
Classification of Fricative Consonants for Speech
Enhancement in Hearing Devices
Ying-Yee Kong1,2*, Ala Mullangi2, Kostas Kokkinakis3

1 Department of Speech Language Pathology & Audiology, Northeastern University, Boston, Massachusetts, United States of America, 2 Bioengineering Program,

Northeastern University, Boston, Massachusetts, United States of America, 3 Department of Speech-Language-Hearing, University of Kansas, Lawrence, Kansas, United

States of America

Abstract

Objective: To investigate a set of acoustic features and classification methods for the classification of three groups of
fricative consonants differing in place of articulation.

Method: A support vector machine (SVM) algorithm was used to classify the fricatives extracted from the TIMIT database in
quiet and also in speech babble noise at various signal-to-noise ratios (SNRs). Spectral features including four spectral
moments, peak, slope, Mel-frequency cepstral coefficients (MFCC), Gammatone filters outputs, and magnitudes of fast
Fourier Transform (FFT) spectrum were used for the classification. The analysis frame was restricted to only 8 msec. In
addition, commonly-used linear and nonlinear principal component analysis dimensionality reduction techniques that
project a high-dimensional feature vector onto a lower dimensional space were examined.

Results: With 13 MFCC coefficients, 14 or 24 Gammatone filter outputs, classification performance was greater than or equal
to 85% in quiet and at +10 dB SNR. Using 14 Gammatone filter outputs above 1 kHz, classification accuracy remained high
(greater than 80%) for a wide range of SNRs from +20 to +5 dB SNR.

Conclusions: High levels of classification accuracy for fricative consonants in quiet and in noise could be achieved using
only spectral features extracted from a short time window. Results of this work have a direct impact on the development of
speech enhancement algorithms for hearing devices.

Citation: Kong Y-Y, Mullangi A, Kokkinakis K (2014) Classification of Fricative Consonants for Speech Enhancement in Hearing Devices. PLoS ONE 9(4): e95001.
doi:10.1371/journal.pone.0095001

Editor: Fan-Gang Zeng, University of California, Irvine, United States of America

Received February 2, 2014; Accepted March 21, 2014; Published April 18, 2014

Copyright: � 2014 Kong et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by NIH/NIDCD R01-DC-012300 to Y-YK. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: yykong@neu.edu

Introduction

A common configuration of hearing loss is high-frequency

hearing loss, which affects the perception of speech sounds that

have mostly high-frequency (2000–10000 Hz) energy, such as

fricative consonants. There are a total of nine fricative consonants

in English: /f, h, s, #, v, ð, z, , h/, and eight of them (all except

for/h/) are produced by partially obstructing the airflow through

the oral cavity. These fricative consonants differ in terms of the

point of constriction in the vocal tract (i.e., place of articulation) –

labiodental/f, v/; interdental/h, ð/; alveolar/s, z/; and palatal/#,
/. Within each place, the fricatives differ in regard to the absence

(voiceless) or presence (voiced) of the vocal fold vibration –

voiceless/f, h, s, #/; and voiced/v, ð, z, /. Note also that the

greatest spectral difference between voiced and voiceless pho-

nemes is mainly at the low-frequency region below 1000 Hz where

the voiced fricatives have higher energy at low frequencies

compared to their voiceless counterparts. Given the large number

of fricative consonants in the English language, perceptual deficits

in this class of sounds could severely reduce oral communication

especially in noisy listening environments.

Effect of Hearing Loss on Fricative Perception
Previous studies have reported that there are multiple cues to

the perception of fricatives, including the spectral differences in the

fricative noise and lower frequency energy in the transition from

fricative noise to the adjacent vowel [1–3]. Zeng and Turner [2]

reported that adults with hearing loss rely primarily on fricative

noise for the discrimination of voiceless fricatives, and their

conclusion was further supported by recent work by Stelmacho-

wicz et al. [4]. It has been shown that reduced audibility and

spectral resolution at high frequency due to hearing loss

significantly impaired listeners’ ability to discriminate fricative

consonants [5].

