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Abstract

Today, across all major industries gaining insight from data is seen as an essential

part of business. However, while data gathering is becoming inexpensive and relatively

easy, analysis and ultimately deriving knowledge from it is increasingly difficult. In

many cases, there is the problem of too much data such that important insights are

hard to find. The problem is often not lack of data but whether knowledge derived from

it is trustworthy. This means distinguishing “good” from “bad” insights based on factors

such as context and reputation. Still, modeling trust and quality of data is complex

because of the various conditions and relationships in heterogeneous environments.

The new TrustKnowOne framework and architecture developed in this dissertation

addresses these issues by describing an approach to fully incorporate trust and quality of

data with all its aspects into the knowledge derivation process. This is based on Berlin,

an abstract graph model we developed that can be used to model various approaches

to trustworthiness and relationship assessment as well as decision making processes. In

particular, processing, assessment, and evaluation approaches are implemented as graph

expressions that are evaluated on graph components modeling the data.

We have implemented and applied our framework to three complex scenarios using

real data from public data repositories. As part of their evaluation we highlighted how

our approach exhibits both the formalization and flexibility necessary to model each of

the realistic scenarios. The implementation and evaluation of these scenarios confirms

the advantages of the TrustKnowOne framework over current approaches.
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1
Introduction

In this dissertation “A Framework for Knowledge Derivation Incorporating Trust

and Quality of Data” is introduced. The premise for this research is that existing

approaches to knowledge derivation can be significantly improved by incorporating the

assessments of data quality and trustworthiness.

Chapter 2 discusses the problems associated with current knowledge derivation pro-

cesses. In particular, it highlights our approach and contributions. Context for our

framework is provided in chapter 3 where we discuss related work and research areas.

The basis of our framework consists of an abstract graph model on which graph

expressions are evaluated. This model called Berlin is presented in chapter 4. Chapter 5

discusses in detail how our TrustKnowOne framework is able to incorporate trust and

quality of data aspects into knowledge derivation processes.

The application of our framework to specific scenarios is examined in chapter 6. The

focus lies on showcasing how TrustKnowOne provides a formal and flexible approach

to knowledge derivation in a variety of scenarios. The implementation of these realistic

scenarios is used to confirm our claims concerning the advantages of the TrustKnowOne

framework over the current state of the art.
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Our reference implementation of the framework is discussed in chapter 7. In chap-

ter 8 our TrustKnowOne framework is compared and evaluated against representative

frameworks and approaches from literature. The dissertation concludes with chapter 9

that also provides an outlook for future work.
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2
Problem Statement and

Contributions

2.1 Motivation

All data is essentially used to make decisions. In general, these decisions are based

on the assumption that the data itself is valid and useful. However, how do we determine

the quality of this data, is it affected or influenced by other data, and does it change

over time? Furthermore, determining the usefulness of the data is also based on the

level of trust we put into the data source, especially when the data is confidential or

there is a potential conflict-of-interest when reporting the data. Since our decisions are

based on this data we need to understand what is correct and can be trusted, otherwise

we may make wrong decisions.

This research addresses the problem of systematically and formally incorporating

trust and data quality as well as time and other system dynamics into the knowledge

derivation process.
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2.2 Approach

We create a new framework called TrustKnowOne where we associate every piece

of data with some model (probabilistic or deterministic) representing data quality and

trustworthiness. Furthermore, we provide formalized means for determining, describing

and combining these models and their parameters as well as functionality to challenge

them. We utilize relationships between pieces of data and data sources to assess trust

and opinions of them. Similar approaches can be found in intrusion detection and

computer and social networks. However, they are often not formalized and lack a com-

prehensive framework that is flexible enough to deal with a wide variety of realistic

scenarios. Moreover, the lack of a formal framework inhibits comparing different pro-

posed techniques.

The following provides an overview of our approach and its benefits.

2.2.1 A Knowledge Derivation Framework

Our TrustKnowOne framework is divided into three components to allow for a lay-

ered approach and increased flexibility. First, knowledge extraction allows us to formalize

a general description of data elements and their context (meta information) as measure-

ments. This knowledge extraction formalization is applicable to many realistic scenarios

as we will demonstrate in chapter 6. Second, knowledge processing deals with taking

these measurements and attaching additional relationship meta information in order to

provide beliefs and opinions about the measurements. Third, the measurements as well

as the beliefs and opinions are then used by the knowledge evaluation component to

make decisions.

One of the advantages of separating knowledge processing and evaluation is that there

may be various approaches to modeling data quality and trust/opinion relationships as

well as various decision engines. Current approaches [31, 54, 63, 65] often combine

4



the trust modeling aspect with the decision problem they are trying to solve. Doing

so makes the comparison of individual approaches and further improvements to them

difficult.

The separation of functionality into a layered framework as presented here is a nec-

essary step towards gaining a better understanding of the advantages and disadvantages

of current methods. In some cases in literature [31, 54, 63] simply choosing a different

decision engine could yield completely different results but without a framework like the

one developed here it is too difficult to assess the potential improvement.

2.2.2 Formalization of Knowledge Derivation

The framework creates a new formalization approach to combining raw data with

meta information on a local level (e.g., time, space, how it was obtained, security fea-

tures) as well as a global level (context, attestation, expected behavior, history and

ownership data) using an abstract graph model that is suitable to assessing data qual-

ity and trustworthiness. The formalized and flexible nature of our approach allows for

addressing a variety of data types that may be required to support a wide range of

applications as will be confirmed by the application of our framework to several realis-

tic scenarios (chapter 6. For instance, determining the trustworthiness of Smartphone

Apps (section 6.1) requires extensive modeling of heterogeneous entities and relation-

ships which we demonstrate our framework is capable of.

2.2.3 Adaptable Quality and Trust Assessments

Our research derives quality and trust assessments for each measurement based on

a rich set of data and meta information from multiple resources and contexts. This

includes a rigorous process of how to derive confidence in measurements from data by

incorporating and evaluating local meta information, history, expected behavior, global

data, and context information. We provide a modular and extensible approach to incor-

5



porate a variety of trust and quality assessment techniques using graph expressions. We

demonstrate this using the scenarios discussed in chapter 6: trustworthiness assessments

with heterogeneous entities (section 6.1), complex assessments on individual sensors as

well as groups of sensors (section 6.2), and assessments in dynamic environments (sec-

tion 6.3).

2.2.4 Dynamic Reassessment of Data

Our framework enables the request of additional data or challenge of existing data

when certain confidence thresholds are not reached. This approach supports weighted

decision processes where one part of the system to be analyzed is more critical than oth-

ers as well as time critical ones where the best decision needs to be made given certain

time and context constraints. Furthermore, in contrast to other frameworks the decision

engine is able to utilize both data and additional information such as trust and data

quality assessments when deciding on actions to take. We use an implementation of an

intrusion detection scenario to demonstrate this aspect of our framework (section 6.3).

Here, trustworthiness is based on the evaluation of test messages in a dynamic environ-

ment of hosts. Depending on the confidence of a particular assessments we can adjust

the difficulty as well as the rate of messages that are being sent.

2.2.5 Flexible Decision Processes

The framework incorporates a flexible decision engine which allows for estimat-

ing the trustworthiness of data based on the assessment and confidence of individual

measurements, their meta information, and context. This involves deriving a decision

confidence from the confidence of the measurements and particular data sources. Our

framework provides these trustworthiness assessments so that they can be directly in-

corporated into knowledge derivation and decisions (e.g., performing analysis only on

data above certain trustworthiness levels, discarding low quality data points, etc.). In

6



order to allow for flexible comparison and evaluation, we formalize decision processes

as graph expressions that can be reused, modified, and extended as shown in the sce-

narios (chapter 6). This ranges from weighting schemes including ratings, reviews, and

permissions (section 6.1) to threshold-based trust classes and incorporating ownership

lineage (section 6.2 to evaluating model vulnerabilities (section 6.3).

2.2.6 Analysis of Data Attacks

Our developed framework is able to handle missing data, data in error, and purpose-

fully modified data (an information attack). The key is that we take into consideration

that there are always inherent operational system impairments present in data that may

not reflect an attack. However, when changes in data become correlated we are able

to detect these patterns and determine the presence of attacks. Because of the formal

nature of our approach using graph expressions we are able to assess the robustness

of the individual techniques and algorithms (i.e., belief engines and decision processes)

against specific attack scenarios. An implementation of an intrusion detection scenario

(section 6.3) is used to demonstrate this aspect.

2.2.7 Application to Diverse Scenarios

As part of the discussion we will highlight how our approach exhibits both the formal-

ization and flexibility necessary to model each of the realistic scenarios. These scenarios

discussed in chapter 6 are used to confirm the advantages of the TrustKnowOne frame-

work over current approaches. We focus our analysis on the following representative

and realistic scenarios. The selected scenarios and their implementations are realistic

in terms of being geographically distributed, exhibiting time dynamics, and consisting

of large and diverse data sets.

First, we discuss how we can evaluate the trustworthiness of Smartphone Apps by

incorporating a variety of relationship and context assessments (section 6.1). We show
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that this approach yields a significant improvement over current methods that are based

on basic App attributes [95]. Our data set for this scenario contains a total 11326 Apps,

790940 reviews (651801 with text, 139139 without) as well as 134 different kinds of

permissions captured in July 2012. For this purpose we developed a web crawler to pull

the real and rich App attributes out of Google Play (Android Market). As such, our data

is a diverse representation of realistic data with complex attributes and relationships.

Second, we apply our framework to distributed collaborative sensing in the domain

of radiation detection (section 6.2). Here, we deal with changes in sensor values over

time as well as complex relationships between them. In particular, we combine data

from three data sources amounting to ≈ 2.5 million time stamped data points over the

course of nine months which are geographically distributed across Japan. Two of the

data sets were provided by the International Atomic Energy Agency [75] whereas the

third data set from Safecast [144] represents measurements taken from thousands of

people in a collaborative sensing effort. As such, the Safecast [144] data represents a

challenging data set in terms of correlating related measurements, a common challenge

in collaborative sensing environments. Thus, the measurements captured in the three

data sets provide a realistic basis for evaluating our framework.

Third, intrusion detection provides a dynamic and challenging environment for

knowledge derivation because there exist a wide variety of approaches to determine

trustworthiness of system nodes. We discuss how our framework is able to formalize

one approach [54] in order to be able to compare and evaluate it against a number of

attacks (section 6.3). Our evaluation involves simulation of several dynamic systems

with up to 60 nodes generating ≈ 9000 time stamped test messages over 75 days. The

scope of this scenario is realistic for demonstrating the effects of a variety of attacks and

evaluating trust assessment approaches on intrusion detection systems.
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2.3 Contributions

The establishment of formal definitions for trust, quality, and other metrics as well as

the manner in which they are derived from individual data elements and measurements

has been mostly ignored in previous research. One intellectual merit of our framework

is the formal description of these metrics using an abstract data and relationship graph

model. For the first time the proposed formalization enables the comparison and eval-

uation of different metrics, algorithms, and approaches proposed in literature. The

research establishes a unique formalized and comprehensive model for trust, reputation,

and opinion approaches that is based on the metrics derived from data. This enables

the analysis and comparison of models in a way that is not currently possible due to dif-

ferences in the definitions of metrics and modeling aspects of the individual approaches

(in particular how data is combined to derive trust, reputation and opinions). Since we

establish a direct link between the metrics and models we can compare and evaluate

the usefulness and impact of individual metrics, data elements, and data sources.

The structure of the framework enables better decision processes because it combines

data and relationships between data with notions of quality, trust, reputation, and

opinions. Furthermore, as demonstrated in this dissertation the developed framework

allows for more realistic modeling of application scenarios since it incorporates context,

history, and expected behavior of data. In particular, with our framework we provide a

method to select the best belief and decision engines among several for specific real world

cases. In addition, the formalization of the entire framework allows direct comparison

of not only current but future approaches to various metrics (e.g., trust, data quality),

models (e.g., trust, reputation, opinions) and decision processes (e.g., trustworthiness

of resources, measurement impact, and usefulness).

The major contributions of this dissertation are:

• A new abstract graph modeling approach that allows the management of hetero-

geneous data with dynamic aspects (e.g., time, location) in a variety of application
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scenarios while inherently incorporating trustworthiness and data quality assess-

ments

• A new formalization approach to describing belief engines and decision processes

in the form of graph expressions

• A new framework for knowledge derivation that provides a flexible and extensible

approach using clearly defined extraction, processing, and evaluation components

• The means to evaluate and compare different belief, trustworthiness, and decision

making techniques in a variety of application scenarios using a formal approach

Today, across all major industries gaining insight from data is seen as an essential

part of business. However, while data gathering is becoming inexpensive and relatively

easy, data analysis and ultimately deriving trustworthy knowledge from it is increasingly

difficult. In many cases, there is the problem of too much data such that important

insights are hard to find. As we discuss in chapter 3, several frameworks have been

developed that deal with large-scale data processing and analysis. Yet, the problem is

often not lack of data but whether the knowledge derived from it is trustworthy. This

means distinguishing “good” insights from “bad” ones based on factors such as context

and reputation. Still, modeling trust and quality of data is complex because of the

variety of conditions and relationships that exist in heterogeneous environments.

Table 2.1 shows how the TrustKnowOne framework provides significant benefits

over existing state-of-the-art frameworks with respect to major aspects of the knowledge

derivation process. A detailed discussion is presented in chapter 8 where the attributes of

the TrustKnowOne framework confirmed through the implementation of three realistic

scenarios are compared to the existing framework’s capabilities.

