Measurement of the $\bar{B} \to D l \bar{\nu}$ Partial Width and Form Factor Parameters

(CLEO Collaboration)

1University of Florida, Gainesville, Florida 32611
2Harvard University, Cambridge, Massachusetts 02138
3University of Hawaii at Manoa, Honolulu, Hawaii 96822
4University of Illinois, Champaign-Urbana, Illinois 61801
5Carleton University, Ottawa, Ontario, Canada K1S 5B6
6and the Institute of Physics, Canada
7McGill University, Montréal, Québec, Canada H3A 2T8
8and the Institute of Physics, Canada
9Ithaca College, Ithaca, New York 14850
10University of Kansas, Lawrence, Kansas 66045
11University of Minnesota, Minneapolis, Minnesota 55455
12State University of New York at Albany, Albany, New York 12222
13University of Oklahoma, Norman, Oklahoma 73019
14Purdue University, West Lafayette, Indiana 47907
15University of Rochester, Rochester, New York 14627
16Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309
17Southern Methodist University, Dallas, Texas 75275
18Syracuse University, Syracuse, New York 13244
19Vanderbilt University, Nashville, Tennessee 37235
20Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
21Wayne State University, Detroit, Michigan 48202
22California Institute of Technology, Pasadena, California 91125
23University of California, San Diego, La Jolla, California 92093
We have studied the decay $B \rightarrow D^{*} \tau \nu$, where $\tau = e$ or μ. From a fit to the differential decay rate $d\Gamma/dw$ we measure the rate normalization $\mathcal{F}_{0}(1)|V_{cb}|$ and form factor slope $\hat{\rho}_{D}$, and, using measured values of τ_{B}, find $\Gamma(B \rightarrow D^{*} \tau \nu) = (12.0 \pm 0.9 \pm 2.1) \text{ns}^{-1}$. The resulting branching fractions are $\mathcal{B}(B^{0} \rightarrow D^{+} l^{+} \nu) = (1.87 \pm 0.15 \pm 0.32)\%$ and $\mathcal{B}(B^{-} \rightarrow D^{0} l^{-} \nu) = (1.94 \pm 0.15 \pm 0.34)\%$. The form factor parameters are in agreement with those measured in $B \rightarrow D^{*} \tau \nu$ decays, as predicted by heavy quark effective theory. \[S0031-9007(97)03964-1 \]

PACS numbers: 13.20.He, 12.15.Hh, 12.39.Hg

Exclusive semileptonic B meson decays provide information about both weak and strong interactions of quarks. The rate for these decays is proportional to the square of the Cabibbo-Kobayashi-Maskawa (CKM) matrix element $|V_{cb}|$ \[1\], while the dynamics of these decays, as expressed in the decay form factors, provide information about the QCD potential which binds quarks together as hadrons \[2,3\]. Heavy quark effective theory (HQET) \[4\] has made it possible to extract values of $|V_{cb}|$, with relatively little model dependence, through a measurement of the decay rate at the point of zero recoil of the daughter meson. The decay $\bar{B} \rightarrow D^{*+} \tau \nu$ has provided measurements of the decay rate at the point of zero recoil and the form factor slope, giving very accurate values of $|V_{cb}|$ \[5\] and information about the shape of the Isgur-Wise function that describes the dynamics of heavy-to-heavy meson transitions.

The pseudoscalar-to-pseudoscalar decay $\bar{B} \rightarrow D^{0} \tau \nu$ can provide the same information, although it will be less precise because of the smaller overall decay rate for this mode than for $\bar{B} \rightarrow D^{+} \tau \nu$, the smaller rate near the point of zero recoil, and $O(1/M_{Q})$ corrections to the decay rate at that point that are not present in $\bar{B} \rightarrow D^{+} \tau \nu$. However, this mode should yield a value of $|V_{cb}|$ that is consistent with other measurements, and HQET predicts \[6\] that the form factor parameters should be very nearly the same as in the $\bar{B} \rightarrow D^{+} \tau \nu$ decay. In this Letter, we present a measurement of the differential decay rate $d\Gamma/dw$ in the decay $\bar{B} \rightarrow D^{*} \tau \nu$, from which we extract the decay rate normalization at the point of zero recoil and the form factor slope. The variable $w = (M_{D_{0}}^{2} + M_{D_{0}}^{2} - q^{2})/(2M_{B}M_{D})$, where q^{2} is the invariant mass squared of the lepton-neutrino system, is the kinematic variable of HQET, and is equal to the relativistic γ factor for the D meson in the B meson rest frame. From these results and the measured B lifetime, we obtain the partial width for the decay and convert it to branching fractions.