Signal Processing to Enhance Perception of High-
Frequency Speech Components

Signal processing techniques that increase the audibility of

fricative sounds or spectral differences among fricatives could

enhance speech perception performance in hearing-impaired

listeners. To enhance listeners’ ability to perceive high-frequency

fricative content, recent research reported a significant benefit for

speech recognition in hearing-impaired individuals with high-
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frequency amplification above 4 kHz compared to amplification

only up to 4 kHz. For example, Stelmachowicz et al. [4] provided

spectral cues up to 9 kHz to hearing-impaired adults and children

with moderate to moderately severe hearing loss (i.e., between 40

and 70 dB HL) at 2 and 4 kHz. They reported that although the

perception of the fricative/s/in quiet improved with increasing

stimulus bandwidth, fricative perception performance remained

significantly poorer for hearing-impaired than for normal-hearing

listeners.

While extended high-frequency amplification could provide

benefit for aidable hearing loss, for individuals who have severe-to-

profound high-frequency hearing loss, signal processing strategies

that lower high-frequency speech components to a lower-

frequency region, such as frequency compression [6] or frequency

transposition [7] have been recommended. While most algorithms

utilized in hearing aids lower the high-frequency phonemes by a

fixed ratio or by a constant for all speech sounds, others operate

conditionally on nonsonorant consonants (i.e., fricatives, affricates,

and stops) for frequency lowering [8–9].

Recent work in our laboratory [10–11] explored a method of

frequency lowering that targets nonsonorant consonants and also

enhances the spectral contrasts of the frequency-lowered fricatives.

This speech enhancement method involves classification of

fricative consonants followed by spectral shaping of the frequen-

cy-lowered signals based on the classification results. Here, we

describe the conceptual framework of this algorithm, which

prompted the investigation of fricative classification in the current

study, along with a summary of the perceptual results from

hearing-impaired listeners. The aforementioned frequency-lower-

ing algorithm is described in more detail in Kong and Mullangi

[11].

A Vocoder-Based Frequency-Lowering System with Spectral Enhancement:

The vocoder-based frequency-lowering algorithm developed by

Kong and Mullangi [10–11] is divided into analysis and processing

stages. During the analysis stage, input signals are first bandpass-

filtered into a number of frequency bands. The filtered signals are

then subjected to an analysis that separates speech sounds into two

classes, sonorants and nonsonorants. Only the nonsonorant

sounds, which contain aperiodic high-frequency energy, will

proceed to a second analysis that separates high-frequency

frication sounds into three groups. Once classified, the nonsonor-

ant sounds undergo frequency lowering via channel vocoding by

which the amplitude of the high-frequency bands is used to

amplitude modulate bands of low-frequency noise, which is added

to the original speech signal. To enhance the spectral differences of

the transposed signal for fricative perception, the spectrum of the

low-frequency noise used in the system is determined by the

classification results. With an earlier prototype of the system with

fricative classification accuracy at about 88% on VCV syllables in

quiet, Kong and Mullangi [11] reported that listeners with steeply-

sloping high-frequency hearing loss received significant benefit for

place-of-articulation perception for fricative consonants in quiet.

