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A MOLECULAR PHYLOGENY OF BLACK-TYRANTS 

(TYRANNIDAE: KNIPOLEGUS) REVEALS STRONG GEOGRAPHIC PATTERNS 

AND HOMOPLASY IN PLUMAGE AND DISPLAY BEHAVIOR

PETER A. HOSNER1 AND ROBERT G. MOYLE

Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, 1345 Jayhawk Boulevard, Lawrence, Kansas 66046, USA

Abstract.—We present the first molecular phylogenetic hypothesis for Knipolegus (black-tyrants), a widespread genus of South 

American tyrant-flycatchers, based on nuclear and mitochondrial DNA sequences. Bayesian and maximum-likelihood analyses 

support three clades within Knipolegus, one confined to northern South America, one confined to southeast Brazil, and one confined 

to the Southern Cone and southern Andes. Within each clade, two or more species are broadly sympatric or parapatric, overlapping in 

general distribution but differing in habitat specialization. Maximum-likelihood ancestral state reconstructions using an equal-rate 

stochastic model support a single origin of austral migration in the southern group. Contrasting with these strong geographic patterns, 

ancestral state reconstructions of plumage and display evolution were more complex, with multiple inferred character-state changes. 

Ancestral state reconstructions suggest a sexually dimorphic ancestor of Knipolegus, and sexually similar plumages are the result of 

three independent character-state changes: one in male plumage and two in female plumage. Ancestral state reconstructions support 

the conclusion that flight displays with mechanical sounds originated in the Knipolegus ancestor, and loss of mechanical sounds in flight 

displays occurred twice. Received  May , accepted  December .

Key words: biogeography, Knipolegus, migration, plumage evolution, South America, tyrant-flycatchers.

La Filogenia Molecular de Knipolegus (Tyrannidae) Revela Patrones Geográficos Fuertes y Homoplasia en el 
Plumaje y el Comportamiento de Despliegue

Resumen.—Con base en secuencias de ADN nuclear y mitocondrial, presentamos la primera hipótesis filogenética molecular 

para Knipolegus (Tyrannidae), un género ampliamente distribuido de mosqueros suramericanos. Análisis bayesianos y de máxima 

verosimilitud sustentan la existencia de tres clados dentro de Knipolegus, uno confinado al norte de Sur América, otro al sureste de 

Brasil y otro al cono sur y a los Andes del sur. Dentro de cada clado, dos o más especies son ampliamente simpátricas o parapátricas; 

aunque sus distribuciones generales se superponen, difieren en su especialización de hábitat. La reconstrucción ancestral de caracteres 

por máxima verosimilitud usando un modelo estocástico de tasas iguales sustenta un solo origen de la migración austral en el grupo. 

En contraste con estos fuertes patrones geográficos, la reconstrucción de caracteres ancestrales del plumaje y del comportamiento de 

despliegue fueron más complejas, con múltiples cambios de estado inferidos. Las reconstrucciones de caracteres ancestrales sugieren 

un ancestro sexualmente dimórfico en Knipolegus, y que los plumajes sin dimorfismo son el resultado de tres cambios independientes de 

estado de caracter: uno en el plumaje del macho y dos en el plumaje de la hembra. La reconstrucción de caracteres ancestrales sustenta la 

conclusión de que los despliegues en vuelo con sonidos mecánicos se originaron en el ancestro de Knipolegus y la pérdida de los sonidos 

mecánicos en el vuelo tuvo lugar dos veces.
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The genus Knipolegus (Passeriformes: Tyrannidae) comprises 

 recognized species of unobtrusive and little-studied tyrant-

flycatchers distributed nearly throughout South America (Cory 

and Hellmayr ; Meyer de Schauensee ; Traylor ; 

Ridgely and Tudor , ; Remsen et al. ). The English 

name for the genus, “black-tyrant,” refers to the blackish plum-

age of most male and some female Knipolegus, depending on the 

species. Their gross morphology is highly conserved and in many 

ways stereotypical of a tyrannid: small body size, upright posture, 

and wide flattened bill. Knipolegus are members of the subfamily 

Fluvicolinae (Cory and Hellmayr ; Traylor , ; Fitzpat-

rick ; Ohlson et al. ; Tello et al. ), a clade of tyran-

nids most diverse in open habitats of southern South America. 

