A major focus of evolutionary developmental (evo-devo) studies is to determine the genetic basis of variation in organismal form and function, both of which are fundamental to biological diversification. Pioneering work on metazoa and flowering plant systems has revealed conserved sets of genes that underlie the bauplan of organisms derived from a common ancestor. However, the extent to which variation in the developmental genetic toolkit mirrors variation at the phenotypic level is an active area of research. Here we explore evidence from the angiosperm evo-devo literature supporting the frugal use of genes and genetic pathways in the evolution of developmental patterning. In particular, these examples highlight the importance of genetic pleiotropy in different developmental modules, thus reducing the number of genes required in growth and development, and the reuse of particular genes in the parallel evolution of ecologically important traits.

Key words: CRABS CLAW; CYCLOIDEA; evo-devo; FRUITFULL; independent recruitment; KNOX1; parallelism; trait evolution.

Organisms show remarkable variation in phenotypic form and function, both of which are fundamental to biological diversification. A major focus of evolutionary developmental biology or “evo-devo” is to determine how and to what extent this phenotypic variation is reflected at the level of underlying developmental genetic pathways. Over recent years, tremendous advances in molecular phylogenetics have greatly facilitated evo-devo studies by allowing more precise reconstruction of character evolution, thus fostering identification of similar traits that are either derived from a common ancestor (homologs) or have evolved multiple times independently (anologs). For example, floral bilateral symmetry, an ecologically important trait related to plant pollination syndromes, evolved once and was lost multiple times within the plantain family (Plantaginaceae) (Reeves and Olmstead, 1998), whereas dehiscing fruits and branched trichomes evolved several times independently within the mustard family (Brassicaceae) (Beilstein et al., 2006). These different patterns of evolutionary lability likely reflect differences in selection and genetic constraint (reviewed in Langlade et al., 2005; Brakefield, 2006). In this review, we explore the basis of angiosperm (flowering plant) biodiversity in terms of the evolution of broadly conserved developmental genes, and attempt to discern whether phenotypic diversity is mirrored at the genetic level. Although we will focus on a few important angiosperm evo-devo studies, similar research is being done in metazoa animals and nonflowering plants (e.g., Rensing et al., 2008; Sakakibara et al., 2008; reviewed in Cañestro et al., 2007).

The developmental genetic toolkit—Ever since pioneering work in the 1990s on angiosperm MADS-box genes, it has been clear that distantly related organisms share a common set of conserved genes—often referred to as the developmental genetic toolkit—which have been repeatedly modified over evolutionary time to affect trait diversification (e.g., McGinnis et al., 1984; Scott and Weiner, 1984; Utset et al., 1987; Duboule and Dollé, 1989; Coen and Meyerowitz, 1991; Paturgan et al., 1995; reviewed in Carroll et al., 2005; Degnan et al., 2009). Indeed, despite evidence for extensive gene-genome duplications in different lineages that can expand the genetic toolkit (e.g., Tang et al., 2008, 2010), recent comparative genomic studies suggest that the generation of completely novel genes is rare (AGI, 2000; IRGSP, 2005; Paterson et al., 2009). Thus, the evolution of form predominantly occurs through the modification or co-option of existing genetic pathways to different or additional features, rather than to the de novo synthesis of genes and genetic pathways.

Modification of genetic pathways can occur through mutations within the protein-coding or cis-regulatory sequences (e.g., promoters) of genes, resulting in biochemical or developmental function diversification. For example, during Arabidopsis [Arabidopsis thaliana (L.) Heynh., Brassicaceae] and tomato (Solanum lycopersicon L., Solanaceae) development, the paralogous genes (i.e., derived from a duplication event), TERMINAL FLOWER1/SELF PRUNING (TFL1/SP) and FLOWERING LOCUS T/SINGLE FLOWER TRUSS (FT/SFT), are expressed concurrently in the same tissues but have antagonistic functions. Whereas TFL1/SP stimulates growth and development of apical meristems and leaf primordia, FT/SFT retards growth in these tissues, demonstrating that functional differences between these paralogs are due to differences in their amino acid sequences (Shannon and Meeks-Wagner, 1991; Ruiz-García et al., 1997; Samach et al., 2000; Wigge et al., 2005; Shalit et al., 2009). By
contrast, expression of APETALA3-like (AP3-like) and PISTIL-LATA-like (PI-like) MADS-box genes in the second whorl of Arabidopsis flowers compared to the first and second whorls of tulip flowers (Tulipa gesneriana L., Liliaceae), likely underlies interspecific differences in first whorl morphology—sepal in Arabidopsis compared to petaloid tepals in tulip (Jack et al., 1992; Kanno et al., 2003). Since these genes are likely to function similarly to specify petal identity in the second whorl of both species, morphological differences in the first whorl are due to changes in the regulation of these orthologous genes (i.e., derived from specification events), rather than to differences in their protein-coding regions.

