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Abstract. Minimal regularity conditions on the kernels of bilinear operators
are identified and shown to be sufficient for the existence of end-point estimates
within the context of the bilinear Calderón-Zygmund theory.

1. Introduction

A crucial property addressed in the linear Calderón-Zygmund theory, going back
to the founding article [1], is the fact that operators bounded on L2 whose kernels
possess certain regularity are in fact bounded on every Lp space for 1 < p < ∞.
Moreover, such a regularity assumption implies, together with the L2-boundedness
of the operator, a weak-type end-point estimate in L1. From these continuity prop-
erties, the whole range of values of p follows by duality and interpolation. The quest
for the minimal amount of regularity needed to guarantee the existence of such an
end-point estimate has a rich history, with several important results that promoted
as a byproduct numerous developments in harmonic analysis. For classical singular
integrals operators with homogeneous kernels, the question was finally settled in
the work of Seeger [23], who showed that the kernel of the operators could be quite
rough. See also previous work of Christ [5] and Christ and Rubio de Francia [7].
We refer to [23] and its featured review by Hofmann [13] for precise technical de-
tails, an account of the history, and relevant references. For more general multiplier
operators, as well as operators of non-convolution type, the regularity of the kernel
is very closely related to a Lipschitz-type one. It is convenient for our purposes to
recall some well-known facts related to this.

Assume that T : L2(Rn) → L2(Rn) is an operator that, at least for x /∈ supp f ,
is given by

Tf(x) =

∫
K(x, y)f(y) dy.

Here, the kernel K is assumed to be an integrable function on any product E1×E2

of compact sets in R
n, with E1 ∩ E2 = ∅. Then, a sufficient condition for the
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operator to satisfy T : L1 → L1,∞ is the gradient condition on the kernel given by

(1.1) |∇yK(x, y)| � 1

|x− y|n+1
for x �= y.

Alternatively one can assume a Lipschitz form of the above,

(1.2) |K(x, y)−K(x, y′)| � |y − y′|ε
|x− y|n+ε

for |y − y′| ≤ c|x− y|,

for some 0 < ε ≤ 1 and 0 < c < 1. Moreover, one can also consider a weaker
condition which takes the form

(1.3)

∫
|y−y′|≤c|x−y|

|K(x, y)−K(x, y′)| dx < ∞.

This is sometimes referred to as the integral regularity or Hörmander condition.
This condition is very convenient when working on more general geometric or mea-
sure theoretic contexts where other types of regularity are absent or hard to for-
malize. Actually, in R

n it can be written in the more geometric form

(1.4) sup
Q

sup
y∈Q

∫
Rn\Q∗

|K(x, y)−K(x, yQ)| dx < ∞,

where the supremum is taken over all cubes Q in R
n with sides parallel to the

axes, and where Q∗ is the cube with the same center yQ as Q and side length
an appropriately chosen large multiple cn of the side length of Q (for example
cn = 10

√
n �(Q) will do).

To some extent, condition (1.3) is barely enough to prove the end-point estimate
L1 → L1,∞ but, unlike (1.1) or (1.2), it is not enough for other aspects of the
Calderón-Zygmund theory. In particular it does not suffice to establish good-λ
inequalities between T and the Hardy-Littlewood maximal function M , and there
is no weighted theory for operators satisfying only (1.3); see the work of Martell-
Pérez-Trujillo [20].

We also recall that in the case of multiplier operators, that is, kernels of the form
K(x− y), (1.3) follows from the Hörmander-Mihlin conditions. Let T be given by

T̂ f(ξ) = m(ξ)f̂(ξ).

