (1971) proposed this algorithm to be used on gene sequences, to 
search for parsimonious cladograms when all nucleotide replacements 
have the same cost. As Fitch himself pointed out, this method could be 
used on any set of characters that complies with these requirements, so 
it is applicable on any unweighted, multistate, nonadditive character. 
Formally, the transformation cost between any pair of states c i  and c j , 0
≤  j  < n of character c with n states is a constant K

σ ( c i ,  c j)  = K.

In nonadditive characters, as opposed to additive (“Additive characters” 
on page 42), all character transformations have the same evolutionary 
cost. For example, a transformation from state 0 to 6 is an event that 
adds K steps to the cladogram. 
The algorithm is an extension of the Additive Characters Optimization 
(Algorithms 5.1 and 5.2), with the new definition of the chars set, 
opposed to an interval set. The up pass makes a final assignment of all 
possible character states based on the information collected in the down 
pass (Algorithm 5.1). 
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Sankoff algorithm 
The previous algorithms solve two special cases of a more general char-
acter evolution model proposed by Sankoff and Rousseau (1975). Addi-
tive and nonadditive characters assume the same cost of transforma-
tions (in one or no dimensions, respectively). Sankoff and Rousseau 
(1975) proposed a different representation, where transformation costs 
between n states in character c correspond to an n-by-n matrix S, where 
Si j , 0 ≤ i ,  j < n represents the transformation cost from state c i  to c j

 σ ( c i ,  c j)  = Si j .

This model is computationally more intensive, as there is no limit on the 
distribution of the costs, and there is no symmetry (Si j  ≠ S j i) constraint. 
For this reason, the algorithm most commonly used in this model 
belongs to a computational method called dynamic programming. 
Dynamic programming is similar to the divide and conquer family of 
techniques, but is better when the subproblems are not independent 
(two subproblems may share a sub-subproblem); it is commonly used 
for optimization problems like phylogenetic trees and multiple sequence 
alignment. 

Algorithm 5.3 Nonadditive Characters Up pass – Non_Additive_Uppass(v)

Require: n is a node of a cladogram, initially its root
Require: n.chars is assigned in Additive_Downpass using a set instead of an 

interval.
if n is not an OTU nor the root of the cladogram then

if n.parent.chars ⊆ n.chars then
n.chars ←  n.parent.chars

else if n.left.chars ∩ n.right.chars ≠ ∅ then
n.chars ←  n.parent.chars ∪ n.chars

else
n.chars ←  n.chars ∪ (n.parent.chars ∩ n.left.chars) ∪ (n.parent.chars

∩ n.right.chars)
end if
Additive_Uppass(n.left)
Additive_Uppass(n.right)

end if 

Again, analyzing Sankoff characters includes a down pass and an up 
pass but the algorithms are quite different. 
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Down pass     
The down pass performs in a far more expensive optimization proce-
dure. As the cost of each evolutionary step cannot be assumed, all the 
possible paths are (in principle) potential solutions. It is necessary then 
to keep track of each state on each node and its associated cost for the 
subtree it roots. Algorithm 5.4 does the following in postorder: 
1. For each character state i, calculate the cost of transforming i to each 

possible character state in the child nodes. 
2. Choose the minimum as the cost of the current node. 
3. Store the information of the character combinations that lead to 

such best cost. 
This requires O (n2)  nested for loops compared with the linear O (n )  
times of the previous character types (Algorithm 5.1). 

Up pass

The up pass is still as simple as previously described. Traversing the 
cladogram C in preorder do the following on each node n: 
1. If n is the root or a leaf, no further changes are needed in the charac-

ter optimization of the node. 
2. Otherwise, if n is a left node, the subset of from_left that is true is the 

set of possible characters of n. 
3. Otherwise, if n is a right node, the subset of from_right that is true is the 

set of possible characters of n. 
The method is more general and expensive, but allows arbitrary cost 
scenarios. 

Sequence Optimization Algorithms 
POY introduces a new set of algorithms for nucleotide sequence data. 
Their main advantage is that the sequences do not require a previous 
alignment and are treated as a character state of the homologous 
sequences; an alignment may be generated as a by-product of the most 
parsimonious cladogram.
The main drawback is the computational costs of these methods. If 
searching for the most parsimonious cladogram is expensive itself, per-
forming a topology-specific alignment is even more so, nesting two NP-
Hard problems. This drawback has been dealt with by POY in several 
ways, including heuristics and parallelization, the two most important 
computational tools for this kind of task. 
The algorithms that will be introduced are direct optimization (page 47), 
fixed states and search-based optimization (page 55), and iterative pass 
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optimization (page 56). Each performs the down pass and up pass oper-
ations as previously explained (“Qualitative Character Optimization 
Algorithms” on page 40). 

Algorithm 5.4 Down pass of the Sankoff-Rousseau Algorithm – 
Downpass_Sankoff(n)

Require: n is a node of a cladogram, initially its root
Require: the character n.chars has k states 
Require: n.cost is an array of size k such that n.cost i ,  0 ≤  i  < k, is the total 

cost of the tree rooted by n if n is assigned the state c i  of c.
Require: If n is a leaf then n.cost i ←  0 if the observed state of n is i, 

otherwise n.cost i  ← 
if n is not an OTU then

Downpass_Sankoff(n.left)
Downpass_Sankoff(n.right)
for i = 0  to k 1 do

n.cost i  ←  
from_left i  ←  false
from_right i  ←  false

end for
min_left ← 
min_right ← 
for i = 0  to k 1 do

for j = 0  to k 1 do
if min_left > n.left.cost i + Sij then

min_left ←  n.left.cost i + Si j
end if
if min_right > n.right.cost i + Si j then

min_right ←  n.right.cost i + Si j
end if

end for
n.cost i  ←  min_left + min_right
for j = 0 to k 1 do

if n.cost i  + Si j  = min_right then
n.from_left j  ←  true

end if
if n.cost i  + Sij  = min_right then

n.from_right j  ←  true
end if

end for
end for

end if

∞

–
∞

∞
∞
–

–

–
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Direct optimization 
This is probably the most important technique of the set currently 
included in POY. The following algorithms are somehow based on the 
rational and methods proposed for direct optimization and serve as 
speedups or restrictive cases. They also inherit its computational expen-
siveness and difficulties. 
The algorithm for direct optimization is from Wheeler (1996, 2002), and 
finds a set of parsimonious homologies for a set of sequences of differ-
ent length by treating the full homologous nucleotide string as a charac-
ter and each sequence as a state. 
It is important to make clear that multiple sequence alignment is not 
performed, but it is implied by the cladogram. The researcher must still 
define the 5 × 5 transformation matrix S, that specifies the transforma-
tion cost between the four bases and gaps. The algorithm is imple-
mented for nucleic acid sequences only, but is also applicable to protein 
sequences. 

Down pass 

The down pass is extremely different from the previously described 
down passes. There is a new problem to be solved, as mentioned previ-
ously: the minimum edit pairwise sequence alignment. Given a 
cladogram C, on each node n do the following in postorder: 
1. Align the chars of the children of n. 
2. Find a best ancestor for the aligned sequences on each nucleotide 

and assign it as n’s chars. 
The second step is conceptually the same as in the Sankoff algorithm, 
applied for the whole nucleotide sequence. The pairwise alignment and 
a best ancestor are found in POY, as shown in Algorithm 5.5. 

Algorithm 5.5 Down pass in the direct optimization procedure – 
Do_Downpass(n)

Require: n is a node of a cladogram, initially its root
Require: n.left.chars is the left child sequence with length m
Require: n.right.chars is the right child sequence with length n

if n is not a leaf then
Do_Downpass(n.left)
Do_Downpass(n.right)
M ←  score(n.left.chars, n.right.chars) {Algorithm 5.6} 
alignment ←  backtrack(M, m, n) {Algorithm 5.7} 
n.left.chars ←  alignment1
n.right.chars ←  alignment2
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n.chars ←  best_htu(n.left.chars, n.right.chars) {Algorithm 5.8} 
n.cost ←  n.left.cost + n.right.cost + M[m][n]

end if

Pairwise alignment: calculating the best score      The pairwise 
alignment algorithm using dynamic programming is widely known as 
the Needleman–Wunsch algorithm (Needleman and Wunsch 1970). 
The issue to solve is basically to find an optimal edit of two sequences B
and C of length m and n to the sequences B’ and C’ of length o, such that 
the alignment cost 

is minimized; Bi  is the i th nucleotide in the sequence B, and σ (x,  y )  is 
the cost of transforming nucleotide x into y. Note that B and C and the 
alignment A include all the possible IUPAC codes, excepting a gap, which 
is no data at all. 
Let's first define the empty string  λ as |λ| = 0 ,  that is, it contains no ele-
ments of the alphabet on it. A prefix of a string S of length n is a string U
such that S1= U1, S2 = U2 , ..., Sk=Uk ,  0 < k < n  or U = λ . By definition, 
λ is the prefix of every sequence. Dynamic programming works by 
aligning prefixes of B and C  progressively in the most efficient way, 
until the two full sequences have been aligned. 

A σ B′i C′i,( )
i 1=

o
∑=
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Algorithm 5.6 Score Matrix calculation in the Needleman–Wunsch algo-
rithm –Score(B,C)

Require: B and C are the sequences of length m and n to be aligned
Require: M is the (m + 1) x (n + 1) scores matrix for the B and C edit

M[0][0] = 0
for i = 1 to m do {Cost of aligning B 1...Bi  with λ}

M[i][0] = M [ i 1][0] + σ (Bi ,  gap)
end for
for i = 1 to n do {Cost of aligning C1...Ci  with λ}

M[0][i] = M[0][i – 1] + σ (C i ,gap)
end for
for i = 1 to m do {Fill progressively M} 

for j = 1 to n do
cost_align = M[ i  – 1][ j  – 1] + σ (Bi , C j )
cost_gap_in_C = M[ i  – 1][ j ]  + σ (Ci ,  gap )
cost_gap_in_ B = M[ i ] [ j  – 1] + σ (gap,Bj )
if cost_align ≤  cost_gap_in_ B AND cost_align ≤  cost_gap_in_ A 

then
M[ i ] [ j ]  = cost_align

else if cost_gap_in_C ≤  cost_gap_in_B then
M[ i ] [ j ]  = cost_gap_in_C

else
M[ i ] [ j ]  = cost_gap_in_B

end if
end for

end for
return M

Let Score ( i , j )  be the score of aligning prefixes B1 , ..., B i  and C1 , ..., C j ,  
calculated as follows: 

Score( i , j )  =

0        if B = C = λ

Score(i – 1,0) + σ (Bi ,  gap)        if j = λ and i ≠ λ

Score(0 , j – 1)  + σ (Ci , gap)   if j ≠ λ and i = λ

min( i , j )        otherwise

–

 
 
 
 ⎩

⎪
⎪
⎨
⎪
⎪
⎧
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where min( i , j )  is 

that is, three possible alignments are evaluated on each time: 
1. B1 , . . . ,  B i–1 and C1 , . . . ,  C j–1

2. B1 , . . . ,  B i–1 and C1 , . . . ,  C j

3. B1 , . . . ,  B i  and C1 , . . . ,  C j–1

The dynamic programming technique builds an (n + 1)  × (m + 1) matrix 
M, such that the matrix element Mi, j  is the score of aligning prefixes Bi
and Cj . In order to calculate Score ( i , j ) , only the matrix elements Mi–1 ,  
j –1,  Mi–1 , j  and Mi, j –1 are necessary (Equation 5.3). The best score for 
aligning sequences A and B will then be Score ( i , j )  and is calculated by 
Algorithm 5.6. 
Pairwise alignment: calculating the edits      The necessary edits of 
the sequences B and C can be found by backtracking the matrix M pre-
viously built. This consists basically of following from Mm,n  which one 
is the best option between Mi–1 , j –1,  Mi–1 , j  and Mi, j –1
(Equation 5.3). Depending on the best option, the resulting edit may 
align Bm  and Cn ,  insert a gap in C to align Bi  with it, or insert a gap in 
B to align Ci  with it. The operation with the rest of the prefix is 
repeated, as shown in Algorithm 5.7. 

Algorithm 5.7 Backtrack of the Needleman–Wunsch pairwise alignment – 
Backtrack(M, x, y)

Require: Let x and y be two strings of length m and n to be edited for an 
optimum alignment, x and y are the indices in B and C

Require: Let M be a (m + 1) × (n + 1) matrix from Score(x, y) (Algorithm 
5.6)

Require: sequences is an array of strings, where sequences1 is one string and 
sequences2 is the other string

if M[x – 1, y – 1] ≤ M[x – 1, y] AND M[x – 1, y – 1] ≤ M[x, y – 1] then 
{Align Bx and Cy} 
sequences ←  Backtrack(M, x – 1, y – 1)
append to sequences1 the nucleotide Bx

min( i , j )  =

Score(i – 1, j – 1) + σ (B i , Cj) Align Bi  and Ci

(Eq 5.3)Score(i – 1, j) + σ (B i , gap) Align Bi  with a gap

Score(i,  j – 1) + σ (Cj , gap)  Align Ci  with a gap

 
 
 
 ⎩

⎪
⎪
⎨
⎪
⎪
⎧
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append to sequences2 the nucleotide Cy
else if M[x – 1, y]  ≤  M [x, y – 1] then 

{Align Bx with a gap} 
sequences ←  Backtrack(M, x – 1, y)
append to sequences1 the nucleotide Bx
append to sequences2 a gap

else {Align Cy with a gap}
sequences ←  Backtrack(M, x, y – 1)
append to sequences1 a gap
append to sequences2 the nucleotide Cx

end if
return sequences

Estimation of the ancestor      This is the final step in the direct opti-
mization down pass. For each HTU is assigned a nucleotide sequence 
H, using the IUPAC ambiguous nucleotides codes, choosing on each 
position Hi  the set that minimizes σ (Ai , Hi)  + σ (Bi , Hi) ,  as pre-
sented in  Algorithm 5.8 and no gaps on it. 

Algorithm 5.8 HTUs v sequence estimation based on the alignment of its 
children

Require: The descendant nodes n.left and n.right are two already aligned 
and edited sequences of length m

for i = 1 to m do
best_cost ←  ∝ 
for all code x in IUPAC do

if σ (x, n.left i ) + σ (x, n.right i .chars) < best_cost then
best_cost ←  σ (x, n.left i .chars) + σ (x, n.right i .chars)
n.chars i  ← x

end if
end for

end for

Up pass 

The up pass (Algorithm 5.9) consists basically of traversing in preorder 
the tree and performing the following on each node: 
1. Align each node with its ancestor, as each HTU may have a different 

size. 
2. Assign on each hypothetical nucleotide the IUPAC code that gives 

the best cost for the total sum of weighted evolutionary steps 
between the ancestor and descendants, but eliminating positions that 
optimize to gaps, which are not observed in real data. 
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The procedure is similar to any other up pass previously explained, 
assigning the best IUPAC code on each position, to produce the most 
parsimonious nucleotide sequence. 

Algorithm 5.9 Up pass in direct optimization – Uppass(n)

Require: n is a node with a sequence character of length p
Require: n.parent, n.left, and n.right already had a down pass of direct 

optimization, with length q, r, and s, respectively
if n is not a leaf then

if n is not the root then
M ←  Score(n.chars,n.parent.char)
alignment ←  Backtrack(M, p, q)
n.chars ←  Final_HTU(alignment) {See Algorithm 5.10} 

end if
Uppass(n.left)
Uppass(n.right)

end if

Extending direct optimization: chromosome data 
Complete chromosomal and genomic sequence data sets are a form of 
comparative data with modes of variation not easily accommodated into 
existing character types. Generalization of optimization techniques is 
required to take advantage of this new source of information. The tech-
niques of chromosomal optimization presently implemented in POY 
are directly applicable to the analysis of complete genomes of single-
chromosome organisms. Many systematic problems we face today 
involve such taxa or data including viral, bacterial, and mitochondrial 
systems. 

Algorithm 5.10 Finding the best sequence of nucleotides for an HTU – 
Final_HTU(alignment,v)

Require: alignment is an array with two strings of length m, containing the 
alignment of n and n.parent

i ←  1
j ←  1
k ←  1
while i ≤  m  do

if n.left i  AND n.right i  are a gap then
i ←  i + 1

end if
if alignment1k  is a gap then

k ←  k + 1
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best_cost ←  ∝ 
for all code x in IUPAC do

if σ (x, n.left j )  + σ (x, n.right i ≤  best_cost) then
best_cost ←  σ (x, n.left j )  + σ (x, n.right i )
htui ←  x

end if
end for
k ←  k + 1

end if
i ←  i + 1
j ←  j  + 1

end while

Chromosomal analysis is treated by POY as a character type. As such, it 
can be simultaneously optimized with other forms of data such as anat-
omy, other sequence information, or even other chromosomes in a 
complex genome. The general principles of optimization and combined 
analysis apply here as they do with all sources of character information. 
The procedures described here are from Wheeler (submitted). 
In addition to the previously mentioned differences typical of nucle-
otide sequences, chromosomes vary in the loci complement and organi-
zation. Some loci might originate or be lost (origin–loss, analogous to 
nucleotide insertion–deletion) and might be rearranged (their relative 
position in the chromosome). These variation patterns for homologous 
chromosomes should then be arranged in the most parsimonious tree. 
By using the DO approach, no locus identity annotation is necessary 
and the homologies are topology specific. The analysis is analogous to a 
multiple alignment of sequence data and, as there, homology constraints 
are unnecessary. 
A chromosome is defined here as a series of adjacent nucleotide strings 
of known boundaries. POY represents a chromosome as a string of 
nucleotides with pipes (‘|’) marking the locus boundaries. Formally, a 
chromosome is a string from the alphabet {A, C, G, T, |} such that any 
substring found between two “|” is not empty. In DO, the whole chro-
mosome is analyzed as a character; the distance between OTUs is given 
by the transformation cost between them, using the following compo-
nents: 

Indels     Indels within a locus are treated like in any other DNA 
sequence, by DO, that is, the cost of transformation between two nucle-
otide sequences of the same locus is the cost of the pairwise alignment 
between the sequences (Algorithms 5.6, 5.7). That means that the trans-
formation matrix is still necessary. 
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Origin or loss     Loss of origin of a locus is treated in a similar way as 
any indel. The pairwise alignments of the complete locus set of the taxa 
included in an analysis of one chromosome are calculated and used as a 
transformation costs matrix for a full chromosome alignment, that is, 
instead of using an alphabet with the bases, as in any nucleotide 
sequence, assign one letter to each locus and create the alignment. For 
every pair, the transformation cost is the edit cost of the nucleotide 
sequence pairwise alignment of the loci. 

Locus rearrangement     This is currently measured using the break-
point metric (Sankoff and Blanchette 1998). The breakpoint distance 
between two chromosomes is, simply stated, the number of locus adja-
cencies present in one chromosome and not the other. 
Formally, the best alignment A of chromosomes B and C of nucleotide 
length m and n, and o and p loci, minimize the edit cost 

where M is the number of homologous loci, Li  is the number of nucle-
otides on locus L, and θ (x,y) is the origin-loss cost defined as 

given the locus_gap cost of adding or losing a locus and the cost 
locus_size_gap per each added or lost nucleotide in the locus. The break-
point cost is defined as  

Calculating the σ and θ functions is not difficult, as the regular pairwise 
alignment methods previously exposed are used on each substring and 
the total set of loci using the pairwise edit matrix for their alignment. 
The main issue remaining is finding the best reordering of the locus that 
minimizes the cost of the function. 
POY performs this operation in a way analogous to the Wagner trees 
building, by adding sequentially the loci of one sequence and calculating 
on every available position the one that minimizes the total cost in addi-
tion to the breakpoint metric. Then an alignment of the loci is per-

θ (Bli , C l i)  
           

0 Bli ≠ gap and Cli ≠  gap

locus_gap + (Li  ×  locus_size_gap) otherwise

ε({Bli, Bli+1},{Cli, Cli+1})
                               

0   if {Bli, Bli+1} = {Cli, Cli+1}

1   otherwise.

Θ B C( , ) θ Bli Cli( , ) σ Bli
j C jli( , )

ji 0=

Li

∑ ε Bli Bli 1+{ , } Cli Cli 1+{ , }( , )+ +
⎝ ⎠
⎜ ⎟
⎛ ⎞

i 0=

M

∑=

=

 
 ⎩

⎨
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formed, using the pairwise edit costs of the loci nucleotides sequences to 
produce a chromosome alignment (Algorithm 5.11). After it is built, 
some locus can be exchanged for cost improvements, in a similar way as 
SPR does on trees, to find an efficient alignment (not shown in the algo-
rithm for simplicity). 

Algorithm 5.11 Downpass for Direct Optimization of Chromosome Data

Require: n is a node to be optimized in a cladogram, initially its root
Require: Define algn
Require: n.left and n.right are chromosome sequences of p, q, p ≤  q loci 

length
Require: M is a q x p matrix such that Mij , i ≤  q, j ≤  p is the cost of the 

pairwise alignment of loci n.right i  and n.left j
if n is not a leaf then

for i = 0 to q do {Adds sequentially the loci in the best position} 
cost ← ∝
for each locus l ∈n.right but not ∈ algn do

if Θ (n.left i ,  l) < cost then
algn j ←  n.left i
cost ←  Θ (n.left i ,  algn)

end if
end for

end for
S ←  Score(n.right, algn) {using M as transformation cost matrix in 

Algorithm 5.8} 
sequences1 and sequences2 ←  backtrack(n.right,algn,S) {Algorithm 5.7} 
n.right.chars ←  sequences1
n.left.chars ←  sequences2
n.chars ←  best_htu (n.left, n.right) {Using M as transformation cost 
matrix (Algorithm 5.8)} 

end if

The up pass works in exactly the same way as explained for regular 
nucleotide sequences under DO, considering the new edit cost. 

Fixed states and search-based optimization
Fixed states (Wheeler 1999a) and search-based optimization (Wheeler 
2003c) constitute the most rigid and restrictive methods of sequence 
optimization algorithms. Both consist of treating each sequence as a dif-
ferent character state of the homologous sequences, to build a Sankoff 
matrix with the cost of each pairwise alignment (Algorithm 5.12). Then 
the Sankoff Optimization is used to build the most parsimonious tree, 
using the observed sequences as the only possible character states (fixed 
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states) or adding some other sequences built by some heuristic (search 
based). Note that if, instead of using some set of sequences, all possible 
sequences are included in the search-based optimization, to build a huge 
transformation matrix, an exact solution is computable (if you have infi-
nite time and computational power). 

Algorithm 5.12 Buildup of the Sankoff matrix of costs for the Fixed States 
Optimization

Require: An array T with n nucleotide sequences to build the Sankoff 
Matrix, and length TLi  of each sequence i

Require: A matrix C of n × n elements
for i = 1 to n do

Ci, i ←  0
for j = i + 1 to n do

M ←  Score(T i,  T j )
Ci, j ←  MTLi ,MTLj

end for
end for

In the same way, for chromosome sequences, the down pass function is 
replaced with the modified down pass for chromosome data, and the 
rest of the procedure remains the same. 

Iterative pass optimization
In iterative pass optimization (Wheeler 2003b), the sequences are 
aligned for the topology, as in the other direct optimization techniques. 
The node sequences are initialized using the direct optimization down 
pass (Algorithm 5.5). Then the up pass is run iteratively, reevaluating 
each HTU with its two descendants and its parental node, until no more 
changes occur in the cladogram. The Needleman–Wunsch algorithm in 
a three-dimensional matrix is used to perform this HTU reevaluation, 
either for simple nucleotide sequences or full chromosomes, with their 
respective edit cost functions (Algorithm 5.13). 

Algorithm 5.13 Iterative pass optimization method

Require: Node n is the root of a cladogram to be optimized Downpass(r)
repeat

Uppass_IT {Algorithm 5.14}
until No more changes occur in the cladogram

The method is obviously more time consuming than the simple direct 
optimization, and there is no time bound for the time the tree will take 
to stabilize. The up pass is shown in Algorithm 5.14. 
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Algorithm 5.14 Up pass iteration steps – Uppass_IT(v)

Require: A complete down pass on node n.
Require: aligned is a vector with the edited sequences that were realigned

if n is not a leaf then
if n is not the root then

aligned ←  Align(n.parent, n.left, n.right)
n.chars ←  Best_HTU(aligned[1], aligned[2], aligned[3]) {See 

Algorithm 5.15} 
end if
Uppass_IT(n.left)
Uppass_IT(n.right)

end if

Algorithm 5.15 Finding the best HTU between three aligned sequences – 
Best_HTU(a, b, c)

Require: a, b, and c are aligned nucleotide sequences with length l
Require: htu is the resulting HTU sequence of the algorithm 

for i = 0 to l do
best_cost ←  ∝
for all code x in IUPAC do

if σ (x, a1 i ) + σ (x, bi ) + σ (x, c i) ≤  best_cost then
best_cost ←  σ (x, v.left i )  + σ (x, v.right i )
htu i   ←  x

end if
end for

end for
return htu

Likelihood 

Likelihood as an optimality criterion 
The use of likelihood in POY is an alternate optimality criterion. The 
models created and implemented are conceived as interpretive tools, 
without any necessary relationship to the actual process of change in 
nature. This is somewhat different from the philosophy of other likeli-
hood approaches embodied in software such as PAUP* (Swofford 
2002), which treat the statistical models used as depictions of the actual 
process of evolution—in essence, natural law. The procedures 
described here are those of Wheeler et al.(2006). 
The optimality approach is both liberating and constraining, in that the 
numerical values POY attaches to cladograms may not be directly com-
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parable to those in other implementations. Part of this is due to the 
dynamic homology approach to sequence characters, but a second (and 
perhaps more important) factor is that the likelihood analogues to the 
sequence character heuristics are doing slightly different things. Each is 
a different sort of approximation approach, and whereas the parsimony 
cladogram lengths are exactly comparable, the likelihood values may not 
be. 

Comparison with other likelihood methods 
The main difference between likelihood in POY and other implementa-
tions is the foundation of dynamic homology. No preexisting multiple 
alignment is required or used in the analysis (although users can input 
prealigned sequences), and nucleotide homology is determined as an 
optimization problem on the cladogram. In this case, the homology 
scheme that maximizes overall cladogram likelihood (since the absolute 
value of the natural logarithm of likelihoods is used this is minimizing 
cost as with parsimony analysis) is chosen. In reality, it is not a single 
homology scheme but all possible schemes given that each homology 
scenario contributes to overall likelihood, albeit many in a very minor 
way (Felsenstein 2004). When cladograms are diagnosed or homologies 
displayed, the state assignments are the dominant (highest value) likeli-
hoods, or in the terminology of Barry and Hartigan (1987), most parsi-
monious likelihood state assignments. During cladogram search, this 
form of likelihood can be used (direct optimization, iterative pass) or 
the more frequently used maximum average likelihood (Barry and Harti-
gan 1987) with appropriate program options (fixed states, search-based 
with totallikelihood on page 326). This alternate flavoring of likeli-
hood, coupled with the multiple homology schemes of dynamic homol-
ogy makes the numerical likelihood values not strictly comparable. 

Pairwise comparison 
The most basic step of likelihood dynamic homology is the likelihood 
version of the string matching in direct optimization. POY does not 
presently use the Thorne et al. (1991; TKF) procedure, but modifies 
Wheeler (1996) in a vein similar to McGuire et al. (2001), simply using 
“gap” as a fifth state in a Markov process. This approach is far simpler 
computationally than the Thorne et al. (1991) method, but does not 
have the indel-length birth–death model that would make affine indel 
likelihoods jibe with the actual model of transformations as opposed to 
the kludge implemented in POY. On the other hand, the TKF model 
has at least one property that is, on the face of it, undesirable. The 
birth–death model for indel length can create asymmetries that appear 
illogical (Figure 5.2). 
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              -TGT-C-    -TG-TC-

              G-C-ACA    G-CA-CA

     Figure 5.2:   Redrawn from Thorne et al. (1991). These two pairwise alignments           
have different likelihoods. 

This sort of asymmetry would probably express itself as attaching dif-
ferent likelihoods to alternate roots of the optimized cladogram. 

Models 
POY uses a five-state, 10-parameter, general time reversible model 
(GTR) to optimize cladograms. This may be constrained to require all 
indel transition probabilities to be identical or that classes such as transi-
tions, transversions, all nucleotide substitutions, or even all transforma-
tions have equal probability. In the same way, each of the five state fre-
quencies (A, C, G, T, gap) may vary (Figure 5.3).

                  A  C  G   T   gap
             A    -
             C    a  -
             G    b  c  -
             T    d  e  f   -
             gap  g  h  i   j   -

Figure 5.3:   Default Q matrix. Each of a–j is independently estimated. 

Substitution models are created by numerically determining Eigen val-
ues and iterating branch lengths in terms of time. In general, the transi-
tion (Q) values are estimated by pairwise parsimony-based alignments 
and counting up the transformation of each type (including indels) 
along the sequence. Q matrices can also be input by the user. 
The approach with these models is to be as general as possible and 
allow users to specify simpler models as special cases. This no doubt 
compromises efficiency, but allows flexibility. 
Models are, by default, reestimated for every branch of each cladogram 
examined, but they can be fixed throughout the analysis. Fixed state and 
search-based optimization transformation models are constructed 
before cladogram search, but for each sequence state pair independently 
for all sequence characters. 
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Dynamic homology 
When dealing with a pairwise comparison, the central difference 
between likelihood and parsimony alignment is in the summing of the 
likelihoods of all alignments between two sequences, as opposed to 
finding the one (or several) with lowest cost. This expresses itself in the 
string matching component (Needleman and Wunsch 1970), where the 
cost of a cell in the dynamic programming matrix is determined by the 
minimum path to that cell for parsimony minimization and the sum of 
the three paths to that cell for likelihood. The final likelihood will be the 
sum of all likelihoods of aligning the two sequences, but when a single 
pairwise alignment is presented—usually the dominant or highest likeli-
hood component—this single alignment may contain only a small frac-
tion of that total likelihood (Hein et al. 2000; this can be explored in 
POY using the default behavior-dominant likelihood on page 274, or 
total with totallikelihood on page 326 and trullytotallikeli-
hood on page 328). 
The direct optimization procedure for likelihood proceeds as defined in 
Algorithms 5.6, 5.7, and 5.8 with the exception that likelihood pairwise 
optimizations are performed as opposed to minimum cost parsimony 
comparisons. The likelihood score reported under direct optimization 
for likelihood is the sum of the likelihoods of each of the HTUs created 
on a single down pass of the cladogram. The branch length iterations 
are not revisited after this single pass. The dominant HTU sequence is 
used for optimization of its ancestral node. 
Iterative pass optimization under likelihood proceeds in ways more sim-
ilar to more familiar implementations. As with parsimony-based itera-
tive pass, HTU sequences are constructed using a three-dimensional (3-
D) direct optimization. In this case the 3-D optimization is likelihood 
based, with simultaneous iteration of the lengths of the three adjacent 
branches. Iterative pass also repeatedly reestimated HTU sequences, 
revisiting each node and its connecting branches until the HTU 
sequences (hence overall likelihood) are stable. 
When fixed states and search-based optimization are employed, likeli-
hoods can again be dominant (maximum parsimony likelihood) or total 
(maximum average likelihood using totallikelihood). To begin, a 
pairwise likelihood edit cost matrix is calculated to create the maximum 
likelihood value (or minimum – log L) between two sequences on a 
branch. The branch length is iterated until the maximum value is 
attained for each pair individually. Each likelihood transformation 
between sequence states may imply a different branch length. This 
matrix is the square of the number of sequence states (that is, observed 
unique sequences for fixed states; user specified size for search-based). 
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Cladogram optimization proceeds as for standard fixed states and 
search-based using the dynamic programming of matrix or Sankoff 
characters. The default behavior is to calculate likelihoods based on the 
maximum likelihood state, which yields a maximum parsimony likeli-
hood. The likelihoods of all states reconstructions is summed using 
totallikelihood, yielding a maximum average likelihood value. As 
mentioned before, the branch lengths, upon which the likelihoods of 
transformations between sequence character states depend, are deter-
mined prior to cladogram optimization, hence branch lengths are not 
iterated during this stage. 

Implied alignment 
Likelihood implied alignment can be generated based on a cladogram as 
with parsimony analysis. The alignment will be based on the dominant 
likelihood HTUs optimized to internal nodes. All the caveats that apply 
to implied alignments under parsimony apply for the likelihood version 
(Wheeler 2003a). Their use as multiple alignments for likelihood 
cladogram searching is as fraught with difficulty and suspect as before. 

Combined analysis 
Combined (also referred to as simultaneous, concatenated, or total evi-
dence) analysis is a driving force behind POY. Likelihood analysis is no 
exception. Qualitative characters can be optimized under likelihood 
using the general, elegant, and simple model of Tuffley and Steel (1997). 
Nonadditive (unordered) character transformations are treated directly 
as Tuffley and Steel (1997) derive, and additive characters are binary 
recoded and then treated as nonadditive characters. 
In combination with sequence characters, likelihood combined analysis 
can be performed. At present, neither matrix (= Sankoff) nor chromo-
somal characters can be optimized under likelihood. 

        poy -likelihood chel.morph chel.seq 

Figure 5.4:   Example of a combined analysis run using likelihood as an   optimality 
criterion, where “chel.morph” represents a morphological matrix and “chel.seq” 
represents a sequence data matrix. 

Support measures 
The two main measures of support provided by POY, Bremer and jack-
knife values, can be calculated using likelihood optimality. 
The Bremer values POY reports, the difference in log L between the 
maximum likelihood cladogram with and without a group, are the likeli-
hood ratios of groups. 
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Jackknife values under likelihood would seem to be close kin to the sort 
of clade-specific posterior probabilities produced by MrBayes (Huelsen-
beck and Ronquist2003). Although they may be very close in value, the 
jackknife output in POY is a measure of group support to character re-
sampling (albeit using likelihood) and not an attempt to generate poste-
rior probabilities. 
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6 Cladogram Searching
Optimization procedures always assume a given topology or cladogram 
as the framework for the optimization. The second component of sys-
tematic analysis is cladogram search, which is discussed here.1

The most obvious algorithm to ensure an exact solution is to enumerate 
all possible cladograms, optimize the characters on each one of them, 
and determine the optimal solution. This is pratically impossible for all 
but the most trivial data sets (fewer than 12 or 13 taxa), due to the size 
of the search space. Analyses of real data sets rely almost exclusively on 
heuristic solutions.
In addition to the notation of Chapter 2, cladogram structures will be 
represented as in Figure 6.1.

1. This chapter is based in part on work by Jan De Laet.

A
B
C
D

Figure 6.1: Representation of 
a cladogram. The root is the 
empty box, any HTU is repre-
sented as a filled box, and the 
OTUs (leaves) are letters.
63
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Definitions
Given a cladogram C = (V,E) with root r and some vertex v, r, v  V, 
and a collection of characters:

Descendants of v, Dv of some vertex v are the set of nodes that include 
v in their path to r.                                                                        

Direct descendants of v are the only two neighbors of v that include it 
in their path to r.                                                                              

C.cost of a tree is the sum of the cost at r (r.cost) of all the characters 
using the algorithms of Chapter 5.                                                

c.weight is the weight of a character c.                                           

pop(X) is a function that will return the last element of the stack X.  

push(X, a) is a function that will append at the end of the stack X the 
element a.  

Branch and Bound
Branch and bound is a generally applicable exact solution procedure for 
cladogram search widely used in several problem solving techniques 
(Nilsson 1998). Branch and bound is not currently implemented in 
POY. It is presented here to demonstrate how an exact algorithm works 
and how it relates to heuristic solutions. The entire cladogram space 
must be (at least implicitly) examined. Branch and bound relies on 
growing (that is, before all taxa are added) cladogram costs. Once the 
cost of a partial cladogram on a search path is higher than the current 
lowest cost cladogram (Algorithm 6.1), that search path is halted. The 
procedure was first applied in a phylogenetic cladogram search by 
Hendy and Penny (1982).

  ∈
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Algorithm 6.1 Branch and Bound Algorithm 

Require: C  is a cladogram
Require: L is the set of optimal trees, initially empty
Require: best is initially infinity
Require: t is initially 1

if t > n then 
for each edge (a, b) in C do

make a copy NC = (NV, NE) of C
remove (w, v) from NE
append Tt and a new vertex x to NV
append (w x), (x, v) and (x, Tt) to NE
if the NC.cost ←  best then

best ←  BB (NC, t + 1, best)
end if

end for
else

if C.cost < best then
empty L
append C to L
return C.cost

else if C.cost = best then
append C to L
return best

end if
end if

Branch and bound is significantly faster than enumerating all 
cladograms. However, it is unable to calculate the cost frequency 
because not all the cladograms are evaluated. This problem can be 
solved, and the number of visited cladograms increased, by setting up 
the cutoff factor greater than the current best cost.

Wagner Trees
A Wagner tree is built by adding sequentially the set of terminals in the 
edge that yields the least expensive cladogram.  When more than one 
location produces the same minimum cost, each cladogram is used as 
the starting point for the next terminal, and both are evaluated sepa-
rately (Algorithm 6.2).

Algorithm 6.2 Wagner tree building

Require: t is an initial tree containing only two OTU, Tn and Tn–1 
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Require: Let T be the set of the OTUS not contained in , initially T1, . . . ,    
Tn–2

Require: WAG is the resulting stack of Wagner trees, initially containing 
Require: TMP and TMP2 are temporary stacks of trees that will produce a 

Wagner tree
while TMP is not empty repeat

C ←  pop (TMP)
if C contains all the OTUS then
push(WAG, C)

else
for each OTU t  C do

best ←  infinity
for each edge (w, v) in C do

{test t in every edge of C, and store the optimal positions in    
TMP2}
make a copy NC = (NV, NE) of C
remove (w, v) from NE
append t and a vertex x to NV
append (w, x), (x, v) and (x, t) to NE
if NC.cost < best then

empty TMP2
push (TMP2, NC)
best ←  NC.cost

else if NC.cost = best then
push (TMP2, NC)

end if
end for

end for
while TMP2 is not empty do {move all trees in TMP2 to TMP}

push (TMP, pop (TMP2))
end while

end while
return WAG

Wagner trees were formalized first by Wagner (1961), with the original 
algorithm from Kluge and Farris (1969) and Farris (1970). The resulting 
cladogram is commonly used as a starting point for several other heuris-
tics.
Randomization of taxon addition order is often introduced, which is 
referred to as Random Addition Sequence (RAS).

τ

τ

∉
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Branch Swapping
To traverse the cladogram search space to find an optimal or near opti-
mal solution, several methods are used. The most common of these are 
the Nearest Neighbor Interchange (NNI), Subtree Pruning and Regraft-
ing (SPR), and Tree Bisection and Reconnection (TBR). SPR and TBR 
are widely used and more general; therefore NNI will not be considered 
here, and the set of trees generated in the procedure is a proper subset 
of those produced in SPR and TBR.

Subtree pruning and regrafting 
As a general rearrangement procedure of trees (this and the following 
description follow Goloboff 1996a), SPR begins with a predefined 
topology to produce a new one; Algorithm 6.3 presents the procedure, 
with a pictoral version in Figure 6.2. It consists of the following steps:
1. Prune a clade, creating two subtrees.
2. Insert a new inner node along a branch of either subtree.
3. Attach the remaining subtree as the second sibling of the new inner 

node.
Formally, given a tree C = (V,E) with root r, choose a node v ∈ V with 
incident edges (w, v ), (v,  x), and (v,  y ) and an edge (z1,  z2) such that 
z1 ,  z2  are not descendants of v,  the function

χ (C, v,  y,  z1,  z2)  = Cspr  = (Vspr, E spr) (Eq 6.1)

such that

Vspr = V – v + zspr

and

Espr= E – (v,  y) – (w,  v) – (v,  x) – (z1 ,  z2) + (w,  x) + (z1 ,  z spr) 
+ (zspr,  z2) + (zspr,  y)

creates a new tree Cspr with the clade rooted by y pruned and inserted 
in the edge (z1 ,  z2).
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Algorithm 6.3 would in theory test all the set of trees  t ′ produced from 
each tree t in an array T. In reality, a heuristic is used to reduce the search 
space. This heuristic is defined as the predicates

β (t′,  glob_best_cost, loc_best_cost )

and

α ( t ,  t′,  bes t_cos t )

A
B

C
D

F
E

H
G

Figure 6.2: Subtree pruning and regrafting procedure example.

A
B

C
D

F

E

H
G

A
B

C
D

F
E

H
G

a) A tree with OTUs A, B, 
C, D, E, F, G, and H is 
pruned, leaving A and 
B in a subtree

b) The A, B tree is re-
grafted as a sister 
group of E.

c) Another regrafting position, 
this time as a sister group of 
G and H
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Algorithm 6.3 Subtree Pruning and Regrafting – SPR(T)

Require: BEST_TREES is a stack of the best trees
Require: T is the stack of trees to be rearranged during SPR.
Require: t = (V,E) is a tree with root r

t ←  pop(T)
global_best_cost ←  t.cost
push(T,  t )
repeat

t ←  pop(T)
for all vertex v ∈ V with degree 3 do {Not the leaves, nor the root}

for all edge (a, b) ∈ E not descendant of v do
for all vertex d direct descendant of v do

t spr  ← χ ( t, v, d, a, b )  {Equation 6.1 on page 67}
if β ( t s p r, global_best_cost, local_best_cost )  then

Clear BEST_TREES
local_best_cost ←  t spr. cost
push(BEST_TREES, t spr)
if local_best_cost < global_best_cost then

global_best_cost ←  local_best_cost
end if

end if
if α (t s p r,  global_best_cost, local_best_cost )  then

push(T,  t spr)
end if

end for
end for

end for
until T is empty
return BEST_TREES

which define whether a tree t′ should be included in the list of best cla-
dograms T when:

1. t′.cost is equal to or better than the cost of the best rearrangement of 
t, so the functions are defined as

β (t ,  t ,  glob_best_cost, loc_best_cost) 
                                                  

true if (t.cost < loc_best_cost)

false otherwise=

 
 ⎩

⎨
⎧
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2. t.cost is equal to or better than any other rearrangement created so 
far, so the functions are defined as

Note that these functions can also include some user-defined threshold 
(slop) to include a broader range of cladograms in the search space and 
increase the probability of escaping from local minima.

α (t ,  t ,  glob_best_cost, loc_best_cost) 
                                                  

true if (t.cost = loc_best_cost)

false otherwise

β (t, t, glob_best_cost, loc_best_cost) =
true if (t.cost < glob_best_cost)

false otherwise

α (t, t, glob_best_cost, loc_best_cost) =
true if (t.cost = glob_best_cost)

false otherwise

=

 
 ⎩

⎨
⎧

 
 ⎩

⎨
⎧

 
 ⎩

⎨
⎧

Figure 6.3: Tree bisection and reconnection example.

a) Original tree for TBR b) The subtree of A, B, and 
C tree is pruned.

c) The root is changed in 
the A, B, and C subtree

A
B
C
D

F
E

H
G

A
B
C

D

F
E

H
G

A
B
C

D

F
E

H
G

d) The re-root subtree is re-
grafted as a sister group of H

A
B
C

D

F
E

H
G
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Tree bisection and reconnection
This procedure is similar to SPR (page 67), but the reconnection of the 
pruned clade cycles through change in the chosen root.
As a consequence, the trees produced by SPR are a proper subset of 
TBR; the same result is accomplished in TBR if the root selection gives 
back the same root defined in the SPR procedure. The algorithm for 
TBR is a simple modification of the SPR strategy, as shown in Algo-
rithm 6.4 and exemplified in Figure 6.3 on page 70.

Algorithm 6.4 Tree Bisection and Reconnection – TBR(T)

Require: BEST_TREES is a stack of the best trees
Require: T is the stack of trees to be rearranged using TBR
Require: Let t = (V,E) be a tree with root r

t ←  pop(T)
global_best_cost ←  t.cost
push(T,  t )
repeat

t ←  pop(T)
for all vertex v ∈ V with degree 3 do {Not the leaves, nor the root}

for all edge (a, b) ∈ E not descendant of v do
for all vertex d direct descendant of v do

for all possible root ρ on an edge descendant of d do
t tbr ← χ ( t ,  v,  ρ,  a ,  b )  {Equation 6.1 on page 67}
if β ( t tbr,  global_best_cost, local_best_cost )  then

Clear BEST_TREES
local_best_cost ←  t tbr.cost
push(BEST_TREES, t tbr)
if local_best_cost < global_best_cost then

global_best_cost ←  local_best_cost
end if

end if
if α (t tbr,  global_best_cost, local_best_cost )  then

push(T,  t tbr)
end if

end for
end for

end for
end for

until T is empty
return BEST_TREES
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Ratcheting
Ratcheting (Algorithm 6.5) (Nixon 1999) enhances branch swapping. It 
is an iterative approach that randomly reweighs a set of characters dur-
ing an SPR or TBR procedure. By iterating through the original and the 
new random weights, the analysis enlarges the searched space, making it 
less likely that a result is wallowing in a local optimum.

Algorithm 6.5 Ratcheting during Branch Swapping

Require: C is the stack of initial trees
Require: Let n be the number of characters to be reweighed
Require: Let w be the factor by which each weighted character will be 

multiplied
Require: Let it be the number of iterations to be performed
Require: Every character c has a weight c.weight
Require: A tree rearrangement function rearrange(C) (for example, SPR(C) 

or TBR(C)) that returns the set of best rearrangements
for i = 1 to it do {Perturbation of weights}

C ←  rearrange(C)
R ←  random set of n characters
for all character c ∈ R do

c.weight ←  c.weight × w
end for
C ←  rearrange(C)
for all character c ∈ R do {Reset the original weights}

c.weight ←  c.weight ÷ w
end for

end for
return C 

Tree Drifting
Like ratcheting, tree drifting (Goloboff 1999, 2002) is a search strategy 
to avoid local minima by increasing the reachable search space during 
branch swapping. Instead of reweighting a set of characters, tree drifting 
swaps suboptimal cladograms according to a predefined optimality 
threshold (Algorithm 6.6).
Tree drifting is an application of simulated annealing, a general optimi-
zation heuristic that temporarily accepts suboptimal solutions as a way 
to escape from local optima.
Goloboff (1999) described an acceptance probability that is based on 
the length difference and on the RFD or Relative Fit Difference 
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(Goloboff and Farris 2001) between a candidate cladogram and the cur-
rent best cladogram. POY uses a simpler acceptance probability that is 
based on the cost difference, according to the following rules:
1. Candidate trees that are better than the current best cladogram(s) are 

always accepted.
2. Candidate trees that are as good as the current best cladogram(s) are 

accepted with a user-defined probability.
3. Candidate trees that are worse than the current best cladogram(s) are 

accepted with a probability , where b is the current best cost, 

c is the cost of the candidate tree, and n is a user-defined factor.
4. The tree drifting algorithm is a slight modification of either SPR 

(Algorithm 6.3) or TBR (Algorithm 6.4). Basically, the β  and α  func-
tions are modified to consider the acceptance thresholds as defined 
above. Let θ ,  τ  be random real numbers (0 θ , τ 1) in the new 
function

Note that only a limited number of suboptimal trees are accepted on 
each round.  The modified algorithm (either the SPR or the TBR 
according to the user selection) is alternated through multiple iterations 
(Algorithm 6.6).

Algorithm 6.6 Iterations for the Tree Drifting Algorithm

Require: Let C be a set of trees to be used as a starting point.
Require: Let it be the number of ratcheting iterations
Require: Let drift(C) be the modified version of the SPR(C) or TBR(C)

for i = 1 to it do
C ←  drift(C)
C ←  SPR(C) or TBR(C) depending on the rearrangement method 

β ( t ,  glob_best_cost, loc_best_cost) =
true if (t.cost < glob_best_cost)

false otherwise

α ( t , glob_best_cost, loc_best_cost) =

true if (t.cost = glob_best_cost)
true if (t.cost = glob_best_cost) 

and (θ < driftequalaccept)
true if < 1 ÷ (driftequalaccept + 

t.cost – glob_best_cost)
false otherwise

1
n c b–+
-----------------

  ≤   ≤

 
 ⎩

⎨
⎧

 
 
 
 
 ⎩

⎪
⎪
⎨
⎪
⎪
⎧

τ
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being used in drift(C)
end for

Tree Fusing
This search technique is based on the idea that local optima might be 
avoided by exchanging subgroups of identical composition but not reso-
lution between different trees (Goloboff 1999, 2002). Tree fusing is an 
application of a genetical algorithm (Moilanen 1999, 2001) where com-
patible groups are exchanged among cladograms.
The algorithm implemented in POY is slightly different from 
Goloboff ’s original procedure; Algorithm 6.7 shows the method.

Algorithm 6.7 Tree Fusing

Require: Let C be the stack of starting trees for tree fusing
Require: Let BEST_TREES be the stack of the best trees found by tree fusing, 

initially empty
for all tree t1 ∈ C do

for all tree t2  ∈ T,  t1 ≠ t2 do
for all subtrees τ2 ∈ t2 do

for all subtrees τ1 ∈  t1 do
if τ1 and τ2 have the same OTUs but different resolution then

swap τ2 and τ1 in t1 and t2
if do branch rearrangement with tree fusing then

TMP ←  SPR(C) or TBR(C) depending on the
 rearrangement method selected

end if
Append TMP to BEST_TREES

end if
end for

end for
end for

end for
return BEST_TREES

Static Approximation
Static approximation (Wheeler 2003a) is a cladogram search heuristic 
designed specifically for use with non-prealigned nucleotide sequences. 
First, an implied alignment for nucleotides is calculated using a specified 
optimization algorithm. Second, branch swapping is performed using 
this implied alignment. If a more parsimonious topology is found, the 
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nucleotide implied alignment is reevaluated using the specified optimi-
zation algorithm and a new implied alignment is calculated.
This algorithm concentrates calculation time on the cladograms that are 
good candidates for useful solutions: Cladogram searching with a static 
alignment is an approximation of the best cladogram cost. On the basis 
of this approximation, most rearrangements need not be analyzed.

Algorithm 6.8 Static Approximation

Require: Let t = (V,E) be a starting tree
Require: Let DO(t) be the direct optimization algorithm that returns an 

optimized full implied alignment
Require: Let align be a set of implied alignments currently in use as 

character for each OTU
quick_cost ←  t .cost{Calculate the cost of t  using align as character}
if quick_cost < global_best_cost then

t  ←  DO(t ) {Calculate a new set of implied alignments}
if t .cost < global_best_cost then

Clear BEST_TREES
align ←  The implied alignment of t

end if
if t .cost <= global_best_cost then

push(BEST_TREES, t )
end if

end if
return BEST_TREES

The algorithm can be easily implemented by modifying any of the 
branch rearrangement algorithms in the β  and α  predicates and the 
contents of their if statements as shown in Algorithm 6.8.

Parallel Cladogram Searching
POY can take advantage of parallel processing to reduce execution time. 
At present, parallelism in POY occurs at the cladogram search level.  As 
such, POY divides up the search space and search activities among pro-
cessors, and centrally manages their coordination.  An alternate 
approach, data parallelism, would divide the data up among processors 
and exploit parallel architectures.  Either or both can be effective.  For 
now, POY parallel algorithms and options are search specific.  How to 
divide search problems can be complex.  This is due to the interaction 
of algorithm, hardware, and data, making general rules for efficient par-
allel searches difficult to specify.  POY strives to be flexible, allowing the 
user to control the degree of parallelism applied to various stages of a 
search.  On the one hand, a single problem can be divided among all 
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available processors.  Alternatively, search operations can be restricted 
to single processors, parallelism coming from having many of these 
problems to do, such as with random replicates.  Furthermore, not all 
algorithms scale perfectly to large systems so that the subdivision of 
resources might be beneficial.  Below we discuss the general approach 
to parallel execution in POY.  Specifics of their use and the decision 
making involved follow.