Knipolegus occur in habitats as diverse as Amazon River island 

scrub, várzea, Andean montane forest edge, high-elevation arid 

valleys, open Pampas grassland, thorn forest, gallery woodland, 

and monte desert. No phylogenetic hypothesis exists for Knipo-

legus, although some authors have grouped species on the basis 
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The goal of the present study is to create the first phyloge-

netic hypothesis for the Knipolegus black-tyrants based on DNA 

sequence data and to use the phylogeny and ancestral state recon-

structions to examine this group’s biogeographic and evolution-

ary history. The phylogeny will allow exploration of a variety of 

pertinent evolutionary questions in birds, such as the following. 

Do Knipolegus conform to a biogeographic pattern of many South 

American birds, a series of allopatric replacements distributed 

across the continent? Does migration play a role in diversification, 

isolating migratory and resident species pairs? Are plumage pat-

terns and flight display behavior conserved, the result of single 

character-state changes in progression, or are they highly plastic, 

featuring losses of putative sexually selected traits? Results will 

provide a framework to broaden these same questions to Tyran-

nidae, one of the largest (Tello et al. ) and most diverse avian 

radiations.

METHODS

Taxon sampling.—We obtained tissue samples from Knipolegus

species, including multiple individuals and samples from geo-

graphically disparate regions when possible (Table ). Although 

they are not currently recognized as species (Remsen et al. ), 

some taxonomists have treated K. signatus cabanisi (Meyer 

de Schauensee , Traylor , Ridgely and Tudor ) 

and K. aterrimus franciscanus (Silva and Oren , Ridgely 

and Tudor , van Perlo ) as species; here, we treat them 

as operational taxonomic units. Phylogenetic studies of Tyrannids 

based on morphology (Lanyon ) and molecular markers 

(Ohlson et al. , Tello et al. ) have suggested several taxa 

as potential sister groups of Knipolegus; thus, we included Pyro-

cephalus, Satrapa, Muscisaxicola, Hymenops, Xolmis, Agriornis,

and Lessonia as out-groups to account for this uncertainty. 

DNA extraction, amplification, and sequencing.—We ex-

tracted genomic DNA from ethanol-preserved or frozen fresh 

muscle tissue using proteinase-K digestion following manufac-

turer’s protocol (DNeasy tissue kit; Qiagen, Valencia, California). 

We used polymerase chain reaction (PCR) to amplify three coding 

mitochondrial genes and three unlinked nuclear introns. Mito-

chondrial genes included the entire NADH dehydrogase- (here-

after ND), the entire NADH dehydrogenase- (hereafter ND), 

and a fragment of cytochrome-c oxidase- (hereafter CO). Nu-

clear introns included beta-fibrinogen intron  (hereafter Fib-), 

glyceraldehydes--phosphodehydrogenase intron  (hereafter 

GAPDH), and transforming growth factor beta- intron  (hereaf-

ter TGFb). Primers used to amplify gene regions (Hackett , 

Johnson and Sorenson , Chesser , Marini and Hack-

ett , Primmer et al. , Fjeldså et al. , Lohman et al. 

) are summarized in Appendix . We purified PCR products 

with ExoSAP-IT (USB) and performed cycle sequencing of puri-

fied PCR products with BigDye Terminator Cycle Sequencing kits 

(Applied Biosystems, Foster City, California). Cycle sequencing 

reactions used the same primers as PCR, and we sequenced both 

strands for all PCR products. We purified cycle sequencing prod-

ucts using ethanol precipitation and analyzed sequences on an 

ABI  automated capillary DNA sequencer (Applied Biosys-

tems), and we reconciled chromatograms of complementary frag-

ments using SEQUENCHER, version . (Genecodes, Ann Arbor, 

Michigan). We downloaded CO sequences of K. nigerrimus and

of primary feather morphology (e.g., K. poecilocercus and K. hud-

soni; Ridgway , Wetmore and Peters , Cory and Hellmayr 

, Traylor ) and plumage (e.g., K. nigerrimus and K. lopho-

tes; Ridgely and Tudor ). 

Classic paradigms explaining South American biogeo-

graphy and diversification (e.g., Haffer , Cracraft ) 

have focused on tropical forest species that are geographically 

partitioned by strong barriers to dispersal, such as Amazonian 

rivers and semiarid habitats. Phylogeographic studies of tropical 

forest species are largely congruent with these paradigms (Marks 

et al. , Cheviron et al. , Nyári ). Understanding 

phylogenetic relationships within Knipolegus would provide a 

novel perspective on South American biogeography because they 

utilize nonprimary forest habitats and are found in tropical, tem-

perate, and semiarid biomes. Knipolegus species may form groups 

of allopatric replacements across South America, similar to birds 

in Amazonia (Cracraft and Prum ). Diversification could 

also be the result of processes independent of those that drive 

diversification in birds limited to the tropical zone. For example, 

seasonal migration in Knipolegus may facilitate diversification 

via long-distance colonization (Kondo et al. ), a mecha-

nism that is not feasible for largely sedentary Amazonian birds. 