The research presented in this dissertation addresses these issues by describing an

approach to fully incorporate trust and quality of data with all its aspects into the

knowledge derivation process. Our abstract graph model can be used to model various
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Table 2.1: Comparison of major aspects in knowledge derivation processes
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heterogeneous systems
dynamic systems
formal representations
quality and trust assessments
flexibility in approaches

no support partial support full support

approaches to trustworthiness and relationship assessment as well as decision making

processes. Throughout this dissertation we describe in detail our approaches as well as

compare and evaluate them using a series of realistic application scenarios.

In addition, the TrustKnowOne framework provides the flexibility and performance

necessary for large-scale data processing. In particular, our abstract graph model can be

distributed as well as partitioned using a variety of approaches such that the storage of

data becomes scalable. Furthermore, processing, assessment, and evaluation approaches

are implemented using graph expressions which allows for inherent parallelization and

distributed computation.
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3
Related Work

The complexity of dealing with heterogeneous and dynamic environments in which

we want to incorporate trustworthiness and data quality assessments means that our

TrustKnowOne framework and graph modeling approaches intersect with a variety of

research areas (figure 3.1). In order to provide an overview, we focus our discussion on

the three major ones:

• Trust assessment and management

• Data modeling, integration, and fusion

• Large-scale data processing

In this section, we will discuss several research topics and frameworks in these areas

as proposed in literature. A detailed comparison and evaluation with respect to our ap-

proaches and in particular the TrustKnowOne framework described in this dissertation

will be performed in a chapter 8.
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Figure 3.1: Related Work Overview

3.1 Trust Assessment and Management

Gupta and Han [65] provide an overview of current developments as well as chal-

lenges in the field of heterogeneous network-based trust analysis. In particular, the

authors discuss the need for various types of information to be evaluated in terms of

trustworthiness and claims to be verified or dismissed based on that evaluation. They

identified several areas that are especially in need of incorporating trustworthiness.

Here, we discuss the most relevant with regards to our framework, fact finding

which deals with asserting the credibility of facts as well as their sources, reputation

management where trust is incorporating relationships and context, and data lineage

which provides trace information about where data originated and how it was processed.
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3.1.1 Fact Finding and Data Representation

Facts are statements which in the general context is considered to be true. However,

identifying facts in large and complex information systems is a difficult problem. For

example, news outlets may report a story slightly differently by knowingly (e.g., through

subjective opinions) or unknowingly (e.g., inaccuracies) changing facts. If we want to

utilize these facts in order to make decisions it becomes clear that we need to establish

the correctness of information as well as the trustworthiness of sources.

Fact finding in literature [101, 143, 185] is based on three entities that are modeled

as nodes in a graph. Providers are data sources that claim facts about certain objects.

The relationship between the entities can then be described using weighted edges that

provide positive (supporting facts) or negative (opposing facts) reinforcement.

In a homogeneous network, fact and objects types are the same and several basic

schemes such as voting or ranking can be used to determine which facts are best sup-

ported by the data. However, this approach is problematic in heterogeneous networks

because certain facts may be available for one object type but not others, aggregated

facts may be conflicting, and a single provider often describes a variety of different

objects. On the other hand, this variety of data elements and the more complex rela-

tionships they form is the main reason why heterogeneous networks tend to have more

useful information than homogeneous networks [65].

One of the main premises of our framework is its ability to incorporate heterogeneous

data. In particular, our framework utilizes a common abstract data model to address

this. Additionally, basic fact finding approaches only use binary indications of true or

false for facts which are not well suited for most scenarios. We incorporate degrees of

truth where probabilities and confidence assessments are assigned to facts that can then

be used to make decisions.

In addition, one of the disadvantages of using the three entity fact finding model is

that it is often too simplistic and therefore unable to describe realistic complex relation-

14



ships. On the contrary, our framework allows for a formalized representation of data

which allows data transformation (i.e., creating derived facts) as well as relationships

which are often more complex (e.g. dependencies, correlations) than simple positive and

negative weights. Another important aspect we address is that data and relationships

are dynamic and may evolve over time which requires complex dynamic models that

incorporate ideas from dynamic Bayesian networks (DBN) [165] and Hidden Markov

Models (HMM) [43, 90]. Basic fact finding approaches ignore this and depend mostly

on Bayesian inference models.

3.1.2 Reputation Management

In heterogeneous environments where data may originate from a variety of sources,

it is important to assess their reputation. This is particularly interesting in sensor net-

works where sensors can be seen as independent agents that provide measurements to a

collection authority (centralized approach) or that form mesh networks and share mea-

surements as well as information about them with each other (distributed approach).

With the growing number of user generated content such as reviews on shopping web-

sites or collaborative radiation measurements using smartphones, effective reputation

and by extension trustworthiness management becomes a necessary component in the

knowledge derivation process.

A survey by Challa and Momani [26] describes a variety of approaches to managing

trust and reputation in different domains. We want to analyze two topics, security and

trust approaches, discussed in the survey in more detail. First, across all domains the

need for security is apparent. This includes secure communication protocols as well as

encryption to protect data. However, security always comes with a cost and in var-

ious environments, especially resource constrained ones, it is difficult to balance the

performance and security needs of applications. Furthermore, security techniques can

not change the fact that data may be inaccurate to begin with due to objective chal-
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lenges (e.g., environmental factors, calibration issues, time variance, etc.) and subjective

challenges (malicious sensor nodes, fabrication of data, impersonation, etc.). Thus, it

becomes necessary to build trust management techniques to deal with and efficiently

handle different trust, reputation, and opinion issues.

Second, Challa and Momani [26] present an overview of the various methodologies

used in the trust management approaches such as weighting, probabilities, Bayesian

networks, game theory, and graph theory. In fact, there exist different approaches for

trust management in a single domain such as sensor networks [54, 71, 80, 102] as well

as there are some approaches that span multiple domains [20, 89]. The problem is that

proper evaluation and comparison becomes difficult because techniques and methodolo-

gies often utilize custom and domain specific data structures as well as protocols that

are hard to adjust.

However, the evolution from basic approaches using linkage of data nodes (see

PageRank [20], HITS [89]) to more advanced ones in peer-to-peer networks (see Eigen-

Trust [85], PowerTrust [187]) has led to a variety of trust management approaches that

have been adapted to other, related domains, e.g., TrustRank [67] for websites, combat-

ing spam in Twitter [98], and secure code execution using commodity computers [122].

In order to improve this process our framework provides a formalization to model trust,

reputation, and opinion techniques as will be confirmed through the implementation of

three real-world scenarios.

3.1.3 Data Lineage

During any kind of data analysis or decision processes, we often encounter the fol-

lowing. We identified “good” data (i.e., accurate, recent, trustworthy, etc.) and may

assume that the source must have been “good” as well. Likewise, we may have found

data points that seem to be “bad” (i.e., high variance, old, not trustworthy, etc.) and

would like to utilize their sources less. In addition, we face the problem that incorpo-
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rating “bad” data into our decision is usually worse than missing some of the “good”

data.

Therefore, it is important to track the origin of data. While this is usually not a

problem in the early stages of data analysis, as the amount of data and the relationships

that are formed grows this becomes increasingly difficult [36, 152]. As such, we need

to enable the ability to trace individual data points at any stage of the knowledge

derivation process which in literature is referred to as providing data lineage.

This means that we need to attach tracing information which includes how data

is utilized throughout the entire knowledge derivation process, from the moment we

capture data through various forms of processing and ultimately to decisions. It is

particularly useful in cases where we have multiple conflicting data points where tracing

information could be essential and help us resolve these conflicts through weighting. The

problem that needs to be addressed is that by the time we perform decision processes

the data has often been preprocessed, transformed or aggregated [36].

An overview of data lineage research is provided by Simmhan et al. [152]. The au-

thors identified several areas of further research. In particular, tracing information is

usually added to data management systems instead of being an integral part of them.

Furthermore, many of the aspects of the data lineage systems discussed such as gran-

ularity, lineage representation, and scalability are domain specific. There is a need for

systems that are flexible enough to be applicable across domains, provide varying levels

of granularity, and store tracing information in a common, well-defined form. While

there has been research in terms of integrating uncertainty into databases and their

query systems [16, 36, 146] our framework provides a general approach that is applica-

ble across domains.
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3.2 Data Modeling, Integration, and Fusion

Data representation and subsequent processing needs to be flexible and extensible.

In order to achieve these goals we need to address formalization which provides the

ability to model different approaches within and across domains, trust and relationship

models that need to be fully integrated into data processing, and metrics that enable

us to evaluate and compare existing and future processes.

3.2.1 Formalization

Various formal approaches have been proposed to overcome problems with managing

heterogeneous data in dynamic (time and location variant) environments. Specifically,

“Protocol Buffers” [60] and “Thrift” [154] allow data to be structured and efficiently

serialized while generating custom interfaces for several programming languages. Still,

the primary goal of these approaches is to provide flexible data structures for specific

application scenarios. As such their use for describing large scale evolving environments

is limited.

The problem of describing data from a variety of sources and combining it is par-

tially addressed by the “Dataset Publishing Language” [62]. However, only one source

format (comma separated value text file) is specified. A more flexible approach is the

“Data Format Description Language” [135] which allows data formats to be formally

described. This formal description works well for structured data but is problematic

for unstructured data such as text. Furthermore, the description of meta information

is often limited and there is no formal approach that defines relationships between data

elements. However, as discussed above, meta information and relationships are impor-

tant for assessing trustworthiness and quality of data. They need to be incorporated

into any formal framework from the beginning instead of added later on.

For sensor networks, researchers [32] proposed a replicated dynamic probabilistic
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model approach where data produced at each sensor and data consumed at every data

collector is modeled probabilistically. The problem is that data collected in such a way

will only be bound by the accuracy of the probabilistic models used and hence we lose

the original raw data and the ability to assess its trustworthiness.

A similar approach [64] is performing a distributed regression in which the sensor

nodes model their local regions and together they fit a global function that represents

the sensor data. The authors [64] also point out that sensors which are close to each

other often show similar readings. Since the data collected by each sensor is modeled,

transmission can be reduced to cases where the actual data read exceeds the predicted

data by a certain threshold. Furthermore, each sensor node is able to detect data

outliers easily because of its local model. Guestrin et al. [64] also point out that in their

modeling approach a single sensor node actually stores the regression coefficients not

just for itself but for the entire network.

The basic problem with these modeling approaches is that the data is only approx-

imated and that adaptive data modeling is necessary [64] to deal with natural changes

in the environment. However, correctly distinguishing between natural model changes

and important events becomes increasingly difficult. Our research provides solutions to

these problems by incorporating exact data and relationships as well as changes over

time and space.

3.2.2 Trust and Relationship Models

The integration of trustworthiness assessments and relationship models into the data

processing component of knowledge derivation is essential. However, there is often a

balance that needs to be found between attaching meta information in order to enable

trust assessments and the need for high performance processing.

Gupta and Han [65] have identified the following trust analysis research problems

and while some of them have been addressed by others [31, 54, 63] we will discuss how
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our framework addresses important ones that remain [129, 176]. Non-cooperative data

sources may or may not provide the useful and trustworthy data that we are looking

for [74, 166] and some data sources provide better trust and relationship assessment

information about one class of data than others (cluster-based fact finding). Further-

more, a piece of data is usually associated with multiple trust and quality assessments

(consensus learning [55]) and individual assessments are often related to multiple data

pieces (generalization of facts).

Our framework identifies these relationships as complex but also extremely valuable

for trust analysis and incorporates them into the knowledge extraction component of

the framework. Note that, in order to reduce the increased complexity that comes with

heterogeneous relationships some approaches have focused on transforming heteroge-

neous information networks back into homogeneous networks [8, 183]. However, the

two techniques that are generally used have several problems. First, one could deter-

mine common attributes that every data pieces contains and only use them thus cutting

off information that is potentially valuable (intersection approach). Second, data ele-

ments could be extended to include other attributes even if they do not have values

for them which leads to both performance and complexity issues (union approach).

Since our framework is capable of dealing with heterogeneous data and relationships

this transformation is unnecessary thereby eliminating the problems that come with the

intersection and union approaches as will be confirmed through the implementation of

the TrustKnowOne framework.

The assessment of trust relationships is necessary in several areas such as sensor

networks [63], intrusion detection [54], and data mining [65]. Several research problems

have been stated in surveys [63, 65] which include assessing the correctness of informa-

tion and trustworthiness of data sources. However, one of the most prevalent issues that

arises in existing approaches is that there is no formal approach to specifying trust and

relationship models such that they can be compared and evaluated. Our framework

presents an approach that allows this formalization through the definition of metrics
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using expressions that are evaluated on standardized graph components. Specifically,

we provide means to implement algorithms that embody belief engines [124, 127] and

decision processes [134, 153].

3.2.3 Metrics

In order to evaluate and compare approaches we have different options. The most

commonly used one is to evaluate data processing, trust techniques, and decision en-

gines based on common data sets. However, there are several issues with this. First

and foremost, evaluating on common data sets and comparing the performance of re-

sults treats evaluation as black-box testing. Thus, the impact of specific components

such as trust approaches or decision engines cannot be determined. Furthermore, this

option is highly sensitive to implementation, data structures, and the combination of

trustworthiness techniques with decision processes.

As such, it is better to integrate mechanisms to evaluate individual components

separately. This can be seen as white-box testing where performance and complexity

metrics are intrinsic. Our framework implements this approach for various reasons.

First, it enables the evaluation of various trust assessment and relationship models (i.e.,

belief engines) as well as decision processes (i.e., decision engines) separately. Second,

specific combinations of belief engines with decision engines can be compared with each

other which overcomes one of the biggest problems seen in literature where the results

of good trust algorithms are decreased by bad decision engines. Likewise, this allows

us to identify bad belief engines whose results are skewed by good decision processes.

Therefore, implementing measurable aspects into data processing needs to be seen as an

integral part of the entire knowledge derivation process as it enables the performance

evaluation and comparison of different approaches effectively.

