Search for Rare and Forbidden η' Decays

(CLEO Collaboration)

1Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
2University of Colorado, Boulder, Colorado 80309-0390
3Cornell University, Ithaca, New York 14853
4University of Florida, Gainesville, Florida 32611
5Harvard University, Cambridge, Massachusetts 02138
6University of Hawaii at Manoa, Honolulu, Hawaii 96822
7University of Illinois, Urbana-Champaign, Illinois 61801
8Carleton University, Ottawa, Ontario, Canada K1S 5B6 and the Institute of Particle Physics, Canada
9McGill University, Montréal, Quebec, Canada H3A 2T8 and the Institute of Particle Physics, Canada
10Ithaca College, Ithaca, New York 14850
11University of Kansas, Lawrence, Kansas 66045
12University of Minnesota, Minneapolis, Minnesota 55455
13State University of New York at Albany, Albany, New York 12222
14Ohio State University, Columbus, Ohio 43210
15University of Oklahoma, Norman, Oklahoma 73019
16Purdue University, West Lafayette, Indiana 47907
17University of Rochester, Rochester, New York 14627
18Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309
19Southern Methodist University, Dallas, Texas 75275
20Syracuse University, Syracuse, New York 13244
21Vanderbilt University, Nashville, Tennessee 37235
22Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
23Wayne State University, Detroit, Michigan 48202
24California Institute of Technology, Pasadena, California 91125
25University of California, San Diego, La Jolla, California 92093
26University of California, Santa Barbara, California 93106

26 0031-9007/00/84(1)/26(5)$15.00 © 1999 The American Physical Society
We have searched for rare and forbidden decays of the η' meson in hadronic events at the CLEO II detector. The search is conducted on 4.80 fb⁻¹ of e⁺e⁻ collisions at 10.6 GeV center-of-mass energy at the Cornell Electron Storage Ring. We find no signals, and set 90% confidence level upper limits of their branching fractions: \(B(\eta' \to e^+e^-\eta) < 2.4 \times 10^{-3} \), \(B(\eta' \to e^+e^-\pi^0) < 1.4 \times 10^{-3} \), \(B(\eta' \to e^+e^-\gamma) < 0.9 \times 10^{-3} \), and \(B(\eta' \to e\mu) < 4.7 \times 10^{-4} \). We also fit the matrix element of the \(\eta' \to \pi^+\pi^-\eta \) Dalitz plot with the parametrization \(|M|^2 = A(1 + \alpha y)^2 \), where \(y \) is a linear function of the kinetic energy of the \(\eta \), and find \(\text{Re}(\alpha) = -0.021 \pm 0.025 \).

PACS numbers: 14.40.Cs, 11.30.Er, 13.40.Hq

The η and η' mesons share the same quantum numbers, and can both be used to investigate C and CP violation, leptoquarks, lepton family violation, chiral perturbation theory, and other topics [1]. But while the η has been the subject of several experiments, our experimental knowledge of the η' is limited; many measured upper limits for its decays are at the percent level [2]. In this Letter we present searches for the rare decays \(\eta' \to e^+e^-\eta \), \(\eta' \to e^+e^-\pi^0 \), \(\eta' \to e^+e^-\gamma \), and \(\eta' \to e\mu \) produced in \(e^+e^- \) collisions at 10.6 GeV center-of-mass energy. We have concentrated on decays involving at least one electron because combinatoric backgrounds in hadronic events are much larger for photons and charged pions than for leptons.

The decays \(\eta' \to e^+e^-\eta \) and \(\eta' \to e^+e^-\pi^0 \) can occur with one or two intermediate virtual photons, as shown in Fig. 1. The \(\eta' \), \(\eta \), and \(\pi^0 \) are even eigenstates of \(C \), while a photon is \(C \) odd; thus the one-photon process will be \(C \) violating and the two-photon process \(C \) conserving. Because \(B(\eta' \to \pi^0\gamma\gamma) < 8 \times 10^{-4} \), and the rates for these decays should be orders of magnitude smaller [3], any signal at the 10⁻⁴ level or larger would signify a large \(C \)-violating contribution or other new physics. The current 90% confidence upper limits for these decays [2] are 1.1% for \(e^+e^-\eta \) and 1.3% for \(e^+e^-\pi^0 \).