Hypothesized relationships between migratory and nonmigratory 

Knipolegus (e.g., K. poecilocercus–K. hudsoni and K aterrimus–

K. a. franciscanus) suggest that seasonal migration could play a 

role in Knipolegus diversification. 

In addition to intriguing biogeographic patterns, Knipole-

gus show unusual patterns of plumage evolution. The majority of 

Knipolegus are sexually dimorphic, but some species have reduced 

sexual dimorphism or sexually monomorphic plumage. From a 

sexually dimorphic ancestor, two evolutionary routes can pro-

duce sexually monomorphic plumage (Wiens , Badyaev and 

Hill ): a (frequently dull or cryptic) female phenotype may 

converge on a (frequently more elaborate) male phenotype, or a 

male phenotype may converge on a female phenotype. Knipolegus

are notable in that monomorphic species embody either male or 

female phenotypes. For example, both sexes of K. lophotes have 

black plumage, typical of most male Knipolegus, whereas both 

sexes of K. poecilurus have brown and rufous plumage, more typi-

cal of female Knipolegus.

Fluvicoline flycatchers also exhibit a diversity of breeding 

display behaviors, and much of this variation is represented in 

Knipolegus. Display behaviors range from species with spectacu-

lar acrobatic displays featuring mechanical sounds or flight songs 

to species that have no known displays or vocalizations. The ma-

jority of Knipolegus species have male flight displays with a buzzy 

or ticking sound, perhaps a mechanical bill or wing sound as in 

other Tyrannids (Bostwick and Zyskowski , Fitzpatrick ). 

These flight displays involve three phases: an upward flight, fol-

lowed by an acrobatic turn in midair, and a return to a perch. All 

three of these phases are slightly different among species (Ridgely 

and Tudor , Fitzpatrick ). However, four taxa (K. lopho-

tes, K. nigerrimus, K. a. franciscanus, and K. cyanirostris) have 

drastically different display behaviors with no known mechanical 

sounds. The first, K. lophotes, has a unique flight song. Three re-

maining species are essentially silent; K. cyanirostris has a subtle 

flight display with no sound (Belton , Fitzpatrick ), and 

K. nigerrimus and K. a. franciscanus have no known displays or 

vocalizations (Ridgely and Tudor , ). 
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K. a. franciscanus, for which we had no tissue samples, and addi-

tional samples of K. lophotes and K. striaticeps (Chaves et al. , 

Kerr et al. ; Table ) from GenBank and added them to our 

sequence data set; we lack all other gene sequences for these sam-

ples. Alignments were reconstructed for each gene using the on-

line version of MUSCLE (Edgar ). 

Phylogenetic analysis.—We estimated phylogenetic relation-

ships with Bayesian and maximum-likelihood (ML) inference for 

mitochondrial and nuclear data sets separately (Appendix ) to 

examine the potential pitfall of combining data sets with con-

flicting phylogenetic signal. We observed no well-supported con-

flicts in topology (P > . posterior probability) among in-group 

samples; subsequently we used a concatenated data set for analy-

ses. MODELTEST, version . (Posada and Crandall ), using 

Akaike’s information criterion (AIC), selected a general time-

reversible model with gamma-distributed rates among sites and 

invariant sites (GTR+I+G) for mitochondrial genes, the HKY+G 

model for nuclear introns GPDH and Fib-, and the HKY+I+G 

TABLE 1. Tissue samples and associated voucher specimens used to produce a phylogeny of 
black-tyrants in the genus Knipolegus.