The basics
The fundamental scenario for parallel execution in POY consists of an 
investigator with a series of tasks to perform, each of which is time con-
suming, for example, a series of random replicate builds to create an ini-
tial cladogram.  Three strategies can be taken:
• Distribute calculation of each task
• Distribute task calculations in chunks
• Tune parallel processes.

Distribute calculation of each task
The first strategy is to distribute the calculations of each task (that is, 
each random replicate) among parallel resources, then perform each 
replicate in turn.

Algorithm 6.9 Master algorithm for parallel replicates

for i = 1 to number of replicates do
for j = 1 to number of taxa to add do

for k = 1 to number of addition points on tree do
send addition point and current tree to SLAVE

end for
for k = 1 to number of addition points on tree do

receive cladogram length from SLAVE
compare and retain lowest cost placement

end for
add taxon in best position

end for
end for
return lowest cost cladogram

This form of distributed cladogram building divides the tasks into rela-
tively small portions calculated on the slave processors. The master and 
slave processes communicate frequently, exchanging information, tasks, 
and results. This strategy is the default parallel algorithm for many of 
the cladogram search operations. It applies to random replicate cla-
dogram building, SPR and TBR branch swapping, tree fusing, ratchet-
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ing, and drifting. In each case, the task is a cladogram or collection of 
cladograms to swap, or ratchet to be performed in parallel over all avail-
able processors. There are two properties of this scenario that may lead 
to inefficiencies. First, this strategy imposes a communication burden: if 
there is little to do in the calculations performed by the slave tasks, most 
computational effort will be devoted to the mechanics of processing 
messages.

Algorithm 6.10 Slave algorithm for parallel replicates

receive addition point and current tree from MASTER
calculate tree length
tree length to MASTER

A second potential limitation is in the amount of work.  In order to 
build an initial cladogram, there are only 2t 5 places to add the t th

taxon to a nascent cladogram.  A machine with 100 processors will be 
largely idle building a cladogram of 50 taxa replicated 100 times.  The 
same machine might be quite well occupied for a data set with 1000 ter-
minals.  Similar limits from dependencies on the number of taxa apply 
to branch swapping and other refinement procedures.

Distribute task calculations in chunks
The second strategy is to distribute tasks in large chunks for calculation 
as slave processes.  In essence, each slave performs an independent, 
sequential task.  Parallelism would then come from distributing the 
number of tasks to perform.

Algorithm 6.11

for i = 1 to number of replicates desired do
send random replicate to SLAVE

end for
for i = 1 to number of replicates desired do

receive replicate trees and cost from SLAVE
retain lowest cost result

end for
return lowest cost result

This second approach is specified in POY by using one of several multi 
commands:
• Wagner builds: multibuild (page 283)
• Tree drifting: multidrift (page 284)
• Ratcheting: multiratchet (page 285)
• Random replicates: multirandom (page 285)

–
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Tune parallel processes
The third is an intermediate strategy.  Typically, investigators perform a 
series of searches, each of which would consist of a build step, swap-
ping, tree fusing, ratcheting, and perhaps a final round of branch swap-
ping.  A large number of these sequences might be performed, each 
with a randomly chosen starting point.  Using the first strategy, each 
random replicate could be performed over all available processors.  If 
multi commands are specified, they are honored within that part of the 
search.  For example, if 100 build replicates are specified before refine-
ment with multibuild, those cladogram builds take place on slaves 
independently.

Algorithm 6.12

receive random replicate from MASTER
for j = 1 to number of taxa to add do

for k = 1 to number of addition points on tree do
calculate tree length
compare and retain lowest cost placement

end for
add taxon in best position

end for
send lowest cost tree to MASTER

Alternatively, using the second strategy, each complete replicate search 
could be performed independently and sequentially by slave processes. 
The 100 builds per replicate would be performed in turn by each slave 
process as part of its search. The two strategies can be combined and 
tuned through the use of controller processes using the controllers 
(page 234) command, which assigns slaves to subclusters. Each sub-
cluster controller is seen by the master as a slave, and each slave sees its 
subcluster controller as its master.
Controllers work with multirandom to distribute complete search rep-
licates to each of the controllers’ processes as opposed to the individual 
slaves. Each controller executes its replicate search by distributing work 
as broadly as possible to its own set of slave processes. POY divides the 
number of available slave processes evenly among the controllers as 
subclusters of processes. The degree of parallelism can be adjusted to 
maximum efficiency by varying the number of controller processes.

Algorithm 6.13

for all random replicates desired do
send random replicate to CONTROLLER

end for
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for i = 1 to number of replicates desired do
receive replicate cladograms and cost from CONTROLLER
retain lowest cost result

end for
return lowest cost trees

Parallelizing replicates reduces communication with the master process 
and helps to avoid taxon-number limits of some parallel algorithms. 
This strategy is often useful in improving the efficiency of cladogram 
search strategies on large clusters or in situations where large numbers 
of replicates are desired. All search strategies currently implemented in 
POY operate in parallel when the parallel (page 293) command is 
specified. This includes initial cladogram construction, SPR and TBR 
swapping, tree fusing, ratcheting, and drifting. Evaluation techniques 
such as jackknifing and Bremer support calculations also operate in par-
allel through cladogram search and swapping algorithms, respectively. 
Some character-specific edit cost matrices are also determined in parallel 
(for example, fixed states and search-based optimization).

Algorithm 6.14

receive random replicate from MASTER
for j = 1 to number of taxa to add do

for k = 1 to number of addition points on tree do
send addition point and current tree

end for
for k = 1 to number of addition points on tree do

receive cladogram length from SLAVE
compare and retain lowest cost placement

end for
add taxon in best position

end for
send lowest cost trees to MASTER

Algorithm 6.15

receive addition point and current tree from CONTROLLER
calculate tree length
send tree length to CONTROLLER

Suggested Reading
Goloboff, P. A. 1999. Analyzing large data sets in reasonable times: Solutions 

for composite optima. Cladistics 15: 415–428.
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7 Evaluation and 
a Posteriori Analysis
In this chapter, different methods implemented in POY to further ana-
lyze the results of phylogenetic analyses are examined. In addition to 
methods implemented directly in POY, methods implemented in other 
programs are discussed that can be used in concert with POY. Most of 
the methods discussed are used commonly (for example, Bremer sup-
port and strict consensus trees). However, some are new, modified, or 
have not been applied broadly.
Currently, there is a debate in the literature concerning the scientific 
value of extensive data exploration of the variety described herein (for 
example, see Giribet 2003; Grant and Kluge 2003 and references cited 
within), which we will not address here. Our approach in this chapter is 
catholic: we present the diversity of a posteriori analyses that can be per-
formed in POY and leave the reader to determine the utility of each 
approach. 

Examination of Inferred Homologies
In POY, cladogram preference is governed by the economical optimiza-
tion of all character transformations (for example, transitions, transver-
sions, nucleotide insertions and deletions, phenotypic changes, gene 
duplications and losses, and gene rearrangement). Thus, POY not only 
provides a phylogenetic hypothesis for the included taxa, but it also pro-
81



82 Chapter 7
9 

G
ui

de
lin

es
10

 R
eq

ui
re

m
en

ts
11

 In
st

al
la

tio
n

3 
A

na
ly

sis
13

 In
pu

t/
O

ut
pu

t
14

 T
ut

or
ia

ls
15

 C
om

m
an

ds
7 

Ev
al

ua
tio

n
8 

Pa
ra

lle
l

vides a database of nucleotide, genomic, and phenotypic evolution. In 
fact, POY actually goes one step further: it provides a predictive frame-
work for genomic organization. For example, the recently implemented 
methods for analyzing genomic rearrangements, insertions, deletions, 
duplications, and rearrangement clearly provide the first step toward 
automating the process of genome annotation using a historical, phylo-
genetic approach instead of the most commonly applied method: simi-
larity.

Cladogram diagnosis: transformation series and 
hypothetical ancestors
The command diagnose (page 238) outputs information about 
inferred character transformations at the level of nucleotides, loci, 
behavior, etc. over the cladogram.   The order of the characters pre-
sented in the output will follow the order that the user lists the input 
data files in the command line. Thus, it is often convenient to put phe-
notypic characters first in the POY command line because these charac-
ters will then have the same numbering system as in the Hennig86/
Nona data file format and their character number will remain 
unchanged if multiple, equally parsimonious alignments result from the 
analysis.
The command diagnose (page 238) can be included in the same POY 
command line used to perform the search. Alternatively, a topology 
found in another analysis can be input and diagnosed separately. To 
ensure consistency of calculated costs and optimizations, it is important 
to employ the same optimization algorithm and transformation costs 
for diagnosis as were used in the cladogram searching (unless the goal is 
to determine the effect those choices have on cladogram cost and 
inferred nucleotide homologies). 
The diagnose output includes four sections:
• Topology and cost of tree to diagnose
• Minimum and maximum branch costs
• A list of character changes for each branch, giving both the ancestral 

and derived states and specifying which transformations are definite 
(that is, unambiguous) and the class of transformation (for example, 
indel, transversion, etc.)

• Hypothetical ancestral reconstructions organized as ordered 
sequences with ambiguously optimized nucleotide states reported as 
IUPAC symbols plus additional codes to accommodate indels—note 
that these hypothetical ancestral sequences are not the same as those 
generated by the command printhypanc (page 303), which prints 
hypothetical ancestral sequences with arbitrarily resolved ambiguous 
positions that can be used in search-based optimization (page 55). 
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If more than one cladogram is diagnosed, these four sections will be 
generated for each cladogram consecutively. 
The cost of the diagnosed cladogram can differ from the cost of the 
cladogram that results from the search when the input topology 
contains polytomies introduced by consensus procedures or collapsing 
of zero-length branches. POY arbitrarily resolves input polytomies for 
diagnosis. The resulting cost and character changes differ from the orig-
inal cladogram when the new binary version differs from the original 
binary cladogram. If the cladogram to be diagnosed is derived from a 
previous POY analysis, it is important that the binary version of the 
cladogram (reported in the POY output file) be input for diagnosis. In 
addition, the same root terminal used in the search must be specified. 
Due to the heuristics of the direct optimization algorithm, alternative 
rootings of the same topology might imply different lengths and charac-
ter transformations. The effect of rooting is generally diminished when 
the more thorough iterative pass algorithm is used, but even then this is 
a potential source of disagreement.
The character change list of the diagnosis output is presented in the fol-
lowing order:
• Ancestral taxon
• Descendant taxon
• Character (phenotypic, DNA fragment, or locus)
• Position (place within a fragment of DNA numbered from 0 in the 

descendant fragment)
• Ancestral character state
• Descendant character state
• Type of change (optimization dependent or definite).
The columns of the table are formatted in tab-delimited columns that 
can be imported into a spreadsheet program for easy visualization and 
manipulation, as has been done in the table below.

Alternatively, you can use grep, sort, and uniq programs on Unix 
machines or searching tools in text editors to find information of inter-
est. 

Ancestor Descendant Character Position
Ancestral 

state
Descendant 

state
Type of 
change Definite

HTU12     DBA2J     [0] [2] C T Ti        *     
[4] G T Tv        *         
[6] G A Ti        *         
[8] A G Ti        *         

[10] T C Ti        *         
[32] A N ABC      
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Except in the case of prealigned sequence data or matrices of pheno-
typic data, the position number in the character change list is not based 
on (and may differ from) the column number in an implied alignment. 
Cladogram diagnosis is performed using the unaligned sequence data, 
with the implied alignment calculated as a result of optimization. 

Implied Alignments:                              
Visualization of Nucleotide Homologies

Although POY can analyze prealigned sequence data, where nucleotide 
homology has been determined prior to the phylogenetic analysis, it is 
specifically designed to avoid aligning sequences as a separate step in 
homology assessment. In fact, direct optimization, as originally pre-
sented, did not provide a means of visualizing nucleotide homology as 
aligned characters. However, recognizing that alignments may be useful 
as visual representations of nucleotide homology and as standard taxon-
by-character matrices that can be input into programs such as Winclada 
(Nixon 2002) and TNT (Goloboff et al. 2003b), the command 
impliedalignment (page 263) generates an alignment by optimizing 
the data on a cladogram (Wheeler 2003b). This command takes the 
dynamic homologies established through direct optimization and traces 
them back through the cladogram, linking the unaligned sequence posi-
tions through the respective transformation series.
Although they resemble standard alignments visually, implied align-
ments are derived from a radically different procedure and may return a 
different result than one would obtain by inserting the same topology as 
a guide tree and generating an alignment under the same parameters in, 
for example, Clustal W. Whereas Clustal W aligns independent, 
homoplastic insertions of the same nucleotide in a single column, POY 
assigns them to different columns because they are not homologous 
and are, therefore, not parts of the same transformation series. In addi-
tion, as discussed and illustrated by Wheeler (2003b), the implied align-
ment for a given cladogram is not necessarily unique. The implied align-
ment for each fragment is reported separately in the order in which they 
appear in the POY script, with each assigned a character number (initial-
ized at 0). Figure 7.1 and Figure 7.2 illustrate implied alignment.
The command phastwincladfile (page 293) also generates an 
implied alignment, but saves it as a taxon-by-character matrix in 
Hennig86/Nona format with the optimal topologies appended below 
the matrix. If multiple equally parsimonious alignments result from the 
analysis, phastwincladfile only gives the implied alignment of the 
first cladogram. To obtain a Hennig86/Nona matrix for each 
cladogram, either convert each implied alignment manually or input 
each topology in a separate POY script with phastwincladfile. 
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These matrix files can then be opened directly in standard phylogenetic 
software (such as Nona, Winclada, or PAUP*) for additional visualiza-
tion (for example, visualization of character transformation) or search-
ing.

A A A A - - AGGGT T -T T G

A T T G

A K K G

A - - A

Direct Optimization

H0: ATTG

ATTG ATT AGGG AA AA

H1: AKKG

H2: AA

H3: AA

Implied Alignment

A - - A

A - - A

Figure 7.1   Illustration of implied alignment.  Direct optimization determines 
hypothetical ancestors (Hi).  The minimum path for nucleotides is calculated 
from hypothetical ancestors observed sequence by inserting gaps.



86 Chapter 7
9 

G
ui

de
lin

es
10

 R
eq

ui
re

m
en

ts
11

 In
st

al
la

tio
n

3 
A

na
ly

sis
13

 In
pu

t/
O

ut
pu

t
14

 T
ut

or
ia

ls
15

 C
om

m
an

ds
7 

Ev
al

ua
tio

n
8 

Pa
ra

lle
l

It may be tempting to use an implied alignment (or Hennig86/Nona 
matrix) as the basis for subsequent phylogenetic searching using differ-
ent optimality criteria or parameters, or to use the implied alignment of 
a ribosomal gene in conjunction with other prealigned data.  However, 
this practice is inconsistent because the optimal homologies depicted by 
the implied alignment are specific to a given cladogram and are almost 
certain to be suboptimal for any other topology.  Bear in mind that an 
implied alignment is really just a means of visualizing nucleotide trans-
formation series, and the optimal set of nucleotide homologies for a 
given data set is topology and parameter specific. 

Implied Alignment Algorithm
The algorithm for implied alignment is that of Wheeler (2003a).  The 
method is not a traditional multiple sequence alignment procedure, but 
yields an organized synapomorphy scheme that is based on a specific 
cladogram.  
The procedure requires an optimized cladogram with internal nodal 
sequences determined.  These HTU sequences can be determined by 
direct optimization, iterative pass optimization,  fixed-state optimiza-
tion, or  search-based optimization.
The algorithm is linear in number of taxa and quadratic in sequence 
length.

Algorithm 7.1 Get the number of inferred homologies in the nucleotide 
sequence, and assign to every nucleotide in a sequence a homology num-
ber Numerate (ancestor, child, ancestor_aligned, child_aligned, counter)

Require: ancestor and child are two connected nodes a and b where a is 
the direct ancestor of b
Require: ancestor_aligned and child_aligned are the aligned nucleotide 
sequences of length l ancestor and child

j ←  0
k ←  0
for i = 0 to l – 1 do

if ancestor_aligned i = gap

A T T G
A T T -
A G G G
A - - A
A - - A

          Figure 7.2   Multiple sequence alignment implied by direct optimization.
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child_homologiesi ←  counter
j ←  j + 1
counter ←  counter + 1

end else
if child_aligned i <> gap

child_homologies j  ←  ancestor_homologiesk
j ←  j + 1

end
k ←  k + 1

end
done
return counter

Algorithm 7.2 Assign the homologies numeration to every HTU in preorder 
Numerate_preorder (node,counter)

Require: if node is the root, the array homologies of length j is initialized 
numbering homologiesk k, 1 ≤  k ≤  j

ancestor,child ←  Align_sequences (node.chars node.left.chars){Algorithms 
5.7, 5.8, and 5.9 Chapter 5}

counter ←  Numerate (node, node.left, ancestor, child, counter)
ancestor,child ←  Align_sequences (node.chars node.right.chars)
counter ←  Numerate (node, node.right, ancestor, child, counter)
counter ←  Numerate_preorder (node.left, counter)
counter ←  Numerate_preorder (node.right, counter)
return counter 

Algorithm 7.3 Align_sequences()

Require: a cladogram C with root r and n leaves
counter = Numerate_preorder ( r,0 )

(me, thee) ←  Direct_pairwise (ancestor.sequence, descendant.sequence, E)
M is a matrix of size n x counter
for each leaf t in C do

j ←  number of nucleotides in t.chars
for i = 0 to j – 1 do

position ←  t.homologiesi
Mt.position ←  t.charsi

done
done
return M
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Evaluation of Multiple Optimal Cladograms
Although researchers may hope that the available evidence unambigu-
ously supports a single, optimal cladogram, empirical data are often not 
so generous and multiple optimal hypotheses are found. Those clades 
that are unambiguously supported by the available evidence are those 
that are common to all optimal cladograms: they can be efficiently sum-
marized by the strict consensus representation. Although the majority 
rule consensus is primarily used for depicting group frequencies from 
jackknife resampling, it can be generated for any set of cladograms. For 
example:
• poystrictconsensustreefile (page 301) writes the strict 

consensus tree in POY parenthetical notation to a specified file.
• printtree (page 304) used with plotfile (page 294) writes the 

best cladograms and their strict consensus at the end of a POY run to 
file poy.tree. The output file is specified by plotfile.

• plotmajority (page 296) determines whether and how printtree
plots the majority rule consensus tree. The command has three 
modes: the majority rule consensus tree is not plotted (this is the 
default setting), the majority rule consensus tree is plotted without 
clade identification numbers, and the majority rule consensus tree is 
plotted with clade identification numbers (each branch is labeled with 
the identification number and the clade frequency).

No other consensus calculations (such as Adams or combinable compo-
nents) are currently supported directly in POY, although these can be 
calculated by generating a phastwincladfile that is opened in another 
phylogenetic program.
Finally, some authors (for example, Carpenter 1988) have recommended 
a posteriori weighting as a method of selecting a subsample of one or 
more cladograms from a larger number of equally most-parsimonious 
cladograms. Successive approximation weighting (Farris 1969) has been 
used for this. It was not, however, originally intended for this purpose. 
POY includes a modified version of Goloboff ’s (1993b) implied weight-
ing (goloboff on page 258) that maximizes total fitness during 
cladogram search, by altering fragment costs according to their relative 
fit. This differs from Goloboff ’s method, as implemented in Pee-Wee 
(Goloboff 1996b), which alters the costs of each individual character.

Partitioned Analysis and Evaluation of Partition 
Incongruence

One of the basic premises underlying the development of POY is that 
combined analysis (also referred to as simultaneous analysis and total 
evidence) is optimal.  Nevertheless, many advocates of total evidence 
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analysis are also interested in exploring the behavior of particular data 
partitions.  This is most commonly done by analyzing each partition of 
interest in isolation and inspecting the results visually or quantifying the 
partition incongruence with one or more of a variety of methods.
The most convenient means of carrying out these analyses is to use a 
single script file that contains all the necessary POY scripts used to ana-
lyze each data partition, with the scripts set to run consecutively. For 
separate, partitioned analyses, each partition of interest must be in a sep-
arate data file, that is, partitions formed by inserting pound signs (#) in 
the sequences of a single file cannot be analyzed separately unless sec-
tions are deactivated using an astersik (*).
Common measures of partition congruence include the Mickevich–Far-
ris (1981) Extra Steps Index, given by Equation 7.1.

(Eq 7.1)

Mickevich–Farris Extra Steps Index is a character-based measure of 
partition congruence. This index can be rescaled by using a denomina-
tor that reflects the difference between the maximum tree length from 
the combined data (bush) and the minimum (sum of the individual 
lengths), a measure that has been termed the RILD (Rescaled ILD) 
(Wheeler and Hayashi 1998).

(Eq. 7.2)

Both the Mickevich–Farris Index and the RILD require calculating tree 
lengths for individual and combined partitions (Figure 7.3). In the case 
of the RILD, an extra cladogram search is required to calculate the Max 
LengthCombined using the command weight (page 329), which assigns 
a weight to the partition under regular analytical searches (-weight -1).

 

ILD
Lengthcombined data set Lengthindividual data sets∑–

Lengthcombined data set
--------------------------------------------------------------------------------------------------------------------=

RILD
Lengthcombined data set Lengthindividual data sets∑–

Max Lengthindividual data set Lengthindividual data sets∑–∑
------------------------------------------------------------------------------------------------------------------------------=
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Common topological measures of partition incongruence include per-
cent shared groups and percent compatible groups (Wheeler 1995), and 
the Topological ILD (TILD; Wheeler 1999b). The latter is determined 
by generating a group inclusion matrix for optimal topology from the 
combined data set and each partition, then calculating the Mickevich–
Farris Index that results from the analysis of those matrices. 
The TILDN is based on the TILD but measures the ratio of how much 
topological homoplasy (incongruence) there is versus how much there 
could be in the worst case (complete bush).  That is, it corrects for the 
effect of unresolved input topologies by dividing by the maximum pos-
sible length of the combined data sets minus the sum of lengths of the 
individual data sets.  

(Eq. 7.3)

Few methods are available that examine the behavior of partitions 
directly through a posteriori analysis of total evidence results (Grant and 
Kluge 2003). However, one simple approach is to optimize each parti-
tion separately on the optimal total evidence topology to determine 
cost, distribution of transformations, and tree statistics for that parti-
tion. This can be done in POY by inputting the optimal topology and 
diagnosing it with each partition of interest or by opening the 

+

D

C
B

A

E

D

B
C

A

E

D

C
B

A

E

Data set 1 Data set 2 Data set 1+2

L2=ML1=N L1+2=N+M+X

Figure 7.3  Homoplasy (X) component of combining data partitions. 

TILDN
Lengthcombined data set Lengthindividual data sets∑–

Max Lengthindividual data set∑ Lengthindividual data sets∑–
------------------------------------------------------------------------------------------------------------------------------=
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Hennig86/Nona files in Winclada and activating/deactivating the char-
acters of each partition. 

Jackknife Resampling
A common method for evaluating nodal support is to use a resampling 
technique such as the parsimony jackknife (Farris et al. 1996; see also 
Goloboff et al. 2003a). POY can also implement jackknifing using 
maximum likelihood as the optimality criterion. Jackknifing is invoked 
by the command jackboot (page 266). It generates the N submatrices 
where N is set using the command replicates (page 311) by 
randomly resampling the original data with a specified deletion proba-
bility for any site of e-1 (approximately 0.37) by default, following Farris 
et al. (1996) and performing a full analysis of each submatrix, giving N
pseudo-replicate analyses.
A strict consensus is calculated automatically for each pseudo-replicate 
and the majority-rule consensus is calculated for the N pseudo-repli-
cates, all of which are included in the default output file. The group fre-
quencies on the cladogram are the jackknife percentages. The following 
is a typical jackknifing script using parsimony under direct optimization 
for 1000 pseudo-replicates:
poy datafiles -jackboot -replicates 1000 
-jackfrequencies all -jacktree 

The default output can be modified with the commands jackoutgroup
(page 270), jackpseudoconsensustrees (page 270), jackpseudot-
rees (page 271), jacktree (page 271), jackftrees (page 269), and 
jackwincladefile (page 272). Cladogram search strategies that differ 
and are less aggressive than the original search for the most parsimoni-
ous trees often lead to jackknife support values that are incorrect and 
unpredictable (that is, the values may be lower or higher than expected).

Jackknifing Algorithm
Parsimony jackknifing was described by Farris et al. (1996; see also Far-
ris 1997) as a measure of character support for clades. The original 
description was for nonadditive characters. In POY, jackknifing is per-
formed over all characters and types present in an analysis. Standard 
jackknifing applies a delete probability (usually e-1) to each character. 
Given the dynamic homology regime for several character types, such 
deletion is impossible, since homology reconstruction would be 
affected as well as cladogram cost. As a result, POY reweighs the 
deleted fraction of characters to zero. 
Jackknifing then proceeds through specified search options for each 
replicate.  The  POY specific function is the calculation of jackknife 
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cladogram costs for direct optimization characters.  As mentioned 
above, the nucleotides are not deleted, but HTU costs are altered 
according to the jackknife values.

Algorithm 7.4 Get Jackknife delete array

delete_array ←  allocate array of array_size Booleans
for i ←  1 to array_size do

if Random() < (rand_max × fraction) then delete_array i ←  false
else delete_array i  ←  true

done
return delete_array

Algorithm 7.5 Modify HTU cost

new_cost ←  old_cost
for i ←  1 to Length(left_descendant) do

if (not delete_array(i mod (Length(delete_array)))) then
new_cost ←  new_cost – σ left_descendanti , right_descendanti 

done
return new_cost

Bremer Support
Bremer support (branch support, decay index; Bremer 1988, 1994) 
assesses the decisiveness of corroboration of a given clade by comparing 
the length of the optimal cladograms with those of suboptimal solutions 
to determine how much worse (that is, more costly) a cladogram must 
be for that clade to be absent. 
Bremer values in POY can be calculated for all groups simultaneously 
by TBR swapping under a set of constraints designated by a group 
inclusion matrix, as specified by the commands bremer (page 220) and 
constrain (page 233). A group inclusion matrix (one character for 
each member for a clade; Farris 1973) can be output using poystrict-
consensuscharfile (page 300). These simultaneous Bremer support 
calculations might lead to overestimates of group support. This is 
because POY calculates Bremer values based on a single round of TBR 
branch swapping. Relevant cladograms more than a single TBR swap 
away will not contribute to the Bremer values calculated in this fashion. 
Partitioned Bremer support values (Baker and DeSalle 1997) can be cal-
culated in POY, as outlined by Hormiga et al. (2003).
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Bremer Support Algorithm
There are two ways to determine Bremer support values in POY. The 
first is to perform a series of searches, where each group supported on 
the examined cladogram is constrained not to occur in the result (refer 
to constrain on page 233 and disagree on page 238). The Bremer 
support value for that clade is then the difference between the uncon-
strained result and the constrained result. For a fully resolved cladogram 
of n taxa, n 2 searches would be required. A benefit of this approach is 
that these searches can be thorough, hence the values accurate. The 
drawback is that this can be a very time-consuming approach.
A second, less conservative approach simultaneously calculates Bremer 
values for all nodes on the cladogram (refer to bremer on page 220, 
constrain on page 233, and topology on page 323). This method is 
fast and approximate and described below. Clades with marginal sup-
port would profitably be tested with the more exhaustive constrained 
search procedure.
The bremer command in POY performs an SPR (bremerspr on 
page 221) or TBR (bremer on page 220) swap on an input cladogram to 
be tested. Shortcuts in cladogram cost calculation (for example, direct 
optimization and fixed-states characters) are not used, since such 
Bremer values would not be comparable to other cladogram costs.
As an alternative to the bremer command, Bremer support values can 
be estimated for each node separately. This approach is much more 
time-consuming, but it is a more rigorous implementation and often 
increases the accuracy (that is, lower values) of Bremer support values 
(employed in Frost et al. 2001b). To take this approach, the group inclu-
sion matrix must be split manually into individual matrices of one char-
acter each (that is, one file per group).   Using the commands disagree
(page 238) and constrain (page 233), use each matrix as a constraint 
file in separate POY runs for each group to search for the optimal 
cladogram that does not include the specified group. These separate 
POY runs can be executed consecutively in a single batch file. Bremer 
values are then calculated for each group as the difference between the 
cost of the particular constraint cladogram and the original, optimal 
cladogram. 

Algorithm 7.6 Get Bremer array

cladogram_cost ←  Optimize (T, Obs)
for (all local_cladograms in TBR or SPR of T swap round) do

local_cost ←  optimize (local_cladogram, Obs)
for (all clades in Grps) do

if (clade not in local_cladogram) then 

–
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bremer_arrayclade ←  (bremer_clade c lade,  local_cost – 
cladogram_cost)

done
done
return bremer_array

Fit Indices
Since POY deals primarily with dynamic homology assessment, the only 
fit index that is clearly interpretable is the report on the optimality crite-
rion—that is, the cladogram cost or length or the likelihood value. The 
ensemble consistency index (CI; Kluge and Farris 1969) and retention 
index (RI; Farris 1989) have little meaning in the context of dynamic 
homology. To calculate conceptually equivalent fit indices, the chosen 
optimization algorithm must be applied to find the lowest cost optimi-
zation for the worst possible topology and the highest (that is, an unre-
solved bush). The minimum cost for a fragment can be estimated by a 
search on that character alone, the maximum by applying -weight -1
(refer to weight on page 329) and, in essence, searching for long trees.
Coarse, nonsearch estimates of modified CI and RI values are reported 
in the output when the command indices (page 263) is specified. 

Parameter Sensitivity Analysis
The results of any analysis depend on assumptions.  Among the many 
analytical assumptions an investigator must make are those relating to 
the relative costs assigned to transformations.  In molecular systematics 
this is most often assessed in terms of indel, transversion, and transition 
costs.  As Morrison and Ellis (1997) showed, phylogenetic results can be 
even more dependent on these values than they are on the method of 
analysis.  Wheeler (1995) proposed a method of sensitivity analysis to 
explore the effect of varying these and other parameters, such as differ-
ential gap opening and gap extension costs (although Wheeler only 
examined transition, transversion, and indel costs).  
The result of this kind of sensitivity analysis can be presented in several 
ways:
• As a value reflecting the percentage of parameters under which a 

given node is recovered (Giribet et al. 2001);
• More visually, as a so-called “Navajo rug” (Wheeler 1995; Janies 2001; 

Giribet 2003), a graphic plot where the parameter space is 
represented as a grid with parameters represented in two (or more) 
axes (typically indel-to-change ratio on one axis and transversion-to-
transition cost ratio in the second axis) and color coding to designate 
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monophyly or nonmonophyly of a given group (see Figure 7.4 on 
page 95);

• A consensus (strict or majority rule) of the clades recovered under the 
different parameter sets (for example, Edgecombe et al. 2002; 
Schulmeister et al. 2002);

• As a congruence surface (Wheeler 1995).

In addition to using sensitivity analysis simply as a data exploration tool 
to compare results, it has also been used to select a parameter set and 
corresponding cladogram as optimal.  This is accomplished by calculat-
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ing the partition incongruence under each of the parameter sets of 
interest, using either topology- or character-based measures.  In this 
framework, the parameter set that minimizes incongruence among par-
titions (however incongruence is measured) is considered optimal.
The values of the congruence analysis can also be plotted in different 
ways, such as congruence surfaces (see Wheeler 1995) or color gradient 
surfaces (see Janies 2001; Frost et al. 2001a).
All these congruence measures depend on the specified partitions.   In 
order to have a truly partition-free metric, this dependence must be 
removed.  The Meta-Retention Index (MRI), Farris’s Retention Index 
calculated over all characters, has been proposed as a measure for 
choosing trees (Wheeler et al. 2006).

 (Eq. 7.4)

where

fragment = character for fixed homology statements (for 
example, morphology)

In maximum likelihood analysis, the absolute likelihood value can be 
used to choose the best topology even when analyzed under different 
models. However, likelihood practitioners often prefer to rely on a hier-
archical table of models from more simple to more complex and use a 
likelihood ratio test (or other criteria such as the Akaike Information 
Criterion) to choose a model without making it too complex (Huelsen-
beck and Crandall 1997; Posada and Crandall 1998). A hierarchical table 
of models such as that implemented in MODELTEST (Posada and 
Crandall 1998) has not been implemented in POY, but topology-based 
partition congruence can be used to select models.

Suggested Reading
Bremer, K. 1988. The limits of amino acid sequence data in angiosperm phylo-

genetic reconstruction. Evolution 42: 795–803.

Farris, J. S. 1989. The retention index and the homoplasy excess. Systematic 
Zoology 38: 406–407.

MRI
Lengthfragments∑ Lengthcombined data set–

Lengthfragments∑ Minimum Lengthfragments–
-----------------------------------------------------------------------------------------------------------=
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8 Parallel Processing
Clusters and Parallel Processing
Phylogenetics is computationally demanding. Much attention has been 
paid to heuristics of cladogram search when the user has a single pro-
cessor. However, comparative genomic data sets are growing at a stag-
gering pace. Fortunately there is ample opportunity to exploit the power 
of parallelism in phylogenetics by tuning cladogram search heuristics on 
a computer with multiple CPUs or a distributed network of processors.
In this chapter, the allocation of processing resources in POY to achieve 
parallel efficiency is discussed. With appropriate algorithms, a parallel 
computer performs multiple operations concurrently on separate CPUs. 
In contrast, a single CPU machine proceeds sequentially, performing 
each operation in turn. The decrease in calculation time in a parallel 
computer depends on
• the efficiency in which data and computational work can be 

divided into smaller problems and assigned to multiple processors.
• the extent to which algorithms depend on intermediate solutions in 

order to move on to further operations. 
POY is run on supercomputers by groups at university and government 
laboratories around the world. POY was originally designed to take 
advantage of Beowulf-class computing clusters with relatively low band-
99
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width and high latency interconnects. As a result, there are many 
options the user can specify to tune parallel algorithms to take advan-
tage of and minimize the shortcomings of a particular machine.

Granularity, Scaling, Overhead, and Load 
Balancing

Granularity indicates the degree to which complex problems are broken 
down into smaller pieces for parallel computation. Fine-grained 
approaches assign small amounts of work to each processor and require 
a high degree of communication among processors to coordinate the 
calculations. Alternatively, coarse-grained approaches assign larger 
chunks of work and require commensurately less interprocessor com-
munication. Since there is more communication in a fine-grained 
approach, loads can be balanced more evenly among processors than in 
more coarsely grained algorithms. The efficiency of parallel calculations 
depends largely on the communications and synchrony requirements of 
the tasks that are assigned.
Overhead consists of bookkeeping by the master processor to manage 
the message passing, the actual time of interprocessor communication, 
and any additional work that might need to be done to break the prob-
lem into smaller tasks.  Because phylogenetic searches have unpredict-
able running times, balancing the processing load among slave proces-
sors is a difficult but not insurmountable problem.  Individual hardware 
and user environments will determine the best approach to load balanc-
ing.

Scaling
Ideally, calculations would scale in direct proportion to the number of 
processors devoted to a problem.  This is rarely the case.  With perfect 
linear scaling, one expects with parallel execution over 100 slave proces-
sors a 100-fold speedup as compared to sequential execution time. 
However, there are elements of the search procedure that are not paral-
lelized as well as overhead, which prevent perfectly linear speedup.

Overhead
A search procedure might require 100 separate cladogram searches on a 
single processor. The command replicates (page 311) performs ran-
dom cladogram building followed by swapping in sequence a specified 
number of times, collects the best results for final refinement, and out-
puts the best cladogram. If the mean execution time of a single search is 
150 seconds, it will take approximately 15,000 seconds to get through 
100 searches on a single processor. However, on a cluster of 100 proces-
sors dedicated to a single user using the commands parallel
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(page 293) and replicates (page 311) this analysis would be executed 
in only one third to one twentieth the time, instead of the expected 
reduction of close to 100.
Using these commands, the 100 processors work collectively on each 
search in a sequence. Building each cladogram can be partitioned out to 
many processors, but this is a fine-grained operation. For anatomical 
characters, the cost of computation for adding a single taxon to a 
subtree is small and scales linearly with the number of characters. The 
cost of computation for adding a single taxon is simply a cladogram 
length calculation resulting from comparing the character states of the 
taxon to be added to the union of character states for ancestor and 
descendants on the branch to be added (Goloboff 1996a). When build-
ing a cladogram in parallel, the cladogram length for each taxon addition 
must be communicated from each slave back to the master for each 
addition point for every taxon in a data set. As a result, the ratio of 
communication relative to computation is very high and the parallel 
computer spends much time shuttling instructions and intermediate 
results back and forth, lowering overall efficiency. Luckily more coarsely 
grained approaches are available.

Load balancing
In phylogenetic analysis, an obvious coarse-grained parallel approach is 
to evaluate random searches concurrently and independently on differ-
ent processors. An alternative strategy for the example problem of 100 
searches on a parallel computer is to use the commands parallel, 
replicates, and multirandom (page 285) (refer to “Parallel Environ-
ments” on page 114). These commands execute 100 searches that run 
concurrently because multirandom specifies that the work be allocated 
as one replicate per processor. The 100 searches complete cladogram 
building and swapping within each replicate on its own processor. The 
slave jobs are independent of any need for communication save for the 
master processor sending out the work and collecting the final results. 
This run might complete with a 75-fold rather than the 100-fold 
speedup expected from a 100 processors. It is common for the random 
replicates to have a wide distribution of execution times. This is due to 
the path the heuristic searches take, the number of cladograms found, 
and other factors. The way this search was designed, the master must 
wait for all searches to be returned before final refinement can begin. 
Many slave processors that have finished their replicates must sit idle 
until the slowest replicate completes.
There are many ways to address asynchrony of execution times in POY. 
First, when conducting a multirandom search. building and swapping 
are conducted on each processor and time spent swapping is probably 
contributing most significantly to the variance in execution time. The 
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independent initial random addition sequence cladogram builds can be 
performed on single processors, while swapping is accomplished over 
several. Such a run on 100 processors is specified using the commands 
parallel, replicates, multibuild (page 283), and buildsperrep-
licate (page 223). The results might improve the speedup to 88-fold, 
but not the full linear 100-fold speedup.
Strategies that employ the commands multibuild and multiratchet
(page 285) can exhibit nearly linear speedup. However, the efficiency of 
swapping depends on the size of the cluster and the hardware used 
( Janies and Wheeler 2001). In this case, the previous strategy can still 
be described as coarse-grained because builds are done on a one-repli-
cate-per-processor basis. However, multibuild specifies builds with-
out terminal swapping. On their own, builds tend to have a low variance 
of execution times (on a homogeneous cluster), and thus most of the 
results would come back within about 10% of each other in a homoge-
neous cluster. Once all builds were collected, the swapping proceeded 
on the best cladogram (or cladograms if there are many at minimal 
length) in parallel.
While performing branch swapping using SPR, each taxon and each 
internal node are removed from a candidate cladogram (but not 
derooted) and placed back at all other possible internodes. In paralleliza-
tion of SPR, various pairs of subtrees resulting from prunings are 
passed to individual slave processors where the optimality value for each 
regraft is calculated. Once a set of regraftings is assessed, the best topol-
ogies and cladogram lengths are reported back to the master. SPR 
involves moderate communication-to-computation ratios. For SPR in 
POY on a cladogram with t taxa, there are 2t  –  4 branches to prune off 
the cladogram. A load-balancing problem arises in placing the subtrees 
back on the cladogram. The larger the subtree (number of descendents) 
the smaller the set of internodes that remain as possible regrafting 
points. Thus granularity of swapping is variable. The number of candi-
date replacements varies from 3 to 2t  – 3, thus producing a large spread 
of execution times. In TBR, the number of subtrees pruned is smaller 
than SPR because prunings occur only along internal branches. How-
ever, the number of regrafts in TBR is greater than in SPR because sub-
trees are derooted and all possible rerootings are tried. The number of 
candidate replacements in TBR is the product of the number of 
branches (minus one replacement point that represents the original 
tree). Thus a load balancing problem occurs in TBR, but it is limited by 
the number of prunings rather than regrafts as in SPR. 
In both modes of branch swapping the shortest cladograms are kept 
and further rounds of rearrangements are tried on the shortest 
cladograms until no shorter candidate cladograms are found. It is not 
possible to predict how many swapping rounds will be needed, as this is 
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tied to heuristics, data set structure, and length of initial cladogram 
builds. The speedup of swapping has been empirically determined to be 
limited to 32 processors on a variety of data sets for a large cluster with 
100-Mbps Ethernet interconnects ( Janies and Wheeler 2001). This 
should be on specific cluster/multiprocessor hardware because SPR and 
TBR branch swapping are used directly or underlying many refinement 
techniques (for example, ratcheting, drifting, tree fusing). Thus, 
although the strategies to balance load described below are made with 
swapping examples, they are broadly applicable.

Efficient Parallel Searches
There are many ways to efficiently allocate resources on a large cluster 
in single and multiuser environments.  One of the most popular is to use 
scheduling software that acts as a front-end filter to permit jobs into the 
cluster based on characteristics of the user and the work requested. 
This type of resource control will be unique to each cluster and the 
practice of its administrators.  
POY users have the ability to dynamically create and modify subclusters 
of slave processors within the large cluster to take advantage of the dif-
ferences in optimal behavior of cladogram building and swapping pro-
cedures. Given a cluster of 256 processors connected by 100-Mbps 
Ethernet, multiple cladogram building is efficient to several hundred 
processors, so that is not the issue. However, swapping is most efficient 
at 32 processors. Thus, the processor pool can be divided using the 
command controllers (page 234). In this example 256 / 32 = 8 so 
you specify controllers 8 to create 8 subclusters of 32 processors 
each. In a command line with controllers 8, parallel, multiran-
dom, replicates 8, multibuild, and buildsperreplicate 32, 
eight simultaneous full searches with 32 random addition sequences 
each are executed in parallel by each subcluster. The best cladogram(s) 
of the 32 builds within each cluster are submitted to branch swapping in 
parallel using the processors within each subcluster. Command lines are 
provided below based on experiments with a 256-processor cluster. The 
best choices for any given cluster should be determined empirically by 
benchmarking as in Janies and Wheeler (2001). 
Several full command lines follow that illustrate the techniques 
described above to achieve parallel efficiency.
poy -parallel -controllers 8 -multirandom 
-replicates 8 -multibuild -buildsperreplicate 32 
datafile > stdout 2> stderr

This command line performs eight full searches (Wagner tree through 
refinement) in parallel.  Each search would have 32 Wagner builds (for a 
total of 256 builds), the best of which are submitted to swapping. 
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Alternatively:
poy -parallel -controllers 8 -multirandom 
-replicates 64 multibuild -buildsperreplicate 32 
datafile > stdout 2> stderr

The above command line performs 64 full searches.  One full search 
(representing 32 Wagner builds plus swapping) will be spawned in each 
of the 8 subclusters.  As each subcluster completes a full search, that 
subcluster will receive another search replicate until all 64 replicates are 
complete.   A command line such as the one above can be modified to 
take advantage of stopping rule commands.  For example:
poy -parallel -controllers 8 -multirandom 
-replicates 64 multibuild -buildsperreplicate 32 
-minstop 15 -stopat 3 datafile > stdout 2> stderr

The above command line performs up to 64 full searches (build through 
refinement) starting by sending one to each subcluster.  However, 
instead of going through 64 searches, this command will stop if a puta-
tive minimum cladogram length is found three times after having com-
pleted at least 15 cladogram searches.  Otherwise the 64 full searches are 
performed.   

Efficiency in multiuser environments
Even an efficient search strategy can be upset by a complex multiuser 
environment. Individual users can overload with large memory 
demands, and many clusters are made of heterogeneous processors with 
various capabilities. In addition, the environment can change during the 
course of long runs. Designing a command line to deal with these 
sources of dynamic variation is difficult. One method built into POY to 
balance load on the fly as the search progresses is dynamic process 
migration using the command dpm (page 241). Dynamic process migra-
tion is intended to optimize overall cluster performance by moving 
work from processors with high CPU load to more capable or more idle 
processors. Periodically (and self-adjusting based on success) POY pro-
cesses that use dpm commands poll the cluster looking to move tasks 
from busy, slow nodes onto relatively idle, fast processors. The dpm
algorithm works on a market model in which processors bid for tasks 
based on their load. The user defines the rules of the market in order to 
tune the bidding to the heterogeneity of the cluster and user load. The 
key command dpmacceptratio (page 242) defines a threshold in the 
ratio of instantaneous processor performance to trigger migration of a 
POY job to another processor. Instantaneous processor performance 
response is a combined measure of current load and intrinsic CPU 
speed. In practice, bidding (that is, calculations of instantaneous proces-
sor performance) should not occur on every possible occasion but with 
sensible intervals defined by dpmperiod (page 245). It is possible to 
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automatically modulate bidding with respect to success using dpmauto-
adjustperiod (page 242). With this command, if requests lead to pro-
cess migration, the bid period is reduced; however, if bids are unsuc-
cessful, the period is increased such that the overhead of polling is a 
small percent of the total runtime of a search. On a cluster available at 
the AMNH with a diverse set of processors and users, the command 
string -dpm -dpmautoadjustperiod -dpmacceptratio 1.2 has 
worked well. These commands switch jobs when a novel processor 
appears 20% faster than the one currently used.

Suggested Reading
Foster, I. 1995. Designing and Building Parallel Programs. Addison Wesley, 

Reading, MA. Available online at http://www-unix.mcs.anl.gov/dbpp/
Janies, D. and W. C. Wheeler. 2001. Efficiency of parallel direct optimization. 

Cladistics 17: S71–S82.
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9 Guidelines for 

Research
Performance
Success in phylogenetic analysis has become increasingly dependent on 
computational speed.  In describing POY optimization and cladogram 
search algorithms earlier, we noted that the use of large data sets 
increases computational demands exponentially.
Given finite analytical resources and ever-enlarging taxonomic and char-
acter samples, there are trade-offs between  the amount of data and the 
exhaustiveness of analysis.  No one set of analytical guidelines will be 
appropriate for all problems.  POY offers a broad variety of options to 
tailor search strategies to the needs of the user, the demands of the 
problem, and the availability of computational resources.  
This chapter offers some guidelines on how to use POY for specific 
data sets and analyses.  Our focus is on the analysis of data implement-
ing the dynamic homology concept used by the character optimization 
methods unique to POY.  These are methods that are computationally 
demanding because they consist of nested NP-complete problems: 
homologies are determined as the most parsimonious topology is 
found.
The critical factor for the reader to effectively use POY is in how to 
design search strategies. Although POY brings both innovative heuris-
107
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tics and the power of parallel processing to phylogenetic analysis, there 
are no set rules for its use. Each data set has its own idiosyncrasies, as 
does each computing environment on which POY is used. As a conse-
quence, we describe three strategic areas:
• Partitioning of sequence data to create smaller data sets and reduce 

the computational load
• Overcoming the problem of composite optima inherent to large data 

sets and dynamic character optimization
- Search algorithms and their combination
- The use of sensitivity analysis

• Taking full advantage of POY in a parallel computing environment.
There are, as yet, no global rules on search strategies in POY. The 
suggestions here were developed in the context of our individual 
research projects.

Partitioning Sequence Data
Direct optimization examines all potential nucleotide homologies 
between two (or three in the case of iterative pass optimization) 
sequences. As a result, the time consumed is proportional to the 
product of the lengths of the sequences compared. Although correct, 
this procedure can be time-consuming for long pieces of DNA. In cases 
where sequences exhibit alternating stretches of conserved and variable 
regions (such as within and between amplification primers), economies 
can be realized by partitioning the sequences into pieces corresponding 
to these areas.
Since nucleotide homologies are not examined over the separate par-
titions, sequence optimization proceeds more rapidly. A sequence 
divided into n equal-length fragments will see an acceleration factor of 
approximately n. Giribet et al. (2000) and Edgecombe et al. (2002) first 
used this strategy with POY.
The caveat to following this strategy is that care must be taken in 
how DNA sequences are partitioned. While partitioning increases 
computational efficiency, it introduces ad hoc hypotheses into the 
analysis. That is, a partition assumes that the fragments are mutually 
exclusive. For example, if a partition creates three fragments, the 
analysis assumes that there are no homologues between the first and 
second fragments. If this were the case, the analysis could not estab-
lish the homology and would therefore not find the most parsimoni-
ous cladogram.
Use of flanking primers is the most conservative procedure for parti-
tioning genotypic data.  This strategy reduces the ad hoc nature of the 
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assumptions required to partition the data because it uses gene 
sequences as they were identified in the laboratory.
Figure 9.1 illustrates this strategy. A sequence is determined by sequenc-
ing three overlapping fragments using three sets of flanking primers. 
The resulting contiguous sequence is then partitioned using the primers 
as markers. The result is five fragments, each one being homologous in 
all the species for which the gene was amplified. In principle, this should 
have no effect on the analysis since the split separated nonhomologous 
nucleotides.

The results of an analysis using this strategy can be validated by per-
forming an analysis of the least cost cladogram from the partitioned 
data using the unpartitioned, single data set. If the partition’s homol-
ogy assumptions are valid, the cladogram cost from this second anal-
ysis using a single data set should be the same as a partitioned data 
set. If the single data set cladogram cost is less than the partitioned 
data set cost, then one should examine the assumptions upon which 
the partitions are based (see several examples in Giribet 2001).
In the same way that flanking primers can be used to concatenate 
multiple fragments for a given locus, multiple gene fragments or 
complete loci can be used simply by specifying the individual files for 
each gene. In addition, comparative data on secondary structure for 
ribosomal genes can be used to specify stems and loops or any other 
type of information that allows the investigator to partition the data 
unambiguously. Again, the more fragmentation the data suffers, the 
more possibilities for entering biases.

Sequence 1

Primers

A B C D EFragments

Sequence 2

Sequence 3

Amplified

Figure 9.1: Three sequence fragments isolated by flanking primers, amplified to 
form a contiguous sequence, then partitioned into five fragments used in analysis.
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From a purely operational point of view, fragments can also be speci-
fied to ameliorate the effects of poor sequences, missing data, or lack 
of the overlap of sequences downloaded from a data base. Figure 9.2
illustrates this process. Imagine that an investigator sequenced 1000 bp 
for a given locus for five taxa, and three more partial sequences were 
downloaded from GenBank. The overlapping of the eight sequences 
may not be complete, and therefore dividing the sequences into frag-
ments could assist with the handling of missing data. 

Composite Optima
With large data sets, it is possible for an analysis to become stuck in a 
local optimum that is globally suboptimal—what Maddison (1991) calls 
an island of cladograms. This is a classic example of a complex solution 
“landscape” with peaks and valleys of local optima (2, 4, 5, and 6 in 
Figure 9.3 on page 111) and a global optimum (7 in Figure 9.3). The 
most common solution to this problem is the use of a cladogram search 
strategy that initializes on multiple, randomly selected starting points (a 

Sequence 1

Primers

A B C D EFragments

Sequence 2

Sequence 3

GenBank 1

GenBank 2

GenBank 3

Sequence 4

Sequence 5

Figure 9.2: Separation of eight sequences by flanking primers into segments to 
ameliorate the effects of missing sequence data.
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RAS or Wagner tree as described page 65), then performs the cla-
dogram search using TBR (as described page 71). 