Then, both the Mihlin [21] condition

(1.5) |∂αm(ξ)| � |ξ|−|α| for all |α| ≤ [n/2] + 1

and the weaker Hörmander [14] condition

(1.6) sup
j∈Z

‖m(2j ·)ϕ‖L2
s(R

n) < ∞ for some s > n/2,

where ϕ is a smooth bump supported away from the origin and L2
s is the usual

Sobolev space, imply (1.3).
We now describe the situation of the bilinear Calderón-Zygmund theory. Under

regularity assumptions analogous to (1.1) or (1.2), the theory has been developed
through works of Coifman-Meyer [2], [3], [4], Christ-Journé [6], Kenig-Stein [15]
and Grafakos-Torres [10], [11]. Some of the most recent work in the subject was
motivated in part by the results of Lacey-Thiele [16], [17] on the bilinear Hilbert
transform and a search for the optimal range of exponents where boundedness in
Lebesgue spaces can be obtained. Unlike the case of the bilinear Hilbert transform,
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a more singular operator not covered by the Calderón-Zygmund theory, the bound-
eness of Calderón-Zygmund operators on the full range of exponents is known. In
particular, it was shown in [11] that a bilinear operator bounded from Lp×Lq → Lr

for some 1/p+ 1/q = 1/r, and given by

T (f, g)(x) =

∫
R2n

K(x, y, z)f(y)g(z) dydz

for x /∈ supp f ∩ supp g, also satisfies T : L1 ×L1 → L1/2,∞, provided the Schwartz
kernel of the operator has the Lipschitz regularity properties

(1.7) |K(x, y, z)−K(x, y′, z)| � |y − y′|ε
(|x− y|+ |x− z|)n+ε

whenever |y − y′| ≤ 1
2 max{|x− y|, |x− z|} and

(1.8) |K(x, y, z)−K(x, y, z′)| � |z − z′|ε
(|x− y|+ |x− z|)n+ε

whenever |z − z′| ≤ 1
2 max{|x − y|, |x − z|}. As in the linear theory, if T and its

two transposes T ∗1 and T ∗2 satisfy the same conditions, then interpolation and
duality give boundedness for the full range of exponents, Lp × Lq → Lr for all
1/p + 1/q = 1/r and 1/2 < r < ∞. Moreover, the regularity assumptions are
also good enough to obtain a weighted theory for classical Ap weights, as shown by
Grafakos-Torres [12] and Pérez-Torres [22], which was later extended to new optimal
multilinear classes of weights by Lerner-Ombrosi-Pérez-Torres-Trujillo [18].

There has been, after all of these works, some interest in finding the correspond-
ing analog to the minimal regularity assumption (1.3) in the multilinear setting.
Our purpose with this short note is to contribute in this regard.

We note that Maldonado and Naibo [19] have weakened (1.7) and (1.8) to a
Diny-type condition that we shall also consider (see Definition 2.2 below), and they
simplified the proof of the end-point estimate. However, we are able in this article
to identify integral type conditions which are even weaker and to further simplify
the proof of the L1 × L1 → L1/2,∞ result. We focus only on the bilinear setting,
but the interested reader may find analogous conditions in the m-linear case. The
reader may also proceed to the next section, where we state the conditions, but we
want to provide some heuristic considerations that led to the conditions we use. To
do so, we recall very recent results for bilinear multiplier operators (corresponding
to operators with kernels of the form K(x − y, x − z)). It is of interest that the
parallel to the linear theory in terms of minimal regularity for multipliers appears
to break down.

Suppose that Tm is a Coifman-Meyer bilinear multiplier operator. That is,

Tm(f, g)(x) =

∫
m(ξ, η)f̂(ξ)ĝ(η)eix(ξ+η) dξdη,

where

(1.9) |∂αm(ξ, η)| �α (1 + |ξ|+ |η|)−|α| for all α.

Then the kernel of Tm is of the form K(x− y, x− z) and satisfies

|∂αK(x− y, x− z)| �α
1

(|x− y|+ |x− z|)2n+|α| .
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This follows from considering m as a multiplier in R
2n and restricting the cor-

responding kernel K(x1 − y, x2 − z) to x1 = x2. It also follows then that these
operators are bounded from Lp ×Lq → Lr for the full range of exponents and also
from L1 × L1 to L1/2,∞.