The Dalitz decays of the η and \(\pi^0 \) have both been measured, with branching fractions 2 orders of magnitude smaller than the \(\gamma\gamma \) decays of the two mesons. Because \(B(\eta' \to \gamma\gamma) = (2.12 \pm 0.13)% \) [2], we may expect the \(\eta' \) Dalitz decay at the 10⁻⁴ level. The forbidden decay \(\eta' \to e\mu \) with no accompanying neutrinos is an example of lepton number violation. The theoretical upper bound for this decay is on the order of 10⁻¹¹, determined from experiments on \(\mu^- \to e^- \) conversion in heavy nuclei [4]. A host of intermediate particles, including massive neutrinos or leptoquarks [5], could manifest themselves through a larger branching fraction for this decay. No measured upper limit has been published for either \(\eta' \to e^+e^-\gamma \) or \(\eta' \to e\mu \).

The common decay \(\eta' \to \pi^+\pi^-\eta \) (\(\eta \to \gamma\gamma \)) was used both as a normalization for our rare decay searches and to investigate the structure of the \(\eta' \). Defining the Dalitz variables

\[
y = \left[2 + (m_\eta/m_\pi^0) \right] \frac{T_\eta}{Q} - 1, \quad x = \frac{\sqrt{3}}{Q} (T_{\pi^+} - T_{\pi^-})
\]

in which \(T \) represents kinetic energy in the \(\eta' \) rest frame and \(Q = m_\eta - (m_\eta + 2m_\pi) \), we fit the matrix element with the Particle Data Group [2] parametrization, \(|M|^2 = A(1 + \alpha y)^2 + c x^2 \). Of particular interest is the real component of the complex constant \(\alpha \), which is a linear function of the kinetic energy of the \(\eta \). A nonzero value of \(\alpha \) may represent the contribution of a gluon component to the \(\eta' \) decay [6]. There are two published measurements of \(\text{Re}(\alpha) \): \(-0.08 \pm 0.03 \) for \(\eta' \to \eta\pi^+\pi^- \) [7] and \(-0.058 \pm 0.013 \) for \(\eta' \to \eta\pi^0\pi^0 \) [6]. Though these measurements are consistent, \(\alpha \) need not be the same for the two decays. \(\text{Im}(\alpha) \) influences the quadratic rather than the linear term in \(y \) and is expected to be small; previous measurements [6] are consistent with zero.

Data were collected using the CLEO II detector [8] at the Cornell Electron Storage Ring (CESR). We used 3.11 fb⁻¹ at the \(Y(4S) \) resonance, 10.58 GeV, and 1.69 fb⁻¹ at 10.52 GeV. Approximately \((15 \pm 3)\)% of our \(\eta' \) sample comes from \(B\bar{B} \) decays. Charged particle momenta are measured in a 67-layer tracking system immersed in a 1.5 T solenoidal magnetic field. The main drift chamber also determines a track’s specific ionization \((dE/dx) \), which aids in particle identification. A 7800-crystal CsI calorimeter detects photons and is the primary tool for electron identification. Muons are

![FIG. 1. (a) C-violating and (b) C-conserving contributions to the decay \(\eta' \to e^+e^-X \), where \(X \) is an \(\eta \) or \(\pi^0 \).](image-url)
identified using proportional counters placed at various depths in the steel return yoke of the magnet.

Selection criteria for $\eta' \rightarrow \pi^+ \pi^- \eta$ ($\eta \rightarrow \gamma \gamma$) were as follows. We restricted our search to hadronic events by requiring at least five charged tracks in the drift chamber. Photons from η candidate decays were required to be in the region of best energy resolution in the calorimeter (80% of the solid angle), to have an energy of at least 200 MeV, and not to overlap any noisy crystals or the projections of charged tracks. We rejected both photons of pairs with an invariant mass within 12.5 MeV/c^2 of the π^0 mass. Candidate pions must be well tracked and must originate in the interaction region, within ± 3 mm radially in the plane perpendicular to the beam and within ± 2 cm in the beam direction. Because we intend to use these decays as normalization of our search for decays containing electrons, some requirements are designed to reduce systematic uncertainties in electron identification. We veto tracks which have a vertex with another track in the beam pipe or tracking chamber walls, because we will need to veto gamma conversions when seeking η' decays involving electrons. Similarly, tracks projecting to the calorimeter end cap are rejected, because electron identification degrades in this region.

