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Abstract

Communication networks, in particular the Internet, face a variety of challenges that can

disrupt our daily lives resulting in the loss of human lives and significant financial costs in

the worst cases. We define challenges as external events that trigger faults that eventually

result in service failures. Understanding these challenges accordingly is essential for

improvement of the current networks and for designing Future Internet architectures.

This dissertation presents a taxonomy of challenges that can help evaluate design choices

for the current and Future Internet. Graph models to analyse critical infrastructures are

examined and a multilevel graph model is developed to study interdependencies between

different networks. Furthermore, graph-theoretic heuristic optimisation algorithms are

developed. These heuristic algorithms add links to increase the resilience of networks in

the least costly manner and they are computationally less expensive than an exhaustive

search algorithm. The performance of networks under random failures, targeted attacks,

and correlated area-based challenges are evaluated by the challenge simulation module

that we developed. The GpENI Future Internet testbed is used to conduct experiments

to evaluate the performance of the heuristic algorithms developed.

iii



Page left intentionally blank.

iv



Acknowledgments

I would like to sincerely thank my advisor, Professor Dr. James P.G. Sterbenz, for

his support during my studies. I owe my deepest gratitude to Dr. Sterbenz as I learned

substantial knowledge from him in the field of communication networks and his teachings

in the non-technical areas also shaped my thinking and became inspirational since we

started working together. I thank the committee members: Prof. Dr. Georg Carle, Dr.

Tyrone E. Duncan, Dr. Victor S. Frost, Dr. Bo Luo, Dr. Deep Medhi, and Dr. Gary J.

Minden for their valuable feedback for improvement of this dissertation.

I feel very fortunate to have worked with Mohammed J.F. Alenazi during the imple-

mentation of the topology design and optimisation algorithms. Mohammed implemented

the algorithms presented in Chapter 5 using the Python programming language, while

we worked together developing and testing the algorithms and coauthoring papers. It

was a pleasure to work with Andrew M. Peck during the development of the multilevel

graph model presented in Section 4.3. Andrew implemented the multilevel graph model

in Python, and we developed and tested this framework and coauthored papers together.

The KU-TopView (KU Topology Viewer) graphical user interface developed by Justin

P. Rohrer and Parker Riley was helpful in analysing the graphs visually. A preliminary

version of the KU-CSM framework was developed by Rabat Anam Mahmood. It was a

pleasure to work with Amit Dandekar and Justin P. Rohrer to significantly improve this

framework. Amit specifically improved the area-based challenge models by incorporat-

ing Computational Geometry Algorithms Library (CGAL) into the KU-CSM framework.

Dongsheng Zhang’s help during the experimentation setup on GpENI testbed was out-

standing. I would like to thank Yufei Cheng for helping generating the tedious adjacency

matrices. Tools generated by Abdul Jabbar, Justin P. Rohrer, Mohammed J.F. Alenazi,

and Yufei Cheng were extremely useful to complete some of the repetitious tasks. I also

would like to thank Prof. David Hutchison, Dr. Paul Smith, Dr. Marcus Schöller, and

the other members of the ResiliNets group for their work on the resilient network archi-

v



tecture, which is foundational to this work. I would like to thank the Information and

Telecommunication Technology Center (ITTC) network system administrators and the

ITTC administrative staff for their support during the development of this dissertation.

Michael Hulet, Wesley Mason, Charles Henry, and Paul Calnon were always helpful in

assisting whatever computing problems I faced.

I received support during my doctoral studies through of my advisor’s grants by the

NSF FIND (Future Internet Design) Program under grant CNS-0626918 (Postmodern

Internet Architecture), NSF grant CNS-1219028 (Resilient Network Design for Massive

Failures and Attacks), EU FP7 FIRE Programme ResumeNet project (grant agreement

no. 224619), NSF GENI program (GPO contract no. 9500009441), NSF grant CNS-

1050226 (Multilayer Network Resilience Analysis, and Experimentation on GENI), by

the Battelle Institute under contract number NFP0069666: Interdomain Resilience, and

T&E/S&T Program through the Army PEO STRI Contracting Office, contract number

W900KK-09-C-0019 for AeroNP and AeroTP: Aeronautical Network and Transport Pro-

tocols for iNET (ANTP). I was partially supported by a International Foundation for

Telemetering (IFT) fellowship and by teaching assistant positions at the Department of

Electrical Engineering and Computer Science of the University of Kansas.

Early in my career at Sprint, my manager Patricia August’s support to start the doctoral

studies at the University of Kansas was encouraging. I am also indebted to my colleagues

for their support in the early years of my career: Ernest Alvarez, Scott Wilder, Hui Wang,

Mike Church, Dwight Doan, John Huff, Ben Watson, and Young Zhao at Sprint and Greg

Hull and Cody Heinrich at Nortel Networks. I am also delighted to have the support of

my friends especially: Koray Sarandal, Atacan Kadıoğlu, Pir A. Shah, Burak Gökoğlu,
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Chapter 1

Introduction and Motivation

Communication networks enable us to exchange information globally and are considered

to be a critical infrastructure [8]. As society’s dependence on communication networks

in general and the Internet in particular increases, a disruption in the communication

system has greater effects on the users. The impact of communication network disruptions

has been observed as mostly financial losses [9, 10]. The financial impact of a malicious

activity can be on the order of billions of dollars, as in the case of the Code Red worm

attack [11]. Communication network disruptions also have the potential to result in

human losses [12].

A challenge is a characteristic or condition that may manifest as an adverse event or con-

dition that impacts normal operation for which the network is designed [1]. A challenge

triggers faults, and a fault may manifest itself as an error. The error may propagate to

cause delivered services to fail [13–16]. In the context of communication networks, some

of these challenges include: human errors, malicious attacks, large-scale disasters, en-

vironmental challenges, unusual but legitimate traffic, infrastructure dependencies, and

socio-political and economical factors [1, 2, 5, 17–27].

Networks in general, and the Internet in particular, are prone to perturbations. The

Internet’s susceptibility to disruptions was emphasised even in the early developmental
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phases [28]. Understanding these challenges can help designing resilient network proto-

cols and architectures. On the other hand, identification and categorisation of network

challenges has been considered difficult [29, 30]. Categorising communication network

challenges can help us understand the impact of disruptions, improve existing network

resilience, as well as aid in designing the Future Internet architectures and protocols.

The Internet can be examined at the physical, IP, router, PoP (point of presence), and

AS (autonomous system) level from a topological point of view [31]. At the bottom is

the physical topology consisting of elements such as fibre and copper cables, point-to-

point wireless links, ADMs (add drop multiplexers), cross-connects, and layer-2 switches.

The logical level consists of devices operating at the IP-layer. A PoP is a collection of

routers in a geographic location, and PoP-level topology is the interconnection of the

PoPs. The AS-level topology represents how provider networks peer with each other

at IXPs (Internet exchange points) and private peering points [32]. Understanding the

evolution of the Internet from a multilevel point of view is more realistic than examining

its properties at individual levels. On the other hand, the primary focus of previous

studies has been on the logical aspects of the topology, since tools have been developed

to collect, measure, and analyse IP-level properties of the Internet (e.g. Rocketfuel [33]).

However, given that physical networks provide the means of connecting nodes in the

higher levels, the study of physical connectivity is an important area of research [34–36].

Furthermore, it is essential to model the impact of large-scale disasters and attacks

against the physical infrastructure using the physical-level graph [23]. There are only a

few studies that analyse graphs holistically from a multilevel point of view [37–39], but

in very specific contexts.

Another important aspect of modelling physical graphs is the cost of networks, which

is particularly important to consider when designing physical level networks. Moreover,

from a network design perspective, it is important to design networks that are resilient
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yet less costly. Unfortunately, these two objectives fundamentally oppose one another.

There are no other known studies that provide structural- and cost-based comparisons

of geographic graph models applied to graphs with node locations that are constrained

to those of actual physical graphs.

Algorithms and mechanisms are necessary to defend networks and to make them resilient

against challenges [2]. The design and optimisation of cost-efficient networks that are

resilient against challenges and attacks has been studied by many researchers over the

past few decades [40–45], but the resilient network design problem is NP-hard [46, 47].

Moreover, networks cannot have unlimited resilience due to cost constraints. Therefore,

topological design and optimisation requires developing intelligent algorithms so that a

designer can select optimum parameters to achieve resilience in a cost efficient manner.

Communication networks have evolved tremendously over the past several decades, offer-

ing a multitude of services while becoming an essential critical infrastructure in our daily

lives. While this evolution is still progressing, user expectations from these networks are

increasing in terms of performance and dependability. Understanding network behaviour

under perturbations can improve today’s networks performance, as well as lead to a more

resilient and survivable Future Internet. We cannot thoroughly study the effects of chal-

lenges in live networks without impacting users. Testbeds are useful, but do not provide

the scope and scale necessary to understand the resilience of large, complex networks,

although progress is being made in this direction [48, 49]. Simulations arguably provide

the best compromise between tractability and realism to study challenges, however this

is nontrivial [50].
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1.1 Problem Statement

It is essential to understand what features of a challenge contributes to the worst level

of degradation in the services delivered by the communication networks. The impact of

challenges on network services can be alleviated by mechanisms that increase network

redundancy, diversity, and connectivity. However, hardening the networks to withstand

perturbations comes with added costs. We would like to find tradeoffs between increased

resiliency and added cost for realistic network development. Moreover, it is nontrivial

to evaluate network performance and rigorous methods are required to evaluate the per-

formance of networks when faced by challenges. Therefore, our thesis statement is as

follows:

Modelling communication network challenges can be useful to understand the

impact of such perturbations on networks and can be foundational to improve

resilience and tolerance to challenges of existing networks as well as the design

of Future Internet architectures.

1.2 Proposed Solution

We propose a graph-theoretical approach to model, design, and evaluate resilient net-

works. First, we systematically identify a wide spectrum of challenges and categorise

them in order to gain a better understanding of challenge impact on service failures.

As a second crucial step, existing graph models are examined. Physical-level topologies

provide service to higher levels; however, topological data for physical-level networks is

not readily available to study networks holistically. We obtain several networks’ physical-

level topology data based on a third-party map and subsequently analyse structural

characteristics of physical- and logical-level networks. We propose important properties
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of graph generators for modelling physical-level topologies. Furthermore, we develop a

realistic multilevel graph model to analyse critical infrastructures and their interdepen-

dencies.

While network resiliency can be improved by simply adding nodes and links to an existing

graph, such additions come with an increased cost. Therefore, we develop heuristic

algorithms that generate cost-constrained resilient graphs. We use two graph metrics –

algebraic connectivity and path diversity – to generate cost-efficient resilient networks.

The heuristic algorithms developed are computationally less expensive than an exhaustive

algorithm.

Moreover, we develop a simulation-based framework to evaluate the network perfor-

mance. We build challenge models that simulates random failures, targeted attacks, and

correlated area-based failures using the ns-3 network simulator. Finally, we conduct ex-

periments on the GpENI Future Internet testbed to evaluate the graph algorithms we

developed.

1.3 Contributions

The main contributions of this dissertation are as follows:

1. Contribute to the identification of resilience disciplines and their interrelationships.

This enables one to recognise resilience disciplines easily.

2. Comprehensive identification of known and potential challenges. This enables one

to see the wide spectrum of what can go wrong with communication networks.

3. Categorisation of challenges. This enables one to better understand the challenge

relationships and the spectrum of threat models.
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4. Spectral analysis of different size and order networks for comparison of their struc-

tural properties. The normalised Laplacian spectra of critical infrastructure net-

works are studied to analyse their structural properties.

5. Development of a graph-theoretical framework to evaluate the performance of mul-

tilevel and multiprovider graphs. This framework analyses multilevel graphs instead

of single level analysis that obscures realistic analysis.

6. Development of two heuristic algorithms that improve connectivity of graphs in a

cost-efficient manner. The algorithms aim to improve two graph measurements:

algebraic connectivity and path diversity. The optimisation algorithms we have

developed are computationally less costly than an exhaustive optimisation.

7. A methodology to analyse network performability when faced by perturbations.

We model challenges such as targeted attacks, random failures, and correlated

area-based challenges using the ns-3 network simulator.

8. Evaluation of the graph optimisation algorithm in a Future Internet testbed. The

GpENI testbed is used to evaluate the heuristic algorithm outcome.

9. Contributions to the ns-3 open source project by providing an example code. The

code written in C++ has been available since the standard release of ns-3.10.

The code builds topologies based on user-provided adjacency matrix and node

coördinates.

10. Construction of physical-level topologies of four service provider networks (AT&T,

Level 3, Sprint, TeliaSonera), a research network (Internet2), a hypothetical fibre

network (CORONET), and the US interstate highway topology. These maps are

publicly available on the KU-TopView [51] webpage for future use by the research

community.
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“Network Design and Optimisation Based on Cost and Algebraic Connectivity,”

in Proceedings of the 5th IEEE/IFIP International Workshop on Reliable Networks

Design and Modeling (RNDM), Almaty, September 2013.

8
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1.5 Summary

In this chapter we give the overview and motivation performed for this dissertation. The

rest of this dissertation is organised as follows: Chapter 2 presents background, consist-

ing in part of architectural work contributed by this author and his advisor, as well as a

number of others in the ResiliNets research group. The second chapter also contains re-

lated work, primarily consisting of previous network design and optimisation algorithms

as well as resilience evaluation methodologies. Chapter 3 presents a taxonomy of network

challenges that is developed based on a comprehensive survey of existing and potential

challenges. Modelling of complex networks is presented in Chapter 4. This consists of

understanding structural differences between critical infrastructures using graph spectra,

development of a multilevel graph model for realistic analysis of complex networks, and

analysis of synthetic graph generators to model physical-level topologies. Network al-

gorithms that optimise a given graph by increasing the resilience properties in the least

costly manner are presented in Chapter 5. The resilience metrics that are considered

are algebraic connectivity and path diversity, while the cost of networks are captured

in terms of total link length. Chapter 6 presents simulation methodology to evaluate

network resilience and experiments run on the Future Internet testbed to evaluate the

algorithm outcome. Conclusions and future work are presented in Chapter 7. Finally, a

complete set of plots used to analyse multilevel graphs is presented in Appendix A and

a complete set of graph optimisation results is presented in Appendix B.
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Chapter 2

Background and Related Work

In this chapter we present background and related work required to understand the rest

of this dissertation. First, we present resilience disciplines and the ResiliNets strategy in

Section 2.1. A brief overview of network challenges is presented in Section 2.2. Existing

graph optimisation algorithms are presented in Section 2.3. Finally, related work on

network resilience evaluation methods and models are presented in Section 2.4, and we

conclude in Section 2.5.

2.1 Resilience Disciplines

The ResiliNets architectural framework [1–3] provides a strategy and set of principles

to alleviate the impact of challenges. Resilience is the ability of the network to provide

and maintain an acceptable level of service in the face of various faults and challenges

to normal operation [1, 2, 22, 24]. The resilience disciplines can be divided into two

categories as shown in Figure 2.1: challenge tolerance and trustworthiness. The challenge

tolerance category considers adverse events or conditions that result in operationally

degraded networks. The trustworthiness category studies the measurable characteristics

such as dependability (including reliability and availability), security, and performability.

Trustworthiness and challenge tolerance are related by robustness and complexity in the
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system. Robustness is the ability and measure of networks to remain trustworthy against

challenges. Furthermore, mechanisms to improve resilience characteristics of the networks

can add complexity to the system design, which must be managed such that it doesn’t

decrease resilience.

22 January 2008 KU EECS 983 – Resilient & Survivable Nets – Introduction RSN-IM-2

© James P.G. SterbenzITTC
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Figure 2.1: Resilience disciplines [1, 2]

Challenge tolerance can be further categorised into survivability, disruption tolerance,

and traffic tolerance. Survivability tolerates many correlated or targeted failures [52,53],

whereas fault-tolerance tolerates only a few random failures. Therefore, we consider fault-

tolerance to be a subset of the survivability discipline. Traffic tolerance resists challenges

against normal traffic flows, as well as unusual but legitimate traffic, such as flash crowds

in the Internet [17,54–56]. A DDoS attack with a malicious objective attempts to disrupt

the services provided by the network. Lastly, disruption tolerance tolerates challenges

that are inherent in mobile wireless communication environments. For example delay,

mobility, and connectivity are the challenges that need to be dealt with in MANETs

(mobile ad hoc networks), mobile cellular networks, DTN (delay tolerant networks),

and highly mobile networks. Special purpose wireless networks such as wireless sensor
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networks (WSNs) also have to tolerate limited energy constraints.

The challenge tolerance of networks can be increased via the ResiliNets strategy [1,2,24],

formalised as D2R2+DR, shown in Figure 2.2. Real-time D2R2 mechanisms include de-

fence, detection, remediation, and recovery. Long-term DR mechanisms include diagnosis

and refinement. While the short-term steps in the ResiliNets strategy provide control

aspects of the networks to bring the service levels to their original operating conditions

in real-time, long-term steps primarily involve improving service levels as the network

evolves. The first step for preserving the resilience of a network involves defensive mea-

sures. Defence mechanisms can be passive or active. Passive defence primarily involves

structural improvement of the network. Two such mechanisms are placing redundant

components within the network in order to achieve fault-tolerance and increasing the

geographic and mechanism diversity of the network to mask multiple failures for sur-

vivability [3]. An example of an active defence includes firewalls that filter anomalous

traffic. Next, detection is required to discover if the defensive measures have been pene-

trated [57–59]. After detection of abnormal conditions, the effects of the adverse event or

condition should be remediated to provide the best possible level of service constrained

by available resources. For example, after a power blackout, using a limited number of

portable power generators only in selected base stations in a cellular telephony network

can provide limited service. Recovery involves bringing the operations to the original and

normal state [2,21,60] including redeploying destroyed infrastructure. The long-term DR

outer loop involves diagnosis as a first step. Diagnosis involves localisation of faults and

root-cause analysis [61]. Once the faults are identified by root-cause analysis, the network

can be refined to improve defence, detection, remediation, and recovery (D2R2) in the

future for a given and predicted challenges.
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2.2 Communication Network Challenges

In this section, we present major challenge groupings and details will be explained in

Chapter 3. The challenges can be broadly listed as follows:

1. Large-scale disasters: Critical network infrastructure can be impacted by large-

scale natural disasters (e.g. hurricanes, earthquakes, tsunamis). The observed

service failures are geographically correlated. Furthermore, large-scale disasters

can be caused by humans, (e.g. EMP–electromagnetic pulse weapons and power

blackouts).

2. Socio-political and economic challenges: Social, political, and economic chal-

lenges caused by deliberate human actions can threaten resilient communication.

Canonical examples include collateral damage to communication networks due to

terrorism, nationwide Internet outage due to political decisions, and peering dis-

putes to increase market share.
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3. Dependent failures: Service failure at a lower layer is a challenge to higher layers.

For example, if the service provided by a routing layer (discovery of the end-to-end

paths) fails to converge, the transport layer sees it as a challenge to its ability

to transfer data end-to-end. Moreover, infrastructure dependencies can result in

failure of services delivered.

4. Human errors: Non-malicious human action such as BGP misconfiguration is a

challenge to networks. Moreover, incompetence of operational personnel or design-

ers can result in catastrophic failures.

5. Malicious attacks: Deliberate attempts to disrupt service, such as targeted hard-

ware and software attacks, are challenges to networks. Furthermore, damage may

be worse if the attack targets Internet control protocols, since the impact can be

global.

6. Unusual traffic: Unusual but legitimate traffic, such as a flash crowd on the

Internet, is a challenge to communication. Moreover, this type of challenge may

vary depending upon the specific network. For example, the telephone network is

designed to handle the load on Mother’s Day but not the load during a catastrophe

such as the 9/11 terrorist attacks.

7. Environmental challenges: Communication is challenged by phenomena that is

inherent in the communication environment. Examples include mobility of nodes

in an ad-hoc network, weakly connected channels, and unpredictably long delays.

2.3 Graph Algorithms to Improve Network Resilience

Network design is a NP-hard problem [46, 47] that has been studied in the past decades

by many network researchers [41–45,62–66]. The design process includes constructing the
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network from the ground up including placement of nodes [44,45] and providing connec-

tivity among nodes to enable services. The optimisation process includes improvement

of the network for one or multiple objectives. Network optimisation can be accomplished

by means of rewiring while keeping the number of edges constant [67] or by means of

adding new links to improve the connectivity of graphs [68]. Moreover, the design pro-

cess is different for backbone and access networks, since the topological structure of these

networks fundamentally differ [44, 45, 62].

Network design and optimisation objectives are cost, capacity, reliability, and perfor-

mance [43–45]. Network cost is incurred by the number of nodes required, capacity of

nodes required, and number of links. Topological connectivity is another objective that

can be measured by means of many graph metrics such as average degree, betweenness,

closeness, and graph diversity [41,42,67,69–71]. In this work, we measure the connectivity

of a graph in terms of algebraic connectivity [72] and path diversity metrics [71, 73].

2.3.1 Optimisation Based on Algebraic Connectivity

Algebraic connectivity a(G) is defined as the second smallest eigenvalue of the Laplacian

matrix [72]. The Laplacian matrix of G is: L(G) = D(G) − A(G) where D(G) is the

diagonal matrix of node degrees, dii = deg(vi), and A(G) is the symmetric adjacency

matrix with no self-loops. The algebraic connectivity of a complete graph (i.e. full mesh)

is n where n is the number of nodes, and it is 0 for a disconnected graph with more than

one component.

Topology design using algebraic connectivity has been studied by several researchers [67,

68, 74]. It has been shown that algebraic connectivity is more informative and accu-

rate than average node degree when characterising network resilience [74]. Moreover,

we have shown algebraic connectivity [75, 76] and diversity [71] are predictive of flow
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robustness of graphs. Three synthetically generated topologies (i.e. Watts-Strogatz

small-world, Gilbert random, Barabási-Albert scale-free) have been optimised using edge

rewiring in which the objective is to increase the algebraic connectivity [67]. It was

shown that algebraic connectivity increases the most if edges are rewired between weakly

connected nodes. Another study optimised synthetically generated Erdős-Rényi random

and Barabási-Albert graphs in terms of adding links to the existing topology [68]. It was

concluded that adding links between a low degree node and a random node is computa-

tionally less expensive than an exhaustive search.

2.3.2 Optimisation Based on Path Diversity

Algorithms and mechanisms are necessary to defend networks and to make them resilient

against challenges [2]. One such mechanism is diversity and it has been the subject of

many published works in the field of network resilience. Diversity is used to enhance

bandwidth, delay, and loss rate of media streaming applications [77]. Path diversity is

used in the optical domain to route around failed nodes or to split traffic for a better

utilisation of network resources [78]. Diverse routing is necessary for multihoming to

improve the service delivery of provider networks [79, 80]. While the path diversity of a

graph is essential for survivable design, it can be improved by addition of links in a given

graph using an optimisation algorithm.

A path between a source s and a destination d is the set of nodes and links that form

a loop-free connection. Diverse paths between node pairs strengthen the ability of a

network to withstand attacks and correlated failures. If the alternative paths have no

common node or link they are disjoint, and if there are common network nodes or links,

they are partially disjoint. Path diversity has been studied from a topological perspec-

tive [81–83], as well as in terms of multipath routing [78,80,84–90], and multipath trans-

port [71, 91]. Further, multipath routing has been studied to improve the QoS (Quality
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of Service) of networks [86, 87], the resilience of interdomain routing [84, 88], and the

survivability in optical networks [78, 89, 90]. Moreover, finding disjoint paths between a

node pair is considered to be a NP-complete problem [92, 93]. Next, we explain path

diversity and path diversity of a graph [71, 73].

Path Diversity Definition

Given a shortest path and an alternative path between two nodes in a graph, the path

diversity of the alternative is defined as the ratio of the number of disjoint elements (nodes

and links) between the shortest path and alternative path to the number of elements in

the shortest path. Given a (source s, destination d) node pair, a path P between them

is a set containing all links L and all intermediate nodes N [71],

P = L ∪N (2.1)

and the length of this path |P | is the combined total number of elements in L and N .

Let the shortest path between a given (s, d) pair be P0. Then, for any other path Pk

between the same source and destination, the definition of the diversity function [71,84]

D(Pk) with respect to P0 as:

D(Pk) = 1− |Pk ∩ P0|
|P0|

(2.2)

The path diversity has a value of 1 if Pk and P0 are completely disjoint and a value of

0 if Pk and P0 are identical. This measure captures the diversity with respect to both

nodes and links on alternative paths [71]. As an example, let us find the path diversity

of the paths between node 0 and 2 in the graph shown in Figure 2.3.
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3 

1 2 0 

Figure 2.3: Path definition example

There are four possible paths namely: P0 = [0, 1, 2], P1 = [0, 3, 2], P2 = [0, 1, 3, 2], and

P3 = [0, 3, 1, 2]. The shortest path in this graph is P0 so its path diversity is zero.

However, to calculate the path diversity for P1, we first convert the paths to the path

elements sets. For P0, the path elements set is {(0, 1), 1, (1, 2)}. The tuples (0, 1) and

(1, 2) represent the links while the element 1 represents the node 1 in the path. We do

not include the source and destination nodes in order to have a path diversity of 1 when

the two paths are fully disjoint. Using the same method, the path elements set for P1 is

{(0, 3), 3, (3, 2)}. Using Equation 2.2, D(P1) = 1− 0
3 = 1. To find the path diversity for

P2, the path elements set for P2 is {(0, 1), 1, (1, 3), 3, (3, 2)}. Again, using Equation 2.2,

D(P2) = 1 − 2
3 = 1

3 . Finally the path diversity of P3, using the same procedure, is

D(P3) = 1 − 2
3 = 1

3 . We note that converting a path to its elements method assumes

directed graphs. In this work, since we study the path diversity of undirected graphs,

we modify the method to work with undirected graphs. Thus, to construct a path to

element set, we start with the same method for the directed graph. Then, for each link

(a, b) in the resulting set, we add (b, a) to the set.

Capturing Path Diversity of a Graph

TGD (total graph diversity) is the average of the EPD (effective path diversity) values of

all node pairs in a given graph [71] and TGD measures the path diversity of a graph as

a single value. EPD is the normalised sum of path diversities for a selected set of paths

connecting a node pair (s, d). First, we find the k diverse paths using the algorithm
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presented in Section 5.2.1. Then, we remove zero diversity paths from the list of returned

paths because they do not add any additional diversity. The returned diverse path is

denoted as Ps,d = {P1, P2, ... , Pm}, where m ≤ k, since-zero diversity paths are removed

from the set. To calculate EPD, we use the exponential function:

EPD = 1− e
−λksd (2.3)

where ksd is the sum of all non-zero diversity paths defined as:

ksd =
m�

i=1

D(Pi) (2.4)

where D(Pi) is the non-zero path diversity of the i-th path with respect to the P0. In

Equation 2.3, λ is an experimentally determined constant that scales the impact of ksd

based on the utility of this added diversity [71]. For a given pair of nodes, the range of

EPD is between [0, 1) where 0 means that there is no diversity in between the two nodes

as there are no alternative paths connecting the pair. When the EPD approaches 1, it

means that it has a high path diversity [71].

2.4 Models, Simulation, and Experimentation

Performance evaluation of networks is a vast field, involving many disciplines such as

computer science, engineering, mathematics, and physics. We limit our discussion on this

topic to performance evaluation of network resilience via analytical models, simulation

models, and experimentation testbeds.
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2.4.1 Analytical Models

In this section, we briefly provide the mathematical foundations, quantitative methods,

and evaluation frameworks that analyse network resilience.

Mathematical Foundations

Reliability theory has a rich history [94] and is defined as the probability of being in the

up state during a time interval under specified conditions [95]. It is important to mention

the important reliability metrics first. MTTF (mean time to failure) is the average time

that a component remains operational. MTTR (mean time to repair) is the average time

to repair a component. MTBF (mean time between failures) is the average time between

the down states of a component. These reliability metrics can be formalised as:

MTBF = MTTF +MTTR (2.5)

Given the failure rate λ, MTTF can be denoted as [96]:

MTTF =
1

λ
(2.6)

Reliability is the probability of a component being in an up state in a given time interval

under specified operating conditions and is denoted as [95, 96]:

R(t) = e
−λt (2.7)
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Then, unreliability is:

Q(t) = 1−R(t) = 1− e
−λt (2.8)

Average repair time is a function of repair rate µ:

MTTR =
1

µ
(2.9)

Availability is the probability of a component being in an up state in the future and is

denoted:

A =
uptime

uptime + downtime
=

MTTF

MTTF +MTTR
(2.10)

Thus, unavailability is:

U = Ā = 1− A =
MTTR

MTTF +MTTR
(2.11)

Reliability and availability concepts can be easily misunderstood. While reliability refers

to probability of failure-free operation during an interval, availability refers to probability

of failure-free operation at an instant of time [97]. To further clarify the concepts, con-

sider the following two network services: transactional service in which a small request

is followed by a large response and connection-oriented service in which an end-to-end

connection is established before information can flow. For transactional service availabil-

ity is important since a low repair time and a relatively high operational time is required

to complete the transaction; however, individual transactions can still be completed for

a system with a high failure rate. On the other hand, for connection-oriented service,

the systems needs to stay up, thus requires a low failure rate, but repair time can be
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relatively high. Thus, it is the designer’s choice to carefully consider either reliability or

availability as more important for a given service.

Dependability disciplines (cf. Figure 2.1) such as availability and reliability provide

service measurements of components and subsystems in terms of binary states (e.g. up

and down states). However, a degradable system can provide an acceptable level of service

in the presence of challenges and faults. This is particularly important for networks

that are complex systems of systems, in which subsystems fail but the overall network

continues to operate. The performability [98–101] of a system S over a period T is defined

as:

Perf(B) = P [Y ∈ B] (2.12)

in which Y is the performability variable and can take the values from the the measurable

accomplishment set B.

Quantitative Methods

Reliability modelling has been long studied and a variety of models have been proposed

to study reliability characteristics quantitatively [50, 96, 102, 103]. Modelling requires

metrics to evaluate outcomes [102] and modify the model accordingly. The quantitative

models can be categorised as combinatorial and non-combinatorial [50, 96, 104]. Combi-

natorial models include RBD (reliability block diagrams), FT (fault trees), and attack

trees [50]. These methods can give first-cut results of the model outcome but they fall

short of representing complex interactions. For example, dependent failure analysis using

fault-trees can be intractable. Non-combinatorial reliability models include Markov pro-

cesses [50,96] and petri nets [105,106]. Non-combinatorial methods can provide solutions

to failure models that have dependent events; however, for complex systems such as the
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Internet, this can fall short of a complete failure space analysis, in which case simulations

can be useful abstraction.

Evaluation Frameworks

There have been several frameworks to evaluate resilience disciplines [2, 107–109]. The

seminal IFIP 10.4 work about dependability is the basis for explaining the faults and their

taxonomies [13]. Dependability is the discipline that encompasses reliability, availability,

integrity, maintainability, and safety [13]. Dependability, security, and QoS together form

the resilience trustworthiness disciplines [2].

Resilience of a network can be evaluated using service and operational metrics [110–

112]. In this framework, resilience is formalised as transitions of the network state in a

two-dimensional state space quantifying network operational state and network service

parameters as shown in Figure 2.4. The resilience is measured using the area under the

trajectory 1− R from the initial state to a challenged state S0 → Sc.

Another major discipline is survivability [52,53,113,114] and it is a multi-layer function [3,

4, 39, 115, 116]. A survivability specification is defined with six tuples {S, E, D, V, T,

P} [114,117]. Each tuple designation is as follows:

• S: set of acceptable level of service specification

• E: set of relative service values in varying operating conditions

• D: set of environmental conditions a service encounters

• V: set of user-perceived service values

• T: set of valid transitions between acceptable levels of service

• P: set of probabilistic requirements on the operation of a service
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Figure 2.4: Resilience evaluation in two-dimensional state space [3]

The ATIS survivability model provides a survivability function composed of a network’s

Unservability (U), Duration (D), and Extent (E) during a service outage [4,116]. A given

service outage’s severity is categorised as catastrophic, major, or minor, depending on

the UDE triplet combination as shown in Figure 2.5.

Temporal characteristics of a service failure are given in the ATIS survivability model [4]

is shown in Figure 2.6 overlaid with the ResiliNets D2R2 strategy (cf. Figure 2.2). The

performability of a specific network service, P (t), without any adverse event or condition

is at 1. After a challenge, the performability drops to Pa. Remediation takes place for a

duration of tr that is greater than challenge duration tr ≥ tc. Finally the network services

are recovered to the original normal state at the end of duration tR. It should be noted

that a challenge duration can be very small, such as duration of a lightning strike.

Another dependability evaluation model was presented by the ANSA framework [6]. In
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Figure 2.6: Temporal characteristics of a challenge [5] (based on [4])

this model, failures are modelled in the value and time domain. When the expected

service from a component in the system deviates, a failure occurs. In other words, the

unexpected occurrence of a service ou results in failures. Three cases of expected values

and occurrence relationship are shown in Figure 2.7. In the first case if the service

occurrence o1 deviates from a particular expected value, e1, the service failure occurs.

The expected value (e2) can be within a range (v2 – v�2) within a time (t2 – t�2), and the

expected value (e3) can be time varying.

A multidimensional survivability model has been developed using the Continuous Time
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Markov Chain (CTMC) [7,118,119]. State transitions of a system with n components is

shown in Figure 2.8. In this model, performability of the system is depicted horizontally

with the arrival rate λ and service rate µ. State transitions to model system availability

is depicted vertically with failure rate γ and repair rate τ .
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Figure 2.8: Two dimensional Markov model (based on [7])
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2.4.2 Simulation Models

Simulations provide the tools to analyse networks in complex scenarios. On the other

hand, modelling and simulating network performance under challenge conditions is non-

trivial [50, 120, 121]. There have been several studies that analyse different aspects of

networks under challenges. Next, we briefly present the past simulation models that study

graph-based, large-scale correlated failures, attacks, and wireless medium challenges.