However, the RAS + TBR strategy can be inefficient for large data sets 
(Goloboff 1999, 2002).  Since the problem of optimizing length-variable 
DNA sequences on even a single cladogram is also NP-complete, heu-
ristic strategies are employed (such as direct optimization) at the nucle-
otide homology stage as well.  With this added level of complexity, 
search strategies must be even more aggressive than those for data sets 
based on anatomical or prealigned data.  
In large data sets, individual sections of the cladogram can act as sep-
arate problems, each with its own local search space.  A given 
RAS + TBR round might yield an optimal or nearly optimal configu-
ration for one clade, but the remainder is markedly suboptimal and 
so on for multiple large clades.  This is the notion of composite 
optima (Goloboff 1999).  Such data sets are unlikely ever to achieve a 
satisfactory result simultaneously for all cladogram segments through 
the use of RAS + TBR replicates alone.       

1

2

3

4

5 6

7

Figure 9.3: Local optima depiction for cladogram optimality space.  The verti-
cal is cladogram length.  RAS + TBR procedure is likely to hit points 1 and 3 
and get down to 2, 4, or 5, but will be stuck there.  To reach shorter 
cladograms such as in 6 or the global optimum in 7, qualitatively different 
techniques are required.
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To reach a satisfactory result for such data sets, qualitatively different 
approaches are required to deal with the problem of composite optima:
• The use of algorithms such as ratcheting (Nixon 1999), tree fusing 

(Goloboff 1999), sectorial searches (Goloboff 1999), and tree drifting 
(Goloboff 1999);

• The use of strategies combining several cladogram search algorithms;
• The use of results from a sensitivity analysis as input cladograms for a 

refinement search.

Search algorithms
There are two main approaches to ameliorating the problems of local 
and composite optima in phylogenetic cladogram searching:
• Simulated annealing-type methods (for example, ratcheting and tree 

drifting), which strive to break out of local optima;
• Genetical algorithm-type methods (for example, tree fusing), which 

seek to exchange and combine results from multiple local optima.
These secondary refinement strategies are usually based on prelimi-
nary RAS + TBR searches. 
Random addition sequences generate a diversity of starting points for 
refinement (that is, swapping) and, through their random compo-
nent, allow exploration of multiple local optima (islands). Branch 
swapping might well be satisfactory for smaller or highly structured 
data sets, but even if not, will certainly provide fodder for further 
refinement. The number of cladograms that are saved per random 
replicate is an important factor in execution time since comparing 
cladograms is time-consuming. As stated by Goloboff (1999, page 416), 
“Saving too many trees per replication is a waste of time, because the 
trees found by swapping differ too little from the original tree(s) and are 
unlikely to lead to new optima.”
Farris et al. (1996) showed that from a practical point of view, it is an 
inefficient use of resources to attempt to find all most-parsimonious 
cladograms for a given data set. Given that the object is usually a strict 
consensus of these optimal cladograms, the objective is to find the mini-
mum number of cladograms with maximum disparity. It is likely that the 
strict consensus of a few, very different cladograms will be quite similar 
to that generated from thousands of slightly different cladograms. 
Hence, it is usually wise to keep the number of cladograms saved per 
random replicate to a minimum. 
Ratcheting and tree drifting both accept suboptimal cladograms to 
generate potentially useful search paths to new, hopefully global 
optima. In principle, the ratchet/drift is an extension of RAS, in that 



Guidelines for Research 113

9 
G

ui
de

lin
es

10
 R

eq
ui

re
m

en
ts

11
 In

st
al

la
tio

n
3 

A
na

ly
sis

13
 In

pu
t/

O
ut

pu
t

14
 T

ut
or

ia
ls

15
 C

om
m

an
ds

7 
Ev

al
ua

tio
n

8 
Pa

ra
lle

l

each successive replicate involves the exploration of, and potential 
departure from, a different local optimum. Therefore, solutions can 
be explored through the generation of multiple RAS departure 
points, followed by swapping refinement, or through the generation 
of fewer starting points but with the application of several ratchet/
drift replicates on each original cladogram. Considering the time con-
straints involved with the building of initial cladograms in dynamic 
homology procedures (at least in POY), emphasis on swapping rou-
tines over initial building is logical.
Tree fusing exchanges information between cladograms and, as such, 
can yield an optimal cladogram from two suboptimal candidates with 
optimal subtrees.   For example, Goloboff (1999) cited two advan-
tages in using tree fusing:
• First, it uses suboptimal cladograms so long as some branches have 

an optimal configuration. As a result, replicates that might lead to an 
optimum are not rejected.

• Second, tree fusing provides a way to validate the global optimum: 
similar or identical least-cost cladograms that are independently based 
on multiple replicates support the global optimum.

Combining strategies
Goloboff (1999) described the combined use of cladogram search 
methods and how analyses can be improved. He notes the disparity 
between the time it takes to build cladograms from scratch for start-
ing points and the time it takes to find a least cost cladogram based on 
such cladograms. We discuss these combined strategies further in “POY 
Process Flow” on page 114.
Most search procedures used in POY are  based on RAS + TBR rep-
licates, often with ratchet and tree fusing rounds within each repli-
cate, followed by tree fusing among the replicate results and final 
TBR refinement. 

Sensitivity analysis output
The results of a sensitivity analysis can be used effectively as a start-
ing point for a more aggressive search under one or more parameter 
sets. For example, these cladograms can be submitted to tree fusing. 
The idea is in some way similar to ratcheting the data, because the 
cladograms obtained from the sensitivity analysis have been gener-
ated under different analytical conditions or weighting schemes. This 
strategy has been proven to give quick results for large data sets 
where simply building through the replicates would take a long time. 
The use of tree fusing is recommended if this strategy is chosen.
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Parallel Environments
Strategies for using POY parallel processing capabilities are described 
in Chapter 8 Parallel Processing.

POY Process Flow
The high level structure of POY is presented in Figure 9.4 on page 115. 
A distinction is made between building cladograms and refining 
cladograms.
Refinement of cladograms consists of heuristic procedures to find 
better cladograms on the basis of preexisting cladograms. Available 
procedures in POY are branch swapping using SPR and TBR, tree 
drifting, ratcheting, and tree fusing.
Depending on the origin of the cladograms that are presented as input 
to these algorithms, a distinction is made between input cladogram 
refinement, replicate cladogram refinement, and final cladogram refine-
ment:
• Input cladogram refinement refines input cladograms from the 
topology (page 323) and/or topofile (page 322) commands that 
are specified on the command line. The resulting cladograms are then 
set aside for final refinement later on. 

• Replicate cladogram refinement during any replicate is based on the 
cladograms that are first constructed from scratch during the build 
step of that replicate. For each replicate, the cladograms that result 
from the replicate refinement are set aside for final refinement after 
all replicates are done. 

• Final refinement starts on the basis of the cladograms that came out 
of input cladogram refinement and all replicate refinements.

Refinement of input cladograms     Refine (optimize) cladograms 
that are input from another application or from a previous POY 
cladogram search.

Replicate build step     Build an initial least cost cladogram from char-
acter data.

Replicate cladogram refinement     Refine (optimize) cladogram rep-
licates from initial least cost cladograms.

Final cladogram refinement     Refine (optimize) the final cladogram 
from all least cost replicates and least cost input cladograms.
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The methods selected to perform cladogram searches and optimize 
cladogram costs at each stage will determine the computational inten-
sity of the analysis. It will also determine what amounts to a large 
data set. By selecting the appropriate algorithms for each stage, you 
will be able to efficiently utilize calculation time.
The implementation of dynamic homology (as described) is compu-
tationally demanding.  When using algorithms such as direct optimi-
zation at any stage, data sets of modest size will have the computa-
tional demands of a large data set when compared to static homology 
searches.

Figure 9.4: POY process flow.

Final tree
refinement

Refinement of
input trees

n replicates to
do, 0 done

Output results

Replicate build
step

Done <
todo?

No

Yes

Read character
data, if any

Read input
trees, if any

Replicate tree
refinement step

Increment done

Replicate loop
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Examples of Strategies
The examples of strategies shown here are only suggestions and start-
ing points to elaborate your own search strategies, according to your 
data set, optimality criterion, and goals (exhaustiveness, data explora-
tion, etc.).
The following examples use the default optimality criterion (parsi-
mony) and search algorithm (direct optimization) unless specified. It 
has to be said that using a different optimality criterion such as maxi-
mum likelihood or a different search algorithm such as iterative pass 
optimization or search-base optimization is even more computation-
ally demanding. Search strategies should be designed accordingly.
Additional detailed examples and tutorials are presented in Chapter 14 
Tutorials.

A “quick and dirty” strategy
This is a strategy to get a simple Wagner tree quickly using shortcut 
heuristics such as quick (page 305) and staticapprox (page 317) and 
skipping the TBR branch swapping round. By default, direct optimiza-
tion is used.
-norandomizeoutgroup -quick -staticapprox -notbr

The quick (default) command causes POY to not swap on non-min-
imal cost cladograms during branch swapping but only on minimum 
cost cladograms. Static approximation (staticapprox) uses a fixed 
implied alignment as a branch swapping cost heuristic. Every time a 
shorter cladogram is found, a new implied alignment is calculated 
(based on that shorter cladogram) and this new implied alignment 
used for further swapping.

The RAS + TBR strategy
The strategy of RAS + TBR implies several replicates of random 
addition sequence (“Wagner Trees” on page 65) completed by a round 
of tree bisection and reconnection branch swapping (page 71).
-replicates n

In that strategy, several cladograms can be built at each replicate:
-replicates n -buildsperreplicate m

By default, TBR branch swapping is performed. If POY is run in a 
parallel environment, multirandom (page 285) and multibuild
(page 283) may be added depending on problem size and computational 
resources.
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The more replicates, the more starting points are explored. However, 
each or most of the starting points might yield the same minimum 
length cladograms. To limit the number of replicates in the case of 
multiple hits of the minimal length, stopat (page 318) and minstop
(page 282) can be used. For example:
-multirandom -replicates x -multibuild 
-buildsperreplicate y -stopat z -minstop t

This command line is designed to run in a parallel environment to 
perform x replicates with y cladogram Wagner builds per replicate; if 
the same minimum cladogram cost is hit z times, the analysis will 
stop, but only after having completed at least t complete search repli-
cates.
RAS + TBR is efficient for very small data sets (< 50 taxa). For larger 
data sets, however, it may be less effective. In these cases, RAS + 
TBR should be used as a starting point for more complex search 
strategies.

A basic strategy: RAS + TBR + Ratchet + TF
For this basic strategy, we assume that only character data are used, 
so that input cladograms are not used in the search.  The strategy 
described here is a good starting point for a data set of 100 taxa or 
fewer (see D’Haese 2002, for example), but is already an intense 
strategy.
-replicates w -buildreplicate x -slop y -ratchettbr z 
-treefuse

A diversity of starting points is generated using w rounds of RAS + 
TBR, saving preferably few cladograms per iteration (command 
maxtrees on page 282). Cladograms within a small percentage ( %) of 
the least cost cladogram will be evaluated completely after heuristic 
cladogram cost calculation.
Ratcheting (“Ratcheting” on page 72) is used to refine replicate 
cladograms obtained by RAS + TBR. The severity of the ratchet and 
number of replicates can be adjusted. 
The final cladograms will be refined with tree fusing (“Tree Fusing” on 
page 74) to combine the best sectors of each cladogram. In our experi-
ence, adding tree fusing after replicate rounds enhances the results only 
when dealing with data sets with more than 50 taxa. The values of w, x, y, 
and z can be modified according to how aggressive the user wants the 
search to be.
Drifting (“Tree Drifting” on page 72) could be added to or even replace 
ratcheting in the procedure:

y
10
-----
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RAS + TBR + Ratchet + DFT + TF or RAS + TBR + DFT + TF:
-replicates w -buildreplicate x -slop y -drifttbr 
-numdrifttbr n -treefuse

In the final cladogram refinement step, a round of TBR branch 
swapping accepting all cladograms within n tenths of a percent of the 
current minimum value can be added:
-checkslop n

Sensitivity analysis + tree fusing
For a large data set ( >100 taxa), where a good diversity of cladograms is 
already available, a simple tree fusing approach and a last round of swap-
ping (hence, skipping the replicate loop) is a good strategy to find opti-
mal cladograms.
The idea is to present tree fusing with a diversity of cladograms from 
different local optima.
The first step is to generate a diversity of cladograms using sensitivity 
analysis (Wheeler 1995). Several approaches are possible:
• Analysis of a static alignment (could be obtained by the command 
impliedalignment)

• “Quick and dirty” analysis
• RAS + TBR analysis
• More complex analyses such as the RAS + TBR + Ratchet + TF 

described above (if possible).
However the source cladograms are generated, this process is 
repeated for different parameter sets (for example, gap-transversion-
transition = 1-1-1, 2-1-1, 2-2-1, 4-2-1; see Figure 9.5).

G
ap

:T
ra

ns
ve

rs
io

n 
Ra

tio 8 8-1-2 8-1-1 16-2-1 32-4-1 8-1-0

4 4-1-2 4-1-1 8-2-1 16-4-1 4-1-0

2 2-1-2 2-1-1 4-2-1 8-4-1 2-1-0

1 1-1-2 1-1-1 2-2-1 4-4-1 1-1-0

0.5 1-2-2 1-2-1 2-4-1 1-2-0

0.5 1 2 4 ∝
Transversion:Transition Ratio

Figure 9.5: Different values of gap, transversion, and transition for a two-
dimensional table using gap:transversion (G:Tv) and transversion:transition (Tv:Ts) 
ratios.
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The second step is to collect all the cladograms obtained from the 
different parameter set analyses into the same file.  Then the file is 
submitted as a topofile to tree fusing and other final refinement.
Tree fusing is controlled through several options (poy -llist fuse).
There are other strategies to generate a relevant diversity of cladograms 
such as jackknifing.
This strategy can also be used to verify the cladogram costs in a sensi-
tivity analysis.

Strategies using different optimization heuristics or 
optimality 
Different optimization heuristics at different stages can be imple-
mented through the use of a series of scripts. Initial scripts might 
specify optimization heuristics that are less computationally intense and 
a subsequent script that processes the topologies (command topofile
on page 322) through a more intense optimization heuristic or different 
optimality criterion altogether.

Example 1     Input the best topologies from a static alignment 
analyzed under parsimony with sensitivity analysis; then the best 
cladograms from each parameter set are fed to tree fusing under direct 
optimization. 

Example 2     Search and swapping are done under direct optimization, 
then a final round is done under iterative pass. This strategy saves the 
time required at the build stage. Note that in general strategies like this 
will work better the closer the suboptimal topologies differ in structure 
from the optimal cladograms. One would expect to have fewer differ-
ences when dealing with sequences that do not vary wildly in length.

Example 3     Search and swapping are done under direct optimization 
for several parameter sets; then the resulting cladograms are submitted 
to tree fusing under maximum likelihood.

A general point is that these strategies will all work more effectively with 
a final round of swapping, holding additional cladograms. This explores 
the existence of additional equally optimal cladograms within a local 
minimum. Also, it is wise to save only a few cladograms at each step to 
avoid endless swapping on cladograms that are in the same local opti-
mum. At the same time, it is best to pass cladograms with maximum 
disparity to subsequent steps. The fitchtrees (page 253) command is 
designed for this, ensuring that cladograms kept (set by maxtrees on 
page 282) are a random subset of those that would have been kept if the 
cladogram buffer would have been larger. This is based on an algorithm 
suggested by W. Fitch (Janies and Wheeler 2002).





Part III
Using POY





10 Requirements
Operating System and Binaries
POY strives to be platform independent.  In general, POY is compiled 
for the latest stable operating system version and message passing soft-
ware that are being distributed for each major architecture.  If a shift is 
made in operating systems that causes some incompatibility, then POY 
binaries are posted for the two most recent versions (3.012 is current as 
of publication of this book) to ftp://ftp.amnh.org/pub/molecu-
lar/poy.
Users should use the same binary throughout a project to maintain full 
comparability among results. Users can always compile from sources, 
and instructions are provided in the chapter on installation.

Hardware
POY runs on computers from laptops and desktops to Beowulf clusters 
of various sizes to symmetric multiprocessing hardware and distributed 
systems. There are no particular requirements for disk space. Processor 
speed, memory, and communications bandwidth and latency are impor-
tant, but faster systems cost more. Since limited financial resources are 
the norm, POY is designed to work well in low-bandwidth, high-latency 
Beowulf clusters as well as more tightly integrated machines. It is impor-
123
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tant, however, to tune process granularity for your problem and hard-
ware (for example, one-processor-per-replicate strategies as discussed in 
Chapter 8 Parallel Processing and Chapter 9 Guidelines for Research).
The critical factor is being able to analyze data using a number of repli-
cates that enables you to find minimum cost cladograms multiple times 
in a reasonable amount of time. Choosing hardware depends not only 
on understanding parallelism and its associated heuristics, but also on 
understanding the time and storage complexity of the many optimiza-
tion styles and refinement heuristics included in POY.

 Time Complexity of Cladogram Building
The cost of computation is combinatorially expansive for an exact 
search. The number of possible rooted topologies increases as a power 
series, where i is the starting point and t is the number of taxa (Cavalli-
Sforza and Edwards 1967). The problem is NP-complete, and heuristics 
are required for biologically interesting data sets. For example, for 30 
taxa representing exemplars of most metazoan phyla, an exact search 
would require examining over 5 1038 cladograms. The heuristics com-
monly implemented in phylogenetic algorithms are sensitive to the 
order in which taxa are accreted into an alignment or cladogram optimi-
zation procedure. Thus random replication of the Wagner build process 
is important to adequate searching. When considering heuristics in POY, 
the cost of computation of each Wagner build on a single slave proces-
sor increases proportional to t 2 , where t is the number of taxa in the 
data set ( Janies and Wheeler 2001). 

Time Complexity of Cladogram Refinement
Branch swapping underlies many refinement heuristics in cladogram 
searching such as ratcheting, tree fusion, and tree drifting (Goloboff 
1999, Nixon 1999). In practice two modes of branch swapping—sub-
tree pruning and regrafting (SPR) and tree bisection and reconnection 
(TBR)—are employed by POY users. The default behavior of POY is to 
use rounds of branch swapping at many points during the overall search, 
including cladogram building, to make refinements of intermediate 
results. An understanding of the time complexity of these operations is 
central to understanding how to assign reasonable amounts of work to 
the machinery you have at hand. 
When considering heuristics in POY, the cost of computation for 
branch swapping is proportional to t 2  for SPR and t 2.5 for TBR, where 
t is the number of taxa.
When an analysis has a moderate to large number of taxa and only a 
small number of processors are available, branch swapping should be 

×
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minimized and advanced heuristics avoided. For example, a quick and 
dirty strategy (shown below) for various groups of >50 animals for 16S 
rRNA can produce cladograms marginally longer (within 0.25% or less 
of minimal cost) than an intense strategy (also shown below). However, 
the intense strategy takes more than 20 times longer than the quick and 
dirty strategy. 

Quick and dirty strategy
-nodiscrepancies -norandomizeoutgroup -sprmaxtrees 2 
-tbrmaxtrees 2 -fitchtrees -holdmaxtrees 50 -quick 
-staticapprox -replicates 16

Intense strategy
-nodiscrepancies -norandomizeoutgroup -sprmaxtrees 2 
-tbrmaxtrees 2 -fitchtrees -holdmaxtrees 50 -buildtbr 
-buildmaxtrees 2 -replicates 16 -ratchettbr 25 
-ratchetpercent 10 -ratchetseverity 3 -ratchettrees 2 
-treefuse -fuselimit 10 -fusemingroup 5 
-fusemaxtrees 100 -slop 10 -checkslop 10

A moderate amount of tree fusing can be applied to the cladograms 
produced by various parameters specified by molecularmatrix
(page 283) in conjunction with a quick and dirty strategy. This often 
reduces the cladogram cost to the same lower bound as found by the 
intense strategy to within 0.15% of the minimal cost achieved using the 
intense strategy.   Strategies such as quick and dirty searches with param-
eter variation followed by tree fusing are efficient for cladogram 
searches with large numbers of taxa. 

Storage Requirements
Wheeler (2003c) introduced search-based optimization (see page 55). 
Search-based optimization is a variation on fixed-states optimization 
that employs a user-supplied diversity of potential state solutions for 
hypothetical ancestral sequences rather than by inferring these states de 
novo. Search-based optimization can result in near-minimal length 
cladograms in a fraction of the time required for direct optimization 
(see page 47).
Studies of simple data sets on 32-bit systems indicate that search-based 
optimization can offer a three-fold speedup over direct optimization, or 
for very large searches, exhibit much longer execution times. However, 
the efficacy of search-based optimization is limited by the size of the 
state set to be searched. Thus search-based optimization is sensitive to 
the memory limitations of 32-bit systems. These algorithms are cur-
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rently being investigated in 64-bit systems, which afford much greater 
memory space and bandwidth.
To address these inefficiencies, a method of reconstructing ancestral 
sequences termed iterative pass optimization (see page 56) was imple-
mented (Wheeler 2003b). Using iterative pass, each of the internal verti-
ces of a cladogram is preliminarily estimated in the down pass. Upon 
completion of the down pass, rather than performing a single up pass, 
iterative revisiting of the internal vertices is used to refine the ancestral 
sequence reconstructions. Iterations are repeated (avoiding cycles) until 
stability is achieved, thus reducing the total cladogram cost. Iterative 
pass optimization often produces cladograms that are lower cost than 
those that result for direct optimization but with a large increase in 
computational time.
The space requirements of these methods are demanding. Whereas 
direct optimization typically requires l 2  elements of storage (where l is 
the DNA sequence length), l 3  elements of storage are required for iter-
ative pass. The storage requirements for search-based optimization are 
proportional to l 2S 2  (where S is the number of states provided). Some 
memory economy has been implemented with the command itera-
tivelowmem (page 265) by using the optimized diagonal transition 
algorithms described by Ukkonen (1985). 



11 Installation
Installation
Source code, documentation, test data sets, stable binaries, and test 
binaries are available via anonymous ftp for Linux, Microsoft Windows, 
and Mac OS X at ftp://ftp.amnh.org/pub/molecular/poy.
• Make sure to use binary mode for the transfer.
• You will then need to decompress the binary.
• You can change the name of the binary after downloading.
• Make sure to use chmod u + x  to make the binary user executable on 

Unix-like systems.

Download
POY is available on the American Museum of Natural History’s ftp site. 
To obtain POY executable and support files, take the following 
steps:
1. In Windows-based systems, create a folder named POY.

• This is the folder to which you will download the POY source files 
and from which POY is executed.

• Alternative configurations can be used with appropriate file man-
agement.
127
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• For parallel installations (for example, on Unix-like systems), see 
“Parallel Installation” on page 131.

2. Connect to the POY ftp site using anonymous as the user ID and 
your email address as a password.
ftp://ftp.amnh.org/pub/molecular/poy.

3. Download the following files to the POY folder (step #1).  Use 
binary transfer for the documentation PDFs and utilities of interest. 
Use ASCI transfer for text files of interest.  Note that some are archi-
tecture specific.

4. Download the following folders to the POY folder  (step #1).  Use 
ASCI transfer for sample data, output, and script files of interest. 
Note that some are architecture specific.

5. On the ftp site, change to the folder named version3-current or 
equivalent, which contains the stable versions of the POY execut-
able.

Table 11.1: POY reference and utilities to download
File name Description

poy3.pdf POY users’ manual in PDF (Acrobat) format (POY Users’ 
Manual)

README Notes on the current release of POY

README.MAC Notes on the current release of POY for Macintosh users

jack2hen.exe An executable that converts POY output to a Hennig86/Nona 
format matrix used for constraint files (refer to “Constraint file” 
on page 157)

jack2hen.c The source code for .exe

Table 11.2: POY sample data folders to download
Folder Description

sampledatados Examples of input data files and an example of a command 
script for use in a Windows implementation of POY (refer to 
“Input Data” on page 147)

sampledatalinux Examples of input data files and an example of a command 
script for use in a Linux implementation of POY (refer to 
“Input Data” on page 147)

samplematrices Examples of Sankoff matrices of transition, transversion, and 
gap costs (refer to “Multiple loci” on page 154)

sampleoutput Examples of output files in various formats:  POY, TREE-
VIEW, WINCLADA, and PAUP/MACLADE
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6. Download the file archive appropriate to your architecture to the 
POY folder  (step #1).

Also download the release notes (release.notes) in this folder.
The following is a transcript of the steps described above for a Mac OS 
X system.

[yourcomputer:~] ftp ftp.amnh.org
Connected to philosophy.amnh.org.
220 FTP Server ready
Name (ftp.amnh.org:you): anonymous
331 Anonymous login ok, send your complete email address as 
your password.
Password:
230-
 
**************************************************************
 * Welcome to the American Museum of Natural History FTP 
archive * 
**************************************************************
 
   All transactions, anonymous or otherwise are logged.
 
   Any questions or problems, please contact 
ftpadmin@amnh.org.
 
 
 -------
 ~
230 Anonymous access granted, restrictions apply.
Remote system type is Unix.
Using binary mode to transfer files.
ftp> bin
200 Type set to I.
ftp> cd pub/molecular/poy
250 CWD command successful.
ftp> cd version3-current
250 CWD command successful.
ftp> get poy.3.0.12.MacOSX.tgz

Table 11.3: POY archives to download from the version3-current folder
File name Description

poy.MacOSX.gz POY executable for Macintosh OS X

poy.linux.gz POY executable for Linux 

poypc.exe.gz POY executable for Windows 

poygui.tar.gz POY graphical user interface

poy.source.tar.gz POY source code and make files



130 Chapter 11
9 

G
ui

de
lin

es
10

 R
eq

ui
re

m
en

ts
11

 In
st

al
la

tio
n

3 
A

na
ly

sis
13

 In
pu

t/
O

ut
pu

t
14

 T
ut

or
ia

ls
15

 C
om

m
an

ds
7 

Ev
al

ua
tio

n
8 

Pa
ra

lle
l

local: poy.3.0.12.MacOSX.tgz remote: poy.3.0.12.MacOSX.tgz
500 EPSV not understood.
227 Entering Passive Mode (209,2,162,204,164,138).
150 Opening BINARY mode data connection for 
poy.3.0.12.MacOSX.tgz (1272176 bytes).
100% |******************************************************|  
1242 KB  325.52 KB/s    00:00 ETA
226 Transfer complete.
1272176 bytes received in 00:03 (325.29 KB/s)
ftp> quit
221 Goodbye.

gzip -d poy.3.0.12.MacOSX.tgz
tar -xvf poy.3.0.12.MacOSX.tar

[yourcomputer:~] you% ./poy.MacOSX
executing ./poy.MacOSX

This is POY 
version 3.0.12 (May 6 2003)

 poy.MacOSX -cat_helptopics       show commands for specific 
help topics
 poy.MacOSX -cat_commandbrowsing  show commands to browse 
command documentation

Install
To install POY, take the following steps:
1. Decompress (unzip) the archives downloaded in step #6 above.

• For Windows, use a current unzip utility, such as that offered by 
http://www.aladdinsys.com/win/index html.
• For Unix-like systems, take the following steps:

gzip -d poy.3.0.12.MacOSX.tgz
tar -xvf poy.3.0.12.MacOSX.tar
chmod a+x poy.3.0.12.MacOSX

2. You can now rename the POY executable filename if you wish.  For 
example, rename poypc.exe to poy.exe.

POY is now ready to run on this machine (refer to Chapter 12 The POY 
Interface).
You can test POY with the example scripts and data.  In Unix-like sys-
tems, you can also do the following:

./poy.3.0.12.MacOSX 

If POY is installed successfully, you will see the following:
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This is POY
version 3.0.12 (May 6 2003)
poy.MacOSX -cat helptopic show commands for 
specific help topics
poy.MacOSX -cat commandbrowsing show commands to 
browse command documentation

If you intend to run POY in a parallel environment, continue with the 
following section.

Parallel Installation
In addition to sequential implementation, POY has been parallelized 
using Parallel Virtual Machine (PVM) and the Message Passing Interface 
Standard version 1.2 (MPI 1.2) for use on clusters and traditional super-
computers. Linear speedup is possible for several commonly used tree-
search algorithms over hundreds of processors ( Janies and Wheeler 
2001).
The essential software elements of a parallel cluster for POY are PVM 
or MPI and a remote shell program (such as rsh or ssh). PVM is an 
open source project freely available on the internet (http://
www.csm.ornl.gov/pvm/pvm_home.html). This software package per-
mits a heterogeneous collection of Unix and Windows computers (as 
well as other platforms) hooked together by a network to be used as a 
single large parallel computer. Rather than a library, MPI is a standard
that has been adopted by several hardware vendors to ensure portability 
of their parallel software. As a standard, there exist several MPI imple-
mentations, some of them vendor specific. The most widely used free 
implementations are MPICH (http://www-unix.mcs.anl.gov/mpi/
mpich) and LAM/MPI (http://www.lam-mpi.org). POY requires ver-
sion 3.4.3 or later of PVM or an MPI 1.2 standard compliant implemen-
tation (such as MPICH 1.2.5).
Many Linux distributions come with PVM installed in /usr/share/
pvm3. These versions of PVM may be the most up-to-date, and permis-
sions may be properly set on that directory. Make sure to have a 3.4 
PVM revision that has debug features and supports the PVM_RSH 
variable via ftp://netlib2.cs.utk.edu/pvm3.
To be comprehensive, we describe the installation of POY for both 
message passing libraries and the configuration of a cluster from 
scratch. Most of what we present is for Linux administrators with root 
access. Examples are provided for installation in a user's home directory 
and other architectures so that you can modify these instructions.
If you use SSH, it must be password-free across all nodes.  For example, 
type
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ssh -keygen -d

Follow prompts using no Passovers by pressing Return then enter
cp ~/.ssh/id_dsa.pub authorized_keys
chmod 700 ~/.ssh
chmod 600 ~/.ssh/authorized_keys

Then use scp to allow access to other nodes.
scp .ssh/id_dsa.pub yourhost1:.ssh/authorized_keys
scp .ssh/id_dsa.pub yourhost2:.ssh/authorized_keys
scp .ssh/id_dsa.pub yourhost3:.ssh/authorized_keys
scp .ssh/id_dsa.pub yourhost4:.ssh/authorized_keys
scp .ssh/id_dsa.pub yourhost5:.ssh/authorized_keys

A root user can use /usr/share/pvm3 to install PVM on all nodes.
A root user can install POY for all nodes for all users.  To do this, copy 
the POY binaries to /usr/local/bin and /usr/share/pvm3/bin/
Linux on all nodes (or /usr/share/pvm3/bin/YOURARCHITECTURE-
HERE). If Network File System (NFS) is configured, you do not have to 
put binaries on each node.
A root user can use an /etc/profile.d/pvm.csh file (or shell of 
choice) to set up environmental variables for all users.  The pvm.csh file 
should contain

PVM_ROOT=/usr/share/pvm3
PVM_RSH=/usr/bin/ssh

A regular user does not normally have write access to the directories 
mentioned above. Nevertheless, it is not difficult to install POY and 
PVM in your home directory.
Users must set up environment variables in their shell’s dot file.   There 
is a.cshrc stub file made by the creators of PVM that is very useful. 
The following is an example of a.cshrc stub.

# append this file to your .cshrc to set path 
    according to machine type.
# you may wish to use this for your own programs 
    (edit the last part to
# point to a different directory e.g. ~/bin/
    _$PVM_ARCH.
#
if (! $?PVM_ROOT) then
  if (-d ~/pvm3) then
    setenv PVM_ROOT ~/pvm3
  else
    echo PVM_ROOT not defined
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    echo To use PVM, define PVM_ROOT and rerun 
your 
      .cshrc
  endif
endif

if ($?PVM_ROOT) then
  setenv PVM_ARCH `$PVM_ROOT/lib/pvmgetarch`
#
# uncomment the following line if you want the PVM 
    executable directory
# to be added to your shell path.
#
#       set path=($path $PVM_ROOT/bin/$PVM_ARCH)
endif

Users who install in their home directory, for example using c shell and 
SSH for internode communication, should use the.cshrc stub file and 
have the following lines in.cshrc.

set path=(/usr/local/bin:/bin:/usr/bin:/usr/X11R6/
bin:username/bin)
setenv PVM_RSH /usr/bin/ssh
setenv PVM_ROOT /home/username/bin/pvm3
setenv TERM vt100

Then make the directory /username/bin.  Compile PVM in this direc-
tory according to the instructions found with the source at ftp://
netlib2.cs.utk.edu/pvm3.  Normally, this requires decompressing 
the source, making sure your environmental variables are active (restart 
.csh if necessary), and typing make and when the compilation is com-
plete, typing make install.  See modifications for Mac OS X Installa-
tion below.

Starting PVM
PVM tutorials are provided by its authors at

www.netlib.org/pvm3/book/pvm-book.html.

The basics of PVM are quite simple. To start, type PVM followed by a list 
of slaves within a phosts.file.
If running from /usr/local/bin/ usr/share, create a 
phosts.file that contains 

yourhost1.yourdomain ep=/usr/home/bin/ dx=/usr/share/pvm3/lib/pvmd

yourhost2.yourdomain ep=/usr/home/bin/ dx=/usr/share/pvm3/lib/pvmd

yourhost3.yourdomain ep=/usr/home/bin/ dx=/usr/share/pvm3/lib/pvmd

yourhost4.yourdomain ep=/usr/home/bin/ dx=/usr/share/pvm3/lib/pvmd
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yourhost5.yourdomain ep=/usr/home/bin/ dx=/usr/share/pvm3/lib/pvmd

If running from /usr/local/bin/ usr/share

yourhost1.yourdomain ep=/home/username/bin/ dx=/home/username/bin/pvm3/lib/pvmd

yourhost2.yourdomain ep=/home/username/bin/ dx=/home/username/bin/pvm3/lib/pvmd

yourhost3.yourdomain ep=/home/username/bin/ dx=/home/username/bin/pvm3/lib/pvmd

yourhost4.yourdomain ep=/home/username/bin/ dx=/home/username/bin/pvm3/lib/pvmd

yourhost5.yourdomain ep=/home/username/bin/ dx=/home/username/bin/pvm3/lib/pvmd

Then start PVM by typing
master /home/username 22 # pvm phosts.file

PVM responds
pvmd already running.
pvm> 

The pvm> prompt signifies that you are in the PVM console where you 
can check slave hosts by typing

conf

PVM responds

5 hosts, 1 data format
                HOST     DTID     ARCH   SPEED       DSIG
yourhost1.yourdomain    40000    Linux    1000 0x00408841
yourhost2.yourdomain    80000    Linux    1000 0x00408841
yourhost3.yourdomain    c0000    Linux    1000 0x00408841
yourhost4.yourdomain   100000    Linux    1000 0x00408841
yourhost5.yourdomain   140000    Linux    1000 0x00408841
pvm>

If some of the slaves are missing from the conf, slaves can be added 
manually by typing

add yourhost.yourdomain

If unsuccessful at this point, PVM will perform tests and provide 
debugging information.

ps -al
        HOST            TID   PTID   PID FLAG 0x COMMAND
yourhost1.yourdomain  40003      -  5994  4/c -
yourhost2.yourdomain  80002  40003  6441  6/c,f poy
yourhost4.yourdomain 100002  40003  1018  6/c,f poy
yourhost5.yourdomain 140002  40003  8389  6/c,f poy
yourhost3.yourdomain  c0002  40003  4178  6/c,f poy

To exit the console but leave PVM running type
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pvm> quit

Back in your shell you can execute POY in parallel via the command line 
or scripts.

Compiling POY from source code
The following must be installed before attempting to compile POY: 
GCC, PVM, and OCaml.  PVM/MPI is optional for sequential versions.
• GCC is available at ftp://ftp.gnu.org/gnu/gcc
• OCaml is available at http://caml.inria.fr/
and one of the following:
• PVM is available at ftp://netlib2.cs.utk.edu/pvm3
• MPI from your hardware vendor or from a free source such as 

MPICH
Although POY is used on a wide variety of platforms, it is specifically 
designed to take advantage of Beowulf clusters that any research group 
can assemble from evermore inexpensive PC components and switch-
ing equipment. As a result, POY source and make files are distributed 
with the latest GNU/Linux systems in mind.  However, PVM, MPI, and 
POY makefiles may have to be tailored to a specific system. Instructions 
on PVM or MPI compilation and installation are available on their web-
sites. The source code distribution includes a Makefile to be executed 
with version 1.0 or later of the GNU make utility. Up- to- date instruc-
tions are available in the INSTALL file; instructions for the current ver-
sion are explained below.

Modify the Makefile in the lines containing the parallel library (MPI or 
PVM) and the OCaml distribution. You will find something like:     

Run the Makefile using the follow sets of commands:
For PVM:

make wpvm
make depend
make poy

This will produce an executable file called poy that will perform parallel 
operations using an installed PVM implementation.
For MPI:

make wmpi
make depend
make mpipoy
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This will produce an executable file called mpipoy that will perform paral-
lel operations using an installed MPI implementation.

Install the files by following your PVM or MPI instructions; for fur-
ther installation details (like having the program available to all the pro-
cessors) consult your system administrator.



12 The POY Interface
Command Line

Default behavior
The minimum POY command line consists of the name of the execut-
able and a data file.  For example,
poy data

This command line performs a single Wagner cladogram build.
• The first taxon in the file data is used as the outgroup and the 

cladogram is built based on the order in which the taxa are listed in 
data.

• Direct optimization is used throughout for calculating edit costs.
• If data consists of nucleotide data, gaps are assigned a weight of 2 

while transitions and transversion are assigned a weight of 1.
• A single round of TBR branch swapping is performed to refine the 

best cladogram found during the building step.
• The best cladograms found after swapping and their binary represen-

tations with polytomies arbitrarily resolved are output to the screen, 
with cladograms represented in nested parenthetical representations. 
In addition, a small amount of data on the work completed, such as 
137
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the number of cladograms examined in various stages of the search 
and the number of operations performed, are output to the screen.

The set of operations illustrated above is unlikely to represent an ade-
quate search.  Typically, POY is executed from the command line either 
directly or via a shell script containing several interacting commands 
that set up a more aggressive search. 

Syntax
On the command line, POY treats any text that is not preceded by a 
hyphen as an input file unless a command uses the subsequent text as an 
input or output filename or an argument. For example, data can be pro-
vided in multiple input files, and any number of commands can be 
applied to guide the optimization.   There are five basic components of 
POY’s command line syntax, shown in Figure 12.1.

The basic syntax of the command line is 
poy input -command argument -command > stdout 2> 
stderr

Component Description
-command The command (refer to Chapter 15 Command Refer-

ences).  Some commands expect input files, output 
files, arguments, or modes.

input The name of the input files (refer to Chapter 13 POY 
Input and Output) provided to POY by the user (for 
example, nucleotide data, chromosomal data, 
morphological data, topologies in nested parenthetical 
format, constraint files in Hennig format, ancestral 
nucleotide states, and molecular matrix files).

output The name of the output files to which POY writes 
(for example, phastwinclada matrices, ancestral states, 
and ASCII art cladograms).

stdout The name of the standard output file created by the 
shell to which POY results are written (for example, 
nested parenthetical cladograms, diagnoses, and 
implied alignments).

stderr The name of the standard progress file created by the 
shell to which POY writes progress and error mes-
sages (for example, reporting on builds, intermediate 
cladogram lengths, tallies of costs hit for each repli-
cate, time of runs, number of alignments performed 
and cladograms searched, fault tolerant events, and 
process migration reports).

Figure 12.1: Components of a POY command line.
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If a line with this form is entered or executed from a script file, the shell 
of the operating system shell will direct the results of the POY search to 
the file named immediately after >. Similarly, the progress and errors 
reported by POY will be directed to the file named immediately after 
2>. This is standard output and error reporting syntax typical of Unix-
like operating systems. It also works under DOS for Windows NT and 
XP and under certain shells for Mac OS X.
The command line must be a continuous line of commands, with the 
following features:
• Command names must be preceded by a hyphen.  
• Commands that expect input must be followed immediately by 

appropriate arguments or file names.
• Strings without a hyphen will be treated as an input file, not a com-

mand.
• Commands and their arguments or input files must be separated by at 

least one space.
• File names for input, output, stdout, and stderr are user-specified strings. 

As such, these strings can be anything that is legal with the operating 
system and shell. Intelligent file names help users keep track of vari-
ous results (for example, .seq, .mat, .out, .err, .aln, .tree, and 
.chrom). The tutorials in Chapter 14 demonstrate this kind of nam-
ing convention.

Examples
The following command line performs direct optimization on the 
nucleotides included in the file named data. Nucleotide transitions, 
transversions, and insertion–deletion costs specified are in matrix. The 
analysis results are written to stdout (the standard output file). Pro-
gram progress and error messages are written to stderr (the standard 
program progress file). The contents of and formats for these files are 
treated in Chapter 13 POY Input and Output.
poy data -molecularmatrix matrix > stdout 2> stderr

The following command line cooptimizes the nucleotide data in data
with the morphological information in morph.hng. Nucleotide transi-
tions, transversions, and insertion–deletion costs are specified in 
matrix.  However, weights for morphological character change are 
specified by the command -weight 2.  The analysis results are written 
to stdout (the standard output file).  Program progress and error mes-
sages are written to stderr (the standard program progress file).
poy data -molecularmatrix matrix -weight 2 morph.hng 
> stdout 2> stderr
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The following command line optimizes genome composition and order 
data in a file genomes. However, weights for various events are provided 
by arguments in the commands locusgap (page 279), locussizegap
(page 279), breakpoint (page 220), and molecularmatrix
(page 283). The analysis results are written to stdout (the standard out-
put file). Program progress and error messages are written to stderr
(the standard program progress file).
poy -chromosome -rearrange genomes -locusgap 2 
-locussizegap 2 -distcost 2 -molecularmatrix matrix > 
stdout 2> stderr

Scripts
Script files are plain text files that consist of one or more command 
lines and often variables that are interpreted by the operating system's 
shell.  To execute an existing script, type the script name at the shell’s 
prompt.  It is often useful to use the & command after the script name 
to run it in the background.  For example
[Your-Computer:~] yourcomp% sh script.sh &

Basic knowledge of Unix shell scripting or DOS batch programing can 
be valuable for guiding a set of related POY runs.  Below is an example 
of a Unix shell script that is useful in this context
• to illustrate the use of a shell variable as indicated by the for statement 

and the $
• to provide a practical script users can adopt to check all input files to 

see whether they are POY legal.
The simple shell script test1.sh runs a normal POY search. The script 
test1.sh does not run POY all the way through. Instead, it tests the 
files one by one as the script variable indicated in the command line by 
$FILE is passed to the POY command line. Below are the contents of 
test1.sh. 
for FILE in data1 data2 data3 
do
poy -topodiagnoseonly $FILE > $FILE.out 2> $FILE.err
done

If each file contains POY legal text, a positive response is written to
$FILE.err. 

Once each data and input file is POY legal, it is often useful to check 
data files together for equal complements of taxa.  The following script 
does not run a full POY search, but instead tests the data from multiple 
loci as a set.
poy data1 data2 data3 -topodiagnoseonly $FILE
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Refer to terminalsfile (page 320) for help in making complementary 
data files. Once all the data are acceptable to POY as indicated, analyses 
can be performed.
Similarly, for large sets of loci, shell variables—exemplified here by 
FILES_ALL=, FILES_NUCLEAR=, and FILES_MITO=—are useful to pass 
a string representing all or subsets of the data—exemplified here by 
'data1 data2 data3', 'data1 data2', and 'data3'.
FILES_ALL='data1 data2 data3' 
poy $FILES_ALL > $FILES_ALL.out 2> $FILES_ALL.err
FILES_NUCLEAR='data1 data2' 
poy $FILES_ALL > $FILES_NUCLEAR.out 2> $FILES_NUCLEAR.err
FILES_MITO='data3' 
poy $FILES_MITO > $FILES_MITO.out 2> $FILES_MITO.err

The following is an example of a Wagner script that performs a search 
with 10 random builds, examining cladograms within 1% of the mini-
mum cost, and performing a final TBR refinement (the default). The 
script consists of the following command line:
poy data1 data2 data3 -replicates 10 -slop 10 
-molecularmatrix matrix > stdout 2> stderr

To create or edit a script
You can create or edit a script or other input file directly using a text edi-
tor or a Unix editor like vi, EMacs, or pico. When using a text editor, 
make sure script files are saved as plain text appropriate for the operat-
ing system on which you want to execute them. Typically, the script file 
must contain only characters, spaces, and line breaks legal for the oper-
ating system on which it will be executed. For example, if scripts or 
other input files are created or modified with text editors or word pro-
cessors, it is crucial to make sure that the resulting files are saved as text 
only (or DOS text only).
Some programs, especially word processors, regardless of platform, may 
insert illegal, misplaced, and sometimes invisible characters that do not 
conform to formats required by POY. If such characters are present, 
POY will most likely exit with an error message. These problems can be 
avoided by using POY legal editors (but see also the command 
enabletmpfiles on page 249). The following are editors commonly 
used by POY users:
• BBEDIT (ftp://ftp.barebones.com) is a good Mac editor suited 

to Unix.
• DOS users find that EMacs (http://www.gnu.org/software/
emacs/emacs.html) works well.
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• Word processors that show all characters (for example, “show para-
graph” command in MSWord or “show codes” command in Word-
Perfect) might be useful to root out formatting errors. Wordpad from 
MS Windows works well.

Monitoring Output
In Unix systems, the commands more, less, and cat are useful for 
viewing text files such as the stdout and stderr of POY. The Unix 
program tail is useful to see the end of a file.   Because the stderr
file can be very large, the command tail and its options are useful to 
visualize the end of the stderr file and to see data such as numbers of 
minimum cost cladograms hit and other statistics of the run. For 
example, typing tail -50 filename will show the last 50 lines of the 
file filename.
During long runs, the stderr file should be monitored for discrepan-
cies between heuristic and checkpoint cladogram cost calculations. If 
discrepancies are large, the user can address this by adjusting slop values 
for various cladogram building and cladogram refinement procedures
(for example, buildslop on page 222, checkslop on page 228, and 
ratchetslop on page 308; alternatively, all slop values can be set using 
slop on page 314 if they are not individually tuned).   Slop values can 
be used to examine suboptimal cladograms near the length of the puta-
tive optimal cladogram at the expense of greater execution times.

Cladogram Buffers
Indecisive or missing data can lead to many equally parsimonious reso-
lutions that occupy cladogram buffers and slow searches considerably 
due to swapping on many cladograms from a particular build or random 
replicate (searching in a single region of cladogram space). Often 
cladograms generated in a single replicate differ only in the placement 
of a few taxa. As a result, the full diversity of topologies that would be 
generated in swapping on many cladograms per build can be found by 
swapping on a random subsample of these cladograms (refer to 
fitchtrees on page 253). CPU time is better spent for a more global 
search of cladogram space by the use of many replicates and aggressive 
refinement of the best cladograms from replicates based on which hold 
only a few cladograms. Thus one should generate many replicates, swap 
on a few randomly sampled cladograms within each replicate, collect the 
best cladograms, and submit them to further refinement.
A random subsample of cladograms generated in a build can be kept in 
POY using fitchtrees and one of the maxtrees commands (refer 
to maxtrees on page 282). The command buildmaxtrees (page 222)
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sets buffers to hold n cladograms within build replicates. The command
holdmaxtrees (page 260) sets the overall hold buffer for all replicates 
to enable the accumulation of cladograms from all builds. If hold-
maxtrees or buildmaxtrees or other cladogram buffers for other 
operations are not specified, maxtrees sets the overall buffer limit.

Aggressive Searches and Operations Order
As described above in simple scripts, POY will do one or many random 
build replicates with the first taxon as the outgroup followed by TBR 
swapping.  A more aggressive search suited to large data sets should 
include a mix of the commands below.  Regardless of the order in which 
they are listed in the command line, they are summarized here in the 
order in which POY executes them within a replicate.
1.  Perform initial build (stepwise addition of taxa), consulting options 

(for example, buildslop on page 222 and buildmaxtrees on 
page 222). If running in parallel, spawn jobs to slave nodes, con-
sulting options (for example, parallel on page 293, multiran-
dom on page 285, replicates on page 311, buildsperrepli-
cate on page 223). 

2. Submit best topologies held in buffers from building to SPR and 
TBR swapping consulting options (for example, cutswap on 
page 236, sprmaxtrees on page 317, intermediate on 
page 263).

3. Submit best topologies held in buffers from swapping to tree 
drifting plus drifting options (for example, driftspr on page 248, 
numdriftspr on page 287, numdriftchanges on page 287).

4. Submit best topologies held in buffers from tree drifting to 
ratcheting plus ratcheting options (for example, ratchetspr on 
page 309, ratchettbr on page 309, multiratchet on page 285).

5. Submit best topologies held in buffers from ratcheting to tree 
fusing plus fusing options (for example, fusemingroup on 
page 255, fuselimit on page 254).

6. If replicates (page 311) is set to n > 1, submit best topologies 
held in buffers to a final round of TBR swapping consulting 
options (for example, checkslop on page 228).

7. Output best topologies if repintermediate (page 311) is 
invoked. 

8. Proceed to additional replicates. 
9. When all build replicates are complete, perform a final round of 

TBR swapping consulting options (for example, checkslop on 
page 228).

10.  Output results as specified.
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Types of Output
The simplest form of POY output is the nested parenthetical cla-
dograms followed by their costs in the standard output file. POY does 
not put commas between clades, so the user might want to do a find and 
replace of spaces for commas on POY nested parenthetical cladogram 
files to make them readable by many visualization programs such as 
MESQUITE, MACCLADE, and TREEVIEW. 
Keep in mind that POY output cladograms are unrooted. It is up to the 
user to define a root. This can be easily done in some visualization 
programs especially if multiple taxa are used as an outgroup. Alterna-
tively, the POY command topooutgroup (page 324) writes rerooted 
cladograms to the standard output file. The following is a simple script 
that illustrates this important post-processing step:
poy -enabletmpfiles -topooutgroup outgroupname 
-topofile topos > stdout 2> stderr

where topos is a file containing topologies and outgroupname is the 
name of the outgroup taxon.
Hypothetical ancestral sequences with resolved ambiguities can be out-
put by POY to a user-specified file for use in search-based optimization 
by including the commands printhypanc (page 303) and hypancfile
(page 260).
The commands phastwincladfile (page 293) and impliedalign-
ment (page 263) output WINCLADA/PHAST-readable alignments 
based on the best cladograms that results from a POY search (Wheeler 
2003b). 
The command topofile (page 322) specifies a starting topology that 
begins a search from specific cladograms. This strategy is commonly 
used with treefuse (page 327) for “quick and dirty” searches as illus-
trated in the requirements section. When using topofile, cladograms 
must be in parenthetical notation just as in POY output, using full 
names of terminals and with each cladogram followed by [n] (an 
optional integer representing the cost). The entire list of cladograms 
must be terminated with a semicolon. As an alternative to topofile, one 
can enclose the entire nested parenthetical string representing a single 
cladogram between double quotes within a command line. Multiple 
cladograms can be separated with * as treated with examples in “Input 
Cladograms” on page 156.
Although we do not recommend using a starting topology as a search 
strategy unless significant cladogram building and refinement replicates 
have already been conducted, starting cladograms can be subjected to 
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ratcheting with the commands ratchettbr (page 309) and topofile
(page 322).
A starting topology file can also be used to determine jackknife support. 
For example, the script below performs 1000 pseudo-replicates (sensu 
Farris et al. 1996) that serve as support measures for nodes:
poy -replicates 1000 -jackboot -jackfrequencies all 
-jacktree -topofile filename > stdout 2> stderr

The program jack2hen (source jack2hen.c or binaries available via 
ftp://ftp.amnh.org) converts POY output (one or more cladograms 
in nested parentheses format) into a matrix in Hennig86/Nona format 
of group inclusion characters and computes consensus cladograms of 
various strictness levels, for example, the script
jack2hen n < poy_output_file > jack2hen_output_file

which converts POY output into a consensus cladogram based on an 
integer argument (“n”) representing a percentage—100 for strict 
consensus, lower numbers for less strict structures. The strict consensus 
cladograms files can also be generated in POY with the command 
poystrictconsensustreefile (page 301). Majority rule consensus 
cladograms can also be obtained directly from POY in ASCII art format 
with the command printtree (page 304).
The constraint portion of the jack2hen output can be used to calculate 
Bremer values in POY (refer to bremer on page 220). In POY under 
bremer, these calculations are performed for all groups at once by TBR 
swapping based on group inclusion characters in the constraints file by 
using the command string -bremer -constrain
jack2hen_output_file. These files can also be generated using 
poystrictconsensustreefile (page 301).
Global Bremer support calculations might lead to overestimates of 
group support because POY calculates these values based on a single 
TBR branch swap sample. Alternative strategies (introduced in Frost et 
al. 2001a) to calculate Bremer values on a group-by-group basis using 
disagree (page 238) are discussed in Chapter 7.
Strict rule consensus cladograms can also be obtained directly from 
POY in ASCII art format with the command printtree (page 304). 