In addition, one of the main problems remains the variety of metrics for trust anal-

ysis. For instance, the most commonly used terms trustworthiness, reputation and
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opinion are often defined similarly yet utilized differently in literature [30, 31, 54, 63,

88, 114, 122]. Furthermore, researchers introduce additional complexity by breaking

down terms [23, 52] such as credibility into reputed credibility, surface credibility and

expected credibility. The same complexity issues exist for factors like context, popular-

ity, direct experience and others [58] that influence these trust metrics. How we define

all of these not just by using a textual description but actual data relationships is not

addressed in literature. Therefore, our proposed approach provides a formalized and

data-driven framework for defining trust metrics, how factors affect trust metrics, as

well as the computation of trust metrics.

3.3 Large-scale Data Processing

In general, there are two distinct data processing areas that are related to the re-

search performed in this dissertation: big data which deals with large-scale data pro-

cessing and analysis, and graph frameworks which model processing of data as directed

or undirected graphs. Only recently systems such as GraphLab [104] and Pregel [107]

have been proposed to combine these two areas, that is systems intended to perform

efficient large-scale graph processing in distributed environments. However, with re-

spect to our approach of integrating trust and quality assessments into the knowledge

derivation process, these systems often do not consider relationships, meta information,

and trustworthiness assessments. A third research area deals with the need for flexible

yet efficient large-scale query systems in order to determine relevant data, describe how

it should be processed, and provide mechanisms for evaluation.

3.3.1 Big Data

The area of “big data” refers to both distributed and cloud computing. In particular,

it aims to address several problems that are inherent in trying to derive knowledge from
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large amounts of data. These problems span across a multitude of areas and as such

often require complex solutions such as distributed file storage and bandwidth-efficient

data query systems that are not necessary for smaller data sets.

There are several systems that focus on highly scalable, distributed computing such

as Hadoop [169, 178] and Dryad [76] using various approaches. Hadoop is actually a

collection of several research areas (e.g., distributed file storage, job scheduling, etc.)

that provide an implementation of the MapReduce paradigm [37–39]. The basic idea is

that complex tasks are broken down into sub-tasks with each one mapped in form of key-

value pairs. These mappings can be hierarchical, non-hierarchical, and nested. A list of

these sub-tasks are then reduced with the results being associated with the respective

key. The advantage is that computations can easily be distributed and performed in

parallel. A detailed comparison of MapReduce to parallel database systems is also

provided by Pavlo et al. [123].

Dryad [76] takes a different approach and provides a distributed execution engine

that defines data flows where nodes represent computational processes and egdes com-

munication channels. It automatically deals with the scheduling of tasks in dynamic en-

vironments where resources may become available, unavailable or fail. Similar research

includes Orleans [22] which models computation in terms of distributed components.

While the described systems provide excellent approaches to dealing with large-scale

data processing, they do not integrate trustworthiness approaches and have problems

modeling graph structures and complex data dependencies. Note that this is primarily

because of the focus on scalability and performance. However, while our framework

emphasizes scalability to handle “big data”, it also focuses on aspects of flexibility,

extensibility, and reusability in order to provide mechanisms for trustworthiness and

quality of data assessments as well as decision processes.
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3.3.2 Graph Frameworks

There are various techniques for graph model processing, but all have their limi-

tations [25]. Pregel [107] represents a computational model that is based on message

passing between nodes of a graph. The focus is on sparse graphs and single types

of nodes. Therefore the approach is unsuited for trustworthiness assessments in het-

erogeneous environments that involve meta information and relationships. DEX [109]

describes an approach where data from multiple sources is incorporated into a graph

database querying system, but it does not address distributed processing.

Frameworks that focus on machine learning include GraphLab [104], Distributed

GraphLab [105], and Orleans [22]. In general, their approach is to provide abstrac-

tion layers for algorithms such that distributed processing, parallelism, and scheduling

are taken care of by the respective frameworks. Approaches such as Pegasus [86] and

SCOAL [40] exploit context knowledge (e.g., many graph mining algorithms can be

expressed as matrix multiplications) but are not flexible enough for applications across

different domains. Others are limited to a subset of machine learning areas such as the

correlation of time-stamped events [174] or provide custom implementations for paral-

lel data analysis (Green-Marl [70]). In general, these frameworks often do not address

scenarios with dynamic graphs as there is no easy way to add new data sources, extend

the graph model, or change computational processes.

There have also been extensions built on top of existing large-scale processing frame-

works such as Hadoop. In particular, Mahout [121] and GBASE [87] aim to provide

flexible and generic graph processing approaches. However, using Hadoop as a basis

makes it difficult to overcome its limitation when dealing with heterogeneous data, a

large number of interdependencies, and dynamic graphs. Furthermore, many of the

present graph frameworks focus on dealing with algorithms in homogeneous environ-

ments that can be easily scaled using large-scale processing approaches such as Hadoop

and parallel database systems. The implementation of complex graphical models like
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Bayesian networks [69, 157, 165], Markov models [4, 100, 130], and factor graphs [2, 92]

as well as probabilistic reasoning in graphs [44, 124, 179] remains problematic if the

underlying processing model (e.g., Hadoop) cannot be adapted or exchanged. Our

framework provides extensive flexibility in terms of enabling different input, output,

storage, and processing paradigms.

3.3.3 Query Systems

Efficient query systems are important when it comes to analyzing large amounts of

data. In general the focus is on performance and expressiveness. A number of higher

level query languages exist that run on top of Hadoop [169]. In particular, Pig Latin

[118, 172] is a domain specific language for performing queries in Hadoop. Extensions

have been developed to perform predictive analysis on Twitter [103]. The approach

here is to provide a higher level of abstraction than writing code but more control

than declarative languages such as SQL. However, Hive [170, 173] provides this exact

functionality where SQL-like queries are compiled into MapReduce instructions.

In similar fashion, several higher level query languages such as DryadLINQ [186] and

SCOPE [24] which use a SQL-like syntax have been developed for Dryad [76]. Note that

other frameworks have proposed integrated solutions (see Green-Marl [70]). However,

unless we choose the same underlying large-scale data processing framework some of

the query systems are not available. In addition, none of these existing query systems

supports any notion of trustworthiness and relationship assessment. As discussed be-

fore there is also no clear distinction between algorithmic modeling in terms of data

processing (i.e., belief engines) and decision processes.

Our approach provides a flexible and scalable query system by modeling queries,

data processing, and decision processes as graph expressions. These graph expressions

utilize relationships (i.e., mathematical, logical, etc.) between data elements that are

clearly defined as will be discussed in chapter 4. This formalizes the overall knowl-
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edge derivation process and in particular enables evaluation and comparison of different

methodologies. Furthermore, our framework allows these formalizations to be described

in a variety of ways. (e.g., low-level application programming interface (API), extensible

markup language (XML)).

3.4 Chapter Summary

The contribution of this effort is related to a variety of research areas. Here we fo-

cused our discussion on the most relevant ones. First, the main premise of our framework

is to incorporate trust assessments and management into the knowledge derivation pro-

cess. As such, a large part of the effort is related to extending fact finding approaches to

include properties like high accuracy, recency, and usefulness. This is not a trivial task

and becomes even more complex when considering that we need to factor in reputation

management which deals with assessing relationship and data context. Additionally, in

order to provide full transparency we also need to make sure that all components of

our framework fully incorporate data lineage. This means keeping track of where data

comes from and how it is processed.

Second, our framework focuses on flexibility rather than performance to be ap-

plicable to as many application scenarios as possible. Furthermore, we overcome the

common problem in literature of being unable to properly evaluate and compare dif-

ferent approaches through the formalization of trust and relationship models as well as

metrics. Our framework utilizes an abstract graph model on which graph expressions

are evaluated. Approaches for trust, reputation, and opinion (i.e., belief engines) will

be modeled using these expressions. Decision processes such as weighting schemes and

Bayesian inference (i.e., decision engines) are described in similar fashion.

Third, scalability as well as extensibility are becoming more and more important

in the era of large-scale data processing. Therefore, we need to make sure that our

framework meets these requirements to be able to deal with big data problems. In order
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to address this our framework uses a flexible, abstract graph model which allows it to

express complex heterogeneous data and their relationships. This leads us to relate our

approach to various other graph frameworks where data processing is modeled using

directed or undirected graphs. However, one of the biggest problems that often remains

is the ability to provide an scalable and expressive query systems.

This chapter discussed several approaches discussed in related literature. In partic-

ular, it highlighted some of their shortcomings. The main benefit of the TrustKnowOne

framework is that trustworthiness and relationship assessments are directly incorpo-

rated into a flexible and scalable knowledge derivation process. An in-depth evaluation

of our framework and a comparison to existing approaches described here is performed

in chapter 8.
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4
Berlin - An Abstract Graph

Model for Knowledge Processing

Using Graph Expressions

The foundation of the framework developed here is Berlin, an abstract graph model

on which processing and inference is performed. There are several reasons for using an

abstract graph model. First, describing data in a uniform and standardized manner

allows for a systematic and clear approach to processing. Second, all processing, infer-

ence and decision making can be made using graph operations. Third, dynamic data is

managed simply by the addition or removal of nodes and edges.

We define our graph model as follows. A basic description of a piece of data and

its attributes is an element. A particular element with attribute values is an element

node. Each element node consists of multiple element instances which are timestamped.

In order to be able to deal with dynamic graphs, each piece of information needs to

be associated with a particular time instance. This allows for ordering of values in

time series data. We have several options for achieving this. First, we can designate
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a particular data attribute to be the time instance. Second, if there is no such data

attribute, we can choose the time of import into the graph model as the time instance.

Third, we can specify a certain time independently.

Because element instances may contain only values for specific attributes, an element

node can be seen as a sparse matrix that contains attribute values ordered by time where

values that do not change do not need to be stored. Furthermore, every element node

is uniquely identifiable through an identifier which may be an attribute of the element

node or explicitly assigned. This solves the problem of having to check the entire graph

whenever new information is added.

The connection between two elements is described through a relation which can

be defined implicitly or explicitly and may contain attributes, e.g., weights or location

information. A relation edge connects two element nodes and contains timestamped

relation instances in a similar manner to element instances.

As such, our framework deals with two types of graphs. The element description

graph keeps track of the basic descriptions of elements and relations as well as implicit

meta information (i.e., basic metrics and dimension models). The element instance

graph contains the actual element nodes and relation edges with all their values and

instances.

In order to incorporate local trust aspects for attribute values such as deteriorating

sensor accuracy over time, our approach associates dimension models with individual

attributes. These dimension models express confidence and trust assessments for at-

tributes in a probabilistic or deterministic manner. As such, we evaluate how, among

other dimensions, time and location can affect values in the abstract graph model.

Belief engines representing trust and quality of data assessments as well as deci-

sion processes are implemented using graph expressions. These expressions range from

straightforward mathematical computations to complex relationship-based techniques

and can be combined hierarchically to make them flexible and extensible.

In the following sections, we will discuss the use of all of these graph abstractions
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in more detail.

4.1 Graph Components

In this section, we will describe the basic components of our abstract graph model

Berlin. Specifically, we extend basic graph theoretical approaches in order to incorporate

the ability to model trust and relationship assessments.

4.1.1 Elements

name type attributes

name
id

Figure 4.1: An element description which includes a uniquely identifiable
name, an id reference, and a list of attributes and their types

Elements represent descriptions of the basic pieces of information that inference is

made upon. They can be thought of as different types or classes defining element node

objects. This means that we are able to deal with heterogeneous data fusion applications,

overcoming limitations of other homogeneous graph models that only consider one type

of node. Each element as shown in figure 4.1 is uniquely identifiable by its name and

contains an id reference and definitions of its attributes in the form of name-type pairs.

Definition 4.1 Attribute

We define an attribute as

a = {name, type, {ϕ1 . . . ϕn}}
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where name is the name of the attribute, type the class of possible at-

tribute values and {ϕ1 . . . ϕn} an optional set of dimension models de-

scribing the attribute’s value range, distribution, and constraints.

Our framework provides a flexible type system for these attributes in which a set of

common well-known types is provided but can be easily be extended by custom defini-

tions. Furthermore, we are able to attach time, location, and value dimension models

to attributes. These can be used by the belief engines to determine trustworthiness and

quality aspects of attribute values. Hence, we can formally define an element as follows.

Definition 4.2 Element

Let A = {ai, . . . , an|ai.name 6= aj .name ∀a ∈ A} be a set of attributes

then an element is defined as

E = {name, ID,A}

where ID is a function which is able to uniquely identify element nodes

derived from the element E.

Note that we need to specify how individual element nodes derived from an ele-

ment are identified. The reason is that meta data and additional information has to be

correctly correlated throughout the knowledge derivation process. This is especially im-

portant for handling dynamic graphs in our framework where we need to check whether

nodes that are being added already exist in the graph. Note that we provide several

options for performing this identification. It can be done explicitly through a serial id

that is assigned to each new element node or implicitly by having one or a combination

of attributes represent its identity.
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4.1.2 Element Nodes

name

@1

@2

attributes

id

@t

Figure 4.2: An element node consisting of a specified id reference and
timestamped attribute value instances

Particular objects in our graph model that contain data values are element nodes.

As shown in figure 4.2 they contain a sparse table of attribute values where each row is

an element instance that is identified by a particular time instance.

Definition 4.3 Attribute-value pair

Let a be an attribute and value the specified value for the attribute, then

their attribute-value pair is defined as:

av = a ∪ {value} = {name, type, {ϕ1 . . . ϕn}, value}

As we incorporate more information over time the table will grow. However, note

that we only need to store information that changes from one instance to another thus

saving space and inherently making the table sparse.

This sparse table approach has several advantages over creating new nodes for every

element instance. First, it makes time series analysis straightforwards as we keep related

information close together. Second, space complexity is reduced since values that do

not change do not require additional storage space. Third, we do not have to perform

any additional graph operations in order to perform time series analysis and correlation.