Topological Simulations

Random topologies faced by random node or link failures have been surveyed [69, 122–

124]. However, given the complexity of the Internet, random topologies do not reflect real-

istic analysis. Network topologies faced by targeted attacks by the degree of connectivity

are shown to have local effect [125], since higher degree nodes (i.e. access PoPs) reside on

the edge of the network. Statistical properties of logical topologies under degree-based

attacks for static and dynamic evolving cases have been investigated [126, 127]. It was

shown that a massive attack on Internet connectivity as a whole is not feasible [127].

Vertex and edge attacks against the wired topologies have been studied [128–130]. The

attacks are based on static and dynamic topologies, in which graph metrics, such as

degree of connectivity and betweenness are recalculated dynamically after the attacks.

Large-scale Geographic Simulations

Recently, there has been an interest in characterising the behaviour of physical topologies

under geographically correlated failures. Logical topologies can be useful to study ran-

dom failures and their impacts, as well as to analyse the performability of the networks

under attacks [20]. However, physical topologies are necessary to study the impact of ge-

ographically correlated failures of the physical infrastructure. While some studies model
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geographic challenges dynamically (i.e. temporally and spatially evolving), others model

these as static only.

There are several studies that utilised MATLAB to model static geographic area-based

challenges. Algorithms that find a worst-case line segment and circular cut are presented

and numerical results are shown using MATLAB [131–135]. 2-terminal and all-terminal

methods of identifying worst large geographic challenges have been evaluated in MAT-

LAB for wired and wireless topologies [136, 137]. Survivability of large-scale regional

failures has been modelled, considering the performance of path restoration after a fail-

ure [138]. Both static and dynamic area-based challenges are modelled to study required

restoration capacity and time [139]. Unfortunately, the simulation platform has not been

explicitly stated in these studies [138,139]. Wired and wireless telecommunication system

performance (i.e. call blocking) can be analysed using the Network-Simulation Modeling

and Analysis Research Tool (N-SMART) [140, 141]. The failure scenarios consider the

geographic locations of network resources and static challenge models.

Attack Simulations

Distributed denial-of-service (DDoS) attacks have been simulated using the ns-2 sim-

ulator and performance of legitimate user bandwidth is analysed for different queueing

algorithms [142], but DDoS attacks generally are not targeted against infrastructure such

as routers. An agent-based simulation model is presented for attack scenarios [143]. An-

other agent-based simulation framework based on OMNeT++ has been developed [144].

Worm propagation models that impact end-hosts at large-scale (50,000 hosts) have been

developed using the Georgia Tech Network Simulator (GTNetS) [145]. A policy-based

resilience evaluation simulator based on SSFNet [146] has been implemented [27].
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Wireless Simulations

Simulation models to analyse network resilience in the wireless medium have not been

extensively studied. A toolkit has been previously implemented in ns-2 for simulating

obstacles; however, it lacks jammers and impairments [147,148]. Jammer and impairment

models in ns-3 have been recently implemented [20, 23,149–151].

2.4.3 Challenge Experimentation

Analytical and simulation models help our understanding of the network challenges to

build better network architectures. However, to realistically evaluate communication

network challenges at scale, testbeds are required. Programmable networks provide the

necessary infrastructure to evaluate new protocols and architectures [48, 152–155]. Two

recent initiatives of programmable networks are GENI (Global Environment for Network

Innovations) [156] in the US and FIRE (Future Internet Research and Experimenta-

tion) [157] in the EU (European Union). DETER is a testbed that is medium-scale for

network security experiments [158, 159]. A recent small-scale testbed effort is provided

jointly by the SecSI and LHS labs to provide security experiments [160]. GpENI (Great

Plains Environment for Network Innovation) testbed, which is a part of the GENI pro-

gram, was deployed to provide programmable testbed infrastructure at a global scale [48],

with 40 sites in 20 nations. Experiments to evaluate network resilience is proposed [49].

2.5 Summary

Based on this literature survey, we can conclude that network design and optimisation

have been active areas of research. The objectives of these studies vary in terms of graph

metric that is being optimised. Moreover, several techniques to evaluate the performance
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of networks are presented. But it is also clear that much remains to be done, which is

the focus of this dissertation.
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Chapter 3

Challenge Model and Taxonomy

Identifying, understanding, and analysing challenges to communication networks is es-

sential to increase the defence, detection, and remediation capabilities of existing net-

works and the development of Future Internet architectures and protocols. Starting with

the right threat model is essential for the cost-efficient and resilient system design [161].

Therefore, a better understanding of the challenges and possible impacts on networks and

services is essential for improving existing networks and designing the Future Internet.

This work has resulted in a publication in which we developed the challenge taxon-

omy [161]. The remaining sections of this chapter are organised as follows: In Section 3.1

comprehensive examples of challenges are presented. Next, based on the identified chal-

lenges, we present a taxonomy of challenges that can help assess resilient designs and

mechanisms in Section 3.2. Finally, we conclude the chapter in Section 3.3.

3.1 Challenge Examples and Impacts

In this section, we present a comprehensive survey of challenges that have affected com-

munication networks, as well as potential scenarios that might impact networks in the

future. We organise these challenges within each of the challenge tolerance disciplines:
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survivability, traffic tolerance, and disruption tolerance. We do not claim that this is

a full list of challenge examples; however, we strive to be as comprehensive as possible.

In some well-studied sub-disciplines, such as DDoS (Distributed Denial of Service) at-

tacks, we refer the reader to existing comprehensive surveys. The examples demonstrate

what can go wrong with communication networks. The identification of these events

primarily relies on scholarly articles, blogs from Internet monitoring companies such as

Renesys [162], Arbor Networks [163], BGPMon [164], and reports from organisations

such as RIPE [165], ICANN [166], NANOG [167], and ENISA [168]. In rare instances we

use news websites to corroborate the examples.

3.1.1 Survivability

Survivability is a resilience discipline that is concerned with correlated failures and at-

tacks [2, 52, 53, 113]. Survivability is defined as: the capability of a system to fulfill its

mission, in a timely manner, in the presence of threats such as attacks or large-scale

disasters [2,52,113]. On the other hand, the fault tolerance discipline that is a subset of

the survivability discipline is concerned with few and random faults in a system and is

not adequate to defend against attacks and large-scale correlated failures.

Several network attack mechanisms exist and a comprehensive coverage of security at-

tacks are beyond the scope of this study. However, there are comprehensive surveys that

present attack scenarios and examples for a variety of networks [169–179]. Instead, we

focus on challenge examples of large-scale correlated failures such as: natural disasters,

human-made disasters, challenges to the Internet waist, and socio-political and economic

events that disrupt communication network services on a large scale. We also note that

some of the examples in this section also cover the fault tolerance subset aspects (e.g.

collision of satellites). We begin by discussing disasters, which can be broadly categorised

as natural or human-made.
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Natural Disasters

Canonical examples of natural disasters include earthquakes, tsunamis, hurricanes, ice

storms, and wildfires. Depending on its origin, a natural disaster can be categorised as

terrestrial, meteorological, or cosmological. Next, we survey some of the recent well-

known natural disasters that had significant impacts on communication infrastructure.

An earthquake of Richter magnitude 7.1 hit Taiwan in 2006. The Hengchun earth-

quake caused disruption to seven out of nine submarine cables in the Luzon Strait that

eventually caused the loss of primary BGP (border gateway protocol) peerings [180].

Even though backup AS (autonomous system) paths were utilised, human intervention

was needed to optimise the traffic flow in the Asia-Pacific research and education net-

works. It is suggested that geographically diverse physical topology, QoS-aware BGP,

integrated traffic management, and post disaster emergency communications are crucial

for continuation of network services [181]. The 2008 Wenchuan earthquake in China

caused a complete communication halt within the most-affected areas. The 8.0 magni-

tude earthquake caused immense infrastructure damage: 3,897 telecom offices, 28,714

mobile cellular towers, 28,765 km of fibre-optic cables, and 142,078 telecom poles were

ruined [182]. Power disruptions also impacted operation of the communication infras-

tructure. The number of telephone calls initiated from the impacted areas was 10 times

higher than normal, and the number of calls from the rest of China to the impacted

areas was 6 times higher [182]. Recently, the 9.0 magnitude Fukushima earthquake and

the resulting tsunami hit Japan in March 2011 [183]. Surprisingly, the overall network

impact of the huge earthquake was limited: out of the 6,000 network prefixes only 100

of them were withdrawn from the global routing table [184–186]. On the other hand, 1.5

million telephone lines were disrupted during the peak of the disaster [187]. The limited

global impact was reasoned due to the rich connectivity of Japan with the rest of the
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world.

Tsunamis, which are caused by seismic activity such as earthquakes, landslides, and

volcanic eruptions, can also damage network infrastructure. The 2004 Indian Ocean

tsunami, which was caused by the 9.0 magnitude Sumatra-Andaman earthquake in the

middle of the ocean, impacted all public telecommunication services in the Maldives

Island of Sri Lanka [188]. Another major earthquake caused the tsunami that damaged

network infrastructure occurred in 2010 on the southern coast of Chile [187].

Hurricanes are another type of natural disaster. The United States was hit hard in

2005 by category 5 hurricanes Katrina, Rita, and Wilma [141, 187, 189]. Flooding in the

areas hit by hurricane Katrina also impacted communication infrastructure [189]. Three

million telephone lines were cut, 2,000 cellular telephone towers were damaged, and major

damage to radio broadcast stations was observed in the impacted areas [189]. Internet

access in the Gulf Coast region was impaired; however, the impact of Katrina on the

Global Internet routing was limited [190]. In September 2008 category 2 hurricane Ike

caused large-scale disruptions in multiple US states [191–193]. Hurricane Irene affected

tens of networks in each state that it passed through along the east coast of US [194].

The network failures during hurricane Irene were due to power outages and equipment

damage, as in the case with the hurricane Gustav and Ike [191, 192, 195, 196]. More

recently, hurricane Sandy caused major disruptions in the Northeast US. Datacenters

flooded and more than 5% of network prefixes were withdrawn in New York and New

Jersey region [197,198]. Traceroute measurements indicate that international traffic was

rerouted from Ashburn, VA PoP (point of presence) for almost 24 hours when the PoP

in New York City was not operational [199,200]. Traceroute [201] and ping [202] probes

using ICMP echo request messages indicate that it took up to five days for some ASes to

become operational again. Moreover, less than 1% of a provider’s customers lack network

services even after four months of the hurricane Sandy’s initial impact [203].
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Thunder and rain storms affect access links, particularly in wireless networks. A

study identified that residential customers across several ISPs were unreachable during

thunder and rain storms [204]. Disruptions to communication caused by rain storms in

the Great Plains region of the US are common and the impact of these challenges depends

on the rain rate and the geographic area that they cover [205–207].

Derechos are windstorms that are associated with showers and thunderstorms [208].

The Ohio Valley / Mid-Atlantic Derecho of June 2012, which caused deaths and financial

losses, also impacted communication networks. In particular, 77 PSAPs (public safety

answering points – also known as 9-1-1 call centers) in six states serving 3.6 million users

lost some degree of connectivity [209]. The most notable cause of failures was lack of

functional backup power systems.

Ice storms, a type of meteorological event, can result in disaster. In 1998 Canada

and the northeastern United States were hit by an ice storm that the US government

declared a disaster in the impacted areas. Power loss and damage to telecommunica-

tion infrastructures (e.g. antennas and towers) were observed; however, overall network

performance outside of the directly-affected area was not significantly degraded [210].

Geomagnetic storms can impact communication systems [211–214]. The impact of

the geomagnetic storms on telegraph systems has been reported as early as 1847 in

England [213]. In 1958, world-wide radio fade-outs and disruptions to transatlantic

submarine cables were observed in a 10 hour window of a storm’s impact [212]. One

of the most severe magnetic storms in history resulted in a power blackout for over 9

hours in Québec, Canada in 1989 [213, 214]. The impact of geomagnetic storms on the

commercial communication and GPS satellites has also been documented [211].
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Human-made Disasters

Humans can be the cause of disasters and the consequences of such events can be catas-

trophic. Human-made disasters can be the result of simply ignoring an early warning in

a system’s operation or can be the result of a malicious act such as terrorism. The target,

objective, and intent of the human actions can also vary.

An electromagnetic pulse (EMP) attack with a malicious objective can severely

disrupt the communications infrastructure [215]. In 1962, during the test of such weapons,

the disruptions to telecommunication infrastructure were observed 1,000 miles away from

the test field [216]. EMP bombs can severely disrupt cellular telephony networks and

the power grid [217]. Such attacks can be costly and restoration of telecommunication

equipment could take as long as 27 months [218].

Space debris is another challenge to communication networks and it has been observed

in several occasions. On 10 February 2009, Iridium 33 satellite collided with the decom-

missioned Russian communications satellite Cosmos 2251 at an altitude of 790 km over

Siberia in low earth orbit [219]. As the rerouting of the traffic was expected to take 3

days and moving a spare satellite as a replacement was planned for 30 days, possible

disruptions to Iridium services were announced [220]. Such an example of satellite com-

munication challenge was reported as a risk factor during the annual SEC (securities

and exchange commission) filing [221]. Furthermore, the electronic hijacking of satellite

communications has been repeatedly documented [222]. We also note that, in addition

to the challenges that directly impact the satellite communications, the GPS (Global

Positioning System) satellites are critical for the operation of communication networks.

They supply location information for location-based routing and precise timing informa-

tion for many network services including SONET (synchronous optical networking) and

mobile telephony. Therefore, a failure in the GPS system can result in failure of our daily
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communication systems. Alternative systems to GPS for location and timing information

has been recommended to reduce the dependency among communication systems [223].

Fires rarely impact communication infrastructures, but a few significant events involv-

ing fires have caused considerable damage [224]. According to a survey that included

27 telecom companies in the US representing 93% of the customer base, 189 fires oc-

curred during the 1988–1992 period [224]. Prior to the survey period, between 1982 and

1987 there were also reports of 6 fires affecting service. Out of the 189 fires during the

1988–1992 period, 35 of them impacted service. The causes of the fires were categorised

according to initiation: telco or peripheral equipment, power equipment, personnel (ei-

ther vendor or carrier staff), natural (e.g. lightning, wind, and flood), outside facility,

and building systems. Out of the 189 fires, 63 were initiated by power equipment (e.g.

AC/DC, batteries, diesel generators). Among the 41 fires impacting service between 1982

and 1992, 13 were caused by power equipment. 10 out of the 195 fires were caused by

natural phenomena of which 7 affected service [224].

A major fire accident occurred in 1988 at the Hinsdale central office of the Illinois Bell

company in Hinsdale, IL [12, 225–227]. Some reported that the cause of the fire was

lightning [227], while others reported that the cause was a damaged power cable [226].

35,000 residential and business customers were out of telephone service, 9-1-1 emergency

services were disrupted in the impacted areas, 50% of the cellular service in Chicago

area was affected, directory assistance service was down, and the impact was seen as far

as 50 miles away from the Hinsdale central office [227]. The service was fully restored

almost one month after the fire [225]. Two other fires in the New York City area caused

long-term disruptions to the public switched telephony system in 1975 and 1987 [226].

On 18 July 2001, a fire erupted after CSX Transportation train derailed in the Howard

Street Tunnel in Baltimore, MD [228]; the root cause of the derailment was never identi-
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fied [229]. The fire caused damage to fibre-optic cables that ran through the tunnel. To

make matters worse, these cables were used by several major ISPs and the single point

of failure in this case resulted in disruptions and slowdowns across the country [230].

Recovery of the damaged cables took 36 hours [228, 230]. BGP prefix updates showed

burstiness on that day [231]. Both of the Hinsdale central office and Baltimore Tunnel

fires show that diversity is a crucial property for a resilient network topology [2, 226],

that is fault-tolerant redundancy is not sufficient if the redundant components share the

same fate.

Cable cuts can be caused by natural phenomena such as earthquakes [180], chafe,

corrosion, and submarine landslides [232]. Sharkbites [233] and equipment failures [234]

also cause disruption of submarine cables. Cable cuts can also result from man-made

hazards to submarine cables, including fish trawling, ship anchors, ocean mining, and

sabotage. According to data collected from 1879 to 1980 covering a 101-year period, a

total of 1061 submarine cable failures was observed [232]. 75% of the submarine cable

failures were attributed to fish trawling, chafe and corrosion [232]. Recently, submarine

cables were damaged in three different occasions over a two-day period [235]. Two of

the cable breaks occurred near Alexandria, Egypt on 30 January 2008 impacting 13

countries in Africa, the Middle East, and Asia [236–238]. The third submarine cable

break happened near Dubai, UAE on 1 February 2008 [239]. Network performance

metrics (latency, jitter, throughput, and packet loss) degraded until the cables were fixed

between Europe, the US, and India [239]. The submarine cable breaks were restored in

about 10 days [239]. The analysis showed that to cope with such incidents geographic

diversity is needed [235]; however, laying additional cables on alternative routes can

be very expensive. As with the case of the Baltimore tunnel, multiple providers’ cable

frequently share routes through constrained geography such as the Suez Canal [240].

The frequency of fibre-optic cable damages in sub-surface and aerial media is not any
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better than the frequency of submarine cable disruptions. Between September 1992 and

February 1993 there were a total of 160 fibre-optic cable failures [241]. Among the 160

failures, 33 of them were large outages affecting 30,000 customers in the telecommuni-

cations sector. The causes of fibre-optic cable failures include: dig-ups, vehicle, process,

power line, rodent, sabotage, fire, firearm, flood, and excavation. Dig-ups (sometimes

referred as backhoe fades) caused 60% of the total outages [241, 242]. A recent acciden-

tal fibre cut in Georgia caused the loss of Internet services in Armenia for five hours

in 2011 [243]. Multiple independent fibre cuts were detected in the Telenor backbone

network in Norway [244]. Events ranging from a crashing airplane damaging the aerial

fibre to vandals shooting fibre-optic cables in an ISP can be the causes of cable cuts [245].

A pandemic is a spread of disease that can impact large populations across the globe. In

the case of a biological warfare, it originates with a malicious objective. We did not find

any examples of pandemics impacting communication networks; however, for continuity

of operations during a pandemic, planning, preparedness, response, and recovery actions

are often necessary [246]. The potential impact of an influenza pandemic on telecom-

munications and information technology could be significant [247]. In the worst case

scenario, decreases in network maintenance and increases in telecommuter traffic can re-

sult in network disruptions. Furthermore, critical operations and maintenance staff may

be afraid to report to work to keep the network operational.

Power blackouts can cause network failures due to interdependencies among critical

infrastructures [29,248–253]. During August 2003, 50 million people were affected in the

Northeast US and parts of Canada [249, 250]. One month later, 55 million people in

Italy, France, and Switzerland were impacted in another event [29]. 15 million people

in Western Europe were impacted by the November 2006 blackouts [249]. Communica-

tion networks in the Latin American countries of Brasil, Paraguay, and Uruguay were

impacted by the blackouts in November 2009 [254]. Despite the number of networks
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and ASes in the various blackout areas, the characteristics of the network outages show

similarities [255]. The average outage duration for large network service providers ranged

from 12 to 33 hours in the Northeast US blackout of 2003 [255]. The impact of the black-

outs are regional, rather than global in scale [255, 256]. 150 large-scale PSTN outages

in the US over an 8 year period due to power related outages have been analysed and

20% of these have been identified as high impacting outages in terms of lost customer

minutes [257]. More recently, in late July of 2012, northern India experienced power

blackouts over two consecutive days that impacted more than 600 million people, and

the impact was observed in other critical infrastructures including the communication

networks [258–260].

Human errors result in large-scale network disruptions, which are the cause of 50% of

the outages in PSTN [261]. For example, although the Hinsdale central office fire was

not human initiated, that fact that the operator initially ignored the alarm resulted in

the late arrival of the firefighters, which in turn resulted in severe fire damage [225,226].

Locating so many potential points of failure in the same building can be attributed to

human incompetence. Furthermore, during the event of the Baltimore Tunnel fire, the

decision of the network designers to use redundant fibres along the same geographic route

resulted in severe disruptions. From a security point of view, most threats come from

humans [262]; however, designing systems to tolerate human errors is difficult [263], and

requires redundancy, diversity, and heterogeneity [3] in addition to traditional security

mechanisms.

Finally, software vulnerabilities can be exposed in a variety of scenarios. The root cause

of AT&T’s SS7 (signalling system 7) outage in 1991 [225] that was one of the many SS7

outages in the 1990s [264] impacting the US PSTN, was determined to be a misplaced

break statement [265]. There are some other interesting examples that have challenged

the Global Internet [266, 267]. A Juniper BGP edge router software bug caused global
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Internet outages for two hours in November 2011 [268, 269]. More recently, the GitHub

service was disrupted globally due to a software bug in which switches in the GitHub net-

work did not populate the MAC address table properly resulting 18 minutes outage [270].

Challenges to the Internet Waist

The Internet is a collection of ASes (autonomous systems) from a topological point of

view. Each of these networks or domains consists of end systems, routers, and links

that connect them. The protocols enable end systems to communicate with each other.

Openness of the Internet architecture enables applications to be developed independent

of the network infrastructure [271–273]. The hourglass metaphor reflects the Internet

architecture and it has a narrow waist in the middle containing IP (Internet Protocol).

Thus, IP is the minimally required element [274]. However, in practice the narrow waist is

not so narrow. The Domain Name System (DNS) [275,276] and Border Gateway Protocol

(BGP) [277] are both required for practical use of the Internet and thus increase the size

of the waist as shown in Figure 3.1. Evolving shapes of the hourglass model are presented

in an entertaining article [278].

fiber / wireless

SONET / 802.X

BGP
DNS

IP

TCP / UDP

e-mail / web

Figure 3.1: Internet hourglass waist model
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BGP is the interdomain routing protocol that peers ASes. Each AS is a single admin-

istrative domain, in which the network is managed by a single entity. ASes announce IP

prefix reachability information to other ASes, enabling the construction of an AS topol-

ogy. BGP utilises policy-based path-vector routing in which each domain administrator

decides how to advertise AS reachability information. The early deployment of the BGP

was in 1989 and the current BGP-4 was deployed in 1993 [279]. There are a number

of BGP threats, vulnerabilities, security attack objectives, attack mechanisms, and de-

fenses against malicious activity [280–285]. In addition to intentional attacks targeted

directly against BGP and accidental misconfiguration of BGP, its operation has deviated

from normal due to the increased number of updates resulting from worm activity, power

blackouts [250,256], and power outages after disasters [193,286].

Worms such as Morris, Code Red, Nimda, Blaster, and Slammer have been the source

of the Internet disruptions [170]. BGP operation has been impacted as a result of those

worms [287–290]. The analysis of BGP during the highest point of Code Red worm

impact indicated that BGP updates increased 10-fold [287]. On the other hand, another

analysis concluded that the enormous BGP activity during these worm attacks was an

artifact of the monitoring process [288]. Increased BGP activity in one event was due to

BGP session resets that occurred at the monitoring RIPE NCC (Réseaux IP Européens

Network Coordination Centre) RIS (Routing Information Service) [291]. Each BGP

session reset caused entire routing table transfers. Even though BGP was stable, the

monitoring process was affected by the worms [288]. The Slammer worm caused an

eight-fold increase in the number of BGP update messages and some parts of the Internet

were not reachable on that day [289]. Further investigation revealed that the instabilities

caused by the frequent update messages were due to a few edge ASes that might have

been hit hard by the Slammer worm [289]. In August 2003, the Blaster worm impacted

the hosts using the Microsoft Windows operating system [292]. The number of BGP

46



update messages also increased significantly during the Blaster worm [293].

Prefix hijacking occurs when an AS announces an IP address prefix (i.e. destination)

that it does not belong to itself. When a prefix is hijacked, it can cause a blackhole effect

in which packets do not reach the intended destination, resulting in a denial of service

attack. The hijacker can also perform a man-in-the-middle attack by eavesdropping on

the hijacked traffic and forwarding it to the original destination after interception [294–

296]. Between 1997 and 2009, there were 15 high-profile prefix hijacking events according

to a study compiled from NANOG (North American Network Operators’ Group) mailing

list archives [297]. On the other hand, between 1997 and 2001, in a span of 1279 days,

138,225 multiple origin AS conflicts were observed in which legitimate causes accounted

for multiple origin AS conflicts such as multi-homing [298]. According to a 21-day study,

all BGP misconfiguration errors are short-lived (less than a day) and 0.2–1.0% of BGP

table entries are affected by the misconfigurations [299]. Next, we present some of the

most well-known hijacking events that cover events from different continents, countries,

service providers, and time zones showing that prefix hijacking has no borders.

Spammers can hijack IP prefixes to send unsolicited commercial e-mail [300]. Spammers

can use unused IP address blocks (IP prefixes) to send spam. However, to make tracing

difficult, they prefer to announce short IP prefixes (e.g. /8 instead of more specific /24)

for short periods of time [300]. In 2003, an IP prefix hijacking case was not resolved for

two months since the spam started [301]. However, we did not find any global impacting

event to BGP routing caused by the spammers in the literature.

On April 1997, AS 7007 owned by the Florida Internet Exchange and used by MAI

Network Services started announcing the entire global routing table to their upstream

provider Sprintlink [298,302]. The more specific (i.e. de-aggregation) /24 announcements

from an AS 7007 router started at 11:30 UTC and continued for 45 minutes until MAI
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disabled the link to the upstream provider Sprintlink. Thus the router manufactured

by Bay Networks was unplugged from the network [303, 304]. Despite taking the router

offline, advertisements to the Global Internet continued. Later, the issue in which with-

drawn messages were not updated with the rest of the global routing tables was found

to be due to a Cisco router bug [305].

In December 2004, AS 9121 used by Türk Telekom (TTNet) announced over 106 K bad

prefixes to its upstream provider AS 6762 (Telecom Italia) [306]. The peer router in

Telecom Italia was configured with a relatively low value for the maximum number of

prefixes it could accept from TTNet, however the router configuration was not saved.

Eventually, during the 45 minutes of bad prefix announcements 70% of Internet routes

were originated from Turkey, causing significant disruptions to the Global Internet [295,

307].

AS 27506 used by Con Edison Communications started announcing routes to its existing

and former customers through itself in January 2006 [296,308]. If the traffic was delivered

to its existing customers then there was no issue for them. However, AS 27506 also

announced prefixes that did not belong to it. There were two occasions of prefix hijacking.

One was around 05:05 UTC lasting for 17 minutes and the other started at around 08:30

UTC announcing Panix (AS 2033) routes as well [308,309]. Despite the upstream provider

Verio’s route filtering, the hijacked routes were announced since the filters were based on

the outdated public RADb (Router Arbiter Database) registry [309].

In February 2008, we witnessed one of the most publicised BGP hijacking event. In

this case, upon receiving a Pakistani government order to block three IP addresses on

the YouTube service, Pakistan Telecom (AS 17557) started advertising /24 prefixes with

the intention to block those sites [310, 311]. The prefix that was being announced was

more specific than the /22 that YouTube actually announces. PCCW Global (AS 3491),
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which is the upstream provider to Pakistan Telecom, started to announce the bad prefixes

coming from Pakistan Telecom. The incorrect routes to YouTube via Pakistan Telecom

poisoned the global routing tables in about two minutes [310,312]. Eventually, YouTube

started announcing /24 and more specific /25 prefixes to re-route the traffic. The re-

sulting impact was inaccessible YouTube videos up to 2 hours depending on the vantage

point [310, 313]. There were three issues in this event: governmental censorship on the

Global Internet [313], incorrect operation of Pakistan Telecom (instead of blocking three

IP addresses started the blackholing effect [314]), and reliance of global routing on a

transitive trust model [313].

In another hijacking event around the same time as Pakistan Telecom’s YouTube hijack-

ing, AboveNet (AS 6461) started announcing 194.9.82.0/24 on March 2008 [315]. The

hijacked prefix was owned by Africa Online Kenya (AS 36915). The announcements by

AboveNet located in the US were believed to diffuse into the global routing tables faster

since they are more centrally located in the AS-topology [315].

On November 2008 Companhia de Telecomunicações do Brasil Central (CTBC) from AS

16735 announced the full BGP routing table several times in a 75-minute period [316].

Fortunately, there was no impact on the global routing tables in spite of the leak of

267,947 distinct prefixes [317,318]. The full routing table leak was identified by one of the

RIPE RIS monitors that peered with the AS 16735. However, the incorrect prefixes were

filtered by the upstream provider of CTBC (Companhia de Telecomunicações do Brasil

Central) and the only impact was slow traffic for many hours for CTBC customers [318].

Another BGP hijacking occurred in April 2010 in China [319]. In this event, China

Telecommunications Corporation (AS 23724) announced approximately 37,000 prefixes

that it did not own. This corresponded to approximately 11% of the total number of

prefixes worldwide [320]. The prefixes announced by AS 23724 were further propagated
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by the upstream provider China Telecom (AS 4134) [319, 321]. According to a US gov-

ernment report, 15% of the global traffic could have been eavesdropped during the 15

minute propagation [322]. However, further analysis showed that the actual traffic that

might have been intercepted by China is estimated to be around 0.015% [323].

In August 2010 an Internet research experiment caused instability in the global routing

tables [266]. RIPE NCC was announcing a valid optional transitive BGP attribute to

propagate certificate information for secure BGP research. The BGP announcements

were made for approximately 30 minutes and caused a significant increase in the number

of update and withdrawn messages. At the peak, 4,500 prefixes, which account for 1.4%

of the total global routes, were affected [266]. Further examination of the issue yielded a

software bug in Cisco routers [324].

In February 2009, Czech ISP SuproNET (AS 47868) was prepending its AS path infor-

mation to its prefix (94.125.216.0/21) announcements for traffic engineering [267, 325].

In this case, SuproNET’s primary peer was the CD-Telematika a.s. (AS 25512) and

they were configuring the back-up paths through Sloane Park Property Trust, a.s. (AS

29113) [267, 325]. The routers used by SuproNET were manufactured by MikroTik

and during the configuration instead of prepending the number of AS-paths, SuproNET

prepended its AS number (47868) [267]. In modulo 256, this corresponded to 252 and in-

deed the announcements during the instability had AS path 47868 252 times [267]. Cisco

routers that couldn’t handle the long AS-path information started tearing down the BGP

sessions, causing global instability. The first issue was that SuproNET operators were

prepending incorrect information [267]. The second problem was that unpatched Cisco

routers were still vulnerable to buffer allocation for long AS paths [267, 326]. The third

issue was that the AS-path information was not filtered by the upstream provider [267].

For two hours, an up to 100-fold increase was observed in the number of update mes-

sages [267, 325]. The long AS path prepending issue was seen in other instances as
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well [327].

In another BGP prefix hijacking event, Google services were affected [328]. Between 7

and 9 May 2005, one particular prefix (64.233.161.0/24) that Google (AS 15169) owned

started to be announced from Cogent (AS 174) [328]. According to Google, the outage

was due to DNS misconfiguration. However, the network operations group at Google

were surprised to learn that BGP prefix hijacking is a possible means of attack [328].

Redirection from www.google.com to search.msn.com was suggestive of malicious activ-

ity [328].

In February 2012 incorrect BGP filtering caused an approximately 30 minute of outage

impacting many Australians [329]. In this case, Telstra (AS 1221) provides transit service

for Dodo (AS 38285) and Dodo re-announced all Internet routes it learned from another

ISP to Telstra. Since Telstra did not filter the Dodo’s announcements, Telstra preferred

Dodo as the best way to access the Internet [329]. In this cascading failure scenario,

approximately 1400 IPv4 network prefixes were impacted, whereas none of the IPv6

prefixes were impacted.

DNS is the other protocol that bloats the narrow waist of the Global Internet. DNS

associates the name of a destination (URL or e-mail) with an IP address. It has become

an essential service, particularly for web and e-mail applications. It is based on an

hierarchy in which the root servers reside at the top of this hierarchy [330]. There are

a total of 13 distributed root servers designated A through M. DNS service disruptions

can occur due to misconfigurations [331, 332] or due to attacks [333–335].

DNS attacks can be categorised as cache poisoning, denial of service, domain hijacking,

and compromised data [11, 336–338]. In October 2002 all 13 root name servers were

exposed to a DDoS attack. During the 75-minute assault, attack traffic volume was seen

to be between 0.9–2 Gb/s [334,339]. 5% of the root server queries went unanswered due

51



to congestion [334] and DNS response messages were delayed [339,340]. Further analysis

showed that delays were also observed in prior weeks of the attack demonstrating an

attack preparation [340].

In February 2006, TLD (top level domain) name servers came under DDoS attack on two

separate days in which each attack duration was approximately 14 minutes [341]. The

DDoS attack used bots to launch the attack through DNS recursive name servers [342,

343], which sent small size queries impersonating the IP addresses of the TLD name

servers as the source address. Upon receiving the small size query, the compromised open

DNS recursive name server replies with a large response. In this case the amplification

factor of these attacks were 72:1, since the query was 56 B and the response was 4000

B [344]. The attack traffic seen at the TLD name servers was around 2 Gb/s with an

estimated 35,000 DNS recursive name servers sending responses [344].

In February 2007, root-name servers were attacked twice in an 11-hour window [334,345].