Since the spectral enhancement method described above

selectively processes specific classes of phonemes, its success hinges

on the accuracy of classification of speech sounds. The goal of this

study is to further investigate acoustic features and classification

methods that could separate fricative consonants into separate

classes that differ in place of articulation with high levels of

accuracy in quiet and also in noise. Although dynamic or

relational features including relative amplitude between the

fricative consonant and the adjacent vowel(s), duration of the

fricative consonants, and relative amplitude of fricatives, have

been shown to contribute to the correct classification of place of

articulation in fricatives, only static acoustic features extracted

within a very short time window were considered in the current

study to allow for a real-time signal processing implementation in

hearing devices. Previous research has shown that processing delay

of less than 10 msec is necessary for hearing aids in order to

preserve the sound quality and to prevent the user’s perception of

his or her own voice [12–13]. Thus, in this study, we used a short

time window of 8 msec, which is well within the limit set by the

industry. Among the static acoustic properties, combinations of

spectral features including spectral slope, spectral peak location,

and four spectral moments [14–17], were found to be robust

features for separating fricatives into three groups. Previous studies

and our own preliminary analyses did not find static features that

could reliably separate the non-sibilant fricatives further into two

groups (labiodental and inter-dental fricatives). It was shown that

normal-hearing listeners use formant transition cues to perceptu-

ally discriminate labiodental and interdental fricatives. Also, at

high frequencies, both voiced and voiceless fricatives have the

similar patterns of spectral shape that are distinctive among

fricatives differing in place of articulation. In addition, this work

considers more realistic communication situations often encoun-

tered by users of listening devices, which include (1) speech

recognition in quiet and in noisy situations at different signal-to-

noise ratios (SNRs) and (2) variations of acoustic characteristics

due to talker differences.

In this paper, we present and compare classification results of

fricative sounds using a support vector machine (SVM) algorithm.

Various acoustic static features, including the previously reported

spectral features (i.e., spectral moments, peak, and slope),

bandpass-filtered outputs, magnitude of fast Fourier Transform

(FFT), and Mel-frequency cepstral coefficients (MFCCs) are

investigated. Our results show high levels of fricative classification

performance with spectral features extracted from a relatively

short time frame. This suggests that the frication noise contains

sufficient information about the identity of the fricative conso-

nants, and that our classification methods have potential clinical

applications on the future development of speech enhancement in

hearing devices.

Methods

Speech materials
The classification experiments were performed on fricative

consonants extracted from a TIMIT database [18], which contains

a total of 6,300 continuous sentences spoken by 639 speakers from

eight dialect regions in the United States. The sentences were

recorded in a noise-free environment with a sampling rate of

16 kHz and 16-bit resolution. The TIMIT database is divided into

training and testing sets. The core testing set in the database has a

total of 168 speakers, resulting in a total of 1,344 sentences. In our

experiments, the audio files were first scaled to have equal root-

mean-squared (RMS) amplitude across all sentences in both the

training and testing set. Additionally, the RMS-equalized TIMIT

sentences were corrupted with two different types of noise. The

level of the noise was adjusted depending on the pre-determined

SNR test conditions for each experiment. For the training set,

clean speech was corrupted with speech-shaped noise (SSN) at +10

dB SNR. To approximate the long-term average spectra of adult

speech [19], the SSN was created by lowpass-filtering white noise

with a first-order Butterworth filter using a cutoff frequency of

800 Hz. The use of this generic type of SSN allows for greater

generalization of the classifier to other real-life listening situations.

For the testing set, clean speech was corrupted with a 12-talker

speech babble noise [20] at seven different SNRs (+20, +15, +10,

+5, 0, 25, 210 dB). The rationale behind using different types of
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noise was to create a mismatch in the training and testing

environments. The choice of multi-talker speech babble noise was

motivated mainly by its ecological relevance. For each sentence

and for each SNR condition, the clean speech was mixed with a

different time segment of the speech babble noise. Each fricative

was then extracted from the clean and noisy sentences using the

TIMIT phone labels and transcription boundaries.

Feature extraction for fricatives differing in place of
articulation

Several types of static acoustic features have been shown to be

different among the three classes of fricatives. Motivated by

existing literature [14], [15], and [17], we examined six spectral

features, including four spectral moments (i.e., mean [M1],

variance [M2], skewness [M3], kurtosis [M4]), dominant spectral

peak location (P), and spectral slope (S) for a subset of fricative

tokens in the TIMIT training set, which were used for

classification as will be described in the ‘‘Classification Procedure’’

section. Acoustical and statistical analyses were performed to

confirm that these features are indeed discriminative among the

fricative groups.