Taxon Institutiona Tissue Locality

Agriornis murinus KUNHM 11853 Argentina: Rio Negro
Xolmis irupero KUNHM 2837 Paraguay: Presidente Hayes
Muscisaxicola macloviana KUNMH 11768 Argentina: Rio Negro
Lessonia rufa KUNHM 11806 Argentina: Rio Negro
L. rufa KUNHM 11768 Argentina: Rio Negro
L. oreas KUNHM 9841 Argentina: Jujuy
Hymenops perspicillatus KUNHM 3221 Paraguay: Ñeembucú
Knipolegus striaticeps LSUMNS B38892 Bolivia: Santa Cruz
K. striaticepsb MACN 1577 Argentina: Corrientes
K. hudsoni KUNHM 11875 Argentina: Rio Negro
K. hudsoni KUNHM 11902 Argentina: Rio Negro
K. poecilocercus ANSP 18219 Ecuador: Sucumbíos
K. poecilocercus MGB Cn048 Brazil: Para
K. poecilocercus MGB Amz063 Brazil: Amazonas
K. poecilocercus MGB Cn1232 Brazil: Para
K. poecilocercus MGB Uhe106 Brazil: Para
K. signatus LSUMNS 43921 Peru: San Martín
K. signatus LSUMNS 44399 Peru: San Martín
K. (s.) cabanisi KUNHM 9747 Argentina: Jujuy
K. (s.) cabanisi LSUMNS 22645 Bolivia: La Paz
K. cyanirostris CUMV 50658 Uruguay: Cerro Largo
K. cyanirostris CUMV 50666 Uruguay: Cerro Largo
K. poecilurus KUNHM 4088 Guyana: Cuyuni-Mazaruni
K. poecilurus AMNH 223 Venezuela: Bolívar
K. poecilurus AMNH 2005 Venezuela: Bolívar
K. poecilurus LSUMNS 33221 Peru: Cajamarca
K. poecilurus LSUMNS 8076 Peru: Pasco
K. poecilurus KUNHM 17497 Peru: Junín
K. poecilurus KUNHM 18722 Peru: Cuzco
K. orenocensis LSUMNS 43080 Peru: Loreto
K. orenocensis ANSP 19348 Ecuador: Sucumbíos
K. aterrimus FMNH 433548 Peru: Cuzco
K. aterrimus FMNH 335503 Bolivia: Cochabamba
K. aterrimus KUNHM 9780 Argentina: Jujuy
K. aterrimus KUNHM 9803 Argentina: Jujuy
K. aterrimus KUNHM 11841 Argentina: Rio Negro
K. (a.) franciscanus c UFMG 2211 Brazil: Minas Gerias
K. (a.) franciscanus c UFMG 4337 Brazil: Minas Gerias
K. lophotes CUMV 51149 Uruguay: Cerro Largo
K. lophotes c UFMG 2456 Brazil: Minas Gerias
K. nigerrimus c UFMG 4241 Brazil: Minas Gerias
K. nigerrimus b UFMG 4242 Brazil: Minas Gerias
Pyrocephalus rubinus KUNHM 9904 USA: Kansas

aAbbreviations: ANSP = Academy of Natural Sciences, Philadelphia; AMNH = American Museum of Natural History; 
CUMV = Cornell Museum of Vertebrates; FMNH = Field Museum of Natural History; KUNHM = University of Kansas 
Natural History Museum; LSUMNS = Louisiana State University Museum of Natural Science; MGB = Museu Paraense 
Emílio Goeldi; MACN = Museo Argentino de Ciencias Naturales; and UFMG = Universidade Federal de Minas Gerais.
bCOI sequence only, from Kerr et al. 2009.
cCOI sequence only, from Chaves et al. 2008.
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model for TGFb. We implemented Bayesian analysis with 

MRBAYES, version . (Ronquist and Huelsenbeck ), with 

two independent Markov-chain Monte Carlo (MCMC) runs of  

million generations each, which we sampled every , genera-

tions. Each run included eight chains, seven heated and one un-

heated. Chain heating was adjusted with the “temp” setting in 

MRBAYES to . (Beiko et al. ), until the proportion of ac-

cepted swaps between adjacent chains was in the range of . 

to .. We used the , trees, minus a burn-in of  (after 

runs had reached stationarity), to create consensus trees and a 

set of topologies for ancestral state reconstructions. To examine 

stationarity, effective sample size, and convergence of parameter 

estimates between runs, we used TRACER, version . (Rambaut 

and Drummond ). To examine stationarity and convergence 

of tree topology estimates, we used the “cumulative,” “slide,” and 

“compare” functions in the online version of AWTY (Wilgen-

busch et al. ). Summarized posterior probabilities of all nodes 

in the two runs were similar (identical or within .). In addition 

to Bayesian methods, we used ML tree estimation including , 

bootstrap replicates on the partitioned data set under the GTR+G 

model invoked in RAXML, version .. (Stamatakis , Sta-

matakis et al. ).