The primary target of this DDoS attack was the four root name servers F, G, L, and

M [346]. The G and L root servers were impacted the worst [345], since they were

not using anycast [347, 348]. The 5,000 bots that launched the attack were distributed

all over the world [346]. In this case the attacks had only limited impact on the end

users [345, 346].

DNS cache poisoning can occur when a DNS response is incorrect. In March 2010 for

almost three weeks, the responses from the I-root name server in China were incorrect

for facebook.com, youtube.com, and twitter.com [322, 349]. The same issue surfaced in

June 2010 [350] and November 2010 [351]. The I-root name server is managed by the

Swedish Netnod. To increase service resilience, the I-root name server is geographically

located in 36 different locations, including one location in China [352]. When a request

is made to a root server, no matter what the instance is, the response is supposed to be
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same. However the requests for facebook.com, youtube.com, and twitter.com got invalid IP

address responses from the Chinese instance of the I-root name server resulting in cache

poisoning [351]. 57% of network prefixes worldwide were affected by the censorship

of China [353]. However, it is not only Chinese government imposing censorship on

the Global Internet, countries all over the world also have low rating for the Internet

censorship [354,355].

ICANN, which administers the L-root name server, announced in October 2007 that

it would change its IP address from 198.32.64.12 to 199.7.83.42; however, the old IP

address would continue to work for the next six months [356]. Despite the announcement

for transition of the new IP address, CommunityDNS (AS 42909), ep.net (AS 4555), and

Diyixian.com (AS 9584) continued to announce the old IP address of the L-root name

server [357–360]. Following pressure from ICANN, the announcements were terminated

two weeks after the deadline of the use of the old IP address [360]. Despite no visible

impact to end users due to the bogus announcements since the announcers replied to

queries with legitimate responses, the event shows a deviation from the normal operation.

The experience also caused significant privacy concerns since it was believed that end-

user traffic might have been surveilled and stored for further analysis [359–362].

Domain name hijacking is another form of attack to which the DNS can be exposed,

in which the rightful owner of the domain losses the control to the domain [363]. The

consequences can be financial loss1, damaged reputation, and disruption to network ser-

vices. One form of phishing is domain name hijacking [363,365] in which users are tricked

into thinking they are using a legitimate web site. Some of the high profile incidents have

been analysed in ICANN reports [363, 366]. During December of 2009, twitter.com was

hijacked and unavailable for almost 2 hours due to twitter.com’s DNS service provider

having its password compromised [367].

1Cybersquatting can also cause financial losses; however, this is primarily a policy and legal issue [364].
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Social, Political, and Economical Events

We presented challenges caused by natural phenomenological events, malicious actions,

and accidental misconfigurations that can disrupt communication network services. How-

ever, disruptions can also occur as a result of social, political, and economical events.

Terrorist attacks, political unrest, peering disputes, and censorship are examples of such

events. Moreover, cyber attacks can be motivated by a combination of social, cultural,

political, and economical reasons [368].

Terrorist attacks occurred on 11 September 2001 in the US. The terrorists did not

directly target the communication infrastructure; however, collateral damage was done to

communication networks as a result of the terrorist act, such as the collapse of the Verizon

building. The impact on the Global Internet was not significant; however, news websites

and telephone networks were overloaded [369] in the resulting flash crowd [54]. Network

reachability of less than 1% of the global routes was lost for several hours, primarily due to

cable cuts and power losses [370]. Although there was little global impact, some European

ISPs whose access to the Internet was served through NY experienced disconnectivity

problems [369].

Political unrest is a type of challenge motivated by social and political factors. The first

known government-induced network challenge was targeted against satellite networks in

Bangladesh in 2007 and in the same year the Internet in Myanmar was disconnected [371,

372]. The recent political events in North Africa and the Middle East caused disruptions

in both regions. In some cases this extended to eventual disconnected nations from

the Global Internet [373]. Beginning 27 January 2011 Thursday approximately at 22:30

UTC, Egyptian networks were withdrawn from the global routing tables by the order of

the Egyptian authorities [374–377]. Approximately 3,500 networks among the Egypt’s

ISPs were withdrawn. The only ISP, Noor Group (AS 20928) that provided connectivity
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for the government, financial, and educational institutions also withdrew from the global

routing tables on 31 January 2011 around 21:00 UTC [375, 378]. On 2 February 2011

9:30 UTC Egyptian networks appeared again in the global routing tables [373,379–381].

In February 2011, 13 globally routed networks from Libya were withdrawn, disconnecting

Libya from the rest of the Global Internet [377,382]. However, unlike the Egypt case, the

withdrawn prefixes were not long lived. On the other hand, traffic in and out of Libya

was blocked [372,383]. In August 2011, 6 to 11 networks out of a total 16 networks being

advertised by Libya had sporadic outages [384,385].

The 40 out of a total of 59 network prefixes were withdrawn on 3 June 2011 for almost

24 hours in Syria [386, 387]. The traceroute measurements suggested that during the

Syrian Internet blackout, some networks were still up (e.g. government), and the delay

measurements were lower than usual, indicating backbone networks were operational;

however, access networks were brought down [388]. Later, in August 2012 as the conflict

in Syria continued, there were two instances in which one of them resulted that all prefixes

from Syria were withdrawn from the global routing table for 17 minutes, and the other

event resulted withdrawal of 20 prefixes sporadically over a five hour period [389]. More

recently, on 29 November 2012 at 10:26 UTC all 84 IP prefixes that belong to Syria were

withdrawn from the global routing table [390–393].

Depeering caused by business and economical factors is another challenge to the Inter-

net [394]. The Internet is interconnected through ISPs that are hierarchically related.

While tier-1 ISPs peering with each other use a financial settlement-free mode, these

transit providers charge customer ISPs. The peering tactics in BGP are several and they

are complex for a variety of situations [395]. The disputes among the ISPs resulted in

disconnection of networks from the Internet. In October 2005, the peering dispute be-

tween Level 3 (AS 3356) and Cogent (AS 174) resulted in almost 2 days of disconnection
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between single-homed customers of both providers interconnected to one another [396].

During that time, 4.3% of the total prefixes from the global routes were isolated from

each other [397]. The peering dispute between Cogent (AS 174) and Telia (AS 1299) in

March 2008 resulted in the disconnection of stub AS networks of each provider from each

other [398, 399]. The depeering between Cogent and Telia lasted for 15 days and it is

estimated that the Telia customers were more severely impacted [400,401]. At the end of

October 2008, Cogent (AS 174) and Sprint (AS 1239) depeered for three days [402,403].

At the time, there were 214 single-homed ASes downstream of Sprint and 289 single-

homed ASes behind Cogent. An estimated 3,500 networks did not have full Internet

connectivity [402].

Net neutrality fueled by economic interests is a challenge to the Internet. Net neu-

trality arguments primarily focus on two polar ideas. Proponents of net neutrality argue

that an open Internet model is the reason behind innovation in the Internet ecosystem.

On the other hand, opponents of net neutrality argue that providers should have to-

tal control of their traffic including the ability to discriminate based on the source or

provider of content, an argument that goes far beyond QoS on metered pricing and traf-

fic shaping [404, 405]. A third model discourages market dominance and allows QoS in

the Internet to exist [406]. In 2005, the FCC ruled in favor of Vonage, who argued that

its traffic should not be blocked by an ISP [407]. Other high profile cases include CAIP

(Canadian Association of Internet Providers) vs. Bell Canada [408] and Comcast vs.

BitTorrent in 2008 [409]. In 2012, Verizon Wireless settled with the FCC for 1.25 million

dollars and allowed third party 802.11 tethering applications to run on smartphones used

in its network [410]. We should remember that the entire point of building a network

infrastructure is to support the distributed applications that need it [411].

Censorship can be triggered by political [412] or economic [413] causes. Either way

it impacts the availability of information to the end users. Censorship mechanisms in-
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clude IP address filtering, URL keyword filtering, and DNS redirection mechanisms [414].

Furthermore, filtering mechanisms can be deployed deep inside a network to achieve cen-

sorship. For example, in China, filtering is not only being applied on the border routers,

but as deep as 13 hops inside of the Chinese border routers [415]. While censorship

has local effects (e.g. within a country, a peer-to-peer application), as we mentioned

previously, misconfiguration of Chinese instance of the I-root name server had a global

impact [322, 349–351, 353, 354]. Even though China is a canonical example of state-

sponsored censorship, other examples such as North Korea, Iran, and Syria exist around

the world [355,415]. The level of network censorship in authoritarian countries is severe.

For example, North Korea’s highly-regulated network infrastructure is not part of the

Global Internet, but rather it is considered to be a national intranet [416, 417].

Privacy is an aspect of trustworthiness and entails authorised communication between

end systems [179]. The privacy of communication can be threatened by economy-

induced factors such as web cookies [418–420] or policy-induced factors such as surveil-

lance [421, 422]. The 2005 FCC ruling that VoIP (Voice over Internet Protocol) must

comply with CALEA (Communications Assistance for Law Enforcement Act) requires

that wiretapping capabilities be deeply embedded in the Internet protocol stack. The

result is that the Internet is less secure [421]. Additionally, wiretapping capabilities

are against the end-to-end arguments [272, 273], since successful wiretapping requires

wiretapping capabilities to be deeply implemented in the protocol stack [421]. Further-

more, the provision of surveillance capabilities of the network can violate the privacy

of communications of the innocent and can be used as an attack mechanism by outside

actors [421,422].

57



3.1.2 Traffic Tolerance

In this section we provide challenge examples relevant to the traffic tolerance discipline.

Traffic tolerance is the ability to withstand abnormal traffic conditions. Traffic engineer-

ing is a discipline that studies performance of networks and traffic anomalies [423, 424].

The traffic anomalies can be caused by network failures, flash crowds, and attacks [425].

Traffic Tolerance to Legitimate Traffic

Flash crowds are events that are sudden and are due to simultaneous access requests

from multiple clients to a target [54, 56, 426]. This leads to service denial as a result of

network resource exhaustion. The network resources of interest are bandwidth, memory,

and processing power [411]. Flash crowd traffic is legitimate, whereas anomalies such

as DDoS (Distributed Denial of Service) attacks are malicious [425]. On the day of the

9/11 terrorist attacks on 11 September 2001, major news websites became unresponsive

after the second plane crash into the WTC (World Trade Center) [369]. The demand

for the CNN.com website increased by an order of magnitude on 9/11 [427]. Pages were

simplified to text only, many pages were removed, and additional Akamai CDNs were

employed to deal with the increased demands [369,427].

London was struck by terrorist acts on 7 July 2005; the cellular telephony networks were

overloaded with up to 250% more calls being made that morning [428]. Access Overload

Control (ACCOLC) was activated on a cellular network provider in an area with a radius

of 1 km, which restricts who can access the network and requires special phones be used

by the authorities. ACCOLC was not activated in other parts2 of the impact zone with

the assumption that lack of mobile phone service might cause more public panic [428].

2The decision by City of London Police to activate ACCOLC by overriding the command chain gained
considerable attention detailed in the report [428].
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Telephone networks were overloaded in the aftermath of 9/11 terrorist attacks [369],

Hurricane Katrina [189], and the Wenchuan Earthquake [182] as well.

Traffic Tolerance to Attacks

DDoS attacks involve multiple zombies managed by an attacker to overwhelm the target

by exhausting its resources. DDoS attacks, classification of these attacks, and defense

mechanisms are covered in comprehensive surveys and the references therein [176–178].

Furthermore, the US-CERT (US Department of Homeland Security Computer Emer-

gency Readiness Team) database [429] and NIST vulnerability database [430] provide

extensive coverage of vulnerabilities, and it is therefore outside the scope of this work to

cover every DDoS attack and its impact to the network. However, due to geographic scope

in which nations are impacted, we provide the following examples of traffic tolerance.

Estonian networks came under a DDoS attack in April 2007 due to a political decision

made by the Estonian government [431]. DDoS attacks against the websites eventually

forced Estonian network providers to disconnect themselves from the Global Internet.

Recent Stuxnet attacks [432, 433] that targeted industrial control systems, Operation

Aurora, and Titan Rain were some of the politically motivated cyberwars [434–436].

Furthermore, hactivist groups such as Anonymous are responsible for politically moti-

vated cyber attacks against government websites [437–439].

During 2009, government-induced traffic engineering in Iran resulted in the throttling of

its own bandwidth [440]. Following the elections on 12 June 2009, global route insta-

bilities involving 400 prefixes were observed [441]. The state run Data Communications

Iran (DCI) provides Iran’s Internet connectivity [440]. The day after the elections, more

than 180 prefixes were withdrawn from the global routing tables for an hour; moreover,

the routing instabilities continued for the next couple of days [441]. Further analysis
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demonstrated that after the prefix withdrawals, DCI (AS12880) outbound traffic re-

duced from about 5 Gb/s to 1 Gb/s [440]. It became clear that filtering was occurring

as evidenced by the impact on web, video, and interactive applications [442]. The over-

all carried load in DCI and local ISPs showed significant variability in the months of

June and July [443, 444]. The citizens of Iran used proxy web servers to overcome the

filtering [445].

3.1.3 Disruption Tolerance

The Internet is a collection of heterogeneous components [2, 120, 446]. Fundamentally,

the data in communication networks are carried via wired and wireless media. Wireless

technologies that link nodes pose a variety of different challenges. Data is transported

via an open channel and nodes may be mobile in wireless networks. Furthermore, mobile

nodes can be deployed without a dependency on an infrastructure, thus limiting their

resources.

Wireless networks are broadly categorised based on the area that they cover (e.g. wide

area network, local area network). Some common examples of these type of networks

are satellite networks, cellular telephony networks, and wireless sensor networks. For

the networks that have relatively small coverage, the impact of challenge scope is local.

However, for metropolitan and wide area networks, since coverage area is greater, the

scope is regional. We present some past challenges that involve satellite networks and the

PSTN. Since the network outage reports are not publicly available particularly for cellular

networks [23], we are unable to present any further specific examples for these networks.

However, our focus is to present challenges in the wireless networking environment that

cause disruptions.
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Mobility

The anytime and anywhere paradigm requires non-trivial changes to the network archi-

tectures [447]. While end-users enjoy the freedom of untethered access to the network,

mobility of the nodes bring extra burden for designers [448]. MSC (mobile switching cen-

ter) failures in a cellular network lead to roaming failures [449] and BTS (base transceiver

station) failures can lead to handoff failures [450]. In MANETs (mobile ad hoc networks),

self-organisation and self-configuration is needed to set up the network [53, 109]. How-

ever, episodic connectivity due to the mobility of the nodes in MANETs results in routing

challenges. Several routing algorithms are proposed to solve such problems [451–454].

Highly-dynamic environments also present identical problems for topology management,

location management, and routing management [455], particularly for supersonic aero-

nautical nodes with relative speeds of up to 7 Mach, due to short contact duration and

limited connectivity of the nodes [456,457].

Connectivity

Since the communication channel is open and the medium is shared, the cost of attacking

a wireless network is smaller than that of attacking wired networks. Attacks against

WSNs (wireless sensor networks) may be easier since they are often deployed in hostile

environments [458,459]. Jamming the RF (radio frequency) signal is one way of carrying

out denial of service attacks in wireless networks [460,461]. Since WSNs are constrained

by limited resources, attack cost against WSNs are even lower [462,463].

Wireless channels are lossy, meaning the channel has a lower SNR (signal-to-noise ratio)

compared to wired channels. Signal levels attenuate as the distance between the source

and the destination increases [464,465]. This distance has a significant effect particularly

for satellite networks [466,467]. However, usage of wireless mesh networks and multihop
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routing can alleviate requirement for direct LOS (line-of-sight) communication [468].

The signal quality of wireless links degrades due to meteorological events, such as rain

storms [204]. On the other hand, routing algorithms can predict the increased BER

(bit error rate) using weather radar information and route packets around storms [206].

Therefore, disconnected operation of links can be masked by the higher layers to a certain

extent. Signals can be distorted when they are diffracted, reflected, and scattered from

an object on its path from source to destination.

The erroneous channel in the wireless environment particularly impacts the transport

layer. TCP cannot differentiate between corruption and congestion, and it assumes

losses are due to congestion [469, 470]. When the packets are lost in a high error rate

channel, TCP throttles the sender transmit rate unnecessarily; hence, ELN (explicit

loss notification) mechanisms are required to differentiate between congestion- and error-

based losses [471, 472]. ETEN (explicit transport error notification) can help improve

TCP performance by discriminating between congestion- and corruption-based losses, so

that sender does not reduce its transmission rate needlessly [467]. A variety of solutions

have been proposed for TCP modifications in lossy wireless environments [464, 465, 473,

474]. Note that while mechanisms at the transport layer can request retransmission of

original data they cannot recover the corrupted data. Therefore, error correction schemes

such as FEC (forward error correction) at the link layer can mask the effects of a lossy

channel.

Delay

The TCP/IP protocol suite is designed with the assumption that the end hosts are con-

tinuously connected and the propagation delay is relatively low. The assumed delay on

wired links is on the order of milliseconds; however, this assumption does not hold for

satellite networks in which propagation delay approaches seconds [475, 476]. Moreover,
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the propagation delay can increase to the order of minutes or hours for interplanetary net-

works [477–479]. TCP utilises the three-way handshake mechanism to establish a connec-

tion and it uses acknowledgment mechanism to reliably deliver the segments. Short RTT

(round trip time) is needed for both of these mechanisms since TCP retransmits for reli-

able delivery after timeouts. Retransmissions due to long propagation delays can consume

the valuable bandwidth unnecessarily. Therefore, environments in which long propaga-

tion delays exist challenge the transport layer and a number of protocols for delay-tolerant

networking have been proposed [474]. Among the most prominent protocols are: SCPS-

TP (Space Communications Protocol Standards-Transport Protocol) [480, 481], Bundle

Protocol [482], and the LTP (Licklider Transmission Protocol) [483, 484]. Furthermore,

unlike terrestrial networks in which the delay is low and interplanetary networks in which

the delay is predictably high, delay characteristics can be unpredictably high in habitat

monitoring using wireless sensor networks. An example is the MULEs project in which

sensed data in a sparse network is transported to a base station opportunistically [485].

Energy

Energy is an essential resource for communication networks. Mobile phones, satellite sta-

tions, and MANET nodes require energy to do necessary computations and transmission

of communication signals [486]. While the power grid directly supplies the necessary

energy for desktop computers and network routers, smart phones and laptops use re-

placeable batteries when they are not connected to the power grid. Furthermore, it is

difficult, if not impossible, to recharge batteries of energy-constrained sensor nodes de-

ployed in hostile and remote locations [458]. Thus, energy is a necessary resource for

communication networks and several mechanisms such as energy scavenging have been

proposed to deal with such energy-constrained networks [487].
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3.2 Challenge Models

In the previous section, we identify the known and potential challenges to communication

networks. In this section, we provide the challenge models and a taxonomy we have

developed [161]. First, we review the challenge → fault → error → failure chain and

its relationship with the ResiliNets strategy. Then, we discuss the spatial and temporal

impact of challenges. Based on the challenges we identify, we provide a taxonomy of

challenges. Finally, we present how these challenges are correlated with our taxonomy.

3.2.1 Challenge → Fault → Error → Failure Chain

A challenge is an event that impacts normal operation of the network [2]. A challenge

triggers faults, which are the hypothesised cause of errors. Eventually, a fault may man-

ifest itself as an error. If the error propagates it may cause the delivered services to

fail [13]. The fault → error → failure chain relationship has been extensively studied by

the IFIP 10.4 working group [13,14]. We note that while the IFIP 10.4 taxonomy focused

on faults in computer systems, our focus in this work is taxonomy of challenges in com-

munication networks. Challenges to the normal operation of networks include uninten-

tional misconfiguration or operational mistakes, malicious attacks, large-scale disasters,

environmental, and deliberate human actions driven by social, political, and economic

agendas [2,19–23,53]. The challenge, fault, error, failure chain relationship and ResiliNets

strategy (Figure 2.2) is shown in Figure 3.2.

Challenges have primary impact on the defence and detection aspects of the ResiliNets

D2R2+DR strategy. We can defend against challenges passively by building diverse

structural components and technologies, as well as using redundant components [3]. Fur-

thermore, we can strengthen networks by installing active defence mechanisms such as

firewalls. However, building a 100% resilient system is not practical due to cost con-
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Figure 3.2: Challenge → fault → error → failure chain

straints. For example, while a full mesh interconnection provides maximum robustness

to link failures, it is prohibitively expensive to deploy. As a result, defences may be

penetrated and challenges activate dormant faults in the system. We note that system

operation can also activate the faults; for example, a particular input pattern can ac-

tivate faulty software code [13]. Some challenges can be detected by using in-network

mechanisms, such as signature-based detection against known attacks or behaviour-based

detection against flash crowds. Out-of-network detection includes mechanisms that are

outside the boundary of the network system. For example, weather storm tracking or an

early warning system against an EMP (electro magnetic pulse) weapon can be used as

an input to a predictive algorithm to utilise alternative paths [205–207]. On the other

hand, it is very difficult to detect some challenges, such as operator mistakes, before they

result in failure.

Faults are hypothesised causes of errors [13], and once activated, result in errors that

65



can be detected using the network management and monitoring systems. Moreover,

we can defend against errors by redundant components and cross-layer techniques. An

example is having FEC (forward error correction) at the link layer to protect against

wireless challenges. By using a cross-layer mechanism, the transport layer can request

retransmission of original data if it cannot recover the corrupted data. Thus, we can

defend against errors before they are passed to the operational state.

3.2.2 Spatial and Temporal Impact of Challenges

It is important to understand the spatial and temporal characteristics of challenges in

order to model them realistically. For survivable operation against threats, a certain geo-

graphic distance between data centers has been proposed [488]. For example, a minimum

of 32 miles and a maximum of 151 miles have been designated in data center topologies

for site separation against several threats [488]. We provide order-of-magnitude temporal

and spatial characteristics of some challenges in Table 3.1. For example, the geographic

scope of a devastating earthquake can be on the order of 100 km2 and its impact region

on networks might be the same. On the other hand, a fire’s geographic scope in a key

network node might be on the order of 100s m2; however, the impact to the communi-

cation networks can be larger. The duration of an earthquake can be on the order of

seconds whereas recovery of the communication networks can take days. Another ex-

ample is a policy decision taken by a governing body in which the spatial region and

temporal duration of the challenge might not be accurately known. While the impact of

a challenge may be only on a nation or a service that impacts users globally, it might

take years to revise a policy.
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Table 3.1: Spatial and temporal characteristics of network challenges

Challenge Examples Spatial Region Temporal Duration
challenge impact challenge impact

earthquake 100s km2 100s km2 seconds days +
fire 100s m2 10s km2 hours days
hurricane 100s km2 100s km2 hours weeks +
solar storm 1000s km2 1000s km2 minutes days +
misconfiguration node global seconds minutes
malicious attack node global hours hours
terrorism 100s m2 global hours hours +
policy related N/A regional + N/A years
depeering N/A global seconds days
pandemic global global days months
power blackout 100s km2 regional minutes hours

3.2.3 Challenge Taxonomy

Network challenges can be categorised based on the phenomenological cause, system

boundary, target, objective, intent, capability, dimension, domain, scope, significance,

persistence, and repetition they impose on the communication networks, as shown in

Figure 3.3. Our challenge taxonomy is based on the IFIP 10.4 working group studies

on fault taxonomy [13]. We note that the previously developed taxonomy of challenges

focused on an aspect that only considers a resilience discipline such as security [104,176] or

a specific functionality such as emergency management [489]. However, our framework

and challenge taxonomy is more generalised and covers multiple aspects of resilience

disciplines in network systems, including disruption tolerance and dependencies among

critical infrastructures.

The taxonomy developed by the IFIP 10.4 working group has focused on computer sys-

tems. We expand and cover the challenge taxonomy with an emphasis on network sys-

tems. In accordance, we keep the system boundaries, objective, intent, and capability

classes the same as the IFIP 10.4 fault taxonomy [13, 14, 16]. We remove the phase of
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occurrence class since it is applicable to faults only (as opposed to a challenge to the

existing network). We add target, domain, scope, significance, and repetition classes

to our challenge taxonomy. We modify the phenomenological cause class to include a

dependency subclass, add a protocols subclass to dimension, and modify persistence to

cover challenges that might be long-lived and short-lived. The permanent subclass is

eliminated for challenge scenarios. Next, we elaborate on each of these classes.

1. Phenomenological cause: The cause of a challenge can be further classified based

on natural causes, human-made causes, and interdependencies between the

infrastructures. Natural phenomena can occur terrestrially (e.g. earthquake,

fire), meteorologically (e.g. hurricane, ice storms), or be caused by cosmo-

logical events (e.g. solar storm, space debris). Human-made challenges can be

due to decisions driven by social, political, and economic causes, as well as

causes related to terrorism. Examples of such events include recreational crack-

ers, government decisions to block Internet access to nations, and depeering for

some financial gain or to increase market share. Finally, phenomenological causes

can be due to dependencies within or between the different infrastructures. A fail-

ure within the system, at a lower level can impact the services provided at the

higher levels since the services at the higher levels are dependent on the services

of lower levels. For example, end-to-end transport is dependent on the lower level

hop-by-hop links. Propagation of incorrect BGP announcements is an example of a

cascading failure across the same level within a system. Finally, a power blackout

can impact the communication network due to interdependencies between the

power grid and the Internet infrastructures.

2. System boundary: The system of interest in which it interacts with its environ-

ment can be a single system or a system of systems. For example, while a single
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AS (autonomous system) can be considered as a single system, the Global Inter-

net, which is a collection of ASes, must be considered as system of systems. The

challenges can be internal as in the case of BGP cascading failures, and external

to the system in the case of natural disasters. Moreover, defensive mechanisms

developed for external threats falls short for threats coming from inside a system.

3. Target: The challenges can be directly targeted to communication infrastructure

(e.g. malicious worm) or the network can suffer collateral damage as a result of

a challenge, such as a terrorist activity not directly targeting the network as in the

US 9/11 and UK 7/7 attacks.

4. Objective: The objective of a challenge can be non-malicious such as miscon-

figurations or malicious such as attacks. Furthermore, a selfish node or AS can

limit network resources in its own interest without a malicious objective.

5. Intent: The intent of the actions taken by humans can be non-deliberate such

as misconfiguration errors or deliberate such as attacks.

6. Capability: The challenges caused by humans can be accidental or due to in-

competence. We note that while incompetence refers to lack of professional com-

petence, accidents generally occur as a result of an inadvertent action by humans.

For example, BGP prefix hijackings have occurred due to misconfigurations and

incompetence of the operator. In the case of the 2003 blackout in the US, one of

the causes of the blackout was contact of the power lines with overgrown trees. If

the power lines had been laid underground, the catastrophic event could have been

prevented.

7. Dimension: Challenges can affect the hardware, software, protocols, or the

traffic within a network. For example, random hardware failures fall under the
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hardware sub-class of the dimension class, software bugs fall under the software

sub-class of the dimension class, and attacks exploiting a vulnerability in a protocol

fall under the protocol sub-class of the dimension class. Furthermore, legitimate

traffic can impact the services being offered by the network such as the case of flash

crowds. We note that DDoS attacks also impact the legitimate user traffic.

8. Domain: Challenges vary depending on the domain in which communication net-

work operates. Medium, mobility, delay, and energy constraints impose

different mechanisms to be considered when dealing with challenges. The medium

in which nodes communicate can be using wired or wireless links. The nodes

can be at fixed locations or mobile in which topology control mechanisms are

fundamentally different. Delay characteristics in which the networks operate also

vary: in a terrestrial network a low delay, in interplanetary communication a

predictable high delay, and in the case of sensor networks for habitat monitoring

unpredictably high delay occurs. Moreover, energy resources are different for net-

works operating in different domains: while a desktop computer that is connected

to power grid has unlimited energy, a laptop with a rechargeable battery face

different challenges than an energy-constraint sensor node in a hostile area in

which it might not be feasible to replace its battery.

9. Scope: The scope of a challenge can impact the nodes within a network, the

links within a network, and some parts or the entire geographic area of the

network. Geographic scope in which a challenge might impact the network can be

local, regional, or global. Moreover, the geographic scope of regional challenges

can be fixed (e.g. earthquake) or evolving (e.g. hurricane).

10. Significance: A challenge’s significance can be minor, major, or catastrophic.

In the case of the PSTN, the number of lost customer minutes provides a good
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measure of the significance of an event. Large-scale disasters such as Hurricane

Katrina and the Fukushima Earthquake that caused human and financial losses

were catastrophic in significance. Depeering of ISPs in which some customers can-

not reach each other is a challenge with major significance, whereas a jammer

preventing communication between two individuals may be a challenge with minor

significance.

11. Persistence: Persistence captures the continuation property of a challenge. The

persistent challenges such as BGP misconfigurations can be short-lived or long-

lived. The majority of BGP misconfigurations are considered short-lived, meaning

that minutes after discovery of the mistake, remediation takes place. An example

of a long-lived challenge would be a pandemic that affects communication services

for months. A challenge can be transient such as a lightning strike taking down

power equipment.

12. Repetition: Challenges can occur in single instances or multiple instances.

While natural disasters are single instance events, malicious attacks might be rep-

etitious. Furthermore, a repeated instance of a challenge that adapts to failures

can cause worse harm.

3.2.4 Correlation of Challenges

In the previous section, we categorise challenges to the network. In this section, we

present major challenge groupings and demonstrate the applicability of our taxonomy.

The challenges can be broadly listed as follows: Large-scale disasters, socio-political and

economic challenges, dependent failures, human errors, malicious attacks, unusual traffic,

and environmental challenges.
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Table 3.2: Correlation of network challenges

Challenge Large-scale Soc.-pol. & Depend. Human Malicious Unusual Environ.
categories disasters eco. challenges failures errors attacks traffic challenges

natural

terrestrial ×
cosmological × ×

meteorological × ×

cause

human-made

social × × × × × ×
political × × × × ×

business & × × × × ×
economical

terrorism × × × × ×

dependency

interdependent × ×
infrastructure

lower-level × ×
failure

cascading × ×
failure

boundary
internal × × × × × ×
external × × × × ×

target
direct × × × × × × ×
collateral × × × ×

objective

non-malicious × × × × × ×
selfish × × ×
malicious × × ×

intent
non-deliberate × × × × ×
deliberate × × × ×

capability
accidental × × × × ×
incompetence × × × × × × ×

dimension

hardware × × × ×
software × × × ×
protocols × × × × × ×
traffic × × × × ×

domain

medium
wired × × × × × ×

wireless × × × × × × ×

mobility
fixed × × × × × × ×
mobile × × × × × × ×

delay

low × × × × × × ×
high × × × × × ×

unpredictable × × × ×

energy

grid × × × × × × ×
replaceable × × × × × × ×
constrained × × ×

scope

nodes × × × × ×
links × × × × × ×

area

local × × × ×
regional × × × × × ×
global × × × ×

significance

minor × × × ×
major × × × × × ×
catastrophic × × × × ×

persistence
persistence

short-lived × × × × × ×
long-lived × × × × ×

transient × ×

repetition

single × × × × × ×
multiple × × × ×
adaptive × ×

We note that these coarse groupings of challenges overlap with each other partially. For

example, a DDoS attack can be categorised under malicious attack as well as under the

unusual traffic category. Next, we correlate the challenge taxonomy with the challenge

grouping as shown in Table 3.2. In this case, we list the challenge categories from our

taxonomy in Figure 3.3 in the first three columns and the major challenge groupings in

the last seven columns. We mark a given (category, grouping) cell with an × if that

particular challenge group may occur within that challenge category. Furthermore, not

all the binary combinations are possible. For example, a malicious attack is caused
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by humans, but not by natural phenomena. Such a cross-correlation matrix can be

beneficial for correct threat modelling [161]. Next, for each major challenge listed above,

we describe its relation to our challenge taxonomy. Note that a comprehensive list of

challenges are presented in Section 3.1; therefore, only a select few examples are presented

for illustration of each category in this section.

Large-scale disasters can be caused by natural phenomena, human actions, and depen-

dencies among infrastructures. Target, objective, intent, capability, dimension, domain,

and persistence aspects of the challenge categories can take any value. On the other hand,

the scope of large-scale disasters are not local and large-scale disasters are non-repetitive

catastrophic events that cause human and financial losses.

Socio-political and economical events are caused by humans challenging communi-

cation networks. In the case of nationwide Internet outages these occurred within the

nation, thus the system boundary was internal (e.g. Iran blocking its own traffic [442]),

whereas DDoS attacks against Estonia due to a political decision was launched from

outside of Estonia [431]. While the target and objective category of these challenges can

take any value, the socio-political and economical events fall into deliberate intent and

incompetence capability of our challenge category. Such social, political, and economic

events impact the protocol and traffic dimensions across the wired and wireless domains

of challenge categories. In the case of a nationwide Internet outage, the impact of the

challenge scope is regional, whereas a policy decision can have global impact on networks

with a major or catastrophic significance. During the Arab spring, Syria’s network pre-

fixes were withdrawn from the global routing table multiple times (3 June 2011 [386,388],

19 July 2012 [490], 18 August 2012 [389], 29 November 2012 [390–393]). Furthermore,

in the case of political unrest in Egypt, social networks were initially blocked on 25

January 2011 [491] along with suspension of the mobile telephony service in certain ar-

eas [492]. This was followed by the withdrawal of most network prefixes from the global
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routing table on 27 January 2011, except the prefixes that belong to financial institu-

tions [374,378]. Eventually, all network prefixes in Egypt were withdrawn on 31 January

2011 [375, 376, 378], showing an adaptive challenge. After more than a week, network

services in Egypt returned to normal on 2 February 2011 [379].