Spectral analyses on the six acoustic features were performed on

clean speech using a 128-point FFT in the frequency range from

1kHz to 8 kHz. The upper frequency of 8 kHz was limited by the

sampling rate of the recorded speech materials. Information was

extracted from a randomly chosen 8-msec segment using a

hamming window of the fricative tokens, and acoustical analyses

were performed on each of these 8-msec segments. The

mathematical description of the four moments can be found in

Forrest et al. [21] and Maniwa & Jongman [17]. Spectral peak

location (P) is defined as the frequency that corresponds to the

highest amplitude peak of the FFT spectrum. Spectral slope is

computed here as the difference between the highest and lowest

amplitude of the FFT spectrum divided by the corresponding

difference in the frequency. Each acoustic measurement was first

examined to determine its contribution in the fricative classifica-

tion using a Kruskal-Wallis test. This non-parametric test was used

because the assumption of normality was not met for some of the

acoustic features examined. Table 1 shows the measured median

values for each feature for each fricative type along with statistical

results. As indicated by the p-values in this table, the values of the

acoustic features were significantly different between the three

groups of fricatives. Hence, combinations of these features were

included in the classification experiments.

Besides the well-documented acoustic features described above,

we investigated additional three groups of features described

below. Again, for training of the classifiers, the acoustic features

were extracted from a randomly chosen 8-msec segment of the

fricative tokens using a hamming window, and acoustical analyses

were performed on each of the 8-msec segments. The upper

frequency was restricted to 8 kHz limited by the sampling rate of

the recorded speech.

(1) Two versions of MFCCs – MFCC(3) and

MFCC(13). MFCC(3) denotes the first three coefficients of the

3 cepstra without derivatives and MFCC(13) denotes 13 cepstra

without derivatives. MFCC(3) represents the first three coefficients

of MFCC(13). The MFCCs were extracted using the VOICEBOX

toolkit [22].

(2) Gammatone filter outputs. Two feature vectors of

outputs of bands of Gammatone filters. One vector consisted of

outputs of 14 filters [Gammatone(14)] at the high-frequency above

1 kHz, and the other consisted of 24 filter outputs [Gamma-

tone(24)] for the wide frequency spectrum above 0.1 kHz.

Gammatone(14) is a subset of Gammatone(24).

(3) Magnitude spectrum of FFT. The magnitudes of 128-

point FFT at each frequency bin were calculated in the frequency

range from 0.1 to 8 kHz.

Given that the numbers of dimensions are high for the

Gammatone(24) and FFT feature vectors, dimensionality reduc-

tion techniques that project the high-dimensional feature vector

onto a lower dimensional space were used to enable the classifier

to achieve improved generalization through: (1) eliminating

redundant dimensions that may not convey reliable information

for the classification, (2) determining a manifold that exhibit

maximal information about the class label, and (3) avoiding over-

fitting from the classifier [23]. For signal processing in real-time,

decreasing the number of dimensions of the feature vector could

result in a considerable reduction of the overall processing time.

For a high-dimensional feature vector x[Rn, the aim is to

determine a smooth mapping function f:RnRRm where m,n

such that the reduced dimensional feature vector is y = f(x). In this

study, we investigated both linear and nonlinear projections to

achieve the optimal manifold.

For linear dimensionality reduction (LDR), a commonly-used

variable reduction technique referred to as principal component

analysis (PCA) was used to map the data to a lower-dimensional

space [24]. The data is transformed to orthogonal axes

corresponding to the direction of the maximum variance in the

original data space such that the first few dimensions of the new

space account for the majority of variance in the data. For a

random vector xk[Rn, the mean of each of the features is adjusted

to 0 using Eq. (1):

Xl

k~1
xk~0 ð1Þ

where l is the number of points in the dataset.