9 
G

ui
de

lin
es

10
 R

eq
ui

re
m

en
ts

11
 In

st
al

la
tio

n
12

 In
te

rf
ac

e
13

 In
pu

t/
O

ut
pu

t
14

 T
ut

or
ia

ls
15

 C
om

m
an

ds
7 

Ev
al

ua
tio

n
8 

Pa
ra

lle
l



13 POY Input and 

Output
This chapter describes the data input and results output supported in 
POY. POY analysis results and other output are described starting 
on page 161.

General Format Requirements
POY input files must be formatted and output files are written in plain 
text—that is, devoid of control and hidden characters. Use a text editor 
appropriate to your operating environment to create input files. POY 
will halt processing and describe the problem via an error message if it is 
unable to read an input file.

Input Data
This section describes the four data input formats supported in POY 
and their usage.

Format Page

Phenotypic and prealigned nucleotide data
HENNIG86/NONA Format

148
147
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HENNIG86/NONA Format
POY uses standard HENNIG86/NONA input data files for pheno-
typic data. HENNIG86 and NONA are applications used for the analy-
sis of phenotypic or prealigned sequence data. This file format is treated 
in detail at http://www.gwu.edu/~clade/faculty/lipscomb/
web.pdf.
Similarly, many applications such as TNT, PHAST, and WINCLADA 
have adopted modified versions of this format for phenotypic and pre-
aligned sequence data.  Bear in mind that the purpose of this format in 
the context of POY is to accommodate phenotypic data in combined 
analysis with unaligned nucleotide data.  Other programs are better opti-
mized to run phenotypic and prealigned data if that suits your purposes. 
The following is an example and list of guidelines for HENNIG86/
NONA format suited to POY.
xread 
'sample file'
5 4
Anagallis 00000
Rudbeckia 10000
Quercus   11000
Cichorium 1111[12]
;
proc/ ;

1. Start a HENNIG86/NONA format file with an xread segment. 
This segment includes the character matrix and its description.

2. Following the word xread, use two nonoptional single quotes (' ') 
in which to enclose optional comments.

3. Following the quotes, insert the number of characters and the num-
ber of taxa separated by a space (for example, 4 5).

4. Next insert the list of the taxa and their character data in several lines 
using the following elements for each line.

Nucleotide data
POY Block Format

153

Nucleotide data
FASTA Format

155

Input Cladograms 156

Other Input Files 157
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• A continuous string for the taxon name. The name of a taxon may 
include letters and numerals but the first character must be a letter 
(for example, Anagallis).

• At least one space or tab; but many of these can be used to make 
visually appealing columns of data.

• Characters must be numerals ranging from 0 to 9. An unknown or 
missing state may be represented by either ? or - (the latter often 
used for inapplicable). Polymorphisms must be enclosed between 
square brackets—for example, [12]. See Cichorium data in the pre-
vious example.

• After the last taxon, an xread segment is closed by a semicolon 
(;). At this point, the user can end the entire file with proc/; and 
have a working file such as the example on page 148. 

However, an optional tread segment that specifies topologies to be 
diagnosed can be included after the xread.  The format of topologies 
are nested parentheses with taxa presented in numerals based on their 
order in the xread segment starting from 0, separated without com-
mas.  Topologies must end with a semicolon.
Weighting of characters and specifications about additivity can be 
accomplished with a ccode segment.   This segment summarizes char-
acter data. ccode statements are scanned from left to right, and what-
ever code specifiers are currently in effect are applied to the characters 
in the scopes as they are read. Besides [,], +, –, and /, ccode also 
accepts *, which discards all previous specifiers in a single ccode state-
ment. Left and right parentheses—( and )—used in SPA (Goloboff 
1996d) and PHAST (Goloboff 1996c; see also Goloboff 1998) to toggle 
Sankoff characters, are read but ignored otherwise. The default settings 
are [-/1. So ccode /2 0.2 ] 3 4 * + 3; will turn character 4 
inactive and assign weight 2 to characters 0, 1, 2, 4, and 5. Character 3 is 
made active but otherwise keeps its default setting [/1. The following is 
an example of HENNIG86/NONA format that incorporates ccode
and tread options, as well as polymorphisms.
xread 
''
5 4
Anagallis    000000
Rudbeckia    [01]0000
Quercus      11000
Cichorium    11111
;
ccode /2 0.2 ] 3 4 *+ 3; 
tread
(0 (1 (2 3)));
proc/ ;
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printccode output

The output from printccode (page 302) is written in HENNIG86/
NONA ccode format. The output is a summary of character settings in 
each HENNIG86/NONA format input data file. The output is written 
to the standard output file.

Structure

The ccode output has the following structure:
1. Character settings are written horizontally in the order in which they 

occur in the input data file.
2. The following table describes the meaning of values in each position.

Example

For the following input data
xread
''
4 5
Cichorium 0[01] 110
Rudbeckia 01    101
Quercus   1?    ?29
Anagallis 02    032
;
tread
‘input cladograms’
(3 (0 1 2))
;
ccode +.–1;
ccode ] 2 /2 3.;

Position Description Values

1 Character number An integer with the first character = 0

2 Activity [ = active
] = not active

3 Additivity + = additive
– = nonadditive

4 Weight /n where n = character weight

5 Polymorphism p = polymorphic characters
otherwise blank
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tread
‘more input cladograms’
((0 1) (2 3))*
(0(1(2 3)));
p/;

printccode writes the following to the standard output file
0[+/1  1[-/1p  2]+/1  3]+/2  4]+/2

described in the following table:

Sankoff character data

Character data can be entered in a modified HENNIG86/NONA for-
mat that follows much of the SPA format of Goloboff (1996d). This 
allows the user to do two things not possible with HENNIG86/NONA 
format: (1) use more than nine character states (the number is only lim-
ited by the integer size of the platform), and (2) specify arbitrary state 
transformation cost matrices.   
There are four modifications that are required to the Hennig96/NONA 
format. First, xread is replaced by dpread at the top of the file. Sec-
ond, character states must be separated by spaces (to allow more than 
one digit in character states). Third, the states in a polymorphic charac-
ter must be separated by “.”. Fourth, the state transformation cost 
matrix is placed at the bottom of the file in the ccode block, preceded by 
a line containing the word “costs,” a “[”or “]” to define whether that a 
character is included, the characters to which the cost matrix should be 
applied, and a dollar sign “$” followed by the number of states in the 
character. This is followed by a formatting line with the state numbers. 
Additive and nonadditive characters can be intermingled with the matrix 
characters but are still subject to the nine-state limit.

Character Description

0 active, additive, weight = 1

1 active, non-additive, weight = 1

2 not active, additive, weight = 1

3 not active, additive, weight = 2

4 not active, additive, weight = 2
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Example
dpread
'test Sankoff data'
2 4
one   0 [0.1] 2
two   1 1     0
three 2 2     1
four  3 3     2
;
costs [ 0.1 $4
0 1 2 3
1 1 2 4
1 1 2 4
2 2 1 4
4 4 4 1
;
proc /;

In the above example, characters 0 and 1 would have the cost matrix 
applied while character 2 would be additive. This type of character can 
be used to code additive and nonadditive characters with large numbers 
of states.

Nucleotide data

Nucleotide sequence data in POY is represented using IUPAC (Interna-
tional Union of Pure and Applied Chemistry) ambiguity codes included 
in the table below: 

Symbol Meaning Origin of designation

G G Guanine

A A Adenine

T T Thymine

C C Cytosine

R G or A puRine

Y T or C pYrimidine

M A or C aMino

K G or T Keto

S G or C Strong interaction (3 H bonds)
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The data can be entered as either POY’s simple block format or simpli-
fied FASTA format, which is often available from GenBank.  

POY Block Format
Each entry in POY block format consists of 
• a taxon name
• followed by a return
• followed by an unbroken string of bases conforming to IUPAC codes
• followed by a carriage return.
Do not include any gaps or dashes in sequences.  Prealigned data can be 
used if all sequences do not include gaps and are exactly the same 
length.  If the sequence data for a taxon are missing, the sequence name 
must be followed by two carriage returns.  For example,
Anagallis¶
ACGAATAGC¶
¶
Rudbeckia¶
AGGTTTAGAG¶
¶
Cichorium¶
¶
Quercus¶
TUTUTUTUU¶
¶

In summary, the following are the rules for POY block format:
1. The file(s) must be formatted in plain text with returns suited to your 

operating system.
2. Each taxon and data consists of three lines:

• a string representing the taxon name followed by a return
• a string representing sequence characters followed by a return

W A or T Weak interaction (2 H bonds)

H A or C or T not-G, H follows G in the alphabet

B G or T or C not-A, B follows A

V G or C or A not-T (not-U), V follows U

D G or A or T not-C, D follows C

N G or A or T or C aNy

X N or Gap



154 Chapter 13
9 

G
ui

de
lin

es
10

 R
eq

ui
re

m
en

ts
11

 In
st

al
la

tio
n

3 
A

na
ly

sis
13

 In
pu

t/
O

ut
pu

t
14

 T
ut

or
ia

ls
15

 C
om

m
an

ds
7 

Ev
al

ua
tio

n
8 

Pa
ra

lle
l

• a return separating taxa (the last taxon does not require this sepa-
rator).

3. Do not place spaces or underscores in taxon names.
4. A sequence must consist of an unbroken string of IUPAC codes.
5. Do not use gap characters in sequences.
6. If a taxon has no sequence data, enter a return followed by a blank 

line.

Multiple loci

Very long sequences can be optimized in POY. However, CPU time and 
memory requirements will increase quadratically with the length of 
sequences (discussed in Phillips et al. 2000). Thus cutting the loci into 
fragments can save dramatically on computation time and space (Giribet 
2001, 2002). Although this is not a necessity, standard practice for POY 
users is to delineate regions as they are flanked by primer pairs or by 
secondary structural features or separate loci, treating each as a charac-
ter in POY. This procedure is treated in detail in Chapter 9, Guidelines 
for Research. In addition to speeding up the calculations, this practice 
allows for more specific user-controlled hypotheses of putative homol-
ogy between regions to be expressed. In the event that the user chooses 
the block format, each sequence character is contained in an individual 
file. In order to prepare these files, data can be imported from many for-
mats to a visual sequence editor. Useful editors can be found for various 
platforms. 

In addition to the issues addressed above, multiple block format data 
files can be used to accommodate multiple loci.   This practice facilitates 
analysis of loci in various combinations and with phenotypic data. 
When using more than one input data file, make sure they conform to 
the following requirements:
• Taxon name strings must match exactly including capitalization.
• Each file must have the same taxa (unless using a terminals file). To 

have POY resolve inconsistencies among files, use terminalsfile
(page 320).

Platform Visual Sequence Editor

Windows http://jwbrown.mbio.ncsu.edu/BioEdit/bioedit.html

Mac OS X and classic http://evolve.zoo.ox.ac.uk/software/Se-Al/main.htm

Solaris and Linux http://bimas.dcrt.nih.gov/gde_sw.html

Mac OS X http://www.msu.edu/~lintone/macgde/main.html
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• The order of taxa in each file does not have to match but the first 
taxon in the first file is the default outgroup.

• The user is advised to input phenotypic data first on command lines. 
Doing so will make the numbering system in which characters were 
labeled in the data file correspond to the numbering system used in 
the character diagnosis output file.  

FASTA Format
FASTA is a program used to compare protein and nucleotide sequence 
data and is a common format for GenBank nucleotide records.  POY 
accepts concatenated GenBank records as data if they are FASTA for-
matted and the taxon names are POY legal.  In addition, POY imple-
ments enhancements to the FASTA format that enable the user to take 
the following actions:
• Include comments with taxon names (the comment feature can be 

useful to encapsulate verbose accession information from GenBank).
• Specify whether gaps are ignored.
• Specify sequence fragments.
• Specify which sequence fragments are excluded in an analysis.
For example, the command fastashortname (page 252) directs POY 
to take only the first contiguous string following the marker > as the 
taxon name.    For example, > taxona Comments on Taxon A
causes POY to read the taxon name as taxona. On the other hand, in 
the  ab sence  o f  t he  command ,  t he  t a xon  name  i s  r e ad  a s  
taxona_Comments_on_Taxon_A.
The command deletegapsfrominput (page 238) causes POY to 
ignore gaps coded in sequences. For example, the sequence acct- 
ggt-tc is read as acctggttc.

Multiple loci

In contrast to block format, FASTA format can accommodate multiple 
loci or fragments in a single file.  In FASTA format, sequence fragments 
can be delineated by placing the symbol  # at the fragment boundary. 
Note that the beginning and end of the sequence do not require demar-
cation.  For example, the string aact#gcggg parses into two frag-
ments :   aact  and  gcggg .   On the  o ther  hand ,  the  s t r ing  
#aact#gcggg# parses into four fragments: a missing fragment, aact, 
gcggg, and another missing fragment.  The number of fragments must 
be the same for all taxa.
Sequence fragments or loci can be excluded from the analysis by placing 
the symbol  *  in any position within the fragment to be deleted. For 
example, the string agag*t#tcccag parses into two fragments: 
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agagt and tcccag. The first fragment is ignored in the analysis. To 
take effect, the  *  symbol need only be placed in one fragment—corre-
sponding fragments in other sequences do not require it, but they all are 
deleted. For example, the following FASTA formatted file
>taxona 
acc#aacgt-t#tttttt#a*t
>taxonb
*#aacgtcc#ttt*tt#

will be read as

In the analysis, fragments 1, 3, and 4 are ignored.
Input and output are also discussed in Chapter 12, The POY Interface. 
Some issues regarding specific formats are described below.

Input Cladograms
POY standard output is a specification of the optimal cladograms in 
parenthetical format. POY topologies do not use commas as separators. 
Minimally, POY output consists of the topology followed by the 
cladogram cost in brackets, terminated by a semicolon. For example,
(Anagallis (Cichorium (Rudbeckia Quercus))) [120];

If the user specifies POY’s minimal output (the most parsimonious 
cladograms in parenthetical format) or uses poytreefile (page 301)
these files can often be reused in long scripts that employ cladogram 
fusing or other operations on intermediate results. Moreover, although 
POY topologies do not use commas as separators, the user can easily 
replace spaces with commas required by some visualization programs.
Input cladograms read by the command topofile (page 322) can be 
specified either in the format written by POY to the standard output file 
or in HENNIG86/NONA format using tread. When entered on the 
command line using topology (page 323), enclose POY parenthetical 
cladogram format in quotation marks. For example,

Fragment

Taxon 1 2 3 4

taxona acc aacgtt tttttt at

taxonb missing aacgtcc ttttt missing
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poy data -diagnose -topology “(Anagallis (Cichorium 
Rudbeckia Quercus));” > stdout 2> stderr

When entered on the command line using topology, more than one 
cladogram can be specified. Separate cladograms using either * or [n]
(where n is an integer). The cladograms must be terminated with a 
semicolon. For example,
poy data -diagnose -topology “(Anagallis (Cichorium 
Rudbeckia Quercus)) * ((Cichorium Rudbeckia) (Quercus 
Anagallis)) * (Cichorium (Rudbeckia (Quercus 
Anagallis)));” > stdout 2> stderr

Other Input Files
This section describes other input data formats accepted by POY.

Constraint file

Constraint files specify clades that must be recovered or avoided by an 
analysis. A constraint file must be in plain text, written in HENNIG86/
NONA format using the xread and proc segments. However, instead 
of character state values, the data are binary characters that represent a 
taxon’s inclusion in various clades. Constraint files are used with the 
commands agree (page 217), constrain (page 233), and disagree
(page 238). For example, the command line and constraint file
poy data -agree -constrain constraintfile > stdout 2> 
stderr 

where constraintfile is
xread
'example of constraint file'
2 4
Cichorium 01
Rudbeckia 00
Quercus   11
Anagallis 11
cc- 0.1;
proc /;

recovers the lowest cost cladogram that includes the clades (Quercus 
Anagallis) and (Cichorium Quercus Anagallis).
Conversely, the command line
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poy data -disagree -constrain constraintfile > stdout 
2> stderr

recovers the lowest cost cladogram that does not include the clades 
(Quercus Anagallis) and (Cichorium Quercus Anagallis).
Constraint files are also used to estimate Bremer support values for 
clades with bremer (page 220) or disagree (page 238). Refer to 
“Bremer Support” on page 92.

Convert POY output cladograms to constraints

It is often the case that you will want to include constraints that are the 
output of a POY analysis. To convert POY output to a constraint file in 
HENNIG86/NONA format, use the utility Jack2Hen. The Jack2Hen 
output consists of a consensus cladogram based on an argument n rep-
resenting a percent, as in 100 for strict consensus and lower numbers 
for less strict structures.   The syntax of Jack2Hen is discussed in Chap-
ter 12.

Terminals file

The command terminalsfile (page 320) can be used in conjunc-
tion with data or input cladograms.
Usage with data

The command terminalsfile creates an authoritative list of the 
names of taxa used in an analysis.  Taxa that are included in the termi-
nals file but not in some input data files are treated as having missing 
data.  Taxa that are not in the terminals file but are included in an input 
data file are not included in the analysis. 
Terminals files must be in plain text with white space after each taxon in 
accordance with your operating system. When using terminals-
file, an overview of taxa included and excluded is printed to stderr for 
each input data file. As such, terminalsfile is useful as a debugging 
tool. This feature reduces the need to edit data files. Without termi-
nalsfile, all input data and cladograms need to have exactly the same 
complement of taxa. Thus taxa for which data is missing have to be 
indicated in each data file.
To prevent running an analysis with too much missing information, the 
following check is performed for each data file. If the number of taxa to 
be added from the terminals file is more than 20% of the number of 
taxa that are in the data file (after discounting the taxa that are not in the 
terminals file), the program exits. Use minterminals (page 282) to 
change this threshold to another percentage (-minterminals 0 skips 
the test).
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Usage with input cladograms

If the user invokes the command terminalsfile with input cla-
dograms (see topology (page 323) and topofile (page 322)), taxa 
not in the terminals file will be pruned from the cladogram. Conversely, 
whenever an input cladogram lacks a terminal that is in the terminals 
file, POY adds that terminal as a basal branch to the cladogram. With-
out terminalsfile, all input topologies must conform exactly to the 
set of taxa that are in use. 

Frequencies file

The command basefreq (page 219) reads base and indel frequencies 
from a file for use in likelihood analysis (see likelihood (page 274)). 
The file has the following format:
pctA  pctC  pctG  pctT  pctI ;

where 
pctA = frequency of Adenine expressed as a decimal
pctC = frequency of Cytosine expressed as a decimal
pctG = frequency of Guanine expressed as a decimal
pctT = frequency of Thymine/Uracil expressed as a decimal
pctI = frequency of indel/gap expressed as a decimal

For example,
0.2  0.1  0.3  0.35  0.05;

The command printqmat (page 304) used under likelihood, 
prints transition, base frequency, and other likelihood parameter infor-
mation to stdout.

Command file

Command files contain segments of command lines that can be inserted 
in a command line using commandfile (page 232). Command files 
have the following format:
command1 argument1 ... commandn argumentn

where
commandi = the ith command
argumenti = the argument to the ith command

Example

If the file printtrees has the following content
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-printtree -plotstrict on -plotfile treeplot.txt

then the command line
poy chel.seq -commandfile printtrees

expands to
poy chel.seq -printtree -plotstrict on -plotfile 
treeplot.txt

Molecular matrix file

This file is used by molecularmatrix (page 283) to specify the 
nucleotide transformation costs. The file consists of five rows and col-
umns. Values occur in the following order: adenine, cytosine, guanine, 
thymine/uracil, and gap. The costs must be symmetrical (that is, C to T 
= T to C) and metric (that is, the cost of C to A is less than C to T + T 
to A). For example
0 2 1 2 4
2 0 2 1 4
1 2 0 2 4
2 1 2 0 4
4 4 4 4 0

is a cost matrix that has the following structure:

Likelihood cost matrix file

This file is used by qmatrix (page 305) to specify the nucleotide trans-
formation probabilities and indel probabilities for likelihood analysis. 
The file consists of five rows and columns. Values occur in the follow-
ing order: adenine, cytosine, guanine, thymine/uracil, and gap. For 
example,

To

A C G T gap

Fr
om

A 0 2 1 2 4

C 2 0 2 1 4

G 1 2 0 2 4

T 2 1 2 0 4

gap 4 4 4 4 0
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0.9  0.02 0.05 0.02 0.01
0.02 0.9  0.02 0.05 0.01
0.05 0.02 0.9  0.02 0.01
0.02 0.05 0.02 0.9  0.01
0.01 0.01 0.01 0.01 0.96

is a cost matrix that has the following structure:

Results and Other Output
This section describes how POY reports the results of an analysis and 
other output.

POY topology
POY standard output is a specification of the optimal cladograms in 
nested parenthetical format.  The output consists of the topology fol-
lowed by the cladogram cost in brackets, terminated by a semicolon. 
For example,
(Anagallis (Cichorium (Rudbeckia Quercus))) [120];

Use repintermediate (page 311) to print cladograms resulting from 
each replicate as they finish. This is especially useful to get information 
when performing long searches.

Outputting cladograms
The command line
poy data -poytreefile filename > stdout 2> stderr

outputs cladograms and their binary representations and any other 
information, such as implied alignments and diagnoses (if specified) to 
the stdout. In addition, it will also output only parenthetical cladograms 
(not binaries) to the file named filename. 

To

A C G T gap

Fr
om

A 0.9 0.02 0.05 0.02 0.01

C 0.02 0.9 0.02 0.05 0.01

G 0.05 0.02 0.9 0.02 0.01

T 0.02 0.05 0.02 0.9 0.01

gap 0.01 0.01 0.01 0.01 0.96



162 Chapter 13
9 

G
ui

de
lin

es
10

 R
eq

ui
re

m
en

ts
11

 In
st

al
la

tio
n

3 
A

na
ly

sis
13

 In
pu

t/
O

ut
pu

t
14

 T
ut

or
ia

ls
15

 C
om

m
an

ds
7 

Ev
al

ua
tio

n
8 

Pa
ra

lle
l

Alternatively, if the user wants only binary reprehensions, use poybin-
treefile (page 300). Having a file that contains only cladograms can 
be useful for reuse of cladograms from intermediate searches, such as in 
the context of a tree-fusing analysis.   

Consensus techniques
POY has various commands that can be used for calculating majority 
rule and strict consensus cladograms.   For example,
poy data -poystrictconsensustreefile filename > 
stdout 2> stderr

writes the strict consensus cladogram of all the lowest cost cladograms 
resulting from the search in POY parenthetical notation to file file-
name.
poy data -printtree > stdout 2> stderr

writes the lowest cost cladograms and their strict consensus at the end 
of a POY run to default file poy.tree in ASCII art. The output of 
printtree (page 304) can be modified with commands such as 
plotmajority (page 296), which can work in the following modes:

plotmajority off      the majority rule consensus cladogram is not 
plotted

plotmajority short      the majority rule consensus cladogram is 
plotted without clade identification numbers

plotmajority long      the majority rule consensus cladogram is 
plotted with clade identification numbers (each branch is labeled with 
the identification number and the percentage-wise clade frequency).
 When conducting a jackknife search in POY (described in greater detail 
in “Jackknife Resampling” on page 91), a strict consensus is calculated 
automatically for each pseudo-replicate. In addition, a 50% majority rule 
consensus of all pseudo-replicate cladograms can be output via the use 
of the command jackftrees (page 269). For example, 
poy data -replicates 1000 -jackboot 
-jackfrequencies all -jackftree filename > stdout 2> 
stderr

In the context of jackboot (page 266), default output can be changed 
with the following commands:
• jackoutgroup (page 270) sets the single taxon to be used as out-

group for jackknifing
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• jackpseudoconsensustrees (page 270) used with jackstart
(page 271) writes the strict consensus cladograms for the individual 
pseudo-replicates output to stdout.

• jackfpseudoconsensustrees (page 268) used with jack-
start (page 271) creates the file filename with a tread state-
ment that describes the strict consensus cladograms of the individual 
pseudoreplicates.

Hypothetical ancestral states
POY writes hypothetical ancestral sequence reconstructions with 
resolved ambiguities of the best cladogram to the file named 
poy.hypanc or a file name set by hypancfile (page 260). For 
example,

GTGACGATAAATAACGATCCGGAACTCTAATGAGTTTCCGTAATCGGAATGAGTACAATTTAAATCCGTTAACGAGGAGC
GTGACGAAAAATAACGATACGGAACTCAATCGAGTCTCCGTAATCGGAATGAGTACACTTTAAATCCTTTAACGAGGATC
GTGACGAAAAATAACGATACGGAACTCAATCGAGTCTCCGTAATCGGAATGAGTACACTTTAAATCCTTTAACGAGGATC
GTGACGAAAAATAACAATACAGGACTCAATCCGAGGCCCTGTAATTGGAATGAGTACACTTTAAATCCTTTAACAAGGAA
GTGACGAAAAATAACGATACGGAACTCTAATGAGTCTCCGTAATCGGAATGAGTACAATTTAAATCCTTTAACGAGGATC
GTGACGAAAAATAACGATACGGAACTCTAATGAGTCTCCGTAATCGGAATGAGTACAATTTAAATCCTTTAACGAGGATC
GTGACGAAAAATAACAATACGGGACTCTATCCGAGGCCCCGTAATTGGAATGAGTACACTTTAAATCCTTTAACGAGGAT
GTGACGAAAAATAACAATACAGGACTCATATCCGAGGCCCTGTAATTGGAATGAGTACACTTTAAATCCTTTAACAAGGA
GTGACGATAAATAACGATCCGGAACTCTAATGAGTTTCCGTAATCGGAATGAGTACAATTTAAATCCTTTAACGAGGATC
GTGACGATAAATAACGATCCGGAACTCTAATGAGTTTCCGTAATCGGAATGAGTACAATTTAAATCCTTTAACGAGGAGC
GTGACGATAAATAACGATCCGGAACTCTAATGAGTTTCCGTAATCGGAATGAGTACAATTTAAATCCTTTAACGAGGAGC
;

This can be useful for generating sets of sequences for search-based 
optimization.

Phastwincladfile
When used with impliedalignment (page 263), the output from 
phastwincladfile (page 293) is written in WINCLADA format 
based on the best cladogram. Bear in mind that POY output cladograms 
are considered to be unrooted, so the basal node is never resolved. It is 
up to the user to define a root in a visualization program.
The output includes
• any phenotypic data and the implied alignment for the first binary 

cladogram in the buffer
• the topology for all cladograms
• nucleotide sequence data and phenotypic data  separated by a blank
• nucleotide sequence data recoded to numeric values, to accommodate 

the HENNIG86/NONA format
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• polymorphisms enclosed in brackets—for example, N is coded as 
[0123]). 

An example of a phastwincladfile is given below:
xread
'POY run based on 6 original characters but expanded
to 43 with nucleotides and other extensive data
zero-length branches are not collapsed in the cladograms
below'
43 4
Anagallis 000002320120300030012031122001313003202333
Rudbeckia 100002320120000030012030122001310031202313
Quercus   110002320120000030012030122001310031202313
Cichorium 111112320120000030012030122001313003202313

;
cc +0 +1 +2 +3 +4 (5.42 ) ;
cost=1 0/1 1 0/2 1 0/3 1 0/

When used without phastwincladfile, impliedalignment pro-
vides aligned bases in columns for each character as specified in the 
input files.  For example:
Implied alignment from character 0
Homology lines 24
Cichorium  XGAGTGATGATGGTGTTGTGTGTT
Quercus    XGAGTGATGATGGGGTTGTGTGTT
Rudbeckia  XTTCTGATGATGCCGTTGTGTGCT
Anagallis  TG-CTGACGACGGTGTTGTTTGTT

Implied alignment from character 1
Homology lines 39
Cichorium  GCTCACAGCATACAATGCTAGTTAA-ACAAGGA-GATGA
Quercus    GCTCACAGCATACAATGCTAGTTAA-ACAAGGA-GATGA
Rudbeckia  GCTCACAGCATACAATGCTAGTTAA-ACAAGGA-GATGA
Anagallis  GTTCACAACACACAATGCTTG-TAA-AGATGGATGGGGA

Nucleotide Numeric code

adenine 0

cytosine 1

guanine 2

thymine 3

gap 4
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Bear in mind that an implied alignment will be provided based on each 
most parsimonious cladogram; thus this command can generate volumi-
nous output.
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14 Tutorials
Before You Start
This chapter takes you through the steps for running POY. It shows you 
how to 
• run POY from the command line (“Tutorial 1: Command Line 

Basics” on page 169)
• create and use scripts (“Tutorial 2: Scripts” on page 173)
• calculate Bremer supports (“Tutorial 3: Bremer Support” on 

page 175)
• weight nucleotide transformations and analyze multiple loci (“Tuto-

rial 4: Step Matrices and Multiple Data Sets” on page 176)
• perform combined analysis of phenotypic and genotypic data (“Tuto-

rial 5: Combined Analysis” on page 178) 
• input starting cladograms (“Tutorial 6: Starting Cladograms” on 

page 180) 
• perform fixed states and search-based optimization (“Tutorial 7: 

Fixed States and Search-Based Optimization” on page 182)
• analyze chromosomal characters (“Tutorial 8: Chromosomal Optimi-

zation” on page 183) 
167
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• perform likelihood analysis (“Tutorial 9: Maximum Likelihood Opti-
mization” on page 187)

• run multiple scripts for sensitivity analysis (“Tutorial 10: Multiple 
Scripts” on page 192) 

• run POY in a parallel environment (“Tutorial 11: Parallel Environ-
ments” on page 194)

• and run POY using scheduling software (“Tutorial 12: Scheduling 
Software” on page 196).

These tutorials are intended for new POY users as well as for users who 
have previously used POY only on a single CPU and want to use POY 
in a parallel environment. While the tutorials discuss strategies for analy-
sis, their main purpose is to provide you with a greater familiarity using 
POY. We strongly encourage you to explore POY’s additional options 
and develop your own search strategies. The most effective search strat-
egy is different for each data set—there are some rules of thumb, but no 
guaranteed optimal strategies. For a fuller discussion of analysis strate-
gies, refer to Chapter 9 Guidelines for Research.
In addition to the POY executable, the only other application software 
you need for these tutorials is a text processor, such as Textpad, BBE-
DIT, EMACS, Word, WordPad, or NotePad, and the utilities jack2jen 
and filterstates.exe (for Windows).

Preliminary tasks
1. Make sure you have downloaded all of the POY files as described 

in Chapter 11 Installation on page 127.
2. Create a folder named Tutorial.

• Although you can place this folder anywhere, we suggest you 
make it a subfolder to the POY folder you created during installa-
tion.

• In addition, nothing depends operationally on this new folder 
being named Tutorial.

3. Copy the POY executable from the POY folder to the new Tutorial 
folder.

4. Copy the jack2jen.exe program from the POY folder to the new 
Tutorial folder.

5. Copy all of the files from the POY>Tutorial folder to the new Tuto-
rial folder.
• The subfolders are environment-specific:  Tutorial-dos for 

Windows, Tutorial-linux for Linux, and Tutorial-mac for 
Unix operations on Macintosh OS X.

• These files must be in the same folder as the POY executable you 
use in the tutorials.
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6. Review Chapter 12 The POY Interface on how to launch POY and 
how to create and edit scripts in your operating system.

7. Review Chapter 13 POY Input and Output on POY file formats.

Tutorial 1:  Command Line Basics
This tutorial illustrates the basics of running POY from the command 
line.  Although typically you will want to use scripts, the basics described 
in this tutorial familiarize you with how POY works.

A single input file with default settings
1. Navigate to the Tutorial folder.
2. At the system prompt, type the following command line and press 

Enter:
poy mol1.txt

Note that the input data file mol1.txt is unaligned genotypic data 
in FASTA format, so that only analyses on genotypic data are per-
formed.
To run, POY only requires the executable and one data file.
The most relevant default options for this run are
• a single, order-specified build of the initial tree (that is, the initial 

Wagner tree is built using the order in which the taxa are read 
from the input file)

• direct optimization is used for calculating tree cost
• indels are assigned a weight of 2 while transitions and transver-

sion are assigned a weight of 1
• a single round of TBR branch swapping is performed to improve 

upon the original Wagner tree (that is, find shorter trees)
• to stop the analysis at any time, press and hold CTRL and type c.
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3. When the analysis is complete (approximately 77 seconds on our 
850-MHz Pentium III machine), POY displays the program 
progress on-screen (Figure 14.1).

Output files
POY’s standard output file contains the results of the analysis in POY 
parenthetical format.  If only the output file is specified, the program 
progress still displays on-screen.

4. At the system prompt in the Tutorial folder, type the following 
command line and press Enter:
poy mol1.txt > basic1.out

• The expression > basic1.out sends the POY output to the file 
basic1.out.

5. When the analysis is complete, POY both displays the results on-
screen (Figure 14.1) and writes the results of the analysis to 
basic1.out (Figure 14.2).

  121 trees examined in initial construction.
  0 trees examined in SPR.
  1426 trees examined in TBR.
  0 trees examined in Drift SPR.
  0 trees examined in Drift TBR.
  0 trees examined in RATCHET SPR.
  0 trees examined in RATCHET TBR.
  0 trees examined in Check Slop TBR.
  0 trees examined in Bremer TBR.
  0 trees examined in Tree Fusing.
  1547 trees examined in all.
  35 trees packed
  1547 joins calculated
  1. average join span
  6037 alignments performed
  Process took 77 seconds

Figure 14.1: Program progress displayed on-screen.

(Hagfish (Cow (Human ((Horn_Shark Saw_Shark)    
((Salmon Goldfish) (Tree_Frog Newt))))))[3002]
;
Binary representations of best cladograms:
(Hagfish (Cow (Human ((Horn_Shark Saw_Shark) 
((Salmon Goldfish) (Tree_Frog Newt))))))[3002]

Figure 14.2: Output file basic1.out.
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Note that if POY finds zero length branches, it reports both 
• the collapsed representations shown first (equivalent to ambigu-
ous- in Nona and PAUP*) 

• and binary representations of the optimal solution.
The binary representation is important for length verification. 
Implied alignments are calculated from the binary representation. 
Spurious length discrepancies can result if an implied alignment is 
optimized on a different binary version of the same collapsed tree

.

Program progress output
If you are working in Linux, Windows NT, Windows XP, or Mac OS X 
you can specify a file to which POY writes program progress, includ-
ing error messages.

Important     If you use another version of Windows, 
• skip this section
• remove 2> basic1.err and equivalent commands (that is, 2> 
[filename].[ext]) from the subsequent command lines in this 
tutorial

• also remove those commands from the scripts in the tutorials that fol-
low.

6. At the system prompt in the Tutorial folder, type the following 
command line and press Enter:
poy mol1.txt > basic1.out 2> basic1.err

Hagfish
Cow

Tree Frog

Human

Horn Shark

Salmon
Newt

Goldfish

Saw Shark

Figure 14.3: Cladogram of basic1.out.
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• The expression > basic1.out sends the POY output to the file 
basic1.out.

• The expression 2> basic1.err sends program progress (that 
is, the log file or on-screen information) to the file basic1.err.

7. When the analysis is complete, POY writes both the results of the 
analysis to basic1.out (Figure 14.2) and program progress to 
basic1.err.
• The content of basic.err is the same as Figure 14.1.
• This information can only be displayed  on-screen when running 

Windows 95, Windows 98, Windows 98 SE, Windows ME, or 
Windows 2000.

Change default behavior
All POY analyses are created by adding commands and input files to the 
basic command line you have been using. The following command line 
overrides POY’s default behavior by causing the analysis to build the ini-
tial Wagner tree by randomizing the order of taxon addition. The default 
is to add taxa in the order in which they occur in the data input file.

8. At the system prompt in the Tutorial folder, type the following 
command line and press Enter:
poy mol1.txt -nooneasis > basic2.out 2> basic2.err 

• Note that all POY commands are preceded by a dash.
• nooneasis is the countercommand to the default command 
oneasis (see Chapter 15 Command References for more on 
countercommands and oneasis/nooneasis).

9. Compare basic2.out and basic2.err to basic1.out and 
basic1.err.

10. At the system prompt, type the following command line and press 
Enter:
poy mol1.txt -nooneasis -replicates 5 > basic2.out 
2> basic2.err 

• The command replicates 5 causes POY to perform the com-
mand line in step 1 above on five random addition sequences.

• In most cases, the order in which commands occur does not 
affect POY’s behavior.
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Tutorial 2:  Scripts
This tutorial introduces the use of scripts in batch files (also known as 
shell scripts)—the most common and useful method for running POY. 
A batch file can contain one or multiple scripts. In the latter case, con-
secutive POY jobs are run sequentially. We describe multiscript batch 
files in Tutorial 10 on page 192.
When using your text editor of choice in creating and editing batch files, 
make sure to save the file as plain text.
1. In your text editor, type the following command line:

poy mol1.txt -nooneasis -approxbuild -replicates 2 
-nonrandomizeoutgroup -slop 1 -checkslop 2 -exact 
> single1.out 2> single1.err 

• You can type this script as either one continuous line or you can 
break the line at appropriate places.

• However, use only a single line break to start a new line of the 
script—POY reads two consecutive line breaks as the end of the 
command line.

• This script develops the command line from Tutorial 1 by 
performing two random addition sequence replicates 
(replicates 2). By default, it uses direct optimization.

• The command approxbuild (page 218) reduces calculation 
time during the building of a Wagner tree by using an approxima-
tion method for the initial builds. For some data sets, it is better 
to devote calculation time to branch swapping and other heuris-
tics (e.g., ratcheting) than to initial builds.

Hagfish
Cow

Tree Frog

Human

Horn Shark

Salmon
Newt

Goldfish

Saw Shark

Figure 14.4: Cladogram of basic2.out.
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• By default, TBR is performed. slop 1 causes POY to perform 
TBR on all trees that are within 0.1% of the least cost tree 
instead of the least cost tree only.

• The command norandomizeoutgroup enables you to specify 
the root. This is important when applying the direct optimization 
algorithm because the placement of the root affects the optimi-
zation of the hypothetical ancestral sequences and, therefore the 
cost calculation. By default, if this command is invoked, the first 
taxon in the input file is designated as the root.

• After all replicates have completed, TBR branch swapping is per-
formed on all trees found that are within 0.2% of the least cost 
tree (checkslop 2) instead of the shortest trees only.

2. Save the batch file in plain text format as single1.bat.
• Make sure to save single1.bat to the Tutorial folder.
• In order for Windows to recognize a file as a batch file, the file 

must have the extension .bat. This is not required when using 
other operating systems.

3. From the system prompt in the Tutorial folder, run the batch file.
• In Windows, type single1.bat then press Enter, or double-

click the file icon.
• In Linux, type sh single1.bat &  then press Enter. In Linux, 

the symbol & [ampersand] causes POY to run in the background.
4. When the script completes, compare your results to ours. They 

might differ due to the random order of taxon addition and few 
replicates.
• In our analysis, this script results in a single least cost tree of 

2,962 weighted steps (“weighted” because indels have twice the 
weight as transitions and transversions). Figure 14.5 shows our 
output file single1.out.

• In our analysis, the tree is 40 steps shorter than the simple analy-
sis in Tutorial 1.  However, it takes significantly longer (198 sec-
onds versus 77 seconds on our 850-MHz Pentium III).

(Hagfish (Cow (Human ((Tree_Frog Newt) ((Salmon 
Goldfish) (Horn_Shark Saw_Shark))))))[2962]
;
Binary representations of best cladograms:
(Hagfish (Cow (Human ((Tree_Frog Newt) ((Salmon 
Goldfish) (Horn_Shark Saw_Shark))))))[2962]

Figure 14.5: Output file single1.out.
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Tutorial 3:  Bremer Support
This tutorial introduces the estimation of Bremer support values in 
POY. It will require the use of the jack2hen.exe program to generate 
a constraint matrix for the analysis.

Create constraint file
1. In the Tutorial folder, save a copy of single1.out (created in 

Tutorial 2) as tree.txt.
2. In your text editor, edit tree.txt to create a tree input file that is 

the binary representation of the best cladogram(s) from your analy-
sis as shown in Figure 14.7 (compare to Figure 14.5).

3. Save the tree input file tree.txt as plain text format in the Tuto-
rial folder.

4. In your text editor, type the following command line:
jack2hen 100 < tree.txt > tree.con

This script converts the binary representation of the best 
cladograms in tree.txt to the constraint file tree.con used for 
the evaluation of Bremer support. For more on constraint files, 
refer to “Constraint file” on page 157.

5. Save this file in the Tutorial folder and name it j2h.bat as plain 
text format.

(Hagfish (Cow (Human ((Tree_Frog Newt) ((Salmon 
Goldfish) (Horn_Shark Saw_Shark))))))[2962]

Figure 14.7: Tree input file tree.txt.

Hagfish
Cow

Tree Frog

Human

Horn Shark

Salmon
Newt

Goldfish

Saw Shark

Figure 14.6: Cladogram of single1.out.
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6. Run the batch file j2h.bat.
7. When the conversion is complete, open tree.con in your text edi-

tor and delete all data after the matrix of taxa.
• Keep the semicolon after the last taxon name.
• Delete all cc lines, tread lines, tree in parenthetical format, and 

the final p/; line.
8. Save tree.con as plain text format in the Tutorial folder.

Estimate Bremer support
9. In your text editor, type the following command line:

poy mol1.txt -topology “(Hagfish (Cow (Human 
((Tree_Frog Newt) ((Salmon Goldfish) (Horn_Shark 
Saw_Shark))))))[2962]” -bremer -constrain tree.con 
> bremer1.out

• Note that the string in quotes consists of the topology and tree 
length output from Tutorial 2. If you are evaluating the topology 
from another analysis, change this string accordingly.

• If POY finds a shorter tree during the Bremer calculation, it will 
report that shorter tree in the output file.

10. Save this file in the Tutorial folder and name it bremer1.bat as 
plain text format.

11. Run the batch file bremer1.bat.
• When the POY run completes, bremer1.out will contain the 

Bremer support values for each of the nodes in your cladogram.

Tutorial 4:  Step Matrices and Multiple Data Sets
This tutorial demonstrates how to use a step matrix to specify nucle-
otide transformation costs.  It also introduces the analysis of multiple 
input data files.
The step matrix we use in this tutorial (g1ts1tv1.txt) has the struc-
ture shown in Figure 14.8.

A C G T indel
A 0 1 1 1 1
C 1 0 1 1 1
G 1 1 0 1 1
T 1 1 1 0 1

indel 1 1 1 1 0

Figure 14.8: The structure of the step matrix g1ts1tv1.txt.
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This step matrix changes the weighting of nucleotide transformations 
used in Tutorial 2: indels now have the same cost as transitions and 
transversions. An alternative is to set indel cost using the command gap 
N, where N is any positive integer; gap 1 overrides the default setting 
of indels weighted twice the cost of transitions and transversions by set-
ting the indel cost to 1.
However, use of a step matrix enables changing the weights for all three 
transformation costs. For example, another step matrix in the set we 
provide (g4ts2tv1.txt) has the structure shown in Figure 14.9. This 
step matrix weights indels at four, transversions at two, and transitions 
at one (refer to “Molecular matrix file” on page 160).

1. In the Tutorial folder, save a copy of single1.bat (created in 
Tutorial 2) as multiple1.bat.

2. In your text editor, edit multiple1.bat to create the following 
script:
poy mol1.txt mol2.txt -molecularmatrix g1ts1tv1.txt 
-nooneasis -approxbuild -replicates 5 
-nonrandomizeoutgroup -slop 2 -checkslop 5 
-ratchettbr 5 -treefuse -exact > multiple1.out 2> 
multiple1.err 

This requires that you make the following changes to the original 
script:
• Add the input data file name mol2.txt.
• Add the commands molecularmatrix g1ts1tv1.txt (the file 

name g1ts1tv1.txt must immediately follow the molecular-
matrix command), ratchettbr 5, and treefuse.

• Change the output and program progress file names to 
multiple1.out and multiple1.err, respectively.

• Change replicates 2 to replicates 5, slop 1 to slop 2, 
and checkslop 2 to checkslop 5.

This script causes POY to perform 
• five random addition replicates 

A C G T indel
A 0 2 1 2 4
C 1 0 2 1 4
G 1 2 0 2 4
T 2 1 2 0 4

indel 4 4 4 4 0

Figure 14.9: The structure of the step matrix g4ts2tv1.txt.
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• TBR branch swapping on trees within 0.2% of the least cost tree 
for each replicate, followed by five rounds of TBR ratcheting per 
replicate

• tree fusing on the best cladograms from each of the five repli-
cates

• a final round of TBR branch swapping on trees within 0.5% of 
the least cost.

3. Save batch file multiple1.bat as plain text format in the Tutorial 
folder.

4. Run the multiple1.bat.
In our analysis, this script results in a single least cost tree of 7,013 
equally weighted steps. The analysis took approximately seven 
hours to complete on our 850-MHz Pentium III.

Tutorial 5:  Combined Analysis
This tutorial demonstrates combined analysis in POY—the simulta-
neous analysis of phenotypic and genotypic data.  It also demonstrates 
how to economize on calculation time by partitioning DNA sequence 
data into fragments.
For this tutorial, we use two new nucleotide sequence input data files: 
mola1.txt and mola2.txt. These contain the same data as the three 
used in Tutorial 3. However, these new input data files partition the 
sequences into fragments. In these files, the character  #  separates puta-
tively homologous fragments based on primer sequences or other highly 
conserved markers (refer to “FASTA Format” on page 155).
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Figure 14.10: Cladogram of multiple1.out.
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Breaking contiguous sequences into fragments constrains nucleotide 
comparisons to within each fragment. This might result in a globally 
suboptimal solution. However, use of fragments increases calculation 
speed and reduces memory requirements significantly. The latter is of 
special concern when using iterative pass optimization, as we do in this 
tutorial. Moreover, the effect, if any, on cladogram cost calculations 
using the fragmented sequences can be evaluated by diagnosing the 
putatively optimal cladogram with the original, unfragmented 
sequences.
This tutorial also demonstrates combined analysis by incorporating phe-
notypic data in the file morph.txt, a file in Hennig86/Nona format 
(refer to “HENNIG86/NONA Format” on page 148).
For this tutorial, we build on the script you created in Tutorial 3.
1. In the Tutorial folder, save a copy of multiple1.bat (created in 

Tutorial 4) as totalev1.bat.
2. In your text editor, edit totalev1.bat to create the following 

script:
poy -weight 1 morph.txt mola1.txt mola2.txt -
nooneasis -gap 1 -replicates 2 -checkslop 2 -
iterativepass -phastwincladfile totalev1.ss -
outgroup hagfish -exact > totalev1.out 2> 
totalev1.err 

This requires that you make the following changes to the original 
script:
• Add the commands weight 1, gap 1, iterativepass, 
phastwincladfile totalev1.ss, and outgroup hagfish.

• Add the input data file name morph.txt.  Note that this new 
input file name must follow immediately after the new command 
weight.

• Change the input data file names to mola1.txt and mola2.txt.
• Change the output and program progress file names to 
totalev1.out and totalev1.err, respectively.

• Delete the command  molecularmatrix g1ts1tv1.txt.
This script causes POY to 
• perform simultaneous analysis of all data partitions, including the 

phenotypic data in morph.txt; 
• perform equal weighting of nucleotide and morphological trans-

formations using the command gap 1 instead of the previously 
used command for step matrices  molecularmatrix;

• perform iterative pass optimization instead of the default direct 
optimization;
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• use outgroup hagfish to override the default behavior of tak-
ing the first taxa in the input file as the outgroup—useful for 
evaluating different outgroups and when input files differ order 
taxa differently;

• generate a Nona file named totalev1.ss that contains the con-
catenated implied sequence alignments and phenotypic data set 
with the least cost trees appended—useful for optimizing pheno-
typic characters and verifying tree costs.

3. Save batch file totalev1.bat as plain text format in the Tutorial 
folder.

4. Run totalev1.bat.
In our analysis, this script results in a single least cost tree of 7,345 
steps. The analysis took two days on our 850-MHz Pentium III.

Tutorial 6:  Starting Cladograms
This tutorial demonstrates how to use topologies from previous analy-
ses as starting cladograms for POY to improve upon. Cladograms must 
be specified as described in “Input Cladograms” on page 156.
For this tutorial, we build on the script you created in Tutorial 5.
1. In the Tutorial folder, save a copy of totalev1.bat (created in 

Tutorial 5) as totalev2.bat.
2. In your text editor, edit totalev2.bat to create the following 

script:
poy weight 1 morph.txt mol1a.txt mol2a.txt -gap 1 -
nooneasis -approxbuild -replicates 2 -
norandomizeoutgroup -outgroup hagfish -slop 1 -
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Figure 14.11: Cladogram of totalev1.out.
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checkslop 2 -exact -iterativepass -
phastwincladfile totalev2.ss -topofile tree.txt -
printtree -plotfile totalev2.tree > totalev2.out 
2> totalev2.err 

This requires that you make the following changes to the original 
script:
• Add the commands topofile trees.txt, printtree, and 
plotfile totalev2.tree.

• Change the file name totalev1.ss to totalev2.ss.
• Change the output and program progress file names to 
totalev2.out and totalev2.err, respectively.

This script causes POY to  
• perform simultaneous analysis of all data partitions 
• perform SPR and TBR branch swapping on both the topologies 

contained in the file trees.txt and those obtained from two 
random addition replicates

• write a graphical representation of the minimum cost 
cladogram(s) to the file totalev2.tree.

3. Save totalev2.bat as plain text format in the Tutorial folder.
4. Run totalev2.bat.

This analysis took 1.5 days on our 850-MHz Pentium III.
5. In your text processor, open totalev2.tree to view the graphical 

representation of the best cladograms.
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Figure 14.12: Cladogram of totalev2.out.
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Tutorial 7:  Fixed States and Search-Based 
Optimization

This tutorial demonstrates how to perform fixed states and search-
based optimization. In “Tutorial 5: Combined Analysis” on page 178, 
the optimization algorithm was changed from the default option (direct 
optimization) to iterative pass optimization, which only required that 
the command iterativepass be specified. Switching to fixed states is 
accomplished in the same way, and search-based optimization is accom-
plished as a modification of standard fixed states optimization.
1. In your text editor, type the following command line:

poy -fixedstates mol1.txt mol2.txt -gap 1 -
nooneasis -replicates 20 > fixed.out 2> fixed.err 

This script causes POY to perform fixed states optimization on the 
data in mol1.txt and mol2.txt. Note that the command fixed 
states precedes the file names it is applied to. One can treat dif-
ferent data files in different ways by breaking up the filenames (for 
example, poy mol1.txt -fixed states mol2.txt...  would 
perform direct optimization on mol1.txt and fixed states on 
mol2.txt).