This study is based on a $Y(4S)$ data sample of 3.16 fb$^{-1}$ $(3.34 \times 10^{6}$ $B\bar{B}$ pairs) accumulated by the CLEO experiment at the Cornell Electron Storage Ring (CESR). The CLEO detector \[7\] contains three concentric wire chambers that detect charged particles and a CsI(Tl) electromagnetic calorimeter that detects photons, all within a 1.5 T superconducting solenoid.

The undetected neutrino complicates analysis of semileptonic decays. Using the hermeticity of the CLEO detector, we reconstruct the neutrino by inferring its four-momentum from the missing energy $(E_{\text{miss}} \equiv 2E_{\text{beam}} - \sum E_{i})$ and missing momentum $(\hat{p}_{\text{miss}} \equiv -\sum \hat{p}_{i})$ in each event, where E_{i} and \hat{p}_{i} are the energy and momentum of each detected particle i in the event, as was done in the CLEO measurement of exclusive $b \rightarrow u\tau \nu$ decay rates \[8\]. In the process $e^{+} e^{-} \rightarrow Y(4S) \rightarrow B\bar{B}$, the total energy of the beams is imparted to the $B\bar{B}$ system. At CESR, that system is at rest, so the neutrino, which combines with the signal lepton and D meson should satisfy the energy constraint $\Delta E \equiv (E_{\tau} + E_{\ell} + E_{D}) - E_{\text{beam}} = 0$ and the momentum constraint $M_{cand} \equiv (E_{\text{beam}} - |\hat{p}_{\tau} + \hat{p}_{\ell} + \hat{p}_{D}|^{2})^{1/2} = M_{B}$. We select candidates with $5.265 \leq M_{cand} < 5.287 \text{ GeV}$ and $-100 \leq \Delta E < 500 \text{ MeV}$; the requirement on ΔE is asymmetric about zero to reject feeddown from $\bar{B} \rightarrow D^{*} \tau \nu$ decays, which have ΔE values of about -150 MeV when reconstructed as $\bar{B} \rightarrow D^{*} \tau \nu$ decays. \hat{p}_{miss} will best represent \hat{p}_{τ} in events were the nonsignal B decays hadronically, and where all its decay products are well measured in the detector. To suppress events in which \hat{p}_{miss} poorly represents \hat{p}_{τ}, we reject those events with multiple leptons or a total charge more than one unit from zero because they indicate other missing particles. We further require that $M_{\text{miss}}^{2} = E_{\text{miss}}^{2} - |\hat{p}_{\text{miss}}|^{2}$ for each event be consistent with zero. Surviving signal events show a resolution in $|\hat{p}_{\text{miss}}|$ of 110 MeV/c. Because the resolution on E_{miss} is about 2.1 times larger, we take $(E_{\tau} + \hat{p}_{\tau}) = ((|\hat{p}_{\text{miss}}|, \hat{p}_{\text{miss}}))$. Information from calorimeter and tracking measurements including specific ionization is combined to identify electrons with $p > 600$ MeV/c over 90% of the solid angle. Particles are considered muons if they register hits in counters deeper than five interaction lengths over the polar angle range $|\cos \theta| < 0.85$. Candidate leptons must have $0.8 \leq p_{\ell} < 2.4 \text{ GeV}/c$, where the lepton identification efficiency averages more than 90%; the probability that a hadron is misidentified as an electron (muon), a “fake lepton,” is about 0.1% (1%). The leptons and neutrinos are then combined with D mesons, which are identified in the decay modes...
$D^0 \to K^- \pi^+$ and $D^+ \to K^- \pi^+ \pi^+$. (The charge conjugate mode is always implied.) Hadron mass assignments are made by requiring that the kaon and lepton have the same charge. To reduce large backgrounds to $D^+ \to K^- \pi^- \pi^+$ decays from random track combinations, we require that the D^+ daughter pions (kaon) have measured specific ionization values consistent with the assumed particle hypothesis within 3.5 (3) standard deviations. D^0 candidates are required to have invariant mass satisfying $1.850 \leq M_{K\pi} < 1.880$ GeV, and D^+ candidates to satisfy $1.855 \leq M_{K\pi\pi} < 1.885$ GeV. This ±15 MeV range is about twice the experimental resolution on the invariant mass. Since the D must come from a B decay, we require $p_D < 2.6$ GeV/c.