It is very natural to expect that (1.9) could be relaxed to a Hörmander-Mihlin
condition, limiting the number of derivatives of the symbol needed to be controlled.
Certainly the arguments used by Coifman-Meyer only need a “sufficiently large”
number of derivatives (not easy to track in their computations), but one should
expect to require only about “half-the-dimension” number of derivatives. How-
ever, the natural dimension in the bilinear setting appears to be 2n, and so some
interesting situations occur.

In fact, Tomita [24] recently showed that

(1.10) sup
j∈Z

‖m(2j ·, 2j ·)ϕ‖L2
s(R

2n) < ∞ for some s > n,

where ϕ is an appropriate cut-off function in R
2n, implies the boundedness

Tm : Lp × Lq → Lr

with 1/p + 1/q = 1/r, but only for r > 1, that is, essentially “half-the-dimension”
number of derivatives in L2 to obtain the range r > 1. However, to obtain other
values of 1/2 < r ≤ 1, which is also natural in the bilinear case, it appears that one
needs to impose higher regularity. Grafakos-Si [9] showed after Tomita’s work that
one can push p, q to 1 + ε (i.e. r to 1/2 + ε/2 ) if

(1.11) sup
j∈Z

‖m(2j ·, 2j ·)ϕ‖Ltε
s (R2n) < ∞

for appropriate 1 < tε ≤ 2 and s > 2n/tε. Essentially, one may say that 2n
derivatives in L1 may be required to get the full range of exponents. We refer to
[9] for the precise technical details. Similar results on the product of Hardy Hp

were very recently obtained by Grafakos-Miyachi-Tomita [8], but, as far as we know
and unlike the linear case, there are no results of this type that give the end-point
estimate L1 × L1 → L1/2,∞ (except, of course, for the sufficiently large number of
derivatives in the arguments of Coifman-Meyer using (1.9) and which give pointwise
estimates on the gradient of the kernel).

As already mentioned, we want to find some bilinear analog of the integral con-
dition (1.3) even for non-convolution operators, but it is instructive to see what
such a condition could be in the case of multipliers.

If we again consider m as a Fourier multiplier in R
2n, then (1.10) is just Hör-

mander’s condition, and we have for the kernel of the corresponding linear operator
in R

2n for any y, z ∈ R
n∫

|y−y′|+|z−z′|≤c|x1−y|+|x2−z|
|K(x1 − y, x2 − z)−K(x1 − y′, x2 − z′)| dx1dx2 ≤ C.

When z = z′ and performing a simple change of variables, the above can be written
as∫
|y−y′|≤c|x1−y|+|x2−z|

|K(x1−y, x1−(x1−x2+z))−K(x1−y′, x1−(x1−x2+z))| dx2dx1

=

∫
|y−y′|≤c|x1−y|+|x1−u|

|K(x1 − y, x1 − u)−K(x1 − y′, x1 − u)| dudx1 ≤ C.
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In a more geometric form (and considering a smaller region of integration) we can
essentially state the above in the form

(1.12) sup
Q

sup
y∈Q

∫
Rn

∫
Rn\Q∗

|K(x− y, x− u)−K(x− yQ, x− u)| dxdu ≤ C,

and similarly in the other variable,

(1.13) sup
Q

sup
y∈Q

∫
Rn

∫
Rn\Q∗

|K(x− u, x− z)−K(x− u, x− yQ)| dxdu ≤ C.

In the non-convolution case of interest to us, conditions (1.12) and (1.13) would
become

(1.14) sup
Q

sup
y∈Q

∫
Rn

∫
Rn\Q∗

|K(x, y, u)−K(x, yQ, u)| dxdu ≤ C

and

(1.15) sup
Q

sup
z∈Q

∫
Rn

∫
Rn\Q∗

|K(x, u, z)−K(x, u, zQ)| dxdu ≤ C.