The covariance matrix of x given by Eq. (2) is computed to

obtain the eigenvalues and eigenvectors:

C~
1

l

Xl

k~1
xk xk

0 ð2Þ

To reduce the number of dimensions from n to m, the

eigenvectors corresponding to m largest eigenvalues of the

covariance matrix are used for approximating the original n-

dimensional vector. m is determined by the number of eigenvalues

that exceed a pre-determined threshold.

For nonlinear dimensionality reduction (NLDR), we adapted a

projection technique using a kernel PCA [25]. A kernel PCA first

Table 1. Median values and Kruskal-Wallis test results
(p-values) for six acoustic features for the training set.

Measurements /f, h, v, ð/ /s, z/ /#, / p-value

M1 (Hz) 3,989 4,909 4,117 , 0.0001

M2 (MHz) 3.89 2.47 2.55 , 0.0001

M3 0.31 20.11 0.58 ,0.0001

M4 20.95 20.14 20.39 ,0.0001

P (Hz) 1,750 4,625 3,250 ,0.0001

S 20.008 0.011 20.006 ,0.0001

doi:10.1371/journal.pone.0095001.t001
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projects the data into a feature space by calculating the kernel

matrix (described below) such that a nonlinear function is applied

to the original data with a reduced computational cost. A PCA can

be then performed on the projected data. Let F be a nonlinear

function that projects the random vector xk into a feature space F

to obtain F(xk). A kernel matrix (K) is calculated as in Eq. (3).

K~W(xi)W(xj) ð3Þ

where i and j index the row and the column in the matrix,

respectively, and that both i and j vary from 1 to l.

To obtain a centered kernel matrix with a zero mean, a Gram

matrix is computed using Eq. (4).

K̂K~K{1lK{K1lz1lK1l ð4Þ

where 1l is an lxl matrix with all elements equal to 1/l.

Once projected to the nonlinear space, procedures for

dimensionality reduction follow the principles of PCA as described

above. The eigenvectors computed from the Gram matrix are

taken as the kernel principal components.

Classification Procedure
A one-stage classification procedure with a SVM algorithm was

used for classifying fricatives into three groups. The MATLAB

library LIBSVM described in Chang & Lin [26] was employed to

perform a multi-class classification using a one-against-one

strategy.

We used a subset of fricatives contained in the TIMIT training

set to train the classifiers, and all fricatives in the TIMIT core

testing set during the testing of the classifiers. The fricatives chosen

for the training phase were sampled from a subset of speakers in all

dialects in the TIMIT training set. The numbers of training tokens

were similar across fricative groups. For training, acoustic

information from a randomly chosen 8-msec segment of the

fricative tokens was used. Given that the spectrum of the frication

noise is relatively stable over the entire fricative consonant [14],

random samples from each fricative token should provide a good

representation of the fricatives for a large number of speakers

while keeping the size of the training set manageable. The

resulting numbers of fricative samples were 1,864 for the labio/

inter-dental fricative group, 1,648 for the alveolar fricative group,

and 1,455 for the palatal fricative group. Feature vectors were

extracted from each of the 8-msec speech segments. During the

training phase, the clean speech tokens and the tokens that were

corrupted with SSN at +10 dB SNR in the training set were passed

on as inputs to the SVM classifier.

In our preliminary study with a smaller number of speech

tokens, we investigated a number of kernel types and kernel

functions. We concluded that the C-support vector classification

(C-SVC) kernel type and the radial basis kernel function (RBF)

yielded the best performance. Thus, we used the C-SVC and RBF

in this study. During a grid search in the training phase, the C

parameter of the C-SVC and the gamma parameter of the RBF

were selected using a cross validation procedure [27].

Figure 1. Overall classification accuracy in quiet and at +10 dB SNR with different of features.
doi:10.1371/journal.pone.0095001.g001
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After the SVM classifier was trained, classification was

performed on all the fricative tokens in the TIMIT testing set.