Dependent failures occur as a result of the failure of one system that provides service

to another one. For example, critical infrastructures such as the power grid and the

Internet are becoming more dependent on each other. If the power fails, communication

networks can halt as a collateral result. The power grid increasingly requires the Internet

to transport its SCADA (Supervisory Control and Data Acquisition) [493]. On the

other hand, a service failure at a lower level is a direct challenge against higher layers.

BGP cascading failures are also a direct target against communication networks. The

capability of dependent failures are due to accident or incompetence. They impact the

hardware, software, and protocol dimensions of the network system across the wired and

wireless domains. While the dependent failure’s scope can impact nodes, links, and areas,

the significance of this challenge can be major or catastrophic. Dependent failures are

persistent and repetitious, but not adaptive.

Human errors can directly impact the networks or can cause collateral damage. These

are non-malicious activities and occur as a result of non-deliberate or deliberate intent.

Operational mistakes occur accidentally or due to incompetence. The dimension, domain,

scope, and significance of these challenges vary. Operational mistakes are generally short-

lived or transient. There can be a single occurrence or multiple repetitive occurrences.

Malicious attacks are caused by humans directly targeting networks with a malicious

objective and deliberate intent. For example, a bot can exploit the vulnerabilities if the

host is not properly secured, and this lack of secure perimeter can be accidental or due to

incompetence. Dimension, domain, scope, and significance properties can take any value.
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Malicious attacks can be short-lived or long-lived. Moreover, they can be single, multiple,

and adaptive. We note that the system boundary for attacks can be internal in which

most attacks come from insiders [494] or external. On the other hand, a non-malicious

user writing her password on a sticky note and attaching it next to her computer monitor

is a human error with incompetence capability in which an insider or outsider can exploit

this to attack the network [495].

Unusual traffic, such as flash crowds, is caused by humans. These events target net-

works directly with a non-malicious or selfish objective. The intention of users who want

to access information is deliberate; however, their intent is not to consume all of the

network resources. Therefore, this is a non-deliberate event. In the case of a flash crowd

event, the network is overwhelmed with requests by users who do not cease trying to

access the network resources. If the users understand the situation in a flash crowd and

back off, then the resources may be available after a time period; however, the network

resources may still not be available at the instant users request. Therefore, we desig-

nate this case as incompetence, since users do not know how the network operates and

continue trying to access network resources. The impact is on the traffic dimension of

the challenge categories. Unusual traffic impacts network resources on nodes and links.

This kind of challenge has minor and major significance, since the network might be

operational; however, network services can be limited.

Environmental challenges are inherent in the wireless communication medium, such

as rain storms and CMEs (coronal mass ejections), therefore the cause can be natural

with a non-malicious objective and non-deliberate intent. Moreover, connectivity on

a wireless link can be disrupted by a malicious jammer driven by socio-political and

economical reasons. As explained in malicious attacks, capability can be due to accidental

or incompetence. Their impact is on the traffic and protocol dimension of the challenges.

They only impact the wireless medium, impacting links, and have a local and regional
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area scope; however, in the case of interplanetary communication, the scope of disruption

is larger. Environmental challenges have minor or major significance with long-lived and

non-repetitious characteristics.

The taxonomy of challenges along with correlation table presented in this dissertation is

a methodology to gain deeper understanding of past and potential challenges, as well as

designing future networks. In summary, a wide range of past and potential challenges

exist and we describe with examples of how the challenges correlate with our taxonomy

in Table 3.2. By considering the dimension, scope, significance, and persistence chal-

lenge categories, large-scale disasters and malicious attacks can cause the worst harm

to networks. Their impact can be global in scope, and they can be long-lived, resulting

in catastrophic service failures. Moreover, an attack that adapts to defensive measures

can be even more harmful. Environmental challenges, such as delay, mobility, and con-

nectivity are only applicable to the wireless domain, and these challenges should be

considered during the design phase. In other words, wired networks can be strengthened

using redundancy and diversity; however, the same is more difficult for wireless networks.

The capability category is primarily applicable to human errors and not applicable for

most of the challenge examples. Incompetence and accidental challenges can be avoided

by proper training of the operations personnel. Among the social, political, and eco-

nomical challenges, nationwide Internet outages are the worst, since a country can be

disconnected from the Global Internet. As presented, there exists a wide spectrum of

challenges, and we cannot avoid them; however, with careful planning, the consequences

can be alleviated.
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3.3 Summary

Networks face a variety of challenges that disrupt normal operation. Understanding these

challenges is necessary for developing correct threat models to design resilient networks

that are cost-efficient. Based on past and potential challenges that are summarised,

we present a taxonomy of challenges that can be beneficial to evaluate network design

choices. Furthermore, we describe how these challenges correlate with our taxonomy.
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Chapter 4

Modelling Complex Networks

The Internet has evolved to become a multilevel infrastructure critical to the functioning

of society. The multilevel behaviour emerged in part due to the fact that protocols inter-

act in multiple levels and in part because of the ways in which players operate, provide,

and use the services of the Internet. Over the years, studies by the research community

investigating the resilience of the Internet have suggested controversial findings [496], one

such being that an attack on a few central nodes could bring the entire Internet down.

But this claim was dismissed by other researchers [497,498] based on the mesh-like struc-

ture of actual service-provider backbones. Therefore, realistic models are required to

mathematically understand the properties of the Internet and improve its resilience.

The work presented in this chapter has resulted in several publications. We showed the

structural similarities between transportation and communication networks using the

normalised Laplacian spectra [75]. We developed a formal multilevel graph model and

a framework to analyse flow robustness of a multilevel graph [499]. Furthermore, we

extended this to include multiprovider graphs that capture logical IXP (with exchange

providers) links [76]. Finally, we showed that physical level topologies can be modelled

by Gabriel graphs, since both are grid-like structures [76,500]. The rest of this chapter is

organised as follows: We present the topological dataset we use in Section 4.1. We present

79



structural similarities between critical infrastructures using graph spectra in Section 4.2.

The multilevel and multiprovider graph model is presented in Section 4.3. Lastly, we

present how well synthetic graph models capture the structural properties of physical

level networks in Section 4.4. Section 4.5 concludes with a summary of this chapter.

4.1 Topological Dataset

We study real networks (i.e. transportation and communication) that are geographi-

cally located within the continental United States. Therefore, we only include the 48

contiguous US states, the District of Columbia, and exclude Hawaii, Alaska, and other

US territories. Furthermore, we have developed the KU-TopView (KU Topology Map

Viewer) [5] using the Google Map API and JavaScript to visually present and assist in

analysis of these topological maps. Unlike other visualisation tools, KU-TopView makes

raw data conveniently available in the universal form of an adjacency matrix along with

the node coördinates and permits their manipulation. We have made these topologies

publicly available [51].

4.1.1 Transportation Network

We have generated the freeway topology to represent the transportation network. Our

starting point is the American Association of State Highway and Transportation Offi-

cials (AASHTO) data, which lists control cities and their sequential listing along each

interstate highway. A control city is a major population center or destination on or near

the interstate highway system determined by each state [501]. However, while generating

the transportation topology, we realised that the existing list of control cities was not

sufficient to represent the graph accurately. For example, there is no control city at some
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interchanges between interstate highways. Therefore, we add 6 additional cities1 in those

cases after verifying the crossing on Google Maps, as well as two that are needed to

correspond to physical fibre junctions2. There are also a few important newer freeways

that are not listed in the 2001 AASHTO document that we add to reflect current con-

nectivity3. This US freeway graph with 411 nodes, 553 links, and an average degree of

2.7 is shown in Figure 4.1. We note that in a previous study of US interstate highway

system, the authors used GIS (geographic information system) databases from the year

2000 (unfortunately there is no reference to the source of data), and the resulting inter-

state freeway network consisted of 1337 links and 935 nodes with an average degree of

2.86 [502]. We note that the number of nodes and degree distribution in this geographic

graph is highly dependent on the number of control cities used for geographic represen-

tation and that a number of cities are degree-2 vertices in between higher degree nodes

at interchanges. We will discuss a uniform solution to this problem in Section 4.4.

4.1.2 Communication Networks

The Internet is a complex and large-scale network for which collective analysis is non-

trivial. Therefore, we restrict this study to include physical fibre and logical level topolo-

gies. We note that throughout this work we refer to IP router, PoP, and AS level graphs

as logical level graphs or L3, whereas fibre level topologies as physical level topologies

and denote them as L1. We use Rocketfuel-inferred AT&T, Level 3, and Sprint PoP-

level topologies [33, 503] to study logical level topologies. We note that international

links, as well as links crossing over Pacific and Atlantic Oceans, are removed intention-

1Benton Harbor MI, Country Club Hills IL, Effingham IL, Gary IN, Joilet IL, Lake Egypt IL
2Blaine WA, Hannibal MO
3I-335 Kansas Turnpike, I-86 East, I-97, I-68, I-495 in NY, and the important non-Interstate US-101

in California between Los Angeles and San Francisco
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Figure 4.1: Visual representation of US freeways

ally to compare the logical level topologies against the US fibre deployments and freeway

topologies.

We then use a US long-haul fibre-optic routes map data to generate physical topologies

for AT&T, Sprint, and Level 34 [505]. In this map, US fibre-optic routes cross cities

throughout the US and each ISP has a different coloured link. We project the cities

to be physical node locations and connect them based on the map, which is sufficiently

accurate on a national scale. We use this data to generate adjacency matrices for each

individual ISP. To capture the geographic properties as well as the graph connectivity,

cities are included as nodes even if they are merely a location along a link between

fibre interconnection. As with the freeway graph, we will further discuss this in Sec-

tion 4.4. Finally, we also make use of the publicly available TeliaSonera5 network [506],

Internet2 [507], and CORONET [508, 509] topologies. CORONET is a synthetic fibre

4We also utilised the Level 3 network map in an effort to reflect the data as accurately as possible [504].
5TeliaSonera physical graph has a link between Houston and Miami that appears to cross over the

Gulf of Mexico. This is because TeliaSonera does not provide intermediate geographic path information.

82



topology designed to be representative of service provider fibre deployments, and this

does not have a corresponding logical topology as shown in Figure 4.2.

Figure 4.2: Visual representation of CORONET fibre network

The physical and logical commercial service provider networks are shown in Figures 4.3,

4.4, 4.5, and 4.6. The Internet2 research network at the physical and logical level is

shown in Figure 4.7. Initial visual inspection suggests that the physical topologies are

similar to the freeway topology. The relation of the physical level topology and other

physical infrastructures has been stated before [5,510]; however, to best of our knowledge,

we are not aware of any previous work that quantitatively demonstrates the correlation

between these different infrastructures rigorously.

4.1.3 Properties of Networks

Although topology viewing is a powerful tool, it does not suffice for rigorous analysis of

topologies [511]. We therefore calculate the graph metrics of regular networks (shown in
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Figure 4.3: Visual representation of AT&T physical and logical level networks

Figure 4.4: Visual representation of Level 3 physical and logical level networks

Table 4.1) and critical infrastructures as shown in Table 4.2 using the Python NetworkX

library [512].
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Figure 4.5: Visual representation of Sprint physical and logical level networks

Figure 4.6: Visual representation of TeliaSonera physical and logical level networks

Graph Metrics

Some of the well-known metrics provide insight on a variety of graph properties, in-

cluding distance, degree of connectivity, and centrality. Network diameter, radius, and
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Figure 4.7: Visual representation of Internet2 physical and logical level networks

average hop count provide distance measures [35]. Eccentricity of a node is the longest

shortest path from this node to every other node; the largest value of eccentricity among

all nodes is the diameter and the smallest eccentricity is the radius. Betweenness is the

number of shortest paths through a node or link and provides a centrality or important-

ness measure [513,514]. Clustering coefficient is a centrality measure of how well a node’s

neighbours are connected [35]. Closeness centrality is the inverse of the sum of shortest

paths from a node to every other node [515]. Assortativity provides a measure of degree

variance in a network [516]. Algebraic connectivity, a(G), is the second smallest eigen-

value of the Laplacian matrix [72]. For the graphs of the same order (number of vertices),

algebraic connectivity provides a very good measure of how well the graph is connected

and it indicates robustness of networks against node and link failures [74, 517,518].
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Graph Properties of Baseline Networks

We start our metrics-based analysis on seven regular graphs: star, linear, binary tree6,

ring, grid, toroid, and full mesh. We investigate the effect of an increase in the order

(number of nodes) from n = 10 to n = 100 for the baseline topologies as shown in

Table 4.1. We note that the values are rounded to the nearest tenth decimal. The number

of edges (links) are increased as necessary for each topology to scale to the number of

nodes. Some metrics yield the same values for graphs of the same order (e.g. average

degree for star, linear, tree), and others yield the same values for graphs of differing sizes

and orders (e.g. same a(G) for 10 node linear and 100 node grid), therefore relying on a

single metric for graph analysis is clearly not sufficient.

Table 4.1: Topological characteristics of baseline networks

Topology Star Linear Tree Ring Grid Toroid Mesh Star Linear Tree Ring Grid Toroid Mesh

Nodes 10 10 10 10 10 10 10 100 100 100 100 100 100 100
Links 9 9 9 10 13 15 45 99 99 99 100 180 200 4950

Max. degree 9 2 3 2 3 3 9 99 2 3 2 4 4 99
Avg. degree 1.8 1.8 1.8 2 2.6 3 9 2 2 2 2 3.6 4 99
Deg. assort. −1 −0.1 −0.5 1 0.3 1 1 −1 0 −0.3 1 0.6 1 1

Closeness 0.6 0.3 0.4 0.4 0.4 0.5 1 0.5 0 0.1 0 0.2 0.2 1
Clust. coeff. 0 0 0 0 0 0 1 0 0 0 0 0 0 1
Algeb. con. 1 0.1 0.2 0.4 0.4 1.4 10 1 0 0 0 0.1 0.4 100

Diameter 2 9 5 5 5 3 1 2 99 12 50 18 10 1
Radius 1 5 3 5 3 3 1 1 50 6 50 10 10 1

Hopcount 1.8 3.7 2.8 2.8 2.3 1.9 1 2 33.7 7.8 25.3 6.7 5 1
Max. Node

36 20 26 8 11 4 0 4851 2450 3068 1201 616 200 0
betweenness
Max. Link

9 25 24 13 12 6 1 99 2500 2496 1250 341 200 1
betweenness

Graph Properties of Real Networks

We investigate the graph-theoretic properties of the logical and the physical topologies

of four commercial ISP networks (AT&T, Level 3, Sprint, TeliaSonera) and the Internet2

research network, as well as the fibre-link level of the CORONET synthetic topology.

6We note that not all leaves are binary as needed for a given order.
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We also study the US Interstate Highway graph. Our results are shown in Table 4.2. In

general, the metrics for the logical topologies differ from the physical topologies in that

the physical topologies have more nodes and links compared to logical topologies.

Table 4.2: Topological characteristics of communication and transportation networks

Network Nodes Links
Avg. Node Clust.

Diam. Radius
Avg.

Close.
Max. Node Max. Link

Degree Coeff. Hopcount Between. Between.

AT&T L1 383 488 2.6 0 39 20 14.1 0.1 17011 14466
AT&T L3 107 140 2.6 0.1 6 3 3.4 0.3 2168 661
Level 3 L1 99 130 2.6 0.1 19 10 7.7 0.1 1628 1046
Level 3 L3 38 376 19.8 0.8 3 2 1.5 0.7 59 37
Sprint L1 264 312 2.4 0 37 19 14.8 0.1 11275 9570
Sprint L3 28 76 5.4 0.4 4 2 2.2 0.5 100 27

TeliaSonera L1 21 25 2.4 0.2 9 6 4.1 0.3 75 61
TeliaSonera L3 16 29 3.6 0.5 4 2 2.1 0.5 34 17

Internet2 L1 57 65 2.3 0 14 8 6.7 0.2 630 521
Internet2 L3 9 13 2.9 0.4 4 2 2 0.5 9 11

CORONET L1 75 99 2.6 0 17 9 6.5 0.2 1090 704
US freeways 411 553 2.7 0.1 42 21 13.7 0.1 23872 19785

The maximum degree of each provider’s physical topology is less than that of its corre-

sponding logical topology. This is due to the ability of logical topologies to arbitrarily

overlay virtual links. The average degree of each provider’s physical topology is less

than that of its corresponding logical topology, in particular for the Level 3 topology in

which the average degree for the logical level graph is a relatively highly meshed 19.8.

Physical topologies have a higher value of network diameter, radii, and average hopcount

than that of logical topologies. Betweenness values also differ for physical and logical

topologies, showing a difference of one or two orders of magnitude higher for physical

topologies. Clustering coefficient and closeness centrality metrics are also higher for the

logical topologies compared to physical topologies.

From a distance metrics (as discussed earlier) perspective, clearly physical topologies

have higher values. We observe that the values of degree-based metrics also differ between

physical and logical topologies. This can be attributed to the ease with which nodes can

be connected in a logical topology as compared to the difficulty involved in connecting
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node in a physical topology, in which one must physically lay down fibre between nodes.

Long links are added to logical topologies to reduce the forwarding overhead of multihop

paths. From a centrality metrics perspective, we can see that physical topologies are not

as clustered and have more homogeneous degree distributions.

We can also see that US freeway graph metrics are closer to those of the physical topolo-

gies. This is not surprising: both the US Interstate Highway system and the physical

level of the Internet are physical infrastructures rather than logical overlays, and they

frequently share the same paths since freeways (and railways) provide inexpensive right-

of-way along which to lay fibre.

Distinction Between Structural and Geographical Physical-Level Graphs

The physical level topologies consist of a number of degree two intermediate nodes for ac-

curate geographic representation that are necessary for modelling area-based challenges

on the network, such as power failures and severe weather. However, these intermediate

nodes artificially change the graph theoretic properties of the networks, in particular

artificially skewing the degree distribution toward degree-2 nodes. Therefore, we mod-

ify the existing geographical physical level graphs by removing nodes with a degree of

two, as long as there is not a logical level node at that location for which the physical

node provides service to upper layers. The topological characteristics of these structural

physical-level communication networks are shown in Table 4.3. The cost of structural

physical-level networks will be explained in Section 4.4.2.

Structural physical graphs have fewer nodes and links than their corresponding geograph-

ical physical-level graphs. However, with the exception of TeliaSonera, each structural

graph has a larger average degree than its corresponding physical level graph. For ex-

ample, the structural graph of Internet2 has 16 nodes, 24 links, and an average degree
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Table 4.3: Topological characteristics of structural physical-level networks

Network Nodes Links
Avg. Node Clust.

Diam. Radius
Avg.

Close.
Max. Node Max. Link

Degree Coeff. Hopcount Between. Between.

AT&T 162 244 3.0 0.1 28 14 9.2 0.1 3592 2936
Level 3 63 94 3.0 0.2 14 7 5.7 0.2 655 568
Sprint 77 114 3.0 0.1 16 9 6.5 0.2 743 602

TeliaSonera 18 21 2.3 0.2 7 5 3.6 0.3 54 43
Internet2 16 24 3.0 0.1 6 3 2.6 0.4 40 33

CORONET 39 63 3.2 0.1 9 5 4.1 0.3 173 133

of 3 whereas the original Internet2 physical graph has 57 nodes, 65 links, and an average

degree of 2.28. We believe that the structural graph of TeliaSonera has a smaller average

degree than the original graph of TeliaSonera due to the latter’s small order and size.

Finally, collective analysis of graph metrics provides a good indication of resilience of

different topologies; however, it is difficult to infer sensible conclusions about the struc-

ture of a network or how similar two different networks are. Therefore, we redirect our

attention to the spectra of these graphs.

4.2 Spectrum of Networks

Let G = (V,E) be an unweighted, undirected graph with n vertices and m edges. Let

V = {v0, v1, . . . , vn−1} denote the vertex set and E = {e0, e1, . . . , em−1} denote the edge

set. A graph can be represented by several methods including an adjacency matrix,

incidence matrix, Laplacian matrix, and normalised Laplacian matrix [519, 520]. A(G)

is the symmetric adjacency matrix with no self-loops where aii = 0, aij = aji = 1 if

there is a link between {vi,vj}, and aij = aji = 0 if there is no link between {vi,vj}.

The Laplacian matrix of G is: L(G) = D(G)−A(G) where D(G) is the diagonal matrix

of node degrees, dii = deg(vi). Given degree of a node is di = d(vi), the normalised

Laplacian matrix L(G) can be represented:
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L(G)(i, j) =






1, if i = j and di �= 0

− 1�
didj

, if vi and vj are adjacent

0, otherwise

Let M be a symmetric matrix of order n and I be the identity matrix of order n. Then,

eigenvalues (λ) and the eigenvector (x) of M satisfy Mx = λx for x �= 0. In other

words, eigenvalues are the roots of the characteristic polynomial, det(M − λI) = 0.

The set of eigenvalues {λ1, λ2, . . . , λn} together with their multiplicities (number of oc-

currences of an eigenvalue λi) define the spectrum of M . Spectral graph theory has

been extensively covered in several monographs [519–523]. The spectrum of the AS-level

topology of the Internet has been analysed based on the k largest values of the adjacency

matrix [524]. The IP-level topology of the Internet has also been investigated and its

Laplacian spectrum compared against synthetically generated topologies [525]. The nor-

malised Laplacian spectrum of AS-level topologies has been shown to differ significantly

from that of synthetically generated topologies [526]. Recently, a weighted spectral dis-

tribution metric has been proposed and has shown that synthetically generated graphs

can be fine-tuned using spectral properties [66]. While previous studies utilised graph

spectra to analyse logical level topologies, in this study we focus on physical networks

and how they relate to each other structurally, as well as to their logical overlays.

4.2.1 Spectral Analysis of Networks

The normalised Laplacian spectrum provides insight into the structure of networks that

are different in order (number of nodes) and size (number of links). The eigenvalues of

the L(G) reside in the [0, 2] interval and take values {0 = λ1 ≤ λ2 ≤ . . . ≤ λn}. The

algebraic multiplicity of λ = 0 indicates the number of connected components. Hence,
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there is always at least one eigenvalue equal to 0. Furthermore, matrices which resemble

one another may have similar eigenvalues and multiplicity. The spectrum of L(G) is

quasi-symmetric7 around 1, which means a large algebraic multiplicity for the eigenvalue

λ = 1 may indicate duplications in a network [527]. In other words, two separate nodes

{u, v} might have all or some of their neighbours being same. For example in a star graph

with all other nodes connecting to the single central node, the leaves will all have the

same neighbour, which is the central node. Likewise, while in a full mesh all nodes have

the same neighbours, a partial mesh will have partial duplications. The presence of many

small eigenvalue multiplicities may indicate that there are many components within a

graph and these components are loosely connected to each other [527]. An eigenvalue

of 2 indicates the graph is bipartite; eigenvalues close to 2 indicates the graph is nearly

bipartite [527]. A bipartite graph is a graph in which its vertex set can be divided into

two groups in such a way that there will be no edges between the vertices within each

group. Once the discrete and deterministic eigenvalues are calculated for a given graph,

the relative frequency of eigenvalues yield valuable information about the structure of a

network. Moreover, spectra can be presented in relative cumulative frequency as well,

and we describe our choice in the next section. For the rest of this work we abbreviate

relative frequency as RF and relative cumulative frequency as RCF.

Spectra of Baseline Networks

The RF (relative frequency) of the normalised Laplacian eigenvalues for baseline topolo-

gies (star, linear, ring, tree, grid, toroid, full mesh) of order n = 100 is shown in Figure 4.8.

Since most of the eigenvalues have very small multiplicities, the RF of eigenvalues has

a floor that is too noisy to be able to gather useful information. Because of the noisy

7We use the term quasi-symmetric to represent almost symmetric graph spectra. For example, a
finite full-mesh graph is quasi-symmetric, since all eigenvalues except the first (which is equal to 0) are
equal to a value close to 1. We will detail those graphs in the next section.
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floor in representing multiple RFs, we use the RCF (relative cumulative frequency) for

the baseline graph analysis and for the rest of the work. Furthermore, we note that while

some researchers use RFs that they term density of eigenvalues to represent the spec-

tra [527] and others use RCF that they term normalised index of eigenvalues to represent

the spectra [526]. Since we show multiple curves in a plot to compare different graphs,

our preference is to show spectra using RCFs since it is more informative.
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Figure 4.8: Spectra of baseline topologies, RF for n = 100

The RCFs of the eigenvalues for these baseline topologies are shown in Figure 4.9. The

star topology has its eigenvalues fixed, independent of the graph order: {0 = λ1 ≤ 1 =

λ2 = . . . = λn−1 ≤ λn = 2}. The spectrum of a 100 node full mesh looks similar to a star,

except that it does not have an eigenvalue of 2 and the eigenvalues are fixed at 1.0101

(we comment on that later). An interesting observation is that the spectrum of these

two baseline topologies look very similar. Indeed, at a micro level we can think of each

individual node in a mesh as a star motif. Furthermore, the algebraic connectivity of a

star is 1 [72]. However, since node centrality measures are largest for a star topology, the
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central node in a star can be the target of an attack or the single point of failure from

a network engineering perspective. An attack against the root node of a binary tree is

also the worst case scenario, however, this partitions the network into two components,

in which nodes in each component can communicate with each other whereas this is

impossible for a star topology. The spectrum of linear and ring topologies look almost

identical, since a ring has an additional link compared to a linear topology, and both linear

and ring topologies have the lowest algebraic connectivity values. Likewise, multiplicities

of grid and toroid topologies look very similar, since a toroid has additional links to

connect the nodes on the edges of a grid. We also observe that since a Manhattan grid

is a combination of linear topologies, its spectrum looks similar to a linear topology.

Multiplicities of a tree topology lie somewhere between the two extremes of mesh and

linear.
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Figure 4.9: Spectra of baseline topologies, RCF for n = 100

We show the spectra of five different full-mesh complete graphs in Figure 4.10. The

eigenvalues of a n-order complete graph are: {0 = λ1 ≤ n
n−1 = λ2 = . . . = λn}. The
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multiplicity of the eigenvalue equal to n/(n− 1) for complete graphs is n− 1. Moreover,

as the order of the graph approaches infinity, the eigenvalues will converge to a value of

1 since limn→∞
n

n−1 = 1. However, eigenvalues λ2 through λn are never exactly equal to

1 in a finite full mesh topology. Furthermore, the algebraic connectivity is equal to the

order of a complete graph a(G) = n.
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Figure 4.10: Spectra of complete graphs

Spectra of Real Networks

We plot the RCFs of eigenvalues of US freeways against physical8 and logical level topolo-

gies in Figure 4.11 and Figure 4.12 respectively. Clearly, the spectra of the logical and

physical topologies differ. Furthermore, the spectra of the physical topologies resemble

the spectra of the US Interstate Highway graph as shown in Figure 4.11. This con-

firms our supposition that the properties of networks are similar since fibre is laid along

right-of-ways, such as freeways.

8These plots use the geographic version of the physical graphs; this will be explained in Section 4.4.
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Figure 4.11: Spectra of geographical physical networks

The spectra of logical level topologies along with the US Interstate Highway graph is

shown in Figure 4.12. We intentionally include the transportation graph to compare

it against the logical level topologies, which clearly shows the spectra do not match to

that of freeways. The algebraic multiplicity for the eigenvalue λ = 1 is largest for the

AT&T logical topology, indicating that this topology contains the largest number of

node duplications. In other words, this topology has the most star-like components, as is

evident by visually inspecting it on KU-TopView [51]. The largest eigenvalues indicate to

what degree a graph is bipartite [527]. The largest eigenvalues of the physical topologies

and the largest eigenvalues of the freeways graph are the eigenvalues closest to 2. Hence,

the physical topologies and the freeways topology are the most nearly bipartite graphs.
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Figure 4.12: Spectra of logical networks

4.2.2 Flow Robustness and Spectral Properties

Previously, we presented how physical communication topologies match the structure

of the right-of-way of freeways using normalised Laplacian spectra. In this section, we

compare the flow robustness against spectral properties of the networks we study. The

two important spectral properties we are interested are algebraic connectivity a(G) and

the spectral radius ρ(L). We present these metrics of five logical level topologies, six

physical level network topologies, and US freeway graph in Table 4.4.

We measure the resilience of graphs in terms of flow robustness [71, 73], which is the

ratio of connected node pairs to the maximum number of node pairs ranging [0,1]. If

the graph is not partitioned the flow robustness value is 1, if the graph has no links flow

robustness is 0, and if it is partitioned, its value is calculated by adding the number

of connection pairs in each component. We approximate the average flow robustness

of a given network by averaging the flow robustness over its 10,000 link-failure sets
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Table 4.4: Ranking of flow robustness and spectral properties

Network
Avg. Flow FR

a(G)
a(G)

ρ(L)
ρ(L)

Robustness Rank Rank Rank

Level 3 L3 0.9413 1 0.9758 1 1.5037 1
Sprint L3 0.6503 2 0.6844 3 1.6361 2

TeliaSonera L3 0.5963 3 0.7669 2 1.7237 3
Internet2 L3 0.4779 4 0.4885 4 1.8091 4

AT&T L3 0.2996 5 0.1324 5 1.9127 5
TeliaSonera L1 0.1615 6 0.1178 6 1.9642 6
CORONET L1 0.0958 7 0.0401 7 1.9688 7

Level 3 L1 0.0721 8 0.0261 9 1.9811 9
Internet2 L1 0.0626 9 0.0386 8 1.9858 11
US freeways 0.0323 10 0.0055 10 1.9752 8
AT&T L1 0.0222 11 0.0055 11 1.9892 12
Sprint L1 0.0164 12 0.0053 12 1.9840 10

drawn uniformly and randomly from the pool of all of its link-failure sets. Next, we

consider the algebraic connectivity a(G) of these topologies. Algebraic connectivity is the

second smallest eigenvalue of the Laplacian matrix and is well-suited for measuring graph

connectivity and for comparing the connectivities of graphs with the same order [72].

Finally, we consider the spectral radius of these 12 topologies. The spectral radius ρ

is the absolute value of the maximum eigenvalue, ρ = |λmax|. Moreover, if ρ(L) = 2,

then the graph is bipartite, and the closer the spectral radii to 2, the closer the graph is

to bipartite. We calculate the spectral radius of the normalised Laplacian matrix ρ(L)

shown in column 6 of Table 4.4. We note that we previously studied spectral radii of

Laplacian matrices ρ(L) and adjacency matrices ρ(A), but did not observe any pattern

for ρ(L) and ρ(A) [75].

We rank the flow robustness of networks in descending order in columns 1 and 2. The

logical topologies have higher values compared to the physical topologies and the US

freeway graph. When we rank the topologies according to descending values of a(G),
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we observe a similar ranking order. In this case, only the rankings of the Internet2 and

Level 3 physical topologies are swapped. Finally, we rank the spectral radii of these 12

topologies in ascending order. The ranking according to the spectral radii of the first

seven topologies matches the rankings of the flow robustness and a(G). Our conclusion

from this ranking comparison is that flow robustness, algebraic connectivity, and spectral

radii are suitable metrics for the resilience analysis of networks.

4.3 Multilevel and Multiprovider Graph Model

The Internet infrastructure can be examined at the physical, IP router, PoP (point of

presence), and AS (autonomous system) level from a topological point of view [31]. An

abstract view of different levels of the Internet is shown in Figure 4.13. At the lowest

level we have the physical topology, which consists of network elements such as fibre

and copper cables, ADMs (add drop multiplexers), cross-connects, and layer-2 switches.

The router level consists of devices operating at the IP-layer. A PoP is a collection of

routers in a geographic location, and PoP-level topology can be seen as an aggregated

view of the routers. At the AS-level, different provider networks peer with each other

at the IXPs (Internet eXchange Points) and private peering points [32]. Finally, end

users communicate with each other using this multilevel and multiprovider graph. The

E2E (end-to-end) level graph depends on users’ interactions and requests for information

they want to access. For example, users and applications that reside in different ISPs

may communicate with each other using the client/server paradigm, or they can form

a P2P (peer-to-peer) network to exchange information among themselves in which the

E2E level topology resembles a full-mesh structure; examples of this are shown in Fig-

ure 4.13. Intuitively, a richly connected lower level can improve the survivability [528]

and resilience [2] of a service at higher levels.
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Figure 4.13: An abstract view of Internet graph

A holistic graph analysis that considers the multilevel and multiprovider nature of the

Internet is non-trivial and does not exist to the best of our knowledge. Understanding the

evolution of the Internet from a multilevel point of view is more realistic than examining

its properties at individual levels. Therefore, we develop a formal multilevel and multi-

provider graph model and a framework to analyse the flow robustness of multilevel and

multiprovider networks. When designing a resilient network, our main goal is providing

resilient service to the users in a cost-efficient manner. Hence, it is extremely important

that we ensure connectivity between pairs of end systems. It is for this reason that we

use the flow robustness metric as described in Section 4.2.2. Furthermore, we categorise

networks in the following four groups [499]:

1. Single level, single provider: These networks consist of the physical or logical
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level of a single provider. Most previous studies analysed this type of graph [23,71,

75,134,497].

2. Multilevel, single provider: These networks consist of multilevel graphs within

a single provider. There are a few studies examining multilevel graphs for a single

provider [37–39].

3. Single level, multiprovider: These networks consist of AS-level graphs that

include several provider networks, but as a single adjacency matrix in which each

provider is a single vertex of the graph. While several studies analyse AS-level

graphs [529], they treat multiprovider graphs at an abstract level (i.e. AS number),

and they fail to capture how the ASes peer one another via IXP links.

4. Multilevel, multiprovider: This type of model and analysis most realistically

captures the complexity of the Internet. To the best of our knowledge, there are

no other studies that evaluate the resilience of the Internet from multilevel and

multiprovider perspectives simultaneously.