Unfortunately these conditions do not seem to be enough to show the end-point
estimate we are looking for. This is not surprising since, as observed, in the convo-
lution case they are implied by Tomita’s condition (1.10), which does not seem to
be even enough for boundedness for any r ≤ 1.

We find interesting that a small modification of (1.14) and (1.15) (moving the
supy∈Q inside the integral), together with a closely related new integral condition,
suffices. Moreover we will show that the conditions are implied by a very general
Dini-type one, hence showing that they are weaker than all others considered in
the literature so far.

2. The new regularity conditions

Definition 2.1. We say that the bilinear operator with kernel K satisfies the
bilinear geometric Hörmander conditions (BGHC) if there exists a fixed constant
B such that and for any two families of disjoint dyadic cubes D1 and D2,

(2.1) sup
Q∈D1

∫
Rn

sup
y∈Q

∫
Rn\(∪R∈D1

R∗)

|K(x, y, z)−K(x, yQ, z)| dx dz ≤ B,

(2.2) sup
P∈D2

∫
Rn

sup
z∈P

∫
Rn\(∪S∈D2

S∗)

|K(x, y, z)−K(x, y, zP )| dx dy ≤ B,

and
(2.3)∑
(P,Q)∈D1×D2

|P ||Q| sup
(y,z)∈P×Q

∫
Rn\(∪R∈D1

R∗)∪(∪S∈D2
S∗)

|K(x, y, z)−K(x, yP , zQ)| dx

≤ B (| ∪P∈D1
P |+ | ∪Q∈D2

Q|) .

We want to make some further remarks about these conditions. Write Ω1 =
∪Q∈D1

Q, Ω∗
1 = ∪Q∈D1

Q∗, Ω2 = ∪P∈D2
P , and Ω∗

2 = ∪P∈D1
P ∗. First, note that for
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any y′, y′′ ∈ Q,

sup
y∈Q

∫
Rn\Ω∗

1

|K(x, y, z)−K(x, y′, z)| dx

� sup
y∈Q

∫
Rn\Ω∗

1

|K(x, y, z)−K(x, y′′, z)| dx+

∫
Rn\Ω∗

1

|K(x, y′, z)−K(x, y′′, z)| dx

� sup
y∈Q

∫
Rn\(Ω∗

1

|K(x, y, z)−K(x, y′′, z)| dx,

so the inner supremum and integral in (2.1) can be replaced by either

sup
y′∈Q

sup
y∈Q

∫
Rn\Ω∗

1

|K(x, y, z)−K(x, y′, z)| dx

or

inf
y′∈Q

sup
y∈Q

∫
Rn\Ω∗

1

|K(x, y, z)−K(x, y′, z)| dx.

Similarly with (2.2), where it is also equivalent to replace the supremum and integral
in (2.3) by

sup
(α,β)∈P×Q

sup
(y,z)∈P×Q

∫
Rn\(Ω∗

1∪Ω∗
2)

|K(x, y, z)−K(x, α, β)| dx

or

inf
(α,β)∈P×Q

sup
(y,z)∈P×Q

∫
Rn\(Ω∗

1∪Ω∗
2)

|K(x, y, z)−K(x, α, β)| dx.

Next, we note that (2.3) is in some sense the strongest of the three conditions, since
it gives a substantial part (though not all) of (2.1) and (2.2). In fact, note that D1

and D2 could be the same family, so assuming that (2.3) holds,∑
Q∈D1

|Q|
∫
Ω1

sup
y∈Q

∫
Rn\Ω∗

1

|K(x, y, z)−K(x, yQ, z)| dx dz

≤
∑

Q∈D1

|Q|
∑

Q′∈D1

|Q′| sup
z∈Q′

sup
y∈Q

∫
Rn\Ω∗

1

|K(x, y, z)−K(x, yQ, z)| dx

≤
∑

(Q,Q′)∈D1×D1

|Q| |Q′| sup
(α,β)∈Q×Q′

sup
(y,z)∈Q×Q′

∫
Rn\(Ω∗

1∪Ω∗
1)

|K(x, y, z)−K(x, α, β)| dx

≤ B (| ∪Q∈D1
Q|+ | ∪Q′∈D1

Q′|) ≤ 2B
∑

Q∈D1

|Q|.