The above examples highlight how flower developmental genetic pathways diversify through changes in gene regulation and protein function and the potential importance of gene duplication for developmental evolution. These mechanisms appear to underlie much of organismal diversification, but interestingly there does not seem to be an ever-expanding developmental genetic toolkit specifying novel and convergent phenotypes. Instead, growing evidence suggests extensive conservation through the reduction, reutilization, and recycling of developmental genetic programs. The following sections explore evidence for the reutilization of existing genetic pathways in different developmental modules (e.g., leaves and flowers) both within and between individuals, and the importance of independent cooption of the same genes or genetic pathways in the repeated evolution of similar traits.

Pleiotropy in inflorescence and flower development—One way to reduce the number of genetic programs required for phenotypic diversification is to reuse specific gene products in different protein complexes, thus altering their developmental functions in time and space within an individual. One of the best examples of this type of developmental pleiotropy is provided by the MADS-box transcription factors, including members of the well-studied APETALA1/FRUITFULL (AP1/FUL) subfamily that are restricted to the angiosperms (Litt and Irish, 2003).

Functional analyses across monocots and eudicots imply an ancestral function for AP1/FUL genes in meristem identity specification. However, the number and types of meristems in which these genes function have been altered following both duplication and speciation. Arabidopsis has three functionally characterized AP1/FUL genes—AP1, FUL and CAULIFLOWER (CAL)—derived from an ancient duplication event at the base of core eudicots and a more recent duplication event within Brassicaceae (Litt and Irish, 2003). In Arabidopsis, complexity of the developmental genetic toolkit is minimized through the recycling of AP1 and FUL to specify different developmental trajectories (Fig. 1). During floral induction FUL is positively regulated in the shoot apical meristem (SAM), where its protein interacts with SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) to initiate the transition to inflorescence development (Hempel et al., 1997; Ferrándiz et al., 2000; Melzer et al., 2008). After the production of an inflorescence meristem, AP1 and CAL are upregulated in emerging lateral meristems to specify floral identity (Irish and Sussex, 1990; Bowman et al., 1993; Kempin et al., 1995). This upregulation is achieved through the negative regulation of both FUL and another MADS-box gene AGAMOUS (AG), which is involved in floral organ production (Mandel and Yanofsky, 1995; Sridhar et al., 2006). The next phase of flower development is the production of floral organ primordia. At this stage AP1 switches function from floral meristem to sepal/petal identity specification, partially through the downregulation of inflorescence meristem identity genes (e.g., AGAMOUS-LIKE 24 [AGL24] and SHORT VEGETATIVE PHASE [SVP]) and concomitant upregulation of the floral organ identity gene SEPALLATA3 (SEP3), the latter of which has been hypothesized to heterodimerize with AP1 in sepal and petals (Gregis et al., 2008, 2009; Liu et al., 2009; Kaufmann et al., 2010; Xu et al., 2010). Finally, following flower maturation, FUL is re-utilized in fruit production during which it controls elongation and differentiation of the carpel valve (Gu et al., 1998).