We kinematically fit each photon pair with invariant mass within 40 MeV/c^2 of the η mass. By requiring the η and η' to have minimum momenta of 0.6 and 1.0 GeV/c, respectively, we limit random combinations of real η's and charged pions, which are our largest background. The final signal of roughly 6700 events is shown in Fig. 2. From a Monte Carlo sample of 1.3×10^6 events we calculate an efficiency of $(2.96 \pm 0.08)\%$, indicating that about 1.3×10^3 η' mesons were produced in our sample. A double Gaussian is fit to both the Monte Carlo simulation and the data; the solid curve in Fig. 2 shows that the signal widths agree. The measured η' mass in the simulation is found to be 1.0 MeV/c^2 smaller than in the data, but because this is much smaller than the width of the signal regions for the rare decay modes, the systematic uncertainty introduced is small.

The searches for $\eta' \rightarrow e^+ e^- \eta$ ($\eta \rightarrow \gamma \gamma$) and $\eta' \rightarrow e^+ e^- \pi^0$ ($\pi^0 \rightarrow \gamma \gamma$) use the same criteria as the normalizing mode, except that no π^0 veto is applied, and we now require the charged tracks to be positively identified as electrons. Our electron identification algorithm utilizes shower energy, track momentum, specific ionization loss, and shower shape to achieve an efficiency of roughly 90% with a fake rate from charged pions of less than 0.5%. Signal efficiency is estimated from Monte Carlo samples for each decay, fitting each with a Gaussian and defining the signal region to be 2σ to either side of the mean. The backgrounds for all four decays are dominated by random combinatorics, which tends to be linearly distributed. Thus average background is determined by interpolating the data between 0.85 and 1.05 GeV/c^2 in invariant mass, excluding the signal region.

The data (solid line) and Monte Carlo (dashed line) results for $e^+ e^- \eta$ and $e^+ e^- \pi^0$ are shown in Figs. 3a and 3b, respectively. Neither shows any statistically significant signal in data. The efficiency for the $e^+ e^- \eta$ mode is estimated from Monte Carlo to be $(0.27 \pm 0.02)\%$. There is one event in the signal region with an expected background of 3.0 events; Poisson statistics gives us a 90% confidence upper limit of 2.8 events. The efficiency for the $e^+ e^- \pi^0$ mode is $(0.37 \pm 0.02)\%$. There are 23 signal-region events and an average background of 31.0 events for an

![FIG. 2. Measured invariant mass distribution from CLEO II data for $\eta' \rightarrow \pi^+ \pi^- \eta$ ($\eta \rightarrow \gamma \gamma$), fit with a shape determined from a fit to a Monte Carlo simulation plus a linear background.](image)

![FIG. 3. Invariant mass distributions for η' decays to (a) $e^+ e^- \eta$, (b) $e^+ e^- \pi^0$, (c) $e^+ e^- \gamma$, and (d) $e\mu$. The solid histogram represents the measured results, while the dashed curve is the Monte Carlo prediction with arbitrary normalization.](image)
upper limit of 6.2 events at 90% confidence level. The background for this mode is larger due to the greater number of neutral pions available for random combinations.

The Monte Carlo samples used above distribute the decay products evenly over phase space. One might argue that this is not appropriate for the one-photon C-violating diagrams for these decays, and that we may be unknowingly cutting away a signal of new physics. To check this, we generated a second Monte Carlo sample for each decay, using the measured electron-pair mass distribution from the Dalitz decay of the η [9]. These Monte Carlo samples give us estimated efficiencies of $(0.21 \pm 0.02)%$ for $e^+e^-\eta$ and $(0.31 \pm 0.03)%$ for $e^+e^-\pi^0$. For each mode we will use the mean of the two Monte Carlo estimates as the efficiency and introduce half the difference as a systematic uncertainty.