So, given (2.3), the condition (2.1) could be replaced with the weaker one∫
Rn\Ω1

sup
y∈Q

∫
Rn\Ω∗

1

|K(x, y, z)−K(x, yQ, z)| dx dz ≤ B.

In fact, this condition and the presiding computations imply∑
Q∈D1

|Q|
∫
Rn

sup
y∈Q

∫
Rn\Ω∗

1

|K(x, y, z)−K(x, yQ, z)| dx dz

≤ 2B
∑

Q∈D1

|Q|+
∑

Q∈D1

|Q|
∫
Rn\Ω1

sup
y∈Q

∫
Rn\Ω∗

1

|K(x, y, z)−K(x, yQ, z)|dx dz

≤ 3B
∑

Q∈D1

|Q|.
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By considering just one cube, we obtain∫
Rn

sup
y∈Q

∫
Rn\Q∗

|K(x, y, z)−K(x, yQ, z)|dxdz � B,

which clearly gives (2.1). Similarly with (2.2).
We now show that the BGHC are implied by a Dini-type one. The following

condition is essentially the one considered by Maldonado and Naibo [19], except
that we do not require the function Φ involved to be convex.

Definition 2.2. Let Φ be increasing and such that∫ 1

0

Φ(t)
dt

t
< ∞.

We say that K satisfies a bilinear Dini-type condition if

|K(x, y, z)−K(x, y′, z′)| ≤ C

(|x− y|+ |x− z|)2nΦ
( |y − y′|+ |z − z′|
|x− y|+ |x− z|

)
whenever |y − y′| ≤ 1

2 |x− y| and |z − z′| ≤ 1
2 |x− z|.

By taking Φ(t) = tε it follows that the bilinear Lipschitz regularity conditions
imply the Dini-type one. We now show that the BGHC is actually weaker.

Proposition 2.3. The Dini-type condition implies the BGHC.

Proof. We first show that the Dini-type condition implies∫
Rn

sup
y∈Q

∫
Rn\Ω∗

1

|K(x, y, z)−K(x, yQ, z)| dx dz ≤ C

for some C > 0. Indeed,∫
Rn

sup
y∈Q

∫
Rn\Ω∗

1

|K(x, y, z)−K(x, yQ, z)| dx dz

�
∫
Rn

sup
y∈Q

∫
Rn\Q∗

1

(|x− y|+ |x− z|)2nΦ
( |y − yQ|
|x− y|+ |x− z|

)
dx dz

�
∫
Rn

∫
Rn\Q∗

1

(|x− yQ|+ |x− z|)2nΦ
(√n �(Q)

|x− yQ|
)
dx dz

�
∫
Rn\Q∗

1

|x− yQ|n
Φ
(√n �(Q)

|x− yQ|
)
dx

�
∫
|x|>cn�(Q)

1

|x|nΦ
(cn�(Q)

|x|
)
dx < ∞.

By symmetry, the proof of (2.2) is identical.

We now prove (2.3). Fix P and Q. Then

sup
(y,z)∈P×Q

∫
Rn\(Ω∗

1∪Ω∗
2)

|K(x, y, z)−K(x, yP , zQ)| dx

� sup
(y,z)∈P×Q

(∫
Rn\(P∗∪Q∗)

1

(|x− y|+ |x− z|)2n
Φ
( |y − yP |+ |z − zQ|

|x− y|+ |x− z|

)
dx

)

� sup
(y,z)∈P×Q

(∫
Rn\(P∗∪Q∗)