We begin our multilevel analysis of flow robustness of a 3-level graph and a 2-level graph in

which the top two level graphs are the same to demonstrate the difference in performance

analysis of multilevel networks. We show that the two multilevel graphs exhibit different

performance and using fewer levels of graphs obscures accurate resilience evaluation of

the top level of a multilevel graph. We then analyse the flow robustness of a number of

two-level graphs constructed from real-world communication networks. Next, we analyse

a multiprovider graph, which is constructed by aggregating four different ISP networks

into a single adjacency matrix. Our results confirm that it is difficult to partition the

tier-1 ISP connectivity using attacks targeted at logical links.

101



4.3.1 Multilevel Graph Model

In an effort to further understand the structure of a number of communication networks,

we employ a framework for studying multilevel graphs. A multilevel graph G is a sequence

of graphs, G = (G�0 , G�1 , ..., G�L−1
), ordered from lowest-level graph to highest-level graph

where:

1. L is the number of levels

2. G�i is the graph corresponding to level �i, where �i can be any desired label, given

by G�i = (V�i , E�i)

3. For all non-negative integers i and j such that i ≤ j, V�j ⊆ V�i

4. For all non-negative integers i and j such that i ≤ j and all nodes u and v such

that u, v ∈ V�j , if conn�i(u, v) = false, then conn�j(u, v) = false, where the function

conn�m takes as its two parameters nodes in V�m and returns true if the two nodes

are connected in G�m and false otherwise.

In other words, a multilevel graph consists of multiple graphs, one for each level, arranged

such that for any pair of levels, the set of all nodes in the higher level is a subset of the

set of all nodes in the lower level, and such that nodes that are not connected in a lower

level are not connected in a higher level. In this work, we only consider unweighted

and undirected graphs. A connected multilevel graph is depicted in Figure 4.14, and

when a link is removed at the bottom level, this does not impact the higher level graphs

if dynamic routing is utilised as shown in Figure 4.15. Note that in Figure 4.16, the

removal of links (1, 6) and (3, 4) in the lowest level partitions the graph and necessitates

the removal of all links between the disconnected clusters in the above levels as well.
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Figure 4.15: Disconnected multilevel network
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Figure 4.16: Partitioned multilevel network

A number of authors have discussed the importance of multilevel graphs as a means of

further studying the resilience and survivability of the Internet [3,37–39,115,530]. Some

have developed multilevel graph frameworks of their own [37,38]. One study made use of
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a multilevel framework in order to study railway, peer-to-peer, brain, and random graph

topologies [38]. Each topology was subjected to random and loaded [37] link deletions,

which were used to simulate errors and attacks, respectively. The robustness of each

topology was then quantified in two different ways: as the fraction of logical link weight

remaining and as the size of the largest connected component, both as a function of the

number of link deletions. In our work, we study challenges [161] on multilevel networks

by subjecting topologies to deletions drawn from a far more extensive group of graph

metrics. Moreover, rather than treating robustness as the fraction of remaining logical

link weight or as the size of the largest connected component, we consider the quantity

flow robustness as described in Section 4.2.2.

We implement our multilevel model in Python. Our code takes as input a collection of

adjacency matrices – one for each level – and stores them in a single multilevel graph

data structure in memory, with the following requirements:

1. For any pair of levels, the set of all nodes in the level above are required to be a

subset of the set of all nodes in the level below.

2. For any pair of levels, nodes that are disconnected from one another in the level

below are also required to be disconnected from one another in the level above.

If the above requirements are met, we can then perform node and link deletions at any

level and calculate any number of graph metrics with the help of the Python NetworkX

library [512]. When node and link deletions are performed within a given level, the effects

of the deletion are propagated to the higher levels to ensure that requirement 2 remains

satisfied.
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4.3.2 Multilevel Graph Analysis

We first employ our multilevel graph analysis framework to demonstrate the effect using

multiple levels of graphs on the service resilience [2] at the top level. For this demonstra-

tive analysis, we use a 3-level graph (US freeways, geographical physical, and logical-level

topology of Internet2 research network) and a 2-level graph (physical- and logical-level

topology of Internet2 research network) in which the top two levels are identical both

for 3-level and 2-level graphs. We emphasise that the lowest graph in the 3-level graph

is the freeways graph, and it does not provide a service in the conventional sense to the

physical topology other than the provision of right-of-way. This is an example to show

the impact of using multiple levels of graphs on evaluating the service resilience of the top

level. For both the 3- and 2-level network, we perform random node and link deletions

at the lowest level and observe how these deletions affect the highest level. Moreover,

we consider the effects of these deletions under two separate scenarios – dynamic rout-

ing and static routing. Under perfect dynamic routing, we allow any pair of nodes in a

given level to remain connected so long as there exists some path between them in the

level below. Under static routing, which we show for worst-case baseline comparison, we

immediately sever the connection between two nodes within a given level the moment

that the shortest path between them in the level below is disrupted.

The results of this experiment are shown in Figure 4.17 for node deletions and in Fig-

ure 4.18 for link deletions. For both networks, the average flow robustness of the topmost

level is plotted against the number of random deletions performed at the lowest level.

For a given number of deletions, the average flow robustness was computed by averaging

the flow robustness over 1000 failure sets, each of which was generated by performing

the specified number of random deletions. For each value of average flow robustness on

the curve, we also plot the 95% confidence interval. We note that the 3-level network
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Figure 4.17: Robustness of multilevel network for node deletions
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Figure 4.18: Robustness of multilevel network for link deletions

has higher values of average flow robustness for any given number of deletions than the

2-level network. For example in Figure 4.17, when we delete 50 random nodes in the
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lowest topology of the 3-level graph (in the freeways graph), the flow robustness at the

top level is approximately 0.55, whereas in a 2-level graph when we delete random 50

nodes in the lowest topology (in the physical topology), the flow robustness at the top

level is approximately 0. This shows that adding multiple levels of graphs in resilience

analysis impacts the outcome significantly. The difference when considering multiple

levels is due to the fact that the bottom level graph has nodes that are a superset of

the top 2 levels. We also note that if the US freeway topology was less connected (e.g.

instead of a grid-like, it was linear) then the flow robustness would be lower. However,

it is outside scope of this work to analyse different connected graphs at the lower layers,

and it will be part of our future work. Moreover, both the 3-level and 2-level network

have higher values of average flow robustness under dynamic routing than under static

routing. Finally as expected, average flow robustness diminishes more severely with node

deletions than with link deletions since a single node deletion results in the deletion of

all of its incident links.

Our framework can handle graphs with any number of levels. Part of the reason behind

the experiment given above was to demonstrate the ability of our framework to handle

multilevel graphs with more than two levels, in particular, the 3-level graph with the

Internet2 physical and logical topologies in the two upper levels and the freeway right-

of-way graph in the lowest level. We focus on 2-level communication networks for the

rest of our multilevel analysis. To that end, we use the geographical physical and logical

level adjacency matrices for each of AT&T, Level 3, Sprint, TeliaSonera, and Internet2

to create multilevel graphs for each network, and then perform node and link deletions

within each multilevel graph at the physical level. Finally, we calculate the resulting

flow robustness in the logical level for every failure set. The results of the experiments

involving node deletions for Sprint are shown in Figures 4.19 through 4.22, while the

results of link deletions for Sprint are shown in Figures 4.23 through 4.24. Plots showing
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the flow robustness results for all 6 topologies are presented in Appendix A.
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Figure 4.19: Robustness for dynamic routing during adaptive node deletions
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Figure 4.20: Robustness for dynamic routing during non-adaptive node deletions
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Figure 4.21: Robustness for static routing during adaptive node deletions
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Figure 4.22: Robustness for static routing during non-adaptive node deletions

In some of cases we delete nodes and links at random while in others we delete nodes

and links with very specific properties. The former experiments serve as a baseline for
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Figure 4.23: Robustness for dynamic routing link deletions
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Figure 4.24: Robustness for static routing during link deletions

comparison against the latter, which focus on those nodes and links with large values of

certain forms of centrality – in particular, betweenness, closeness, degree, link between-
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ness, current-flow betweenness, and current-flow closeness. We discussed the first four

metrics earlier in Section 4.1.3; here, we define current-flow betweenness and current-flow

closeness [531].

Unlike conventional betweenness and closeness that measure a node’s centrality based on

the shortest paths going through that node, current-flow betweenness and current-flow

closeness are both ways of measuring a node’s centrality based on information flow alone.

To understand these two measures, we must first view the graph under consideration as

an electrical network into which one unit of current enters from a node known as the

source and from which one unit of current exits through another node known as the

sink 9. The locations of the source and sink suffice to specify a unique current for each

link in the network, as argued in Lemma 1 of [531]. Moreover, once each link is assigned a

current, it is possible to assign absolute potentials to each node throughout the network,

as argued in Lemma 2 of [531]10.

The current-flow betweenness of a node in a graph is simply the average of the total

current passing through that node (from all of its incident links) over all possible electrical

networks resulting from different possible (source, sink) pairs. The current-flow closeness

of a node in a graph is the inverse of the average over all other possible nodes of the

potential difference between that node when it is treated as the source and the other

node when it is treated as the sink. If we view “current” as information, then in essence,

current-flow betweenness is a measure of the amount of information that can pass through

a given node, while current-flow closeness is a measure of the ease with which information

can be sent out from one node into the rest of the network.

9Note that the concept of an electrical network – and therefore the measures of current-flow closeness
and current-flow betweenness – make sense only if the graph is simple and connected. That is why
these measures, along with closeness, are employed only for non-adaptive deletions, explained in the
subsequent paragraph.

10In order to compute these potentials, we assign each link one unit of resistance. In other words,
we employ the standard practice of assigning each link of an unweighted graph a length of one. This
provides the ability to capture the link capacity in future analysis.
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We use all of these measures (betweenness, closeness, degree, link betweenness, current-

flow betweenness, and current-flow closeness) as a means to study what sorts of deletions

at the physical level have the most disruptive effect at the logical level. Furthermore,

we consider two different categories of deletions: adaptive deletions and non-adaptive

deletions. A non-adaptive deletion is defined as a deletion performed based on the initial

node or link centrality rankings that existed prior to the occurrence of any deletion. An

adaptive deletion is defined as a deletion performed based on centrality rankings that

are recomputed after the most recent deletion. This can result from an attacker that has

real-time access to internal network management and operations information.

Finally, note that for centrality-based deletions we compute flow robustness, while for

random deletions we compute average flow robustness in the same manner as before, that

is by averaging the flow robustness over 1000 failure sets, each of which was generated by

performing the number of random deletions. We also plot the 95% confidence intervals

on each of the points located on the random curves.

As before, flow robustness diminishes more severely under static routing than under

dynamic routing, and node deletions have a greater impact on flow robustness than link

deletions. Furthermore, adaptive deletions have a more severe impact on the network

than non-adaptive deletions. The reason for this should be clear: an adaptive deletion is

always selecting from the pool of existing nodes or links the one with the highest centrality

value, whereas a non-adaptive deletion will select from the pool of one that used to – but

may no longer – have the highest centrality value. Hence, adaptive deletions have a far

greater tendency to select the most important nodes or links than non-adaptive deletions,

which results in a more severe impact on the flow robustness of the logical level.

Given a sufficiently small number of deletions, random deletions tend to have less effect

on flow robustness than any other type of deletion. This is unsurprising, since deletions
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based on centrality metrics have a greater tendency to delete more “important” nodes

and links than random deletions. What is surprising, however, is that, given a sufficient

number of deletions, the flow robustness resulting from non-adaptive deletions based on

closeness and current-flow closeness surpasses the average flow robustness resulting from

random node deletions. This holds true for all five of the networks under study. For

example in Figure 4.20, with 40 random node deletions the flow robustness of the Sprint

network is about 0.3, whereas the flow robustness for closeness is about 0.55. Similarly

in Figure 4.20, for 60 random node deletions the flow robustness is about 0.1 and for

flow closeness the flow robustness is about 0.2. We speculate that since these are non-

adaptive challenges, by the time network arrives in a state in which several nodes are

deleted, initially calculated rankings are no longer accurate. However, why this happens

only for closeness and current-flow closeness centrality metrics is not known. The reasons

for the occurrence of this phenomenon, and an investigation into the types of multilevel

graphs to which it is restricted, will be the subject of future work.

4.3.3 Multiprovider Graph Model

We introduce a new graph-theoretic model in which we define the concept of a multi-

provider graph. Within our framework, a multiprovider graph is an ordered pair (GL3, GAS),

in which L3 represents PoP-level topology and AS represents the interprovider AS topol-

ogy, where GL3 = (VL3, EL3) and GAS = (VAS, EAS) are graphs such that:

1. the vertices in VAS are mutually disjoint connected subgraphs of GL3 that, when

taken together, contain all of the vertices in VL3. More specifically, if

VAS = {v1, v2, ..., vn}, then

(a) any two distinct vertices vi, vj ∈ VAS will be connected subgraphs of GL3 given

by vi = (Vi, Ei) and vj = (Vj, Ej) such that Vi ∩ Vj = Ø
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(b) if we let vi = (Vi, Ei) for all integers i such that 1 ≤ i ≤ n, then
�n

i=1 Vi = VL3.

2. there exists some function f : EAS → 2EL3 such that for any pair of distinct vertices

vi, vj ∈ VAS given by vi = (Vi, Ei) and vj = (Vj, Ej), if {vi, vj} ∈ EAS, then

f({vi, vj}) = Vij ∩ EL3 where Vij is the set of unordered pairs {ui, uj} such that

{ui, uj} ∈ Vij if and only if ui ∈ Vi and uj ∈ Vj. More explicitly, the mapping f is

used to identify edges between specific AS peer routers that serve to connect two

ASes vi, vj ∈ VAS that share a given AS-edge {vi, vj} ∈ EAS.

To study multiprovider graphs, first we combine the PoP-level topologies of four com-

mercial ISPs (AT&T, Level 3, Sprint, TeliaSonera). We treat each ISP as a single AS,

and the resulting AS-level abstract graph is a full-mesh with 4 nodes, in which each AS

is connected to the other through a logical IXP (Internet exchange point) link. We select

Atlanta NAP [532], Equinix [533], Terremark [534], and MAE-East [535] as the IXPs

in which 4 ISPs are connected. The reason we select these 4 IXPs is that we analysed

a number of IXP websites and found that these IXPs do provide service to the 4 com-

mercial ISPs. We do not claim that this is an exhaustive list of IXPs, however, it was

sufficient to generate a full-mesh AS-level graph for those tier-1 ISP providers. The 4

IXPs are distributed across the US in 17 different cities and there are 51 logical links

that connected the four ISPs.

In Figure 4.25, the flow robustness of a multiprovider graph is shown. In this case

we delete all inter-AS IXP links in a city, ranked based on betweenness. As expected,

adaptive attacks inflict more harm than non-adaptive attacks, which, in turn, inflict

more harm than randomly-placed attacks. The sharp reductions of flow robustness due

to targeted attacks indicate the disconnection of an AS from the AS-level graph following

such attacks. Note that several cities must be deleted in order to disconnect a single AS.

In contrast, the flow robustness values in random scenarios decrease at a smoother rate
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Figure 4.25: Robustness of multiprovider network

because the flow robustness is averaged over 1000 failure sets. For example, the flow

robustness values indicate that a very high percentage of the failure sets following the

twelfth city deletion did not partition the network in any manner. Furthermore, our

results indicate that it is very difficult to partition the tier-1 ISP connectivity, which is

a full-mesh, given that it requires at least 9 cities and all the IXP links in a city to be

destroyed. If we had included all IXPs in more than 17 cities, intuitively it would have

been even more difficult to partition the AS-level graph.

Next, we analyse flow robustness of two provider graphs and their connections via IXPs.

In this case, we investigate the flow robustness of provider duos as shown in Figure 4.26.

Since these graphs are constructed by only two providers, the impact of random deletions

and centrality-based attacks result in the same flow robustness. The connectivity between

these provider duos breaks when the nth IXP link is broken. For example, AT&T and

Level 3 peer with each other in 16 cities, and flow robustness remains at 1 until the 16th
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Figure 4.26: Robustness of provider duos
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Figure 4.27: Robustness of a provider trio (Level 3, Sprint, TeliaSonera)
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IXP link breaks, in which flow robustness drops to 0.

Finally, we analyse the flow robustness of a provider trio combination (Level 3, Sprint,

TeliaSonera). The network performance when challenged by random failures and targeted

attacks against IXP links are shown in Figure 4.27. The number of IXP connections is

reduced from 17 to 10 when we consider only three providers. As expected, the flow

robustness depends on the number of IXP links between the provider trio.

4.3.4 Multilevel and Multiprovider Analysis

In this section we present the analysis of multilevel and multiprovider networks. We

use the multiprovider graph of 4 service providers explained in Section 4.3.3. Addition-

ally, we combine the structural physical-level topologies of each provider using a similar

methodology in which we connect each provider’s physical topology in 17 cities where

there is an exchange point.

2-Level Multiprovider Analysis

For our multiprovider analysis we first examine the 2-level multiprovider graph in which

the lowest level is the combined logical level topology of the 4 providers and the topmost

level is the E2E level topology of aggregated flows between 9 nodes. Since the combined

multiprovider graph might have more than one node in a given city, we assign the given 9

nodes (Atlanta, GA; Chicago, IL; Dallas, TX; Denver, CO; Los Angeles, CA; New York,

NY, San Jose, CA; Seattle, WA; Washington, DC) in the following manner. We assign

Atlanta, GA, Chicago, IL, and Dallas, TX, to AT&T; Denver, CO and Los Angeles, CA,

to Level 3; New York, NY and San Jose, CA, to Sprint; Seattle, WA and Washington, DC,

to TeliaSonera. This assignment was purely arbitrary and was based on the alphabetical
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order of the cities. Our objective is to have a same graph on top of the combined

multiprovider graph.
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Figure 4.28: Robustness of 2-level multiprovider graph

The results for the 2-level multiprovider graphs are shown in Figure 4.28. Compared to

single providers it takes more effort to achieve a flow robustness of 0 when considering

multiprovider networks. For example, even if we consider the best case scenario of Level

3 in which it requires 12 nodes to be deleted for a flow robustness of 0, it takes 28 nodes to

be deleted to have a flow robustness of 0 for the 2-level multiprovider graphs. It requires

38 nodes to be deleted when considering degree of connectivity attacks, whereas random

failures resulting in a flow robustness of 0 requires 185 nodes to be deleted.

3-Level Multiprovider Analysis

Finally, we consider a 3-level multiprovider graph. In this case, the 3 levels from the

lowest level to the highest level are given by the combined structural physical level graph,

118



combined multiprovider graph, and E2E level aggregated flows. The total number of

nodes in the combined physical level is 320 and total number of links is 524.
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Figure 4.29: Robustness of 3-level multiprovider graph

The flow robustness resulting from the various challenges for the 3-level multiprovider

graph is shown in Figure 4.29. The flow robustness falls to 0 when 290 out of 320 (90%)

nodes are deleted in a random fashion, 51 out of 320 (16%) of the nodes are deleted based

on betweenness centrality, and 74 out of 320 nodes (23%) are deleted based on degree of

connectivity.

4.4 Physical Level Network Modelling

Physical level topologies are necessary to study the structure of the Internet realistically.

They provide the means of connecting nodes in the higher levels [499] and they are needed

to model area-based challenges on networks [23]. In an effort to maintain security and
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competitiveness, service providers generally do not share fibre topology of their networks.

The applicability of existing geographic graph generators for modelling physical-level

networks is lacking in the literature and are an important area of research [34–36].

In this section, we describe the synthetic geographical graph models and provide structural-

and cost-based comparisons of geographic graph models applied to graphs with node

locations that are constrained to those of actual physical graphs. Furthermore, we dis-

cuss how one might develop a better alternative geographical graph model to capture a

graph’s structural properties.

4.4.1 Network Cost Model

Structural properties impact the connectivity and cost of building networks. While at

the logical level the cost is captured by the number of nodes and the capacity of each

node (i.e. bandwidth and number of ports available in a router [497,498]), at the physical

level, the length of the fibre dominates the cost. Previously, we provided a network cost

model as:

Ci,j = f + v × di,j (4.1)

where f is the fixed cost associated with link (including termination), v is the variable

cost per unit distance for the link, and di,j is the length of a link [5, 536, 537]. Based on

the assumption that the variable cost dominates in long haul fibre networks, we ignore

the fixed cost associated with links, and simplify network cost as:

C =
�

i

li (4.2)
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where li is the length of the i-th link [76, 500, 538]. We calculate the total link length

for each provider with this simplified network cost model as shown in 5th column in

Table 4.5. We note that, the detailed graph properties of these graphs are presented

in Section 4.1, Table 4.2. The total link length of each physical topology is somewhere

between 14,000 to 50,000 km. For these topologies, the smaller the size of the network,

the smaller the total length link of the fibre.

Table 4.5: Cost of physical-level and full-mesh networks

Network
Geographical Full mesh

Nodes Links
Avg. Node Tot. l

Links
Tot. l

Degree [km] ×106 [km]

AT&T 383 488 2.55 50,026 73,153 116.8
Level 3 99 130 2.63 28,538 4,851 7.5
Sprint 264 312 2.36 33,627 34,716 57.8

TeliaSonera 21 25 2.38 14,190 210 0.4
Internet2 57 65 2.28 19,050 1,596 2.7

CORONET 75 99 2.64 28,325 2,775 4.6

Next, for each physical level topology, we consider as an upper baseline the full-mesh

topology whose vertex set is identical to that of the original topology. We then calculate

the total link count and length of each full-mesh topology as shown in column 6 and 7

in Table 4.5, respectively. Note that the total link lengths are given in millions of km for

a hypothetical full-mesh physical level topology, emphasising that real networks cannot

have unlimited resilience due to cost constraints.

4.4.2 Structure of Physical-Level Graphs

In Section 4.1.3 we describe the distinction between geographical and structural physical-

level graphs. In this section, we show an example to emphasise the difference in repre-

senting geographic and structural physical level graphs in Figure 4.30. In this case, the
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map we have [505] has a path from Spokane, WA (dark coloured pin on upper left corner

of Figure 4.30) to Billings, MT (cyan coloured pin on lower right corner of Figure 4.30)

crossing five cities (Coeur d’Alene, ID; Thompson Falls, MT; Missoula, MT; Helena, MT;

Bozeman, MT), forming a zigzag shaped path that captures geography of the path. This

geographic physical graph is necessary to accurately study area-based challenges such as

severe weather. On the other hand, this physical path from Spokane, WA to Billings, MT

can be represented as a single link structurally. After all, it does not matter where the

link is cut between Spokane, WA and Billings, MT since there is no logical PoP that is a

traffic source or sink between these cities. We note that, the nodes that have a degree 3

or higher are kept to capture the physical layer structure even if there is not a logical PoP

in these locations. Moreover, stub nodes are removed since we are interested in backbone

networks and in the geographic representation these stub nodes might as well represent

access networks.

Figure 4.30: Geographical vs. structural graphs

The number of nodes, links, and average degree of the structural graphs are shown in Ta-

ble 4.6. The topological characteristics of structural graphs are detailed in Section 4.1.3,

Table 4.3. Each structural graph has fewer nodes and links than its corresponding physi-

cal level graph. However, we note that the total fibre length of the structural graphs (cf.
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Table 4.6) is close to that of the geographical physical graphs (cf. Table 4.5).

Table 4.6: Cost of structural graphs

Network Nodes Links Avg. Deg. Tot. l [km]

AT&T 162 244 3.01 40,985
Level 3 63 94 2.98 27,597
Sprint 77 114 2.96 28,069

TeliaSonera 18 21 2.33 14,040
Internet2 16 24 3.00 18,146

CORONET 39 63 3.23 27,579

4.4.3 Synthetic Graph Models for Physical-Level Networks

In this section we present four different geographic graph models. The Gabriel graph

model is a parameterless model that uses only node locations as input, while the geomet-

ric, geographical threshold, and Waxman models all require at least one parameter. The

geometric graph model uses a single threshold parameter, while the geographic thresh-

old model and the probabilistic Waxman model use two parameters. We apply each of

these graph models to graphs with node locations constrained to those of actual physical

topologies. Given the diverse nature of these models, we believe the following sections

represent a fairly comprehensive analysis of geographic graph models applied to physical

topologies.

Gabriel Graphs

Next, we generate Gabriel graphs of the six service provider networks. Gabriel graphs are

useful in modelling graphs with geographic connectivity that resemble grids [539,540]. We

would expect the Gabriel graph to be one of the best ways to model physical topologies

for this reason. In a Gabriel graph, two nodes are connected directly if and only if there
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are no other nodes that fall inside the circle whose diameter is given by the line segment

joining the two nodes. The number of links and the total link length of Gabriel graphs

of six networks are shown in Table 4.7.

Table 4.7: Cost of Gabriel graphs

Network Links Tot. l [km]

AT&T 686 66,157
Level 3 170 33,991
Sprint 474 57,104

TeliaSonera 26 12,111
Internet2 94 27,786

CORONET 127 33,265

Geometric Graphs

A 2-dimensional geometric graph is a graph in which nodes are placed on a plane or

surface and any pair of nodes is connected if and only if:

d(u, v) ≤ dθ (4.3)

where d(u, v) is the Euclidean distance between the two nodes {u, v}, and dθ is a distance

threshold parameter [541]. In the conventional random 2-dimensional geometric graph

model, nodes are distributed randomly on a plane.

Using the physical level node locations of six provider networks, we generate four different

geometric graphs based on four different dθ distance threshold values. For the first set of

graphs, we use the maximum link length of the actual physical graph as the dθ value. For

the second set of graphs we select the largest possible values of dθ such that the total link

lengths of these graphs are less than the total link lengths of the original physical level
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graphs. Using this methodology, we find that all of the synthetically generated graphs

are disconnected. For the third set of graphs, we select the smallest value of dθ such

that the graphs are connected. It turns out that none of these graphs are biconnected.

For the fourth set of graphs we select the smallest values of dθ such that the graphs

are biconnected: that is, such that the graphs will remain connected after the failure

of any one node or link. This is a basic requirement for basic network resilience and

survivability [2, 53]. The link lengths l of the actual graphs as well as the synthetically

generated geometric graphs are shown in Table 4.8.

Table 4.8: Cost of geometric graphs based on a threshold value

Network
Actual Threshold Optimised Cost Optimised Cost & Con. Optimised Cost & Bicon. Optimised

Links
Tot. l Max. l

Links
Tot. l dθ Links

Tot. l dθ Links
Tot. l dθ Links

Tot. l dθ
[km] [km] ×103 [km] [km] [km] [km] [km] [km] ×103 [km] [km]

AT&T 488 50,026 629 15,062 5,719 629 783 49,937 99 4,916 918,353 302 8,343 2,169 424

Level 3 130 28,538 1,063 2,107 1,326 1,063 209 28,358 226 749 234,721 528 1,104 449 683

Sprint 312 33,627 602 6,478 2,328 602 466 33,573 112 3,417 804,197 390 4,261 1,159 452

TeliaSonera 25 14,190 1,592 106 88 1,592 37 13,757 614 56 27,842 859 93 68 1,425

Internet2 65 19,049 910 442 246 910 83 18,997 334 131 37,532 424 258 105 616

CORONET 99 28,325 943 922 506 943 156 28,144 280 512 188,663 604 613 254 691

To further explain the data in Table 4.8, consider the AT&T physical graph with the

given node locations. The number of links, total link length, and maximum link length of

the actual AT&T physical graph are shown in columns 2, 3, and 4, respectively. For the

case of AT&T, when we assign dθ = max(li) (where max(li) = 629 km in this case), the

synthetically generated geometric graph has 15,062 links and the total length of the graph

is approximately 5.7×106 km. Using this threshold optimised methodology we obtain the

number of links, total link length, and dθ as shown in columns 5, 6, and 7, respectively.

With the second cost optimised methodology we generate synthetic geometric graphs

such that the total link length is less than that of the actual physical topology. In the

case of AT&T, the generated graph has a total link length of 49,937 km, which is less

than that of the actual AT&T graph whose total link length is 50,026 km. We note that

the cost optimised geometric graphs of all service providers are disconnected graphs. The

125



number of links, total link length, and dθ for cost-optimised graphs are shown in columns

8, 9, and 10, respectively. Since the cost-optimised geometric graphs are disconnected

graphs, we increase the value of dθ until we obtain connected graphs. Applying this cost

and connectivity optimised methodology to AT&T, the total number of links is 4,916,

the total length of the links is 918,353 km, and dθ = 302 km, as shown in columns 11,

12, and 13, respectively. While cost and connectivity optimised graphs are connected,

none of them are biconnected. Therefore, we increase dθ so that the resulting geometric

graphs are biconnected. Applying this cost and biconnectivity optimised methodology to

AT&T, we obtain a synthetically generated geometric graph with 8,343 links, 2.2×106

km of total link length, and a dθ value of 424 km, as shown in columns 14, 15, and 16,

respectively. The rest of the service provider data is shown in the consecutive rows in

Table 4.8.

Population-weighted Geographical Threshold Graphs

A threshold graph is a type of graph in which links are formed based on node weights [542].

Two nodes {u, v} with node weights {wu, wv} are connected if and only if:

wu + wv ≥ t (4.4)

in which t is a threshold value that is a non-negative real number. A modified version of

a threshold graph is a geographical threshold graph that includes geometric information

about the nodes [543]. In this case, two nodes {u, v} with node weights {wu, wv} are

connected if and only if:

wu + wv ≥ ψd(u, v)φ (4.5)
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where ψ and φ are model parameters and d(u, v) is the distance between nodes {u, v}.

We assign the node weights to be the population estimates of cities for year 2011, which

are taken from the US Census Bureau [544]. The population statistics for each provider

are given in Table 4.9. For the AT&T physical graph, the total of population of all of

the cities (e.g. 383 cities) is about 76 million, and the average city population is about

197,000. The most populous city (NYC for all networks) has about 8.2 million people,

and the least populated city has 182 people. These statistics are shown in columns 2, 3,

4, and 5 in Table 4.9 respectively for each provider network.

Table 4.9: Population statistics of cities as node weights

Network Total Average Maximum Minimum

AT&T 75,753,034 197,789 8,244,910 182
Level 3 53,221,035 537,586 8,244,910 12,695
Sprint 67,794,208 256,796 8,244,910 448

TeliaSonera 27,944,279 1,330,680 8,244,910 65,397
Internet2 40,980,611 718,958 8,244,910 8,438

CORONET 49,559,726 660,796 8,244,910 33,395

Using city populations as node weights, we generate synthetic graphs for each provider

network. We choose φ = 1 so that we can manipulate only ψ. Moreover, by choosing

φ = 1, we find that the righthand side of inequality (4.5) varies linearly with distance.

Hence, as the distance increases between two nodes they are less likely to be connected.

Having fixed φ = 1, we first choose ψ so as to minimise cost while ensuring connectivity,

and then choose ψ so as to minimise cost while ensuring biconnectivity. More specifically,

for each network, we select the largest value of ψ rounded to the nearest tenth such that

the graph is connected, and then select the largest value of ψ rounded to the nearest

tenth such that the graph is biconnected. The results of both methodologies are shown

in Table 4.10. For AT&T, we find that the largest value of ψ such that AT&T is connected

is 3.1, yielding a link number of 1670 and a total link length of 690,941 km. Additionally,
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the largest value of ψ such that AT&T is biconnected is 2.4, which yields a link number

of 2,336 and a total link length of 1,036,747 km.

Table 4.10: Cost of population-weighted geographic threshold graphs for φ = 1

Network
Connectivity Optimised Biconnectivity Optimised
ψ Links Tot. l [km] ψ Links Tot. l [km]

AT&T 3.1 1,670 690,941 2.4 2,336 1,036,747
Level 3 3.4 324 158,316 2.4 526 304,696
Sprint 3.0 1,164 500,678 2.4 1,532 717,311

TeliaSonera 3.4 43 31,099 2.3 62 58,492
Internet2 3.2 151 98,733 2.3 233 194,938

CORONET 3.3 244 127,387 2.4 374 233,360

Location-constrained Waxman Graphs

The Waxman model provides a probabilistic way of connecting nodes in a graph [545].

Given two nodes {u, v} with a Euclidean distance d(u, v) between them, the probability

of connecting these two nodes is:

P (u, v) = βe
−d(u,v)

Lα (4.6)

where β, α ∈ (0, 1] and L is the maximum distance between any two nodes. Increasing β

increases the link density and a large value of α corresponds to a high ratio of long links

to short links.

In the Waxman model nodes are uniformly distributed in the plane. We modify the

Waxman model so that it is constrained by the node locations. The resulting link prop-

erties of the location-constrained Waxman model, along with the β and α parameters,

are shown in Table 4.11. For each network, we choose β and α such that the resulting

graph is a connected graph with the smallest possible total link length. For example, in
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the AT&T graph, using the node geographic locations we use β and α values of 0.1 and

run the experiments 10 times, which results graphs that are disconnected. Then, we keep

β at a value of 0.1 and increase α to a value of 0.2, which results in connected graphs

but with a mean of 1.6 million km total link length. We calculate total link length by

averaging 10 runs with increments of 0.1 for β and α parameters until we find connected

graphs that result in least total length. The β and α parameters for each provider are

shown in columns 2 and 3 in Table 4.11. The average number of links for each topology

resulting from 10 runs is shown in column 4, whereas the standard deviation σ of the

number of links resulting from 10 runs is shown in column 5. The average total link

length of 10 runs is shown in column 6, and the standard deviation σ of the total link of

length resulting from 10 runs is shown in column 7.