2. Save the file as fixed.bat in the Tutorial folder.
3. Run fixed.bat.

In our run, we obtained a single tree of cost 1,348.
Search-based optimization performs fixed states calculations on an 
expanded state set (that is, the set of potential hypothetical ancestral 
sequences).  Therefore, running a search-based optimization analysis 
involves two steps:
• Defining (generating) the state set
• Calculating cladogram costs based on the set of hypothetical ancestral 

sequences.  
The state set is generated by optimizing sequences on different 
cladograms and saving the resulting ancestral sequences to a file.  The 
cladograms (and resulting state sets) may be derived by diagnosing one 
or a few input cladograms, by searching with a more or less exhaustive 
strategy, and by using either the direct optimization or iterative pass 
algorithms (do not use the fixed states option, as this will not expand 
the state set beyond the observed sequences).  The state set must be 
calculated for each data set separately.
4. In your text editor, type the following scripts, each separated by a 

hard return:
poy mol1.txt -gap 1 -nooneasis -replicates 20 
-printlotshypanc -hypancfile mol1.hyp¶
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poy mol2.txt -gap 1 -nooneasis -replicates 20 
-printlotshypanc -hypancfile mol2.hyp¶

This will perform 20 random addition searches for each data file 
(using default settings for searches) and save all the hypothetical 
ancestral sequences from both final and intermediate cladograms 
to mol1.hyp and mol2.hyp, respectively.  

5. Save this batch file as hypanc.bat.
6. Run hypanc.bat.
7. In your text editor, open mol1.hyp and mol2.hyp.

In each file there is a set of sequences of variable lengths with all 
ambiguities arbitrarily resolved.  At the end of each file insert a 
semicolon and save the results.  The semicolon is required for POY 
to process the sequences in the next steps.  
It is not uncommon for sequences to be repeated. Including 
repeated states in the state set will slow down fixed states calcula-
tions, so it is recommended that they be filtered out. This may be 
done with an ancillary program called filterstates.exe, which 
should be in your Tutorial folder.

8. In your text editor type the following scripts, each separated by a 
hard return. 
filterstates < mol1.hyp > mol1a.hyp¶

filterstates < mol2.hyp > mol2a.hyp¶

Running these scripts will cause the program filterstates to examine 
each file, report the number of redundant sequences relative to the 
total number, purge them from the file, and save the results as 
mol1.hyp and mol2.hyp, respectively.

9. Save this file as filter.bat
10. Run filter.bat.

We can now calculate the cladogram costs using the expanded state 
set.

11. In your text editor, type the following script:
poy -fixedstates mol1.txt mol2.txt -newstates 
mol1a.hyp -newstates mol2a.hyp -gap 1 -nooneasis -
replicates 50 > sbo.out 2> sbo.err

In our run, this returned a single tree of cost 1,113.

Tutorial 8:  Chromosomal Optimization
This tutorial illustrates chromosomal optimization, which allows the 
homology of both individual nucleotides and entire loci (for example, 
the genes of a chromosome) to be tested by optimizing both character 
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types simultaneously. As implemented in POY, the boundaries between 
loci must be known (assumed) a priori, with the occurrence of rearrange-
ments, insertions, and deletions of those regions being the events 
inferred though phylogenetic analysis. Running a chromosome optimi-
zation analysis is straightforward, but the output differs from that of 
analysis of standard nucleotide data.
1. In your text editor type the following script:

poy -molecularmatrix 421 -chromosome data.chrom 
-linear -rearrange -diagnose -impliedalignment > 
chromo.out 2> chromo.err

This simple script employs the following specified and default 
commands:
• Calculates cost of nucleotide transformations using the Sankoff 

matrix 421, which specifies a cost of 4 for indels, 2 for transver-
sions, and 1 for transitions

• Builds initial Wagner tree in the order of terminals in 
data.chrom

• Inputs the data file data.chromo and treats it as a linear chromo-
some

• Allows rearrangements as well as insertions and deletions of 
fragments

• Assigns default breakpoint cost of 10
• Assigns default locus indel cost of 10, with no additional cost for 

locus length
• Prints the cladogram diagnosis and implied alignment to the out-

file.
2. Save the file as chromo.bat.
3. Execute chromo.bat.
4. In your text editor open chromo.out.

This analysis resulted in two equally optimal cladograms of cost 
112.  Locus homologies for each of the optimal solutions are 
reported in three ways.  First, beneath the standard diagnostic 
information POY reports the Annotation Table showing the rela-
tive adjacencies of each locus in each taxon (including HTUs):
-------- ANNOTATION TABLE --------
  Hagfish:     0|1|2|3|
  Tree_Frog:   0|1|2|3|4|
  Newt:        0|1|2|3|4|
  Cow:         1|2|3|4|
  Human:       1|2|3|4|
  Horn_shark:  1|2|3|4|
  Salmon:      0|1|2|5|3|4|
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  Goldfish:    0|1|2|5|3|4|
  Sawshark:    1|2|3|4|
  HTU0:        0|1|2|3|
  HTU1:        0|1|2|3|4|
  HTU2:        0|1|2|5|3|4|
  HTU3:        0|1|2|3|4|
  HTU4:        1|2|3|4|
  HTU5:        1|2|3|4|
  HTU6:        1|2|3|4|
  HTU7:        0|1|2|3|4|

Loci are numbered in the order in which they are read from the data file, 
beginning with 0.
Second, the annotation table is followed by the presence/absence table 
that shows presence (+) and absence (-) of each locus in each taxon 
(including HTUs): 

-------- PRESENCE/ABSENCE TABLE --------
                0  1  2  3  4  5 
  Hagfish:      +  +  +  +  -  - 
  Tree_Frog:    +  +  +  +  +  - 
  Newt:         +  +  +  +  +  - 
  Cow:          -  +  +  +  +  - 
  Human:        -  +  +  +  +  - 
  Horn_shark:   -  +  +  +  +  - 
  Salmon:       +  +  +  +  +  + 
  Goldfish:     +  +  +  +  +  + 
  Sawshark:     -  +  +  +  +  - 
  HTU0:         +  +  +  +  -  - 
  HTU1:         +  +  +  +  +  - 
  HTU2:         +  +  +  +  +  + 
  HTU3:         +  +  +  +  +  - 
  HTU4:         -  +  +  +  +  - 
  HTU5:         -  +  +  +  +  - 
  HTU6:         -  +  +  +  +  - 
  HTU7:         +  +  +  +  +  -

Finally, the complete chromosomal implied alignment is reported:
--- Complete mitochondrial implied alignment from character 0 ---

  Locus 0
  Hagfish             AAAAA
  Tree_Frog           AGAAA
  Newt                CCCCA
  Cow                 XXXXX
  Human               XXXXX
  Horn_shark          XXXXX
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  Salmon              -AAAT
  Goldfish            -AAAT
  Sawshark            XXXXX

  Locus 1
  Hagfish             CCCCC
  Tree_Frog           CTCCC
  Newt                GTGGG
  Cow                 GTGGG
  Human               GTGGA
  Horn_shark          ---AA
  Salmon              C-AGT
  Goldfish            C-AGT
  Sawshark            --AAA

  Locus 2
  Hagfish             GGGGG
  Tree_Frog           GAGGG
  Newt                AATAA
  Cow                 AATAA
  Human               AAT-A
  Horn_shark          TTCAT
  Salmon              GAGGT
  Goldfish            GACGC
  Sawshark            TTAAT

  Locus 3
  Hagfish             TTTTT
  Tree_Frog           TCTTT
  Newt                -TCTT
  Cow                 CCCCA
  Human               TAGGG
  Horn_shark          TTCAT
  Salmon              GCTAA
  Goldfish            GCT-A
  Sawshark            TTCAT

  Locus 4
  Hagfish             XXXXXXX
  Tree_Frog           -GA-GGG
  Newt                -TA-GGG
  Cow                 TT-ATTT
  Human               -T--TTA
  Horn_shark          -G--GGG
  Salmon              -AA-ATT
  Goldfish            -AT-ATT
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  Sawshark            -G--GGG

  Locus 5
  Hagfish             XXXXXX
  Tree_Frog           XXXXXX
  Newt                XXXXXX
  Cow                 XXXXXX
  Human               XXXXXX
  Horn_shark          XXXXXX
  Salmon              CCAGGT
  Goldfish            CCATGT
  Sawshark            XXXXXX

That is, loci inferred to be homologous are grouped together and the 
nucleotides within them related through transformation series, reported 
in the format of an alignment. Loci that are absent for a given taxa are 
reported as a string of Xs. Note that concatenating the implied align-
ments for the different loci and optimizing them on the inferred 
cladogram will not recover the same cost, as the cost of rearrangements 
and locus indels is not accounted for. 
As in standard diagnosis and implied alignment printing, the informa-
tion is provided subsequently for each optimal solution. 

Tutorial 9: Maximum Likelihood Optimization
This tutorial demonstrates how to perform analyses under the maxi-
mum likelihood optimality criterion. That is, rather than evaluating cost 
as a weighted number of steps with relative weights determined in a 
Sankoff matrix, this evaluates cost as a likelihood score with relative 
change penalties determined in a transition probability matrix. POY cal-
culates likelihood scores (as negative natural log likelihoods) as a func-
tion of a five-state (each nucleotide plus indel) Markov model; the 
model parameters may be specified a priori or estimated during the anal-
ysis. Other model parameters, such as the proportion of invariant sites 
(θ, theta), the shape parameter (α) of the gamma ( Γ )  distribution, and 
the rate classes, may also be specified or estimated. Because the align-
ment is not predetermined, there are several ways to estimate the likeli-
hood score of a cladogram—that is, by calculating only the likelihood of 
the dominant optimization alignment (default likelihood), by sum-
ming all major optimization alignments (totallikelihood), or by 
summing all likelihoods (trullytotallikelihood). Likewise, maxi-
mum likelihood can be implemented using fixed-states optimization, 
search-based optimization, or iterative pass optimization, and all of the 
tree searching algorithms can be applied as well. All of these options are 
not demonstrated here, but a procedure is shown for estimating the 
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transition matrix and running a maximum likelihood analysis with esti-
mated and specified parameters. 
1. In your text editor type the following script:

poy -likelihood mol1.txt mol2.txt > ml1.out 2> 
ml1.err 

This is the simplest script to run a maximum likelihood analysis 
using the default settings. Important default settings include the 
following:
• Calculate the likelihood of only the dominant optimization align-

ment (which may only be a very small fraction of the total likeli-
hood).

• Perform the initial build in the order in which taxa occur in the 
first data file.

• Estimate θ and α parameters to model among-site rate variation 
from all pairwise alignments of input sequences and fix them for 
the duration of the search.

• Estimate transition probabilities from all pairwise comparisons 
of input sequences and fix them for the entire search.

• Estimate base and indel frequencies from all pairwise compari-
sons of input sequences and fix them for the entire search.

• Set the likelihood rounding multiplier to 100 (=0.01 log likeli-
hood units).

• Set the threshold for two likelihood scores to be considered 
equal at 1/likelihoodroundingmultiplier—that is, 1/100, 
or 0.01 log likelihood units.

• Estimate the transition matrix by recounting all the types of 
event for each node-to-node comparison throughout the search.

• Perform a maximum of 100 branch length iterations.
• Set the size of iteration steps during branch length optimization 

to 5 units.
• Use s6g submodel, equivalent to GTR + indels with all indels 

treated equally.
2. Save the file as ml1.bat in the tutorial folder.
3. Execute ml1.bat and examine the results.
4. In your text editor open ml1.err. 

Note that after reporting on the initial maximum likelihood 
options, the base frequencies calculated from pairwise comparisons 
are reported:
"Estimating likelihood parameters (using 9 pairwise 
comparisons)...
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Estimated base frequencies : 0.262510 0.277968 
0.197670 0.259127 0.002725 
On to theta and gamma
Done"

It then reports on the build and refinement stages of the analysis 
and summarizes the run data (for example, this run took 179 sec-
onds on a 1.7-GHz Pentium 4).

5. In your text editor open ml1.out.
This file reports the maximum likelihood tree and its log likelihood 
score.
(Hagfish ((((Tree_Frog Newt) (Horn_shark Sawshark)) 
(Cow Human)) (Salmon Goldfish)))[5651.57]
;
Binary representations of best trees:
(Hagfish ((Goldfish Salmon) ((Human Cow) 
((Tree_Frog Newt) (Sawshark 
Horn_shark)))))[5651.57]
;

Note that there is a large difference between the likelihood 
reported with the tree (in square brackets) and the likelihoods 
reported during the search. For internal calculations tree costs are 
determined as the likelihood of obtaining each descendant from 
each ancestor, multiplying each time, as this is the portion of the 
likelihood score that varies among trees. However, to calculate the 
correct likelihood, the likelihood of having the root ancestor in the 
first place must also be included; because this is constant over all 
topologies it is simply added in the final step. The correct value is 
the one reported with the tree topology (5,651.57 in this case). 

6. Save a copy of ml1.bat as ml2.bat in the tutorial folder. 
7. In your text editor open ml2.bat and modify the script to read as 

follows:
poy -likelihood mol1.txt mol2.txt -totallikelihood 
-diagnose > ml1.out 2> ml2.err 

This involves making the following change to the previous script:
• Add the command totallikelihood, which determines the 

likelihood score of an optimization alignment by summing all 
major alignments. This is a better approximation of the actual 
likelihood score, but it is much slower (this run took 643 seconds 
on the same computer).

• Add the command diagnose, which causes diagnostics to be 
printed to the outfile.

8. Save the changes you made to ml2.bat.
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9. Execute ml2.bat.
10. In your text editor open ml2.out. 

The following is reported:
(Hagfish ((((Tree_Frog Newt) (Horn_shark Sawshark)) 
(Cow Human)) (Salmon Goldfish)))[5632.85]
;
Binary representations of best trees:
(Hagfish (((Cow Human) ((Tree_Frog Newt) (Sawshark 
Horn_shark))) (Goldfish Salmon)))[5632.85]
;

Note the difference in the likelihood score obtained from this and 
the previous script.
Immediately beneath the trees is the following output, which 
reports the relative maximum and minimum branch lengths in like-
lihood units:
Hypothetical Ancestral Nodes:
Node         Branch Length   Description
--------------------------------------------------------
Hagfish     [   0 -   0 ]
Tree_Frog   [10765 -13222 ]
Newt        [10454 -12915 ]
Cow         [10087 -13374 ]
Human       [9112 -12406 ]
Horn_shark  [12694 -17153 ]
Salmon      [6333 -11933 ]
Goldfish    [7571 -13164 ]
Sawshark    [8150 -10187 ]
HTU0        [ Root Node ] = (Hagfish (((Cow Human) 
((Tree_Frog Newt) (Sawshark Horn_shark))) (Goldfish Salmon)))
HTU1        [2039 -5918 ] = (Cow Human)
HTU2        [2174 -9867 ] = ((Cow Human) ((Tree_Frog Newt) 
(Sawshark Horn_shark)))
HTU3        [3345 -6472 ] = (Tree_Frog Newt)
HTU4        [1355 -6231 ] = ((Tree_Frog Newt) (Sawshark 
Horn_shark))
HTU5        [3191 -6204 ] = (Sawshark Horn_shark)
HTU6        [16278 -24068 ] = (((Cow Human) ((Tree_Frog Newt) 
(Sawshark Horn_shark))) (Goldfish Salmon))
HTU7        [3215 -7236 ] = (Goldfish Salmon)

11. Save a copy of ml1.bat as ml3.bat.
12. In your text editor modify the script to read as follows:
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poy -likelihood mol1.txt mol2.txt -noestimatep     
-noestimateq -noestimateparamsfirst -
likelihoodesttranseachtime > ml3.out 2> ml3.err 

This involves making the following changes to the existing script:
• Add noestimateparamsfirst to prevent fixing parameters for 

the entire search from initial pairwise estimates of input 
sequences, but to reestimate parameters throughout the search, 
including θ and α parameters to model among-site rate variation.

• Add noestimatep to prevent fixing base and indel frequency 
estimates for the entire search from initial pairwise alignments of 
input sequences, but to estimate tansition probabilities for and 
from every pair of sequences (including HTU sequences) as they 
are encountered.

• Add noestimateq to prevent to fixing transition probabilities 
for the entire search from initial pairwise alignments of input 
sequences, but to estimate base and indel frequencies for and 
from every pair of sequences (including HTU sequences) as they 
are encountered.

• Add likelihoodesttranseachtime to recount all the types of 
transition for each pairwise comparison for reestimating the tran-
sition matrix (q).

13. Save the changes to ml3.bat.
14. Execute ml3.bat and examine the results in ml3.out and 

ml3.err.
15. Save a copy of ml1.bat as ml4.bat.
16. In your text editor open ml4.bat and convert it into the following 

script:
poy -likelihood mol1.txt mol2.txt -gammaclasses 4 -
gammaalpha 2 -theta 0.10 -invariantsitesadjust > 
ml3.out 2> ml3.err 

This involves making the following modifications to the previous 
script:
• Add the command gammaclasses 4 to specify four rate classes 

for  Γ (gamma) rate heterogeneity parameter. 
• Add the command gammaalpha 2 to specify α (alpha), the 

shape parameter of the Γ distribution, at 2.
• Add theta 10 to specify the proportion of invariant sites (θ) at 

10%.
• Add invariantsitesadjust to adjust the likelihoods for the 

invariant sites.
17. Save the changes you made to ml4.bat.
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18. Execute ml4.bat and examine the results in ml4.out and ml4.err. 

Tutorial 10: Multiple Scripts
This tutorial demonstrates how to include multiple scripts in a single 
batch file, so that POY runs a sequence of analyses consecutively. Run-
ning multiple scripts consecutively enables you to assess the effect of 
different optimality criteria, trees search strategies, input files and input 
file structures, and indel and nucleotide transformation costs.
For this tutorial, we build on the script you created in Tutorial 4. The 
multiscript batch file you create will apply three alternative nucleotide 
transformation costs.
1. In the Tutorial folder, save a copy of totalev1.bat (created in 

Tutorial 5) as sensitivity1.bat.
2. In your text editor, edit sensitivity1.bat to create the following 

script:
poy -weight 1 morh.txt mola1.txt mola2.txt -
molecularmatrix g1ts1tv1.txt -nooneasis -
approxbuild -replicates 5 -nonrandomizeoutgroup -
slop 2 -checkslop 5 -noleading -outgroup hagfish -
exact > 111.out 2> 111.err

This requires that you make the following changes to the original 
script:
• Add the command molecularmatrix g1ts1tv1.txt.
• Change the output and program progress file names to 111.out

and 111.err, respectively.
• Delete the commands gap 1, iterativepass, phastawin-
cladfile totalev1.ss.

3. Copy and paste the entire script twice, separating the scripts with 
two line breaks.

4. In the second script, 
• change the command weight 1 to weight 2
• change the output and program progress file names to 211.out

and 211.err, respectively
• change the file name g1ts1tv1.txt to g2ts1tv1.txt.

5. In the third script,
• change the command weight 1 to weight 4
• change the output and program progress file names to 421.out

and 421.err, respectively
• change the file name g1ts1tv1.txt to g4ts2tv1.txt.
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When complete, the batch file should contain three scripts, each 
separated by two line breaks as in Figure 14.13.

6. Save sensitivity1.bat as plain text format in the Tutorial 
folder.

7. Run sensitivity1.bat.
This batch file runs the three scripts in succession.  The scripts dif-
fer in the weights they apply to different nucleotide transforma-
tions and to phenotypic data.
• The first script weighs all nucleotides and phenotypic characters 

equally. The step matrix file g1ts1tv1.txt assigns a value of 
one to all transformations (see Figure 14.8 on page 176). The 
command weight 1 sets the weight of phenotypic character 
transformations to one.

• In the second script, the step matrix file g2ts1tv1.txt assigns a 
value of two to indels and one to transversions and transitions, 
and weight 2 sets the weight of phenotypic character transfor-
mations to two (equal to indels).

• In the third script, the step matrix file g4ts2tv1.txt sets indels 
to four, transitions to two, and transversions to one. With 
weight 4 it sets phenotypic characters to four (equal to indels).

poy -weight 1 morph.txt mol1a.txt mol2a.txt -
molecularmatrix g1tv1ts1.txt -nooneasis -
approxbuild -replicates 2 -checkslop 2 -exact -
phastwincladfile 111.ss > 111.out 2> 111.err 
¶
poy -weight 2 morph.txt mol1a.txt mol2a.txt -
molecularmatrix g2tv1ts1.txt -nooneasis -
approxbuild -replicates 2 -checkslop 2 -exact -
phastwincladfile 211.ss > 211.out 2> 211.err ¶
¶
poy -weight 4 morph.txt mol1a.txt mol2a.txt -
molecularmatrix g4tv2ts1.txt -nooneasis -
approxbuild -replicates 2 -checkslop 2 -exact -
phastwincladfile 421.ss > 421.out 2> 421.err 

Figure 14.13: Multiple script file sensitivity1.bat.
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Tutorial 11: Parallel Environments
This tutorial demonstrates how to use POY in a parallel environment 
(and assuming that your cluster includes 30 processors, although the 
tutorial will work with more or less). In particular, it demonstrates the 
use of controllers to allocate calculations to subclusters. There are two 
different ways to perform a parallel execution of POY depending on 
which message passing library you are using: PVM or MPI. The follow-
ing tutorial applies for PVM users. Small modifications are required 
when using MPI, and these can be found at the end of the section. For a 
more complete discussion of how to use POY in a parallel environment, 
refer to “Parallel Environments” on page 114. This tutorial does not 
illustrate how to begin a parallel session; you will need to consult your 
System Administrator for that information (see also Tutorial 12).
By default, the parallel command causes POY to treat the entire cluster 
(that is, all processors) as a single virtual machine. That is, it will divide 
each replicate across the entire cluster, assigning very little work to each 
processor and requiring a great deal of interprocessor communication. 
In this strategy, replicates are done consecutively, not simultaneously. 
This is an extremely fine-grained strategy, and it tends to be a highly 
inefficient approach to parallel computation.
This tutorial demonstrates how to modify the default parallel behavior 
of POY to alter the granularity and fine-tune your analysis to decrease 
computation time. 
1. In your text editor, type the following script:

poy mola1.txt mola2.txt -weight 1 morph.txt -
nooneasis -slop 5 -checkslop 10 -exact -parallel -

Hagfish
Cow

Tree Frog

Human

Horn Shark

Salmon
Newt

Goldfish

Saw Shark

Figure 14.14: Cladogram of 111.out, 211.out, and 421.out .
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multirandom -replicates 30 > para1.out 2> 
para1.err 

The command multirandom modifies the parallel behavior of 
POY by causing it to run each replicate simultaneously on a sepa-
rate slave processor. This is a coarse-grained approach, because it 
assigns a large amount of work (an entire replicate, including build-
ing and refinement) to each processor and requires only minimal 
communication among processors.

2. Copy and paste this script, separating it from the first with two line 
breaks.

3. In the second script, make the following changes:
• Add the command controllers 3. This command divides the 

available nodes into three subclusters. In conjunction with the 
command -multirandom, replicates are distributed among these 
three subclusters rather than being assigned to individual nodes. 
This approach is intermediate in granularity, and it can allow the 
user to fine-tune analyses to particular parallel environments, 
algorithms, and data sets.

• Change the output and program progress file names to 
para2.out and para2.err, respectively.

When complete, the batch file should contain two scripts, separated 
by two line breaks as in Figure 14.15.

4. Save parallel.bat as plain text format in the Tutorial folder.
5. Run parallel.bat.

This batch file runs the two scripts in succession. Compare the 
runtime with and without using controllers.

Modifications for MPI
1. The processes are started using the MPI program provided by your 

distribution. The most common is mpirun;  check you MPI distribu-
tion documentation (version 2 of the standard recommends 

poy mola1.txt mola2.txt -weight 1 morph.txt       
-nooneasis -slop 5 -checkslop 10 -exact -parallel 
-multirandom -replicates 30 > para1.out 2> 
para1.err ¶
¶
poy mola1.txt mola2.txt -weight 1 morph.txt       
-nooneasis -slop 5 -checkslop 10 -exact -parallel 
-multirandom -replicates 30 
-controllers 3 > para2.out 2> para2.err 

Figure 14.15: Multiple script file sensitivity1.bat.
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mpirun, but your distribution may be slightly different). The text 
below assumes mpirun.

2. The MPI 1 standard does allow a program to control the number 
of processes started, as PVM does. Therefore the total number of 
processes is defined by mpirun, and the master process will have 
rank 1.

3. The total number of processes starts should be less than or equal to 
the number of controllers plus the number of slaves plus 1. If the 
total number of processes is less than this sum, the rest of the pro-
cesses will be used for fault tolerance features (process replacement 
in case of failure).

4. There is no control on the processes; the number that begin the 
calculations will be the same number that will finish (excepting fail-
ures).

5. Note that neither the PVM and MPI versions provide a high level 
of fault tolerance in avoiding losing computation if a process fails.

6. -jobspernode, -maxprocessors, -onan, -onannum, and  -random-
izeslaves are PVM-dependent functions. These are not available in 
the MPI version. For controlling these variables, check your MPI 
documentation.

7. In the MPI version, -solospawn defines the number of slaves to be 
used, not the number of slave jobs spawned on a stand-alone multiprocessor 
machine.

Tutorial 12: Scheduling Software
Most clusters operate through front-end scheduling software (also 
known as batch loaders or queues). This tutorial demonstrates how to 
run POY in PVM through the Sun Grid Engine (SGE) scheduling soft-
ware. Note that different scheduling software require slightly different 
scripts, and systems administrators have different rules for cluster use, 
so the scripts in this tutorial might need to be modified for your system.
1. In your text editor, type the following script:

#!/bin/csh -f

#$ -N tutorial
#$ -pe pvm 30
#$ -V 
#$ -S /bin/csh
#$ -cwd
#$ -M grant@amnh.org
#$ -m bea

set slots=`expr $NSLOTS - 1`
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poy -weight 1 morph.txt mola1.txt mola2.txt -
parallel -numslaveprocesses $NSLOTS -onan -
nooneasis -slop 5 -checkslop 10 -exact -parallel -
multirandom -replicates 30 -controllers 3 -
phastwincladfile tutorial.ss

2. Save the file as tutorial.sh as plain text format in the Tutorial 
folder.
This script contains the commands for SGE (each preceded by S#) 
followed by the commands for POY (the same as in Tutorial 8). 
Important parameters to be aware of are the following:
• -N: designates the name of the job to be submitted to SGE 

(called tutorial here)
• -pe pvm: designates the number of hosts to be requested for the 

run (30 here) and generates a hosts file to start PVM
• -M: causes an email to be sent to the designated address 
• -m: stipulates when an email is to be sent; b causes an email to be 

sent when the run begins, e when it ends, and a if it aborts.
POY scripts differ very little from other parallel scripts. All POY 
commands will work through a scheduler. The main difference is 
that no.out or.err progress report files are specified. This is because 
the scheduling software generates these files automatically. These 
files are given an extension followed by the job ID number 
assigned automatically by the scheduler. For example, the follow-
ing files were generated in our analysis:
tutorial.po127
tutorial.pe127
tutorial.o127
tutorial.e127 

where tutorial is the name of the job, 127 is the job ID number, 
po is the SGE out file, pe is the SGE standard error file, o is the 
POY out file, and e is the POY standard error file. Otherwise, 
inputting (for example, tree or consensus files) and generating (for 
example, tree graphics and Hennig86/NONA matrices) files is the 
same with or without a scheduler. 
Another difference is the inclusion of the command onan, which 
causes POY to spawn jobs on the master processor. In a normal 
parallel environment, the master runs all the jobs for all users and 
also houses the input and output files from analyses. As such, traf-
fic is usually quite heavy on the master, so it is unwise to further 
burden this processor with tree searching. However, scheduling 
software designates a different master for each run. Since most of 
the time the master is waiting to receive information from slaves, it 
is not heavily used and jobs can safely be spawned to it. 
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3. To submit the job to SGE, at the prompt type 
qsub tutorial.sh

An email will be generated to notify you when your job has begun.
4. To check the status of your job in the queue, at the prompt type 

qstat

5. To delete a job from the queue, at the prompt type
qdel jobIDnumber

For example, qdel 127 would remove job number 127.



15 Command 

References
This chapter describes the commands used to perform analysis using 
POY. The first section lists commands by function. Each reference 
includes a brief description of the command’s usage. The second section 
lists commands alphabetically. Each reference includes syntax rules, 
specification of parameters, and an example of and comments on the 
command’s usage.1

Commands by Function
This section lists POY commands by function. Detailed command ref-
erences begin on page 216.

1. This chapter is based on the command line reference in POY (version 3) designed and imple-
mented by Jan DeLaet.

Command function Page
Input Data 201
Output 202
Optimization 203

• Constraints 203
• Additive characters 204
199
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• Nonadditive characters 204
• Implied weights 204
• Sankoff characters 204
• Direct optimization 204
• Fixed state and search-based 

optimization
205

• Iterative pass 205
• Chromosomal characters 206
• Static approximation 207
• Likelihood 207

Cladogram Search 208
• Constrained searches 208
• SPR and TBR 209
• Ratcheting 209
• Tree fusing 210
• Tree drifting 210

Evaluation 211
• Reconstruction of hypothetical 

ancestral states
211

• Consensus techniques 211
• Implied alignment 212
• Support 212
• Fit statistics 212

Parallel Processing 213
• Dynamic process migration 213
• Parallel processing and load bal-

ancing
213

System Commands 214
Execution Time 215
Exhaustive Searches 216

Command function Page
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Input Data
The following commands affect POY input data input. Commands that 
affect input data for likelihood analysis are listed separately, beginning 
on page 207.

Command Page Description
agree 217 Performs optimization subject to the constraint that 

specified clades are recovered.
change 227 Sets the cost for nucleotide change.
constrain 233 Reads cladogram search constraints from one or more 

specified files.
defaultweight 237 Sets the weight of all character data that follow.
disagree 238 Performs a cladogram search such that clades speci-

fied by a constraint file are not recovered.
extensiongap 251 Sets the cost of gaps that follow the first in a series of 

gaps.
fixedstates 253 Performs fixed state optimization on a specified file.
gap 257 Sets the cost of gaps.
goloboff 258 Performs implied weights optimization.
kfactor 273 Sets the k value for implied character weighting.
leading 273 Counts leading and trailing gaps in tree cost.
molecularmatrix 283 Reads nucleic acid transformation costs from a speci-

fied file.
multiplier 284 Sets the multiplier for implied weighting.
prealigned 302 Reads sequence data as prealigned from a specified 

file.
terminalsfile 320 Sets terminal taxon names.
topofile 322 Reads topologies from a specified file.
topology 323 Reads an input cladogram from the command line.
trailinggap 326 Sets the cost of leading and trailing gaps in a 

sequence.
weight 329 Sets the weight of the data in the preceding input data 

file.
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Output
The following commands control POY output.

Command Page Description
bremer 220 Calculates Bremer support values using TBR and 

writes results to standard output.
catchslaveoutput 227 When using parallel (page 293), writes all stan-

dard output of slave tasks to the standard output of 
the master task.

characterweights 227 Writes search statistics for each character to stan-
dard output.

diagnose 238 Writes branch costs and apomorphy lists to stan-
dard output.

discrepancies 239 Writes the cost difference between trees found 
using shortcuts and trees found on a complete 
down pass.

hypancname 261 Writes the names of hypothetical ancestral nucle-
otide sequences to standard output.

impliedalignment 263 Writes a topology-specific multiple alignment based 
on the synapomorphy scheme to standard output.

indices 263 Writes fit statistics (consistency index and retention 
index) for a topology to standard output.

intermediate 263 Writes intermediate search results to standard out-
put.

phastwincladfile 293 Writes implied alignments to a specified file.
plotencoding 293 Sets the characters used to plot trees.
plotechocommandline 294 Writes the command line as the first line of the tree 

output file.
plotfile 294 Sets the name of the tree output file.
plotfrequencies 295 Sets how clade frequencies are tabulated in the least 

cost trees.
plotmajority 296 Sets how to plot majority rule consensus trees.
plotoutgroup 296 Sets the outgroup used for tree plotting.
plotstrict 297 Sets how to plot strict consensus trees.
plottrees 297 Sets how to plot optimal trees.
plotwidth 298 Sets the number of columns used for plotting trees.
poybintreefile 300 Writes the optimal trees in POY topology format to 

a specified file.
poystrictconsensuschar-

file
300 Writes the strict consensus tree in Hennig86/Nona 

format to a specified file.
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Optimization
This section describes commands that control how POY performs opti-
mization.

Constraints
The following commands affect how optimization is constrained.

poystrictconsensus-
treefile

301 Writes the strict consensus tree in POY topology 
format to a specified file.

poytreefile 301 Writes the optimal cladograms in POY topology 
format to a specified file.

printccode 302 Writes a ccode-like summary of the character set-
tings in each Hennig86/Nona formatted input data 
file to standard output.

printhypanc 303 Writes hypothetical ancestral sequences for optimal 
cladograms to a specified file.

printlotshypanc 303 Writes hypothetical ancestral sequences for inter-
mediate and optimal trees to a specified file.

printqmat 304 Writes likelihood parameters to standard output.
printtree 304 Writes a graphic of the optimal trees and their strict 

consensus trees to a standard output file.
quote 306 Writes a specified string to standard output.
repintermediate 311 Writes the results of individual random replicates to 

standard output.
showiterative 314 Writes iterative pass progress information to stan-

dard output.
spewbinary 316 Writes binary trees (that is, trees without polyto-

mies) used internally by POY to standard output. 
Default value.

stats 318 Writes cladogram search statistics to standard out-
put.

time 321 Displays execution time in seconds.
verbose 328 Writes cladogram search progress information to 

the standard error file.

Command Page Description
agree 217 Performs optimization subject to the constraint that 

specified clades are recovered.
constrain 233 Reads cladogram search constraints from one or more 

specified files.

Command Page Description
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Additive characters
The following commands describe how POY performs additive charac-
ter optimization.

Nonadditive characters
The following commands describe how POY performs nonadditive 
character optimization.

Implied weights
The following commands describe how POY performs implied weights 
optimization.

Sankoff characters
The following input format allows Sankoff character optimization.

Direct optimization
Direct optimization is the default optimization algorithm.

disagree 238 Performs a cladogram search such that clades speci-
fied by a constraint file are not recovered.

dropconstraints 248 Performs cladogram building using constraints, then 
performs cladogram refinement without constraints.

Command Page Description
recode 311 Accelerates additive and nonadditive characters optimization. 

Default value.

Command Page Description
recode 311 Accelerates additive and nonadditive characters optimization. 

Default value.

Command Page Description
goloboff 258 Performs implied weights optimization.
kfactor 273 Sets the k value for implied character weighting.
multiplier 284 Sets the multiplier for implied weighting.

Command Page Description
dpread 151 Input file for Sankoff characters

Command Page Description
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Fixed state and search-based optimization
The following commands describe how POY performs fixed state opti-
mization.

Iterative pass
The following commands describe how POY performs iterative pass 
optimization.

Command Page Description
compressstates 233 Tracks states during the build process of search-based 

optimization, then removes unused states during the 
cladogram search.

fixedstates 253 Performs fixed state optimization on a specified file.
newstates 286 Reads the state set for search-based optimization from 

a specified file.

Command Page Description
iterativeinitsingle 264 Sets initial HTU states by resolving ambiguities in pre-

liminary phase (that is, the down pass) from direct opti-
mization.

iterativekeepbetter 264 Retains the hypothetical ancestral states and cladogram 
cost that is the lesser of standard up/down pass and 
iterative pass.

iterativelowmem 265 Minimizes memory allocation during iterative pass opti-
mization.

iterativepass 265 Performs iterative pass optimization.
iterativepassfinal 266 Uses iterative pass to reestimate final states.
iterativerandom 266 Resolves ambiguities in hypothetical ancestral states 

using random preference.
maxiterations 281 Sets the maximum number of iterative passes to per-

form.
showiterative 314 Writes iterative pass progress information to standard 

output.
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Chromosomal characters
The following commands describe how POY performs chromosomal 
character optimization.

Command Page Description
allchroms 217 Optimizes HTU chromosomes by examining all combi-

nations of loci in the three adjacent HTU/OTU chro-
mosomes.

breakpoint 220 Sets the breakpoint cost.
buildchrom 221 Optimizes chromosomal characters by building HTU 

chromosomes one locus at a time in the manner of cla-
dogram building. Default value.

chromosome 229 Causes POY to use the chromosome character type.
chromfilter 230 Ignores all chromosome fragments whose length is 

greater than 0 and less than a specified length.
circular 230 Treats chromosomal characters as circular, as opposed 

to linear. Default value.
fixedstates 253 Performs fixed state optimization on a specified file.
impliedalignment 263 Writes a topology-specific multiple alignment based on 

the synapomorphy scheme to standard output.
linear 278 Treats chromosomal characters as linear, as opposed to 

circular.
locusgap 279 Sets the constant fraction of the cost of locus origin-loss 

events.
locussizegap 279 Sets the variable fraction of the cost of locus origin-loss 

events.
locusswap 280 Refines chromosome HTU construction.
n2reorder 285 Selects reorderings of loci on a chromosome using a 

method akin to cladogram building.
onechroms 289 Optimizes HTU chromosomes by examining a single 

resolution of loci that have been ambiguously assigned 
to the candidate HTU. Default value.

rearrange 310 Enables locus rearrangement to occur when optimizing 
chromosomal characters.

reversible 312 Enables the loci to be treated as unsigned—that is, 
either the given locus or its reverse complement can be 
used in optimization.

showchromsearch 313 Display of chromosomal HTU optimization progress 
information.

somechroms 315 Optimizes HTU chromosomes by examining all combi-
nations of loci that have been ambiguously assigned to 
the candidate HTU.
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Static approximation
The following commands describe how POY performs a static approxi-
mation cladogram search.

Likelihood
The following commands affect input data when performing likeli-
hood  analysis.

Command Page Description
staticapprox 317 Performs static approximation for sequence optimiza-

tion during cladogram refinements.
staticapproxbuild 317 Performs static approximation for sequence optimiza-

tion during cladogram building.

Command Page Description
basefreq 219 Reads nucleotide frequencies from a file.
estimatep 250 Uses nucleic acid and gap frequencies estimated from 

input data and pairwise alignments, which are then 
fixed for the duration of the search.

estimateparamsfirst 250 Uses likelihood parameters estimated from input data 
and pairwise alignments, which are then fixed for the 
duration of the search.

estimateq 251 Uses probabilities for transitions estimated from pair-
wise alignments, which are then fixed for the duration 
of the search.

freqmodel 254 Sets how nucleic acid and gap frequencies are esti-
mated.

gammaalpha 256 Sets the alpha parameter for the gamma distribution.
gammaclasses 256 Sets the number of rate classes for a discrete gamma 

distribution.
invariantsitesadjust 264 Adjusts likelihoods for theta fraction invariant sites.
likelihood 274 Performs likelihood analysis.
likelihoodconver-

gencevalue
274 Sets the maximum likelihood difference for which two 

likelihood scores are considered equal.
likelihoodestimation-

size
275 Sets the number of pairwise sequence comparisons 

used to estimate likelihood parameters.
likelihoodest-

transeachtime
275 Estimates the transition matrix for each comparison 

of two sequences.
likelihoodextension-

gap
275 Sets the likelihood of gaps that follow the first in a 

series of gaps.
likelihoodmaxnumit-

erations
276 Sets the maximum number of branch cost iterations 

performed.
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Cladogram Search
This section describes commands that control how POY performs 
cladogram searches.

Constrained searches
The following commands affect how cladogram searching is con-
strained.

likelihoodrounding-
multiplier

276 Sets the rounding value used in likelihood calculations.

likelihoodstep 277 Sets the size of iteration steps during branch cost opti-
mization.

likelihoodtrailinggap 277 Sets the likelihood of leading and trailing gaps.
qmatrix 305 Reads a transition cost ratio matrix for likelihood anal-

ysis from a specified file.
submodel 319 Enforces symmetries in transition probabilities during 

likelihood analysis.
theta 321 Sets the theta value for likelihood analysis.
totallikelihood 326 Calculates the likelihood of an optimization alignment 

by summing only the major optimization alignments.
trullytotallikelihood 328 Calculates the likelihood of an optimization by sum-

ming all optimizations.

Command Page Description
agree 217 Performs optimization subject to the constraint that 

specified clades are recovered.
constrain 233 Reads cladogram search constraints from one or more 

specified files.
disagree 238 Performs a cladogram search such that clades speci-

fied by a constraint file are not recovered.
dropconstraints 248 Performs cladogram building using constraints, then 

performs cladogram refinement without constraints.

Command Page Description
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SPR and TBR
The following commands describe how POY performs subtree prun-
ing and regrafting (SPR) and tree bisection and reconnection (TBR) cla-
dogram searches.

Ratcheting
The following commands describe how POY performs a ratcheted 
cladogram search.

Command Page Description
approxquickspr 218 Calculates tree lengths for SPR using an approximation 

shortcut.
approxquicktbr 219 Calculates tree lengths for TBR using an approximation 

shortcut.
cutswap 236 Performs a shortcut during branch swapping based on 

approximate tree costs.
quick 305 Performs branch swapping only on minimum cost trees.
spr 316 Performs an SPR cladogram search.
sprmaxtrees 317 Sets the maximum number of trees held in buffers dur-

ing an SPR cladogram search.
tbr 319 Performs a TBR cladogram search.
tbrmaxtrees 320 Sets the maximum number of trees held in buffers dur-

ing a TBR cladogram search.

Command Page Description
checkfrequency 228 Sets the frequency of message checking when perform-

ing parallel ratcheting.
multiratchet 285 Spawns individual ratchet jobs on slave nodes.
ratchetoverpercent 307 Spawns a specified number of extra ratchet jobs to 

accommodate unequal execution times during parallel 
execution.

ratchetpercent 308 Sets the percentage of characters reweighted during a 
ratchet search.

ratchetseverity 308 Sets the weight multiplier for reweighting characters 
during a ratchet search.

ratchetslop 308 Sets the percent limit of suboptimal trees evaluated dur-
ing a ratchet search.

ratchetspr 309 Sets the number of ratchet iterations using SPR.
ratchettbr 309 Sets the number of ratchet iterations using TBR.
ratchettrees 310 Sets the number of trees saved during ratchet iterations.
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Tree fusing
The following commands describe how POY performs tree fusing.

Tree drifting
The following commands describe how POY performs tree drifting.

Command Page Description
fuseafterreplicates 254 Performs tree fusing on the results of random replicates 

as they are calculated. This is the default value when tree 
fusing (treefuse on page 327) is on.

fuselimit 254 Sets the maximum number of tree fusing pairs held in 
memory.

fusemaxtrees 255 Sets the maximum number of trees held in memory dur-
ing tree fusing.

fusemingroup 255 Sets the minimum number of taxa in a subtree that can 
be exchanged.

fusingrounds 256 Performs tree fusing a specified number of times.
treefuse 327 Performs cladogram search using tree fusing.
treefusespr 327 Performs a SPR cladogram search on new cladograms 

found during a tree fusing search.
treefusetbr 328 Performs a TBR cladogram search on new cladograms 

found during a tree fusing search.

Command Page Description
approxdrift 218 Calculates tree lengths for tree drifting using an approx-

imation shortcut.
driftequallaccept 247 Sets the percentage of instances to accept equally parsi-

monious trees during tree drifting.
driftlengthbase 247 Sets a parameter used to specify the probability of 

accepting a suboptimal tree.
driftspr 248 Performs tree drifting using SPR.
drifttbr 248 Performs tree drifting using TBR.
multidrift 284 Spawns individual tree drifting jobs to slave nodes.
numdriftchanges 287 Sets the number of topological changes permitted per 

tree drifting round.
numdriftspr 287 Sets the number of SPR tree drift rounds.
numdrifttbr 287 Sets the number of TBR tree drift rounds.
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Evaluation
This section describes commands that control how POY evaluates anal-
ysis results.

Reconstruction of hypothetical ancestral states
The following commands control how POY reports hypothetical ances-
tral states.

Consensus techniques
The following commands control how POY reports consensus trees.

Command Page Description
hypancfile 260 Sets the output file name for hypothetical ancestral 

nucleotide sequences.
hypancname 261 Writes the names of hypothetical ancestral nucleotide 

sequences to standard output.
printhypanc 303 Writes hypothetical ancestral sequences for optimal 

cladograms to a specified file.
printlotshypanc 303 Writes hypothetical ancestral sequences for intermediate 

and optimal trees to a specified file.

Command Page Description
jackpseudoconsensus-

trees
270 Writes the strict consensus trees for the individual 

pseudo-replicates to standard output.
jacktree 271 Writes the majority rule consensus tree from the 

strict consensus trees of all jackknife pseudo-repli-
cates to standard output.

jackwincladefile 272 Writes the strict consensus trees from the individ-
ual pseudo-replicates to a specified file in Winclada 
readable format.

plotmajority 296 Sets how to plot majority rule consensus trees.
plotstrict 297 Sets how to plot strict consensus trees.
plottrees 297 Sets how to plot optimal trees.
poystrictconsensuschar-

file
300 Writes the strict consensus tree in Hennig86/Nona 

format to a specified file.
poystrictconsensustreef-

ile
301 Writes the strict consensus tree in POY topology 

format to a specified file.
printtree 304 Writes a graphic of the optimal trees and their strict 

consensus trees to a standard output file.
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Implied alignment
The following commands control how POY reports alignment.

Support
The following commands control how POY reports support metrics.

Fit statistics
The following commands control how POY reports fit statistics.

Command Page Description
impliedalignment 263 Writes a topology-specific multiple alignment based on 

the synapomorphy scheme to standard output.
phastwincladfile 293 Writes implied alignments to a specified file.

Command Page Description
Bremer

bremer 220 Calculates Bremer support values using TBR and 
writes results to standard output.

bremerspr 221 Calculates Bremer support values using SPR and 
writes to standard output.

Jackknife
jackboot 266 Performs Farris et al. (1996) jackknifing.
jackfrequencies 269 Writes the frequency of clades in a jackknife analysis 

to standard output.
jackoutgroup 270 Sets the outgroup for jackknifing.
jackpseudoconsen-

sustrees
270 Writes the strict consensus trees for the individual 

pseudo-replicates to standard output.
jackpseudotrees 271 Writes the least cost trees for the individual pseudo-

replicates to standard output.
jackstart 271 Builds a set of initial trees using jackknifing, then per-

forms the cladogram search as specified.
jacktree 271 Writes the majority rule consensus tree from the strict 

consensus trees of all jackknife pseudo-replicates to 
standard output.

jackwincladefile 272 Writes the strict consensus trees from the individual 
pseudo-replicates to a specified file in Winclada read-
able format.

Command Page Description
stats 318 Writes cladogram search statistics to standard output.
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Parallel Processing
This section describes commands that control how POY executes in a 
parallel processing environment.

Dynamic process migration
The following commands control how POY dynamic process migration 
functions in a computer cluster environment.

Parallel processing and load balancing
The following commands control how POY performs parallel process-
ing and load balancing.

Command Page Description
dpm 241 Performs load balancing by using dynamic process 

migration.
dpmacceptratio 242 Sets the threshold parameter for dynamic process 

migration.
dpmautoadjustpe-

riod
242 Adjusts the frequency with which performance is evalu-

ated for dynamic process migration.
dpmjobspernode 243 Sets the number of reserve jobs spawned for dynamic 

process migration.
dpmmaxperiod 243 Sets the maximum time period used in adjusting the fre-

quency of performance evaluation by dpmautoad-
justperiod.

dpmmaxprocessors 244 For parallel processing using dynamic process migra-
tion, sets the number of reserve jobs to spawn.

dpmminperiod 244 Sets the minimum time period used in adjusting the fre-
quency of performance evaluation by dpmautoad-
justperiod.

dpmperiod 245 For parallel processing using dynamic process migra-
tion, sets the initial time period used by dpmautoad-
justperiod.

dpmproblemsize 246 Sets the size of the calculation used to evaluate perfor-
mance for dynamic process migration.

Command Page Description
catchslaveoutput 227 When using parallel (page 293), writes all standard 

output of slave tasks to the standard output of the mas-
ter task.

controllers 234 Sets the number of subclusters used in a parallel 
cladogram search.
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System Commands
This section describes commands that perform various POY mainte-
nance functions.

jobspernode 272 Sets the number of processes spawned on each node.
maxprocessors 281 Sets the number of spawned jobs.
minstop 282 Sets the minimum number of random replicates that 

must be completed before processing ceases.
multidrift 284 Spawns individual tree drifting jobs to slave nodes.
multirandom 285 Spawns individual random replicates to slave nodes.
multiratchet 285 Spawns individual ratchet jobs on slave nodes.
onan 288 Spawns jobs on the master as well as on slave nodes.
onannum 288 Sets the number of jobs spawned to the master node.
parallel 293 Executes POY as a parallel process using PVM.
randomizeslaves 307 Sets PVM task identification numbers (TIDs) randomly.
ratchetoverpercent 307 Spawns a specified number of extra ratchet jobs to 

accommodate unequal execution times during parallel 
execution.

solospawn 315 Sets the number of slave jobs spawned on a stand-alone 
multiprocessor machine.

stopat 318 Sets the minimum number of minimum cost replicates 
that must be found before the search stops.

Command Page Description
clist 231 Displays a list of all commands cross-referenced to 

commands that contain a specified string in their usage 
information.

cllist 231 Displays a list with descriptions of all commands cross-
referenced to commands that contain a specified string 
in their usage information.

dlist 239 Displays a list of commands that contain a specified 
string in their usage information.

dllist 240 Displays a list with descriptions of commands that con-
tain a specified string in their usage information.

help 259 Displays all commands with their descriptions.
list 278 Displays a list of all commands that contain a specified 

string in their usage information.
llist 278 Displays a list with descriptions of all commands that 

contain a specified string in their usage information.

Command Page Description
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Execution Time
This section describes commands that decrease POY execution time.

nopoyini 286 Causes POY to not recognize the file poy.ini in the 
current directory as a command file.

time 321 Displays execution time in seconds.
verbose 328 Writes cladogram search progress information to the 

standard error file.

Command Page Description
approxbuild 218 Builds the initial tree using an approximation shortcut.
approxquickspr 218 Calculates tree lengths for SPR using an approximation 

shortcut.
approxquicktbr 219 Calculates tree lengths for TBR using an approximation 

shortcut.
buildmaxtrees 222 Sets the maximum number of trees held during initial 

cladogram builds.
buildslop 222 Sets the percent limit of suboptimal trees evaluated dur-

ing the cladogram building process.
checkslop 228 Sets the percent limit of suboptimal trees evaluated dur-

ing a final TBR refinement.
maxtrees 282 Sets the maximum number of trees held in buffers dur-

ing processing. See buildmaxtrees (page 222) and 
sprmaxtrees (page 317).

quick 305 Performs branch swapping only on minimum cost trees.
slop 314 Sets the percent limit of suboptimal trees evaluated dur-

ing a search.
staticapprox 317 Performs static approximation for sequence optimiza-

tion during cladogram refinements.
staticapproxbuild 317 Performs static approximation for sequence optimiza-

tion during cladogram building.

Command Page Description
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Exhaustive Searches
This section describes commands that increase how exhaustively POY 
performs cladogram searches.