To ensure conservation of energy and momentum, we also require that the event satisfy the triangle inequality $|p_B - (p_D + p_l)| \leq E_{beam} - (E_D + E_l) \leq p_B + |p_D + p_l|$, where $p_B = \frac{|E_{beam} - M_B^2|^{1/2}}{2}$.

Backgrounds arise from $e^+e^- \to q\bar{q}/\pi^+\pi^-$ (continuum), fake leptons, random track combinations that form D candidates, feeddown from other $B \to DX\pi\tau$ decays, and random combinations of D candidates and leptons from different parent B mesons. The continuum backgrounds are reduced by requiring that the ratio of Fox-Wolfram moments H_2/H_0 [9] be less than 0.4. Backgrounds from $B \to D^*X\pi\tau$ decays are reduced by eliminating events that include $D\pi$ or $D\gamma$ pairs that are consistent with D^* decay. We find 303 $D^0l^-\pi$ and 714 $D^+l^-\pi$ candidates that satisfy all of these requirements.

The average reconstruction efficiency, as determined by a Monte Carlo simulation of the CLEO detector, is 2.82% for $B^- \to D^0l^-\pi$ events and 2.57% for $B^0 \to D^+l^-\pi$ events. Figure 1 shows the M_{cand} distribution observed in the data.

We estimate the continuum background using data collected 60 MeV below the Y(4S) energy and the fake lepton background by applying measured fake rates to nonleptonic data. We estimate backgrounds from random track combinations that form D candidates using events in sideband regions on either side of the $K^-\pi^+(\pi^+)$ invariant mass signal region under the assumption that the magnitude of this background is linear in $K^-\pi^+(\pi^+)$ invariant mass. This is the largest background in the $D^+l^-\pi$ sample.

Feeddown backgrounds are modeled through Monte Carlo simulations, using an event generator that accounts for all angular correlations among the decay products, and a full simulation of the CLEO detector. The magnitude of the $B \to D^*l\pi$ background is normalized to the measured rate for this decay [10]. This is the largest background in the $D^0l^-\pi$ sample, as the kinematics of the signal and background decays are so similar, and because D^+ mesons are more likely to decay to a D^0 than to a D^*. $B \to D^{*+}l\pi$ processes, where D^{*+} represents a variety of charm mesons with radial and angular excitations and nonresonant $D^{(*)}\pi$ states, are modeled with the ISGW2 [2] and Goity and

<table>
<thead>
<tr>
<th></th>
<th>$D^0l^-\pi$</th>
<th>$D^+l^-\pi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total yield</td>
<td>303.0 ± 17.4</td>
<td>714.0 ± 26.7</td>
</tr>
<tr>
<td>Continuum</td>
<td>17.3 ± 5.8</td>
<td>46.2 ± 9.4</td>
</tr>
<tr>
<td>Combinatoric</td>
<td>26.1 ± 4.6</td>
<td>256.5 ± 10.8</td>
</tr>
<tr>
<td>Fake lepton</td>
<td>2.9</td>
<td>2.3</td>
</tr>
<tr>
<td>Other</td>
<td>-0.1</td>
<td>13.6</td>
</tr>
<tr>
<td>Corrected yield</td>
<td>144.3 ± 18.9</td>
<td>322.8 ± 30.3</td>
</tr>
</tbody>
</table>

Roberts [11] models. We normalize these backgrounds to a set of rates [12] that are consistent with existing measurements [13] and the total B semileptonic decay rate and lepton momentum spectrum [14].

Remaining backgrounds, such as those from random combinations of D mesons and leptons and those from misreconstructed D mesons not accounted for in the combinatoric background estimate, are modeled by a Monte Carlo simulation that reproduces the general features of B-meson decay, including the inclusive-lepton and D-momentum distributions. The magnitudes of the various backgrounds are summarized in Table I. Figure 1 shows the M_{cand} distributions of the backgrounds. After accounting for these backgrounds in our sample, the lepton momentum and decay angle distributions for selected events are consistent with $B \to D\pi$ decays.