In addition to mediating flowering time, evidence suggests that FUL contributes to the annual herbaceous habit of Arabidopsis. Indeed, double soc1:ful mutants are very late flowering under long-day conditions and have characteristics of perennial plants, including secondary growth, inflorescence meristems that revert to vegetative meristems, and longer life cycles (Melzer et al., 2008). Because the perennial woody habit is likely ancestral to angiosperms, independent modifications in

Fig. 1. Expression patterns of Arabidopsis thaliana (Brassicaceae) APETALAI/FRUITFULL (AP1/FUL) genes illustrating developmental pleiotropy and functional diversification following gene duplication. FUL (red) is expressed in the shoot apical meristem, where its protein product interacts with SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) to induce inflorescence development, and later in carpel valves to promote fruit elongation and differentiation. AP1 (green) is expressed alongside its close paralog CAULIFLOWER (CAL) in floral meristems, where both genes specify floral meristem identity and later in sepal and petals to promote floral organ identity.
the expression or function of *FUL*-like genes may be associated with repeated evolution of annual herbaceous taxa in different lineages (Melzer et al., 2008). Although this hypothesis awaits rigorous testing, these data suggest that the re-utilization of *FUL*-like genes plays a role in the independent evolution of the annual habit and that these genes are recycled during angiosperm ontogeny, both of which reduce the requirement of novel genes and genetic pathways.

Repeated evolution of floral bilateral symmetry—Within the angiosperms, bilaterally symmetrical (monosymmetric) flowers have evolved multiple times from radially symmetrical (polysymmetric) ancestors (Fig. 2), and these shifts in symmetry are strongly correlated with increased pollinator specialization and higher speciation rates (Donoghue et al., 1998; Ree and Donoghue, 1999; Endress, 2001; Sargent, 2004; Knapp, 2010). Recent studies in multiple flowering plant lineages have greatly advanced our understanding of how independent evolutionary transitions to bilateral flower symmetry is established at the developmental genetic level. Strikingly, these studies strongly support a common genetic basis for bilaterally symmetrical flowers, through parallel evolutionary shifts in class II TCP CYCLOIDEA (*CYC*)-like gene expression (reviewed in Preston and Hileman, 2009; Hileman and Cubas, 2009; Rosin and Kramer, 2009). In other words, flowering plants appear to reuse the same elements of the developmental genetic toolkit to establish independent transitions to bilateral flower symmetry.

The importance of *CYC*-like genes for specifying a dorsiventral floral axis was first identified in the model organism snapdragon (Fig. 2C, *Antirrhinum majus* L., Plantaginaceae). In snapdragon, floral bilateral symmetry is established through the differentiation of the dorsal, lateral, and ventral petals and stamens and is partly mediated by the action of two recently duplicated dorsal identity genes, *CYC* and *DICHOTOMA* (*DIC*) (Luo et al., 1996, 1999). Both genes are expressed in the dorsal region of the flower during early to late stages of development, with double *cycl:dich* mutant flowers being fully radially symmetrical due to the loss of dorsal identity (Luo et al., 1996, 1999). By contrast, in radially symmetrical flowers of the distantly related model species *Arabidopsis*, the *CYC/DICH* ortholog *TCP1* is expressed dorsally only in very early stages of flower development (Cubas et al., 2001). Thus, since class II TCP genes generally function as regulators of cell proliferation and expansion (Doebley et al., 1997; Crawford et al., 2004; reviewed in Preston and Hileman, 2009; Martín-Trillo and Cubas, 2010), the early dorsal expression of *TCP1* in *Arabidopsis* suggests that *CYC* and *DIC* were recruited for specifying dorsal identity in snapdragon flowers through temporal shifts in their expression, rather than modifications to their biochemical function (Cubas et al., 2001).