Furthermore, it simplifies the management of the abstract graph model since it keeps

the number of nodes and edges in a dynamic graph low (compared to a graph containing
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separate nodes for each element instance).

Note that, element instances may contain additional “non-descriptive” (not previ-

ously described) attributes such as derived information for which values can be added

on-the-fly. This gives our approach more flexibility and leaves room for enhancements

to the graph model in later stages.

Definition 4.4 Non-descriptive attribute-value pair

A “non-descriptive” attribute-value pair is a attribute-value pair without

a specified type and dimension models

av′ = {name, value}

We can combine the previously defined and the “non-descriptive” attribute-value

pairs to define an element instance.

Definition 4.5 Element instance

Let av be a particular attribute-value pair, e.A the set of attributes for

the element node e, and av′ an additional “non-descriptive” attribute of

the element instance, then an element instance is a collection of attribute

values at a specific time instance t defined as

et = {{av1 . . . avn|av ∈ e.A}, {av′1 . . . av′m}}

The collection of element instances makes up the sparse table of attribute values.

Definition 4.6 Element instance collection

The collection of element instances can be defined as

ei = {e1 . . . eT }
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where ei(t) = et acts as a mapping function from a time instance t to the

specific element instance et. Furthermore, we define the ordered set of

time instances eit as follows

eit = {t0 . . . tT |ti < ti+1}

Note that element nodes are derived from element descriptions. Thus they contain all

possible attributes specified in the respective element and the mandatory id follows from

the description as well (i.e., can be explicit or inferred attribute reference, combination

of attributes, auto generated).

Definition 4.7 Element node

Let E be a particular element, then an element node can be defined as

e = E ∪ {id, ei} = {name, ID,A, id, ei}

where id = ID(ei) is the result of the identification function applied

to all attribute values since the specific identifier of the element node is

either attribute based or explicitly defined and ei the collection of element

instances.

4.1.3 Relations

Two elements are connected if there exists a relation consisting of a defined source

and target element between them as shown in figure 4.3. Because elements may share

more than one relation it is necessary to group or organize them by defining unique

names. Furthermore, we are able to describe more complex relations by attaching

metrics to them. Formally, a relation is:

Definition 4.8 Relation
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source

attributes

target

name

name type

metric

Figure 4.3: A relation which is defined by a unique name, information
about the two elements that it connects, and a list of attributes and their
types. This may include an optional metric determining existence of the
relation.

Given the set of all element descriptions Ê = {E1 . . . EI} let S, T ∈ Ê be

source and target element definitions, A a set of attributes, and M an

optional metric, then a relation is defined as

R = {name, S, T,A,M}

In the case where we specify a relation without defining a metric, the derived relation

edges will always exist. In case there is a metric, a relation edge exists only if the metric

evaluates to true and does not exist if it evaluates to false.

Definition 4.9 Relation existence

The relation R always exists if the metric M does not exist since it rep-

resents an optional qualifier of existence for each relation. If a metric M

is specified, then the relation only exists if the application of the metric

to the relation, noted as M(R), yields true.

However, when we describe relations in the knowledge extraction phase of the frame-

work we need to take the following into consideration. Since there is no additional or

meta information available yet, we can define only basic relationships such as equality
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comparisons between attributes (e.g., same owner, same sensor type).

In the knowledge processing stage we have more information available. Therefore,

we can establish two additional types of relationships. First, there are explicit relations

that are defined based on context and meta information (e.g., temperature ranges,

rankings). Second, implicit relations can be derived during knowledge processing by

analyzing the data in the graph model using belief engines. For example, relationships

between element attributes may be discovered using correlation techniques [79, 127, 130].

4.1.4 Relation Edges

source

@1

@2

id

@t

target

@1

@2

id

@t

name

@1

@2

@t

metric

Figure 4.4: A relation edge consisting of a name, the element nodes it
connects which are identifiable by their type, and timestamped attribute
value instances. An optional metric may be attached to allow more complex
relationships to be defined.

Particular instances of relations are relation edges which describe the relationship

between two element nodes. As shown in figure 4.4 the source and the target element

nodes are specified by their id. Note that these element nodes are only valid if the

element type is the same as specified by the relation. Since relations have unique names

this allows us to easily group element node neighbors by “type” (similar, same owner,

etc.) based on the name of a relation. A relation edge also maintains attributes in the

form of a sparse table where each time instance refers to a specific relation instance.

This is similar to the way attribute values are stored in element instances which means

that the relation instances may contain additional “non-descriptive” attributes as well.
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Definition 4.10 Relation instance

Let av be a particular attribute-value pair, r.A the set of attributes for

the relation edge r, and av′ an additional “non-descriptive” attribute of

the relation instance, then an relation instance is a collection of attribute

values at a specific time instance t defined as

rt = {{av1 . . . avn|av ∈ r.A}, {av′1 . . . av′m}}

Thus, the sparse table of attribute values becomes

Definition 4.11 Relation instance collection

The collection of relation instances can be defined as

ri = {r1 . . . rT }

where ri(t) = rt acts as a mapping function from a time instance t to the

specific relation instance rt. Furthermore, we define the ordered set of

time instances rit as follows

rit = {t0 . . . tT |ti < ti+1}

The collection of relation instances makes up the relation edge. As such, it is derived

from the formal definition of a relation.

Definition 4.12 Relation edge

Let R be a particular relation, then a relation edge can be defined as

r = R ∪ {s, t, ri} = {name, S, T,A,M, s, t, ri}

where s and t are element nodes matching element descriptions S and T
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respectively and ri the collection of relation instances.

Because of the ability to model dynamic graphs we need to realize that a metric

specifying a particular relationship may yield true for some relation instances and

false for others. In our approach, we keep track of these time and location variant

relationships.

Definition 4.13 Relation edge existence

Let ri be the collection of relation instances for the relation edge r and

M(rt) the result of the metric M applied to the relation edge at time t

then we say that in general the relation edge exists if

∃rt ∈ ri|M(rt) = true

We can utilize this notion of a relationship to allow belief engines to infer properties

such as strength and connectivity in dynamic graphs where relationships may change

over time.

Definition 4.14 Relation edge strength

Let ri be the collection of relation instances for the relation edge r and

M(rt) the result of the metric M applied to the relation edge at time t

then the strength of the relation edge is defined as

rstrength = |{rt|rt ∈ ri,M(rt) = true}|
|ri|

In general, we model relationships as edges between two element nodes. This ap-

proach balances the need for relationship detail with efficient computation and modeling

aspects. In particular, by using this approach we are able to incorporate the follow-

ing detailed relationships that would otherwise require more complex solutions (see

figure 4.5).
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source
id

target
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(a) element node to ele-
ment node

source

@1
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id

@t

target
id

name metric

(b) attribute to element node

source
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id

@t

target

@1
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@t

name

metric

(c) attribute to attribute

source

@1

@2

id

@t

target

@1

@2

id

@t

name

metric

(d) value to value

Figure 4.5: Relationship types that can be inherently modeled using ele-
ment node to element node definitions.

Element node - element node Two element nodes are related (as connected by a

relation edge) by some definition that incorporates their element types and attribute

values as well as potentially other relations (figure 4.5a). This is the most general type

of relationship and can, for example, be used to determine that two sensors tend to

have similar temperature readings by defining a metric that incorporates both tem-

perature attributes and a specific range (an example of such a metric is discussed in

expression 4.9).
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Attribute - element node A particular attribute of an element node can be related

to another element node (figure 4.5b). For example, if ownership of a sensor is modeled

as an attribute of a sensor element then we could define a relationship “same owner”

between sensors with the same ownership attribute value. Note that this aspect can be

modeled on an element node to element node basis using a metric that determines if the

ownership attributes are the same.

Attribute - attribute Correlations between two attributes are often of interest (fig-

ure 4.5c). In the case of a sensor, we may be interested to know if there is a relationship

between a sensor’s location and radiation level measurements. Furthermore, attributes

of two different elements, e.g., different sensor types (one measures only temperature

and the other measures only rainfall) can be correlated as well. By using the element

node to element node approach we are able to determine these relationships by defining

metrics that incorporate attribute values from a variety of element nodes at different

levels of detail.

Value - value A specific value may be the result of a sequence of circumstances

(figure 4.5d) such as when sensors tasked with the monitoring of cargo can cause an

event chain of alerts. In this case, it is important to be able to model data provenance

(lineage) which, in our abstract graph model, can be achieved using metrics that take

into consideration attribute values across time instances.

The key here is that inference is primarily made on the element nodes and that

particular relationships types such as attribute - element node, attribute - attribute and

value - value can be seen as describing certain aspects of relationships between element

nodes. Doing so decreases the complexity of the abstract graph model while maintaining

the ability to model complex relationships between various pieces of diverse data.
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4.2 Graph Types

As part of our framework we distinguish between two types of graphs. On the

one hand, the element description graph represents a blueprint of all the elements and

relations that need to be modeled for a specific application scenario. On the other hand,

the element instance graph contains the actual element nodes and relation edges with

their respective data. Note that while both types of graphs can be dynamic, usually only

the element instance graph encounters changes in values, element nodes, and relation

edges.

4.2.1 Element Description Graph

The first step in our framework is the formal description of elements and their

relations that make up the abstract graph model. This information is stored in the

element description graph.

Definition 4.15 Element description graph

Let E be an element, R a relation, M a metric, and Φ a dimension model

then the element description graph is defined as

EDG = {{E1 . . . EI}, {R1 . . . RJ}, {M1 . . .MK}, {Φ1 . . .ΦL}}

4.2.2 Element Instance Graph

Particular values and graph element instances are stored in the element instance

graph. This graph can be augmented and extended as more information becomes avail-

able and is incorporated into the knowledge derivation process.

Definition 4.16 Element instance graph

Let e be an element node, r a relation edge, m a metric instance, and ϕ
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a dimension model instance then the element instance graph is

eig = {{e1 . . . ei}, {r1 . . . rj}, {m1 . . .mk}, {ϕ1 . . . ϕl}}

This element instance graph is fully dynamic where every data value is timestamped

as described earlier.

4.2.3 Graph Transformations

While the topic of graph transformations has been extensively covered by [6, 91, 164],

we briefly discuss one possible approach using our framework here. In particular, a

transformation consists of two main parts, a pattern and a replacement. We can utilize

a set of metrics to determine if a certain part of the graph matches a particular pattern.

Furthermore, since metrics are expressions describing information in a graph we can

apply them to the matched pattern forming a respective replacement sub-graph.

Definition 4.17 Graph transformation

Given the set of all metrics M̂ = {M1 . . .MK} let P,RE ∈ M̂ be a pattern

and replacement then a transformation can be defined as

T = {P,R}

Note that because metrics can be nested we can essentially replace a pattern with

multiple replacements as well, which means that we can apply a transformation as

follows.

Definition 4.18 Graph transformation application

Let P = {M1 . . .Mn} be a pattern consisting of a set of metrics then a
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particular subgraph G matches the pattern if

P (G) = M1(G) ∧ · · · ∧Mn(G) = true

Let RE = {M1 . . .Mm} be a replacement consisting of a set of metrics

such that

RE(G) = {M1(G), . . . ,Mm(G)|M ∈ RE}

then the transformation T = {P,RE} is applied to the subgraph G as

T (G) =


RE(G) if P (G) = true

G if P (G) = false

In the following, we discuss two possible applications of graph transformations in

our framework.

Elements of Interest Note that while all relevant elements are stored in the element

description graph, instead of considering all elements and relations in a graph for infer-

ence purposes, we may choose to select a subset within a domain or application scenario.

This can be achieved by designating elements of interest and using graph transforma-

tions to convert attributes to elements as well as to fold elements that are not of interest

into attributes. In particular, additional data not of interest to the application can be

treated as an attribute of an element. For example, if we are interested in sensor values

but not ownership, we may relegate owner to be an attribute of the element sensor as

shown in figure 4.6. In addition, if elements have been “reorganized” into elements of

interest, the element instance graph will reflect this as well.

Element Nodes of Interest Furthermore, other subgraphs that can be extracted

by similar graph transformations include time specific graphs (by slicing across groups

of particular instances with a specific time instance) and hierarchical graphs (logical or
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Figure 4.6: An example of defining “sensors” as elements of interest and
relegating “owner” elements to attributes using a graph transformation.

physical groupings of element nodes).

4.3 Dimension Models

As discussed above, attributes can be associated with a set of dimension models

describing the attribute’s value range, distribution, and constraints. The purpose of

dimension models is to provide belief engines with information to assess trustworthiness

and data quality on a “local” attribute level. They may be probabilistic (e.g., values

following certain distributions) or deterministic (e.g., at a specific times of the day the

location is “office” and otherwise “home” or “in transit”) as well as time and location

variant. This allows us to model applications where the meaning of values is different

depending on some dimension.

There exist a variety of dimensions such as time, location, and other attribute values

that could affect the trustworthiness assessment of an individual attribute. For instance,

we can assess slowly degrading sensors where the accuracy of measurements taken is

reduced over time dynamically. Within a dimension, we describe particular instances

as contexts, e.g., specific dates for time dimensions and places for location dimensions.

This approach has the advantage that we do not have to rely on static error models.
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Here, we discuss the definition of a dimension model.

Definition 4.19 Dimension model

Let θ be a specific context within a dimension Θ then a dimension model

is defined as the mapping function

Φ(value|θ) = ϑ

where the value ϑ is derived for the specific attribute value given the

context θ.

In general, we can categorize dimension models into the following types. First,

consider cases where the context is drawn from a finite set of contexts (e.g., specific

locations, sensor types, owners).