Ancestral state reconstruction.—To reconstruct evolutionary 

histories of migratory behavior, plumage, and display behavior, 

we used ML ancestral state reconstruction on the Bayesian tree 

set. Character series (Appendix ) included seasonal migratory 

behavior, plumage phenotype (both sexes), and display behav-

ior. We coded migratory behavior as sedentary or migratory fol-

lowing Chesser (). Partially migratory species were coded as 

migratory. We categorized uniform blackish or slate-gray plum-

age phenotypes as elaborate, and paler, brownish-washed birds 

with wingbars, tail markings, contrasting rumps, streaked un-

derparts, and pale bellies as cryptic. Plumage character states are 

based on observations of the University of Kansas Natural History 

Museum (n = ) and the Louisiana State University Museum of 

Natural Science (n = ) specimens augmented with color plates 

from Fitzpatrick () and Ridgely and Tudor (). We coded 

two species that are slightly sexually dimorphic as monomorphic 

with elaborate plumage: K. nigerrimus (female plumage is uni-

form blackish, similar to the male except for the gorget, which is 

streaked faintly with brown), and K. orenocensis (in subspecies 

orenocensis and xinguensis, females are slaty-blackish, resembling 

males; but subspecies sclateri is slightly dimorphic, with females 

showing a brownish rump and a whitish belly). We coded flight-

display behavior as four different states: mechanical display (flight 

display featuring putative mechanical sounds found in many 

Knipolegus), flight song (a display flight with a true song), silent 

display (a flight display without vocalizations or putative mechan-

ical sounds), and no display (no known display). Display character 

states were based on the literature (Belton , Ridgely and Tudor 

, Fitzpatrick , Schulenberg et al. ), augmented with 

personal observations (P. A. Hosner and M. Robbins pers. comm.). 

We chose to code the display of nominate K. signatus as “no data” 

because this taxon’s behavior is virtually unknown in life, and all 

data published on its behavior actually pertain to K. s. cabanisi,

with which it is frequently lumped. 

We reconstructed ancestral states of these discrete charac-

ters series using the ML criterion in the multistate module invoked 

in BAYESTRAITS, version . (Pagel et al. ), over , trees 

from the first -million-generation MRBAYES run. Using the 

Bayesian tree set rather than a single Bayesian consensus tree or 

ML tree accounts for phylogenetic uncertainty by considering a 

posterior distribution of trees rather than a point estimate. We 

used a conservative single-rate model for each of the four charac-

ter series because likelihood-ratio tests (Pagel ) showed that 

more complex multiple-rate models were not a significantly better 

fit (Appendix ). For each character series, we summarized and av-

eraged the , ML estimates for each node within the in-group 

of the Knipolegus phylogeny.

RESULTS

Sequence attributes.—The aligned sequences yielded a data matrix 

of , characters (, ND,  ND,  CO,  GAPDH, 

 Fib-, and  TGFb) from  in-group samples. Of these 

characters,  were variable ( ND,  ND,  CO,  

GPDH,  Fib-, and  TGFb) and  were parsimony infor-

mative ( ND,  ND,  CO,  GPDH,  Fib-, and 

 TGFb). The Fib- intron contained two informative indels, 

a -bp deletion in Agriornis, Hymenops, and K. signatus, and a 

-bp insertion in Agriornis, Xolmis, Muscisaxicola, and K. ater-

rimus. The TGFb intron contained three informative indels: a 

-bp insertion in K. cyanirostris and K. lophotes, and a -bp dele-

tion and a -bp insertion in Hymenops and Xolmis. All DNA se-

quences generated are archived in GenBank (accession numbers 

JQ–JQ).

Phylogenetic analysis.—Maximum-likelihood and Bayesian 

analyses (Fig. ) recovered Knipolegus monophyly with strong sup-

port (. posterior probability, % of ML bootstrap replicates), 

although its position among out-groups was poorly resolved. The 

most likely sister group to Knipolegus was Lessonia, although this 

relationship was not strongly supported (. posterior probabil-

ity, <% ML bootstrap replicates); alternative sister groups re-

ceived <% of the posterior distribution of trees, and <% of the 

ML bootstrap replicates. Analyses recovered three major clades 

within Knipolegus that correspond to South American geography 

(Fig. ). The first clade comprises three species confined to north-

ern South America: Amazonian K. poecilocercus and K. oreno-

censis and Andean–Tepui K. poecilurus; this northern clade was 

sister to all other Knipolegus. The second clade includes three spe-

cies largely restricted to eastern Brazil: K. a. franciscanus, K. ni-

gerrimus, and K. lophotes. This southeast Brazil clade was sister 

to the third clade, which contained species largely restricted to 

the Southern Cone (during breeding) and the Andes as far north 

as Peru: K. signatus, K. s. cabanisi, K. cyanirostris, K. striaticeps,

K. hudsoni, and K. aterrimus. Within this southern clade, three 

species that occur in dry forest and arid scrub (K. striaticeps,

K. hudsoni, and K. aterrimus) formed a clade, although with low 

support. The northern and southern clades received high support 

(. posterior probability, % of ML bootstrap replicates; . 

posterior probability, % of ML bootstrap replicates, respec-

tively), the southeast Brazil clade was supported marginally (. 

posterior probability, % of ML bootstrap replicates).