Commands
This section contains a description of all POY commands, listed in 
alphabetical order.

about     Prints general information about POY to standard output.
Syntax
-about

Arguments
none

Command Page Description
buildmaxtrees 222 Sets the maximum number of trees held during initial 

cladogram builds.
buildslop 222 Sets the percent limit of suboptimal trees evaluated dur-

ing the cladogram building process.
buildsperreplicate 223 Performs a specified number of addition sequences in 

the build phase of a single replicate.
checkslop 228 Sets the percent limit of suboptimal trees evaluated dur-

ing a final TBR refinement.
driftspr 248 Performs tree drifting using SPR.
drifttbr 248 Performs tree drifting using TBR.
exact 251 Calculates tree costs more accurately for direct optimi-

zation on the down pass by creating an implied align-
ment and performing a complete Sankoff optimization.

iterativepass 265 Performs iterative pass optimization.
maxtrees 282 Sets the maximum number of trees held in buffers dur-

ing processing. See buildmaxtrees (page 222) and 
sprmaxtrees (page 317).

ratchetspr 309 Sets the number of ratchet iterations using SPR.
ratchettbr 309 Sets the number of ratchet iterations using TBR.
replicates 311 Sets the number of random addition sequence searches 

or the number of jackknife pseudo-replicates.
slop 314 Sets the percent limit of suboptimal trees evaluated dur-

ing a search.
treefuse 327 Performs cladogram search using tree fusing.
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Example
poy -about

agree     Performs optimization subject to the constraint that speci-
fied clades are recovered.

Syntax
-agree confile

Arguments

Example
poy chel.seq -constrain -agree pycno.con

Comments
This command modifies constrain (page 233) and must be used 
in conjunction with it. For a description of constraint file format 
requirements, refer to “Constraint file” on page 157.

allchroms     Optimizes HTU chromosomes by examining all combi-
nations of loci in the three adjacent HTU/OTU chromosomes.

noallchroms
Default value.

Syntax
-allchroms

-noallchroms

Arguments
None

Example
poy -chromosome -circular -rearrange chel.chrom 

-iterativepass -allchroms

Comments
1. Only operative when iterativepass (page 265) is used.
2. Not relevant if fixedstates (page 253) is used for chromo-

somal optimization.
3. Can be very time-consuming.

Argument Description
confile A string.  The name of the constraint file.  One or more 

constraint files can be specified.

Default = none



218 Chapter 15
9 

G
ui

de
lin

es
10

 R
eq

ui
re

m
en

ts
11

 In
st

al
la

tio
n

3 
A

na
ly

sis
13

 In
pu

t/
O

ut
pu

t
14

 T
ut

or
ia

ls
15

 C
om

m
an

ds
7 

Ev
al

ua
tio

n
8 

Pa
ra

lle
l

approxbuild     Builds the initial tree using an approximation short-
cut.

noapproxbuild
Default value.  Builds the initial tree with corrections for heuristic 
tree calculation errors.

Syntax
-approxbuild

-noapproxbuild

Arguments
None

Example
poy chel.seq -approxbuild

Comments
1. The shortcut bypasses the correction of heuristic tree calcula-

tion errors and thereby reduces processing time.  noapprox-
build (the default value) is slower, but yields a better initial 
tree.

2. approxbuild is useful when using  multirandom (page 285).

approxdrift     Calculates tree lengths for tree drifting using an 
approximation shortcut.

noapproxdrift
Default value.  Calculates tree lengths  without using shortcuts.

Syntax
-approxdrift

-noapproxdrift

Arguments
None

Example
poy chel.seq -drifttbr -numdrifttbr 5 -approxdrift

Comments

The shortcut bypasses the correction of heuristic tree calculation 
errors and thereby reduces processing time.  noapproxbuild
(the default value) is slower, but yields a better initial tree.

approxquickspr     Calculates tree lengths for SPR using an approx-
imation shortcut.
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noapproxquickspr
Default value.  Calculates tree lengths without shortcuts.

Syntax
-approxquickspr

-noapproxquickspr

Arguments
None

Example
poy chel.seq -spr -approxquickspr

Comments
The shortcut bypasses the correction of heuristic tree calculation 
errors and thereby reduces processing time.  noapproxquick-
spr (the default value) is slower, but yields a better initial tree.

approxquicktbr     Calculates tree lengths for TBR using an 
approximation shortcut.

noapproxquicktbr
Default value.  Calculates tree lengths without using a shortcut.

Syntax
-approxquicktbr

-noapproxquicktbr

Arguments
None

Example
poy chel.seq -approxquicktbr

Comments
The shortcut bypasses the correction of heuristic tree calculation 
errors and thereby reduces processing time.  noapproxquick-
tbr (the default value) is slower, but yields a better initial tree.

basefreq     Reads nucleotide frequencies from a file.
Syntax
-basefreq freqfile
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Arguments

Example
poy chel.seq -likelihood -basefreq base.frq

Comments
1. This command is used only under likelihood analysis.
2. Refer to “Frequencies file” on page 159.
3. When a file is not specified, POY estimates frequencies as 

specified by estimateq (page 251).

breakpoint     Sets the breakpoint cost.
Syntax
-breakpoint

Arguments

Example
poy -chromosome -circular -rearrange -reversible 

chel.chrom -breakpoint 100

bremer     Calculates  Bremer support values using TBR and writes 
results to standard output.

nobremer
Default value.  Bremer support values are not calculated.

Syntax
-bremer

-nobremer

Arguments
None

Argument Description
freqfile A string.  The name of the file containing the nucleotide 

frequencies.

Default = none

Argument Description
cost An integer.  The cost of a breakpoint event in chromo-

somal optimization.

Default = 10
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Example
poy chel.seq -topofile chel.topo -replicates 0 
-constrain chel.con -bremer

Comments

1. A constraint file is required—refer to constrain (page 233).
2. Because TBR is used instead of collapsing ever more catholic 

searches, reported values are likely to overestimate group sup-
port.

3. If POY reports negative Bremer values, less costly trees were 
found and are reported to standard error. Increase the value of 
checkslop (page 228) to expand the cladogram search.

bremerspr     Calculates Bremer support values using SPR and writes 
to standard output.

nobremerspr
Default value.  Bremer support values are not reported.

Syntax
-bremerspr

-nobremerspr

Arguments

None
Example
poy chel.seq -topofile chel.topo -replicates 0 

-constrain chel.con -bremerspr

Comments
1. A constraint file is required—refer to constrain (page 233).
2. Because SPR is used instead of collapsing ever more catholic 

searches, reported values are likely to overestimate group sup-
port.

3. If POY reports negative Bremer values, less costly trees were 
found and are reported to standard error. Increase the value of 
checkslop (page 228) to expand the cladogram search.

buildchrom     Optimizes chromosomal characters by building HTU 
chromosomes one locus at a time in the manner of cladogram building. 
Default value.

nobuildchrom
Optimization is not one locus at a time.
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Syntax
-buildchrom

-nobuildchrom

Arguments
None

Example
poy -chromosome -circular -rearrange chel.chrom 

-iterativepass -buildchrom

Comments
1. Only operative when iterativepass (page 265) is used.
2. Not relevant if fixedstates (page 253) is used for chromo-

somal optimization.
3. Can be very time- consuming.

buildmaxtrees     Sets the maximum number of trees held during 
initial cladogram builds.

Syntax
-buildmaxtrees maxtrees

Arguments

Example
poy chel.seq -buildmaxtrees 1

Comments
See fitchtrees (page 253), holdmaxtrees (page 260), and 
maxtrees (page 282).

buildslop     Sets the percent limit of suboptimal trees evaluated dur-
ing the cladogram building process.

Syntax
-buildslop limit

Argument Description
maxtrees An integer.  The maximum number of trees held in buff-

ers during a single build process.

Default = the value specified by maxtrees (page 282)



Command References 223

9 
G

ui
de

lin
es

10
 R

eq
ui

re
m

en
ts

11
 In

st
al

la
tio

n
3 

A
na

ly
sis

13
 In

pu
t/

O
ut

pu
t

14
 T

ut
or

ia
ls

15
 C

om
m

an
ds

7 
Ev

al
ua

tio
n

8 
Pa

ra
lle

l

Arguments

Example
poy chel.seq -buildslop 2 -slop 5 -checkslop 10

Comments
1. While this command slows the build process, it compensates 

for shortcuts taken in calculating tree costs.
2 This command causes POY to evaluate the least cost trees and 

those costlier trees within the specified percentage.
3. This command does not affect the cladogram search process. 

See checkslop (page 228) and slop (page 314).

buildsperreplicate     Performs a specified number of addition 
sequences in the build phase of a single replicate.

Syntax
-buildsperreplicate addseq

Arguments

Example
poy chel.seq -replicates 10 -buildsperreplicate 3

Comments
If oneasis (page 289) is specified, all addition sequences are 
pseudorandom.

buildspr     Performs SPR branch swapping after the initial 
cladogram build holding only a single tree.

Argument Description
limit An integer.  The limit of suboptimal trees evaluated, 

expressed in tenths of a percent (that is, a value of 5 rep-
resents a 0.5% limit).

Default = 0 or the value set by slop (page 314)

Argument Description
addseq An integer.  The number of addition sequences used in 

the build phase of a replicate.

Default = oneasis (page 289) is on so that the first 
addition sequence of the first replicate is from 
the first data file specified on the command 
line; subsequent addition sequences are pseu-
dorandom
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nobuildspr
Default value.  POY does not perform an SPR cladogram search 
after the initial build.  

Syntax
-buildspr

-nobuildspr

Arguments
None

Example
poy chel.seq -replicates 10 -buildsperreplicate 3 

-buildspr

Comments
buildspr attaches an SPR refinement to each build before other 
refinements or build replicates take place.   This is in opposition 
to SPR, which would operate after all build replicates are com-
pleted.

buildtbr     Performs TBR branch swapping after the initial 
cladogram build holding only a single tree.

nobuildtbr
Default value.  POY does not perform a TBR cladogram search 
after the initial build.  

Syntax
-buildtbr

-nobuildtbr

Arguments
None

Example
poy chel.seq -replicates 10 -buildsperreplicate 3 

-buildtbr

Comments
buildtbr attaches a TBR refinement to each build before other 
refinements or build replicates take place.   This is in opposition 
to TBR, which would operate after all build replicates are com-
pleted.

cat_cmdgroups     Writes a list of commands grouped by function 
to the standard error file.
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Syntax
-cat_cmdgroups

Arguments
None

Example
poy -cat_cmdgroups

cat_commandbrowsing     Writes a list of commands grouped to 
browse command documentation to the standard error file.

Syntax
-cat_commandbrowsing

Arguments
None

Example
poy -cat_commandbrowsing

cat_helptopics     Writes a list of commands grouped to browse 
command documentation to the standard error file.

Syntax
-cat_helptopics

Arguments
None

Example
poy -cat_helptopics

cat_infiles     Writes information about valid input file formats to the 
standard error file.

Syntax
-cat_infiles

Arguments
None

Example
poy -cat_infiles

cat_introduction     Writes information about analysis using POY 
to the standard error file.
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Syntax
-cat_introduction

Arguments
None

Example
poy -cat_introduction

cat_outfiles     Writes information about valid output file formats to 
the standard error file.

Syntax
-cat_outfiles

Arguments
None

Example
poy -cat_outfiles

cat_programflow     Writes information about POY’s structure and 
execution to the standard error file.

Syntax
-cat_programflow

Arguments
None

Example
poy -cat_programflow

Comments
When -helpfile EREF (page 259) is specified, a flowchart in 
.PNG format is output to EREF.png.

cat_references     Writes a list of the literature referred to in com-
mand line help to the standard error file.

Syntax
-cat_references

Arguments
None

Example
poy -cat_references
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cat_setupparallel     Writes information about how to set up a job 
for parallel processing to the standard error file.

Syntax
-cat_setupparallel

Arguments
None

Example
poy -cat_setupparallel

catchslaveoutput     When using parallel (page 293), writes all 
standard output of slave tasks to the standard output of the master task.

nocatchslaveoutput
Default value.

Syntax
-catchslaveoutput

-nocatchslaveoutput

Arguments
None

Example
poy chel.seq -parallel -catchslaveoutput

Comments
This command is useful in monitoring and debugging parallel 
operations by spawned jobs.

change     Sets the cost for nucleotide change.
Syntax
-change chngcost

Arguments

Example
poy chel.seq -change 2

characterweights     Writes search statistics for each character to 
standard output.

Argument Description
chngcost An integer.  The nucleotide change cost.

Default = 1
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nocharacterweights
Default value.  POY does not write search statistics for each char-
acter to standard output.  

Syntax
-characterweights

-nocharacterweights

Arguments
None

Example
poy chel.seq -characterweights

Comments
See also stats (page 318).

checkfrequency     Sets the frequency of message checking when 
performing parallel ratcheting.

Syntax
-checkfrequency msgfreq

Arguments

Example
poy chel.seq chel.morph -parallel -ratchettbr 100 

-multiratchet -checkfrequency 1

Comments
 Used only with multiratchet (page 285).

checkslop     Sets the percent limit of suboptimal trees evaluated 
during a final TBR refinement.

Syntax
-checkslop limit

Argument Description
msgfreq An integer.

Default = 0
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Arguments

Example
poy chel.seq -slop 1 -checkslop 10

Comments
1. While this command is time-consuming, additional TBR 

refinement compensates for shortcuts taken in calculating tree 
costs.

2. This command causes POY to evaluate the least cost trees and 
those costlier trees within the specified percentage.

3. Evaluation is performed after TBR branch swapping.
4. High values specified for checkslop in conjunction with low 

values for slop (page 314) are often an efficient search strat-
egy.

chromosome     Causes POY to use the chromosome character 
type.

nochromosome
Turns off POY’s use of chromosome character type.  

Syntax
-chromosome

-nochromosome

Arguments
None

Example
poy -chromosome -linear chel.chrom -nochromosome 

chel.morph

Comments
1. The chromosome character type is based on DNA sequences 

of multiple loci. The input file looks like the input file for the 
molecular character type, except a pipe (|) separates the DNA 
strands of different loci. POY checks all loci of all OTUs to 
determine the unique fragments, and then it uses the Needle-
man–Wunsch algorithm to determine the cost of aligning each 

Argument Description
limit An integer.  The limit of suboptimal trees evaluated, 

expressed in tenths of a percent (that is, a value of 5 repre-
sents a 0.5% limit).

Default = 0 or the value set by slop (page 314)
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of these fragments with each other fragment. In the optimiza-
tion phase, chromosomes are “aligned” by treating entire loci 
as the units to align. The cost of a “chromosome alignment” is 
the sum of the costs of aligned fragments in the two taxa (for 
which the cost has already been determined using NW) plus 
the cost of gaps that appear against entire loci. See locusgap
(page 279) and locussizegap (page 279) for information on 
how the gap cost is calculated.

2. If the command rearrange (page 310) is used, then different 
orderings of the loci are also tried and breakpoint costs are 
also included in the cost of the chromosome alignment. 

3. The algorithm used for the chromosome alignment is like the 
NW algorithm, and it is guaranteed to find the best placing of 
gaps for a given ordering of loci.  However, if you allow for 
reordering, it is not guaranteed to find the best overall cost 
because it cannot try out all possible orders. See rearrange
for more information.

4. When the chromosomes are aligned, the loci that are aligned 
with each other can be considered to be homologous loci.

5. Optimization can be accelerated greatly by the using fixed-
states (page 253).

chromfilter     Ignores all chromosome fragments whose length is 
greater than 0 and less than a specified length.

Syntax
-chromfilter length

Arguments

Example
poy -chromosome -circular -rearrange chel.chrom 

-chromfilter 10

Comments
Use with chromosome (page 229) to ignore small fragments of 
DNA between loci.

circular     Treats chromosomal characters as circular, as opposed to 
linear.  Default value.

Argument Description
length An integer.  The size of fragments filtered.

Default = 0
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nocircular
Chromosomal characters are treated as linear. Has the effect of 
linear (page 278).

Syntax
-circular

-nocircular

Arguments
None

Example
poy -chromosome -circular -rearrange -reversible 

chel.chrom

Comments
In a circular chromosome, the first and last loci are adjacent.

clist     Displays a list of all commands cross-referenced to  commands 
that contain a specified string in their usage information.

Syntax
-clist xref

Arguments

Example
poy -clist change

cllist     Displays a list with descriptions of all commands cross-refer-
enced to commands that contain a specified string in their usage infor-
mation.

Syntax
-cllist xref

Argument Description
xref A string.  Command usage information is searched for this 

string, to which commands are cross-referenced.

Default = none
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Arguments

Example
poy -cllist change

commandfile     Reads the content of a specified file and writes it 
into the command line.

Syntax
-commandfile commfile

Arguments

Example
poy chel.seq -commandfile quick.command

Comments
1. Refer to “Command file” on page 159.
2 A command line can contain one or more instances of com-

mandfile.
3. A command file can contain one or more instances of com-

mandfile (that is, nested command files).  However, care 
should be taken to ensure that there are no circular references.

4. Abbreviation:  use -- as an abbreviation for commandfile
(for example, -- commfil1.txt is the same as commandfile 
commfil1.txt.

commandfiledir     Sets the directory in which POY command files 
are located.

Syntax
-commandfiledir dirname

Argument Description
xref A string.  Command usage information is searched for this 

string, to which commands are cross-referenced.

Default = none

Argument Description
commfile A string.  The name of a command file.

Default = poy.ini
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Arguments

Example
poy -commandfiledir /usr/share/commands chel.seq 

-commandfile quick.command 

expands to
poy chel.seq -commandfile /usr/share/commands/

quick.command

Comments
A command line can contain one or more instances of command-
filedir.

compressstates     Tracks states during the build process of search-
based optimization, then removes unused states during the cladogram 
search.

nocompressstates
Default value.  POY does not track states during search-based 
optimization.  

Syntax
-compressstates

-nocompressstates

Arguments
None

Example
poy -fixedstates chel.seq -newstates chel.states 

-compressstates

Comments
1 This command can reduce processing time, but can also result 

in suboptimal solutions.
2. If checkslop (page 228) is specified, the state set is returned 

to its original size for the final round of cladogram search.
3. The initial state set is specified by newstates (page 286).

constrain     Reads cladogram search constraints from one or more 
specified files.

Argument Description
dirname A string.  The name of the directory in which command 

files are located.

Default = the current directory
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noconstrain
Turns off reading of files as constraint files.

Syntax
-constrain confile -noconstrain

Arguments

Example
poy chel.seq -constrain pycno.con -disagree 

spiders.con -nocontrain chel.morph

Comments
1. Refer to “Constraint file” on page 157.
2. This command is intended for use with static data.  It specifies 

the character states that must be recovered without homoplasy.
3. constrain remains on until noconstrain is specified.
4. Multiple constraint files can be specified.

controllers     Sets the number of subclusters used in a parallel 
cladogram search.

Syntax
-controllers clustnum

Arguments

Example
poy chel.seq -parallel -controllers 5 -replicates 50 

-multirandom

Comments
1. This command shortens processing time by balancing two 

issues in parallel processing:  minimizing overhead versus max-
imizing node utilization.  It is particularly useful in performing 
randomized cladogram search strategies, where the number of 

Argument Description
confile A string.  The name of the constraint file.  One or more 

constraint files can be specified.

Default = none

Argument Description
clustnum The number of subclusters used in a cladogram search.

Default = 1
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replicates is matched to the size of subclusters (subclusters 
perform replicates independently).

2. This command divides the slave nodes into the specified num-
ber of groups and spawns controller tasks for each subcluster. 
For example, -controllers 3 on a cluster of 90 slave nodes 
creates three clusters of 30 nodes each; on a cluster of 92 slave 
nodes, one cluster of 30 nodes is created and two clusters of 31 
nodes are created.

3. By creating subclusters of 16 to 32 nodes, POY is able to 
maintain good parallel performance while ensuring that all 
nodes are efficiently utilized. For example, specifying -con-
trollers 3 -replicates 30 (page 311) on a 90 slave node 
cluster causes POY to perform replicates on one subcluster 
while it performs other tasks on the remaining nodes. Other-
wise, POY would utilize 30 of the 90 nodes for the random 
search while the other 60 nodes remained idle.

crashcontroller     When using parallel (page 293) and con-
trollers (page 234), causes the controller to crash.

Syntax
-crashcontroller crash

Arguments

Example
poy chel.seq -parallel -controllers 5 -replicates 50 

-multirandom -crashcontroller 50

Comments
Use this command for testing and verifying fault-tolerant fea-
tures in parallel.

crashreserve     When using parallel (page 293) and dpm
(page 241), causes reserve slave jobs to interrupt calculations and exit.

Syntax
-crashreserve crash

Argument Description
crash An integer. The lower the value, the more frequently the 

controllers will crash.
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Arguments

Example
poy chel.seq -parallel -controllers 5 -replicates 50 

-multirandom -crashreserve 50

Comments
Use this command for testing and verifying fault-tolerant fea-
tures in parallel.

crashslave     When using parallel (page 293), causes slave jobs to 
interrupt calculations and exit.

Syntax
-crashslave crash

Arguments

Example
poy chel.seq -parallel -controllers 5 -replicates 50 

-multirandom -crashslave 50

Comments
Use this command for testing and verifying fault-tolerant fea-
tures in parallel.

cutswap     Performs a shortcut during branch swapping based on 
approximate tree costs.

nocutswap
Default value.  POY uses swapping shortcuts.  

Syntax
-cutswap

-nocutswap

Arguments
None

Example
poy chel.seq -cutswap

Argument Description
crash An integer. The lower the value, the more frequently the 

process will exit.

Argument Description
crash An integer. The lower the value, the more frequently the 

process will exit.
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Comments
This command can reduce processing time, but can also result in 
suboptimal solutions.

datadir     Sets the directory location for input data files.
Syntax
-datadir dirname

Arguments

Example
poy -datadir /gentins/Lisianthius its1a its1b 
its1c -datadir /Costs -molecularmatrix cost1

expands to
poy /gentins/Lisianthius/its1a /gentins/Lisianthius/

its1b /gentins/Lisianthius/its1c -molecularmatrix 
/Costs/cost1

defaultweight     Sets the weight of all character data that follow.
Syntax
-defaultweight weight

Arguments

Example
poy -defaultweight 2 -weight 3 chel.morph chel.seq 

chel.morph receives weight 3 while chel.seq receives weight 2.
Comments
weight (page 329) used in association with an individual file 
overrides defaultweight.

Argument Description
dirname The name of the directory in which input data files are 

located. This command works with both character data 
files and command-invoked input files such as molec-
ularmatrix (page 283)

Default = the current directory

Argument Description
weight An integer.  The weight assigned to character data in 

files following the command.

Default = 1
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deletegapsfrominput     Deletes gaps from sequences entered in 
FASTA format.

Syntax
-deletegapsfrominput

Arguments
None

Example
poy chel.fasta -deletegapsfrominput

Comments
1. Refer to “FASTA Format” on page 155.
2. Gaps coded in sequences are deleted, in contrast to 

fastashortname (page 252), which enables annotations and 
retains gaps.

diagnose     Writes branch costs and apomorphy lists to standard 
output.

nodiagnose
Default value.  POY writes only the tree cost.  

Syntax
-diagnose

-nodiagnose

Arguments
None

Example
poy chel.seq -diagnose

Comments
This command works with either the results of an analysis or 
directly from a topology (for example, topology on page 323).

disagree     Performs a cladogram search such that clades specified 
by a constraint file are not recovered.

Syntax
-disagree -constrain confile
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Arguments

Example
poy chel.seq -constrain -disagree pycno.con

Comments
1. Refer to “Constraint file” on page 157.
2. This command can be used to report Bremer values for clades, 

in contrast to bremer (page 220), which reports values for all 
clades by comparing constrained and unconstrained search 
results.

3. Use this command to report least cost trees not specified by 
constrain.

discrepancies     Writes the cost difference between trees found 
using shortcuts and trees found on a complete down pass.

nodiscrepancies
Default value.  POY writes only the tree cost from the analysis 
using shortcuts.  

Syntax
-discrepancies

-nodiscrepancies

Arguments
None

Example
poy chel.seq -nodiscrepancies

Comments
Results are written to standard output.

dlist     Displays a list of commands that contain a specified string in 
their usage information.

Syntax
-dlist xref

Argument Description
confile A string.  The name of the constraint file.

Default = none
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Arguments

Example
poy -dlist gap

dllist     Displays a list with descriptions of commands that contain a 
specified string in their usage information.

Syntax
-dllist xref

Arguments

Example
poy -dllist gap

dogaptie     During optimization, specifies which sequence in which 
a gap is placed when a tie occurs in the dynamic programming table.

Syntax
-dogaptie select

Argument Description
xref A string.  Command usage information is searched for this 

string.

Default = none

Argument Description
xref A string.  Command usage information is searched for this 

string.

Default = none
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Arguments

Example
poy chel.seq -dogaptie longer

Comments
1. When inserting gaps while building a dynamic programming 

table during direct optimization (topology on page 323), the 
value of placing the gap in either constituent sequence might 
be the same. Intermediate sequences might be different with 
different gap placements. This command directs POY as to 
how to resolve these ties.

2. In previous versions of POY, ties were resolved de facto using 
the nopreference option.  The shorter and longer
options have been introduced in order to make cost calcula-
tions independent of the order of siblings in a tree.

3. When diagnosing trees from a previous run (refer to topo-
file on page 322 and topology on page 323), make sure to 
use the same setting for this command.

4. This command also affects iterative pass optimization (itera-
tivepass on page 265).

dpm     Performs load balancing by using dynamic process migration.
nodpm

Default value.  POY does not perform Sankoff optimization.  

Argument Description
select A string. A predefined code that specifies the sequence in 

the dynamic programming table into which a gap is to be 
inserted.

dogaptie accepts the following values.
Value                        Description
shorter  Insert the gap in the shorter    

sequence
longer  Insert the gap in the longer 

sequence
nopreference  POY selects the sequence arbitrarily 

based on the order of descendant 
sequences

Default = nopreference
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Syntax
-dpm

-nodpm

Arguments
None

Example
poy chel.seq -parallel -dpm

Comments
Dynamic process migration moves processes from overutilized to 
underutilized nodes.  Dpm causes additional slave processes to be 
spawned.  Performance can be significantly improved when 
• Simultaneously running more than one POY script
• Nodes have significantly different processing speeds.

dpmacceptratio     Sets the threshold parameter for dynamic pro-
cess migration.

Syntax
-dpmacceptratio dpmparam

Arguments

Example
poy -chel.seq -parallel -dpm -dpmacceptratio 1.2

Comments
The performance ratio is a combined measure of processor load 
and processor speed.

dpmautoadjustperiod     Adjusts the frequency with which per-
formance is evaluated for dynamic process migration.

nodpmautoadjustperiod
Default value.  POY does not adjust the dynamic process migra-
tion performance ratio.  

Syntax
-dpmautoadjustperiod

-nodpmautoadjustperiod

Argument Description
dpmparam A decimal.  The ratio of processor performance that 

causes POY to move a task to an underutilized node.

Default = 1.5
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Arguments
None

Example
poy chel.seq -parallel -dpm -dpmautoadjustperiod

Comments
When a performance evaluation results in a task migration, the 
time period to the next evaluation is reduced.  When no migration 
occurs, the time period is increased.

dpmjobspernode     Sets the number of reserve jobs spawned for 
dynamic process migration.

Syntax
-dpmjobspernode jobsnum

Arguments

Example
poy chel.seq -parallel -jobspernode 2 -dpm 

-dpmjobspernode 1

dpmmaxperiod     Sets the maximum time period used in adjusting 
the frequency of performance evaluation by dpmautoadjustperiod.

Syntax
-dpmmaxperiod maxtime

Arguments

Example
poy chel.seq -parallel -dpm -dpmautoadjustperiod 

-dpmmaxperiod 25

Argument Description
jobsnum An integer.  The number of reserve jobs spawned for 

dynamic process migration.

Default = 1

Argument Description
maxtime An integer.  The maximum time period allowed for 

dpmautoadjustperiod in adjusting the frequency 
with which performance is evaluated for dynamic pro-
cess migration.

Default = 100
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dpmmaxprocessors     For parallel processing using dynamic pro-
cess migration, sets the number of reserve jobs to spawn.

Syntax
-dpmmaxprocessors maxjobs

Arguments

Example
poy chel.seq -parallel -dpm -dpmmaxprocessors 50

dpmminperiod     Sets the minimum time period used in adjusting 
the frequency of performance evaluation by dpmautoadjustperiod.

Syntax
-dpmminperiod mintime

Arguments

Example
poy chel.seq -parallel -dpm -dpmautoadjustperiod 

-dpmminperiod 5

dpmnumslaveprocesses     Sets the maximum number of reserve 
jobs spawned on PVM nodes, excluding the master node.

Syntax
-dpmnumslaveprocesses procs

Argument Description
maxjobs An integer.  The maximum number of reserve jobs that 

can be spawned for dynamic process migration.

Default = the number of nodes in the cluster

Argument Description
mintime An integer.  The minimum time period allowed for 

dpmautoadjustperiod in adjusting the frequency 
with which performance is evaluated for dynamic pro-
cess migration.

Default = 1
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Arguments

Example
poy chel.seq -parallel -dpm -dpmnumslaveprocesses 50

dpmonannum     Sets the number of reserve jobs spawned on the 
master node.

Syntax
-dpmonannum jobs

Arguments

Example
poy chel.seq -parallel -dpm -dpmmonannum 10

Comments
onan (page 288) must be in the command line. This command is 
likely to be most useful on multiprocessor machines.

dpmperiod     For parallel processing using dynamic process migra-
tion, sets the initial time period used by dpmautoadjustperiod.

Syntax
-dpmperiod inittime

Argument Description
procs An integer.  The maximum number of reserve jobs 

spawned on PVM nodes.

Default = number of entries in PVM configuration
-  1

 the value jobsnum set by jobspernode
(page 272)

Argument Description
jobs An integer.  The number of reserve jobs spawned on the 

master node.

Default = 0

×
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Arguments

Example
poy chel.seq -parallel -dpm -dpmperiod 5

dpmproblemsize     Sets the size of the calculation used to evaluate 
performance for dynamic process migration.

Syntax
-dpmproblemsize dpmsize

Arguments

Example
poy chel.seq -parallel -dpm -dpmproblemsize 500

Comments
To improve performance evaluation, increase the calculation size, 
but this will add overhead to the dpm process.

dpmsolospawn     Sets the number of reserved tasks spawned in 
PVM when there is only a single node.

Syntax
-dpmsolospawn tasks

Argument Description
inittime An integer.  The initial time period assigned for use by 

dpmautoadjustperiod in adjusting the frequency 
with which performance is evaluated for dynamic pro-
cess migration.

Default = 10

Argument Description
dpmsize An integer.  The size of the performance evaluation cal-

culation used for dynamic process migration.

Default = 5000
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Arguments

Example
poy chel.seq -parallel -dpm -dpmsolospawn 50

Comments
This command is most useful on multiprocessor machines.

driftequallaccept     Sets the percentage of instances to accept 
equally parsimonious trees during tree drifting.

Syntax
-driftequallaccept pcttime

Arguments

Example
poy chel.seq -drifttbr -numdrifttbr 10 

-driftequallaccept 10

driftlengthbase     Sets a parameter used to specify the probability 
of accepting a suboptimal tree.

Syntax
-driftlengthbase base

Arguments

Example
poy chel.seq -drifttbr -numdrifttbr 10               

-driftlengthbase 3

Argument Description
tasks An integer.  The number of reserve tasks spawned.

Default = 1

Argument Description
pcttime An integer.  The percent of time in which to accept 

equally parsimonious trees.

Default = 50

Argument Description
base An integer.  The cost used as a base in setting the proba-

bility of accepting a suboptimal tree.

Default = 2
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driftspr     Performs tree drifting using SPR.
nodriftspr

Turns off SPR tree drifting.
Syntax
-driftspr

-nodriftspr

Arguments
None

Example
poy chel.seq -driftspr -numdriftspr 10

Comments
The number of drifting rounds is specified by numdriftspr
(page 287).

drifttbr     Performs tree drifting using TBR.
nodrifttbr

Turns off TBR tree drifting.
Syntax
-drifttbr

-nodrifttbr

Arguments
None

Example
poy chel.seq -drifttbr -numdrifttbr 10

Comments
The number of drifting rounds is specified by numdrifttbr
(page 287).

dropconstraints     Performs cladogram building using constraints, 
then performs cladogram refinement without constraints.

nodropconstraints
Default value.  Performs cladogram building and cladogram 
search using constraints.

Syntax
-dropconstraints

-nodropconstraints
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Arguments
None

Example
poy chel.seq -constrain pycno.con -dropconstraints

editnames     Prevents a program abort when reserved characters are 
encountered in a terminals file (terminalsfile on page 320) or char-
acter data file (“Input Data” on page 147).

Syntax
-editnames chars

Arguments

Example
poy chel.seq -editnames "himom"

Comments
The substitution will not occur in tree topologies specified by 
topofile (page 322) and topology (page 323).

enabletmpfiles     Uses temporary files for preprocessing tasks.
noenabletmpfiles

Default value.  Temporary files are not used.
Syntax
-enabletmpfiles

-noenabletmpfiles

Arguments
None

Example
poy -topofile chel.topo -printtree -plotfile 

chel.tree -enabletmpfiles

Comments
1. Three temporary files are used:  poy1.tmp, poy2.tmp, and 

poy3.tmp.
2. The temporary files are located in the current directory.

Argument Description
chars A string.  Six characters that replace the reserved charac-

ters ()[]*;.  Replacement characters must be in the 
order shown in the preceding sentence.
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Caution    Running more than one POY job in the same 
directory simultaneously with enabletmpfiles enabled can 
cause all jobs to crash.

3. Existing temporary files are overwritten, regardless of whether 
overwriteprotection (page 292) is enabled.

4. Temporary files are used for two purposes:
• Convert Mac OS X and DOS text files to Unix text format.
• When no character data are specified, temporary files are 

used for plotting trees or calculating consensus trees.

estimatep     Uses nucleic acid and gap frequencies estimated from 
input data and pairwise alignments, which are then fixed for the dura-
tion of the search.

noestimatep
Default value.  Reestimates frequencies as each sequence pair is 
encountered.

Syntax
-estimatep

-noestimatep

Arguments
None

Example
poy chel.seq -likelihood -estimatep

estimateparamsfirst     Uses likelihood parameters estimated from 
input data and pairwise alignments, which are then fixed for the dura-
tion of the search.

noestimateparamsfirst
Default value.  Reestimates parameters for each sequence pair as 
they are encountered.

Syntax
-estimateparamsfirst

-noestimateparamsfirst

Arguments
None

Example
poy chel.seq -likelihood -estimateparamsfirst
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estimateq     Uses probabilities for transitions estimated from pair-
wise alignments, which are then fixed for the duration of the search.

noestimateq
Default value.  Reestimates transition probabilities for each 
sequence pair as they are encountered.

Syntax
-estimateq

-noestimateq

Arguments
None

Example
poy chel.seq -likelihood -estimateq

exact     Calculates tree costs more accurately for direct optimization 
on the down pass by creating an implied alignment and performing a 
complete Sankoff optimization.

noexact
Default value.  Calculates tree costs less accurately.

Syntax
-exact

-noexact

Arguments
None

Example
poy chel.seq -exact

Comments
1. This command improves tree cost calculations when slop

(page 314) is used.
2. This command increases calculation time.

extensiongap     Sets the cost of gaps that follow the first in a series 
of gaps.

Syntax
-extensiongap gapcost
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Arguments

Example
poy chel.seq -gap 2 -extensiongap 1

Comments
1. When this command is not used, the cost of a string of gaps is 

a multiple of the single gap cost set using gap (page 257) or 
molecularmatrix (page 283).

2. When this command is used, the cost of a series of contiguous 
gaps of length n is

first_gap_cost + gapcost x ( n – 1) (Eq 15.1)
where first_gap_cost is the gap cost set by either gap or 
molecularmatrix.

fastashortname     Enables annotations in Fasta format sequence 
files.

nofastashortname
Default value.  POY reads the entire line as the taxon name.  

Syntax
-fastashortname

-nofastashortname

Arguments
None

Example
poy chel.fasta -fastashortname

Comments
1. This command causes POY to read the first contiguous string 

after the marker  >  as a taxon name.  The rest of the string is 
ignored.  For example, in > taxona comments on taxona
the taxon name is read as taxona.  On the other hand, in the 
absence of the command the taxon name is read as 
taxona_comments_on_taxona.

2. Refer to “FASTA Format” on page 155.

Argument Description
gapcost An integer.  The cost of gaps in a series that follows the 

first.

Default = gap cost set by gap (page 257) or molecu-
larmatrix (page 283)
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3. Gaps coded in sequences are retained, in contrast to delete-
gapsfrominput (page 238), which enables annotations and 
deletes gaps.

fitchtrees     Ensures the randomness of the subset of trees stored in 
buffers by adding additional trees to full buffers through random 
replacement of stored trees.

nofitchtrees
Default value.  Trees are stored in buffers until full.  Additional 
trees are discarded.

Syntax
-fitchtrees

-nofitchtrees

Arguments
None

Example
poy -maxtrees 3 -fitchtrees

Comments
This command is based on the algorithm of W. Fitch.  This com-
mand is useful in keeping tree diversity even when buffers are 
made small to speed up searches.

fixedstates     Performs fixed state optimization on a specified file.
nofixedstates

Turns off fixed state optimization.  
Syntax
-fixedstates

-nofixedstates

Arguments
None

Example
poy -fixedstates chel.seq

Comments
1. This command must be placed before the data input file name 

in the command line.  For example, for the command line
poy file1 -fixedstates file2 -seed -1 

-nofixedstates file3

only file2 data are optimized using fixed state optimization.
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2. Applies to chromosomal characters.

freqmodel     Sets how nucleic acid and gap frequencies are esti-
mated.

Syntax
-freqmodel freq

Arguments

Example
poy chel.seq -likelihood freqmodel f2

fuseafterreplicates     Performs tree fusing on the results of ran-
dom replicates as they are calculated. This is the default value when tree 
fusing (treefuse on page 327) is on.

nofuseafterreplicates
Turns off tree fusing on the results of random replicates as they 
are calculated.

Syntax
-fuseafterreplicates

-nofuseafterreplicates

Arguments
None

Example
poy chel.seq -replicates 10 -treefuse 

-fuseafterreplicates

fuselimit     Sets the maximum number of tree fusing pairs held in 
memory.

Argument Description
freq A string.  A predefined code that specifies the number of 

nucleotide frequencies to estimate.

freqmodel accepts the following values:
Value                        Description
f5                  All nucleotides and gaps
f2                  Two classes:  nucleotides and gaps
f1                  All frequencies set to 0.2

Default = f5
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Syntax
-fuselimit pairlim

Arguments

Example
poy chel.seq -treefuse -fuselimit 10

fusemaxtrees     Sets the maximum number of trees held in memory 
during tree fusing.

Syntax
-fusemaxtrees maxnum

Arguments

Example
poy chel.seq -treefuse -fusemaxtrees 50

fusemingroup     Sets the minimum number of taxa in a subtree 
that can be exchanged.

Syntax
-fusemingroup minnum

Arguments

Example
poy chel.seq -treefuse -fusemingroup 3

Argument Description
pairlim An integer.  The maximum number of tree fusing pairs 

held in memory.

Default = the maximum available in memory

Argument Description
maxnum An integer.  The maximum number of trees held in mem-

ory during tree fusing.

Default = the maximum available in memory

Argument Description
minnum An integer.  The minimum number of taxa in a subtree 

that can be exchanged during tree fusing.

Default = 5
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fusingrounds     Performs tree fusing a specified number of times.
Syntax
-fusingrounds fusenum

Arguments

Example
poy chel.seq -treefuse -fusingrounds 1

gammaalpha     Sets the alpha parameter for the gamma distribu-
tion.

Syntax
-gammaalpha alpha

Arguments

Example
poy chel.seq -likelihood -gammaclasses 3 -gamma 0.2

Comments
Use this command when gamma classes are set greater than zero 
using gammaclasses (below).

gammaclasses     Sets the number of rate classes for a discrete 
gamma distribution.

Syntax
-gammaclasses gamma

Argument Description
fusenum An integer.  The number of tree fusings to perform after 

the initial tree fusing.

Default = 2

Argument Description
alpha An integer.  The alpha parameter for the gamma distribu-

tion.

Default = none
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Arguments

Example
poy chel.seq -likelihood -gammaclasses 3

gc     Writes Ocaml garbage collection statistics at the end of run to 
the standard error file.

nogc
Default value.  Ocaml garbage collection statistics are not written 
to the standard error file.

Syntax
-gc

-nogc

Arguments
None

Example
poy chel.seq -gc

Comments
Use this command for debugging and memory usage informa-
tion.

gap     Sets the cost of gaps.
Syntax
-gap gapcost

Arguments

Example
poy chel.seq -gap 1

Argument Description
gamma An integer.  The number of rate classes for a discrete 

gamma distribution.

Default = 0

Argument Description
gapcost An integer.  The cost assigned to gaps.

Default = 2
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Comments
1. If extensiongap (page 251) is used, this command sets the 

cost of the first gap in a series of gaps, while extensiongap
sets the cost of subsequent gaps. For example, the cost of a 
series of contiguous gaps of length n is

gapcost + extension_gap_cost x ( n – 1) (Eq 15.2)
where extension_gap_cost  is  the gap cost set  by 
extensiongap.

2. Gap costs set using molecularmatrix (page 283) take prece-
dent over costs set by gap.

goloboff     Performs implied weights optimization.
Syntax
-goloboff weights

Arguments

Example
poy chel.seq -goloboff ck

Comments
1 See also kfactor (page 273) and multiplier (page 284).
2 ck uses the following weighting formula:

(Eq 15.3)

where
k = Goloboff ’s concavity factor
s = cost of character on the tree

Argument Description
weights A string.  A predefined code that specifies the weight 

parameters to use in the optimization.

goloboff accepts the following values:
Value                      Description
ck                   Performs implied weighting as 

described in Goloboff (1993b)
cm                     Uses a modified form of Goloboff ’s 

implied weighting formula
ri                   Weights using the retention index

Default = none

k 1+( )
k 1 s m+ + +( )

------------------------------------
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m = minimum cost of the character

help     Displays all commands with their descriptions.
Syntax
-help

Arguments
None

Example
poy -help

helpdumpfile     Writes all available help to an .HTML and .PNG 
file using a specified file name.

Syntax
-helpdumpfile outname

Arguments

Example
poy -helpdumpfile poydocs

helpfile     Writes the requested command line help request to a spec-
ified file.

Syntax
-helpfile outname

Arguments

Example
poy -helpfile docs

helpwidth     Sets the column width for help output.
Syntax
-helpwidth column

Argument Description
outname A string.  The name of the file to which all available help 

writes output.  Two files are created:  outname.html
and outname.png.

Argument Description
outname A string.  The name of the file to which a requested help 

command writes output.
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Arguments

Example
poy -helpfile docs -helpwidth 120

Comments
1. A positive value of column that is less than 60 is read as 60.
2. A negative value of column is read as positive infinity (that is, 

output is one line).

holdmaxtrees     Sets the maximum number of trees held in mem-
ory for all random replicates.

Syntax
-holdmaxtrees maxnum

Arguments

Example
poy chel.seq -replicates 10 -maxtrees 1 -holdmaxtrees 

50

Comments
maxtrees (page 282) will limit tree buffer size within replicates 
while holdmaxtrees operates when replicate results are collected 
for final refinement. Low values for maxtrees can decrease exe-
cution time, while allowing larger tree buffers for completeness 
using holdmaxtrees.

hypancfile     Sets the output file name for hypothetical ancestral 
nucleotide sequences.

Syntax
-hypancfile hypfile

Argument Description
column An integer.  The column width in characters for help out-

put.

Default = 80

Argument Description
maxnum An integer.  The maximum number of trees held in mem-

ory for all random replicates.

Default = the maximum available in memory
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Arguments

Example
poy chel.seq -printhypanc -hypancfile chel.hypanc

Comments
1. Used in conjunction with printhypanc (page 303).
2. Unlike diagnose (page 238), output from this command 

resolves ambiguously optimized ancestral states.
3. Use this command to create source files for search-based opti-

mization (refer to “Hypothetical ancestral states” on 
page 163).

hypancname     Writes the names of hypothetical ancestral nucle-
otide sequences to standard output.

nohypancname
Default value.  Hypothetical ancestors are not output.

Syntax
-hypancname

-nohypancname

Arguments
None

Example
poy chel.seq -printhypanc -hypancfile chel.hypanc 

-hypancname

Comments
Use this command in conjunction with newstates (page 286).

iafiles     Writes implied alignments for specified trees to a series of 
files.

noiafiles
Turns off printing of implied alignments.

Syntax
-iafiles

-noiafiles

Argument Description
hypfile A string.  The name of the file to which hypothetical 

ancestral nucleotide sequences are written.

Default = poy.hypanc
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Arguments
None

Example
poy chel.seq -impliedalignment -iafiles

Comments
1. All output files are POY readable.
2. This commands writes implied alignments either from 

cladogram searches or from searches and input topologies. 
For example,
poy seq1 seq2 -iafiles -topofile trees -nobuild

uses the sequence data files seq1 and seq2 with the topology 
file trees.

3. The number of output files is equal to the number of trees that 
result from a sequence data file.  If trees contains three trees, 
then there will be six output files—three for each of the two 
sequence data files.

4. The naming convention for output files from topology files is
ia.topology_file_name

where topology_file_name is the name of the topology 
data input file.  For the example above, the output file name is 
ia.trees.

5. The naming convention for output files from sequence data is
sequence_file_name.ia.topology_file_i
where sequence_file_name is the name of the sequence 
data input file and  topology_file_i  designates the i th tree 
output to ia.trees.  The command line above generates six 
output files.
seq1.ia.tree0
seq1.ia.tree1
seq1.ia.tree2

seq2.ia.tree0
seq2.ia.tree1
seq2.ia.tree2

6. If the sequence data is partitioned into fragments, output file 
will contain separate implied alignments for each fragment. 
Refer to “FASTA Format” on page 155.

7. While sequence fragments that have been excluded from the 
analysis do not contribute to tree costs, they are included in 
the output file.
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impliedalignment     Writes a topology-specific multiple alignment 
based on the synapomorphy scheme to standard output.

noimpliedalignment
Turns off writing alignments from the synapomorphy scheme.

Syntax
-impliedalignment

-noimpliedalignment

Arguments
None

Example
poy chel.seq -impliedalignment

Comments
Applies to chromosomal characters as well.  Produces locus anno-
tation information.

indices     Writes fit statistics (consistency index and retention index) 
for a topology to standard output.

noindices
Turns off writing fit statistics.

Syntax
-indices

-noindices

Arguments
None

Example
poy chel.seq -indices

intermediate     Writes intermediate search results to standard out-
put.

nointermediate
Turns off writing fit statistics.

Syntax
-intermediate

-nointermediate

Arguments
None
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Example
poy chel.seq -intermediate

Comments
1. This command can be helpful with protracted searches by 

recording intermediate results.
2. Use catchslaveoutput (page 227) to collect these from 

slave nodes in parallel runs.

invariantsitesadjust     Adjusts likelihoods for theta fraction 
invariant sites.

noinvariantsitesadjust
Turns off likelihood adjustments for theta fraction invariant sites.

Syntax
-invariantsitesadjust

-noinvariantsitesadjust

Arguments
None

Example
poy chel.seq -likelihood -invariantsitesadjust

iterativeinitsingle     Sets initial HTU states by resolving ambigu-
ities in preliminary phase (that is, the down pass) from direct optimiza-
tion.

noiterativeinitsingle
Default value.  Initialization with preliminary phase HTU states.

Syntax
-iterativeinitsingle

-noiterativeinitsingle

Arguments
None

Example
poy chel.seq -iterativepass -iterativeinitsingle

iterativekeepbetter     Retains the hypothetical ancestral states and 
cladogram cost that is the lesser of standard up/down pass and iterative 
pass.
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noiterativekeepbetter
Default value.  Uses the hypothetical ancestral state derived from 
the iterative pass.

Syntax
-iterativekeepbetter

-noiterativekeepbetter

Arguments
None

Example
poy chel.seq -iterativepass -iterativekeepbetter

Comments
Ensures that the lower cost reconstructed HTU states are main-
tained.

iterativelowmem     Minimizes memory allocation during iterative 
pass optimization.

noiterativelowmem
Default value.  No process is instantiated for minimizing memory 
allocation during iterative pass optimization.

Syntax
-iterativelowmem

-noiterativelowmem

Arguments
None

Example
poy chel.seq -iterativepass -iterativelowmem

Comments
This command can significantly reduce memory requirements 
under iterative pass, but there is a small execution time cost.

iterativepass     Performs iterative pass optimization.
noiterativepass

Turn off iterative pass.
Syntax
-iterativepass

-noiterativepass
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Arguments
None

Example
poy chel.seq -iterativepass

Comments
1. This command performs a three-dimensional optimization 

alignment (that is, it uses three vertices at each internal node).
2. This command is storage and time consumptive.

iterativepassfinal     Uses iterative pass to reestimate final states.
nointerativepassfinal

Turns off use of iterative pass for reestimation of final states.
Syntax
-interativepassfinal

-nointerativepassfinal

Arguments
None

Example
poy chel.seq -iterativepass -iterativepassfinal

iterativerandom     Resolves ambiguities in hypothetical ancestral 
states using random preference.

noiterativerandom
Turns off use of iterative pass for reestimation of final states.

Syntax
-iterativerandom

-noiterativerandom

Arguments
None

Example
poy chel.seq -iterativepass -iterativerandom

jackboot     Performs Farris et al. (1996) jackknifing.
nojackboot

Turns off jackknifing.
Syntax
-jackboot
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-nojackboot

Arguments
None

Example
poy chel.seq -replicates 100 -notbr -jackboot 

-maxtrees 2

Comments
1. Specify the number of pseudo-replicates using replicates

(page 311).
2. Set the cladogram search strategy within each pseudo-replicate 

by using commands that affect replicates.
3. The default output consists of the strict consensus trees for 

the pseudo-replicates and a majority rule consensus tree of 
these.  The clade frequencies in the majority rule consensus 
tree are the jackknife percentages.

4. To change the default output, use jackoutgroup (page 270), 
jackpseudoconsensustrees (page 270), 
jackpseudotrees (page 271), jacktree (page 271), and 
jackwincladefile (page 272).

5. Shallow cladogram search strategies can underestimate jack-
knife support values.

6. This form of jackknifing does not delete nucleotides, but 
reweights a fraction to zero, thereby preserving homology 
determination in length-variable sequences.

jackcharfile     Writes the majority rule consensus tree derived from 
the strict consensus trees of all jackknife pseudo-replicates to a specified 
file in xread format (“Input Cladograms” on page 156).

Syntax
-jackcharfile consfile

Arguments

Example
poy chel.seq -replicates 100 -notbr -jackboot 

-jackcharfile chel.jack

Argument Description
consfile A string.  The name of the file to which the majority rule 

consensus tree is written in xread format.
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Comments
1. jackboot (page 266) or jackstart (page 271) must be speci-

fied.
2. The resulting file can be used as a constraint file (jackstart).

jackfpseudoconsensustrees     Writes the strict consensus trees 
for the individual pseudo-replicates to a specified file.

Syntax
-jackfpseudoconsensustrees fname

Arguments

Example
poy chel.seq -replicates 100 -notbr -jackboot 

-jackfpseudoconsensustrees chel.jack_replicates

Comments
1. jackboot (page 266) or jackstart (page 271) must be speci-

fied.
2. Output is in parenthetical notation.  For each consensus tree, 

the number of best cladograms on which it is based is indi-
cated between square brackets.