Definition 4.20 Discrete dimension model

Let Θ be the set of contexts θ within a dimension defined as

Θ = {θ1 . . . θd}

then we can define the mapping functions ϕ

ϕi(value|θi) = ϑ

where the value ϑ is derived for the attribute value given the specific

context θi. One option is to define a discrete dimension model Φdiscrete

as the set of such mapping functions and a default function ϕ(value) = ϑ

which does not require any context

Φ = {{ϕ1 . . . ϕl}, ϕ}
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such that its application to a particular attribute value is defined as

Φdiscrete(value|θ) =


ϕi(value|θ = θi) if θ ∈ Θ

ϕ(value) otherwise

The other options is to specify a discrete mapping function ϕ in the form

of

ϕ(value|θ) = ϑ

where the value ϑ is derived for the specific attribute value given the

discrete context variable θ. The discrete dimension model Φdiscrete in

this case is

Φdiscrete(value|θ) = ϕ(value|θ)

Second, there are models such as range constraints that are independent of the

context. Our approach is to treat this as a special case of the discrete dimension model.

Definition 4.21 Static dimension model

The special case of a dimension model for an attribute value that does not

depend on any particular context θ concerns a single mapping function.

Thus, given the general definition of a discrete dimension model Φdiscrete

we only need to specify the default function ϕ such that

Φstatic(value) = ϕ(value)

Third, instead of specifying a discrete set of contexts, we can define a continuous

model for all context values. There are two options for doing so. On the one hand, we

can extend the discrete dimension model to include an interpolation (i.e., smoothing or

regression) function which allows us to derive values in between contexts. On the other

hand we can simply ignore discrete contexts and define a specific mapping function that
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incorporates all contexts.

Definition 4.22 Continuous dimension model

Given a discrete dimension model Φdiscrete we need to carefully define the

range of contexts Θ. We require that the set of contexts Θ be ordered

in the manner θi < θi+1. This aspect allows us to interpolate between

different contexts for which we require an additional parameter Ξ, the

interpolation (i.e., smoothing or regression) function. Furthermore, the

first element θ1 and the last element θd represent boundaries for the range

of the continuous dimension model, i.e., [θ1, θd]. A such, a continuous

dimension model can then be defined as

Φcontinuous(value|θ) =


Ξ(value|θ) if θ1 ≤ θ ≤ θd

ϕ(value) otherwise

If we choose not to base our continuous dimension model off a discrete

dimension model then we must define the mapping function ϕ in the form

of

ϕ(value|θ) = ϑ

where the value ϑ is derived for the specific attribute value given the con-

tinuous context variable θ. The continuous dimension model Φcontinuous

is then defined as

Φcontinuous(value|θ) = ϕ(value|θ)

In the following, we focus our discussion on some of the major dimensions and

provide example dimension models accordingly. Note that since the static dimension

models are independent of the particular context we provide a separate example here.
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Figure 4.7: The confidence in a temperature measurement based on a
specified range of valid temperatures, i.e., Tmin = 20 and Tmax = 90

Static Constraint This reflects the most general case where trustworthiness aspects

are “local” but do not change over time and are not dependent on other context. An

example would be to constrain the range of valid temperature measurements as shown

in figure 4.7 which we could define as follows.

Let Tmin be the minimum and Tmax the maximum temperature a particular sensor

is designed for then the confidence (from 0% to 100%) in the temperature range can be

defined in terms of the default function ϕ

ϕ(value) =



0% if value < Tmin

100% if Tmin ≤ value ≤ Tmax

0% if value > Tmax

where value represents a particular attribute value. Note that in this case there is no
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Figure 4.8: The accuracy of a sensor’s measurements based on the number
of days deployed

context θ necessary.

4.3.1 Time

The accuracy and by extension trustworthiness of an attribute value may depend

on the time context at which it is evaluated. Here, we choose as an example a sensor

scenario and describe several use cases for particular time dimension models.

Discrete Time We can model a sensor with slowly degrading accuracy using a dis-

crete dimension model. For example, consider sensors that report temperature values

once a day. Furthermore, let us assume the quality of the sensors is low such that each

day their accuracy decreases by 5%. This means that on the first day accuracy is 100%

and 0% on the 21st day and beyond (figure 4.8).
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Hence, the set of contexts Θ can be defined as the number of days deployed

Θ = {θ1 = 0, θ2 = 1, . . . θ20 = 19}

where the mapping functions ϕ follow the pattern

ϕi(value|θi) = 100%− 5%× θi

accordingly. We then express the default function for the remainder of the days as

ϕ(value) = 0%.

Continuous Time As the number of contexts to be modeled grows it is often a better

approach to choose a continuous dimension model. For example, if we wanted to extend

the simple accuracy model from above to be able to determine accuracy for particular

temperature values gathered throughout a day instead of only daily (figure 4.9).

This would require us to specify a large number of contexts and mapping functions.

Here, we use the continuous dimension model that solves the problem by defining a

mapping function ϕ for a continuous context variable θ

ϕ(value|θ) = max

(
0%, 100%− 5%× θ

60× 60× 24

)

where θ represents the time a sensor has been deployed in seconds.

4.3.2 Location

The location of sensors has a direct impact on the accuracy of measurements. For

instance, consider a radiation detection sensor as will be discussed in section 6.2.

Discrete Location In order to be able to compare radiation levels of two sensors

we need to establish common measurement parameters. Safecast [144] (as used in
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Figure 4.9: The accuracy of a sensor’s measurements based on a slowly
degrading continuous function

section 6.2) discusses the problem of inaccuracies based on the height of the sensor

during measurements. In particular, radiation levels are different at various heights.

For instance, Safecast [144] suggests 1m above the ground instead of ground level to

determine radiation levels. Furthermore, there are differences depending on whether

measurements are taken inside or outside of buildings.

Hence, let the set of contexts Θ represent the approximate height in meters at which

the sensor took measurements

Θ = {θ1 = 0m, θ2 = 1m}

then we can define the following mapping functions ϕ to determine accuracy of the
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Figure 4.10: The accuracy of a sensor’s measurements based on the ap-
proximate height in meters

measurements

ϕ1(value|θ1) = 50%

ϕ2(value|θ2) = 100%

accordingly. We then express the default function for other possible heights as ϕ(value) =

25%. The resulting discrete dimension model is shown in figure 4.10

Continuous Location Some sensors are very sensitive to environmental factors.

While many stationary sensors can be calibrated in a way that reduces noise from

these factors, mobile sensors need to continuously adapt. Therefore, the accuracy of

measurements of mobile sensors should carefully evaluated. Here, assume that we are

tracking cargo that is transported by rail (a scenario described in [53, 93, 94]). We could
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Figure 4.11: The accuracy of a sensor’s location based on the estimated
distance from tracks

define a location accuracy assessment by determining how far measurements coordinates

are from train tracks (figure 4.11).

In this case we would employ a continuous dimension model with a context variable

θ representing measurement coordinates such as

ϕ(value|θ) = max (0%, 100%− 1%× distance from tracks in meters)

4.3.3 Value

Dimensions other than time and location can be chosen as well. For example, the

trustworthiness of a particular attribute may depend on other related attributes. In the

following we give some examples for this case.
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Discrete Value There exist various sensor types with a variety of advantages and

disadvantages. Furthermore, sensors are often deployed by different entities for appli-

cation specific scenarios. Here, we want to model the level of confidence we have in a

particular sensor’s measurements based on the owner.

Let Θ represent several potential owners

Θ = {θ1 = government, θ2 = public, θ3 = private}

and define confidence as a set of the following mapping functions ϕ

ϕ1(value|θ1) = 90%

ϕ2(value|θ2) = 50%

ϕ3(value|θ3) = 70%

Furthermore, let the default function for all other owners be ϕ(value) = 50%. The

resulting discrete dimension model represents an example of a deterministic model for

“local” trust assessment.

If we are interested in assessing confidence in temperature measurements and have

other information available such as a basic description of the conditions (e.g., sunny,

cloudy, rainy, snowing), we can express this confidence using a fuzzy approach [15, 126,

141]. As such, we associate every weather condition with a particular temperature range

model (see figure 4.12).

Hence, we could define the context Θ as the set of possible weather conditions

Θ = {θ1 = snowing, θ2 = rainy, θ3 = cloudy, θ4 = sunny}
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Figure 4.12: The confidence in a temperature measurement based on the
observed condition

and the mapping functions ϕ

ϕ1(value|θ1) = Nratio(value|20)

ϕ2(value|θ2) = Nratio(value|40)

ϕ3(value|θ3) = Nratio(value|60)

ϕ4(value|θ4) = Nratio(value|80)

where Nratio(value|µ) is the ratio of probability densities

Nratio(value|µ) = N(s|µ, 15)
N(µ|µ, 15)
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Figure 4.13: An example of a temperature cycle that can be used to model
temperature confidence using a dimension model

of the Normal distribution defined as

N(x|µ, σ2) = 1
σ
√

2π
e−

(x−µ)2

2σ2

Continuous Value Context can be very useful in determining trustworthiness. An-

other example would be knowing something about the temperature cycle in a given

region. The measurements of a sensor should roughly reflect a daily pattern such as the

one shown in figure 4.13.

In particular, it should be cooler during the night than it is during the day. Hence

we can compare actual temperature measurements against expected ones in order to

determine confidence. Here, we would use a continuous dimension model with a context

variable θ for the expected temperature during a particular time of day and define a
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continuous mapping function ϕ similar to

ϕ(value|θ) = max (0%, 100%− 1%× difference to expected temperature in degrees)

4.4 Graph Expressions

Given elements, element nodes, relations and relation edges in the abstract graph

model described above, we can perform a variety of computations on them. We call

these computations graph expressions. During the knowledge extraction phase, we do

not have additional meta information which means that graph expressions can only

perform a limited number of actions. However, they can be used to describe relationships

between elements using comparison operations. For example, we are able to define a

graph expression that limits the source and target to be sensor elements and checks

whether both of the owner attributes are the same.

In the knowledge processing phase, we are able to include specific values, context,

dimensions, relationships and external information which allows the graph expressions

to become far more powerful. This means that we are able to specify ranges (e.g.,

temperatures, critical values, etc.) and incorporate time or location specific information

(e.g., trends using time series analysis, no received heartbeat from sensor in 5 mins,

sensor is within 1km of other sensors, etc.) as well as meta data (e.g., rankings, third-

party assessments, etc.). Furthermore, utilizing graph expressions we are able to perform

various aspects of data transformations such as conversion (e.g., smoothing, scaling),

combination (e.g., aggregation) and filtering (e.g., outlier detection).

In order to maintain flexibility and reusability, we identify graph expressions by a

unique name that can be referenced throughout the entire knowledge derivation process.

A metric formally represents a computable value derived from the abstract graph model

which consists of an expression tree and one or more graph references on which the

expression is evaluated on. These references may refer to any of the graph components
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described above. Here, we discuss the parts that make up graph expressions and provide

formal definitions for them.

4.4.1 Expressions

The most basic computational aspects within our framework can be captured using

expressions. For example, determining whether two attribute values are the same is rep-

resented by the equal expression. These expressions include basic mathematical, logical,

and comparison functionality that do not require context or additional information. In

our framework, more complex expressions are defined as model expressions.

In order to achieve computational flexibility while allowing a formal definition of in-

dividual metrics, we define expression trees which describe the necessary computations.

expression

expression metric reference value model expression

Figure 4.14: An expression tree node consisting of any number of optional
child elements such as expressions, metrics, references, values and model
expressions

As such, an expression may have any number of child elements (figure 4.14):

• other expressions representing a basic computation

• metric references to enable reusable computational definitions

• references to another graph components such as particular element nodes or lists

thereof

• specific values which can be used for constants, scenario parameters, and critical

values

• model expression references that enable the incorporation of more complex belief

engines and trust assessments
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Hence, we define an expression as follows.

Definition 4.23 Expression

Let m be a metric, ref a reference to a graph component, v a specific

value and mexp a model expression then an expression exp is recursively

defined as the collection

exp = {{exp1 . . . expI}, {m1 . . .mJ},

{ref1 . . . refK}, {v1 . . . vn}, {mexp1 . . .mexpL}}

The key here is that by formalizing every expression we can reduce the number of

ambiguous or biased interpretations of trustworthiness assessment approaches suggested

in literature. Furthermore, this allows us to analytically evaluate the impact of param-

eter choices in trust models as part of our framework as we can adjust elements of the

expression tree while keeping the rest unchanged.

An expression consists of a particular tree structure where all child nodes are fully

specified. As such, all tree nodes need to be fully resolved which means that they refer

to specific expressions, metrics, references, values and model expressions. In particular,

• expressions refer to specific operations such as addition, summation, etc.

• referenced metrics consist of fully defined expression trees

• references are resolved to particular element nodes and relation edges or described

as relative such as the source and target element nodes of a relation edge

• model expressions have all their parameters specified

In order to describe expression trees we introduce the following graphical represen-

tation.
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Expression 4.1 Expression

We represent an expression as1

name

where name is the type of expression (e.g., add, subtract, equal, etc.).

Note that since there are a variety of operations with a different number

of operands we choose the following convention

unary

a

binary

ba

list operation

...cba

where expressions are operations which are performed on the particular

child expressions (i.e., unary operation evaluates a, binary operation eval-

uates a and b, etc.). A special type of the basic expression is a constraint.

We can use it to limit the types of element nodes and relation edges by

their unique type name. For example, this can be used to restrict the

application of an expression to only the sensor type. We note this special

expression as

is name type

where name refers to a particular element or relation name.

4.4.2 Values

For every computation there may be values necessary that need to be incorpo-

rated. For instance, many formulas require constants, function factors, and probability

distributions critical values. Furthermore, our framework facilitates the analysis and
1Note that expressions always have some graphical representation which we will not denote by a

separate figure number. A list of the expressions is part of the table of contents.
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simulation of a variety of scenarios. Specifically, in our approach expressions are able to

include system parameters which are defined by simulation configurations (e.g., weights,

model expression parameters) such that the same scenario can be evaluated in a variety

of ways using a different parameters.