To extract the form factor parameters and partial width, we construct the distribution:
\[\frac{d\Gamma}{dw} = \frac{1}{4N_{d(4S)} \tau_B \epsilon_B} \left[\frac{N_0(\omega)}{\tau_B - B_{D^0} \epsilon_B(\omega)} + \frac{N_1(\omega)}{\tau_B - B_{D^+} \epsilon_B(\omega)} \right], \]

where \(N_{d(4S)} \) is the number of \(Y(4S) \) events, \(\epsilon(w) \) is the reconstruction efficiency as a function of \(w \), \(\tau_B \) is the \(B \) lifetime, and \(B \) is the appropriate \(D \to K^- \pi^+(\pi^+) \) branching fraction [10]. By combining the two decay modes in this fashion and assuming that the partial widths of the two modes are equal, the results are independent of the division of \(Y(4S) \) decays between \(B^+B^- \) and \(B^{0\bar{B}^0} \). This distribution is shown in Fig. 2(a).

The \(d\Gamma/dw \) distribution for \(B \to D\ell\nu \) decays is [6]

\[\frac{d\Gamma}{dw} = G^2[w_{cb}]^2 (m_B + m_D)^2 (m_D\sqrt{w^2 - 1})^3 \mathcal{F}_D(w)^2. \]

The function \(\mathcal{F}_D(w) \) is the decay form factor, which can be parametrized by the expression

\[\mathcal{F}_D(w) = \mathcal{F}_D(1) [1 - \hat{\rho}_D^2(w - 1) + \hat{\epsilon}_D(w - 1)^2]. \]

In the limit of infinitely heavy quarks, \(\mathcal{F}_D(1) \) becomes the Isgur-Wise function \(\xi(w) \), and HQET predicts that \(\mathcal{F}_D(1) = 1 \); for finite mass quarks, \(\mathcal{F}_D(1) \) can be estimated in the framework of HQET [4]. The values of \(\hat{\rho}_D^2 \) and \(\hat{\epsilon}_D \) are unknown; many previous form factor measurements have set \(\hat{\epsilon}_D = 0 \). We follow this convention, but explore our sensitivity to this assumption using various models that provide relations between \(\hat{\rho}_D^2 \) and \(\hat{\epsilon}_D \). We perform a \(\chi^2 \) fit of our \(d\Gamma/dw \) distribution to the convolution of the expected form with a function that accounts for detector resolution in \(w \) (\(\pm 0.015 \)). We allow two free parameters, the rate normalization \(\mathcal{F}_D(1) |V_{cb}| \) and the form factor slope \(\hat{\rho}_D \). By integrating the fit over the entire range of \(w \) we obtain the partial width for the decay. In the fit, shown in Fig. 2(a), \(\chi^2 = 11.5 \) for 10 degrees of freedom, and the correlation between the two parameters is 0.95.

Systematic errors, summarized in Table II, are dominated by uncertainty in the decay model of the nonsignal \(B \) and inaccuracies in detector simulation. These effects are investigated by varying the \(K^0_L \) fraction, charm semileptonic decay rate, charged-particle and photon-finding efficiencies, false charged-particle and photon simulation, charged-particle momentum resolution, and photon-energy resolution [15]. Uncertainties in the feeddown background normalizations and the \(\bar{B} \to D^{*+}\ell\nu \) decay form factors [16] have their most significant effect on the form-factor slope. Table III gives results for various models of \(\mathcal{F}_D(w) \). The partial width is not sensitive to the choice of form-factor parametrization, but the values of \(\mathcal{F}_D(1) |V_{cb}| \), \(\hat{\rho}_D^2 \), and \(\hat{\epsilon}_D \) are sensitive to this choice. We use these results to determine our model uncertainties.

Our final results are

\[\mathcal{F}_D(1) |V_{cb}| = (3.37 \pm 0.44 \pm 0.48^{+0.53}_{-0.12}) \times 10^{-2} \]

\[\hat{\rho}_D^2 = 0.59 \pm 0.22 \pm 0.12^{+0.59}_{-0.0}, \]

\[\Gamma(\bar{B} \to D\ell\nu) = (12.0 \pm 0.9 \pm 2.1) \text{ ns}^{-1}, \]

where the first two errors are statistical and systematic, and the third arises from the form-factor model variations. This partial width leads to branching fractions of

\[B(\bar{B}^0 \to D^+\ell^- \nu) = (1.87 \pm 0.15 \pm 0.32)\% \]

\[B(B^- \to D^{0}\ell^- \nu) = (1.94 \pm 0.15 \pm 0.34)\%, \]