Ancestral state reconstructions.—Maximum-likelihood an-

cestral state reconstruction of migration (Fig. ) strongly sup-

ported a sedentary ancestor of Knipolegus (P = .), with a 
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origins of elaborate plumage in K. orenocensis and in the MRCA 

of K. lophotes + K. nigerrimus (P = .). Taken together, these 

analyses imply that the MRCA of Knipolegus was sexually dimor-

phic and that reduced sexual dimorphism–sexually monomor-

phic plumage evolved three separate times. All three origins of 

reduced sexual dimorphism–sexually monomorphic plumage 

occurred in sedentary species; all migratory species retained 

conserved sexually dimorphic plumage. The ML ancestral state 

reconstruction of display behavior (Fig. ) marginally supported 

single origin of migratory behavior in the most recent common 

ancestor (MRCA) of K. cyanirostris, K. striaticeps, K. hudsoni,

and K. aterrimus (P = .), which form a strongly supported 

clade. The evolutionary history of plumage dimorphism was 

more complex (Fig. ). In males, ancestral state reconstruction 

strongly supported a blackish elaborate plumage in the MRCA of

Knipolegus (P = .), with a single change to a brown-and-rufous 

cryptic plumage in K. poecilurus. In females, analysis supported a 

cryptic plumage in the MRCA of Knipolegus (P = .), with two 

FIG. 1. Bayesian consensus tree (MRBAYES, version 3.1) of Knipolegus inferred from mitochondrial and nuclear genes. Values on nodes are Bayesian 
posterior probabilities or maximum-likelihood bootstrap percentages in support of each node. Values of poorly supported nodes within species are 
not reported. Distribution maps show pooled approximate distributions of the species in each Knipolegus clade, adapted from Fitzpatrick (2004) and 
Ridgely and Tudor (2009). For austral migrants, only the breeding distribution is shown.
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a Knipolegus MRCA with a flight display–mechanical sound 

(P = .), with two losses—one in the MRCA of K. a. franciscanus,

K. lophotes, and K. nigerrimus (P = .) and a second in 

K. cyanirostris (Fig. ). 

DISCUSSION

Taxonomy.—Two phylogenetic results have important taxonomic 

implications that alter the interpretation of Knipolegus biogeo-

graphy and evolutionary history. One currently recognized species, 

K. aterrimus, is paraphyletic in our study; subspecies franciscanus

is unrelated to other K. aterrimus samples and instead is recovered 

in the southeast Brazil clade. Our analysis corroborates plumage 

differences and supports recognition of K. franciscanus as a species, 

Caatinga Black-tyrant (Silva and Oren , Ridgely and Tudor 

, van Perlo ). Knipolegus signatus and K. s. cabanisi have a 

convoluted taxonomic history, originally described as separate spe-

cies but lumped in recent taxonomic treatments (Cory and Hellmayr 

; Meyer de Schauensee ; Traylor , ; Ridgely and 

Tudor ; Remsen et al. ). We found substantial genetic dif-

ferentiation between these taxa (.–.% ND p-distance and 

fixed differences in two introns), which corroborates plumage and 

body size differences (Ridgely and Tudor ). The consistency of 

these results supports recognition of K. signatus and K. cabanisi

as separate species. The English name of K. cabanisi can revert to 

Plumbeous Tyrant (Meyer de Schauensee ), and the English 

name of K. signatus can become Jelski’s Black-Tyrant, a slight 

modification of the name used by Meyer de Schauensee ().

FIG. 2. Maximum-likelihood ancestral state reconstructions (BAYES-
TRAITS, version 1.0) of seasonal migratory behavior in Knipolegus under 
a single-rate model. Pie diagrams at each node indicate the proportional 
likelihood supporting each character state; white denotes “sedentary” 
and gray denotes “migratory.” Values associated with pie diagrams are 
the likelihood of the most likely character state at each ancestral node. 
Branches are not proportional to lengths. Although all out-groups were 
used in analysis, only Lessonia is shown.