For the $\eta' \rightarrow e^+e^-\gamma$ search we require a minimum photon energy of 0.6 GeV to reduce combinatoric background. We also see a significant background from random photons combined with an electron pair from the Dalitz decays of a π^0 or η. We reduce this background by vetoing any event with an $e^+e^-\gamma$ combination with invariant mass within 3σ (21 MeV/c2) of the π^0 mass or within 2σ (26 MeV/c2) of the η mass. The data (solid) and Monte Carlo results are shown in Fig. 3c; the Monte Carlo sample again uses the electron-pair mass distribution from the η Dalitz decay. The efficiency for this mode is estimated to be $(1.01 \pm 0.06)%$. There is again no significant signal, with 51 signal-region events and a background of 53.6 events, for a 90% confidence upper limit of 11.7 events.

The criteria for muon identification in $\eta' \rightarrow e\mu$ are identical to those for pions, with the additional requirement that the muon penetrate three interaction lengths of material outside the calorimeter (roughly a 1.0 GeV/c momentum requirement). The results of this search are shown in Fig. 3d. The efficiency is found to be $(4.92 \pm 0.15)%$. There are 650 events with an average background of 672 events, for an upper limit of 30.1 events at 90% confidence.

Table I shows all sources of systematic uncertainty in our analyses which do not cancel in the normalization to the $\eta' \rightarrow \pi^+\pi^-\eta$ mode. We used Poisson statistics to generate a confidence level distribution for the number of signal events in each mode. We then ran a simulation which assigned an error to each probability in the distribution, with the errors corresponding to a Gaussian with a width determined by the total uncertainty for that mode. This “smearing” of the distribution increased the number of signal events at the 90% confidence level to the amount shown in Table II for each mode. Normalizing the signal limit and efficiency for each mode to that of $\eta' \rightarrow \pi^+\pi^-\eta$ allows us to calculate 90% confidence upper limits on the rare decay branching fractions:

$$B(\eta' \rightarrow e^+e^-\eta) < 2.4 \times 10^{-3}, \quad (2)$$

In measuring Re(α) we use the selection criteria for $\eta' \rightarrow \pi^+\pi^-\eta$ ($\eta \rightarrow \gamma\gamma$) with the gamma conversion and calorimeter end cap requirements removed for greater efficiency. We fit the $\eta \pi^+ \pi^-$ signal in data with a Gaussian and define the signal region as 2σ to either side of the mean. Background is removed by subtracting the distribution in y for the data sidebands from the distribution in the signal region; we use three different definitions of sideband $([3-5]\sigma, (4-6)\sigma, \text{and} (5-7)\sigma$ from the mean]. Our sensitivity to the coefficient of x^2 is small, so we plot the projection along the y axis for each choice of sideband. Because the requirement on the η momentum may be biasing the distribution of T_{η}, we also measure Re(α) with minimum η momenta of 0.4 and 0.8 GeV/c. Efficiency corrections are made by dividing our results by those from a Monte Carlo sample of $9.3 \times 10^5 \eta' \rightarrow \pi^+\pi^-\eta$ ($\eta \rightarrow \gamma\gamma$) decays. We fit the results with a line whose slope will be twice the real component of α. One such plot is shown in Fig. 4. The slope varies by ± 0.012 with choice of sideband, ± 0.006 with choice of η momentum requirement, ± 0.010 from the statistics of the Monte Carlo sample, and ± 0.018 due to the statistical uncertainty of the fit.

Table I. Summary of systematic uncertainties which do not cancel in normalization.