In addition to snapdragon, recruitment of *CYC*-like genes to establish dorsal identity in lineages with independently derived bilaterally symmetrical flowers has been functionally demonstrated for candytuft (Fig. 2D, *Iberis amara* L., Brassicaceae), and in the legumes pea and lotus (Fig. 2E, *Pisum sativum* L. and *Lotus japonicus* L., Leguminosae) (Feng et al., 2006; Busch and Zachgo, 2007; Wang et al., 2008). Importantly, phylogenetic analyses support the independent evolution of floral bilateral symmetry in the Plantaginaceae, Brassicaceae, and Leguminosae. As predicted, mutations in *CYC*-like genes of these species result in radially symmetrical flowers due to the loss of dorsal identity. Interestingly, whereas *CYC*-like genes promote increased petal size in snapdragon and legumes, orthologs in candytuft function to reduce petal size (Luo et al., 1996; Busch and Zachgo, 2007; Wang et al., 2008). In addition to functional studies, a general role for *CYC*-like genes in establishing independently derived floral bilateral symmetry is supported by asymmetric patterns of *CYC*-like gene expression in late stage bilaterally, but not radially, symmetrical flowers within Malpighiaceae (Zhang et al., 2010).

Independently derived patterns of stamen abortion—Intra- and interfloral variation in stamen number and length is common within the angiosperms (Fig. 3), and is thought to increase individual fitness by partitioning function between stamens (e.g., feeding stamens vs. pollinating stamens), maximizing pollen placement (e.g., dorsal staminodes vs. ventral stamens), and ensuring reproduction through a mixed mating strategy (e.g., didymanous stamens or dicliny) (Endress, 1999; Escaravage et al., 2001; Kalisz et al., 2006; Friedman and Barrett, 2009). In snapdragon, the dorsal stamen arrests early in development to leave a residual staminode, whereas the two lateral stamens develop to be shorter than the two ventral stamens. Similar to petals, the resulting bilateral symmetry in the stamen whorl is controlled by the action of *CYC*, which inhibits cell division along the dorsilateral axis (Luo et al., 1996, 1999; reviewed in Kalisz et al., 2006).

Recent evo-devo studies are starting to reveal a role for *CYC*-like gene expression evolution in interspecific patterns of stamen number variation (reviewed in Hileman and Cubas, 2009). First, in the close relative of snapdragon, desert ghostflower (*Mohavea confertiflora* (Benth.) A. Heller, Plantaginaceae), which has staminodes in both the dorsal and lateral positions,

Fig. 2. Independent recruitment of *CYC*-like genes in the evolution of flower bilateral symmetry across core eudicots. (A) Example of a radially symmetrical rosid flower from sulphur cinquefoil (*Potentilla recta* L., Rosaceae) with multiple lines of symmetry (dashed lines). (B) Illustration of a typical core eudicot flower with strong bilateral symmetry along the dorsiventral axis due partly to the action of *CYC* protein function in the dorsal region (zigzag). (C–E) Functional studies have shown that *CYC* was recruited multiple times in the independent origin of (C) snapdragon (*Antirrhinum majus* L.; Plantaginaceae; asterid I), (D) candytuft (*Iberis amara* L.; Brassicaceae; rosid II), and (E) pea (*Pisum sativum* L.; Leguminosae; rosid I) flower bilateral symmetry.
there has been an expansion of CYC-like gene expression into the lateral region of the stamen whorl (Hileman et al., 2003). Second, in Opithandra B. L. Burtt (Gesnericaceae) and Schizanthus Ruiz & Pav. (Solanaeaceae) (Fig. 3C–E), CYC-like gene expression has expanded into the ventral region, correlating with derived patterns of stamen abortion in both the dorsal and ventral regions (Song et al., 2009). Third, the maize (Zea mays L., Poaceae) CYC-like homolog TOEOSINTE BRANCHED1 (TB1) is strongly expressed in the stamen whorl of female, but not male, florets correlating with patterns of stamen abortion (Hubbard et al., 2002). Although there are noteworthy exceptions to this correlation—including the lack of CYC-like expression in ventral staminodes of Gratiola L. and Veronica L. (Plantaginaceae) (Preston et al., 2009) (Fig. 3B)—these results suggest an important role for recurrent evolutionary shifts in CYC-like gene expression for the independent patterning of stamen development across angiosperms.