Definition 4.24 Value

A value is a term that can be used within an expression tree. There are

two types of values, constants that do not change (e.g., factors, scales,

mathematical constants) and system parameters that depend on the con-

figuration of a particular scenario.

Within our graphical representation we express these concepts as follows.

Expression 4.2 Value

We represent a constant value as

value

where value is the term of the constant. On the other hand, system

parameters are specified as

name

where name refers to a scenario configuration variable which actual value

will be determined during a particular simulation run. Note that both of

these values are usually leaf nodes in the expression trees.

We are now at a point where we can define a variety of basic computations such as

expressing formulas. Here, we briefly discuss how the Euclidean distance between two

points in a two dimension coordinate system could be modeled using only expressions

and values.
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Expression 4.3 Euclidean distance

The Euclidean distance between two points is defined as

distance =
√

(x1 − x2)2 + (y1 − y2)2

where x1 and y1 are the coordinates for the first point and x2 and y2 for

the second one. Since there are only basic computations involved the ex-

pression tree is a direct representation of the mathematical computations

required for the solution.

square root

add

power

2

subtract

y2y1

power

2

subtract

x2x1

4.4.3 References

In order to incorporate components of the graph model into expressions trees we need

to specify what can be referenced and how. In particular, element nodes and relation

edges contain attribute values that we need to be able to refer to because they form the

value basis of our trustworthiness assessments. Furthermore, there are cases when we

need to distinguish between what a reference applies to. For instance, an expression that

yields related graph components of a particular element node could yield the connected

element node or relation edges.

Definition 4.25 Reference

We define reference as an item that expresses the notion of a particular
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graph component. This component could be a particular attribute of an

element node or relation edge. However, a reference can also express a

specific subset or list of element nodes and relation edges. Furthermore,

we utilize reference to distinguish between the source and target nodes

of a relation edge. As such, since we apply an expression tree to graph

components a reference represents the variable part that is different de-

pending on the actual graph component.

In terms of a graphical representation, we introduce the following.

Expression 4.4 Reference

We represent a reference as

name

where name is the particular graph component referred to. For attributes

of graph components we need to distinguish between several cases. First,

we need to be able to reference the most recent attribute value. Second,

for certain computations it is necessary to deal with the entire time series

of attribute values. Third, in order to uniquely identify a particular graph

component we have to be able to relate to its derived id attribute.

attribute attribute series id

In order to express a subset of graph components we can use a list refer-

ence

name list

where name could represent a subset or list of graph components. Fur-

thermore, since relation edges consist of two element nodes we need to be

able to distinguish between in expression trees. As discussed earlier, our

approach is to refer to one as the source and the other as the target node.
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source node target node

Together with the expressions and values discussed above we can formalize compu-

tations that depend on graph components and attributes thereof. As an example, we

showcase the conversion of the temperature attribute for a particular sensor.

Expression 4.5 Temperature conversion

We can convert degrees Celcius to Fahrenheit using the following formula.

F =
(
C × 9

5

)
+ 32

where C is the temperature in degrees Celcius to be converted. Apply-

ing this conversion formula to a particular sensor element node with a

temperature attribute is then represented as

add

32

multiply

divide

5.09.0

temperature series

which would convert all values in the temperature attribute time series

accordingly.

4.4.4 Model Expressions

In order to provide flexibility for implementing complex belief engines and decision

processes our framework provides model expressions. These can be use within an ex-

pression tree to model complex algorithms and approaches that require parameters. In

particular, without model expressions complex expressions would require specific imple-

mentations for each parameter value. This is clearly not feasible.
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Figure 4.15: A model expression consisting of a unique name and sets of
inputs and outputs as well as model parameters. Note that all values could
be specified as either value or expression.

Definition 4.26 Model expression

Let I = {i1 . . . in} be a set of inputs, O = {o1 . . . om} a set of outputs,

and P = {p1 . . . pk} a set of parameters where each i, o, and p could be a

particular value or an expression then a model expression is defined as

mexp = {name, I,O, P}

where name is a unique identifier such that the model expression can be

properly referenced in expression trees. Here, we include all potential

inputs and outputs in the sets. However, this does not mean that give

a specific set of parameters all inputs are used and all outputs will be

created by the model expression. The mapping from inputs to outputs is

based on the parameters.

Note that the distinction between expressions and model expressions allows us to

define flexible and reusable models that can be applied in various application scenarios.

Model expressions can be graphically represented as follows.

Expression 4.6 Model expression
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We represent a model expression as

name

where name is the unique identifier for a specific model expression. We

follow the same convention that we use for the expressions such that

child nodes of the model expression represent input. However, in order to

specify parameters and differentiate them from inputs we label the edges

accordingly. Hence, model expressions follow the format

name

...
i2i1

...
expressionvalue

p1
p2 pk

where the edge labels p1 . . . pk lead to parameters and the inputs i1 . . . in

do not contain an edge label. Note that both can be specified as values

or expressions.

We can utilizemodel expressions to describe complex algorithms and approaches that

require parameters. Here we show an example of incorporating a probability distribution

into an expression tree to model the relative likelihood of a particular temperature value.

Expression 4.7 Temperature likelihood

Let the expected temperature follow a Normal distribution where the

probability density is defined as

N(x|µ, σ2) = 1
σ
√

2π
e−

(x−µ)2

2σ2

The model expression requires a set of parameters, in particular, mean,

standard deviation, and type. Here, the type refers to the probability
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density function but others are possible (e.g., cumulative distribution

function, sample, etc.).

Gaussian

temperaturepdf

multiply

ε10

70

mean
standardDeviation type

Note that the Gaussian model expression follows the convention described

above where parameters are marked with edge labels and the inputs are

not. The ε shown in the mean expression represents the possibility of

including system parameters in a variety of graph expressions.

4.4.5 Metrics

A metric represents a computable value that can be derived from the abstract graph

model by evaluating an expression on a particular graph component. These metrics

are referenced by a unique name and can be utilized in other expressions as discussed

above.

name

expression

name

expression

reference

reference

referencereference

reference

reference

Figure 4.16: A metric consisting of a uniquely identifiable name, an ex-
pression and one or more references.

As shown in figure 4.16 metrics can be applied to single element nodes or relation

edges as well as lists of them. It is important to note that specific metrics only exist

if they are applicable. Therefore, when a metric is applied to a graph component it
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will only yield a result if all components of the expression can be evaluated on it. For

instance, if we try to determine the average temperature over the last 24 hours but the

sensor being evaluated has no measurements in the time period it would not result in

a metric. An advantage of this approach is that the metric acts as both a filter (exists

only if prerequisites are fulfilled) and processing instruction (compute a value based on

the information referenced in the expression) at the same time thus simplifying query

processing.

Using the flexible definitions of expression trees we are able to derive computable

values from graph components which we refer to as metrics. It could be argued that

the notion of metrics could be incorporated into expressions. However, the purpose of

an expression is to define computational processes much like formulas whereas a metric

embodies the application of expressions on various graph components.

Definition 4.27 Metric

Let ref be a reference to a graph component and exp an expression then

a metric is defined as

m = {name, exp, {ref1, . . . , refk}}

where name is the unique identifier of the metrics, exp the root of the ex-

pression tree, and ref1, . . . , refk the referenced graph components the ex-

pression is applied to. As such,m(ref1, . . . , refk) = {exp(ref1) . . . exp(refk)}

is the application of the metric on the references performed by evaluating

the expression on each individually.

The graphical representation includes the expression and the references accordingly.

Expression 4.8 Metric

We represent a metric as
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name

where name uniquely identifies the metric within our framework. There

are several ways we represent the application of an expression to a par-

ticular graph component. The main difference is between the application

of an expression on a element node and a relation edge where we need to

specify source and target nodes.

reference
apply to

name

expression

reference

target node

reference

source node

apply to
name

expression

Furthermore, references can be single graph components as well as lists

of graph components which are represented as

name list
apply to

name

expression

where the name of the list needs to be specified (e.g., all sensor element

nodes).

With all graph expressions formally defined we will show some examples of how

metrics are fully specified and utilized within the framework.

Expression 4.9 Similar temperature metric

The process of determining whether two sensors have similar temperatures

based on a threshold temperature difference can be defined as

similar temperature =


true if abs(t1 − t2) ≤ threshold

false otherwise
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where t1 and t2 are two temperatures accordingly. We model the metric

using a combination of expressions, values, and references and apply it to

a relation edge consisting of two sensor element nodes as

Sensor

target node

Sensor

source node

apply to
similar temperature

less or equal

threshold

absolute value

subtract

target node

temperature

source node

temperature

where the temperature difference threshold is modeled as a system pa-

rameter. This allows the metric to be as flexible and reusable as possible.

We can then utilize this metric in a variety of ways. For instance, given a particular

sensor we can determine all related sensors based on whether or not they have a similar

temperature.

Expression 4.10 Similar temperature neighbors metric

In order to determine related element nodes we can use the neighbors

model expression. It takes two parameters. First, an include expression

that filters existing relationships based on whether the specified expression

yields true. Second, an evaluating expression which is applied to the

remaining graph components that were not filtered out. Here, we express

a metric that when applied to a sensor element node gives a list of ids for

the related neighbor element node for which the relation edge determined

a similar temperature.
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Sensor
apply to

similar temperature neighbors

Neighbors

RelationEdge

similar temperature

ElementNode

id

evaluatingExpression includeExpression

4.5 Chapter Summary

In this chapter, we presented our approach to modeling heterogeneous data as well

as belief engines and trustworthiness assessments using an abstract graph model called

Berlin. Specifically, we discussed how to formalize data and express it in terms of

flexible and extensible graph components. These graph components consist of elements

and relations which provide the descriptions for data used in our framework. The actual

data is then stored and processed in element nodes and relation edges that keep track

of values in terms of time instances.

This leads to two different types of graphs. First, the element description graph

contains elements and relations but no actual data. Second, the element instance graph

contains data instances in the form of element nodes and relation edges. Furthermore,

we discussed how we can utilize graph expressions to transform the graphs such that

they model particular application scenarios better by specifying elements and element

nodes of interest.

Attributes can be associated associated with dimension models that enable to mod-

eling of “local” trust aspects such as accuracy and confidence. Dimension models may

be probabilistic or deterministic representations of trustworthiness. They depend on the

context within a dimension such as days within the time dimension or particular areas

within the location dimension. Note that, while time and location variant dimension

models are most prevalent, we show that dimension models are flexible enough to model
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other dimensions as well (e.g., ownership, set of weather conditions, etc.).

Implementations for knowledge processing that incorporate belief engines and knowl-

edge evaluation through decision processes are formally modeled using graph expres-

sions. These expressions are evaluated on graph components which forms the basis for

the knowledge processing and knowledge evaluation phases of our framework. We use

metrics to express computable values that apply specific expressions to a single or a set

of graph components. These expressions are organized in a recursive tree hierarchy that

may include other expressions (i.e., basic computations like add, subtract, and count),

model expressions (i.e., complex computations that require parameters), references (i.e.,

to graph components), values (i.e., constants or system parameters, and metrics (i.e.,

named references to other expression trees).
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5
The TrustKnowOne Framework

for Incorporating Trust

and Quality of Data into

Knowledge Derivation

Most decision processes operate by evaluating available information and deriving

knowledge or insight from it. While this seems straightforward, in reality we face a

variety of problems which make knowledge derivation and decision making complex and

difficult.

In particular, decisions are often influenced by factors such as past experience with

similar or related problems. This causes decision processes to exhibit subjective rather

than objective and reproducible behaviors. Furthermore, depending on the situation

or context, given the same information different decisions could be made. Constraints

also impact decision processes. Specifically, there are always resource constraints which
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Figure 5.1: Knowledge Derivation framework

require trade-offs. A classic example of this is the need to balance time (i.e., speed,

performance) and space complexity (i.e., storage space, memory, network bandwidth,

etc.) found in almost all applications that require extensive computational power.

It is important to realize that decisions are based on the assumption that the data

we are evaluating is useful and trustworthy. Data quality refers to properties such as

accuracy, completeness, validity, and timeliness which are often assumed to be inherent

[84, 117, 133, 175]. However, these assumptions may not be correct and as such could

have a dramatic impact on decisions being made. Furthermore, pieces of data are

often related or dependent on each other. We need to consider these dependencies,

correlations, and trust relationships between data elements. Trustworthiness represents

the perceived level of confidence we have that a particular data source is collaborative

and behaves according to specification [31, 33, 54, 63, 88, 114, 122, 184]. The problem is

that determining trustworthiness is hard for reasons such as dependencies between pieces

of data, changes in data and resources over time, and resources potentially conspiring

with each other [17, 57, 114].

The TrustKnowOne framework presented as part of this dissertation addresses these

issues as will be described in this chapter. The main focus of our framework is to provide

a formalization of approaches to quantify trust and data quality aspects throughout the

knowledge derivation process and provide a variety of confidence and trustworthiness

assessments for decisions. Figure 5.1 shows an overview of the main components of our
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layered framework.

5.1 Architectural Principles

In order to fully utilize available knowledge for making decisions, we present a layered

architecture with models for various aspects of trust and quality of data. We will discuss

how among others things, context, expected behavior, and relationships of data can be

incorporated to improve knowledge derivation and to allow for better decisions to be

made. In this section, we present an overview of the framework components and discuss

the architectural design principles governing our framework.

At the core, we deal with three different entities that form the basis for decisions:

data, data quality, and trust. Here the term data refers to the structured or unstruc-

tured information we gather from various sources. To achieve our goal of improving

knowledge derivation several challenges must be addressed. Data may be incomplete

or inaccurate, or even worse, someone might have intentionally altered it, i.e., attacked

the data. For some of these problems there are solutions (e.g., digital signatures to

prevent modification) while for others there are not (e.g., how do we know we received

all data?). A further complication is the fact that decisions must usually be made in a

finite amount of time which means we often need to make a decision before all data has

been obtained. The point is that we need to account for these factors when we process

and utilize data.