FIG. 3. Maximum-likelihood ancestral state reconstructions (BAYESTRAITS, version 1.0) of the evolution of plumage dimorphism in Knipolegus
under a single-rate model. Male plumage is reconstructed on the left tree, female plumage on the right tree. Pie diagrams at each node indicate 
the proportional likelihood supporting each character state; white denotes a cryptic brown-and-rufous plumage; gray denotes elaborate black-
ish plumage. Values associated with pie diagrams are the likelihood of the most likely character state at each ancestral node. Species with sexu-
ally monomorphic–sexually similar plumage are highlighted with a gray box. Branches are not proportional to lengths. Although all out-groups 
were used in analysis, only Lessonia is shown.
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Biogeography.—In contrast to a common pattern in which 

Neotropical bird species form a series of allopatric replacements 

across broad areas (Cracraft and Prum ), three Knipolegus

clades appear to have been split by initial vicariance events, fol-

lowed by subsequent diversification within regions, resulting in 

geographic clusters of closely related species. The northern Knipo-

legus group consists of three species of habitat specialists found in 

naturally disturbed nonprimary habitats. Knipolegus orenocensis

and K. poecilocercus are sympatric over a large part of their 

distribution but are segregated by habitat, with K. orenocensis in 

young second growth or scrub on river islands and river edges, 

and K. poecilocercus in seasonally flooded várzea forest (Ridgely 

and Tudor , ; Fitzpatrick ).

Despite isolation by > km of unsuitable habitat and slight 

but fixed phenotypic differences, Andean and Tepui populations 

of K. poecilurus are undifferentiated in markers used in our study. 

Samples varied by <.% p-distance in the ND gene. This result 

contrasts strongly with other phylogenetic studies, which have 

found strong genetic differentiation between Andean and Tepui 

bird populations or that Tepui taxa are not sister to Andean taxa 

(Pérez-Emán , Rheindt et al. , Mauck and Burns , 

Bonaccorso et al. ). Two scenarios possibly explain the lack 

of genetic differentiation in K. poecilurus: either colonization of 

the Andes from the Tepuis (or vice versa) has been recent, or there 

has been ongoing gene flow across lowland areas currently un-

inhabited by K. poecilurus. Presence of K. poecilurus on isolated 

Tepuis and on isolated outlying ridges of the Andes suggests that 

this species may have good dispersal capabilities, perhaps also re-

lated to its preference for early-successional vegetation following 

landslides. Because suitable secondary vegetation may be present 

in each landslide for only a few generations, birds may frequently 

need to disperse in search of suitable habitat, resulting in a highly 

mobile species throughout its range.

In the southeast Brazil clade, K. nigerrimus and K. lophotes

have previously been hypothesized to be relatives (Ridgely and 

Tudor ), but placement of K. franciscanus with them is a 

novel result that highlights () the importance of southeast Bra-

zil as an area of endemism and () that geography is often a better 

predictor of relationships than presumably fast-evolving plumage 

characters (e.g., Brumfield and Edwards ). Knipolegus niger-

rimus and K. lophotes have largely overlapping distributions and 

a preference for open habitats, although nigerrimus is typically 

found at higher elevations. Knipolegus franciscanus is found in 

dry caatinga woodland and is the only Knipolegus other than the 

K. striaticeps–hudsoni–aterrimus group to inhabit semiarid habi-

tats (Ridgely and Tudor ).

The southern group is the largest Knipolegus clade in terms 

of species diversity and geographic range. The K. signatus–

cabanisi pair and K. cyanirostris inhabit humid montane forest 

edge and gallery forest edge, respectively, whereas K. striaticeps,

K. hudsoni, and K. aterrimus are found in more arid regions. The 

phylogeny suggests that the southern clade colonized the Andes 

twice: by the humid-forest-adapted K. signatus–cabanisi ances-

tor, and by semiarid-adapted K. aterrimus, which is distributed 

in the Andes as well as the lowlands in the southern part of its 

range. Unlike in northern and southeast Brazil clades, the area of 

endemism diversification model (Cracraft ) explains some 

biogeographic patterns in the southern clade. The Rio Apurimac 

Valley, the geographic break between the East Peruvian and South 

Peruvian subcenters (Cracraft ), isolates K. signatus and 

K. cabanisi. Knipolegus hudsoni and K. striaticeps are distributed 

in the adjacent Chaco and Patagonian subcenters in the breeding 

season and form a clade with the widespread Andean K. aterrimus,

which geographically replaces them in similar semiarid habitats 

throughout the southern Andes. 

Unlike other species of Knipolegus, samples of K. aterri-

mus had divergent mitochondrial sequences. A single sample 

of K. aterrimus anthracinus from Cuzco, Peru (FMNH ),

was .–.% (ND p-distance) divergent from all other sam-

ples of nominate aterrimus from Bolivia and Argentina and also 

contained autapomorphic substitutions in TGFb and Fib- se-

quences, which suggests phylogeographic structure related to dry 

inter-Andean valley systems.