Parallel recruitment of KNOX1 genes in leaf shape evolution—Angiosperm leaves show a great diversity in shape, largely resulting from differences in the number, arrangement, and shape of blades or blade units (leaflets) on the main leaf axis. Simple leaves (e.g., Arabidopsis, snapdragon and maize, Fig. 4A, B) are borne in one piece, can be either entire or serrated along the leaf margin, and are thought to be the ancestral angiosperm leaf type. By contrast, compound (complex or dissected) leaves (e.g., tomato and giant starfruit [Averrhoa carambola L., Oxalidaceae], Fig. 4C) are derived from several leaflets that dissect the leaf at the main axis. Across angiosperms, compound leaves have evolved independently multiple times (Bharathan et al., 2002; reviewed in Blein et al., 2010). Regardless of form—simple or compound—leaf initials emerge similarly from groups of differentiated cells that subvert a zone of uncommitted (indeterminate) cells within the SAM. Indeterminacy in the central zone of the SAM is maintained primarily by a group of related genes within the KNOX1 family of homeobox genes and their upstream regulators CUP-SHAPED COTYLEDON (CUC) and CUC2 (Aida et al., 1999; Takada et al., 2001; Long et al., 1996; Williams, 1998; Hibara et al., 2003; reviewed in Langdale, 1994).

One of the best-characterized KNOX1 genes, KNOTTED 1 (KN1), is expressed in both vegetative and floral meristematic cells of maize, but KN1 transcripts are undetectable in regions of lateral organ formation (Smith et al., 1992; Jackson et al., 1994). Ectopic expression of KN1 in simple maize leaves causes cell proliferation around the lateral leaf veins. Furthermore, constitutive expression of KN1 causes ectopic shoot formation in simple leaves of tobacco (Nicotiana tabacum L., Solanaceae) and Arabidopsis. These data from maize, tobacco, and Arabidopsis suggest that expression of KN1 homologs during the development of leaves may contribute to compound leaf development. This expression evolution may be due to changes in the cis-regulatory elements of KN1 genes and/or to variation in their upstream regulators (e.g., CUC1 and CUC2).

Comparative studies have revealed a role for differential regulation of KN1 orthologs in the independent origins of simple and compound leaves across angiosperms, some Leguminosae being notable exceptions (Champagne et al., 2007; Chen et al., 2010). In the simple leaf primordia of Amborella Baill. (Amborellaceae, basal dicot), grasses (Poaceae, monocot), and Arabidopsis (rosid), KN1-like gene expression is repressed throughout leaf development, whereas in the complex leaf primordia of Lepidium perfoliatum L. (Brassicaceae, rosid) and tomato (asterid) KN1-like transcripts are abundantly expressed (Bharathan et al., 2002). The picture emerging from studies focusing on the role of KN1-like genes in diverse angiosperms is that multiple shifts in KN1-like expression likely underlie parallel evolution of compound leaves. It is important to note that simple leaves can develop from complex primordia and vice versa and that KN1-like gene expression strongly correlates with young, but not necessarily adult, leaf morphology (Bharathan et al., 2002). This correlation between KN1-like gene expression and young leaf morphology highlights the importance of careful morphological work in evo-devo studies.
Reuse of CRABS CLAW (CRC) during angiosperm diversification—The independent recruitment of CRC-like YABBY family transcription factors in carpel, leaf, and nectary development exemplifies the frugal use of genes in plant evolution and development (Fig. 5). Indeed, not only is CRC used at different stages during ontogeny (i.e., within an individual), but it has also been recruited multiple times independently to perform similar functions in different lineages of angiosperms (Lee et al., 2005b; Orashakova et al., 2009). CRC was first identified through mutant screens of Arabidopsis plants that showed defects in carpel development (Alvarez and Smyth, 1999; Bowman and Smyth, 1999). Mutants occasionally develop supernumerary carpels that are shorter and wider than normal and that are unfused at the apex. These mutant phenotypes suggest a role for CRC both in establishing floral determinacy and in carpel patterning (Alvarez and Smyth, 1999; Eshed et al., 1999).

A second role of Arabidopsis CRC is in the development of floral nectaries that develop at the base of the stamens; nectaries are entirely absent in crc mutants (Bowman and Smyth, 1999). Simultaneous expression of CRC in nectaries and carpels is partly regulated by floral homeotic protein complexes that bind to the MADS-box binding site in the CRC promoter (Lee et al., 2005a). However, the fact that gynoecium- and nectary-specific CRC expression is regulated by different cis-regulatory elements suggests that these distinct functions may have evolved independently (Lee et al., 2005a).