To overcome these challenges it is critical to determine the quality of data using

auxiliary knowledge such as the information source, historical data, and location infor-

mation. Hence, quality is not something that is absolute but rather relative, changing

over time, and dependent on our knowledge of the context at a particular point in

time. Furthermore, data quality and data trustworthiness are two distinct things. We

may determine that the quality of data is high enough (e.g., based on evaluating the

context and the dimension models), but it might come from an untrustworthy source.
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Sometimes, low quality data that we can trust might prove to be more useful in our

decision making process than perceived high quality data that may be tampered with

some probability. A premise of the our approach is that the combination of the data

itself, its perceived quality, and the trust we put into it and its source will allow us to

make better decisions.

Decision making processes vary in complexity depending on the application scenario.

The reason is that there are essentially two components, the approach on how a decision

is made (decision engine) and the techniques used to process the data and its context

on which the decisions are based (belief engines). Note that our approach makes this

important distinction which is often ignored in literature. Furthermore, we enhance the

overall decision making process by incorporating perceived quality and trust of data into

these belief and decision engines. While this increases the complexity of the framework,

it has the advantage of making the framework more flexible and useful. In particular,

with the same data being available, we can employ different decision methods ranging

from simple (e.g. voting, ranking) to the more complex ones (e.g. Bayesian inference

[44, 69, 100, 126, 128, 158], Dempster-Shafer theory [59, 108, 147, 148, 155], weighting

schemes [63, 108, 113, 146, 182]) to arrive at a decision. In addition, the separation

allows us to evaluate multiple belief and decision engines in order to determine the best

possible decision given all available knowledge. Based on this evaluation process we can

improve on our decision making process in the future.

To address the complex problems described above we break down our framework

into three layers or phases. Each of the phases represents a model of a specific set of

tasks that need to be accomplished throughout the knowledge derivation process.

• The knowledge extraction phase models data sources and their integration

• The knowledge processing phase models data processes and incorporating quality

and trust relationship aspects

• The knowledge evaluation phase models decision making processes
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The focus of these models lies on the development of measurable factors that can

be used to determine the effectiveness and performance of different techniques and

approaches given certain application scenarios. These factors are especially important

for evaluating how these models are affected by knowledge attacks that attempt to

modify data, belief engines, and decisions processes.

Our approach to provide a formalization of the entire knowledge derivation process

and incorporate data quality and trust aspects is based on the abstract graph model

Berlin discussed in chapter 4. In particular, we model every piece of information as a

graph component in order to allow for a flexible, standardized, modifiable, and interop-

erable data management foundation of the framework. Furthermore, data processing

approaches, quality and trust assessments in terms of belief engines, and decision pro-

cesses are also represented by graph expressions. As such, our TrustKnowOne frame-

work provides a formal and flexible approach to knowledge derivation where each layer

addresses specific aspects of the overall process.

Knowledge extraction models the task of formally describing how data is transformed

from data source into graph components of the abstract graph model. In addition, it

considers meta information and context in order to provide “local” quality and trust

assessments. The resulting abstract graph model and these assessments serve as input

to the knowledge processing component where we incorporate more complex quality and

trust assessments that take into consideration context and relationships. Specifically, we

evaluate “global” meta information that depends on aspects such as scenario specifics

(e.g., temperature ranges, dangerous radiation levels) and trust relationships (e.g., sen-

sors in the same location should have similar measurements). Knowledge evaluation

has access to all knowledge modeled in the first two phases. The knowledge evaluation

phase then models decision making as decision processes that are also represented by

graph expressions.

Note that this separation of “local” and “global” information is important for several

reasons. First, it clearly separates what type of context is incorporated in the knowledge
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extraction and knowledge processing components. Second, the process of transforming

data from data sources into graph components needs to be very specific due to constraints

(i.e., type, format). By incorporating “local” assessment into this transformation we are

able to derive meta information in a more meaningful manner. Third, complex quality

and trust assessments should not depend on how data is incorporated into application

scenarios. In particular, our framework provides an abstract graph model as the basis

on which these assessments are derived in terms of belief engines. This avoids imple-

menting techniques that depend on subjective interpretations of the raw data. Finally,

while there exist various quality and trust assessment approaches it is often difficult

to improve them or apply them to a different application scenario. In our framework,

approaches modeled as belief engines are represented by formal graph expression defi-

nitions. Because they are all evaluated on the formal abstract graph model provided by

knowledge extraction component it makes it easy to modify, exchange, and reuse them

in a various scenarios and not just the application scenario they were originally defined

for.

An important benefit of the TrustKnowOne framework is the separation of the pro-

cess of performing quality and trust assessments from the process of making decisions.

Current trust assessment approaches often combine these two which makes their evalua-

tion, comparison, and improvement difficult. Furthermore, our framework allows for fast

prototyping of new approaches as well as evaluating them against existing approaches

because of the formalized nature of the abstract graph model. Another problem seen

in existing literature results from the coupling of assessment approaches with decision

processes. By merging the two, you become tied to particular approaches which may

result in a good assessment technique being paired with sub-optimal decision making

or vice versa. Instead, our framework decouples belief engines from decision processes.

This allows for the evaluation of various combinations of assessment and decision mak-

ing approaches as well as a more detailed analysis to find the optimal pair resulting in

an overall better knowledge derivation processes.
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In general, our framework derives multiple decision options for every scenario. These

decisions include representations of confidence and trustworthiness assessments. Specifi-

cally, the framework provides an assessment of how confident it is in a particular decision

given the knowledge derived from data as well as “local” and “global” assessments of

the knowledge utilized in arriving at the decision. Furthermore, based on user de-

fined thresholds (e.g., in case confidence in a decision it deemed to low) the knowledge

evaluation component can either try to incorporate additional data by requesting it

from knowledge extraction or attempt to improve existing assessments by reevaluating

knowledge and context.

An additional benefit of the TrustKnowOne framework lies in its ability to analyze

and evaluate knowledge attack scenarios. Because our framework incorporates trust

and quality of data as well as formalizes knowledge derivation, we are able to assess

the impact of attacks on data and meta information. For instance, malicious nodes in

sensor networks could provide incorrect measurements (i.e., attacks data) and collab-

orate in an attempt to give other malicious nodes higher trustworthiness (i.e., attacks

meta information). We can evaluate the robustness of trust assessment approaches and

decision processes using several techniques. First, we can simulate scenarios with in-

creasing levels of particular attack activity (e.g., percentage of data compromised) and

compare the assessment results of the trust approaches to a baseline. Second, since

attacks materialize themselves in terms of changes in data and context we are able to

define graph expressions capable of determining the existence of these changes.

In the following sections, we discuss in detail the three components of the framework.

5.2 Knowledge Extraction

The first of the three stages of our TrustKnowOne framework is knowledge extraction.

While this phase is the most straightforward one should not overlook its importance.

Data is often captured in order to be utilized as a basis for decision processes. However,
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when dealing with data we often face problems such as what kind of data is available

or what format is my original data in and does it need to be converted or transformed?

These questions can often be trivially answered if the amount of the data and conse-

quently the amount of knowledge derived from that data is small. However, the need

for a framework like the one developed here arises when we have to deal with large and

complex data as is the case in the radiation detection scenario discussed in section 6.2.

In order to address issues with managing dynamic heterogeneous data, we developed

a framework that is capable of dealing with the various aspects of data modeling and in

particular knowledge extraction from data. Our framework provides a common abstract

data model based on graph theory with nodes representing elements of the data model

and edges the relationships between them as described in chapter 4. Hence, this graph-

ical data representation is able to store information and allows for knowledge extraction

through the definition of patterns that can be matched onto the data graph.

As a first step in the overall knowledge derivation process, we need to clearly define

how data and meta information about the data can be incorporated into our framework.

For this purpose the knowledge extraction component utilizes data adapters which are

responsible for extracting knowledge from data sources as well as providing the frame-

work with the information necessary to assess its trustworthiness and quality. It is

important to note that at the knowledge extraction stage only “local” meta information

is available. In particular, aspects such as context and expected behavior used to assess

quality and trustworthiness are limited to considering meta information about individ-

ual data elements and sources but not their relationships to each other. This clearly

distinguishes the knowledge extraction stage from the knowledge processing stage.

The main purpose knowledge extraction is the extraction of data elements from the

data source and their transformation into equivalent graph components. This compo-

nent also performs “local” assessments by incorporating “local” context and expected

behavior through the use of dimension models and “local” belief engines. The input to

the knowledge extraction component consists of information about the raw data as well
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as its data sources. The result of the knowledge extraction phase is the data modeled

as graph components as well as “local” quality and trust assessments of data and their

sources.

To keep knowledge extraction flexible and abstract we want to be able to incorpo-

rate the implementation of a variety of algorithms and techniques. Hence, we discuss

the following aspects of the knowledge extraction component in detail throughout this

section.

• Providing a formal description of data elements, data sources and their mapping

onto graph components

• Formally describing “local” quality and trust assessments in terms of dimension

models and belief engines

• Maintaining flexibility for a variety of data acquisition approaches

• Providing the ability of incorporate structured and unstructured data into the

knowledge derivation process

• Incorporating dynamic context such as time and location into trust assessments

• Including data lineage by keeping track of how knowledge was derived from a

particular data source as well as how it is processed

• Determining the cost associated with data acquisition and transformation thereby

enabling evaluation and comparison

5.2.1 Knowledge Extraction: Architecture

Approaches such as [51, 62, 135] describe data and relations between data elements.

However, as discussed in chapter 3, they all lack the comprehensiveness to include var-

ious aspects of knowledge derivation necessary such as trust relationships, local value

models, as well as time and location dynamics. Furthermore, one of the goals of our
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Figure 5.2: Data element definition from data source via adapter

approach is to enable the combination of data with meta information such as context,

expected behavior, the process of how it was obtained, and security features (e.g, certifi-

cates, signatures) to further improve quality and trust assessments. Hence, we provide

a formal approach that enables the modeling of data and knowledge derivation in a

flexible and extensible way.

A key aspect of our approach is maintaining flexibility by enabling the addition of

new data and data formats. Therefore, we introduce a data element that represents

the notion of a basic piece of data and its context. This data element may have any

number of attributes. In order to become part of the data model, we define adapters

that capture the particular data and provide a common abstract view of it in terms of

graph components (see chapter 4). This part of the process is shown in figure 5.2.

As part of the knowledge extraction component we need to define the following.
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Data Elements The type of information which is being used in our framework needs

to be formally defined in terms of graph components. This means that data will be de-

scribed by a combination of elements and relations each with their respective attributes.

In addition, meta information such as “local” context, known expected behavior, and

known value constraints is incorporated in dimension models and associated with graph

components.

Data Sources We treat data sources as providers of information in its most basic

form. As such, they may provide values, “local” relationship information, as well as

context for graph components. Since there exist a multitude of data formats it is im-

portant to note that our framework does not provide implementations for each one of

them. Instead, our framework designates this task to be addressed by scenario specific

adapters. However, the key point to keep in mind here is that the main task of the

knowledge extraction component is to provide a unified and formalized representation

of information relevant to application scenarios in terms of the abstract graph model

discussed in chapter 4.

Knowledge Extraction Mapping With both descriptions available (data and data

source), the knowledge extraction phase comes down to establishing mappings from the

data source to the respective graph components in our abstract graph model. This task is

performed by adapters whose implementation can range from simple mappings of values

to more complex transformations and extraction approaches. Note that our framework

provides flexibility in this regard as extracted values can be transformed as part of the

knowledge extraction phase or by utilizing belief engines during the knowledge processing

phase which we will discuss later.

Consider the following example where temperature measurements are captured by

a set of sensors in a custom binary format. Let us assume we are only interested in

analyzing historical information for temperature trends. Hence, all time series temper-
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ature measurements are provided to us in a single file. First, we describe a new graph

component that contains time series information of temperatures. Seconds, we model

the format of the data stored in the file. Third, the transformational mapping is imple-

mented as the adapter which is defined specifically for this binary format and provides

an abstract view of the temperature values that were captured.

Many real work scenarios require an online (dynamic) as opposed to offline (static)

knowledge derivation process because of changes in data and relationships that need

to be incorporated in real time. As such, our framework and in particular the abstract

graph model supports the dynamic definition and extension of graph components as well

as adding, modifying, and removing data modeled as element nodes and relation edges.

By providing this dynamic graph model, we are able to address a variety of application

scenarios in which data and relationship structures are constantly changing as will be

shown in chapter 6. The advantage of our framework is that after this initial knowledge

extraction phase we are able to utilize data in a flexible and common manner within

our abstract graph model.

The second key task of the knowledge extraction component deals with performing

“local” quality and trustworthiness assessments. As the process of extracting knowledge

is only an early step in knowledge derivation, we only have limited information available.

While specific context such as possible temperature value ranges for sensors are available,

more complex relationships such as comparing sensors based on temperature similarity

requires additional “global” context. The main approach in this phase is to assess data

on a “local” level with no complex “global” context such as similarity ranges, distribution

parameters, and scenario specific meta information.

In our framework, there are two options for performing these “local” assessments.

First, we can associate graph components with dimension models that provide context

specific to the type, origin, and value range of data. Second, basic belief engines which

are discussed in more detail in the knowledge processing phase can be used to provide

aspects such as expected behavior assessments (based on analyzing time series infor-
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mation) and comparative information (e.g. same sensor location, lower temperature).

Note that everything that requires some sort of parameter requires “global” context and

thus needs to be part of the knowledge processing component.