1

(|x− y|+ |x− z|)2n
Φ
( √

n (�(P ) + �(Q))

|x− yP |+ |x− zQ|

)
dx

)

� inf
(y,z)∈P×Q

(∫
Rn\(P∗∪Q∗)

1

(|x− y|+ |x− z|)2n
Φ
( √

n (�(P ) + �(Q))

|x− yP |+ |x− zQ|

)
dx

)
.
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Then,

∑
(P,Q)∈D1×D2

|P ||Q| sup
(y,z)∈P×Q

∫
Rn\(Ω∗

1∪Ω∗
2)

∣∣K(x, y, z)−K(x, yP , zQ)
∣∣ dx

�
∑

(P,Q)∈D1×D2

|P ||Q| inf
(y,z)∈P×Q

(∫
Rn\(P∗∪Q∗)

1

(|x− y|+ |x− z|)2n
Φ
( √

n (�(P ) + �(Q))

|x− yP |+ |x− zQ|

)
dx

)

�
∑

(P,Q)∈D1×D2

∫
P

∫
Q

∫
Rn\(P∗∪Q∗)

1

(|x− y|+ |x− z|)2n
Φ
( √

n (�(P ) + �(Q))

|x− yP |+ |x− zQ|

)
dx dydz

= C

⎛
⎝ ∑

(P,Q)∈D1×D2:�(P )≤�(Q)

+
∑

(P,Q)∈D1×D2:�(Q)≤�(P )

⎞
⎠ = I + II.

We estimate I; the other term is of course similar. Now,

I �
∑

(P,Q)∈D1×D2

∫
P

∫
Q

∫
Rn\(P ∗∪Q∗)

1

(|x− y|+ |x− z|)2n

×Φ
( 2

√
n �(Q)

|x− yP |+ |x− zQ|
)
dx dydz

�
∑

Q∈D2

∫
Rn\Q∗

∫
Q

∑
P∈D1

∫
P

1

(|x− y|+ |x− z|)2n Φ
(2√n �(Q)

|x− zQ|
)
dy dzdx

�
∑

Q∈D2

∫
Rn\Q∗

∫
Q

∫
Rn

1

(|x− y|+ |x− z|)2n dy dzΦ
(2√n �(Q)

|x− zQ|
)
dx.

We can estimate the innermost integral by C
|x−z|n ; hence

I �
∑

Q∈D2

∫
Rn\Q∗

∫
Q

1

|x− z|nΦ
(2√n �(Q)

|x− zQ|
)
dx dz

�
∑

Q∈D2

∫
Q

∫
Rn\Q∗

1

|x− z|nΦ
(2√n �(Q)

|x− zQ|
)
dx dz

�
∑

Q∈D2

∫
Q

∫
Rn\Q∗

1

|x− zQ|n
Φ
(2√n �(Q)

|x− zQ|
)
dx dz

�
∑

Q∈D2

|Q|
∫
|x|≥1

1

|x|nΦ
( 1

|x|
)
dx � | ∪Q∈D2

Q|
∫ 1

0

Φ(t)
dt

t
.

Likewise, the term II is bounded by C| ∪P∈D1
P |, which completes the proof of

(2.3). �
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3. The end-point estimate

Theorem 3.1. Let T be a bilinear operator satisfying T : Lp1×Lp2 → Lp3 for some
1/p1 + 1/p2 = 1/p3, 1 ≤ p1, p2 < ∞, and also the BGHC. Then, T : L1 × L1 →
L1/2,∞.

Proof. It is enough to show that
(3.1)

|{x ∈ R
n : |T (f1, f2)(x)| > λ2}| ≤ C

(∫
Rn

|f1(x)|
λ

dx

)1/2 (∫
Rn

|f2(x)|
λ

dx

)1/2

,

for all f1, f2 ∈ C∞
c (Rn). Moreover, by homogeneity we may assume that ‖f1‖1 =

‖f2‖1 = 1 and prove that

(3.2) |{x ∈ R
n : |T (f1, f2)(x)| > λ2}| ≤ C

λ
,

with constant C independent of λ.
Fix λ > 0. For f1 we consider the standard Calderón-Zygmund decomposition

at level λ and obtain a collection of dyadic non-overlapping cubes Q1,k that satisfy

λ <
1

|Q1,k|

∫
Q1,k

|f1(x)| dx ≤ 2nλ.