Similar to the training phase, classification was made for every 8-

msec segment of the fricative consonants. Classification was

performed on speech tokens in quiet, as well as on speech tokens

corrupted with speech babble noise at different SNRs. To

summarize the performance of the classifiers, classification

accuracy reported below was determined on a consonant-by-

consonant basis, in which the majority vote was taken as label for

the sequence [28–30]. This means that the fricative group

corresponding to the most frequently selected group across the

8-msec frames concluded the classification of the consonant.

Overall classification accuracy for the fricative tokens in the testing

set was calculated as the proportion of the fricatives correctly

identified. This approach, as opposed to the calculation of the

accuracy frame-by-frame, allows for a comparison of our results

with findings from other studies [15], [28].

Classification Results

Comparisons of Features
Figure 1 shows the overall classification accuracy achieved using

various features. As supported by the statistical results, the

knowledge-based acoustic features (i.e., moments, peak location,

and slope) yielded an above chance-level performance for both

quiet and +10 dB SNR conditions. On the basis of Bernoulli

fluctuations at the performance levels of 50%–90% and over 6,500

trials, the width of 95% confidence interval for each measure is less

than 2.5 percentage points. The results showed that including the

peak location and slope features did not significantly enhance the

classification accuracy of moment features, as the M1-4+P+S

condition (77% in Q and 83% in noise) produced similar percent

correct scores to the M1-4 condition (80% in Q and 81% in noise).

There was no considerable difference in classification perfor-

mance among the MFCC(13), Gammatone(14), Gammatone(24)

features, with percent accuracy at 86%–88% in quiet and 85%–

88% in noise. In comparison, classification accuracy using the FFT

feature was slightly lower in noise (82%). The results of MFCC(3)

were significantly lower in both quiet (83%) and noise (64%)

conditions than those obtained by MFCC(13). For Gamma-

tone(24), classification results were similar with and without

dimensionality reduction, and the two reduction methods (linear

vs. nonlinear) produced similar classification accuracy. It is noted

that the resulting dimensions were 6 and 7 for the linear and

nonlinear reduction, respectively. In contrast, dimensionality

reduction decreased the classification accuracy for the FFT feature

Figure 2. Overall fricative classification accuracy in quiet and at
seven SNRs ranging from +20 to 210 dB using Gammatone(14)
and Gammatone(24)-LDR.
doi:10.1371/journal.pone.0095001.g002

Table 2. Confusion matrices for fricative classification in quiet and at three SNRs using Gammatone(14).

Clean speech: 87% accuracy Detected as/f, h, v, ð/ Detected as/s, z/ Detected as/#, /

/f, h, v, ð/ 85% 11% 4%

/s, z/ 1% 87% 12%

/#, / 1% 10% 89%

+15 dB SNR: 89% accuracy Detected as/f, h, v, ð/ Detected as/s, z/ Detected as/#, /

/f, h, v, ð/ 95% 4% 1%

/s, z/ 3% 89% 8%

/#, / 3% 13% 84%

+10 dB SNR: 88% accuracy Detected as/f, h, v, ð/ Detected as/s, z/ Detected as/#, /

/f, h, v, ð/ 97% 2% 1%

/s, z/ 6% 87% 7%

/#, / 5% 15% 80%

+5 dB SNR: 83% accuracy Detected as/f, h, v, ð/ Detected as/s, z/ Detected as/#, /

/f, h, v, ð/ 98% 2% 0%

/s, z/ 14% 81% 5%

/#, / 13% 17% 70%

doi:10.1371/journal.pone.0095001.t002
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with the nonlinear reduction (reduced to 5 dimensions) showed a

greater detrimental effect than linear reduction (reduced to 4

dimensions).

Overall classification accuracy was generally higher with

MFCC, Gammatone, and FFT features when compared to that

obtained with the spectral moments, peak, and slope features. For

example, classification accuracy was higher with Gammatone(14)

compared to the other six acoustic features combined (i.e., M1-

4+P+S) by 10 percentage points in quiet and 5 percentage points

in noise.