<table>
<thead>
<tr>
<th>Source</th>
<th>$e^+e^-\eta$</th>
<th>$e^+e^-\pi^0$</th>
<th>$e^+e^-\gamma$</th>
<th>μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photon detection efficiency</td>
<td>...</td>
<td>...</td>
<td>3.0%</td>
<td>6.0%</td>
</tr>
<tr>
<td>Electron ID efficiency</td>
<td>6.0%</td>
<td>6.0%</td>
<td>6.0%</td>
<td>3.0%</td>
</tr>
<tr>
<td>Muon ID efficiency</td>
<td>...</td>
<td>...</td>
<td>0.5%</td>
<td>...</td>
</tr>
<tr>
<td>$B(\eta' \rightarrow \pi^+\pi^-\eta)$</td>
<td>3.4%</td>
<td>3.4%</td>
<td>3.4%</td>
<td>3.4%</td>
</tr>
<tr>
<td>$B(\eta' \rightarrow \gamma\gamma)$</td>
<td>...</td>
<td>0.9%</td>
<td>0.9%</td>
<td>0.9%</td>
</tr>
<tr>
<td>$N_{\eta' \rightarrow \pi^+\pi^-\eta}$ (fit to data)</td>
<td>3.6%</td>
<td>3.6%</td>
<td>3.6%</td>
<td>3.6%</td>
</tr>
<tr>
<td>$e_{\eta' \rightarrow \pi^+\pi^-\eta}$ (MC stat)</td>
<td>2.5%</td>
<td>2.5%</td>
<td>2.5%</td>
<td>2.5%</td>
</tr>
<tr>
<td>e (rare decay) (MC stat)</td>
<td>8.3%</td>
<td>5.9%</td>
<td>5.5%</td>
<td>3.1%</td>
</tr>
<tr>
<td>Choice of MC model</td>
<td>12.5%</td>
<td>8.8%</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>BB contribution</td>
<td>1.6%</td>
<td>1.1%</td>
<td>0.6%</td>
<td>0.7%</td>
</tr>
<tr>
<td>MC mass offset</td>
<td>0.0%</td>
<td>4.3%</td>
<td>2.0%</td>
<td>0.8%</td>
</tr>
<tr>
<td>Total</td>
<td>17.2%</td>
<td>14.1%</td>
<td>10.5%</td>
<td>9.4%</td>
</tr>
</tbody>
</table>

Table II. Results of applying systematic uncertainty to confidence level distribution.

<table>
<thead>
<tr>
<th>Rare decay</th>
<th>Limit without systematics (events)</th>
<th>Limit with systematics (events)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\eta' \rightarrow e^+e^-\eta$</td>
<td>2.8</td>
<td>3.0</td>
</tr>
<tr>
<td>$\eta' \rightarrow e^+e^-\pi^0$</td>
<td>6.2</td>
<td>6.4</td>
</tr>
<tr>
<td>$\eta' \rightarrow e^+e^-\gamma$</td>
<td>11.7</td>
<td>11.9</td>
</tr>
<tr>
<td>$\eta' \rightarrow e\mu$</td>
<td>30.1</td>
<td>30.4</td>
</tr>
</tbody>
</table>
Adding these uncertainties in quadrature yields a result of $\text{Re}(\alpha) = -0.021 \pm 0.025$. While consistent with previous measurements, this result is much smaller and is also consistent with zero.

In summary, we have searched for rare and forbidden decays of the η' involving at least one electron in e^+e^- collisions at the CLEO II detector. We find no statistically significant signals, and have assigned 90% confidence upper limits of $B(\eta' \to e^+e^-\eta) < 2.4 \times 10^{-3}$, $B(\eta' \to e^+e^-\pi^0) < 1.4 \times 10^{-3}$, $B(\eta' \to e^+e^-\gamma) < 0.9 \times 10^{-3}$, and $B(\eta' \to e\mu) < 4.7 \times 10^{-4}$. These measurements represent an order of magnitude improvement over previous limits, but are at least another order of magnitude short of discerning the Dalitz decay or suggesting a difficulty for the standard model. We have also examined the structure of the $\eta' \to \pi^+\pi^-\eta$ and measured $\text{Re}(\alpha) = -0.021 \pm 0.025$, a value consistent with but much smaller than previous measurements.

We gratefully acknowledge the effort of the CESR staff in providing us with excellent luminosity and running conditions. This work was supported by the National Science Foundation, the U.S. Department of Energy, the Research Corporation, the Natural Sciences and Engineering Research Council of Canada, the A.P. Sloan Foundation, the Swiss National Science Foundation, and the Alexander von Humboldt Stiftung.