If we set Ω1 =
⋃

k Q1,k, then

|Ω1| ≤
C

λ

and

|f1(x)| ≤ λ a.e. x ∈ R
n \ Ω1.

As usual, we write f1 = g1 + b1, where g1 is defined by

g1(x) =

{
f1(x), x ∈ R

n \ Ω1,
fQ1,k

, x ∈ Q1,k,

and where fQ = 1
|Q|

∫
Q
f . The “good” function g1 satisfies, for any s ≥ 1,

(3.3) ‖g1‖s ≤ Cλ1/s′‖f1‖
1

2s′ +
1
s

1 ‖f2‖
− 1

2s′
1 = Cλ1/s′ ,

and b1 is written as

b1(x) =
∑
k

b1,k(x) =
∑
k

(f1(x)− fQ1,k
)χQ1,k

(x).

We do the same for f2. Via the Calderón-Zygmund decomposition at the same
level λ, we obtain a collection of of dyadic non-overlapping cubes Q2,k with union
Ω2 and analogous decomposition f2 = g2 + b2 with the properties described for f1.
Set

Ω∗ = Ω∗
1 ∪ Ω∗

2.
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We split the distribution set we are trying to estimate into several parts as
follows:

|{x ∈ R
n : |T (f1, f2)(x)| > λ2}| ≤ |{x /∈ Ω∗ : |T (f1, f2)(x)| > λ2}|+ |Ω∗|

≤ |{x ∈ R
n : |T (g1, g2)(x)| > λ2/4}|

+ |{x ∈ R
n \ Ω∗ : |T (g1, b2)(x)| > λ2/4}|

+ |{x ∈ R
n \ Ω∗ : |T (b1, g2)(x)| > λ2/4}|

+ |{x ∈ R
n \ Ω∗ : |T (b1, b2)(x)| > λ2/4}|

+ |Ω∗|
= |E1|+ |E2|+ |E3|+ |E4|+ |Ω∗|.

Clearly |Ω∗| is of the right size, so we only need to estimate the other sets. To
estimate |E1|, we use the fact that T : Lp1 ×Lp2 → Lp3 for some 1/p1+1/p2 = 1/p3
to obtain

|E1| ≤
C

λp3

∫
Rn

|T (g1, g2)(x)|p3dx ≤ C

λ2p3
‖g1‖p3

p1
‖g2‖p3

p2

≤ C

λ2p3
λp3(1−1/p1)λp3(1−1/p2) =

C

λ
.

By symmetry, the study of |E2| and |E3| are similar, so we only consider |E2|. We
have

|E2| ≤
C

λ2

∫
Rn\Ω∗

∑
k

|T (g1, b2,k)(x)| dx

≤ C

λ2

∑
k

∫
Rn\Ω∗

∣∣∣∣∣
∫
Rn

∫
Q2,k

K(x, y, z)g1(y)b2,k(z) dz dy

∣∣∣∣∣ dx
≤ C

λ2

∑
k

∫
Rn\Ω∗

2

∣∣∣∣∣
∫
Rn

g1(y)

∫
Q2,k

(
K(x, y, z)−K(x, y, zQ2,k

)
)