Table 4.11: Cost of location-constrained Waxman graphs

Network β α
Avg. No. σ Avg. σ

of Links Links Tot. l [km] Tot. l

AT&T 0.2 0.1 1,981 54 1,044,856 29,509
Level 3 0.6 0.1 392 14 205,036 7,896
Sprint 0.2 0.1 904 43 475,943 24,271

TeliaSonera 0.6 0.2 31 3 24,498 4,743
Internet2 0.6 0.1 102 10 62,100 7,723

CORONET 0.5 0.1 174 15 91,002 10,062

4.4.4 Analysis of Physical-Level Graphs

In this section we present the cost incurred using different graph models, as well as

visually present the structure of the synthetic models for the Internet2 network.
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Cost Analysis of Graphs

We presented the total link lengths of the synthetically generated graphs in the previous

section. However, in order to see the big picture we summarise them again in Figure 4.31.

The y-axis shows the cost incurred in terms of total link length in units of m for each

graph and x-axis shows six provider networks for different graph models. We use the

graphs that provide minimal connectivity with the least cost. For the Waxman graph

(as discussed in Section 4.4.3), among the set of ten connected graphs we generated, we

choose the graph with the smallest total link length to present in Figure 4.31.

Figure 4.31: Cost analysis of physical graph models

Cost analyses of the graphs indicate that the cost of each synthetically generated graph

depends on the order of the network. For example, the cost incurred for TeliaSonera is the

smallest and TeliaSonera also has the lowest number of nodes. Second, we can infer that

geographical, structural, and Gabriel graphs incur about the same cost for all providers.
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The cost of geometric, population-weighted geographical threshold, and Waxman graphs

are higher than the previous three models. However, the cost difference between different

graph models for TeliaSonera is not as drastic as larger size networks due to its smaller

order. In other words, the difference between the first three and last three graph models

differs more as the number of nodes increase. The location-constrained Waxman model

is probabilistic in nature and the cost values are shown for a sample generated graph

using this model with β = 0.6 and α = 0.1. The cost incurred with the Waxman model

is generally higher than that of the original geographic physical level graphs across all

providers.

A graph’s connectivity of can be improved by adding links; however this adds additional

cost to achieve resilience. By examining the synthetically generated topologies using the

geometric graph model and geographical threshold graph model in Tables 4.8 and 4.10

respectively, we observe that it incurs about 90% or more additional cost to result in

biconnected graphs. For example, applying the geometric graph model on Internet2

topology yields a total link length of about 37,000 km for a minimal connected graph.

However, for the same node locations of Internet2, when we generate a biconnected

synthetic graph, the total link length is about 105,000 km, which is more than double

the cost of the uniconnected version. Similar conclusions can be also observed for the

geographic threshold model. When we compare these cost values against the upper bound

of the Internet2 graph, which is 2.7 million km, we observe that they are far less than the

upper bound. From these results, we conclude that all synthetic graph models discussed

in this work—with the exception of the Gabriel graph model—result in a total link length

that is not feasible to model physical level topologies.
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Visual Analysis of Graphs

We inspect all the synthetically generated topologies of all the providers using KU-

TopView (KU Topology Map Viewer) [5,51]. We find the results to be similar across all

providers. We discuss the Internet2 graph here because its smaller order makes it easier

to visualise, and thus more informative for demonstrating the fitness of each synthetic

graph model on this topology. The geographical, structural, Gabriel, geometric, popu-

lation weighted geographical threshold, and location-constrained Waxman model of the

Internet2 physical-level graphs are shown from Figure 4.32 through Figure 4.37.

Figure 4.32: Visual representation of Internet2 geographical topology

The geographic physical-level Internet2 topology with 57 nodes and 65 links is shown

in Figure 4.32. In Section 4.2 we showed using graph spectra that geographic physical-

level graphs resemble a grid-like structure [75]. The structural physical-level Internet2

topology in which degree-2 nodes are removed is shown in Figure 4.33. The synthetically

generated Gabriel graph of the geographic Internet2 graph is shown in Figure 4.34. While

the Gabriel graph preserves the grid-like structure of the geographic physical-level topol-
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Figure 4.33: Visual representation of Internet2 structural topology

Figure 4.34: Visual representation of Internet2 Gabriel topology

ogy, it omits some of the links at the periphery of the actual geographic physical-level

graph (e.g. link between Baton Rouge, LA and Jacksonville, FL) and adds links that are

infeasible to deploy due to terrain. The synthetically generated geometric graph based on
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Figure 4.35: Visual representation of Internet2 geometric topology

Figure 4.36: Visual representation of Internet2 geographical threshold topology

a distance threshold value that incurs minimal cost to obtain a connected graph is shown

in Figure 4.35. In this case, while islands of nodes that are close to each other are richly

connected, overall the graph is far from being biconnected. The geographical threshold
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Figure 4.37: Visual representation of Internet2 Waxman topology

graph of the Internet2 topology using population of cities as node weights is shown in

Figure 4.36. This synthetic graph resembles multiple star-like structures, because highly-

populated cities become central nodes and connect to nodes that are far away. In this

connected graph, there is only one link that connects east and west portions of the US.

Finally, a location-constrained Waxman graph with β = 0.6 and α = 0.1 values is shown

in Figure 4.37. Because of the probabilistic nature of this graph model, the links between

nodes are established randomly. In conclusion, Gabriel graphs are the closest to model

physical level topologies with some caveats which we discuss in the next section.

4.4.5 On the Fitness of Synthetic Graph Models

In Section 4.4.4 we demonstrated that none of the synthetic geographical graph models

we study capture the cost and structural properties perfectly. Based on our observations

we present some ideas about how to develop a new geographic graph model that more

closely captures the cost and structural behavior of physical topologies. First, we observe
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that the presence of parameters within a graph model gives the user more control with

regards to optimising the graph based on an objective function. Second, we note that

while Gabriel graphs capture linear topologies that are horizontally aligned, they fall

short in capturing star-like structures.

GTGs (geographical threshold graphs), on the other hand, generate star-like structures

aggressively around heavily weighted nodes. For example, in Figures 4.38 and 4.39, we

show the behavior of the Gabriel model and GTG model applied to a linear topology

consisting of nodes horizontally aligned. In Figure 4.38, we see that the Gabriel model

perfectly captures the linear topology, while in Figure 4.39 we see that the GTG model

aggressively adds more links.

Figure 4.38: Gabriel graph model under linear geography

Figure 4.39: GTG graph model under linear geography

Next, consider a star-like graph as shown in Figure 4.40. While the Gabriel model

aggressively changes it to a grid-like structure as depicted in Figure 4.41 showing the

circles for determining the links, the GTG model can capture this star-like structure

better than the Gabriel model depending on the node weight distribution, which we

represent by giving different node sizes as shown in Figure 4.42. While each of these two

models captures different structures better than the other, a better model would be able

to select either the Gabriel model or the GTG model based on local structural criteria.

Finally, a detailed examination of Gabriel graphs show that they have two undesirable

properties as compared to highly-engineered physical graphs. First, they add unnecessary

ladder cross-connections between parallel linear segments in an attempt to increase the

grid-like structure, and second they leave stub links that do not biconnect nodes on the
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Figure 4.40: Actual graph model under star geography

Figure 4.41: Gabriel graph model under star geography

Figure 4.42: GTG graph model under star geography

edge into the rest of the graph. We will explore heuristics for a modified-Gabriel graph

to address these issues in future work.

4.5 Summary

In this chapter, we investigate the graph properties of critical infrastructures using graph

spectra and show that physical and logical level topologies have different structural char-

acteristics (i.e. mesh vs. grid). Next, a framework is presented to model and analyse
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multilevel and multiprovider networks and we show that single level analysis obscures

realistic analysis of complex networks. Finally, we investigate existing synthetic graph

generators and show that the Gabriel graph model best captures features of physical level

topologies. However, to improve the connectivity of existing networks, new models and

algorithms are required. In the next chapter, we present graph algorithms that optimise

existing topologies for increased resilience in a cost-efficient manner.
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Chapter 5

Network Design and Optimisation

.

Network connectivity can be improved by simply adding links to an existing graph.

However, this might not be the most cost-efficient process. Moreover, networks cannot

have unlimited resilience due to cost constraints because these two objectives fundamen-

tally oppose one another. For example a complete (i.e. full mesh) graph has maximum

resilience and the cost of building such a graph is also maximised. The design and op-

timisation of cost-efficient networks that are resilient against challenges and attacks has

been studied by many researchers over the past few decades, but the resilient network

design problem is NP-hard.

In this chapter, we approach resilient network design from a graph-theoretic perspective.

We develop two heuristic algorithms that improve the connectivity of a graph by adding

links. The graph properties we aim to improve are algebraic connectivity [72] and path

diversity [71]. A secondary objective of our algorithms is to select the links that improve

the resilience of the graph in the least costly fashion in which we capture the network

cost as the total link length.

The work presented in this chapter has resulted in a publication [538] in which we develop
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a graph algorithm that optimises the algebraic connectivity of a given graph. The rest of

this chapter is organised as follows: In Section 5.1, the optimisation algorithm based on

algebraic connectivity is presented. The optimisation algorithm based on path diversity

is presented in Section 5.2. Results and analysis of our optimisation algorithms are

presented in Section 5.3, and we conclude in Section 5.4.

5.1 Optimisation Based on Algebraic Connectivity

We develop a heuristic algorithm that improves the connectivity of a graph in terms of

the algebraic connectivity metric by adding links. Algebraic connectivity a(G) is defined

as the second smallest eigenvalue of the Laplacian matrix [72] and it is widely used

for topological optimisations [67, 68, 74]. A secondary objective of our algorithm is to

select the links that improve the algebraic connectivity of the graph in the least costly

fashion in which we capture the cost of network as the total link length. Furthermore,

we parameterise our optimisation algorithm such that connectivity and cost are weighted

depending on a cost-effect parameter named γ.

The heuristic to increase algebraic connectivity in a graph is based on adding links to

the nodes that have least incident links (i.e. minimal degree nodes) [67,68]. Our param-

eterised heuristic algorithm identifies and selects the links that increases the algebraic

connectivity of a graph depending on the available budget. Moreover, the search of the

optimal links is computationally less expensive in our algorithm compared to an ex-

haustive search. Our algorithm provides cost-efficient new links to improve a network’s

resilience measured by the algebraic connectivity metric. The assumptions, objective

functions, and our heuristic algorithm is presented in Section 5.1.1. The evaluation of

our algorithm on a sample graph is presented in Section 5.1.2.
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5.1.1 Algebraic Connectivity Optimisation Algorithm

In this section, we describe our algorithm that optimises connectivity and cost of a topol-

ogy. Our heuristic algorithm is implemented using Python. Furthermore, we assume that

node geolocations are given for a particular graph to which the optimisation algorithm

is applied, as would be the case for a deployed service provider.

Objectives

The objective of this algorithm is to identify the best links to be added to improve the

connectivity of the graph. In this work, we use algebraic connectivity as a measure of

connectivity, but we note that any graph connectivity property, such as average node

degree, clustering coefficient, or betweenness can be used instead. For example, the clus-

tering coefficient can be used to replace the algebraic connectivity or both the clustering

coefficient and the algebraic connectivity can be used with a tuning parameter to control

their effect in selecting the links.

Algorithm

The heuristic topology optimisation algorithm has three inputs: an input graph Gi, a

number of required links L, and a cost-effect parameter γ. The input graph Gi has a

number of nodes ni with a number of links li. The number of required links L is the

number of links that should be added to the graph. The cost-effect parameter γ is a

tuning parameter between cost and algebraic connectivity. When γ = 0, the cost term

of the rank function is neglected since it is zeroed. As a result, the algorithm selects

the link that maximises the algebraic connectivity. On the other hand, when γ = 1, the

algebraic connectivity is neglected and the least link cost is selected in each iteration.

The algorithm adds links to the graph with L iterations. To keep track of the selected
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links in each iteration, the algorithm adds these links to a list. In each iteration, the

algorithm starts by adding the selected links from previous iterations to the graph. Then,

the rank value is computed for each candidate link and the link with the maximum rank

value is selected to be added. A ranking function is used to select the best candidate in

each iteration. The rank value r is computed using:

r = (1− γ)a(G) + γ(1− C) (5.1)

where C represents the length of the ranked link. This algorithm uses four functions:

cost function cost(L), algebraic connectivity function algConn(G), link ranking function

maxLink(D), and candidate link function candidate(G). The cost function cost(L) returns

the cost of adding a link L. In this work, the cost is defined as the euclidean distance

between the two ends of the link. The algebraic connectivity function algConn(G) takes

a graph G and returns the second smallest eigenvalue of its Laplacian matrix. The

maxLink(D) function returns the maximum ranked link. The candidate(G) takes a graph

G as input and returns a set of candidate links to be added to the graph. The candidate

links are a set of links that are examined every time a link is added to a graph. One

option to use for the candidate links is the set of complement links of a graph is denoted

as Ḡ, which can be determined as the set of links in full mesh subtracted from the current

links in a graph G. The number of complement links (cf. shown in column 4 Table 5.4)

is computed as:

ni(ni − 1)

2
− li (5.2)

However, this number is computationally expensive as the number of nodes ni gets larger,

which results in a complexity of O(Ln2
i ). In an attempt to decrease the number of
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candidate links, we only examine the links connected to the lowest degree node in the

graph. As a result, the algorithm complexity decreases to O(Lni).

Both the algConn(G) and cost(L) functions are normalised to have a maximum value of

one. Since the theoretical maximum value for the algebraic connectivity of a given graph

is the number of its nodes, it is normalised by dividing it by the number of nodes. To

normalise the cost function, it is divided by the maximum possible distance between any

nodes in the graph. The pseudocode of our algorithm is shown in Algorithm 1.

Functions:
cost(L) := cost function
algConn(G) := algebraic connectivity function
candidate(G) := candidate links function
maxLink(D) := max value of a dictionary
Input:
Gi := input graph
L := number of required links
γ := cost effect parameter
Output:
an ordered list of the added links
begin

selectedLinks = []; empty ordered list
rank = {}; empty dictionary
while L > 0 do

G = Gi

G.addlinks(AddedLinks)
for link in candidate(G) do

rank[link]=(1− γ)algConn(G) + γ(1−cost(link))
end
selectedLinks.add(maxLink(rank))
L = L− 1

end
return selectedLinks

end
Algorithm 1: Algebraic connectivity optimisation algorithm
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Options

In this work, we target two graph types: physical and logical level graphs [75]. For the

logical level graph, the algorithm is applied with no additional conditions. However, for

the physical level graph, we have added a filter that removes very long links from the

candidate links set. This is because it is not practical to add very long links between cities

such as a physical fibre link between Los Angeles and New York City. Therefore this raises

the question of what the maximum length should be chosen. In our implementation, we

provide it as a variable that can be set by the user. We choose the maximum length link

in the input graph to be the threshold for long links in the dataset, which gives a good

indicator for the maximum link length a provider can afford.

5.1.2 a(G) Optimisation Algorithm Evaluation

In this section, we explain how our heuristic algorithm optimises a topology on a small-

size graph. Figure 1 shows a sample graph with 8 nodes and 9 links as solid lines. The

initial algebraic connectivity of this sample graph is 0.3432 and the initial cost (i.e. total

link length in km) of the graph is 8,203. Our heuristic algorithm adds links to the least

connected nodes, which in the example are nodes 0 and 7. The six candidate links for

node 0 are shown as square dots, whereas five candidate links for node 7 are shown as

long dashes and dots. Throughout this example, we describe how our algorithm operates

if we are going to add one link L = 1 to the sample graph shown in Figure 5.1.

There can be a maximum of 28 links in this 8-node graph (maximum links can be cal-

culated by n(n−1)
2 ). Since there are 9 links in the graph, if we were to do an exhaustive

search, there would be 28 − 9 = 19 candidate links (i.e. the complement links). In the

sample graph shown in Figure 5.1, there are six candidate links that can be added to

node 0 and there are five links for node 7 using our heuristic algorithm. Therefore, the
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Figure 5.1: Graph example for algebraic connectivity based optimisation

candidate link set is reduced to 11, because our algorithm only considers candidate links

from the least connected nodes. The algebraic connectivity and cost value of adding each

link individually for γ = 0 and γ = 1 is shown in Table 5.1.

Table 5.1: a(G) and cost values for the example graph

Link
γ = 0 γ = 1

a(G) ∆a(G) cost ∆ cost

0 ↔ 2 0.3485 0.0053 9,275 1,072
0 ↔ 3 0.3588 0.0156 9,405 1,202
0 ↔ 4 0.3659 0.0227 9,848 1,645
0 ↔ 5 0.4079 0.0647 10,624 2,421
0 ↔ 6 0.5908 0.2476 11,228 3,025
0 ↔ 7 0.7713 0.4281 11,843 3,640
7 ↔ 1 0.8345 0.4913 11,302 3,099
7 ↔ 2 0.7071 0.3639 12,061 3,858
7 ↔ 3 0.6651 0.3219 10,915 2,712
7 ↔ 4 0.5918 0.2486 10,207 2,004
7 ↔ 5 0.5075 0.1643 9,463 1,260

When γ = 0, our algorithm ignores the cost associated with adding a link and selects

the additional link that increases the algebraic connectivity of the graph the most. For

γ = 0, the algorithm adds the link between node 1 and 7 in the example graph since it

provides the highest algebraic connectivity among the 11 candidate links. When γ = 1,

the cost is the dominant factor determining the addition of a link. Therefore, our heuristic
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algorithm selects the link between node 0 and 2, since it incurs the lowest cost among the

candidate set of links. The selection of links via our heuristic algorithm is highlighted

bold in Table 5.1. Moreover, we perform an exhaustive search on the sample graph shown

in Figure 5.1, and find that the link between node 1 and 7 has the highest algebraic

connectivity among 19 possible links. The result of the exhaustive search for the least

incurred cost link indicated that the link between node 3 and 4 is the best option,

however, as mentioned above, our algorithm adds links to the minimal degree nodes.

Therefore our algorithm selects the link between node 0 and 2 when γ = 1. We note that

for physical-level networks γ → 1 makes sense due to the significant cost of deploying

fibre. On the other hand, γ → 0 is more appropriate since the cost of virtual link

deployment is negligible, whereas delay is a dominant factor in logical overlays. To

conclude, our heuristic algorithm optimises graphs cost-efficiently while selecting the

links that improves the algebraic connectivity the most based on the γ parameter value.

5.2 Optimisation Based on Path Diversity

In this section, first we develop an algorithm to calculate the TGD (described in Sec-

tion 2.3.2) of a graph [71, 73]. We modify the TGD calculation algorithm such that

instead of considering relatively more diverse paths [71,73], we consider the effect of the

diversity of all paths when calculating the TGD. Second, we introduce an algorithm for

finding the optimal k-diverse paths considering both nodes and links using an exhaustive

path search. Thirdly, we present an optimisation algorithm that improves the path di-

versity of a graph based on the TGD metric. Our graph optimisation algorithm considers

adding links with the least cost among available choices.

The rest of the section is organised as follows: The algorithm to calculate the path

diversity of a graph is explained in Section 5.2.1. The assumptions, objective functions,
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and our heuristic algorithm is presented in Section 5.2.2. The evaluation of our algorithm

on a sample graph is presented in Section 5.2.3.

5.2.1 Finding k-Diverse Paths

In this section, we present a new k-diverse paths algorithm that determines the k paths

between a source s and destination d. We note that the EPD [71] is defined as the

aggregation of path diversities for a selected set of paths between a given node-pair (s,

d) where the value of ksd captures the sum of the minimum path diversities among the

selected paths. We redefine the value of ksd as the sum of path diversities because it

captures the difference between paths with the same minimum diversity. Our algorithm

returns the most diverse paths considering both fully- and partially-disjoint nodes and

links in a given path sorted by their length in case of equal diversity. This algorithm

has four inputs: a source node s, a destination node d, a hop count threshold h, and

a threshold for the number of returned diverse paths k. Moreover, this algorithm uses

four functions: all simple paths(s, d, h), sort(L), path2elements(P ), and p div(P ). The

all simple paths(s, d, h) function finds all possible loopless paths between a source s and

destination d, with hop count threshold h for the path length. If h is not set, all possible

paths are returned. The number of all possible simple paths can be as large as n! where n

is the number of nodes. This number can be infeasible to compute for large size graphs.

Thus, the h parameter should be set based on the size of the graph. The sort(L) function

sorts a list of tuples of three elements: link, diversity, and cost. The sorting is done in

decreasing order of the diversity value and increasing order of the cost value for links

with equal diversities. The path2elements(P ) function converts a path P to a set of

nodes and links elements as described in Section 2.3.2. The p div(P ) function computes

the diversity of the path with respect to the selected elements set. The pseudo code for

k-diverse path selection is shown in Algorithm 2.
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Functions:
all simple paths(s, d, h) := all simple paths between node s and node d with a
threshold hop count h
sort(l) := sorting l function
path2elements(p) := convert path to link and node elements
p div(P ) := computes path diversity of path P

Input:
s := source node
d := destination node
h := hop count threshold value for examined paths
k := threshold value for returned diverse paths
Output:
an ordered list of the diverse paths
begin

diverse paths = []; empty ordered list
selected elements = {}; empty set
for path in all simple paths(s, d, h) do

diverse paths.append(path,p div(path),len(path))
selected elements.add(path2elements(path))

end
sort(diverse paths)
return diverse paths[0:k]

end
Algorithm 2: k-diverse path selection algorithm

148



This algorithm has two phases: finding all simple paths and finding the k most diverse

paths. In the first phase, all possible paths are determined between a source s and

destination d with a hop count threshold h using the function all simple paths(s,d,h). For

the second phase, the algorithm determines the most diverse paths among the returned

paths via the all simple paths function. The shortest path P0 is added to the selected paths

in the first iteration and its elements (nodes and links) are added to the selected elements

set. Next, the algorithm iterates over the rest of the paths by computing the diversity

of the path using the p div(P ) function and adding it along with the path length to the

diverse paths list while the path elements are added to the selected elements. Finally,

using the sort(L) function, all the tuples in the diverse paths list are sorted in decreasing

order of their diversity and in case there are multiple paths with the same diversity, these

paths are sorted in increasing order of their hop count. The first k paths of the list are

returned.

5.2.2 Path Diversity Optimisation Algorithm

In this section, we describe our algorithm that optimises the TGD of a given graph

with its node locations by adding new cost-efficient links. Our heuristic algorithm is

implemented using Python and uses the NetworkX library [512] for graph algorithms.

Objectives

The objective of this algorithm is to improve the TGD of a graph by adding a user-

specified number of links. The algorithm adds one link that increases the TGD the most.

If there are multiple links that give the same largest TGD value, the least cost link is

selected. We measure the cost of a link in terms of the Euclidian distance of that link.

The link addition process is repeated until the number of links requested by the user is

added.
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Algorithm

The topology optimisation algorithm has two inputs: an input graph Gi, a number of

required links L. The input graph Gi has a number of nodes ni with a number of links

li. The number of required links L is the number of links that should be added to the

graph. The algorithm adds links to the graph with L iterations. To keep track of the

selected links in each iteration, the algorithm adds this link to the selectedLinks list. In

each iteration, the algorithm starts by adding the selected links from previous iterations

to the graph.

The candidate set contains the links that are connected to the lowest EPD pair(s) of

the graph and not currently present in the graph. To find the best candidate link, each

link in the candidate set is added to the graph and the EPD of the corresponding pair is

computed and mapped to that link. Then, the link with the largest EPD is selected. In

case there are multiple links with the same largest EPD, the least cost link is selected.

This process is repeated until the user requested number of links are added.

This algorithm uses four functions: cost(L), epd(P ), candidate(G), and bestLink(L). The

cost function cost(L) returns the cost of adding a link L. In this work, the cost is defined

as the euclidean distance between the two ends of the link. The effective path diversity

function epd(P ) computes the effective path diversity of the link L based on Equation 2.3.

The bestLink(L) function returns the link with the highest EPD and lowest cost in case

of multiple highest EPD values. The candidate(G) takes a graph G as input and returns

a set of candidate tuples of two elements. The first element is a lowest EPD pair and

the second element is a candidate link. The candidate links are the set of all links where

one end is connected to a node in the lowest EPD pairs and the other end is connected

to a node in the graph given that this link does not exist in the graph. For each pair

and link in the candidate set, we add the link to the graph and compute the new EPD
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value of that pair with its cost. Finally, the link with the highest EPD and the lowest

cost is selected using bestLink(L) function and then added to the selectedLinks list. The

algorithm repeats this process as many times as the user requested. The pseudo code for

path diversity optimisation algorithm is shown in Algorithm 3.

Functions:
cost(L) := cost of link L
epd(P ) := EPD value of pair P
candidate(G) := candidate links function
bestLink(L) := maximum EPD value of links list L
Input:
Gi := input graph
L := number of required links
Output:
an ordered list of the added links
begin

selectedLinks = []; empty ordered list
links epd list = []; empty ordered list
while L > 0 do

G = Gi

G.addlinks(AddedLinks)
for P,L in candidate(G) do

links epd list.append((L,epd(P ),cost(L)))
end
selectedLinks.add(bestLink(links epd list))
L = L− 1

end
return selectedLinks

end
Algorithm 3: Path diversity optimisation algorithm

We only examine the links connected to the lowest EPD pair node in the graph since they

contribute the most to lower the TGD of the graph. If there is more than one pair with

the lowest EPD value, all the links connected to all the lowest EPD pairs are added to the

candidate set. The other alternative is to examine all the links in complement graph of

Gi, which has the size of ni(ni−1)
2 − li. However, this number is computationally expensive

as the number of nodes ni gets larger, which results in a complexity of O(Ln2
i ). Since

our approach considers the links connected to the lowest EPD pairs, the complexity is
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reduced to O(Lnimi), where mi represent the number of lowest degree pairs at iteration

i.

5.2.3 Path Diversity Optimisation Algorithm Evaluation

In this section, we explain how our heuristic algorithm optimises a topology on a small-

size graph. Figure 5.2 shows a sample graph with 5 nodes and 5 links. In this example,

the hop count threshold h is set to 10 and the number of diverse paths k is set to 4. The

initial TGD value of this sample graph is 0.2023. Our heuristic algorithm examines the

links connected to the least EPD pairs. The smallest EPD pairs are (1,2) and (3,4) with

EPD of 0 since they have no alternative paths. Therefore, the candidate set consists of

four possible links for each pair. To find the best candidate, we determine the resulting

EPD of the corresponding pair after adding the candidate link and the cost incurred as

shown in Table 5.2. Then, we find the link that gives the highest pair EPD. Among the

eight candidates, there are four links that give a high pair EPD of 0.50. The next step

is to find the lowest length link, which is the link (1,3). After adding this link, the new

TGD of this graph is 0.4034, which is almost double the initial TGD.

4 

3 

1 

2 
0 

0: Los Angeles, LA 
1: Houston, TX 
2: Kansas City, MO 
3: Chicago, IL 
4: Boston, MA 

Figure 5.2: Graph example for path diversity based optimisation
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Table 5.2: EPD and cost values for the candidate links in the example graph

Node Pair Link Pair EPD Cost

(1, 2) (1, 0) 0.50 2,177
(1, 2) (1, 3) 0.50 1,043
(1, 2) (1, 4) 0.46 2,311
(1, 2) (2, 4) 0.00 1,988
(3, 4) (3, 1) 0.00 1,043
(3, 4) (4, 0) 0.50 4,058
(3, 4) (4, 1) 0.46 2,311
(3, 4) (4, 2) 0.50 1,988

5.3 Results and Analysis

In this section, we present results and analysis of topological optimisation based on

algebraic connectivity in Section 5.3.1. This is followed by presentation of results for

path diversity based optimisation of topologies in Section 5.3.2. We compare the two

optimisation algorithms in Section 5.3.3. We note that full set of plots showing the

analysis of our optimisation algorithm is presented in Appendix B.

5.3.1 Analysis of Optimisation Based on a(G)

We study physical- and logical-level topologies of three tier-1 service provider networks.

We use Rocketfuel-inferred [33] logical-level topologies of AT&T, Level 3, and Sprint.

Physical-level topologies of the three service providers were constructed using a third

party map [505]. The details of generating physical-level topologies are presented in

Chapter 4. The number of nodes, links, and complement links of these graphs are shown

in Table 5.3.
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Table 5.3: Topological dataset for algebraic connectivity optimisation

Network Nodes Links Complement links

AT&T phy. 383 488 72,665
Level 3 phy. 99 132 4,719
Sprint phy. 264 313 34,403
AT&T log. 107 140 5,531
Level 3 log. 38 376 3,276
Sprint log. 28 76 302

Backbone Provider Network Analysis

Our algorithm is applied to three ISPs by adding 100 links. We show the graph algebraic

connectivity and the cost incurred in terms of meters after adding each link. Moreover,

we show the relation of cost and algebraic connectivity and the slope in these figures

shows how the cost increases as the graph connectivity improves.

Selection of γ Values

γ parameter that ranges 0 to 1 controls the outcome of the algorithm as described in

Section 5.1.1. In Equation 5.1, we have two terms: (1 − γ)a(G) and γ(1 − C). The

a(G) is the normalised algebraic connectivity value, which is low for sparse graphs and

one for a full mesh graph. The value of C denotes the normalised cost of adding a

link and it is low when the maximum possible link length in the input graph is larger

than the average link length in the candidate set. Therefore, choosing the value of γ

depends on the initial properties of the input graph. For the physical graphs, we choose

for γ = {0, 10−9, 10−7, 10−5, 1} because the cost term is larger than the γ term by about

six order of magnitude for physical level graphs. For the logical level graphs, we choose

different values of γ = {0, 10−4, 10−3, 10−2, 1} because the cost term is larger than the

algebraic connectivity term by about two order of magnitude.
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Physical-level Topology Analysis

As explained in Section 5.1.1, an option is added in our heuristic algorithm to discard the

links that are longer than the actual maximum link of the graph. Furthermore, physical

level graphs have more nodes than the logical level graphs, which increases the number

of shorter links for the candidate set. For these reasons, optimisation on physical level

graphs results in selection of shorter links.
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Figure 5.3: Connectivity improvement for Sprint physical topology

Algebraic connectivity improvement of the Sprint physical level topology after adding 100

links iteratively is depicted in Figure 5.3. The algebraic connectivity is higher for γ = 0

than the other values of γ, and for γ = 1 our algorithm considers minimising the cost,

but not improving the algebraic connectivity. Moreover, we observe the occurrence of

possible phase transition when γ = 1 for the physical-level graphs. For example, algebraic

connectivity improvement of the Sprint physical topology starts with a moderate increase,

and after about 20th link addition, the improvement (i.e. the slope of the curve) gets
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steeper. The reasons for the occurrence of this phenomenon will be the subject of future

work.

The cost incurred when adding 100 links iteratively to the Sprint physical level topology

is shown in Figure 5.4. The cost in physical topology is the length of links to be laid

between nodes, thus, short links are favorable in physical level topology optimisation for

γ = 1.
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Figure 5.4: Cost incurred with adding links for Sprint physical topology

The relationship between connectivity and cost for the Sprint physical level topology

is shown in Figure 5.5. For the Sprint example shown in Figure 5.5, if the cost is the

constraint (i.e. γ = 1), the designer can improve the algebraic connectivity to 0.006 by

adding 100 links. On the other hand, if there is available budget (i.e. γ = 0) the algebraic

connectivity of the Sprint topology can be improved more than 0.035.
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Figure 5.5: Connectivity and cost trade-offs for Sprint physical topology

Logical-level Topology Analysis

The optimisation of the Sprint logical level topology is discussed in this section. The

algorithm has more candidate link options since it is not constrained by the maximum

length of links in the input graph for logical level topologies. Therefore, the improvement

of algebraic connectivity as links are added is higher than for physical level topologies.

The algebraic connectivity improvement of up to two orders of magnitude, can be seen

clearly for the Sprint logical level topology in Figure 5.6.

The cost incurred after adding 100 links for the Sprint logical level topology is shown in

Figure 5.7. Similar to the physical level topologies, as the value of γ increases, the cost

of building more connected graphs decreases.