Comparative expression and functional analyses in monocots, early-diverging dicots, and eudicots, support an ancestral role for CRC-like genes in floral meristem determinacy and carpel polarity differentiation of angiosperms (Fourquin et al., 2005, 2007; Nakayama et al., 2010) (Fig. 5). However, although CRC function in nectary development is likely ancestral to core eudicots, this function appears to have been recycled multiple times in developmentally distinct tissues. For example, petunia [Petunia hybrida (Hook.) Vilm., Solanaceae] nectaries are associated with the base of the ovary wall, and are therefore only serially homologous to nectaries of Arabidopsis. Regardless, the petunia CRC ortholog is strongly expressed in growing nectary tissue, and gene silencing causes loss of nectary development (Lee et al., 2005b). By contrast, CRC-like genes have not been demonstrated to function in nectary development in monocots. Instead, evidence from lily (Lilium longiflorum Thunb., Liliaceae) and rice (Oryza sativa L., Poaceae) suggests neo-functionalization of CRC in monocot leaf midrib development and carpel identity (Ishikawa et al., 2009; Wang et al., 2009) (Fig. 5). Thus, data suggest that CRC-like genes have been reutilized and neo-functionalized multiple times, independent of gene duplication, within the angiosperms.

Concluding remarks—The examples outlined above illustrate the frugal use of genes and genetic pathways in different developmental modules during the ontogeny of individual plants and during the evolutionary diversification of form and function—both of which are critical components of biodiversity. In the case of angiosperm AP1/FUL genes, recycling of gene function during ontogeny has occurred partly through gene duplication, allowing expansion of the genetic toolkit without the de novo synthesis of genes (Rosin and Kramer, 2009). Therefore, to reuse developmental genetic programs within ontogeny and over evolutionary diversification is not always to reduce total gene number. By contrast, developmental pleiotropy in AP1/FUL and CRC genes has fostered reduction in the genetic toolkit through the reuse of specific genes within different modules of an individual. Similarly, repeated diversification of CYC, CRC, KNI1, and AP1/FUL genes has resulted in the independent evolution of flower bilateral symmetry, nectaries, compound leaves, and possibly the annual habit, across the angiosperms, respectively. These examples highlight the ability of evolutionary forces to reduce the number of tools within the genetic toolkit while simultaneously increasing biodiversity, and together resolve the apparent mismatch between diversity at the phenotypic and genetic levels.

LITERATURE CITED

...
Class 1 KNOX genes are not involved in shoot development in the
591 – 600.

Diversification of the plant MADS-box regulatory gene family.

Papaveraceae), demonstrate a stepwise evolution of

Origin of floral symmetry in
140 : 345 – 356.

Molecular evolution of flower development: A
271: 603 – 608.

Angiosperm genome comparisons reveal early polyploidy in the

The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical
1944 – 1954.

agents that control development: Sequence homology between

and the origin and maintenance of zygomorphy in a plant – pollinator

Evolution of novel morphological and reproductive traits in a clade containing Antirrhinum mu-
85: 1047–1056.

The Physcomitrella genome reveals evolu-
319: 64–69.

Old dogs, new tricks: Regulatory evolution in conserved genetic modules leads to morphologies in plants.
332: 25–35.

Different roles of flowering-time genes in the activation of floral initiation genes in Arabidopsis.
9: 1921–1934.

Class 1 KNOX genes are not involved in shoot development in the moss Physcomitrella patens but do function in sporophyte development.
10: 555–566.

Distinct roles of CONSTANS target genes in reproductive development of
288: 1613–1616.

Floral symmetry affects speciation rates in angio-
271: 603–608.

Structural relationships among genes that control development: Sequence homology between Antennapedia, Ultrabithorax, and fushi tarazu loci of Drosophila.
81: 4115–4119.

A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development.
3: 877–892.

Genetic control of floral zygomorphy in pea (Pisum sati-