× b2,k(z) dz dy

∣∣∣∣ dx
≤ C

λ2

∑
k

∫
Rn

|g1(y)|
∫
Q2,k

|b2,k(z)|
∫
Rn\Ω∗

|K(x, y, z)−K(x, y, zQ2,k
)| dx dz dy

≤ C

λ2

∑
k

∫
Rn

(
|g1(y)|

∫
Q2,k

|b2,k(z)| dz

× sup
z∈Q2,k

∫
Rn\Ω∗

|K(x, y, z)−K(x, y, zQ2,k
)| dx

)
dy

≤ C

λ

∫
Rn

|g1(y)|
∑
k

|Q2,k| sup
z∈Q2,k

∫
Rn\Ω∗

|K(x, y, z)−K(x, y, zQ2,k
)| dx dy

≤ C

λ
‖g1‖∞

∫
Rn

∑
k

|Q2,k| sup
z∈Q2,k

∫
Rn\Ω∗

|K(x, y, z)−K(x, y, zQ2,k
)| dx dy

≤ C|Ω2| ≤
C

λ
,

where we have used condition (2.2).
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It only remains to estimate

|E4| = |{x ∈ R
n \ Ω : |T (b1, b2)(x)| > λ2/4}|.

Writing

T (b1, b2) =
∑
l,k

T (b1,l, b2,k),

we have

|E4| ≤ C

λ2

∑
l,k

∫
Rn\Ω∗

|T (b1,l, b2,k)(x)| dx

≤ C

λ2

∑
l,k

∫
Rn\Ω∗

∣∣∣∣∣
∫
Q1,l

∫
Q2,k

K(x, y, z)b1,l(y)b2,k(z) dzdy

∣∣∣∣∣ dx.
Fix one of these Q1,l and Q2,k:∫

Q1,l

∫
Q2,k

b1,l(y)b2,k(z) dzdy = 0;

we have ∫
Rn\Ω∗

∣∣∣∣∣
∫
Q1,l

∫
Q2,k

K(x, y, z) b2,k(z)b1,l(y)dz dy

∣∣∣∣∣ dx
=

∫
Rn\Ω∗

∣∣∣∣∣
∫
Q1,l

∫
Q2,k

(K(x, y, z)−K(x, yQ1,l
, zQ2,k

)) b2,k(z)b1,l(y)dz dy

∣∣∣∣∣ dx
≤

∫
Rn\Ω∗

∫
Q1,l

∫
Q2,k

∣∣K(x, y, z)−K(x, yQ1,l
, zQ2,k

)
∣∣ dx |b2,k(z)||b1,l(y)| dz dy

=

∫
Q1,l

∫
Q2,k

∫
Rn\Ω∗

∣∣K(x, y, z)−K(x, yQ1,l
, zQ2,k

)
∣∣ dx |b2,k(z)||b1,l(y)| dz dy

≤
∫
Q1,l

∫
Q2,k

|b2,k(z)||b1,l(y)|dz dy

× sup
(y,z)∈Q1,l×Q2,k

∫
Rn\Ω∗

∣∣K(x, y, z)−K(x, yQ1,l
, zQ2,k

)
∣∣ dx

≤ C λ2 |Q1,l||Q2,k| sup
(y,z)∈Q1,l×Q2,k

∫
Rn\Ω∗

∣∣K(x, y, z)−K(x, yQ1,l
, zQ2,k

)
∣∣ dx.

Finally,

|E4| ≤ C
∑
l,k

|Q1,l||Q2,k| sup
(y,z)∈Q1,l×Q

∫
Rn\Ω∗

∣∣K(x, y, z)−K(x, yQ1,l
, zQ2,k

)
∣∣ dx

≤ C (| ∪l Q1,l|+ | ∪k Q2,k|) = c (|Ω1|+ |Ω2|) ≤
C

λ

because of condition (2.3). �
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estimates for some singular integral operators, Trans. Amer. Math. Soc. 357 (2005), no. 1,
385–396 (electronic), DOI 10.1090/S0002-9947-04-03510-X. MR2098100 (2005f:42036)

[21] S. G. Mihlin, On the multipliers of Fourier integrals, Dokl. Akad. Nauk SSSR (N.S.) 109
(1956), 701–703 (Russian). MR0080799 (18,304a)
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