The trade-offs between cost and connectivity for the Sprint logical level topology is shown

in Figure 5.8. For example, to improve the algebraic connectivity of the Sprint logical
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Figure 5.6: Connectivity improvement for Sprint logical topology
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Figure 5.7: Cost incurred with adding links for Sprint logical topology

topology to a value of 10 in Figure 5.8, we should select the links returned from the

algorithm when γ is 0.01 since it incurs the lowest cost.
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Figure 5.8: Connectivity and cost trade-offs for Sprint logical topology

Optimisation Comparison of Backbone Networks

Finally, we compare the optimisation output of the three backbone provider topologies

using γ = 0 and γ = 1 as shown in Figures 5.9 through Figure 5.12, respectively. Even

though Sprint and AT&T physical level topologies have a different number of nodes and

links, the optimisation for γ = 0 results in about the same algebraic connectivity as

when we add 100 links as shown in Figure 5.9. On the other hand, the Level 3 physical

level topology starts from an even higher initial algebraic connectivity and significantly

improves to a higher algebraic connectivity with larger cost than the others as shown in

Figure 5.9. Similar conclusions can also be drawn when we compare our optimisation

algorithm output for γ = 1 as shown in Figure 5.11. The main difference is that when

there is no budget constraint (i.e. γ = 0), the algebraic connectivity and cost is an order

of magnitude higher. Moreover, the slope in these figures shows how the cost increases

as we improve the connectivity of the graph. Small slope value of a curve implies high
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gain in the graph connectivity for a given budget, which is favorable. On the other hand,

large slope value means that the cost is high while the improvement is low.
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Figure 5.9: Algebraic connectivity and cost effect for γ = 0 for physical-level topologies
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Figure 5.10: Algebraic connectivity and cost effect for γ = 0 for logical-level topologies
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The tradeoffs between cost and algebraic connectivity for the logical topology graphs

when γ = 0 is shown in Figure 5.10. For AT&T, we see that algebraic connectivity does

not improve for adding the first links, with total cost around 1.5 × 108. On the other

hand, for Level 3 and Sprint, the algebraic connectivity increases significantly as links

are added as shown in Figure 5.10. When γ = 1, which means the least cost links are

selected, the algebraic connectivity does not improve much as links are added to the

graph compared to γ = 0 as shown. Another interesting result is that the Sprint and

Level 3 topologies incur about the same cost after adding 100 links, however the algebraic

improvement for Level 3 is twice or more for γ = 0 and γ = 1 values. Finally, physical

level topologies have lower gain in terms of the algebraic connectivity since long links are

removed from the candidate set and these links can be the highest contributors to the

algebraic connectivity.
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Figure 5.11: Algebraic connectivity and cost effect for γ = 1 for physical-level topologies
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Figure 5.12: Algebraic connectivity and cost effect for γ = 1 for logical-level topologies

5.3.2 Analysis of Optimisation Based on Path Diversity

In this section, we use CORONET [508,509], Internet2 [507], and Level 3 [504] fibre-level

topologies for evaluating our path diversity optimisation algorithm. In Table 5.4 we list

a number of relevant quantities for each of the provider networks. A detailed analysis

of graph metrics for the given physical networks was presented in Chapter 4. Next, we

apply the optimisation algorithm on three realistic backbone networks and study the

results. Then, we apply three centrality-based attacks to the resulting optimised and

non-optimised graphs and show how the robustness changes for each graph.

Table 5.4: Topological dataset for path diversity optimisation

Network Nodes Links Avg. Degree Diameter Avg. Hopcount

CORONET 75 99 2.64 17 6.45
Internet2 57 65 2.28 14 6.69
Level 3 99 132 2.67 19 7.65
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Optimisation Analysis

In this section, we apply the optimisation algorithm on three realistic backbone service

provider graphs and study the TGD improvement and the cost incurred for each graph

as we add 20 links. We vary the number of value of k and h while λ is set to 0.5.

Varying the Hop Count Threshold h

The hop count threshold h is a parameter that controls the length of the shortest path

returned by the k diverse algorithm introduced in Section 5.2.1. Therefore, to get the

optimal diverse paths, the value of h should be larger or equal to the diameter of the

graph in order to examine all of the possible paths in the graph. However, for large

graphs, large values of h may take an impractical time to calculate. Here, we apply the

algorithm with several values of hop count thresholds h = {5, 10, 15} while the value of

k is set to 12. These values show how varying the parameter h affects the value of TGD.
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Figure 5.13: Internet2 TGD improvement
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Figure 5.13 depicts the results of each hop count threshold, which shows the TGD im-

provement as 20 links are added to the Internet2 topology. As the hop count threshold

increases, the size of the candidate set also increases, which in turn increases the proba-

bility to have a higher EPD value. As a result, a 5 hop count threshold has the lowest

TGD while 10 and 15 have the median and the highest TGD, respectively as shown in

Figure 5.13.

The cost does not follow a pattern as the hop count threshold increases since the cost

for the highest EPD link for 10 hop count threshold could be less than the cost of the

highest EPD for 15 hop threshold and vice versa as shown in Figure 5.14. Thus, the cost

incurred depends on the initial topological properties such as the number of nodes and

links, average degree, and nodes’ locations.

co
st

 [m
]

number of links added

h=15

h=10

h=5
0.0E+0

5.0E+6

1.0E+7

1.5E+7

2.0E+7

2.5E+7

3.0E+7

3.5E+7

4.0E+7

4.5E+7

0 5 10 15 20

Figure 5.14: Internet2 cost incurred

The cost needed to achieve a certain TGD for Internet2 topology is shown in Figure 5.15,

which shows that as the hop count threshold increases, the cost to achieve a certain TGD
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Figure 5.15: Internet2 cost and TGD

decreases in general. We expect this outcome to mostly occur because higher hop count

threshold starts from a higher TGD for the same reason mentioned earlier.

Varying the Number of Diverse Paths k

The number of diverse path k is a parameter that controls the number of the returned

most diverse paths by the k diverse algorithm introduced in Section 5.2.1. The value of

k depends on the application of the graph. For example, if the provider uses a multipath

routing protocol with a threshold for the number of multipaths used, k can be chosen to

match that parameter for accurate path diversity. Choosing a high value of k does not

have a processing complexity penalty similar to choosing a higher value of h.

We apply the algorithm with several values of the number of diverse path threshold

k = {4, 8, 12} while the value of h is set to 15. As the value of k increases, the length of

diverse path set also increases, which in turn increases effective path diversity for a given
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Figure 5.16: Internet2 TGD improvement
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Figure 5.17: Internet2 cost incurred

pair of nodes. Consequently, as the value of k increases, the corresponding TGD increases

as shown in Figure 5.16 for Internet2 topology. However, the length of diverse paths set
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Figure 5.18: Internet2 cost and TGD

is actually m, which does not increase as the maximum diversity of the remaining paths

is zero as mentioned in Section 2.3.2. For this reason, the two k values 8 and 12 have

similar outcomes as depicted in Figure 5.16. The cost does not follow a pattern as the

value increases for the same reason as h increases. Moreover, the cost incurred depends

on the initial topological properties as shown in Figure 5.17. The cost needed to achieve

a certain TGD for the Internet2 graph is shown in Figure 5.18, which show that as the

value of k increases, the cost to achieve a certain TGD decreases in general as long as

increasing the value of k actually increases the value of m.

Robustness Evaluation

In this section, we present the set of attacks used to evaluate the flow robustness (cf.

Section 4.2.2) of the resulting optimised and non-optimised topologies. Then, we apply

these attacks and show the results.
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Graph centrality attacks

We use a graph theoretic model to attack a given graph and show how its flow robustness

changes after each node removal. In this work, we use three centrality metrics: node

betweenness, node closeness, and node degree. Thus, we have three attack models, in

which the node with the highest centrality is removed. The node betweenness attack

targets the node through which the highest number of shortest paths pass. The node

closeness attack targets the closest node to all the other nodes in terms of hop count.

The highest degree node attack targets the node with the highest number of neighbours.

The list of removed nodes is determined adaptively for each attack model. This means

the node centrality values are calculated after each node is removed and the highest is

selected to be the next node to be removed. This is done repeatedly until all nodes are

selected. The adaptive removal of nodes gives a more correct selection for the highest

centrality than the non-adaptive removal, in which the highest targeted number of nodes

are selected based on a single evaluation.

Lowest degree optimisation

For comparison purposes, we introduce an intuitive optimisation algorithm to improve

the connectivity of a given graph via adding links to the smallest degree nodes. This

algorithm adds one link repeatedly until a number of links request by the user is added.

On each iteration, one end of the link is connected to the least degree node and the

other end is connected to the next least degree node. If there are multiple least degree

candidate links, the least cost link is selected to be added.
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Robustness evaluation results

In this section, we show the results of applying the graph centrality attacks to path

diversity optimised (PD-optimised), lowest degree optimised (LD-optimised), and non-

optimised topologies. For the set of PD-optimised graphs, we choose the set generated

using the hop count threshold h = 15 and the number of diverse path threshold k = 12

because both have more diverse and accurate results. For each graph, we apply the attack

by removing half of its original number of nodes. The flow robustness is calculated after

each node removal. The node betweenness attack has the highest negative impact on

flow robustness because it targets the most vital nodes in the Internet2 graph as shown

in Figures 5.19 through 5.21. The second highest negative impact on flow robustness is

done by the highest closeness node attack since the target node has the highest closeness

to all the other nodes in terms of hop count. The least negative impact on flow robustness

comes from the highest degree node since it has a higher number of neighbors but is not

necessarily used by most shortest paths.

Both PD-optimised and LD-optimised graphs are more resilient than non-optimised

graphs because they have 20 additional links. For example, the total flow robustness

of the PD-optimised Level 3 graph under the betweenness attack is 10.1 while it is 6.5

for the LD-optimised and 5.7 for the non-optimised graphs. Among the three provider

graph analyses, the PD-optimised graphs are more resilient than the LD-optimised and

non-optimised graphs for betweenness and closeness attacks. For degree-based centrality

attack, LD-optimised graphs have higher flow robustness since links are added to the

lowest degree nodes, which are targeted the least as shown in Figure 5.21. Therefore,

the links connected to the lowest degree nodes using LD-optimisation contribute more to

flow robustness than links added using PD-optimisation during the degree-based attack.

PD-optimised graphs have higher flow robustness in most physical-level graphs because
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Figure 5.19: Robustness of Internet2 against betweenness-based attack
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Figure 5.20: Robustness of Internet2 against closeness-based attack

in PD-optimised graphs, links are added to increase the number of diverse paths the most

among all communicating nodes in the graph. Thus, when a node is removed from a PD-
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Figure 5.21: Robustness of Internet2 against degree-based attack

optimised graph, it slightly affects the other communicating nodes since they have more

alternative paths to reroute their communication through. In contrast, when a node is

removed from an LD-optimised graph, the other communicating nodes are more affected

because they have fewer alternative paths among the communicating nodes. This is

because LD-optimisation adds links based on the objective of increasing the connectivity

of the lowest degree node rather than increasing the number of diverse paths.

5.3.3 Comparison of Optimisation Algorithms

In this section, the cost incurred by adding links and flow robustness against centrality-

based attacks of the optimised topologies are compared. The CORONET, Internet2,

and Level 3 geographic physical-level topologies are used, because the similar size and

order of these graphs make them fit for a comparative evaluation while their small size

allow a reduced time of calculation of graph properties. The topological characteristics
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of these graphs are given in Table 5.4. 20 links are added in each physical-level topology

and 50 nodes are removed to compare the flow robustness of optimised topologies. For

algebraic connectivity a(G) optimisation results we choose γ = 0 in which the cost weight

of adding a link is ignored (i.e. maximising the a(G) of the graph). We choose the hop

count threshold h = 15 and the number of diverse paths threshold k = 12 for path

diversity PD optimisation results, since these parameter values result in more diverse

paths. For comparison of the optimisation algorithms we remove the constraint that

limits the length of additional links.

Cost Comparison of Optimisation Algorithms

The cost incurred for adding 20 links for which algebraic connectivity and path diversity

optimisation algorithms are applied to CORONET, Internet2, and Level 3 topologies are

shown in Figures 5.22, 5.23, and 5.24, respectively.
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Figure 5.22: Cost comparison of graph optimisation algorithms for CORONET
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Figure 5.23: Cost comparison of graph optimisation algorithms for Internet2
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Figure 5.24: Cost comparison of graph optimisation algorithms for Level 3

For the CORONET topology, the a(G) optimisation of 20 link additions incurs a cost

of 5,000 km and PD optimisation of 20 link additions incurs a cost of 2,800 km. For
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the Internet2 topology, the a(G) optimisation of 20 link additions incurs a cost of 3,500

km and PD optimisation of 20 link additions incurs a cost of 3,200 km. For the Level 3

topology, the a(G) optimisation of 20 link additions incurs a cost of 4,100 km and PD

optimisation of 20 link additions incurs a cost of 2,300 km. By observing these three

optimised topologies for the parameters used, the a(G) optimisation requires more cost

than the PD optimisation algorithm for adding 20 links. In other words, with the selected

parameters, the a(G) optimisation adds links that are longer compared to the links added

via the PD optimisation.

Flow Robustness Comparison of Optimisation Algorithms

The flow robustness (explained in Section 4.2.2) of a(G)- and PD-optimised topologies

of CORONET, Internet2, and Level 3 when subjected to betweenness-, closeness-, and

degree-based attacks are shown in Figures 5.25, 5.26, and 5.27, respectively.
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Figure 5.25: Robustness comparison of graph optimisation algorithms for CORONET
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Figure 5.26: Robustness comparison of graph optimisation algorithms for Internet2
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Figure 5.27: Robustness comparison of graph optimisation algorithms for Level 3

Generally, the a(G)-optimised topologies have a higher value of flow robustness compared

to the PD-optimised topologies. From these flow robustness comparison plots, we can also
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infer that betweenness-based attacks result in the worst damage. Moreover, closeness-

based attacks inflict more damage to the optimised graphs than the degree-based attacks.

We speculate that the longer links that are added by the a(G) optimisation algorithm

make these graphs more resilient compared to the PD-optimised graphs when subjected

to centrality-based attacks.

5.4 Summary

In this chapter, we present two heuristic algorithms that add links that most greatly

increase the connectivity of a graph, especially in terms of algebraic connectivity and

path diversity metrics. The parameterised algorithms enable a designer to fine-tune the

connectivity of a network based on the available budget. Furthermore, the comparison of

the two algorithms shows the trade-offs between cost and resilience when designing the

networks against challenges. In the next chapter, we present network resilience evaluation

methodology we have developed and the evaluation of algorithms on the GpENI Future

Internet testbed via experimentation.
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Chapter 6

Network Resilience Evaluation

Understanding network challenges and their impact can help us to optimise existing net-

works and improve the design of future networks; therefore, it is imperative to have a

framework and methodology to study them. We cannot thoroughly study the effects of

challenges in live networks without impacting users. Testbeds are useful, but do not pro-

vide the scope and scale necessary to understand the resilience of large, complex networks,

although progress is being made in this direction [48, 49]. Simulations arguably provide

the best compromise between tractability and realism to study challenges; however, this

is nontrivial [50].

Resilience evaluation of networks is necessary to improve the existing networks and to

design better ones. In Section 2.4 we presented background information on analytical

models, simulation tools, and experimentation testbeds used for resilience evaluation. In

this chapter, we present the KU-CSM (KU Challenge Simulation Module) framework

to evaluate network dependability and performability in the face of various challenges.

The initial version of the KU-CSM framework [18] is substantially improved to evaluate

the resilience of challenged networks. We use a simulation-based approach to analyse

the effects of perturbations to the normal operation of networks. This framework can

simulate challenges on logical or physical topologies with realistic node coördinates using
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the ns-3 discrete event simulator. The framework models challenges that can be static

or dynamic and can evolve temporally and spatially. Moreover, we present experiments

validating the optimisation algorithms presented in Chapter 5. The experiments are run

on the GpENI PlanetLab nodes using the tinc tunneling software.

The work presented in this chapter has resulted in several publications. We developed

the ns-3 simulation models of attacks, random failures, and correlated failures [20]. We

showed the differences between modelling the logical router-level and physical topolo-

gies [23]. The type of experiments GpENI supports were presented [49] and experiments

validating optimisation algorithm results were shown [546]. The rest of this chapter is

organised as follows: We present the simulation framework of a variety of challenges in

Section 6.1. GpENI testbed overview and validation of graph opimisation algorithms is

presented in Section 6.2. We conclude this chapter in Section 6.3.

6.1 Simulation Framework

In this section, we present our simulation framework to evaluate the resilience of network

topologies when subject to a variety of challenges. The challenge simulation models

are developed in the ns-3 [547] network simulator. Network configuration and challenge

specification files are fed to our preprocessor that is the input to an ns-3 simulation.

6.1.1 Methodology Overview

Simulation via abstraction is one of the techniques to analyse networks in a cost-effective

manner. We have chosen ns-3 [547] since it is open source, flexible, provides mixed wired

and wireless capability (unlike ns-2 [548]), and the models can be extended. Unfortu-

nately, the simulation model space increases multiplicatively with the different number

of challenges and network topologies being simulated. Hence, for n different topologies
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subjected to c different challenges, n× c models must be generated and simulated. Our

framework decouples the challenge generation from topologies by providing a compre-

hensive challenge specification framework, thereby reducing the simulation model space

to n network + c challenge models. We have created an automated simulation model

generator that will combine any recognised challenge specifications with any provided

topology, thus increasing the efficiency of simulation generation. Our simulation frame-

work consists of four distinct steps as shown in Figure 6.1.
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Figure 6.1: KU-CSM framework flow diagram

The first step is to provide a challenge specification that includes the type of the challenge

and configuration of the challenge scenario. The second step is to provide a description

of the network topology, consisting of node geographical or logical coördinates and an

adjacency matrix. The third step is the automated generation of ns-3 simulation C++

code based on the topology and challenge descriptor. Finally, we run the simulations and

analyse the network performance throughout the challenge scenario. Additionally, the

simulation framework can also be enabled to generate ns-3 network animator (NetAnim)

traces for visualisation purposes. A NetAnim screenshot of the Rocketfuel [33] based

Sprint backbone network topology of 27 nodes and 68 links is shown in Figure 6.2. We

have provided partial simulation code to ns-3 community that automates generation of

topologies based on an adjacency matrix and node coördinates [549], which has been
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incorporated to the ns-3.10 standard release.

Figure 6.2: NetAnim screen shot of inferred Sprint topology

6.1.2 Implementation of Challenge Models

In the following subsections we present the details of implementation of challenge models

(cf. Chapter 3) in the ns-3 discrete event simulator.

Non-malicious Challenges

In the case of wired domain challenges in this category, the number of nodes or links

k subject to random failure during a challenge period (t1, t2) is listed in the challenge

specification file. Nodes or links are shut down for the duration of the challenge if the

probability of failure of that node or link is greater than the probabilistic failure rate

threshold pr provided as a parameter. This type of challenge models random node and

link failures that are uncorrelated with respect to topology and geography.
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Malicious Attacks

Malicious attacks result from the exploitation of structural knowledge of the network

by an attacker who wishes to inflict maximum damage with limited resources. We use

topological properties of the graph in order to determine the critical elements in the

network, based on measures such as the degree of connectivity of nodes, and betweenness

of nodes and links (betweenness is the number of shortest paths through a particular

element [513, 515]). The critical nodes or links are shut down for the duration of the

challenge period (t1, t2).

Large-scale Disasters

The challenge specification for area-based challenges resulting from large-scale disasters

is an n-sided polygon with vertices located at a particular set of geographic coördinates

(xi, yi) or a circle centered at specified coördinates (xc, yc) with radius r. The simulation

framework then determines the nodes and links that are encompassed by the polygon

or circle, and disables them during the challenge interval. We use the Computational

Geometry Algorithms Library (CGAL) [550], which is an open source library with efficient

geometric algorithms implemented in C++. We also implement dynamic area-based

challenges, in which the challenge area can evolve in shape over time: scale (expand or

contract), rotate, and move on a trajectory during the simulation. Large-scale regional

failure scenarios previously only have been modelled as a static circle [138] for evaluating

the performance of path restoration after a failure. Examples of the need to simulate

arbitrary polygons are to model large-scale power blackouts, EMP weapons [215], coronal

mass ejections [211], and large-scale natural disasters such as hurricanes and tsunami.
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6.1.3 Network Challenge Simulations

In this section we present our results that demonstrates the utility of our approach. We

first evaluate the perturbations to logical topologies. Next, we present evaluation of

physical topologies when faced by correlated challenges, which is a necessary condition

for evaluation of networks. We use ns-3.7.1 release and the simulation parameters are as

follows: The network is composed of bidirectional wired links with 10 Mb/s bandwidth

and 2 ms transmission delay. Routing is accomplished using the Dijkstra shortest-path-

first algorithm, recalculated at each time step, with reconvergence delay as a simulation

parameter. The traffic is constant bit rate (CBR) at 40 kb/s between every node pair,

with 1000 Byte packets. These parameters are chosen such that there is no congestion

under normal operation, but the network is not significantly over-provisioned so that

we will see the effect of node and link failures. We measure the network’s aggregate

performance under challenges in terms of aggregate packet delivery ratio (PDR).

Non-malicious and Malicious Challenges

First, we evaluate the performance of three separate topologies under the presence of

malicious and non-malicious challenges. The topologies we choose are the Sprint logical

topology based on the Rocketfuel map [33] (Figure 6.3) and two synthetic topologies

(Figure 6.4 and 6.5). The synthetic topologies are generated using the KU-LoCGen

topology generation tool [5,536,551]. KU-LoCGen generates topologies with geographic

constraints and places links between nodes using various models; in this case the modified

Waxman [545] model. The resulting synthetic topologies have the same number of nodes

at the same geographic locations as the inferred Sprint topology, however the number of

links and connectivity of the nodes differ. The two synthetic graphs chosen for this work

consist of a richly connected and poorly connected topology to demonstrate the range
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of robustness results from this simulation framework. The graph characteristics of three

topologies1 are presented in Table 6.1.

Figure 6.3: Sprint inferred topology

Figure 6.4: Synthetic topology 1

We evaluate the performance of the sample topologies under the presence of malicious and

non-malicious challenges with the PDR of the network shown in Figures 6.6, 6.7, and 6.8

1The topological data used in this chapter is slightly outdated compared to the data presented in
Table 4.2, as the work presented in this chapter was performed earlier. However, this does not change
the methodology presented. The topological data presented earlier contains minor modification to reflect
correct topology.
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Figure 6.5: Synthetic topology 2

Table 6.1: Topological characteristics of sample networks

Network Topology Sprint Synthetic 1 Synthetic 2

number of nodes 27 27 27
number of edges 68 74 68
maximum degree 12 9 10

average degree 5.04 5.5 5.04
clustering coeff. 0.43 0.29 0.38

network diameter 6 4 6
average hopcount 2.4 2.2 2.9

max. node betweenness 144 76 302
max. link betweenness 72 31 140

for link failures and in Figures 6.9, 6.10, and 6.11 for node failures with up to 10 links or

nodes down. We measure the instantaneous PDR at the steady-state condition during

the challenges for each point. We also note that for random failures, we average the

results over 100 runs. For malicious challenges (betweenness or degree of connectivity),

first we calculate the betweenness (or degree of connectivity) for each network element

in the topology, and provide the challenge file as the list of the elements to be brought

down in order as a function of the x-axis.

Figures 6.6, 6.7, and 6.8 shows the PDR during the link perturbations to Sprint inferred
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(Figure 6.3), synthetic 1 (Figure 6.4), and synthetic 2 (Figure 6.5) topologies respectively.

We evaluate the PDR during link failures for two cases: 10 random link failures and an

attack using the 10 highest-ranked links based on link betweenness values. Except for

the synthetic topology 1, intelligent link attacks have a more degrading impact than the

random failures. The PDR of 100% for both random and attack cases for the synthetic 1

topology (Figure 6.7) can be attributed to this topology’s lower average hop count, net-

work diameter, clustering coefficient, and higher average degree. The synthetic topology

1 also has six more links compared to the other two topologies: 74 vs. 68. On the other

hand, the link attack on highest betweenness link for synthetic topology 2 results in a

PDR drop to 60%. Visual inspection of synthetic topology 2 (Figure 6.5) clearly identifies

the link failure between the central and west US is the cause of this since the network

partitions. We can also infer the same conclusion by examining the link betweenness of

synthetic topology 2 in Table 6.1, in which this link has 140 shortest paths.
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Figure 6.6: PDR during link perturbations for Sprint inferred topology

The performance of sample topologies against malicious and non-malicious node pertur-
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Figure 6.7: PDR during link perturbations for synthetic topology 1
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Figure 6.8: PDR during link perturbations for synthetic topology 2

bations is shown in Figures 6.9, 6.10, and 6.11. We evaluate the PDR during node failures

for three cases: 10 random node failures, attack of the 10 highest ranked nodes based on
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betweenness, and attack of the 10 highest ranked nodes based on degree of connectivity.

Figures 6.9, 6.10, and 6.11 show that node failures are worse than link attacks or fail-

ures (compared to Figures 6.6, 6.7, and 6.8), since each node failure is the equivalent of

the failure of all links incident to that node. Our results indicate that attacks launched

with knowledge of the network topology can cause the most severe degradation. We can

also infer the tradeoff between robustness and the cost of building topologies using our

framework. It should be noted that KU-LoCGen performs topology generation under

cost constraints of a fixed and variable cost of each link, and thus we can compare the

resilience of various cost points, with increasing cost providing increasing resilience due

to better network connectivity when there are more links.
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Figure 6.9: PDR during node perturbations for Sprint inferred topology

The performance evaluation of sample networks with varying failure probabilities is shown

in Figure 6.12 and Figure 6.13. We averaged 100 simulation runs for the probabilistic

failure scenarios. The seed to the random number generator is generated via the system

clock, therefore we used a different seed for each run. The random variables used in the
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Figure 6.10: PDR during node perturbations for synthetic topology 1
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Figure 6.11: PDR during node perturbations for synthetic topology 2

simulations were uniformly distributed. In these scenarios, PDR is calculated when the

network elements are in the down state. The state transition for each element occurs
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if the probability of failure of a network element is greater than the specified value pr

provided in the challenge specification file.
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Figure 6.12: PDR during statistical node failures

The performance of the sample networks with increasing probabilistic node failure is

shown in Figure 6.12. The PDR value varies between 100% and 0% as the node failure

probability increases from 0% to 100%. The curves are close to each other since each

sample topology has the same number of nodes, and failure probabilities are uniformly

distributed. In particular, the synthetic 2 topology and Sprint inferred topologies show

similar characteristics since the average degree values of those topologies are the same as

listed in Table 6.1.

Figure 6.13 shows the PDR during the probabilistic link failures for synthetic 1, synthetic

2, and Sprint inferred topologies respectively. While the performance of the Sprint in-

ferred and synthetic 2 topologies are close to each other, synthetic 1 topology has better

performance for the probabilistic link failure scenario since it has more links compared to
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the other two topologies. Compared to the probabilistic node failures, probabilistic link

failures do not impact the networks as much, since the impact of a node failure includes

one or more links being brought down.
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Figure 6.13: PDR during statistical link failures

Area-based Challenges

As previously discussed, our framework uses circles or polygons to model geographically

correlated failures representative of large-scale disasters needed to evaluate network sur-

vivability [52, 53]. Area-based challenges in our model can be stationary or evolving in

time. Next, we present the results of three scenarios that demonstrate area-based chal-

lenges that evolve spatially and temporally. In all scenarios, we use the Rocketfuel-based

Sprint logical topology as shown in Figure 6.3. Application traffic is generated from 2 to

29 s. and challenge scenarios were applied from 10 until 22 s. for the performance plots.

Scaling circle:
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To demonstrate a scaling circle area-based challenge scenario, we simulate a circle cen-

tered at (−74.00 ◦, 40.71 ◦), in New York City (NYC) as shown in Figure 6.14(a), with

a radius of 1 ◦ (approximately 111 km). We choose the scenario to be representative of

an electromagnetic pulse (EMP) attack [215]. The PDR is shown in Figure 6.14(b). We

choose the simulation parameters such that the radius doubles in every 4 s. As can be

seen, the PDR reduces as the circular area doubles. The PDR drop depends on how

many nodes and links resides in the circle for each step.

Moving circle:

Next, we demonstrate an area-based scenario that can evolve spatially and temporally,

such as to model a hurricane. We simulate a moving circle in a trajectory from Orlando

(−81.37 ◦, 28.53 ◦) to NYC (−74.00 ◦, 40.71 ◦). Three snapshots of the evolving challenge

are shown in Figure 6.15(a). The radius of the circle is kept at 2 ◦ (approximately 222

km). We choose the simulation parameters for illustration such that the circle reaches

NYC in seven seconds (sped up to constrain simulation time), with route recomputation

every 3 s.

As shown in Figure 6.15(b), PDR reduces to 93% as the challenge starts only covering

the node in Orlando at 10 s. As the challenge moves towards NYC in its trajectory, the

PDR reaches one at 13 s. In this case, the challenge area includes only the link between

Orlando and NYC, but since there are multiple paths, a single link failure does not

affect the PDR, showing that diversity for survivability is crucial [2,73]. As the challenge

moves into the northeast US region at 16 s., the PDR drops to 66% as the challenge

covers several nodes and links. The simulation shows that as the circle moves out of the

more crowded region of the network, the PDR improves, until the challenge ends at 22 s.

Scaling polygon:
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(a) Scaling circle
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(b) Scaling circle PDR

Figure 6.14: Scaling circle challenge scenario and PDR for Sprint logical topology

Polygons are useful to model specific geographic challenges such as power failures that

can cause large-scale network disruption as in the 2003 Northeast US blackout [255]. For

a scaling polygon example, we show a 6-sided irregular polygon in the Midwest region of
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(a) Moving circle
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(b) Moving circle PDR

Figure 6.15: Moving circle challenge scenario and PDR for Sprint logical topology

the US, roughly representative of the North American Electric Reliability Corporation

(NERC) Midwest region [215], with vertices at: [(−87.91 ◦, 43.04 ◦), (−89.09 ◦, 42.27 ◦),

(−89.64 ◦, 39.8 ◦), (−88.54 ◦, 39.12 ◦), (−88.24 ◦, 40.12 ◦), (−87.65 ◦, 41.85 ◦)] as shown in
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Figure 6.16(a).

(a) Scaling polygon
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(b) Scaling polygon PDR

Figure 6.16: Scaling polygon challenge scenario and PDR for Sprint logical topology

The PDR throughout the simulation is shown in Figure 6.16(b). In this scenario, the

edges of the irregular polygon increase 1.8 times every 3 s. At 10 s. the challenge affects
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16 links, which causes the PDR to drop to 65%. The PDR then increases to 93%, even

though more links and nodes are affected at 13 s. because of route reconvergence. As the

polygon increases in size, the PDR drops to as low as 41%, because the challenge area

partitions the network at 21 s. This type of scenario can be used either to understand

the relationship between the area of a challenge and network performability, or to model

a temporally evolving challenge, such as a cascading power failure that increases in scope

over time.

Impact of Challenges on Physical Topologies

Network performance analysis under a variety of challenges is possible with this frame-

work. We showed results of how this framework can be used on a layer 3 logical topology

in Section 6.1.3 and 6.1.3. In this section we investigate the network performance of

Sprint’s geographical physical layer topology.

matched POP
substitute POP
outlier POP

Figure 6.17: Sprint MPLS PoP locations

A fibre-optic topology does not necessarily use all nodes to be traffic sources and sinks.

There can be signal regenerators, cross-connects, and ADMs. Therefore, to realistically

place source and sink points we utilised the Sprint global MPLS map [552], with a total
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of 115 MPLS PoPs in the US. Among these 115 PoPs, 83 exactly match to the physical

topology we constructed. 7 more PoP locations closely match to a city on the physical

topology. For example the fibre-optic route map has a point in Coeur d�Alene, Idaho,

while the MPLS map has a PoP located in Post Falls, Idaho, which are very close to

each other, so we consider the Coeur d�Alene node on the physical topology adjacency

matrix a traffic source and sink point. 25 PoP locations did not match to the physical

topology well. For example the MPLS PoP in Springfield, Missouri does not lie on any

Sprint fibre routes. These MPLS PoPs are backhauled over other service providers, and

are thus excluded from our Sprint traffic matrix. The resulting traffic matrix has 90

source/sink pairs. The Sprint fibre-optic routes with Sprint MPLS PoP locations are

shown in Figure 6.17.

Challenge Simulations on Physical Topologies:

The physical topology has 245 cities of which 90 MPLS PoP locations match to the cities

on the physical topology. Since not all cities are traffic source or sinks, the statistical fail-

ure scenarios would not be useful determining the performability of the network. Hence,

we focus on simulating area-based challenges against the physical topologies representing

large-scale disasters. We run the same area-based scenarios on the physical topology

that we ran on the Sprint logical topology (Section 6.1.3) as depicted in Figures 6.18(a),

6.19(a), and 6.20(a).

The performance of the physical topology is shown Figures 6.18(b), 6.19(b), and 6.20(b).

The characteristics of the performance curves closely match between physical and logical

topologies for the same area-based challenge scenarios. The difference is the PDR values.

This is expected since the number of traffic sources and the sinks differ between each

topology. We also increase the link bandwidth from 10 Mb/s to 100 Mb/s to prevent

artificial drop of packets in the physical topology scenarios, since the maximum link
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(b) Scaling circle PDR

Figure 6.18: Scaling circle challenge scenario and PDR for Sprint physical topology

betweenness in the physical topology is 8,012 and the maximum link betweenness on the

Sprint logical topology is 72.

Next, we demonstrate an area-based scenario representative of a hurricane hitting south
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(a) Moving circle

PD
R

simulation time [s]

moving circle
0.0

0.2

0.4

0.6

0.8

1.0

0.0 5.0 10.0 15.0 20.0 25.0 30.0

(b) Moving circle PDR

Figure 6.19: Moving circle challenge scenario and PDR for Sprint physical topology

central US as shown in Figure 6.21. In the smallest area are the nodes in New Orleans

and Biloxi of which only the New Orleans node is a MPLS PoP node. In the second

circular area challenge, the nodes are: New Orleans, Baton Rouge, Lafayette, Biloxi, and
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(a) Scaling polygon
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(b) Scaling polygon PDR

Figure 6.20: Scaling polygon challenge scenario and PDR for Sprint physical topology

Mobile, in which 4 out of the 5 affected nodes are PoP nodes. In the largest affected

area there are a total of 10 nodes, 6 of which are the PoP nodes. However, none of the

three circular challenge areas cover any logical links or nodes on the map in Figure 6.3,
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permitting us to investigate the differences between logical and physical topologies.

Figure 6.21: South central area-based challenge scenario
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Figure 6.22: PDR during south central US challenge scenario

The network performance of physical and logical topologies when the south central US

region is challenged is shown in Figure 6.22. Since there are no nodes or links in the

logical topology impacted, the PDR appears to be 100%. On the other hand, the PDR
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of the physical topology drops to 98%, 91%, and 86%, respectively, as the challenge

area covers more nodes and links. This demonstrates that it is imperative to study the

impact of area-based challenges on the physical topologies. Traditional layer-3 logical

topologies are insufficient to understand the impact of physical challenges against the

network infrastructure.