3. See jackpseudoconsensustrees (page 270).

jackfpseudotrees     Writes the least cost trees for all pseudo-repli-
cates to a specified file.

Syntax
-jackfpseudotrees bestrees

Arguments

Example
poy chel.seq -replicates 100 -notbr -jackboot 

-jackfpseudotrees chel.jack-trees

Comments
1. jackboot (page 266) or jackstart (page 271) must be speci-

fied.

Argument Description
fname A string.  The name of the file to which the strict consen-

sus trees are written.

Argument Description
bestrees A string.  The name of the file to which the individual 

least cost trees are written.
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2. Output is in parenthetical format.  Individual trees are 
enclosed in brackets.

jackfrequencies     Writes the frequency of clades in a jackknife 
analysis to standard output.

Syntax
-jackfrequencies cladfreq

Arguments

Example
poy chel.seq -replicates 100 -notbr -jackboot -

jackfrequencies 80

jackftrees     Writes the majority rule consensus tree derived from 
the strict consensus trees of all pseudo-replicates to a specified file.

Syntax
-jackftrees constree

Arguments

Example
poy chel.seq -replicates 100 -notbr -jackboot 

-jackftrees chel.jack

Argument Description
cladfreq A string.  A predefined code that specifies which clade 

frequencies are reported.

jackfrequencies accepts the following values:
Value                     Description

  all             Report frequencies for all clades in
the set of pseudo-replicate strict 
consensus trees

majority         Report frequencies for all clades’ jack-
boot majority rule consensus tree

  off            Do not report frequencies

Default = majority

Argument Description
constree A string.  The name of the file to which the majority rule 

consensus tree is written.
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Comments
1. jackboot (page 266) or jackstart (page 271) must be speci-

fied.
2. Output is in parenthetical format followed by a text-based 

graphic.
3. The graphic is included as a comment so that the file can be 

used as an input file for topofile (page 322).
4. The clade frequencies in this tree are the jackknife support val-

ues.

jackoutgroup     Sets the outgroup for jackknifing.
Syntax
-jackoutgroup outname

Arguments

Example
poy chel.seq -replicates 100 -notbr -jackboot -

jackoutgroup Artemia

jackpseudoconsensustrees     Writes the strict consensus trees 
for the individual pseudo-replicates to standard output.

nojackpseudoconsensustrees
Turns off reporting of strict consensus trees.

Syntax
-jackpseudoconsensustrees

-nojackpseudoconsensustrees

Arguments
None

Example
poy chel.seq -replicates 100 -notbr -jackboot 

-jackpseudoconsensustrees

Comments
1. To take effect, the command line must include both jackboot

(page 266) and jackstart (page 271).

Argument Description
outname A string.  The taxon name of the outgroup used in jack-

boot analysis.

Default = First taxon in the first data file
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2. In the output file, the number of trees is enclosed in brackets.

jackpseudotrees     Writes the least cost trees for the individual 
pseudo-replicates to standard output.

nojackpseudotrees
Turns off reporting of pseudo-replicate least cost trees.

Syntax
-jackpseudotrees

-nojackpseudotrees

Arguments
None

Example
poy chel.seq -replicates 100 -notbr -jackboot 

-jackpseudotrees

Comments
In the output file, the cost of individual trees is enclosed in brack-
ets.

jackstart     Builds a set of initial trees using jackknifing, then per-
forms the cladogram search as specified.

nojackstart
Default value.  Performs jackknifing only.

Syntax
-jackstart

-nojackstart

Arguments
None

Example
poy chel.seq -buildsperreplicate 10 -notbr -jackboot 

-jackstart

Comments
To take effect, the command line must include jackboot
(page 266).

jacktree     Writes the majority rule consensus tree from the strict 
consensus trees of all jackknife pseudo-replicates to standard output.

nojacktree
Turns off jackknifing.
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Syntax
-jacktree

-nojacktree

Arguments
None

Example
poy chel.seq -buildsperreplicate 10 -notbr -jackboot 

-jacktree

Comments
1. To take effect, the command line must include both jackboot

(page 266) and jackstart (page 271).
2. In the output file, the clade frequencies are the jackknife sup-

port values.

jackwincladefile     Writes the strict consensus trees from the indi-
vidual pseudo-replicates to a specified file in Winclada readable format.

Syntax
-jackwincladefile wcfile

Arguments

Example
poy chel.seq -buildsperreplicate 10 -notbr -jackboot 

-jackwincladefile chel.jack-pha

Comments
To take effect, the command line must include both jackboot
(page 266) and jackstart (page 271).

jobspernode     Sets the number of processes spawned on each 
node.

Syntax
-jobspernode procs

Argument Description
wcfile A string.  The name of the file to which the strict consen-

sus trees are written in Winclada readable format.

Default = none
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Arguments

Example
poy chel.seq -parallel -jobspernode 4

Comments
1. Typically, the value of procs is the number of processors per 

node.
2. Use solospawn (page 315) to set the number of jobs spawned 

on stand-alone multiprocessor machines.

kfactor     Sets the k value for implied character weighting.
Syntax
-kfactor k

Arguments

Example
poy chel.seq -goloboff ck -kfactor 10

Comments
Refer to goloboff (page 258).

leading     Counts leading and trailing gaps in tree cost.
noleading

Leading and trailing gaps are ignored in calculating tree cost.
Syntax
-leading

-noleading

Arguments
None

Example
poy chel.seq -noleading

Argument Description
procs An integer.  The number of processes spawned per node.

Default = 1

Argument Description
k An integer.  The value of the k factor used for implied 

weighting.

Default = 0
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Comments
1. When noleading is used, leading and trailing gaps are 

accounted for in initial HTU optimization to prevent trivial 
nonoverlapping alignments, but thereafter are ignored in calcu-
lating tree cost.

2. This command is often used with trailinggap (page 326).
3. Use of this command can cause metricity problems.

likelihood     Performs likelihood analysis.
nolikelihood

Turns off likelihood analysis.
Syntax
-likelihood

-nolikelihood

Arguments
None

Example
poy chel.seq -likelihood

Comments
1. Additive and nonadditive characters are treated as in Tuffley 

and Steele (1997).
2. Likelihoods are reported as the absolute value of their natural 

log.

likelihoodconvergencevalue     Sets the maximum likelihood 
difference for which two likelihood scores are considered equal.

Syntax
-likelihoodconvergencevalue diff

Arguments

Example
poy chel.seq -likelihood -likelihoodconvergencevalue 

10 

Comments
1. The similarity threshold is equal to

Argument Description
diff An integer.  The inverse of the similarity threshold.

Default = 100
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(Eq 15.4)

so that with diff = 100, likelihood score differences less than 
0.01 are treated as equal.

2. As diff increases, calculation time increases.

likelihoodestimationsize     Sets the number of pairwise 
sequence comparisons used to estimate likelihood parameters.

Syntax
-likelihoodestimationsize compare

Arguments

Example
poy chel.seq -likelihood -likelihoodestimationsize 

5000

likelihoodesttranseachtime     Estimates the transition matrix 
for each comparison of two sequences.

nolikelihoodesttranseachtime
Default value.  The transition matrix is not estimated for each 
comparison.

Syntax
-likelihoodesttranseachtime

-nolikelihoodesttranseachtime

Arguments
None

Example
poy chel.seq -likelihood -likelihoodesttranseachtime

likelihoodextensiongap     Sets the likelihood of gaps that follow 
the first in a series of gaps.

Syntax
-likelihoodextensiongap gaps

Argument Description
compare An integer.  The number of pairwise comparisons.

Default = parallel processing, all pairwise comparisons
= sequential mode, the number of taxa

1
diff
--------------
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Arguments

Example
poy chel.seq -likelihood -likelihoodextensiongap 2

likelihoodmaxnumiterations     Sets the maximum number of 
branch cost iterations performed.

Syntax
-likelihoodmaxnumiterations iterate

Arguments

Example
poy chel.seq -likelihood -likelihoodmaxnumiterations 

25

likelihoodroundingmultiplier     Sets the rounding value used in 
likelihood calculations.

Syntax
-likelihoodroundingmultiplier round

Arguments

Example
poy chel.seq -likelihood -

likelihoodroundingmultiplier 50

Argument Description
gaps An integer.  The relative increase in likelihood of gaps 

that follow the first in a series of gaps.

Default = none

Argument Description
iterate An integer.  The maximum number of branch cost itera-

tions performed.

Default = 100

Argument Description
round An integer.  The inverse of the rounding value.

Default = 100
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Comments
1. In likelihood analysis, internal optimization alignments are per-

formed using double precision floating point arithmetic. 
However, values returned as integers.  round sets the rounding 
value used for this conversion using the formula

. (Eq 15.5)

2. To increase precision, increase the value of round.

likelihoodstep     Sets the size of iteration steps during branch cost 
optimization.

Syntax
-likelihoodstep steps

Arguments

Example
poy chel.seq -likelihood -likelihoodstep 10

Comments
To decrease step size, increase the value of steps.

likelihoodtrailinggap     Sets the likelihood of leading and trailing 
gaps.

Syntax
-likelihoodtrailinggap gaps

Arguments

Example
poy chel.seq -likelihood -likelihoodtrailinggap 2

Argument Description
steps An integer.  The size of iteration steps.

Default = 5

Argument Description
gaps An integer.  The relative increase in likelihood of leading 

and trailing gaps.

Default = none

1
round
-----------------
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linear     Treats chromosomal characters as linear, as opposed to cir-
cular.

nolinear
Default value. Chromosomal characters are treated as circular. 
Has the effect of circular (page 230).

Syntax
-linear

-nolinear

Arguments
None

Example
poy -chromosome -linear -rearrange -reversible 

chel.chrom

Comments
See circular (page 230).

list     Displays a list of all commands that contain a specified string in 
their usage information.

Syntax
-list xref

Arguments

Example
poy -list gap

llist     Displays a list with descriptions of all commands that contain a 
specified string in their usage information.

Syntax
-llist xref

Argument Description
xref A string.  Command usage information is searched for this 

string.

Default = none
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Arguments

Example
poy -llist gap

locusgap     Sets the constant fraction of the cost of locus origin-loss 
events.

Syntax
-locusgap cost

Arguments

Example
poy -chromosome -circular -rearrange -reversible 

chel.chrom -breakpoint 100 -locusgap 200

Comments
1. The value is constant for all origin-losses, unless -locussize-

gap is also used, in which case the cost of the origin-losses de-
pends on the size of the locus it is placed against.

2. The total origin-loss cost is (locusgap + (locussizegap × locus 
length)).

locussizegap     Sets the variable fraction of the cost of locus origin-
loss events.

Syntax
-locussizegap cost

Argument Description
xref A string.  Command usage information is searched for this 

string.

Default = none

Argument Description
cost An integer.  The cost of the origin or loss of a locus irre-

spective of its length.

Default = 10
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Arguments

Example
poy -chromosome -circular -rearrange -reversible 

chel.chrom -breakpoint 100 -locusgap 200 
-locussizegap 1

Comments
1. The value is a multiplier of the length of the locus that is lost 

or gained.
2. Can be used in concert with locusgap (page 279).
3 The total origin-loss cost is (locusgap + (locussizegap × locus 

length)).

locusswap     Refines chromosome HTU construction.
Syntax
-locusswap size

Arguments

Example
poy -chromosome -circular -rearrange chel.chrom 

-n2reorder -locusswap 3

Comments

1. In the chromosome reordering step, perform a swapping step 
that is analogous to branch swapping.  For every chunk size 
from 1 to less than or equal to size, take each consecutive 
chunk of loci and place it in each possible position.  As soon as 
a better chromosome is found, move to the next chunk.  Keep 
going through the loop of all chunk sizes until no change is 
made for any chunk of any size.

Argument Description
cost An integer.  The variable fraction of the cost of locus ori-

gin-loss events.

Default = 0

Argument Description
size An integer.  The size (number of adjacent loci) to remove 

and reinsert to improve the quality of HTU chromosome 
optimization.

Default = 0
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2. The default value is 0, which means this swapping step does 
not execute.

3. If size is greater than the length of the chromosome to swap 
minus 2 (since there are n 1 possible chunk sizes, and the 
n 1st will already have been tried with n = 1), the chunk size 
used for that chromosome is the length minus 2.

4. Use with chromosome (page 229), rearrange (page 310), and 
n2reorder (page 285).

maxiterations     Sets the maximum number of iterative passes to 
perform.

Syntax
-maxiterations iterate

Arguments

Example
poy -chel.seq -iterativepass -maxiterations 10

Comments
This command acts as a stopping rule when a stable solution is 
not found.

maxprocessors     Sets the number of spawned jobs.
Syntax
-maxprocessors procs

Arguments

Example
poy chel.seq -parallel -maxprocessors 20

Comments
The minimum value for procs is 2 (one master, one slave).

Argument Description
iterate An integer.  Command usage information is searched for 

this string.

Default = unlimited

Argument Description
procs An integer.  The number of spawned jobs.

Default = number of nodes

–
–
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maxtrees     Sets the maximum number of trees held in buffers dur-
ing processing. See buildmaxtrees (page 222) and sprmaxtrees
(page 317).

Syntax
-maxtrees trees

Arguments

Example
poy chel.seq -maxtrees 100

Comments
The value of trees is used by all other maxtrees commands as 
their default value: buildmaxtrees, sprmaxtrees, holdmax-
trees (page 260), and fitchtrees (page 253).

minstop     Sets the minimum number of random replicates that must 
be completed before processing ceases.

Syntax
-minstop minreps

Arguments

Example
poy chel.seq -replicates 1000 -minstop 5 -stopat 3

Comments
In conjunction with stopat (page 318), this command performs 
the specified iterations regardless of the value set by stopat. 
Without this command, processing stops once the number of 
minimum cost trees specified by stopat are found.

minterminals     Sets the limit for missing data when terminal taxa 
are specified.

Syntax
-minterminals pctmiss

Argument Description
trees An integer.  The maximum number of trees held in buffers.

Default = number available in memory

Argument Description
minreps An integer.  The minimum number of replicates.

Default = 0
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Arguments

Example
poy -terminalsfile chel.tax -minterminals 50 chel.seq 

chel.morph

Comments
Use this command to change the default value used by termi-
nalsfile (page 320) to limit the amount of missing data in the 
analysis.

molecularmatrix     Reads nucleic acid transformation costs from a 
specified file.

Syntax
-molecularmatrix matfile

Arguments

Example
poy -molecularmatrix titv.mat chel.seq

Comments
1. Refer to “Multiple loci” on page 154.
2. Costs specified using this command take precedence over 

costs specified by gap (page 257) and change (page 227).
3. When extensiongap (page 251) is used, the gap row and col-

umn of the matrix are used for the cost of the first in a series 
of gaps. Subsequent gap costs are as specified by extension-
gap.

multibuild     Performs a specified number of random addition 
sequence builds on slave nodes.

Syntax
-multibuild builds

Argument Description
pctmiss An integer.  The limit for missing data expressed as a per-

centage.

Default = 80

Argument Description
matfile A string.  The name of the file containing the transforma-

tion cost matrix data.

Default = none
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Arguments

multidrift     Spawns individual tree drifting jobs to slave nodes.
nomultidrift

Default value.  Individual tree drifting jobs are not spawned to 
slave nodes.

Syntax
-multidrift

-nomultidrift

Arguments
None

Example
poy chel.seq -parallel -drifttbr -numdrifttbr 10 

-multidrift

Comments
This command modifies the behavior of driftspr (page 248)
and drifttbr (page 248).

multiplier     Sets the multiplier for implied weighting.
Syntax
-multiplier weight

Arguments

Example
poy chel.seq chel.morph -goloboff ck -multiplier 100

Comments
Used with goloboff (page 258).

Argument Description
builds An integer.  The number of random addition sequence 

builds performed on slave nodes.

Default = 0

Argument Description
weight An integer.  The multiplier used in implied weighting.

Default = 100
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multirandom     Spawns individual random replicates to slave 
nodes.

nomultirandom
Default value.  Individual random replicates are not spawned to 
slave nodes.

Syntax
-multirandom

-nomultirandom

Arguments
None

Example
poy chel.seq -replicates 25 -multirandom -parallel

Comments
1. This command utilizes the parallel environment for full 

searches by sending random replicates to each node or sub-
cluster.

2. This command is affected by controllers (page 234).

multiratchet     Spawns individual ratchet jobs on slave nodes.
nomultiratchet

Default value.  Individual ratchet jobs are not spawned to slave 
nodes.

Syntax
-multiratchet

-nomultiratchet

Arguments
None

Example
poy chel.seq chel.morph -parallel -ratchettbr 100 

-multiratchet

n2reorder     Selects reorderings of loci on a chromosome using a 
method akin to cladogram building.

non2reorder
Default value.  Reordering selection method not used.

Syntax
-n2reorder

-non2reorder
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Arguments
None

Example
poy -chromosome -circular -rearrange -reversible 

chel.chrom -n2reorder

Comments
The HTU chromosome is built one locus at a time, each time 
choosing the locus to add that gives the best total optimization 
cost (that is, alignment cost + breakpoint cost) at that point.

newstates     Reads the state set for search-based optimization from 
a specified file.

Syntax
-newstates newfile

Arguments

Example
poy -fixedstates chel.seq -newstates chel.states

Comments
1. The format for newfile is described in “Hypothetical ances-

tral states” on page 163.
2. Each sequence input file (modified by fixedstates on 

page 253) must have a newstates command associated with it.

nopoyini     Causes POY to not recognize the file poy.ini in the 
current directory as a command file.

Syntax
-nopoyini

Arguments
None

Example
poy chel.seq -nopoyini -commandfile poy.commands

Argument Description
newfile A string.  The name of the file containing hypothetical 

ancestral states.

Default = none
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Comments
1. If this command is in poy.ini or a command file reached 

from poy.ini, the contradiction is arbitrarily resolved by 
POY taking nonpoyini as the single command in poy.ini.

2. This command is overruled by the command -commandfile 
poy.ini.

numdriftchanges     Sets the number of topological changes per-
mitted per tree drifting round.

Syntax
-numdriftchanges changes

Arguments

Example
poy chel.seq -drifttbr -numdrifttbr 10 

-numdriftchanges 30

numdriftspr     Sets the number of SPR tree drift rounds.
Syntax
-numdriftspr rounds

Arguments

Example
poy chel.seq -driftspr -numdriftspr 10

numdrifttbr     Sets the number of TBR tree drift rounds.
Syntax
-numdrifttbr rounds

Argument Description
changes An integer.  The number of changes permitted per tree 

drift round.

Default = 20

Argument Description
rounds An integer.  The number of SPR tree drift rounds.

Default = 1
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Arguments

Example
poy chel.seq -drifttbr -numdrifttbr 10

numslaveprocesses     Sets the maximum number of regular slave 
jobs that can be spawned on PVM nodes, excluding the master node.

Syntax
-numslaveprocesses procs

Arguments

Example
poy chel.seq -parallel -numslaveprocesses 100

onan     Spawns jobs on the master as well as on slave nodes.
noonan

Default value.  Spawns jobs on slave nodes only.
Syntax
-onan

-noonan

Arguments
None

Example
poy chel.seq -parallel -onan

onannum     Sets the number of jobs spawned to the master node.

Argument Description
rounds An integer.  The number of TBR tree drift rounds.

Default = 1

Argument Description
procs An integer.  The maximum number of reserve jobs 

spawned on PVM nodes.

Default = number of entries in PVM configuration
- 1

 the value jobsnum set by jobspernode
(page 272)

×
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Syntax
-onannum jobs

Arguments

Example
poy chel.seq -parallel -onan -onannum 2

oneasis     Reads the random addition sequence order of taxa for the 
first replicate from the order of taxa in the first data file.

nooneasis
Default value.  All random additions randomized.

Syntax
-oneasis

-nooneasis

Arguments
None

Example
poy chel.seq -replicates 100 -oneasis

onechroms     Optimizes HTU chromosomes by examining a single 
resolution of loci that have been ambiguously assigned to the candidate 
HTU.  Default value.

noonechroms
Examines more than a single resolution.

Syntax
-onechroms

-noonechroms

Arguments
None

Example
poy -chromosome -circular -rearrange chel.chrom 

-iterativepass -onechroms

Argument Description
jobs An integer.  The number of jobs spawned on the master 

node.

Default = 0
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Comments
1. Only operative when iterativepass (page 265) is used.
2. Not relevant if fixedstates (page 253) is used for chromo-

somal optimization.

onversionconflict     Sets the action POY takes when it detects a 
difference version numbers or dates between the master and slave tasks.

Syntax
-onversionconflict action

Arguments

Example
poy chel.seq -onversionconflict exit

Comments
1. POY reads versions from the standard error file, where ver-

sion numbers and version dates are reported when tasks start.
2. In a PVM environment with a single host, deletehost will 

have the same effect as exit.
3. When exit is specified, adding nodes to the PVM configura-

tion while POY is running might cause POY to abort immedi-
ately.

outgroup     Sets the outgroup.
Syntax
-outgroup outtaxon

Argument Description
action A string.  A predefined code that specifies POY detects 

task version difference between the master and slave.

onversionconflict accepts the following values:
Value                      Description

  deletehost     Removes the host of the slave task
                               from the pool of hosts used

  exit      Immediately exits the program
  warn      A warning is written to the standard

                               error file

Default = deletehost
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Arguments

Example
poy chel.seq -outgroup Artemia

Comments
1. Used in conjunction with nooneasis oneasis (page 289), 

randomizeoutgroup (page 306), and rerootafterbuild
(page 312).

2. plotoutgroup (page 296) and jackoutgroup (page 270) will 
use outtaxon as their default value.

3. When outgroup is not used, the outgroup taxon is set using 
one of the following methods.
• If terminalsfile (page 320) is used, the outgroup is the 

first taxon in the specified terminals file.
• If terminalsfile is not used, the outgroup is the first 

taxon in the first input data file encountered on the 
command line.

overwritedataprotection     Prevents POY from overwriting input 
data files.

Syntax
-overwritedataprotection protect

Arguments

Example
poy chel.seq -overwritedataprotection off -topofile 

chel.tree -phastwincladfile chel.seq

Argument Description
outtaxon A string.  The name of the taxon used as the outgroup.

Default = none

Argument Description
protect A string.  A predefined code that specifies whether input 

data files can be overwritten:

overwritedataprotection accepts the following 
values:

Value                        Description
  on            Do not overwrite input data files
  off            Overwrite input data files

Default =on
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Comments
1. When protection is enabled, POY performs the file name 

check before any calculations are performed.  If conflicts are 
found, POY writes a notification to the standard error file and 
exits.

2. The input file is read before it is overwritten.
3. In conjunction with iafiles (page 261), only the trees file 

ia.trees is protected.

overwriteprotection     Prevents POY from overwriting input data 
files with output files.

Syntax
-overwriteprotection protect

Arguments

Example
poy chel.seq -overwriteprotection off -topofile 

chel.tree > chel.seq

Comments
When protection is enabled, POY performs the file name check 
before any calculations are performed.  If conflicts are found, 
POY writes a notification to the standard error file and exits.

pairmatrix     Generates a pairwise distance matrix between taxa.
nopairmatrix

Default value.  Pairwise matrix not generated.
Syntax
-pairmatrix

-nopairmatrix

Argument Description
protect A string.  A predefined code that specifies whether input 

data files can be overwritten by output files.

overwriteprotection accepts the following values:
Value                        Description

  on            Do not overwrite input data files
  off            Overwrite input data files

Default = off
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Arguments
None

Example
poy chel.seq -pairmatrix

parallel     Executes POY as a parallel process using PVM.
noparallel

Default value.  POY executes sequentially.
Syntax
-parallel

-noparallel

Arguments
None

Example
poy chel.seq -parallel

Comments
The POY code for parallel processing is fault tolerant:  the master 
task detects slave tasks that die or become unreachable, then 
makes appropriate adjustments.  Partial results from slave node 
failures are recalculated on other slaves.

phastwincladfile     Writes implied alignments to a specified file.
Syntax
-phastwincladfile phastfil

Arguments

Example
poy chel.seq -phastwincladfile chel.pha

Comments
The output is in Hennig86/Nona format and can be read by 
Phast, Winclada, and POY. Refer to “Phastwincladfile” on 
page 163.

plotencoding     Sets the characters used to plot trees.

Argument Description
phastfil A string.  The name of the file to which output is written.

Default = none
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Syntax
-plotencoding charactr

Arguments

Example
poy chel.seq -printtree -plotfile chel.tree 

-plotencoding UTF-8

Comments
UTF-8 produces aesthetically better plots, but requires that you 
have unicode fonts and a viewer that understands UTF-8 charac-
ter encoding.  This can be done, for example, using Microsoft 
Word by importing the file as UTF-8 encoded text or using vim 
with :set encoding=utf-8 in a supporting terminal.

plotechocommandline     Writes the command line as the first 
line of the tree output file.

Syntax
-plotechocommandline

Arguments
None

Example
poy chel.seq -plotechocommandline

plotfile     Sets the name of the tree output file.
Syntax
-plotfile plotname

Argument Description
charactr A string. A predefined code that specifies the characters 

used by printtree (page 304) to plot trees.

plotencoding accepts the following values:
Value                     Description

  ASCII            Use ASCII character set
  UTF-8            Use UTF-8 encoded unicode
                                   character set

Default = ASCII
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Arguments

Example
poy chel.seq -printtree -plotfile chel.tree

Comments
If the file already exists, output is appended to it.

plotfrequencies     Sets how clade frequencies are tabulated in the 
least cost trees.

Syntax
-plotfrequencies cladfreq

Arguments

Example
poy chel.seq -jackboot -replicates 100 

-plotfrequencies all

Comments
Use in conjunction with printtree (page 304).

Argument Description
plotname A string.  The name of the file to which output is written. 

With a value of stdout, output is directed to standard 
output.

Default = poy.tree

Argument Description
cladfreq A string. A predefined code that specifies how to report 

clade frequencies for printtree (page 304).

plotfrequencies accepts the following values:
Value                        Description

  all            Tabulate frequencies for all clades 
                             (absolute and percentage-wise number
                             of occurrences)

  majority         Tabulate majority clade frequencies
                             (absolute and percentage-wise number
                             of occurrences)

  off            Do not tabulate frequencies

Default = off
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plotmajority     Sets how to plot majority rule consensus trees.
Syntax
-plotmajority plot

Arguments

Example
poy chel.seq -printtree -plotfile chel.tree 

-plotmajority long

plotoutgroup     Sets the outgroup used for tree plotting.
Syntax
-plotoutgroup outtaxon

Arguments

Example
poy chel.seq -printtree -plotfile chel.tree 

-plotoutgroup Artemia

Argument Description
plot A string. A predefined code that specifies how to plot the 

majority rule consensus tree for printtree (page 304).

plotmajority accepts the following values:
Value                    Description

  long            Plot the majority rule consensus
                             tree with clade identification
                             numbers. The output includes the

identification number and percent-
age-wise clade frequency.

  majority         Plot the majority rule consensus
                             tree without clade identification
                             numbers

  off            Do not plot the majority rule  
                             consensus tree

Default = off

Argument Description
outtaxon A string. The name of the taxon used as the outgroup 

by printtree (page 304).

Default = see Comments below
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Comments
1. Used in conjunction with printtree (page 304).
2. The default value for outtaxon is the outgroup value set by 

outgroup (page 290).
3. When outgroup is not used, the default value for outtaxon is 

either
• the first taxon in the first input data file encountered on the 

command line
• or, when there is not input data file, the first taxon in the 

first tree input data set (see topofile on page 322 and 
topology on page 323).

plotstrict     Sets how to plot strict consensus trees.
Syntax
-plotstrict plot

Arguments

Example
poy chel.seq -printtree -plotfile chel.tree 

-plotstrict long

Comments
Used in conjunction with printtree (page 304).

plottrees     Sets how to plot optimal trees.

Argument Description
plot A string. A predefined code that specifies how to plot strict 

consensus trees for printtree (page 304).

plotstrict accepts the following values:
Value                      Description

  long              Plot the strict consensus trees with clade
                             identification numbers. The output 
                            includes the identification number and

                             percentage-wise clade frequency.
  majority       Plot the strict consensus trees without 

clade identification numbers
  off              Do not plot the strict consensus trees

Default = long
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Syntax
-plottrees plot

Arguments

Example
poy chel.seq -printtree -plotfile chel.tree 

-plottrees long

Comments
Used in conjunction with printtree (page 304).

plotwidth     Sets the number of columns used for plotting trees.
Syntax
-plotwidth columns

Argument Description
plot A string. A predefined code that specifies how to plot 

majority rule consensus trees for printtree
(page 304).

plottrees accepts the following values:
Value                      Description

  long    Plot  the optimal trees with clade 
identification numbers.  The out-
put includes the identification 
number and percentage-wise 
clade frequency.

  majority         Plot the optimal trees without clade
                                     identification numbers
  off            Do not plot the optimal trees

Default = long
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Arguments

Example
poy chel.seq -printtree -plotfile chel.tree 

-plotwidth 120

Comments
1. Used in conjunction with printtree (page 304).
2. If a tree plot requires more columns than are specified, the 

plot is broken into subtrees which fit the width as specified.
3. Long terminal names (greater than columns - 5 characters) are 

truncated.

polyaddconverttorange     Converts polymorphisms in additive 
characters optimization to the smallest range of values that span the 
original values.

nopolyaddconverttorange
The polymorphic character is treated as nonadditive.

Syntax
-polyaddconverttorange

-nopolyaddconverttorange

Arguments
None

Example
poy chel.seq chel.morph -nopolyaddconverttorange

Comments
1. Use this command when polymorphisms in additive characters 

optimization are not contiguous.
2. The polymorphism is converted into the smallest range that 

includes the original polymorphism.  For example, [3578] con-
verts to [345678].

3. If phastwincladfile (page 293) is used in conjunction with 
nopolyaddconverttorange, the output file includes the 
conversion of polymorphisms to nonadditive characters.

Argument Description
columns An integer. The number of columns used for print-

tree (page 304) output.

Default = 80

Minimum = 25
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poybintreefile     Writes the optimal trees in POY topology format 
to a specified file.

Syntax
-poybintreefile treefile

Arguments

Example
poy chel.seq -poybintreefile chel.bin

Comments
1. Refer to “POY topology” on page 161.
2. Polytomies are resolved and siblings are ordered.
3. In the output file, siblings are ordered left to right.
4. When no input character data are used, all input cladogram 

data are used.
5. Use this command to create output used for diagnostics.
6. To create a file for use in a tree drawing program, use 

poytreefile (page 301).

poystrictconsensuscharfile     Writes the strict consensus tree in 
Hennig86/Nona format to a specified file.

Syntax
-poystrictconsensuscharfile treefile

Arguments

Example
poy chel.seq -poystrictconsensuscharfile chel.con

Comments
1. The file can be used as a constraint file (see “Constraint file” 

on page 157).

Argument Description
treefile A string.  The name of the file to which output is writ-

ten.

Default = none

Argument Description
treefile A string.  The name of the file to which output is writ-

ten.

Default = none



Command References 301

9 
G

ui
de

lin
es

10
 R

eq
ui

re
m

en
ts

11
 In

st
al

la
tio

n
3 

A
na

ly
sis

13
 In

pu
t/

O
ut

pu
t

14
 T

ut
or

ia
ls

15
 C

om
m

an
ds

7 
Ev

al
ua

tio
n

8 
Pa

ra
lle

l

2. When no input character data are used, all input cladogram 
data are used.

poystrictconsensustreefile     Writes the strict consensus tree in 
POY topology format to a specified file.

Syntax
-poystrictconsensustreefile treefile

Arguments

Example
poy chel.seq -poystrictconsensustreefile chel.strict

Comments
1. Refer to “POY topology” on page 161.
2. The file can be used as a constraint file (see “Constraint file” 

on page 157).
3. When no input character data are used, all input cladogram 

data are used.

poytreefile     Writes the optimal cladograms in POY topology for-
mat to a specified file.

Syntax
-poytreefile treefile

Arguments

Example
poy chel.seq -poytreefile chel.poy

Comments
1. Refer to “POY topology” on page 161.
2. Use this command to create an input file for cladogram draw-

ing applications.  This file will display as read (that is, the 

Argument Description
treefile A string.  The name of the file to which output is writ-

ten.

Default = none

Argument Description
treefile A string.  The name of the file to which output is writ-

ten.

Default = none
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cladogram drawing application does not change the resolution 
of the cladograms based on an optimality criterion).

3. When no input character data are used, all input cladogram 
data are used.

prealigned     Reads sequence data as prealigned from a specified 
file.

noprealigned
Reads sequence data as unaligned.

Syntax
-prealigned seqfile

-noprealigned seqfile

Arguments

Example
poy chel.seq -prealigned chel.pro

Comments
1. For prealigned, sequences cannot contain gaps.
2. For prealigned, sequences must be of equal length.
3. Use noprealigned for sequences of unequal length.

printccode     Writes a ccode-like summary of the character settings 
in each Hennig86/Nona formatted input data file to standard output.

noprintccode
Turns off writing of ccode-like summary.

Syntax
-printccode

-noprintccode

Arguments
None

Example
poy chel.morph -printccode

Argument Description
seqfile A string.  The name of the file from which data are read.

Default = none
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Comments
1. Use this command when polymorphisms in additive characters 

optimization are not contiguous.
2. The polymorphism is converted into the smallest range that 

includes the original polymorphism.  For example, [3578] con-
verts to [345678].

3. If phastwincladfile (page 293) is used in conjunction with 
nopolyaddconverttorange, the output file includes the 
conversion of polymorphisms to nonadditive characters.

printhypanc     Writes hypothetical ancestral sequences for optimal 
cladograms to a specified file.

noprinthypanc
Turns off writing hypothetical ancestral sequences.

Syntax
-printhypanc

-noprinthypanc

Arguments
None

Example
poy chel.seq -printhypanc -hypancfile chel.hypanc

Comments
1 Refer to “Hypothetical ancestral states” on page 163.
2 hypancfile (page 260) specifies the file to which output is 

written.
3 The output consists of the hypothetical ancestral sequences of 

the optimal tree with ambiguities resolved.
4 The output is used to prepare the newstates (page 286) file 

for search-based optimization.

printlotshypanc     Writes hypothetical ancestral sequences for 
intermediate and optimal trees to a specified file. 

noprintlotshypanc
Turns off writing hypothetical ancestral sequences.

Syntax
-printlotshypanc

-noprintlotshypanc
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Arguments
None

Example
poy chel.seq -printhypanc -hypancfile chel.hypanc    

-printlotshypanc

Comments
1. Modifies and must be used with printhypanc (page 303).
2. Refer to “Hypothetical ancestral states” on page 163.
3. hypancfile (page 260) specifies the file to which output is 

written.
4. The output consists of the hypothetical ancestral sequences of 

the optimal tree with ambiguities resolved.
5. The output is used to prepare the newstates (page 286) file 

for search-based optimization.

printqmat     Writes likelihood parameters to standard output.
noprintqmat

Turns off writing likelihood parameters.
Syntax
-printqmat

-noprintqmat

Arguments
None

Example
poy chel.seq -likelihood -printqmat

printtree     Writes a graphic of the optimal trees and their strict con-
sensus trees to a standard output file.

noprinttree
Turns off writing a graphic of the optimal trees and their strict 
consensus trees.

Syntax
-printtree

-noprinttree

Arguments
None

Example
poy chel.seq -printtree -plotfile chel.tree
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Comments
1. Output is written to poy.tree.
2. If poy.tree exists, output is appended to the end of the file.
3. Graphics can be written from topology data (see topofile on 

page 322 and topology on page 323).
• If the command line includes character input data, the 

topology data are diagnosed using the character data. 
Costless branches are collapsed.  However, note that input 
topologies should not have polytomies because POY 
resolves these arbitrarily, which can affect diagnosis and the 
occurrence of costless branches.

• If the command line does not include character input data, 
the output has the same resolution as the topology data.

4. Cladograms are treated as unrooted, so that the base node is 
never resolved.

qmatrix     Reads a transition cost ratio matrix for likelihood analysis 
from a specified file.

Syntax
-qmatrix qmatfile

Arguments

Example
poy chel.seq -likelihood -qmatrix chel.mat

Comments
Refer to “Likelihood cost matrix file” on page 160.

quick     Performs branch swapping only on minimum cost trees.
noquick

Default value.  Performs branch swapping on all trees found dur-
ing the search.

Syntax
-quick

-noquick

Argument Description
qmatfile A string.  The name of the file from which data are read.

Default = none



306 Chapter 15
9 

G
ui

de
lin

es
10

 R
eq

ui
re

m
en

ts
11

 In
st

al
la

tio
n

3 
A

na
ly

sis
13

 In
pu

t/
O

ut
pu

t
14

 T
ut

or
ia

ls
15

 C
om

m
an

ds
7 

Ev
al

ua
tio

n
8 

Pa
ra

lle
l

Arguments
None

Example
poy chel.seq -noquick

Comments
This command accelerates the cladogram search process.

quote     Writes a specified string to standard output.
Syntax
-quote string

Arguments

Example
poy chel.seq -quote "please help me"

Comments
Use this command to include a comment line in the standard out-
put file.

randomizeoutgroup     Randomizes the addition of all taxa, 
including the outgroup.

norandomizeoutgroup
Default value.  Sets the first taxon of the first input data set as the 
starting point for adding terminals.

Syntax
-randomizeoutgroup

-norandomizeoutgroup

Arguments
None

Example
poy -replicates 10 -randomizeoutgroup

Comments
1. When using constraints, use norandomizeoutgroup.

Argument Description
string A string.  Any character string.

Default = none
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2. When using randomizeoutgroup with jackboot (page 266)
and jackstart (page 271), also use jackoutgroup
(page 270).

3. When using randomizeoutgroup with printtree
(page 304) to output consensus cladograms, also use plot-
outgroup (page 296).

randomizeslaves     Sets PVM task identification numbers (TIDs) 
randomly.

norandomizeslaves
Default value.  TIDs are not set randomly.

Syntax
-randomizeslaves

-norandomizeslaves

Arguments
None

Example
poy chel.seq -parallel -norandomizeslaves

Comments
This command causes jobs to be distributed at random among 
slave nodes.

ratchetoverpercent     Spawns a specified number of extra ratchet 
jobs to accommodate unequal execution times during parallel execution.

Syntax
-ratchetoverpercent extra

Arguments

Example
poy chel.seq chel.morph -parallel -ratchettbr 100    

-ratchetoverpercent 50

Comments
Once the full complement of ratchet jobs is complete, unfinished 
jobs are terminated and the search continues as specified.

Argument Description
extra An integer.  The number of extra ratchet jobs to spawn.

Default = none
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ratchetpercent     Sets the percentage of characters reweighted dur-
ing a ratchet search.

Syntax
-ratchetpercent reweight

Arguments

Example
poy chel.seq chel.morph -ratchettbr 100 

-ratchetpercent 20

ratchetseverity     Sets the weight multiplier for reweighting charac-
ters during a ratchet search.

Syntax
-ratchetseverity multiply

Arguments

Example
poy chel.seq chel.morph -ratchettbr 100 

-ratchetseverity 3

ratchetslop     Sets the percent limit of suboptimal trees evaluated 
during a ratchet search.

Syntax
-ratchetslop limit

Argument Description
reweight An integer. The percentage of characters to reweigh.

Default = 15

Argument Description
multiply An integer.  The multiplier used to reweight characters 

during a ratchet search.

Default = 2
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Arguments

Example
poy chel.seq chel.morph -ratchettbr 100 -slop 5 

-ratchetslop 0

Comments
While this command slows processing, it abates the effects of 
shortcuts used in calculating tree costs.

ratchetspr     Sets the number of ratchet iterations using SPR.
Syntax
-ratchetspr iterate

Arguments

Example
poy chel.seq chel.morph -ratchetspr 100

ratchettbr     Sets the number of ratchet iterations using TBR.
Syntax
-ratchettbr iterate

Arguments

Example
poy chel.seq chel.morph -ratchettbr 100

Argument Description
limit An integer.  The limit of suboptimal trees evaluated 

expressed in tenths of a percent (that is, a value of 5 rep-
resents a 0.5% limit).

Default = 0 or the value set by slop (page 314)

Argument Description
iterate An integer.  The number of iterative rounds of ratchet-

ing performed using SPR.

Default = 0

Argument Description
iterate An integer.  The number of iterative rounds of ratchet-

ing performed using TBR.

Default = 0
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ratchettrees     Sets the number of trees saved during ratchet itera-
tions.

Syntax
-ratchettrees treenum

Arguments

Example
poy chel.seq chel.morph -ratchettbr 100 -ratchettrees 1

rearrange     Enables locus rearrangement to occur when optimizing 
chromosomal characters.

norearrange
Turns off locus rearrangement.

Syntax
-rearrange

-norearrange

Arguments
None

Example
poy -chromosome -linear -rearrange chel.chrom 

-nochromosome chel.morph

Comments
1. In “chromosome alignment,” try different orderings of the loci 

to optimize the reordering of loci on the same chromosome. 
Change the order of the loci and then align them, adding the 
breakpoint cost to the cost of aligning the loci (the induced set 
of breakpoints; Sankoff and Blanchette 1998).

2. To calculate the breakpoint cost, only loci that appear in both 
of the chromosomes are considered.  The breakpoint cost is 
the number of adjacent pairs of these loci that appear in the 
reduced version of one of the chromosomes but not in the 
reduced version of the other chromosome.

3. The loci are considered to be the homologous if they are 
aligned against each other. If just -rearrange is used, a sim-
plistic algorithm for choosing reorderings is used. If 

Argument Description
treenum An integer.  The number of trees saved.

Default = 2
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n2reorder (page 285) is also used, then an algorithm akin to 
cladogram building is used to try to find better reorderings.

recode     Accelerates additive and nonadditive characters optimiza-
tion.  Default value.

norecode
Turns off acceleration of additive and nonadditive character opti-
mization.

Syntax
-recode

-norecode

Arguments
None

Example
poy chel.morph -norecode

Comments
Recode improves the speed of additive and nonadditive character 
optimization.

repintermediate     Writes the results of individual random repli-
cates to standard output.

norepintermediate
Default value.  Results of individual random replicates are not 
written to standard output.

Syntax
-repintermediate

-norepintermediate

Arguments
None

Example
poy chel.seq -replicates 10 -repintermediate

Comments
Use this command in conjunction with replicates.

replicates     Sets the number of random addition sequence searches 
or the number of jackknife pseudo-replicates.

Syntax
-replicates repnum
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Arguments

Example
poy chel.seq -replicates 100

Comments
1. In conjunction with buildsperreplicate (page 223), sets 

the number of random addition sequence searches.
2. In conjunction with jackboot (page 266), sets the number of 

pseudo-replicates.

rerootafterbuild     Performs stepwise addition by rerooting trees to 
a specified outgroup before performing cladogram search procedures.

norerootafterbuild
Default value.  Trees are not rerooted to a specified outgroup 
before cladogram search.

Syntax
-rerootafterbuild

-norerootafterbuild

Arguments
None

Example
poy chel.seq -rerootafterbuild -outgroup Artemia 

-buildsperreplicate 10 -randomizeoutgroup

Comments
1. Used in conjunction with randomizeoutgroup (page 306).
2. The outgroup to which the candidate tree is rerooted is set by 

outgroup (page 290).
3. Using this command can change the cladogram cost reported 

at the conclusion of the stepwise addition because the recon-
structed ancestral states depend on the chosen outgroup.

reversible     Enables the loci to be treated as unsigned—that is, 
either the given locus or its reverse complement can be used in optimi-
zation.

Argument Description
repnum An integer.  The number of random addition sequence 

searches or pseudo-replicates to perform.

Default = none
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noreversible
Default value.  Loci are treated as signed.

Syntax
-reversible

-noreversible

Arguments
None

Example
poy -chromosome -linear -rearrange -reversible 

chel.chrom

Comments
Both orderings are tried when computing the cost matrix for loci. 
The orientation is recorded.

seed     Sets the seed value for the generation of random numbers.
Syntax
-seed num

Arguments

Example
poy chel.seq -replicates 100 -seed 105

Comments
1. Values of 0 or greater guarantee exact reproducibility under 

noparallel (page 293).
2. Values of 0 or greater do not guarantee exact reproducibility 

under parallel (page 293) because the system cannot know 
in advance when requests to slave nodes will be answered (a 
result of slave node processor speed and load). Disparate 
results are not a defect in POY.

showchromsearch     Display of chromosomal HTU optimization 
progress information.

Argument Description
num An integer.  The seed value for pseudo-random number 

generation.

Default =  1

The default value 1 uses the system time in seconds.

–

–
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noshowchromsearch
Default value.  Chromosomal HTU optimization progress infor-
mation not displayed.

Syntax
-showchromsearch

-noshowchromsearch

Arguments
None

Example
poy -chromosome -circular -rearrange chel.chrom 

-showchromsearch

Comments
The output can be prolix.

showiterative     Writes iterative pass progress information to stan-
dard output.

noshowiterative
Default value.  Iterative pass progress information is not output.

Syntax
-showiterative

-noshowiterative

Arguments
None

Example
poy chel.seq -iterativepass -showiterative

slop     Sets the percent limit of suboptimal trees evaluated during a 
search.

Syntax
-slop limit
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Arguments

Example
poy chel.seq -slop 5

Comments
1. While this command slows processing, it abates the effects of 

shortcuts used in calculating tree costs.
2. This command sets the default for all other slop commands 

(buildslop on page 222, checkslop on page 228, and 
ratchetslop on page 308).

solospawn     Sets the number of slave jobs spawned on a stand-
alone multiprocessor machine.

Syntax
-solospawn jobs

Arguments

Example
poy chel.seq -parallel -solospawn 20

Comments
Use jobspernode (page 272) to set the number of jobs spawned 
on slave nodes in parallel clusters.

somechroms     Optimizes HTU chromosomes by examining all 
combinations of loci that have been ambiguously assigned to the candi-
date HTU.

nosomechroms
Default value.

Syntax
-somechroms

Argument Description
limit An integer.  The limit of suboptimal trees evaluated 

expresses in tenths of a percent (that is, a value of 5 rep-
resents a 0.5% limit).

Default = 0

Argument Description
jobs An integer.  The number of jobs spawned.

Default = 4
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-nosomechroms

Arguments
None

Example
poy -chromosome -circular -rearrange chel.chrom 

-iterativepass -somechroms

Comments
1. Only operative when iterativepass (page 265) is used.
2. Not relevant if fixedstates (page 253) is used for chromo-

somal optimization.
3. Can be very time-consuming.

spewbinary     Writes binary trees (that is, trees without polytomies) 
used internally by POY to standard output.  Default value.

nospewbinary
Turns off output of binary trees used internally by POY.

Syntax
-spewbinary

-nospewbinary

Arguments
None

Example
poy chel.seq -nospewbinary

Comments
Use the output to compare POY results with the output of other 
applications or to use as topology input to POY.

spr     Performs an SPR cladogram search.
nospr

Turns off SPR cladogram search.
Syntax
-spr

-nospr

Arguments
None

Example
poy chel.seq -notbr -spr
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sprmaxtrees     Sets the maximum number of trees held in buffers 
during an SPR cladogram search.

Syntax
-sprmaxtrees max

Arguments

Example
poy.seq chel.seq -spr -sprmaxtrees 1

staticapprox     Performs static approximation for sequence optimi-
zation during cladogram refinements.

nostaticapprox
Turns off static approximation.

Syntax
-staticapprox

-nostaticapprox

Arguments
None

Example
poy chel.seq -staticapprox

Comments
Static approximation uses fixed implied alignment during branch 
swapping.  Each time a less costly tree is found, a new implied 
alignment is calculated.  This new implied alignment is then used 
for subsequent swapping.

staticapproxbuild     Performs static approximation for sequence 
optimization during cladogram building.

nostaticapproxbuild
Turns off static approximation.

Syntax
-staticapproxbuild

-nostaticapproxbuild

Argument Description
max An integer.  The maximum number of trees held in 

buffers during SPR cladogram search.

Default = the value set by maxtrees (page 282)



318 Chapter 15
9 

G
ui

de
lin

es
10

 R
eq

ui
re

m
en

ts
11

 In
st

al
la

tio
n

3 
A

na
ly

sis
13

 In
pu

t/
O

ut
pu

t
14

 T
ut

or
ia

ls
15

 C
om

m
an

ds
7 

Ev
al

ua
tio

n
8 

Pa
ra

lle
l

Arguments
None

Example
poy chel.seq -staticapproxbuild

Comments
Use static approximation (Wheeler 2003a) for sequence optimiza-
tion while building cladograms. Static approximation consists of 
using a fixed implied alignment while adding taxa; each time a 
shorter cladogram is found, a new implied alignment is calculated 
(based on that shorter tree) and this new alignment is used for 
further additions.

stats     Writes cladogram search statistics to standard output.
nostats

Turns off writing cladogram search statistics.
Syntax
-spr

-nospr

Arguments
None

Example
poy chel.seq -stats

stopat     Sets the minimum number of minimum cost replicates that 
must be found before the search stops.

Syntax
-stopat minnum

Arguments

Example
poy chel.seq -replicates 100 -stopat 5

Comments
Use in conjunction with minstop (page 282).

Argument Description
minnum An integer.  The minimum number of minimum cost 

replicates that must be found before the search ends.

Default = the value set by replicates (page 311) or 
multirandom (page 285)
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submodel     Enforces symmetries in transition probabilities during 
likelihood analysis.

Syntax
-submodel syms

Arguments

Example
poy chel.seq -likelihood -submodel s10

tbr     Performs a TBR cladogram search.
notbr

Turns off TBR cladogram search.
Syntax
-tbr

-notbr

Arguments
None

Example
poy chel.seq -spr -notbr

Argument Description
syms A string.  A predefined code that specifies how symme-

tries are determined.

submodel accepts the following values:
Value                  Description

  s10          Each of the 10 reversible transitions
                             are allowed to vary (a super-GTR)

  s6g          GTR+gaps with all indels treated
                             equally

  s3g          Purine transitions, pyrimidine transi-
                             tions, transversions, and indels have
                             different probabilities

  s2g          Transitions, transversions, and indels
                             have different probabilities

  s1g          All base substitutions have equal
                             probability, indels are different

  s1          All transitions have equal probability

Default = s6g
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tbrmaxtrees     Sets the maximum number of trees held in buffers 
during a TBR cladogram search.

Syntax
-tbrmaxtrees max

Arguments

Example
poy chel.seq -tbrmaxtrees 1 -checkslop 10

terminalsfile     Sets terminal taxon names.
Syntax
-terminalsfile termfile

Arguments

Example
poy -terminalsfile chel.tax chel.seq chel.morph 

-minterminals 50

Comments
1. Refer to “Terminals file” on page 158.
2. If this command is not used, inconsistencies in taxon names 

among input files will cause POY to terminate.
3. When an input data file includes a name that is not in the ter-

minals file, POY skips the input data for that terminal.
4. When an input data file does not have data corresponding to a 

taxon in the terminals file, POY includes the taxon in the anal-
ysis and treats it as having missing data.

5. Inconsistencies between an input data files and the terminals 
file are written to the standard error file.

6. This command makes it possible to

Argument Description
max An integer.  The maximum number of trees held in 

buffers during TBR cladogram search.

Default = the value set by maxtrees (page 282)

Argument Description
termfile A string.  The name of the file containing terminal 

taxon names.  One or more terminal files can be speci-
fied.

Default = none
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• include a taxon that has missing data in an analysis 
without including it in a data file

• exclude a taxon from an analysis without editing data 
files.

7. POY compares the terminals file and the data input files to 
avoid the inclusion of too much missing data.

• If the number of taxa added from the terminal file is 
greater than 20% of the taxa in the input data files, then 
POY will terminate.