Classification at Different Signal-to-Noise Ratios
Given that classification accuracy at +10 dB SNR was high for

Gammatone features and Gammatone filters are commonly used

in auditory modeling, a follow up classification experiment was

performed using Gammatone(14) and Gammatone(24)-LDR on

fricative consonants that were corrupted with speech babble noise

at SNRs ranging from +20 down to -10 dB. Similar to the

experiment described above, the SVM classifier was trained with

both clean speech and speech materials that were corrupted with

SSN at +10 dB SNR. Figure 2 plots the overall fricative

classification accuracy. Results showed that classification perfor-

mance was on average 9 percentage points higher for Gamma-

tone(14) than for Gammatone(24)-LDR at lower SNRs from 0 dB

to -10 dB, suggesting that the discriminative features for

classification of three groups of fricatives are primarily centered

at high frequencies above 1 kHz. Using the Gammatone(14)

feature, classification accuracy remained greater than 80% for

SNR conditions from +20 dB SNR down to +5 dB SNR, despite

the fact that the noise for training (SSN) and testing (12-talker

babble) were different. As the level of the noise increased, more

sibilant fricatives/s, z, #, /were identified as non-sibilant

fricatives/f, v, h, ð/. Table 2 shows the confusion matrices for

each group of fricatives in quiet and for three noise levels (+15 dB

SNR, +10 dB SNR, and +5 dB SNR) using the Gammatone(14)

feature.

Summary and Discussion
The present study examined acoustic features for classification

of fricative consonants that differ in place of articulation. Among

the features examined, MFCC(13), Gammatone(14), and Gam-

matone(24) produced similar classification results in quiet and at

+10 dB SNR. A subsequent analysis showed that Gammatone(14)

yielded a high level of classification accuracy even at challenging

noise conditions, down to +5 dB SNR.

Classification Accuracy
For clean (uncorrupted) speech, the MFCC(13), Gammatone,

and FFT features achieved 86%–88% correct classification, a

similar level of performance to that reported in the literature [14–

Figure 3. Overall fricative classification accuracy observed in quiet and at seven SNRs ranging from +20 to 210 dB of speech
materials with sampling rates equal to 16 kHz and 44.1 kHz.
doi:10.1371/journal.pone.0095001.g003
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16]. For example, using a knowledge-based decision-tree-like

algorithm, Ali et al. [15] reported 91% accuracy for classifying

fricative consonants into three groups. Previous studies reported

results similar to the present study using an artificial neural

network [15] and a linear discriminant analysis [14], [16].

However, relational features, such as relative amplitude between

the fricative consonant and the neighboring vowel were used in

these studies. Without the relational feature, Ali et al. [15]

reported an 87% correct classification for fricatives in quiet when

the classifier was trained and tested on the same set of speech

materials. Recently, Frid & Lavner [28] resorted to an SVM

algorithm and a set of 15 features that included spectral peak,

spectral moments, and MFCC(3) to classify fricatives into four

groups and reported an accuracy of 85%. It is noted that only four

voiceless fricatives/f, h, s, #/were considered in the Frid & Lavner

[28] study, without including the voiced fricatives/v, ð, z, /.

For noisy speech, the SVM algorithm with the Gammatone(14)

feature achieved correct classification greater than 80% for SNRs

from +20 dB to +5 dB SNR. It is important to note that (1) both

clean and noisy speech were used for the training, (2) the noise was

different between training and testing, and (3) the classifier was

trained with noisy speech at only one SNR condition (+10 dB

SNR), but was tested on seven SNR conditions (from +20 to 210

dB SNR). In other words, the training and testing environments

were mismatched.

Effect of Dimensionality Reduction
Two methods of dimensionality reduction – linear and

nonlinear projections – were investigated to lower the dimensions

of the high-dimensional feature vectors for our dataset. The

purpose of this was to determine the most discriminative

dimensions and also reduce the processing time for classification.