To conclude, networks face challenges that are inherent in the environment and the

consequences of these challenges can be costly. The resulting impact of these challenges

is related to the probability of occurrence, the magnitude of a challenge, and the duration

of a challenge. In this work we study the temporal and spatial characteristics of network

challenges. Even if a challenge is an act of nature, statistical recording of such challenges

can provide for the allocation of resources at the right time to reduce the impact of the

challenges. Another factor contributing the probability of occurrence is social behavior:

malicious attacks [262, 553] affect the severity of the consequences. The magnitude of a

challenge can be characterised by the following:

• challenge area

• number of impacted nodes and links in challenge area

• significance of network elements in the challenge area

• traffic carried through the affected area

As seen in our simulation results, magnitude of a challenge impacts the result of chal-

lenges. Finally, the duration of a challenge is critical factor impacting the network per-

formance. This is related to the ATIS/ANSI (unservability, duration, extent) triple [4]

(cf. Section 2.4, Figure 2.5). Natural or human-made disasters causing power outages

increase the network downtime [369,554]. Our framework could provide valuable insight
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for probable consequences of network failures during the varying challenge duration.

Understanding the characteristics of challenges can provide insight into the mitigation

strategies to cope with various challenges.

6.2 Experimental Evaluation on GpENI Testbed

Experimentation is another technique to evaluate the resilience of networks. We presented

some of the recent experimentation efforts to evaluate network resiliency in Section 2.4. In

this section we first present an overview of the GpENI Future Internet testbed. Next, we

present the experimentations performed to evaluate the heuristic algorithm that improves

the algebraic connectivity of a graph described in Section 5.1.

6.2.1 GpENI Testbed Overview

The Great Plains Environment for Network Innovation – GpENI [48] is an international

programmable network testbed centered on a regional network between The University

of Kansas (KU), University of Missouri – Kansas City (UMKC), Kansas State Univer-

sity (KSU), University of Nebraska – Lincoln (UNL), supported with Brocade OpenFlow

switches and Ciena CoreDirectors, in collaboration with the Kansas Research and Ed-

ucation Network (KanREN). GpENI is funded in part by National Science Foundation

GENI (Global Environment for Network Innovations) program and the EU FIRE (Future

Internet Research and Experimentation) programme. International topology is anchored

on Lancaster University in the UK, ETH Zürich and Uni-Bern in Switzerland, G-Lab at

Kaiserslautern in Germany, and NorNet at Simula in Norway.
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Objectives

The aim of the GpENI project is to build a collaborative research infrastructure in

Kansas, the Great Plains region, and internationally. It provides a programmable network

infrastructure enabling GpENI member institutions to conduct experiments in Future

Internet architecture. The flexible GpENI infrastructure supports the GENI program,

mesoscale OpenFlow deployment, and GeniRack access. The GpENI testbed provides an

open environment on which the networking research community can develop and conduct

network experiments with emphasis on network resilience.

GpENI Topology and Network Infrastructure

GpENI is built upon tinc-meshed VLAN tunneled and OpenFlow interconnected be-

tween the principal GpENI institutions, with direct connectivity across GPN, Internet2,

GANT2, and JANET backbones. Administration of Midwest GpENI infrastructure is

assisted by KanREN. Each university has a GpENI node cluster interconnected to one-

another and the rest of GENI by Ethernet VLAN, and within KanREN by OpenFlow.

GpENI is part of GENI control framework Cluster B. GpENI is one of two network infras-

tructure projects (along with Mid-Atlantic Crossroads) that runs the PlanetLab control

framework and interfaces with other Cluster B participants, running GUSH experiment

control and Raven code deployment.

38 node clusters are coming up in 17 nations, shown in Figure 6.23. Each GpENI node

cluster consists of several components, physically interconnected by a Gigabit Ethernet

switch to allow arbitrary and flexible experiments. Each cluster consists of the following

components: GpENI management and control processor, PlanetLab programmable nodes

managed by MyPLC with GENIwrapper SFA sub-aggregate manager, VINI-based pro-
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grammable routers, a managed Gigabit Ethernet switch, and site specific experimental

nodes.

•  GpENI  

 The Great Plains Environment for Network Innovation – 
GpENI (pronounced [dʒɛ’pi ni] with accent on the middle 
syllable and rhyming with GENI) is an international 
programmable network testbed centered on a regional 
optical network between The University of Kansas (KU), 
Kansas State University (KSU), University of Nebraska – 
Lincoln (UNL), and University of Missouri – Kansas City 
within the Great Plains Network (GPN), supported with 
optical switches from Ciena interconnected by Qwest fiber 
infrastructure, in collaboration with the Kansas Research 
and Education Network (KanREN) and Missouri Research 
and Education Network (MOREnet). GpENI is funded in 
part by National Science Foundation GENI (Global 
Environment for Network Innovations) program as part of 
Cluster B.  International expansion has begun anchored on  
Lancaster University in the UK and ETH Zürich in 
Switzerland.  

•  GpENI Topology and Network Infrastructure 

 GpENI is built upon a multi-wavelength fiber 
interconnection between four principal GpENI universities 
within the GPN, with direct connection to the Internet 2 
backbone. Administration of Midwest GpENI infrastructure 
is assisted by GPN, KanREN and MOREnet. 

 Each university has a GpENI node cluster interconnected to 
one-another and the rest of GENI by Ethernet VLAN. 
Additionally, each university is obtaining its own Ciena 
optical switch for layer-1 and -2 programmable 
interconnection among GpENI institutions. 

 GpENI is undergoing significant regional and international 
expansion, with institutions providing node clusters 
tunneled (L2TPv3 or IP) into the Midwest optical backbone.  
We are beginning to explore optical interconnection to 
some of the international nodes. 

I. OVERVIEW 

 GpENI institutions participate in several research projects 
that we expect will benefit from GpENI and GENI 
experimental capabilities: 

•  PoMo:  Postmodern Internet Architecture (NSF FIND) 
KU, University of Kentucky, University of Maryland 

•  MiMANSaS:  Matrix, Models and Analysis of Network 
Security and Survivability  (NSF CyberTrust) 
UMKC, Duke University, University of Pittsburgh 

•  High Bandwidth Multimedia Applications  (NSF CCF) 
UMKC 

•  ResumeNet:  (EU FP7 FIRE) 
Resilience and Survivability for Future Networking  
KU, Lancaster U., ETH Zürich, Techniche Universität 
München (TUM), Techniche Universiteit Delft, Université de 
Liège (ULg), Universität Passau, Uppsala Universitet (UU), 
NEC Labs Heidelberg, France Telecom – Orange Labs. 

V. RELATED PROJECTS 

•  GpENI Node Clusters 

 38 node clusters are coming up in 17 
nations, shown in Figure 1.  Each 
GpENI node cluster consists of 
several components, physically 
interconnected by a Gigabit Ethernet 
switch to allow arbitrary and flexible 
experiments. GpENI uses KanREN /21 
IP address space within the gpeni.net 
domain. The node cluster is designed 
to be as flexible as possible at every 
layer of the protocol stack, and 
consists of the following components, 
as shown in Figure 2: 

IV. GpENI PRINCIPAL PARTICIPANTS 

•  Build a collaborative research infrastructure in the Great 
Plains region 

•  Provide programmable network infrastructure enabling 
GpENI member institutions to conduct experiments in future 
Internet architecture 

•  Provide flexible infrastructure to support the GENI program 
as part of control framework B 

•  Provide open environment on which the networking 
research community can run experiments 

II. PROJECT GOALS 

  

•  GENI Cluster B  

 GpENI is part of GENI control framework Cluster B.  GpENI is one of two 
network infrastructure projects (along with Mid-Atlantic Crossroads) that will 
run the PlanetLab control framework and interface with other Cluster B 
participants, running GUSH experiment control and Raven code deployment.  

GpENI:  Great Plains Environment for Network Innovation 
                      James P.G. Sterbenz, Deep Medhi, Byrav Ramamurthy, Caterina Scoglio, David Hutchison, Bernhard Plattner, Tricha Anjali 
        Andrew Scott, James Archuleta, Cort Buffington, Greg Monaco, Baek-Young Choi, Joseph Evans, Don Gruenbacher, Rick McMullen, Jeff Verrant   
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•  GpENI Physical Topology and Infrastructure 

 The Midwest optical backbone physical topology consists of fiber 
interconnection between the four GpENI universities, and is currently being 
deployed, as shown in Figure 3 as white blocks. GpENI-specific infrastructure 
is depicted by grey blocks; deployment and operational status is described in 
a subsection below. 

 Each of the four university node clusters will interface into the GpENI 
backbone via a Ciena CN4200 or CoreDirector switch. The rest of the GpENI 
node infrastructure for each site is labeled "GpENI node cluster" The main 
fiber run between KSU, KU, and Kansas City is Qwest Fiber IRUed (leased) to 
KU, proceeding to the Internet2 POP, which will provide access to GpENI from 
Internet2. A chunk of C-band spectrum is planned providing multiple 
wavelengths at KU and KSU. UMKC is connected over MOREnet (Missouri 
Research and Education Network) fiber to the Internet2 POP, with four 
wavelengths anticipated. UNL is also connected to the Intenet2 POP over 
fiber IRUed from Level3 with two wavelengths committed. Local fiber in 
Manhattan and Lawrence is leased from Wamego Telephone (WTC) and 
Sunflower Broadband (SFBB), respectively. There is abundant dark fiber 
already in place on the KU, KSU, UMKC, and UNL campuses to connect the 
GpENI nodes to the switches (existing or under deployment) on the GPN fiber 
backbone. For reference, the UNL link is terminated by Ekinops switches, the 
UMKC link is terminated by ADVA switches, and the KU/KSU link is 
terminated by Ciena switches.  The current  layer 2 connectivity is shown in 
Figure 3; note that this is constantly evolving as optical infrastructure is 
deployed. 

!  GpENI management and control processor:  general-purpose Linux machine 

!  PlanetLab control framework consisting of aggregate managers: 
MyPLC with GENIwrapper SFA, myVINI, DCN 

!  PlanetLab programmable nodes 

!  VINI-based programmable routers, with Quagga and other extensions such as XORP and Click 

!  Site-specific experimental nodes, including software defined radios (such as the KUAR), 
optical communication laboratories, and sensor testbeds 

! Managed Gigabit Ethernet switch, providing L2 VLAN programmability and connectivity 
to the rest of GENI 

!  Ciena optical switch running DCN providing L1 interconnection among GpENI optical node clusters 

  The arrow overlaid on the Figure 2 shows a conceptual flow of an experiment in which 
the GENI experiment controls the configuration of the PlanetLab, which in turn configures 
a custom routing protocol, which in turn configures the optical switch configuration.    
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Experimentation

GpENI is undergoing significant regional and international expansion, with institutions

providing node clusters tunneled (L2TPv3 or IP) into KU. Moreover, we deploy tinc to

perform arbitrary L2 meshing to experiment with network algorithms on GpENI testbed.

Next, we explain the experiments we run on the GpENI testbed to validate the graph

algorithm presented in Section 5.1.

6.2.2 Graph Algorithm Evaluation on GpENI

We develop a heuristic algorithm that improves the connectivity of a graph in terms

of the algebraic connectivity metric by adding links [538]. Algebraic connectivity is

defined as the second smallest eigenvalue of the Laplacian matrix and it is widely used

for topological optimisations as described in Section 2.3.1. A secondary objective of our

algorithm is to select the links that improve the algebraic connectivity of the graph in
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the least costly fashion in which we capture the cost of network as the total link length.

The heuristic to increase algebraic connectivity in a graph is based on adding links to

the nodes that have the fewest incident links (i.e. minimal degree nodes).

Large scale resilience experiments are run over interconnected PlanetLab clusters using

tinc VPN tunneling software [555]. The tinc project allows creation of arbitrary topolo-

gies while preventing broadcast storms. We create sample topologies consisting of five

GpENI PlanetLab nodes (i.e. KSU, KU, Cambridge, KIT, Bern) as shown in Figures 6.24

and 6.25 [556]. The sample binary-tree topology as shown in Figure 6.24 has the root

node in Cambridge. The KU node is the highest-degree node in the partial-mesh topology

shown in Figure 6.25.

x 

Figure 6.24: Example binary-tree topology

We measure the network performance in terms of flow robustness (described in Sec-

tion 4.2.2), which quantifies resilience as the fraction of node pairs that remain connected

in a network. Simultaneous ping traffic between every pair of node in each topology is

generated. We pause tinc processes to emulate challenges against critical nodes in each

scenario topology. Flow robustness is measured on the sample topologies with and with-
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x 

Figure 6.25: Example partial-mesh topology

out our optimisation algorithm being applied as shown in Figures 6.26 and 6.27 .

flo
w

 ro
bu

st
ne

ss

time [s]

optimised
non-optimised

0.0

0.2

0.4

0.6

0.8

1.0

0.0 20.0 40.0 60.0 80.0 100.0

Figure 6.26: Robustness of optimised and non-optimised binary-tree topologies

We plot the flow robustness of the binary-tree scenario as shown in Figure 6.26. The

scenario represents an attack against the highest betweenness node (Cambridge) in this

206



flo
w

 ro
bu

st
ne

ss

time [s]

optimised
non-optimised

0.0

0.2

0.4

0.6

0.8

1.0

0.0 20.0 40.0 60.0 80.0 100.0

Figure 6.27: Robustness of optimised and non-optimised partial-mesh topologies

tree topology as shown in Figure 6.24. The optimised topology performs better since

additional link (between KSU and Bern) provide alternate path between node pairs.

Flow robustness of the partial-mesh scenario is shown in Figure 6.27. In this scenario

the highest degree node (KU) is attacked in a partial-mesh topology as shown in Fig-

ure 6.25. The optimised topology (with additional link between KSU and KIT) has a

flow robustness of 0.6, where as non-optimised topology has a flow robustness of 0.3. The

flow robustness of non-optimised partial-mesh topology is better than the non-optimised

binary-tree topology when critical nodes are attacked because nodes are connected more

connected in the partial-mesh topology. This resilience experiment demonstrates creation

of arbitrary topologies and application of our heuristic algorithm that improves algebraic

connectivity metric on the large-scale GpENI testbed.

We have mainly measured the resilience as flow robustness and PDR (packet delivery

ratio) when evaluating the networks throughout this work. We consider the area under
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these curves to evaluate network resilience. While flow robustness captures how well

the components of a graph are connected, aggregate PDR captures the ratio of packets

delivered to the total number of packets in the network. In essence, flow robustness and

PDR captures similar measures for analysing network resilience from a graph-theoretical

perspective. We note that, correct parameter settings are essential so that the nodes and

links are not overloaded and packets are not dropped due to congestion in simulations.

Considering the analytical, simulation, and experimentation results, they all give a fairly

good assessment of the network resilience.

6.3 Summary

The KU-CSM evaluates the impact of a variety of challenges including large-scale corre-

lated failures on the networks, which allows for analysis of network performance in the

ns-3 network simulator. The geographic failure scenarios consist of a regular circle cen-

tered at a point with constant radius R as well as n-sided polygons for irregular-shaped

challenge models. We note the importance of modelling irregular shapes is to reflect

reality, since not all challenges are circular shaped. Moreover, KU-CSM can model area-

based challenges that evolve temporally and spatially. Next, we evaluate the heuristic

algorithm that increases the algebraic connectivity of a graph on the GpENI Future In-

ternet testbed. The results shown in this work cross-validate the analytical, simulation,

and experimentation evaluation of network resilience.
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Chapter 7

Conclusions and Future Work

This dissertation presents network models, design and optimisation of networks, and a

methodology to evaluate networks under challenges. We find that there are a variety of

challenges and that no single mechanism can address the full resilience requirement of

a network service. The cost and resilience trade-offs should be considered according to

the service requirements of the network. Moreover, the resilience evaluation methodolo-

gies cross-validate results obtained by simulations and experimentations. This chapter

presents conclusions drawn from the major contributions of the dissertation and direc-

tions for future work.

7.1 Conclusions

In Chapter 3, we presented the known and potential communication network challenges.

We tried to answer the question Why networks fail? While doing so, we systematically

considered challenges within each of the relevant resilience disciplines. Based on the

identified challenges, we provided a taxonomy of challenges that can assist a designer

when considering essential factors among several ones for cost-efficient resilient network

design. The aim of this survey is to assist network designers in avoiding the mistakes
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of the past and also to aid in developing Future Internet architectures. We strived to

have a complete and comprehensive taxonomy; however, it will require refinement as new

challenges arise. We expect that such a taxonomy will be beneficial for network designers

and foster coöperation among researchers.

The documentation and sharing of challenges and their impact is important. From a

policy perspective, lack of failure data and improper documentation for resilience analy-

sis of networks have been reported by several researchers [30, 274, 557, 558]. This can be

attributed to service providers’ unwillingness to share outage information due to security

and competitive reasons. An open database similar to the US FCC (Federal Communica-

tions Commission) NORS (Network Outage Reporting System) [559] for sharing outage

information would benefit the research community toward increasing the resilience of the

Internet.

In Chapter 4, we have shown that realistically modelling of the Internet requires a col-

lective and systemic analysis of all of its structural properties. Intuitively, fibre-level

topologies are laid along right-of-way of the freeways, since it is less costly than line-

of-sight installation. We analytically show structural similarities between these physical

infrastructures by using the normalised Laplacian spectra. While freeways and physi-

cal fibre route graphs share similar grid-like structural characteristics, logical overlays

clearly differ from the physical underlays in terms of well-studied graph metrics, spectral

properties, and flow robustness values. Physical topologies have higher distance metric

values, whereas logical topologies have higher centrality metric values.

Existing models of the Internet often employ a single level perspective. We have de-

veloped a multilevel and multiprovider framework to model and evaluate the multilevel

nature of the Internet. Using the flow robustness metric we evaluated multilevel graphs

and analysed combined communication and transport networks with our multilevel frame-
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work. We confirmed that dynamic routing helps alleviate the impact of perturbations

and that adaptive challenges degrade multilevel network performance more than non-

adaptive challenges. Moreover, as we demonstrated, multilevel graphs yield different

performance measures than single level graphs under network perturbations.

Physical level topologies are necessary to study the resilience of networks more realisti-

cally. We discuss the fitness of four geographical graph models applied to graphs with

node locations given by those of six actual networks. We evaluate the cost of these syn-

thetically generated graphs based on a cost model, and we find that among the synthetic

graph models we studied, the Gabriel model yields topologies with the smallest cost.

Furthermore, the cost incurred using synthetic models depends on the number of nodes

and the geographic distribution of these nodes. We analyse the topologies generated by

the synthetic geographic graph models, and visual inspection of these topologies shows

that the Gabriel graphs best capture the grid-like structure of physical level topologies.

We then show that geographical physical level graphs are dominated by degree-2 nodes,

and removal of them provides more accurate structural metrics, particularly for degree

distribution.

In Chapter 5, we introduce two heuristic graph algorithms that optimises the connec-

tivity of a given graph with node locations and is computationally less costly than an

exhaustive optimisation. First, we use algebraic connectivity as a measure to improve

the connectivity of the graph. This algorithm minimises the cost of adding new links by

selecting shorter links with high algebraic connectivity. We introduce a tuning parameter

γ to control the effect of the cost function while selecting new links. Furthermore, the

candidate links that are being added to improve the connectivity of the graph can be

constrained by a length limit in our algorithm. We apply this algorithm to physical- and

logical-level topologies of three backbone providers. The results show trade-offs between

improving algebraic connectivity and minimising cost, from which a cost-efficient set of
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link addition can be chosen based on the value of γ. We show that the algebraic con-

nectivity improvement for the physical level graphs are less than the logical level graphs

because of the differences in their structural characteristics, as well as the link length

limitation imposed on the candidate links that are added to the physical level topologies.

Next, we introduce a k-diverse path algorithm that considers both the diversity of the

nodes and links in the returned paths. We present a new heuristic algorithm that op-

timises the total path diversity of a given graph with node locations. This algorithm

improves the TGD of a graph by adding the cost-efficient link that increases the low-

est EPD pair the most. We apply the optimisation algorithm to three realistic physical

level topologies. Using the flow robustness graph metric, the path diversity optimised

graphs are compared to both lowest degree optimised and non-optimised graphs as they

are attacked using node removal based on highest node centrality graph metrics. The

path diversity optimised graphs show better resilience to these attacks compared to the

lowest degree optimised and non-optimised graphs. Finally, we compare the two heuris-

tic algorithms and show the trade-offs between resilience and cost when designing and

optimising networks.

In Chapter 6, we introduce the KU-CSM framework to evaluate network performance

when faced by realistic stationary or evolving challenges. This framework separates net-

work topology from challenge specification, which increases tractability and flexibility.

We demonstrated that while logical topologies are appropriate for statistical challenge

scenarios or analysing network-level attacks, physical topologies are necessary to realis-

tically study geographically correlated failures. Our results indicate that network per-

formance varies depending on the type and severity of the challenge applied. Next, we

present experiments conducted on the GpENI testbed for resilience evaluation. The ex-

periments involve evaluating the graph optimisation algorithm on the large-scale GpENI

infrastructure. We conclude that analytical, simulation, and experimental evaluations of
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network resilience are consistent. While experimentations are costly to build, simulations

provide tractable options to evaluate network resilience with the right settings.

7.2 Future Work

In this work we focus on challenges, which are adverse events that result in service failures

and we provide a comprehensive survey of consequences of these challenges. A future

research direction is to systematically classify failures. Such classification may prove to be

useful for further analysis of temporal and spatial characteristics of failures. Combined

with risk-cost-complexity analysis [26], it can help efficient design of the system with

limited resources for maximal resilience gain. Another question in regards to different

challenges is how do we quantify one challenge compared to another? In other words,

considering two challenges with characteristics differing from one another, how do we

assess which one is worse? Investigating the level of services provided by the network

and the cost and time to recover and remediate can help this second question. However,

further research is needed to evaluate these resilience aspects.

The critical infrastructures increasingly depend on each other. A question for which we

don’t have an answer is: What is the level of dependency between critical infrastructures?

Recently, terrorist attacks in Turkey on gas pipelines impacted the Internet in Northern

Iraq [560]. A pipeline explosion near Charleston, WV in the US impacted the fibre cables

in which resulted telephone disruptions in several states [561]. Moreover, motorway traffic

was rerouted on the Interstate Highway 77 since it was damaged near the explosion. As

critical infrastructure, such as water distribution and transportation, are essential for the

society, how the failure of one critical infrastructure impacts communication networks is

still unknown.
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We presented two heuristic graph algorithms that increase the resilience of a graph in a

cost-efficient manner. For our future work, we would like to run our heuristic algorithm

using graph properties such as clustering coefficient and graph spectra. For example,

we can add clustering coefficient to replace the algebraic connectivity or we can add

both with a parameter to weight their effect in ranking the links that need to be added

to improve connectivity of the graph. It is worthwhile to investigate a variety of graph

metrics and analyse which one helps capturing the resilience properties the most. We will

also modify our algorithm to achieve a specified graph metric value with a constrained

budget. Finally, we plan to design an algorithm that improves the connectivity the most

based on node additions while minimising the cost.

Recently, there has been interest from the research community in modelling correlated

failures. However, these challenge models typically have been oversimplified in modelling

a tornado as a line or an EMP weapon as a static circle and we have shown realistic

area-based challenge models [23]. Moreover, a major missing piece among these is a

lack of models that study social, economical, and policy challenges. For example, how

would a nationwide Internet outage impact our overall communication? What is the

consequence of depeering ISP A from ISP B? Another research direction in the form

of experimentation is how to evaluate graph resilience within the limited resources of

the experimentation testbed. This question is fundamentally about the scaling of an

experimentation scenario on the limited resources of the experimentation testbed.
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Justin P. Rohrer, Marcus Schöller, and Paul Smith. Resilience and survivabil-

ity in communication networks: Strategies, principles, and survey of disciplines.

Computer Networks, 54(8):1245–1265, 2010.

[3] James P.G. Sterbenz, David Hutchison, Egemen K. Çetinkaya, Abdul Jabbar,
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[23] Egemen K. Çetinkaya, Dan Broyles, Amit Dandekar, Sripriya Srinivasan, and

James P.G. Sterbenz. Modelling Communication Network Challenges for Future

Internet Resilience, Survivability, and Disruption Tolerance: A Simulation-Based

Approach. Telecommunication Systems, 52(2):751–766, 2013.

[24] Paul Smith, David Hutchison, James P.G. Sterbenz, Marcus Schöller, Ali Fessi,
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software architectures. In Rogério de Lemos, Cristina Gacek, and Alexander Ro-

manovsky, editors, Architecting Dependable Systems II, volume 3069 of Lecture

Notes in Computer Science, pages 69–91. Springer Berlin / Heidelberg, 2004.

230



[118] Mark Lanus, Liang Yin, and Kishor S. Trivedi. Hierarchical Composition and

Aggregation of State-Based Availability and Performability Models. IEEE Trans-

actions on Reliability, 52(1):44–52, 2003.

[119] Kishor S. Trivedi. Probability and Statistics with Reliability, Queuing, and Com-

puter Science Applications. John Wiley and Sons, New York, 2nd edition, 2001.

[120] Sally Floyd and Vern Paxson. Difficulties in Simulating the Internet. IEEE/ACM

Transactions on Networking, 9(4):392–403, 2001.

[121] Victor S. Frost and Benjamin Melamed. Traffic Modeling For Telecommunications

Networks. IEEE Communications Magazine, 32(3):70–81, 1994.

[122] Clémence Magnien, Matthieu Latapy, and Jean-Loup Guillaume. Impact of Ran-

dom Failures and Attacks on Poisson and Power-Law Random Networks. ACM

Computing Surveys, 43(3):13:1–13:31, 2011.
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di Roma Tre, Roma, Italy, March 2008.

[236] Earl Zmijewski. Mediterranean Cable Break. http://www.renesys.com/blog/

2008/01/mediterranean_cable_break.shtml, January 2008.

[237] Earl Zmijewski. Mediterranean Cable Break - Part II. http://www.renesys.com/

blog/2008/01/mediterranean-cable-break-part-1.shtml, January 2008.

[238] Earl Zmijewski. Mediterranean Cable Break - Part III. http://www.renesys.com/

blog/2008/02/mediterranean_cable_break_part.shtml, February 2008.

[239] Tomasz Bilski. Disaster’s Impact on Internet Performance – Case Study. In Andrzej
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[537] James P.G. Sterbenz, Egemen K. Çetinkaya, Mahmood A. Hameed, Abdul Jabbar,

and Justin P. Rohrer. Modelling and analysis of network resilience (invited paper).

In Proceedings of the Third IEEE International Conference on Communication

Systems and Networks (COMSNETS), pages 1–10, Bangalore, January 2011.
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Appendix A

Multilevel Flow Robustness Plots

This appendix contains a full set of flow robustness plots for the topologies used in the

analysis of the multilevel networks.
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A.1 Node Deletions
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Figure A.1: Flow robustness for dynamic routing during adaptive node deletions

flo
w

 ro
bu

st
ne

ss

number of node failures

random
closeness

flow closeness
betweenness

flow betweenness
degree

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200

Figure A.2: Flow robustness for dynamic routing during non-adaptive node deletions
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Figure A.3: Flow robustness for static routing during adaptive node deletions
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Figure A.4: Flow robustness for static routing during non-adaptive node deletions

A.1.2 Level 3
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Figure A.5: Flow robustness for dynamic routing during adaptive node deletions
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Figure A.6: Flow robustness for dynamic routing during non-adaptive node deletions
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Figure A.7: Flow robustness for static routing during adaptive node deletions
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Figure A.8: Flow robustness for static routing during non-adaptive node deletions
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A.1.3 Sprint
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Figure A.9: Flow robustness for dynamic routing during adaptive node deletions
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Figure A.10: Flow robustness for dynamic routing during non-adaptive node deletions
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Figure A.11: Flow robustness for static routing during adaptive node deletions
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Figure A.12: Flow robustness for static routing during non-adaptive node deletions
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flo
w

 ro
bu

st
ne

ss

number of node failures

random
betweenness

degree

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20

Figure A.13: Flow robustness for dynamic routing during adaptive node deletions
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Figure A.14: Flow robustness for dynamic routing during non-adaptive node deletions
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Figure A.15: Flow robustness for static routing during adaptive node deletions
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Figure A.16: Flow robustness for static routing during non-adaptive node deletions
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A.1.5 Internet2
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Figure A.17: Flow robustness for dynamic routing during adaptive node deletions
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Figure A.18: Flow robustness for dynamic routing during non-adaptive node deletions
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Figure A.19: Flow robustness for static routing during adaptive node deletions
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Figure A.20: Flow robustness for static routing during non-adaptive node deletions

A.2 Link Deletions

A.2.1 AT&T
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Figure A.21: Flow robustness for dynamic routing during adaptive and non-adaptive link
deletions
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Figure A.22: Flow robustness for static routing during adaptive and non-adaptive link
deletions

A.2.2 Level 3
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Figure A.23: Flow robustness for dynamic routing during adaptive and non-adaptive link
deletions
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Figure A.24: Flow robustness for static routing during adaptive and non-adaptive link
deletions

A.2.3 Sprint
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Figure A.25: Flow robustness for dynamic routing during adaptive and non-adaptive link
deletions
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Figure A.26: Flow robustness for static routing during adaptive and non-adaptive link
deletions

A.2.4 TeliaSonera
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Figure A.27: Flow robustness for dynamic routing during adaptive and non-adaptive link
deletions
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Figure A.28: Flow robustness for static routing during adaptive and non-adaptive link
deletions

A.2.5 Internet2
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Figure A.29: Flow robustness for dynamic routing during adaptive and non-adaptive link
deletions
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Figure A.30: Flow robustness for static routing during adaptive and non-adaptive link
deletions
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Appendix B

Graph Optimisation Plots

This appendix contains a full set of plots for the topologies used in the analysis of the

graph optimisation algorithms.
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B.1 Graph Optimisation via Algebraic Connectivity

B.1.1 Physical-Level Graphs
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Figure B.1: AT&T connectivity improvement
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Figure B.2: AT&T cost incurred with adding links
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Figure B.3: Connectivity and cost trade-offs for AT&T
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Figure B.4: Level 3 connectivity improvement
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Figure B.5: Level 3 cost incurred with adding links
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Figure B.6: Connectivity and cost trade-offs for Level 3
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Figure B.7: Sprint connectivity improvement
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Figure B.8: Sprint cost incurred with adding links
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Figure B.9: Connectivity and cost trade-offs for Sprint

B.1.2 Logical-Level Graphs
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Figure B.10: AT&T connectivity improvement
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Figure B.11: AT&T cost incurred with adding links
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Figure B.12: Connectivity and cost trade-offs for AT&T
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Figure B.13: Level 3 connectivity improvement
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Figure B.14: Level 3 cost incurred with adding links
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Figure B.15: Connectivity and cost trade-offs for Level 3
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Figure B.16: Sprint connectivity improvement
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Figure B.17: Sprint cost incurred with adding links
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Figure B.18: Connectivity and cost trade-offs for Sprint

B.1.3 Comparison of Providers
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Figure B.19: Algebraic connectivity and cost effect for γ = 0 for physical level topologies
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Figure B.20: Algebraic connectivity and cost effect for γ = 0 for logical level topologies
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Figure B.21: Algebraic connectivity and cost effect for γ = 1 for physical level topologies
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Figure B.22: Algebraic connectivity and cost effect for γ = 1 for logical level topologies

B.2 Graph Optimisation via Path Diversity

B.2.1 Impact of Varying Hop Count Threshold on TGD and
Cost
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Figure B.23: CORONET TGD improvement
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Figure B.24: CORONET cost incurred

co
st

 [m
]

TGD

h=15

h=10

h=5

0.0E+0

5.0E+6

1.0E+7

1.5E+7

2.0E+7

2.5E+7

3.0E+7

3.5E+7

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Figure B.25: CORONET cost and TGD
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Figure B.26: Internet2 TGD improvement
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Figure B.27: Internet2 cost incurred

co
st

 [m
]

TGD

h=15

h=10

h=5

0.0E+0

5.0E+6

1.0E+7

1.5E+7

2.0E+7

2.5E+7

3.0E+7

3.5E+7

4.0E+7

4.5E+7

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Figure B.28: Internet2 cost and TGD

TG
D

number of links added

h=15

h=10

h=5
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 5 10 15 20

Figure B.29: Level 3 TGD improvement
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Figure B.30: Level 3 cost incurred
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Figure B.31: Level 3 cost and TGD

B.2.2 Impact of Varying k on TGD and Cost
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Figure B.32: CORONET TGD improvement
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Figure B.33: CORONET cost incurred
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Figure B.34: CORONET cost and TGD
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Figure B.35: Internet2 TGD improvement
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Figure B.36: Internet2 cost incurred
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Figure B.37: Internet2 cost and TGD
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Figure B.38: Level 3 TGD improvement
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Figure B.39: Level 3 cost incurred
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Figure B.40: Level 3 cost and TGD
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B.2.3 Flow Robustness Analysis of Graph Optimisation
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Figure B.41: CORONET betweenness-based attack
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Figure B.42: CORONET closeness-based attack
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Figure B.43: CORONET degree-based attack
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Figure B.44: Internet2 betweenness-based attack
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Figure B.45: Internet2 closeness-based attack
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Figure B.46: Internet2 degree-based attack
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Figure B.47: Level 3 betweenness-based attack
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Figure B.48: Level 3 closeness-based attack
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Figure B.49: Level 3 degree-based attack
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