Additionally, haplotypes .–.% (ND uncorrected 

p-distance) divergent were found at the same locality in Jujuy, 

Argentina. These two haplotype groups correspond to the .% 

mitochondrial break in the COI gene in K. aterrimus in Argentina 

previously reported by Kerr et al. (). The lack of differentia-

tion in nuclear introns and plumage characters suggests that this 

result is best explained as two divergent haplotype groups within 

one population, rather than two divergent populations. 

Evolution of seasonal migration.—Maximum-likelihood an-

cestral state reconstructions strongly supported a sedentary an-

cestor of Knipolegus, with a single origin of migratory behavior 

in the MRCA of K. aterrimus, K. hudsoni, K. cyanirostris, and 

K. striaticeps. Conserved migratory behavior in Knipolegus con-

trasts with previous phylogenetic studies of migratory behavior 

FIG. 4. Maximum-likelihood ancestral state reconstructions (BAYES-
TRAITS, version 1.0) of the evolution of mechanical sounds in breeding 
displays in Knipolegus under a single-rate model. Pie diagrams at each 
node indicate the proportion of the maximum likelihood supporting each 
character state; white denotes “no display,” light gray denotes “silent dis-
play,” dark gray denotes “mechanical display,” and black denotes “flight 
song.” Branches are not proportional to lengths. Although all out-groups 
were used in analysis, only Lessonia is shown.
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Therefore, our results suggest that the display of K. lophotes orig-

inated independently from and is not homologous with other 

Knipolegus flight displays.

Future research on the evolution of Knipolegus displays 

would benefit from use of high-speed video of display behav-

iors for all species. These data would allow key insights. For 

instance, displays could be broken down into homologous sec-

tions for rigorous ethological studies in phylogenetic context, 

and mechanical sounds could be analyzed to reveal whether 

multiple methods are involved in their production. The fact 

that some species, such as K. aterrimus, create mechanical 

sounds at the peak height in the flight display, whereas other 

species, such as K. striaticeps, create mechanical sounds at the 

lowest height in the flight display, suggests that multiple meth-

ods of sound production are involved (Fitzpatrick , P. A. 

Hosner pers. obs.).
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APPENDIX 1. Primers used in PCR amplifications. All primers were used in PCR and sequencing 
reactions (sequence of KNIP398L: 5' CATAAAATTCCCCCCAACTAT 3').

L primer H primer

ND2 (1st half) L5215(Hackett 1996) H5766 (Hackett 1996)
ND2 (2nd half) KNIP398L (present study) H6313 (Johnson and Sorenson 1998)
ND3 L10755 (Chesser 1999) H11151 (Chesser 1999)
COI birdR1 (Lohman 2009) birdF1 (Lohman et al. 2009)
G3PDH G3P13b (Fjeldså et al. 2003) G3P14b (Fjeldså et al. 2003)
TGFb5 TGF5 (Primmer et al. 2002) TGF6 (Primmer et al. 2002)
Fib5 Fib5 (Marini and Hackett 2002) Fib6 (Marini and Hackett 2002)
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APPENDIX 3. Character states for all Knipolegus species used in ancestral state reconstructions 
(M = migratory, S = sedentary, E = elaborate, C = cryptic, ND = no display, SD = silent display, 
MD = mechanical display, FS = flight song, and na = not applicable [unclear homology for distant 
out-groups]).

Taxon Migration Male plumage Female plumage Display

Knipolegus striaticeps M E C MD
K. hudsoni M E C MD
K. poecilocercus S E C MD
K. signatus S E C MD
K. s. cabanisi S E C MD
K. cyanirostris M E C SD
K. poecilurus S C C MD
K. orenocensis S E E MD
K. aterrimus M E C MD
K. a. franciscanus S E C ND
K. lophotes S E E FS
K. nigerrimus S E E ND
Lessonia oreas M E C SD
L. rufa M E C SD
Hymenops perspicillatus M E C MD
Agriornis murinus M na na SD
Muscisaxicola macloviana M na na SD
Xolmis irupero M na na ND
Satrapa icterophrys M na na ND
Pyrocephalus rubinus M E C FS

APPENDIX 4. Likelihood-ratio test statistics (Pagel 1999) justifying use of one-rate models (null) over rate-
matrices (alternative) in BAYESTRAITS, version 1.0. Test statistics are compared to a chi-square distribution.

Character series Null Alternative Test statistic df P

Migration –8.58 –8.47 2.025974026 1 0.154
Male plumage –3.95 –3.49 2.263610315 1 0.132
Female plumage –9.57 –7.08 2.703389831 1 0.1
Display –24.75 –16.17 3.06122449 11 0.999