Our results showed that, depending on the feature vector,

classification performance with nonlinear projection was either

similar to that with linear projection [Gammatone(24)] or slightly

lower than the classification accuracy obtained with linear

projection (FFT).

When comparing performance with the feature vector contain-

ing only high frequencies, our results showed that classification

performance was on average 9 percentage points higher for

Gammatone(14) than for Gammatone(24)-LDR at lower SNRs

from 210 dB to 0 dB, suggesting that the discriminative features

for classification of three groups of fricatives in speech babble noise

are primarily at high frequencies above 1 kHz.

Importance of Spectral Information above 8 kHz
The TIMIT sentences used in the current study have a

relatively low sampling rate of 16 kHz, which could have a

negative effect on the fricative classification accuracy. Previous

research reported spectral differences among three groups of

fricatives for frequencies above 8 kHz [10], [16], and [31]. Thus,

we hypothesize that classification accuracy would improve for

speech materials with a higher sampling rate that allows for data

analysis at high frequencies, because a possible cue for discrim-

ination between alveolar and palatal fricatives is the high-

frequency fall-off, which is usually above 8 kHz. Another cue for

discrimination between sibilant and non-sibilant fricatives is the

spectral slope above 8 kHz [10].

To demonstrate the importance of high-frequency information

above 8 kHz on fricative classification, we conducted a small-scale

classification study using speech materials with a sampling rate of

44.1 kHz. The recorded speech materials included 8 fricative

stimuli in/vowel-consonant-vowel/utterances with three vowels (/

a, i, u/), resulting in a total of 24 syllables. These stimuli were

spoken three times (three repetitions) by each of 14 speakers (six

male adults, six female adults, one male child age 11, and one

female child age 11), resulting in a total of 1,008 tokens. The adult

speakers were taken from the recordings in Shannon et al. [32]

and the two child speakers were recorded in our laboratory. The

RMS amplitude of all stimuli was equalized to the same value. We

divided the stimuli into two sets: training set and test set. The

training set contained speech stimuli from four adult males and

four adult females. The test set contained the stimuli from the

remaining speakers (two male adults, two female adults, one male

child, and one female child). Similar to the experiments described

above, the classifier was trained with clean and noisy speech with

SSN at +10 dB SNR, and was tested with clean and noisy speech

with multi-talker babble noise for a wide range of SNRs. Acoustic

features used for the classifier included outputs of Gammatone

filters above 1 kHz. In one condition, the recorded speech

materials were down-sampled to 16 kHz, which limits the upper

frequency for analysis to 8 kHz. In another condition, the

originally recorded stimuli at a sampling rate of 44.1 kHz were

used, which allows for acoustic analysis for frequencies above

8 kHz.

Figure 3 shows the percent classification accuracy in quiet and

for SNRs from 210 dB to +20 dB for the two sampling rate

conditions. Classification accuracy increased as the sampling rate

increased from 16 to 44.1 kHz, and improvement was greater with

an average increase of 17 percentage points for lower SNRs at 0,

25, and 210 dB.

Application to Signal Processing for Hearing Devices
The results in the present study suggest that the proposed

classification method that uses only static acoustic features

extracted from an 8-msec time frame could potentially be

implemented in real-time for potential use in hearing aid devices

and other auditory prostheses. The earlier prototype of our

frequency lowering algorithm [10], [11] used different methods

(i.e., pre-determined thresholds, linear discriminant analysis) and

different acoustic features to classify fricative consonants, and the

classification accuracy was lower than that reported in the current

study. In preliminary perceptual studies conducted with hearing-

impaired listeners, discrimination of fricative consonants after

frequency lowering improved with the spectral enhancement

method [11]. In listening conditions with a low SNR, the

perception of fricative consonants could be further improved by

resorting to the features and classification method described here.
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