where the errors are completely correlated between the two branching functions. We obtain consistent results when the two decay modes are treated separately. Taking \(\mathcal{F}_D(1) = 0.98 \pm 0.07 \) [17], we find

\[|V_{cb}| = (3.44 \pm 0.45 \pm 0.49^{+0.54}_{-0.25}) \times 10^{-2}, \]

where the last error arises from the uncertainty in \(\mathcal{F}_D(1) \). This value of \(|V_{cb}| \) is consistent with those obtained by other means [5,19]. Figure 2(b) shows the measured values of \(\mathcal{F}_D(w) |V_{cb}| \) and the result of the fit, along with the function \(\mathcal{F}_D(w) |V_{cb}| \) as measured in \(\bar{B} \to D^{*+}\ell\nu \)

TABLE II. Contributions to the systematic error (%) in the fit parameters and partial width. Simulation of the detector and the \(B \) meson contribute to \(\nu \) simulation.

| Source | \(|V_{cb}| \) | \(\hat{\rho}_D^2 \) | \(\Gamma \) |
|--------|-------------|-------------|---------|
| \(\nu \) simulation | 11.4 | 12.5 | 14.8 |
| Background normalization | 7.6 | 15.4 | 5.4 |
| \(\bar{B} \to D^{*+}\ell\nu \) form factors | 1.8 | 7.1 | 2.0 |
| \(\tau_B \) | 2.0 | 2.5 | 3.8 |
| Lepton ID | 1.0 | ... | 2.0 |
| \(K/\pi \) ID | 0.1 | 0.7 | 0.8 |
| Luminosity | 0.9 | ... | 1.8 |
| \(D \) branching fractions | 2.8 | ... | 5.6 |

Total | 14.3 | 21.2 | 17.5 |
decays by CLEO [5]. In comparing these two measurements, we find $\mathcal{F}_D(1)/\mathcal{F}_D(1) = 0.96 \pm 0.20$ and $\hat{\rho}_D^2 - \hat{\rho}_D^2 = -0.25 \pm 0.29$. As predicted by HQET, the two form factors have similar normalizations and slopes.

In summary, we have measured the rate normalization and form-factor slope in $B \to D/\bar{D}$ decays. The resulting partial width leads to branching fractions for the charged and neutral B decay modes. The measured form-factor parameters are consistent with those measured in $B \to D^{*}/\bar{D}^{*}$ decays, as predicted by HQET, and the value of $|V_{cb}|$ is consistent with other measurements.

We gratefully acknowledge the effort of the CESR staff in providing us with excellent luminosity and running conditions. This work was supported by the National Science Foundation, the U.S. Department of Energy, the Heisenberg Foundation, the Alexander von Humboldt Stiftung, Research Corporation, the Natural Sciences and Engineering Research Council of Canada, and the A.P. Sloan Foundation.

*Permanent address: BINP, RU-630090 Novosibirsk, Russia.
\(^{\dagger}\)Permanent address: Lawrence Livermore National Laboratory, Livermore, CA 94551.
\(^{\ddagger}\)Permanent address: University of Texas, Austin, TX 78712.

[10] Particle Data Group, R.M. Barnett et al., Phys. Rev. D 54, 1 (1996). We use the values $B_1(B \to D^{*\mp}l^-\nu) = (4.56 \pm 0.27)\%$, $B_2(B \to D^{0\mp}l^-\nu) = (5.3 \pm 0.8)\%$, $B_3(B \to D^-\nu) = (3.83 \pm 0.12)\%$, $B_4(D^+ \to K^-\pi^+\pi^0) = (9.1 \pm 0.6)\%$, $\tau_B = (1.62 \pm 0.06)\%$, $\tau_{D^*} = (1.56 \pm 0.06)\%$, and $\tau_{D^{*\mp}} = (1.03 \pm 0.06)\%$.
[12] We assume the following set of decay rates: $B(B \to D_l\nu) = 0.60\%$, $B(B \to D_2\nu) = 0.79\%$, $B(B \to D_1\nu) = 0.26\%$, $B(B \to D_3\nu) = 0.26\%$, $B(B \to D_4\nu) = 0.53\%$, $B(B \to (D_2^\mp)\nu) = 0.76\%$, and $B(B \to (D^{*\mp})\nu) = 0.24\%$, where (D^\mp) and $(D^{*\mp})$ indicates nonresonant production.
[18] The form-factor parameterization gives a definite relation between $\hat{\rho}_D$ and $\hat{\epsilon}_D$.