• To change this percentage, use minterminals
(page 282).

8. When an input cladogram specified by topofile (page 322)
or topology (page 323) includes a name that is not in the 
terminals file, that terminal is pruned from the tree.

9. When an input cladogram specified by topofile (page 322)
or topology (page 323) does not have data corresponding 
to a taxon in the terminals file, POY adds the terminal as a 
basal branch.

10. Inconsistencies between an input cladogram and the termi-
nals file are written to the standard error file.

11. POY does not limit missing data for input cladograms as it 
does for input data files.

theta     Sets the theta value for likelihood analysis.
Syntax
-theta thetanum

Arguments

Example
poy chel.seq -likelihood -theta 0.1

time     Displays execution time in seconds.
notime

Turns off display of execution time.
Syntax
-time

Argument Description
thetanum An integer.  The theta value (the proportion of invariant 

sites) expressed as a percentage.

Default = none
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-notime

Arguments
None

Example
poy chel.seq -notime

topodiagnoseonly     Skips all cladogram building and refinement 
when an input topology is specified.

notopodiagnoseonly
Default value.  Performs cladogram building and refinement 
when an input topology is specified.

Syntax
-topodiagnoseonly

-notopodiagnoseonly

Arguments
None

Example
poy chel.seq -topofile chel.topo -impliedalignment   

-topodiagnoseonly

Comments
Use this command to evaluate input topologies or to calculate 
implied alignments for input cladograms.

topofile     Reads topologies from a specified file.
Syntax
-topofile intree

Arguments

Example
poy chel.seq -topofile chel.topo

Comments
1. Refer to “Input Cladograms” on page 156.

Argument Description
intree A string.  The name of the input cladogram file.

Default = none
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2. If no character input data are included in the command line, 
trees are read as is.  However, the basal node is not resolved—
that is, (a(b(c d))) is treated as (a b(c d)).

3. If character input data are included in the command line, trees 
are diagnosed.  Zero cost branches are collapsed.

4. If an outgroup is specified using topooutgroup (page 324), 
the trees are rerooted to it.

5. If toposkipidentical (page 325) is used, identical input cla-
dograms (after rerooting when an outgroup is specified) are 
filtered out.

topolist     Writes topologies with costs to standard output after read-
ing and diagnosing input cladograms.

notopolist
Turns off writing topologies after reading and diagnosing input 
cladograms.

Syntax
-topolist

-notopolist

Arguments
None

Example
poy chel.seq -topofile chel.topo -notopolist

Comments
Use this command to check topologies before branch swapping.

topology     Reads an input cladogram from the command line.
Syntax
-topology "intree;"

Arguments

Example
poy chel.seq -topology "(Americhernus 

((((((((Chanbria Limulus) (Centruoides (Hadrurus 

Argument Description
"intree;" A string. The input cladogram. One or more trees can 

be specified. The trees must be terminated by a semi-
colon and enclosed in double quotes.

Default = none
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Pauroctonus))) Mastigoproctus) (Amblypygid 
((Rhiphicephalus Vonones) ((Aportus Alentus) 
Thermobius)))) Hypochilus) Thelichoris) Gea) 
Artemia));"

Comments
1. Refer to “Input Cladograms” on page 156  in Chapter 13.
2. If no character input data are included in the command line, 

cladograms are read as is.  However, the basal node is not 
resolved—that is, (a(b(c d))) is treated as (a b(c d)).

3. If character input data are included in the command line, 
cladograms are diagnosed.  Zero cost branches are collapsed.

4. If an outgroup is specified using topooutgroup (page 324), 
the cladograms are rerooted to it.

5. If toposkipidentical (page 325) is used, identical input 
cladograms (after rerooting when an outgroup is specified) are 
filtered out.

topooutgroup     Sets the outgroup used to which input cladograms 
are rerooted.

Syntax
-topooutgroup taxon

Arguments

Example
poy chel.seq -topofile chel.topo -topooutgroup 

Artemia

Comments
1. Input cladograms are rerooted to the specified taxon immedi-

ately after they are read.
2. Sibling clades in the rerooted cladogram are ordered in one of 

two ways:
• from small to large
• or alphabetically.

3. The reordering of siblings can lead to a change in diagnosed 
costs or a change in zero-cost branch assessments.  If the input 
cladograms were obtained from a previous analysis, the origi-
nal cost might not result, even with the same outgroup.

Argument Description
taxon A string.  The taxon name of the outgroup.

Default = none
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topopickrandom     Sets the number of input cladograms pseudo-
randomly (seed on page 313) from all input cladograms specified fol-
lowing toposkipidentical (page 325) or notoposkipidentical.

Syntax
-topopickrandom trees

Arguments

Example
poy chel.seq -topofile chel.seq -topopickrandom 3

Comments
1. If the value of trees is greater than the number of input 

cladograms, it is set to the number of input cladograms.
2. topopickrandom takes precedence over topopwpickrandom.

topopwpickrandom     Sets the percent of input cladograms pseu-
dorandomly (seed on page 313) from all input cladograms specified 
following toposkipidentical (page 325) or notoposkipidentical.

Syntax
-topopwpickrandom percent

Arguments

Example
poy chel.seq -topofile chel.seq -topopwpickrandom 25

Comments
topopickrandom (page 325) takes precedence over topopw-
pickrandom.

toposkipidentical     Filters out duplicate input cladograms.

Argument Description
trees An integer.  The number of input cladograms selected 

pseudorandomly from all input cladograms.

Default = the total number of trees specified following 
toposkipidentical or notoposkip–
identical on the command line.

Argument Description
percent An integer.  The percent of input cladograms selected 

pseudorandomly from all input cladograms.

Default = 100
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notoposkipidentical
Default value.  Does not filter out duplicate input cladograms.

Syntax
-toposkipidentical

-notoposkipidentical

Arguments
None

Example
poy chel.seq -topofile chel.seq -topopwpickrandom 33 

-notoposkipidentical

Comments
1. Filtering occurs 

• after any rerooting (if topooutgroup (page 324) is used)
• after diagnosis and collapsing of zero-cost branches (if 

character input data are present).
2. Cladograms are evaluated as unrooted, so that (a(b c)) is identi-

cal to ((b c)a).

totallikelihood     Calculates the likelihood of an optimization align-
ment by summing only the major optimization alignments.

nototallikelihood
Default value.  Calculates the likelihood based on the dominant 
optimization alignment or state in fixed-states or search-based 
analysis.

Syntax
-totallikelihood

-nototallikelihood

Arguments
None

Example
poy chel.seq -likelihood -totallikelihood

Comments
In contrast to this command, trullytotallikelihood
(page 328) uses all optimization alignments to calculate the likeli-
hood. trullytotallikelihood results in higher likelihoods, 
but at a premium in execution time.

trailinggap     Sets the cost of leading and trailing gaps in a sequence.
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Syntax
-trailinggap gapcost

Arguments

Example
poy chel.seq -trailinggap 1 -noleading

Comments
If this command is not used, leading and trailing gaps are assigned 
the value set by gap (page 257) or molecularmatrix (page 283).

treefuse     Performs cladogram search using tree fusing.
notreefuse

Turns off tree fusing.
Syntax
-treefuse

-notreefuse

Arguments
None

Example
poy chel.seq -replicates 10 -treefuse

treefusespr     Performs a SPR cladogram search on new cladograms 
found during a tree fusing search.

notreefusespr
Turns off SPR cladogram search on new cladograms found dur-
ing tree fusing.

Syntax
-treefusespr

-notreefusespr

Arguments
None

Example
poy chel.seq -replicates 10 -treefuse -treefusespr

Argument Description
gapcost An integer.  The cost of leading and trailing gaps.

Default = none
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treefusetbr     Performs a TBR cladogram search on new cladograms 
found during a tree fusing search.

notreefusetbr
Turns off TBR cladogram search on new trees found during tree 
fusing.

Syntax
-treefusetbr

-notreefusetbr

Arguments
None

Example
poy chel.seq -replicates 10 -treefuse -treefusetbr

trullytotallikelihood     Calculates the likelihood of an optimiza-
tion by summing all optimizations.

notrullytotallikelihood
Default value.  Calculates the likelihood based on the dominant 
optimization alignment.

Syntax
-trullytotallikelihood

-notrullytotallikelihood

Arguments
None

Example
poy chel.seq -likelihood -trullytotallikelihood

Comments
In contrast to this command, totallikelihood (page 326) uses 
a subset of potential optimizations near the major optimizations 
to calculate the likelihood.   trullytotallikelihood results in 
higher likelihoods, but at a premium in execution time.

verbose     Writes cladogram search progress information to the stan-
dard error file.

noverbose
Default value.  Cladogram search progress information is not out-
put.

Syntax
-verbose
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-noverbose

Arguments
None

Example
poy chel.seq -noverbose

weight     Sets the weight of the data in the preceding input data file.
Syntax
-weight weight

Arguments

Example
poy -defaultweight 2 -weight 3 chel.morph chel.seq

Comments
This command affects only the single data file that precedes it on 
the command line.

Argument Description
weight An integer.  The weight applied to data in the preceding 

file.

Default = 1





Glossary
additive character     A character type for which the transformation 
costs are determined by the number of steps between characters.  Com-
pare nonadditive characters and Sankoff characters.
ad hoc     An improvised and often impromptu examination.  In cladis-
tics, used in reference to a priori invocations of homoplasy to explain 
similarity as nonhomologous.
analogy     A character state in two or more taxa that does not have a 
single origin.
ancestor     An internal node on a cladogram. A taxon from which 
another taxon is descended.
apomorphy     The state of a character derived from an ancestral char-
acter state (plesiomorphy). See also autapomorphy, synapomorphy, and 
polarity.
a posteriori     Knowledge derived from experience.  In the context of 
phylogenetic analysis, information derived from an analysis, particularly 
the evaluation of a cladogram.  Compare a priori.
a priori     Knowledge derived prior to experience. In the context of 
phylogenetic analysis, assumptions and principles upon which an analy-
sis is based, such as parsimony. Compare a posteriori.
331
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autapomorphy     An apomorphy unique to one taxon.  For example, 
the hairlessness of cetaceans is autapomorphic among mammals.
automatic alignment     Alignment of molecular characters based on 
an algorithmic procedure, generally computer-based.
bandwidth     A network’s or device’s communication capacity—how 
much data it can pass per unit time
Bayes     The statistical methodology concerned with posterior proba-
bilities.  Reverend Thomas Bayes (born in London, 1702, died in Tun-
bridge Wells, 1761), a Nonconformist minister in England, set out his 
theory of probability in Essay towards solving a problem in the doctrine of 
chances published in the Philosophical Transactions of the Royal Society of Lon-
don in 1764.
Beowulf     The legendary sixth-century hero who freed the Danes of 
Heorot by destroying the oppressive monster Grendel. As a metaphor, 
“Beowulf ” has been applied to a new strategy in high performance 
computing that exploits mass-market technologies to overcome the 
oppressive costs in time and money of supercomputing. A supercom-
puter built from commodity, off-the-shelf components, in the form of a 
network (or cluster) dedicated to parallel processing.
bifurcation     See dichotomy.  Compare polytomy.
binary character     Character with two states (for example, chitin 
exoskeleton: (0) absent, (1) present).
branch     The path or edge connecting two nodes.
branch and bound     An exact solution algorithm that guarantees find-
ing all optimal solutions.  In phylogenetics, this procedure is used to find 
all optimal cladograms for a data set.
branch swapping     A stepwise method of searching for optimal 
phylogenetic trees in which monophyletic groups on a cladogram are 
rearranged and evaluated for improvements in optimality.
Bremer support index     A measure of a clade’s optimality. The index 
is the difference between the minimum cost cladogram with and with-
out the clade.
cache     A portion of a computer’s memory intended to improve per-
formance by providing a temporary storage area for instructions and 
data;  the cache can be part of the computer’s main memory or a bank 
of specialized, high speed memory
character     A historically independent transformation series. See trans-
formation, homology, and nested character.
character congruence     The degree of agreement among the charac-
ters in supporting a hypothesized cladogram.  The degree of synapo-
morphy and lack of homoplasy.  Indicated by summary metrics such as 
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the consistency index.  Compare topological congruence.  See also con-
gruence.
character state transformations     The ordered array of states that a 
character can take.  The hypothesized descent of a character’s states.
character state     The possible form that a character takes.  For binary 
characters, the two states are often structure present and structure absent.  
For multistate characters, the state consists of one of multiple forms 
(for example, if the character is an RNA position, a possible state is one 
of the four nucleotides:  adenine, guanine, cytosine, or uracil).  For any 
set of taxa, character states are represented by a corresponding set of 
discrete values.
chromosome     The cellular structure consisting of DNA and protein 
that consists of a linear sequence of genes.
clade     A monophyletic group of taxa, that is, an ancestor taxon and all 
its descendants. On a cladogram, a clade is represented by all taxa aris-
ing from a single node.
cladistics     The classification of taxa using character synapomorphies, 
from which identification of monophyletic groups is inferred.
cladogram     A dendrogram (a diagram with a branching structure) 
that represents hypothetical clades (monophyletic groups of taxa) and 
that identifies hypothesized character state transformations.  The out-
come of a phylogenetic analysis.  Compare tree.
cluster     A network of computers created to perform a specialized 
process, such as a Beowulf created for parallel processing.
combined analysis     The inclusion of diverse sources of available evi-
dence.  The term is generally applied when molecular and morphologi-
cal data are analyzed simultaneously.
composite optima     Term introduced by Goloboff (1999) that refers 
to the presence of optima for different subclades such that all combined 
create the global optimum.
computational complexity theory     Part of the theory of computa-
tion dealing with the resources required during computation to solve a 
given problem. The most common resources are time (how many steps 
does it take to solve a problem) and space (how much memory does it 
take to solve a problem).
congruence     Agreement of data.  Compare incongruence.  See also 
character congruence and topological congruence.
consensus     A method for depicting incompatibilities among 
cladograms. Monophyletic groups are formed based on logical consis-
tency. Strict consensus consists of only those monophyletic groups that 
are the same in all fundamental cladograms.
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consistency index     A measure of consistency, bound between 0 
(maximal inconsistency) and 1 (perfect consistency). Those values are 
computed as the ratio of minimum cladogram cost divided by the actual 
cladogram length.
convergence     The evolution of similar or identical characters in two 
or more taxa that do not share a common ancestor.  See also analogy.  
Compare to homology.
cost     The weighted sum of character state transformations required to 
map a topology from a data set of character states. Compare length.
criterion     See optimality criterion.
data     The set of characters studied or observed.
data partition     See partition.
decay analysis     See Bremer support index
dichotomy     The branching pattern of a clade’s resolved evolutionary 
history:  two (and only two) descendant branches arise from a single 
ancestral branch.  Compare polytomy.
direct optimization     Algorithm for analyzing systematic data (usu-
ally sequence data) under dynamic homology via single-step phyloge-
netic analysis that avoids multiple alignment.
down pass     Optimization of character states on a cladogram from 
terminal taxa to root. Compare up pass.
duplication     A nucleotide sequence copied from one location on the 
genome to another.  Compare paralogy.
dynamic homology     Type of homology that is not fixed prior to the 
phylogenetic analysis and that therefore is cladogram-dependent.  Com-
pare static homology.
dynamic programming     A computational method for finding an 
optimal solution to a problem by selecting the optimal next step at each 
stage in the computation.  See also heuristic solution.
edge     See branch.
edit cost     The cost, in weighted events, to transform one structure 
into another.  In a pairwise alignment following the Needleman and 
Wunsch algorithm, the cost implied by the given alignment.
evidence     Observations that have been coded into characters and can 
be used to differentiate among phylogenetic hypotheses (that is, 
cladograms).
exact solution     A problem-solving method in which all possible solu-
tions are, at least implicitly, evaluated. Compare heuristic solution.
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fixed state optimization     A type of character optimization in which 
hypothetical ancestral sequences are not inferred during cladogram con-
struction.  Rather, sets of hypothetical ancestral sequences are drawn 
from observed sequences and then searched for efficient fits as nodal 
sequences via dynamic programming to calculate cladogram cost.
fundamental cladogram     The optimal individual topologies output 
by a phylogenetic analysis. Consensus techniques combine fundamental 
cladograms to arrive at a compromise representation.
gap     The absence of a corresponding nucleotide in a nucleic acid 
sequence when compared to another.  See also indel.
gene rearrangement     A change in the relative gene order of a string 
of genes (that is, a chromosome).
genetical algorithm     A type of heuristic refinement to (in this case) 
phylogenetic hypotheses that involves recombination and selection to 
increase the optimality of a solution.  See tree fusing.
genotype     The genetic array of an organism.
genotypic data     Character states derived from DNA, RNA, and gene 
sequence data; in contrast to the concept of molecular data, genotypic 
data represent directly an organism’s genetic signal. Compare pheno-
typic data.
granularity     The degree to which a process can be divided into sub-
processes that can be allocated to individual CPUs in a parallel process-
ing environment.
heritable     A trait that is passed with or without change from the 
ancestor to its descendants. A nonheritable trait is a characteristic of the 
individual that results from environmental modifications.
heuristic solution     A partial solution to a problem, presumably use-
fully close to the optimal one, or even the optimal, that results from the 
application of algorithms that tentatively reduce the size of the problem 
to a manageable scale. There is no way to know if it is actually the opti-
mal solution; the optimal solution might be different or impossible to 
determine.
hierarchy     A graded or ranked series of nested objects.  A cladogram 
is a hierarchy of clades.
homology     When a character is shared by two or more taxa that is 
descended from an ancestor of the taxa. The null hypothesis in con-
structing monophyletic groups during tree construction. Compare 
homoplasy. See primary homology and secondary homology.
homoplasy     When a character state is shared by two or more taxa that 
is not the result of common ancestry, but instead is the result of parallel-
ism or convergence. Compare homology.
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HTU     See hypothetical taxonomic unit.
hypothesis     An empirically testable scientific statement.
hypothesis testing     The relative evaluation of competing hypotheses 
with critical evidence.
hypothetical taxonomic unit     The collection of character states 
ascribed to a taxon inferred by a phylogenetic analysis, in contrast to an 
observed taxon. Compare operational taxonomic unit.
implicit enumeration     The effective evaluation of all the topologies 
that are possible for a given number of taxa without examining each 
possibility.
implied alignment     A visual representation of the synapomorphies 
involving sequence substitutions and insertion/deletions on a particular 
cladogram.
implied weighting      A method that searches for trees that maximize 
the function F = K/(K + S), where K is a concavity constant (set by the 
user) and S are the extra steps. For details see Goloboff (1993b). See 
also successive approximation weighting.
incongruence     also known as incompatibility.  This refers to different 
characters or trees suggesting different groups of relationships.  Incon-
gruence is due to the presence of homoplasy.  Compare congruence.
indel     An insertion/deletion event at a location in nucleic acid or pro-
tein sequence—for example, the insertion of a nucleotide in DNA 
sequence. See also gap.
ingroup     The set of taxa hypothesized as monophyletic.  See out-
group.
integer arithmetic     An algorithm that uses only integers in its calcu-
lations; integer arithmetic is less demanding and computationally exact 
as opposed to floating point arithmetic.
intron     A noncoding segment of a gene.  A nucleotide sequence that 
occurs between coding regions of a gene.  Typical of eukaryotes.
inversion     Rotation of a chromosomal segment through 180° so that 
the based order is reversed.
iterative pass optimization     An algorithm that combines three-
sequence direct optimization with iterative improvement.
jackknife     A method used to evaluate in a phylogenetic tree.  A jack-
knife consists of reconstructing the data matrix by sampling a subset of 
the original without replacement.
job     A unit of work, which can be a single program or a group of pro-
grams working in concert.
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kernel     The section of a computer program that provides the pro-
gram’s essential services and, in the case of the operating system, 
remains in memory at all times.
latency     The time difference between a data request and when the 
data are delivered.
length     The unweighted sum of character state transformations 
required to map a topology from a data set of character states. Compare 
cost.
likelihood     See maximum likelihood.
load balancing     The relative load or business of jobs spawned on 
slave processors.
locus     A fragment of the genome under analysis. Free of functional 
considerations (a locus could simply be a PCR-fragment of unknown 
function).
majority rule consensus     A representation of those nodes that are 
present in 50% or more of the equally parsimonious trees resulting from 
an analysis.  Compare strict consensus.
manual alignment     The manual adjustment of sequences to establish 
homology hypotheses.
master node     A node that assigns work and manages communication 
on a dedicated network, such as a Beowulf.
matrix character     See Sankoff character.
maximum likelihood     An optimality criterion used to infer phyloge-
netic relationships from character data. Given a data set, a set of param-
eters (branch lengths, substitution rates, etc.) and a topology, ML seeks 
to maximize the probability of the data given the cladogram and the 
parameters. (See Felsenstein 1981 for an entree to ML applications in 
phylogeny reconstruction.)
maximum parsimony     See parsimony.
Mbps     Megabits per second; a common unit of measure for transmis-
sion rates over networks.
metricity     See triangle inequality.
middleware     A computer program that manages communication 
between the application layer used by users and an operating layer.
missing data     Data entries that are missing for a taxon or set of taxa. 
Usually represented by a question mark (?) in the matrix.
molecular data     Character states derived from DNA, RNA, protein 
sequence, and chromosomal data. Compare morphological data, pheno-
typic data, and genotypic data.
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molecular systematics     Phylogenetic analysis using genome, nucleic 
acid, or protein data.
monophyly     When a group of taxa are classified as descendants of a 
common ancestor.  Compare polyphyly.
morphological data     Character states derived from anatomical fea-
tures and behavior.  Compare molecular data and phenotypic data.
MPI     Message passing interface; middleware that handles communi-
cation on a parallel processing cluster, such as a Beowulf.
multifurcation     See polytomy.  Compare dichotomy.
multistate character     A character with more than two states.
mutational bias     The tendency of a region of DNA to become biased 
in its nucleotide composition.
nearest neighbor interchange     A search algorithm for the optimal 
topology that juxtaposes neighboring clades, then evaluates the result. If 
the new topology is more parsimonious than the original, it becomes 
the starting point for a new NNI iteration. A less complete algorithm 
than subtree pruning and reconnection or tree bisection and reconnec-
tion.
network     (1) An unrooted tree. (2) A grid of hardware.
network backbone     The cable or other transmission mechanism that 
connects all elements of a network.
network interface card     The device installed on individual computers 
that enables communication over a network.
Newick format     The representation of a topology using nested 
parentheses. For example, (A,(B,C)) specifies taxa B and C as sister 
clades.
NIC     See network interface card.
NNI     See nearest neighbor interchange.
node     (1) A vertex on a cladogram with connections to one (terminal 
taxon), two (root of cladogram), or three (HTU) other nodes.   (2) An 
individual computer in a cluster such as a Beowulf.   Typically, nodes are 
counted by the number of motherboards, which may have more than 
one CPU and network interface.
nonadditive character     A character type for which transformation 
costs are the same regardless of the number of steps between states. 
Compare additive character and Sankoff character.
NP     Nondeterministic polynomial time.  A set of computational deci-
sion problems that may have more than one result but are solvable by a 
number of steps that is a polynomial function with respect to the input.  
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The concept of nondeterminism invokes a method of generating poten-
tial solutions using trial and error. Finding a solution may take exponen-
tial time as long as a potential solution can be verified in polynomial 
time. Compare P and NP-complete.
NP-complete     Nondeterministic polynomial time complete. A set of 
computational decision problems that is a subset of NP problems with 
the additional property that it is also NP-hard. Formally defined by 
Cook (1971) as follows. A decision problem C is NP-complete if it is in 
NP and if every other problem in NP is reducible to it. “Reducible” here 
means that for every NP problem L, there is a polynomial-time algo-
rithm that transforms instances of L into instances of C, such that the 
two instances have the same truth values. As a consequence, if we had a 
polynomial time algorithm for C, we could solve all NP problems in 
polynomial time. Compare to P and NP. Important in the context of 
finding parsimonious trees (Foulds and Graham 1982).
nucleic acid sequences     A chain of ribonucleic or deoxyribonucleic 
acids, typically representing a naturally occurring region of genome or 
transcriptome. In a computational context, nucleic acid sequences are 
typically represented by ASCII (American Standard Code for Informa-
tion Interchange) strings conforming to conventions defined by IUPAC 
(The International Union of Pure and Applied Chemistry).
observation     A feature of a natural object, organism, or phenomenon, 
determined by human senses or perceived via instruments.  For exam-
ple, a region of DNA amplified and sequenced with machinery and PCR 
reagents can be considered an observation.
ontogenetic    Having to do with development of an organism.
operational taxonomic unit     An observed individual, strain, species, 
or any classified group of organisms used in phylogenetic analysis.  
Compare hypothetical taxonomic unit.
optimality criterion     The standard such as parsimony or likelihood 
that determines how well a cladogram explains a set of observed taxa.
optimization     Based on an optimality criterion, the procedures used 
to numerically evaluate observed taxa and determine the cladogram that 
best explains their characteristics.
origin-loss     The insertion or deletion of a locus between ancestral 
and descendant chromosomes.
OTU      See operational taxonomic unit.
outgroup     The taxon or taxa used in a phylogenetic analysis to estab-
lish character synapomorphies among the taxa of interest.  The latter are 
hypothesized to form a monophyletic group with respect to the out-
group.
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overhead     Resources such as processing time or storage space con-
sumed for purposes that are incidental to, but necessary to, the main 
computation.  In practice, overhead includes initializing the POY run 
and communications throughout the run.
P     In computational complexity theory, the set P for “polynomial” 
consists of all those decision problems that can be solved on a deter-
ministic sequential machine in an amount of time that is polynomial 
with respect to the size of the input.  Compare with NP and NP- 
complete.
parallel processing     A computing environment that uses multiple 
processors to perform work on each CPU concurrently.
paraphyletic     A group of taxa descended from a common ancestor 
that does not include all descendants of that ancestor.  Compare mono-
phyly.
paralogy  The correspondence relationship between two genetic loci 
that is due to a gene duplication event, as opposed to an orthology that 
is due to lineage splitting.
parsimony     An optimality criterion based on simplicity, used to infer 
phylogenetic relationships from character data. The lowest cost cla-
dogram is the most favored.
partition     A user defined segment of related data such as a locus 
within a genome.
phenotype     Any supergenetic feature of organisms.  Any characteris-
tic that is not a component of the genome.
phenotypic data     Character states derived from anatomical features, 
behavior, and protein sequences—that is, characteristics derived by 
inheritance, in contrast to the genetic signal itself. Compare genotypic 
data and morphological data.
platform independent     A computing paradigm and software  that 
can be used on any computing architecture via the universality of the 
source code.
plesiomorphy     The ancestral state of a character from which one or 
more character states are derived (apomorphy). See synapomorphy and 
polarity.
point of failure     The process or device on a network that halts pro-
cessing.
polarity     The identification of character states as ancestral (plesiomor-
phic) or derived (apomorphic). 
polynomial time     A polynomial time algorithm finds a solution in a 
finite number of steps that can be computed as a polynomial function 
of the problem’s size.  See also P, NP, and NP-complete.
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polyphyly     When a group of taxa are classified together, but they are 
not descendants of the same ancestor.  Phylogenetics does not permit 
polyphyly, whereas phenetics does.  Compare monophyly.
polytomy     The branching pattern of a clade having an unresolved 
evolutionary history:  three or more descendant branches arise from a 
single ancestral branch.  Compare dichotomy.
portal     A pathway into and out of a computer.
positional homology     When amino acids or nucleotides are in the 
same relative position along a protein or nucleic acid sequence, respec-
tively, and are hypothesized as being homologous. Each amino acid or 
nucleotide is a character state in an alignment.
prealigned     Sequence data (amino acids or nucleotides) of equal 
length that do not require alignment or unequal length that have been 
subjected to a process such as multiple sequence alignment to set up 
static columns of provisionally homologous residues. 
primary homology     Coined by de Pinna (1991) to refer to initial, sim-
ilarity-based propositions of homology. De Pinna asserted that homol-
ogy discovery necessarily requires the proposition of “primary” homol-
ogy based on a similarity relation for hypothesis “generation,” followed 
by proposition of “secondary” homology based on the test of character 
congruence for hypothesis “legitimation.” Only the latter was consid-
ered phylogenetic by de Pinna. These views are rejected in this book as 
conceptually misguided and operationally unnecessary. See also dynamic 
homology, static homology, and positional homology.
purine     A base found in nucleic acids that consists of two connected 
rings of carbon and nitrogen; exemplified in DNA and RNA by adenine 
or guanine.
PVM     Parallel virtual machine; middleware that handles communica-
tion on a parallel processing cluster, such as a Beowulf. See also MPI.
pyrimidine     A base found in nucleic acids that consists of a single 
ring of carbon and nitrogen; exemplified in DNA as cytosine and 
thymine and in RNA as cytosine and uracil.
random addition sequence     A Monte Carlo procedure in which 
many random replicates are used to vary the addition order of the taxa, 
creating  weighted Wagner trees, a primary step common to all phyloge-
netic search algorithms.  In POY intermediate swapping steps are often 
included during initial cladogram building. See commands: buildspr 
and buildtbr, which are used in conjunction with replicates.
RAS     See random addition sequence.
ratchet     A simulated annealing and Monte Carlo procedure in which 
various swapping replicates contain some fraction of characters that 
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have been reweighted or groups constrained. Ratcheting is an iterative 
procedure and all characters are set back to original weights before final 
cladogram length for each replicate is calculated. Because this procedure 
temporarily changes the optimality landscape for the data, local optima 
can be escaped. Such escapes are not possible for typical branch swap-
ping algorithms, which, like hill climbing algorithms, may be restricted 
to local optima. The original procedure is from Nixon (1999). Due to its 
heavy reliance on branch swapping, ratcheting is CPU intensive but is 
useful for searches with large numbers of taxa and scales well across 
hundreds of processors in POY.
recursion     A computational process that spawns itself.  Recursion in 
used in the algorithms in POY that generate and processe cladograms.
refinement     Any of the procedures used after (and in the case of 
POY, during) initial cladogram construction. These include branch 
swapping, tree drifting, ratcheting, tree fusion, and (not yet in POY) sec-
torial searches. See Goloboff (1999) for a discussion of the role of 
refinement in searches on large data sets. See Janies and Wheeler (2001) 
for scaling of refinement procedures in a Beowulf cluster.
repeatability     In a scientific experiment or analysis other scientists 
must be able to performed the same experiment in the same way and 
achieve the same result. For example, manual alignment or hand editing 
of aligned sequences is an unscientific procedure because it is not 
repeatable. Software provides a phylogenetic investigator a scientific 
means to analyze molecular sequences due to explicit codification and 
parameterization of procedures that can be repeated by other investiga-
tors.
reticulation     The confluence (as opposed to splitting) of lineages in a 
cladogram or tree. Several types of genetic exchange may occur between 
taxa (for example, lateral gene transfer in microorganism, genes of mito-
chondrial origin in animals). As of now, reticulate evolution is largely 
treated as a class of homoplasy, but procedures to distinguish reticula-
tion from other types of homoplasy are the subject of research.
reversal     (1) In phylogenetic analysis, a character state transformation 
that reverses the character synapomorphy. That is, the character trans-
forms from a derived to an ancestral state. (2) In reference to genomes, 
a synonym for inversion.
root     The basalmost node, connected to two other nodes, that deter-
mines the polarity of character transformation in the whole tree. See 
also outgroup.
rooted     Refers to a cladogram in which the direction of character 
transformation (polarity) is determined. Compare unrooted. See also 
root and outgroup.     
run     To execute a program; a program scheduled for execution.
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Sankoff character     A character type represented by a matrix that 
assigns transformation costs specific to character state changes.   It is a 
general case of multistate qualitative characters for which additive and 
nonadditive characters are special cases.
scenario     A phylogeny depicts not only a hypothesis of evolutionary 
relationships but also the relative order, frequency, and often indepen-
dent evolution of features of organisms.
script     A small program often interpreted directly by the operating 
systems shell or a high level language, such as PERL, without compila-
tion.  Scripts are often used to direct other programs, such as POY, 
through several related runs or use variables (environmental or user 
defined) to configure a programs source code for compilation into a 
binary.
search-based optimization     An extension of fixed state optimization 
in which hypothetical ancestral sequences are not inferred during 
cladogram construction. Rather, sets of hypothetical ancestral 
sequences are precomputed and then searched for efficient fits as nodal 
sequences via dynamic programming to calculate costs of various 
cladograms. Although search-based optimization can, in principle, guar-
antee an exact solution (through a search of all possible ancestral 
sequences), this is unlikely to be practical. Thus search-based optimiza-
tion derives its strength as an procedure via the examination of heuristic 
subsets of possible ancestral sequences akin to direct optimization's (or 
any random taxon addition procedure's) use of heuristic subsets of 
possible topologies.
secondary homology     Term coined by de Pinna (1991) to refer to 
“legitimized” homology statements that result from the test of character 
congruence. Compare primary homology. 
secondary structure     The two-dimensional pattern of molecule fold-
ing of nucleotide and amino acid sequences caused by base- (nucleotide) 
and amino acid-pairing interactions. Secondary structure is modeled on 
the basis of thermodynamic (and ultimately quantum) interactions and 
minimization of free energy to maximize molecular stability.
sensitivity analysis     The exploration of the effect of variation in 
parameter values and assumptions on analytical results. 
sequence character     A contiguous string of nucleotides or amino 
acids, whereby transformation involves the independent substitution, 
insertion, or deletion of those component units.
shared-ancestral character state     See symplesiomorphy.
shared-derived character state     See synapomorphy.
shared memory multiprocessor     See SMP.
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simulated annealing     A general class of heuristic algorithms derived 
from the Metropolis algorithm to solve NP-complete optimization 
problems based on the analogy of the behavior of systems in thermal 
equilibrium at a finite temperature (see Kirkpatrick et al. 1983). Exam-
ples in systematics include tree drifting (Goloboff 1999) and the ratchet 
(Nixon 1999).
simultaneous analysis     See combined analysis.
sister taxa     Monophyletic taxa that arise from a common node.
slave node     A node that performs work on a dedicated network, such 
as a Beowulf.
SMP     shared memory multiprocessor. A computer having more than 
one CPU, all of which share memory.
spawn     To launch a process from a currently running program.
SPR     See subtree pruning and regrafting.
static approximation     The heuristic search strategy of generating 
implied alignments, analyzing them as static (fixed) matrices (either in 
POY or an external program like PAUP* or TNT) to generate more or 
improved cladograms, and using the resulting cladograms for additional 
searching under dynamic homology.
static homology     The relation among parts within transformation 
series constrained prior to phylogenetic analysis and coded as columns 
in a static (or fixed) matrix.  Compare dynamic homology.
Steiner tree     A minimum cost tree with a set of terminal and internal 
vertices. The nonterminal vertices are called Steiner vertices or Steiner 
points.
stderr     Standard error output from a computer program.  Redirected 
to file with the command 2> filename.
stdin     Standard input, usually the keyboard.   Can be redirected from a 
file via <, as in the command < filename.
stdout     Standard output from a computer program.  Redirected to a 
file with the command > filename.
strict consensus     A consensus tree formed from two or more sepa-
rate fundamental trees that has only those clades shared by all funda-
mental trees. Compare majority rule consensus.
string-matching     The minimum edit cost determination frequently 
used in sequence analysis.  The most commonly used algorithm is that 
of Needleman and Wunsch (1970).
subtree pruning and regrafting (SPR)     A cladogram search algo-
rithm for the optimal topology that moves a monophyletic group from 
one branch to another, then evaluates the result.  If the new topology is 
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more parsimonious than the original, it becomes the starting point for a 
new SPR iteration.  Compare tree bisection and reconnection.
successive approximation weighting     A method for reweighting 
characters based on some measure of their relative values.
supertree     A tree-shaped object derived from the combination of two 
or more fundamental cladograms of partially overlapping sets of taxa. 
See also tree-shaped object. 
support     General epistemological concept relating evidence to 
hypotheses. As such, both verificationist (for example, statistico-proba-
bilistic) and refutationist concepts have been implemented in systemat-
ics, though rarely with explicit definitions. Defined by Grant and Kluge 
(2003: 383) as “the degree to which critical evidence refutes competing 
hypotheses.” A hypothesis is unsupported if it is either (1) decisively 
refuted by the critical evidence or (2) contradicted by other, equally opti-
mal hypotheses (that is, evidence is ambiguous, such as when multiple 
most-parsimonious cladograms obtain); otherwise, it is supported.
support index     See Bremer support index.
switch     A device that manages communication traffic among nodes 
on a network.
symplesiomorphy     A primitive character state shared by two or more 
taxa that do not constitute a monophyletic group. 
synapomorphy     A derived character state shared by two or more taxa 
that constitute a monophyletic group, which is taken as evidence of their 
common ancestry. 
taxon (plural taxa)     also known as an operational taxonomic unit 
(OTU).  An observed individual, a strain, a species, or any classified 
group of organisms used in phylogenetic analysis.  Compare hypotheti-
cal taxonomic unit.
TBR     See tree bisection and reconnection.
tokogenetic  Having to do with relationships among organisms within 
a species.
topology     In mathematics generally, the description of geometries 
that are not affected by changes in size and shape, and which maintain 
continuity when joined.  Specifically in phylogenetics, the branching 
geometry that describes the evolutionary relationship among taxa.  For 
example, if A, B, and C are taxa, then (A,(B,C)) describes a possible 
topology or evolutionary relationship among them.
topological congruence     The agreement among the branching pat-
terns of cladograms. Often employed to measure partition congruence. 
Compare character congruence. See also congruence. Compare charac-
ter congruence.
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total evidence     See combined analysis.
transformation     Conceptually, a change from a primitive to a derived 
character state, a →  a'. Operationally, an edit cost.
transition     The substitution of nucleotides like-to-like. That is, a 
purine for a purine or a pyrimidine for a pyrimidine.
transposition     The movement of a DNA segment from one location 
to another.  The new location can be on the same or a different chro-
mosome.
transversion     The substitution of nucleotides that is not like-to-like.  
That is, a purine for a pyrimidine or a pyrimidine for a purine.
tree     In systematics, a directed (rooted) branching diagram represent-
ing the phylogeny of a  group of terminals. In computer science litera-
ture, a directed, acyclic graph.  See also network, cladogram, Wagner 
tree, and Steiner tree.
tree bisection and reconnection     A cladogram search algorithm that 
consists of bisecting a topology, then reconnecting the two subtopolo-
gies at all possible branches.  Compare subtree pruning and regrafting.
tree drifting     A simulated annealing-class cladogram searching algo-
rithm that accepts suboptimal solutions during branch swapping with a 
specified probability as a way of escaping local optima. Proposed by 
Goloboff (1999). See also simulated annealing and ratchet.
tree fusing     A cladogram searching algorithm that proceeds by 
exchanging subgroups between different cladograms. Proposed by 
Goloboff (1999). See also genetical algorithm.
tree length     The total number of character state transformations 
required to map a topology from a data set of character states. Compare 
cost.
tree-shaped object     A branching diagram with terminal taxa at the 
leaves that looks like a cladogram, but has no associated optimality 
value. As a result, it cannot participate in hypothesis testing (for exam-
ple, “supertrees”).
triangle inequality     The statement of a metric space for any three 
points A, B, and C: d(AB) ←  d(AC) + d(CB). Metricity also requires 
d(AB) = d(BA) for all AB. The triangle inequality is most frequently 
invoked in character transformation cost matrices among multistate 
characters. Nonmetric matrices imply unobserved states. In essence, the 
triangle inequality rules out shortcuts.
uniquely-derived     See autapomorphy.
unrooted     Refers to a cladogram in which the direction of character 
transformation (polarity) is not determined.  Compare rooted.  See also 
outgroup.
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up pass     Optimization of character states on a cladogram from root 
to terminal taxa.  Compare down pass.
vertex     A node on a cladogram.
Wagner tree     Term coined by Farris (1970) for a cladogram in which 
observed taxa are confined to terminal nodes (tips or leaves) and char-
acters are optimized independently to inner nodes, creating hypothetical 
taxonomic units.
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additive characters   20

algorithms   42–43
commands   204

Akaike Information Criterion   96
algorithms

additive characters   42–43
branch and bound   64–65
branch swapping   67–72
Bremer support   93–94
chromosomal characters   52–55
cladogram search   63–79
direct optimization   47–52
implied alignment   86–87
jackknife   91–92
nonadditive characters   43–44
optimization   40–57
parallel processing   75–79
ratcheting   72
Sankoff characters   44–45
sequence characters   45–47
SPR   67–71

static approximation   74–75
TBR   71–72
tree drifting   72–74
tree fusing   74
Wagner trees   65–67

alignment   30–32
ambiguous   32
automated   32
and cladogram search   34
commands   212
implied   84–88
irreproducibility   30
loci   23
manual   30–31
multiple sequence   22, 32
preconceptions   32
problems   32
refinement   32

analysis   81–96
ancestral states see hypothetical ances-

tral states
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autapomorphy   17
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batch files see scripts
Bayesian optimality criterion   15, 16
Beowulf   99, 123
biased nucleotide composition   34
binary   17
block format   153–155
branch   17, 92
branch and bound   25

algorithms   64–65
branch swapping   25, 72, 74, 76, 77, 78, 

102, 103, 112, 114, 116, 118, 124
algorithms   67–72
commands   209

breakpoint analysis   23
Bremer support   92–93, 145

algorithms   93–94
commands   212
tutorial   175–176

brute force methods   25
buffers   142
build cladogram   114

C

calculations see optimization
ccode   148–153
changes see cost
character optimization   19, 25, 37–62
characters   1

additive   20
chromosomal   23
and cladograms   19–23
coding   20–23
evidence   20
matrix see Sankoff
non-additive   21
Sankoff   21
sequence   22

chromosomal characters   23
algorithms   52–55
commands   206
tutorial   183–187

cladogram
build   114
transformations   7

cladogram building   124
cladogram refinement   114, 124
cladogram search   19

algorithms   65–79

branch and bound   64–65
branch swapping   67–72
commands   208–211, 216
and multiple sequence alignment  

 34
parallel processing   75–79, 103–105
and program execution   143
ratcheting   72
refinement   77, 78
SPR   67–71
static approximation   74–75
strategies   107
TBR   71–72
tree drifting   72–74
tree fusing   74
Wagner trees   65–67

cladograms   13–17
diagnosis   82–84
evaluation   88
and evidence   10, 14, 19–20
and homology   10, 19–20
input   144, 156, 180–181
multiple optimal   88
and networks   13–14
number possible   14
terms   16–17
and trees   13–14
unacceptable   34

clusters   99–100
coding characters   20–23
combined analysis   9, 16, 53, 61, 88, 90, 

148
tutorial   178–180

command line   137–140
tutorial   169–173

commands   216–329
comparative morphology   1
composite optima   110–113
computation   107, 124
computational efficiency   108
computations see optimization
congruence surface   95
consensus

commands   211
majority rule   95, 145, 162
strict   15, 88, 91, 95, 145, 162

constrained search commands   208
constraints   145

commands   203
constraint file   157, 175

cost   17
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data   7–11
ambiguous alignment   32
block format   153–155
and buffer   142
ccode   148–153
and composite optima   110–113
constraints   145, 157
convert output   158
evidence   8, 20
exclusion   32–34
FASTA   155–156
format   147
genotypic   178
Hennig86   148–153
incongruence   88–91
input   147–161
input data commands   201–202
large data sets   25
multiple data set tutorial   176–178
noise   33
noisy   32–34
Nona   148–153
partitioned   88–91, 108–110, 154, 155, 

178
phenotypic   178
POY block format   153–155
saturation   33
taxon exclusion   33

default settings   169
changing   172

difficult data   32–34
direct optimization   23, 35

algorithms   47–52
commands   204
and partitioned data   108

disk space   125
DNA fragments   178
dynamic homology   10–11, 34, 107

and static homology   1
dynamic process migration

commands   213
dynamic programming   25

E

edge see branch
epistemology   29, 34
ethology   1
evaluation   81–96

Bremer support   93–94
commands   211–213

evidence   1–10, 11, 29
characters   20
and cladograms   14, 19–20
and secondary structure   31

evidence, see also data   7–8
exact solutions   2, 25
execution time commands   215

F

FASTA   153, 155–156
fit indexes   94
fit statistics, commands   212
fixed states optimization   23, 35

algorithms   55–56
commands   205
tutorial   182–183

flanking primers   109
fragments   178

G

GenBank   153
genetical algorithms   25, 112
genomic data   1
genotypic character types   1
genotypic data   178
genotypic evidence   9
global optima   110
granularity   100

H

hardware   123
Hennig86   148–153

input   148–149
output   150–153

heritability   9
heuristic solutions   14, 25

and static solutions   2
hierarchical table of models   96
homology   10–11

and cladograms   10–11, 19–20
dynamic   10–11
inferred   81–86
loci   23
primary   10, 11
secondary   10
and secondary structure   31
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and sequence fragments   108
static   10

homoplasy   17
and noise   33

HTU   13, 16, 17, 22, 25, 39, 40, 60, 61, 63, 
86, 92, 184
commands   211

hypothesis testing   1–2, 9, 10, 29
hypothetical ancestral sequences   144
hypothetical ancestral states   163

commands   211
hypothetical taxonomic unit see HTU

I

implied alignment   84–86
algorithms   86–87
commands   212

inconsistency   29
indel-rich regions   32
indels   34
inference   29
inferred homology   81–86
input cladograms   144, 156

tutorial   180–181
input data   147–161

block format   153–155
ccode   148–149
commands   201–202
constraints   157
FASTA   155–156
format   147
Hennig86   148–153
Nona   148–153
POY block format   153–155

insertion/deletion events see indels
irreproducibility   29
iterative pass optimization   23, 35

algorithms   56–57
commands   205

IUPAC   152, 153

J

jack2hen   145, 158
jackknife   15, 88, 91–92, 162

algorithms   91–92
commands   212

L

large data sets
and composite optima   110–113

larger data sets   25
leaf see OTU
length see cost
likelihood   15, 34

commands   207
optimization in POY   57–62
tutorial   187–192

Linux   127, 171
load balancing   101–103

commands   213
and SPR/TBR   102

local optima   110
loci

homology   23
multiple   154, 155

long branch attraction   34

M

Mac OS X   127, 129
MACCLADE   144
majority rule consensus   95, 145, 162
manual alignment   30–31
matrix characters see Sankoff characters
maximum likelihood see likelihood
MESQUITE   144
Meta-Retention Index   96
Mickevich–Farris Extra Steps Index  

 89
molecular biology   1
Monte Carlo Markov Chain   15
MPI   131
multiple data set tutorial   176–178
multiple loci   154, 155
multiple scripts tutorial   192–194
multiple sequence alignment   22, 32

and cladogram searching   34

N

Navajo rug   94, 95
Needleman–Wunsch   48, 56, 60
networks

and cladograms   13–14
Prim   13

node, cladogram   16
node, see also HTU and OTU
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noisy data   32–34
Nona   148–153

input   148–149
output   150–153

nonadditive characters   21
algorithms   43–44
commands   204

NP-complete   24, 107, 124
NP see NP-complete
nucleic acid sequence   152

O

observations, see data
operating systems   123
operational taxonomic unit see OTU
optimality   2
optimality criterion   10, 15, 34–36

Bayesian   15, 16
likelihood   57–62
parsimony   15, 19, 34

optimization   25, 37–62
additive characters   42–43
algorithms   40–57
brute force   25
character   19
chromosomal characters   52–55
commands   203–208
direct optimization   47–52
exact solutions   25
fixed states   55–56
global   110
heuristic solutions   25
iterative pass   56–57
likelihood, in POY   57–62
local   110
nonadditive characters   43–44
qualitative characters   40–45
Sankoff characters   44–45
search-based   55–56
sequence characters   45–57

OTU   13, 16, 17, 38, 40, 53, 63
output   144–145, 161–165

ccode   150–153
cladograms   144
commands   202–203
files   170
format   147
Hennig86   150–153
hypothetical ancestral sequences  

 144

hypothetical ancestral states   163
monitoring   142
Nona   150–153
POY standard   161
WINCLADA   163–165

overhead   100

P

P see NP-complete
parallel processing   26, 99–105

algorithms   75–79
cladogram search   103–105
commands   213–214
installation   131
tutorial   194–195

parameter sensitivity   94–96
parsimony   15, 19, 34
parsimony jackknife see jackknife   15
partitioned data   108–110, 154, 155, 178

analysis   88–91
incongruence   88–91

PHAST   144, 148
phenotypic data   178
polytomy   17
POY

block format   153–155
coding   20
command line   137–140
compiling   135
constraints   175
convert output   145
default settings   169, 172
input data   147–161
operations order   143
optimality criterion
output   142, 144–145, 161–165, 170
process flow   114–115
program progress   171
program source   123, 127
requirements   123
scripts   140–142
standard output   161
tutorials   167–198

preconceptions, alignment   32
Prim networks   13
primary homology   10, 11
program execution   143

default settings   169
tutorial   169–173

program progress output   171
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PVM   131, 133

Q

qualitative characters algorithms   40–
45

R

RAS+TBR strategy   111, 116
ratcheting   112

algorithms   72
commands   209

recursion   40–42
down pass   40
up pass   41

refinement   32, 77, 78, 114
repeatability   29
Rescaled ILD   89
results   161–165
root   17

S

Sankoff characters   21
algorithms   44–45
commands   204

saturation   33
scaling   100
scheduling software tutorial   196–198
scripts   140–142

create and edit   141
tutorial   173–175
tutorial, multiple scripts   192–194

search strategies   107, 116–120, 125
basic   117
combining   113
new algorithms   112–113
and RAS   116, 117
and ratchet   117
and sensitivity analysis   118
sensitivity analysis   113
and TBR   116, 117
and tree fusing   117, 118

search-based optimization   23, 35
algorithms   55–56
commands   205
tutorial   182–183

secondary homology   10
secondary structure   31
sectorial search   112

sensitivity analysis   94–96, 112
and tree fusing   118

sequence characters   22, 35
algorithms   45–47
optimization   45–57

SGE   196
simulated annealing   112
simultaneous analysis see combined 

analysis
SPR

algorithms   67–71
commands   209

standard output   161, 170
starting cladograms see input cla-

dograms
static approximation

algorithms   74–75
commands   207

static homology   10
and dynamic homology   1

step matrix tutorial   176–178
steps, weighted see cost
storage   125
strict consensus   15, 88, 91, 95, 145, 162
subjectivity   29, 31
Sun Grid Engine see SGE
supertrees   15
support commands   212
support see jackknife and Bremer sup-

port
synapomorphy   17
system commands   214

T

taxa
exclusion   33
unorthodox placement   34

TBR
algorithms   71–72
commands   209

text editors   142, 154, 168
TNT   148
Topological ILD   90
total evidence see combined analysis  

 88
transformation events   7, 10, 17

and secondary structure   31
tree   13
tree buffers   142
tree drifting   112
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tree drifting continued
algorithms   72–74
commands   210

tree fusing   112
algorithms   74
commands   210
and sensitivity analysis   118

tree search see cladogram search
trees see cladograms
TREEVIEW   144
tutorials   167–198

Bremer support   175–176
chromosomal characters   183–187
combined analysis   178–180
command line   169–173
constraints   175
fixed states   182–183
input cladograms   180–181
likelihood   187–192
multiple data set   176–178
multiple scripts   192–194
parallel processing   194–195
program execution   169–173
scheduling software   196–198
scripts   173–175
search-based   182–183
step matrix   176–178

U

unacceptable cladograms   34
Unix   127
unorthodox placement of taxa   34

W

Wagner trees algorithms   65–67
weighted steps see cost
WINCLADA   144, 148, 163–165
Windows   127, 171
word processors   142
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