5.2.2 Knowledge Extraction: Data Acquisition

Our framework supports a variety of data acquisition models. Here, data acquisition

refers to the process of making data available in the form of data sources. There are

two major types to consider. First, the most common knowledge derivation process

requires only a static data source where data and meta information made available does

not change. This makes knowledge extraction a one-time process. Second, in the case

where data changes within a data source, the acquisition and thus knowledge extraction

needs to be dynamic. Specifically, whenever new data becomes available, we allow

it to be incorporated into the abstract graph model (push approach). Furthermore,

there are cases, such as low confidence in trustworthiness assessments or decisions,

where we may require additional information to be acquired by the data source (e.g.,

sensor, monitoring process) (pull approach). These are important factors in making the

framework presented here flexible and extensible.

Note that a specific use case for dynamic data acquisition involves multi-agent sys-

tems that perform work independently of each other. This allows the framework to

be utilized in application scenarios such as mobile applications, sensor networks, and

intrusion detection systems which are discussed in detail in chapter 6.

5.2.3 Knowledge Extraction: Data Integration

The knowledge extraction component needs to be able to deal with structured and

unstructured data. While structured data may be mapped into graph components more

efficiently, our framework provide the means to effectively incorporate unstructured

data as well. In particular, we acknowledge the fact that data may be incomplete and
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incorrect. For instance, data collected by sensor networks is often clearly defined. How-

ever, free text such as reviews of mobile applications (as discussed in section 6.1), travel

experiences, and medical information often do not adhere to a specific structure but

rather consist of a subset of a large corpus of possible terms (i.e., look and feel, perfor-

mance, permissions; hotels, flights, food; medications, symptoms, diagnoses). Having

to completely define all these terms is impractical.

As such, our abstract graph model supports “non-descriptive” attributes to be dy-

namically added to graph components (chapter 4). This aspect makes our approach

flexible and extensible as will be demonstrated in various scenarios (chapter 6). Specifi-

cally, it allows the framework to model a data warehouse approach where “raw” unstruc-

tured data can be stored using a limited set of attributes and features can be derived

from them as part of belief engines during the knowledge processing stage. It should be

noted that for standardization and compatibility reasons, the focus should remain on

formalizing as much of the data and data sources as possible.

Since our abstract graph model approach provides a flexible solution to managing

heterogeneous data, TrustKnowOne is able to overcome issues that arise from data

integration and information fusion. For instance, we can model various sensor types

with different attributes without having to choose between modeling only common or

all possible attributes (see chapter 3). Furthermore, information fusion is performed

by formalized belief engines during the knowledge processing phase. This allows for a

better approach as meta information such as context and “local” relationships can be

incorporated into the knowledge derivation process.

5.2.4 Knowledge Extraction: Time and Location Dynamic

Data

One aspect that is considered secondary in many data processing frameworks (chap-

ter 3) is the fact that data and context is often dependent on some dimension such
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Figure 5.3: Data model organizational hierarchy overview with different
layers of abstraction

as time or location. Take for instance the case where a temperature sensor’s accuracy

slowly degrades over time. Furthermore, the possible range of temperature values may

be impacted by the location of the sensor. Our framework enables the formalization of

dimension models that can be associated with graph components to model the impact

of dimensions such as time and location. This provides a more realistic approach to

evaluating data and assessing its quality and trustworthiness.

5.2.5 Knowledge Extraction: Data Lineage

We can group and organize various data elements into data sets by using tags.

The term tag here loosely refers to any type of grouping. This may be ordering data

elements by location or time but it could also be used to create logical groupings such

as correlations or dependencies.

Figure 5.3 shows that data elements can form relationships at various degrees of

abstraction. Specifically, data elements can be associated with particular data sets

which are provided by data sources. For example, a set of sensors provides temperature
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measurements. These measurements can be grouped into location data sets by some

weather monitoring authority. Note that in general, data will be organized hierarchically

as shown in Figure 5.3 because this allows clear levels of abstraction. However, since

the relationship between pieces of data can be quite complex, knowledge can also be

derived by combining data in non-hierarchical fashion.

All of this means that, providing data lineage is often a complex process. Neverthe-

less, our approach incorporates lineage throughout the knowledge derivation process by

associating data with the context of where it originated and how it has been processed.

As part of the knowledge extraction stage, data is automatically tagged by adding an

additional source attribute to each graph component. Because knowledge processing as

well as knowledge evaluation is formalized using graph expressions that are evaluated on

the graph components provided by the knowledge extraction component, our framework

enables the tracing of data lineage and processing.

5.2.6 Knowledge Extraction: Cost Assessments

One of the focus areas of TrustKnowOne is the trustworthiness assessment of data

sources. For this purpose, our framework maintains meta information about these

sources throughout the knowledge derivation process. First, we can associate data

sources with certain data acquisition costs. Here, cost reflects aspects such as timeliness,

completeness, and accuracy. Second, we need to incorporate the cost of the process of

adapting data from data sources into equivalent graph components performed by the

adapters. Third, while the process of “local” assessments is usually performed in parallel

with the transformation of data into graph components we need to account for it. Thus,

the total knowledge acquisition cost is thus a sum of the raw data acquisition costs, the

necessary transformations into graph components, and performing “local” assessments.
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costknowledgeextraction = costacquisition + costtransformation + costlocalassessment

Incorporating these cost factors into the knowledge derivation process has several

advantages. First, one may have a variety of options available to acquire the necessary

knowledge in order to come up with a decision for particular scenarios. Our frame-

work provides a formal mechanism for determining the cost of each of these options

and as such enables evaluation, optimization, and comparison. Second, sometimes it is

necessary for decisions to be made even with incomplete data (i.e., not all data being

available) due to time or resource constraints. By providing a cost context for data

and data sources we can incorporate data based on the best value or highest quality.

Third, in dynamic scenarios where over time more data is incorporated into the knowl-

edge derivation process, it is important to evaluate cost factors as well. Specifically, our

framework (i.e., knowledge evaluation component) allows for additional data collection

or reevaluation of existing data if certain confidence criteria are not met (figure 5.1).

This reinforcement learning [83, 163] approach of exploration and exploitation is inher-

ently cost-based since the decision of which steps to take depends on the ratio of their

expected return compared to the costs.

The output of the knowledge extraction phase is the data modeled as graph compo-

nents as well as “local” quality and trust assessments of data and their sources. This

becomes the input to the knowledge processing phase.

5.3 Knowledge Processing

When processing information we often encounter questions such as

• Are certain data pieces correlated?
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• How can one derive knowledge from individual pieces of data?

• Does the combination of multiple pieces of data lead to more knowledge?

In our framework, the knowledge processing component provides way of answering

these questions by formalizing data processing as well as quality and trustworthiness as-

sessments. In particular, we use various techniques to transform data modeled as graph

components and determine aspects such as perceived data quality and trustworthiness.

The abstract graph model discussed in chapter 4 provides a flexible and extensible ap-

proach to describing algorithms and techniques for knowledge processing.

The knowledge processing component provides the ability for processing graph com-

ponents using metrics represented by graph expressions. Furthermore, in this stage, we

incorporate “global” meta information such as expected behavior, history, and other

context to derive additional quality and trust assessments. The knowledge and “local”

assessments derived from knowledge extraction are taken to the knowledge processing

component. The result of the knowledge processing phase is that the graph model is

now augmented with the “processed knowledge”, such as the results of transformations

and the evaluation of graph expressions, as well as additional quality and trust assess-

ments based on “global” meta information, context, and relationships.

In this section, we discuss the following aspects of the knowledge processing compo-

nent. Note that these will also be demonstrated in detail in throughout the scenario

analysis (chapter 6).

• Providing a formal description of data processing techniques in terms of graph

expressions

• Describing “global” quality and trust assessment approaches formally using belief

engines

• Incorporating knowledge from sources with different trust aspects

• Assessing trust aspects from “global” context and relationships
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• Maintaining flexibility in terms of how to perform processing and assessment com-

putations

• Including processing lineage through the formal definition of processing and as-

sessments as graph expressions

• Determining costs for processing and assessment approaches thereby enabling eval-

uation and comparison

5.3.1 Knowledge Processing: Architecture

The second stage of the TrustKnowOne framework is knowledge processing. There is

often the need to transform data in order to derive the knowledge we seek. For instance,

individual sales transactions are grouped by product, time, or location which allows

strategic business decisions to be made on a higher level of abstraction. Our framework

enables the use of a wide array of processing approaches through the evaluation of

graph expressions on graph components. As such, simple mathematical approaches can

be incorporated in the same manner that more complex ones can. Furthermore, our

abstract graph model is flexible enough to support a large number of existing techniques

for a variety of application scenarios such as sensor networks and intrusion detection

systems as well as future ones because of its extensible graph expressions approach.

By modeling data and how it is processed as graph components and graph expres-

sions, we provide a unified view of knowledge derivation. The advantage here is that

instead of having one approach for data management and another one for processing,

our framework enables the use of a single paradigm, our abstract graph model. A de-

tailed description of how knowledge processing can be performed using our abstract graph

model is discussed in chapter 4.

In addition to providing an effective way to model the processing of data, we enable

the derivation of complex “global” quality and trust assessments. We can often associate

meta information with data elements. The framework is able to correlate information
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by using meta information (see [124, 147]). Specifically, we are interested in spatial and

time series data as well as information about the process by which the data was obtained

(expected behavior and context) and security features such as certificates and signatures.

One of the major tasks for the TrustKnowOne knowledge processing stage is to evaluate

data modeled by the knowledge extraction component and combine it with additional

meta information. In particular, we incorporate expected behavior [145] such as range,

mean, and variance by associating a distinct probabilistic or deterministic dimension

model with each data element as described in chapter 4.

It has been noted [12, 72, 97] that context awareness such as the semantic meaning

and distribution of data values can often enhance knowledge derivation. Hence, our

framework provides the possibility to evaluate surrounding data elements on tempo-

ral (similar changes over time, sliding windows [11, 27]) and spatial (co-located mea-

surement entities) as well as physical (same data source, dependencies) and logical

(ownership, groupings, signatures, vouchers) levels. Similar approaches discussed in

literature include local structure inference [4, 100] and Markov blankets [130]. Our

framework accommodates these techniques which can be implemented as graph ex-

pressions which enable their reuse, modification, and extension of them in a formal

manner. Furthermore, since trust assessment techniques such as Bayesian inference

[44, 69, 100, 126, 128, 142, 158], Dempster-Shafer theory [59, 108, 147, 148, 155] and

weighting schemes [63, 108, 113, 146, 182] can be described using graph theoretic con-

structs, we are able to map them directly onto our abstract graph model.

Given these approaches, the combination of data, meta information, and trust assess-

ments enables us to derive confidence levels for individual data elements that describe

attributes such as data quality, accuracy, and trustworthiness. Our framework estab-

lishes formalized belief engines to assess quality and trustworthiness aspects of data and

data sources that can be included in the knowledge processing of data. For example,

data below certain quality or accuracy thresholds could be ignored during processing.

Similarly, relationships among data elements (e.g., overlapping and conflicting data)

92



can be used to determine trust aspects.

5.3.2 Knowledge Processing: Trust Aspects in Data Fu-

sion

Maintaining trust aspects during the combination of heterogeneous data, often re-

ferred to as data fusion, is a complex problem on its own. In order to derive meaningful

knowledge we not only need to consider the combination of data elements but also in-

corporate any trust aspects associated with them. In particular, Dalvi and Suciu [36]

discusses the problems related to data integration while also having to address trust

issues. First, integrating heterogeneous data with different trust levels means dealing

with potentially conflicting data and trust assessments. Second, trust approaches need

to be flexible enough to allows for future types of data where trust may not have been

clearly defined. We address both of these problems with our TrustKnowOne framework

through the use of graph expressions.

The flexibility of implementing trust approaches as graph expressions enables the

incorporation of a variety of approaches mentioned in literature such as trust level fu-

sion [114] and confidence levels of trust [141]. Note that, while there have been several

approaches [108, 113, 148] directly focused on assessing quality and trustworthiness, the

combination of homogeneous and heterogeneous data with trust aspects remains prob-

lematic. In our approach, processing approaches have direct access to trust assessments

since they part of the abstract graph model and vice versa. This allows for trust aspects

to be incorporated in a way that is not possible in other frameworks. For instance,

one could weight data differently when performing data fusion based on its assessed

trustworthiness.

We can incorporate existing as well as future approaches to trust assessments be-

cause of the flexibility of graph expressions. This allows us to perform fact finding in

“safe” environments where data sources are cooperative and data is of high quality and
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trustworthiness as well as in “dangerous” environments where data sources have diverg-

ing interests and provide incomplete and conflicting data. Data processing frameworks

found in literature can often only handle the first scenario since they do not incorporate

trust with data fusion. What distinguishes our TrustKnowOne framework is that it can

also handle the “dangerous” environments. Some of the application scenarios that our

framework is able to address are discussed in chapter 6.

5.3.3 Knowledge Processing: Trust Relationships Between

Data

While assessing quality and trust aspects “locally” can be difficult, considering re-

lationships between data elements is even more complicated due to interdependencies

and growing complexity. However, [10, 79, 156] make use of a social network approach

to determine trusted resources based on types of relationships and frequency of inter-

action. This provides a good basis for our framework on ways to adjust trust levels and

confidence intervals.

In particular, we formulate the idea to establish “checks and balances” between

the data elements on a global level that evaluate their relationships. One goal of the

knowledge processing component is then to model relationships between data elements

including “global” meta information while incorporating a variety of trust models. In

particular, graph expressions define how trust metrics are processed into data quality

and trust assessments. Because of our abstract graph model approach to managing data,

other potential data dependencies (causality) [15, 44, 125, 127, 128, 151, 158–160]) and

correlations [10, 78, 79, 128, 130, 156] that provide additional knowledge can be explored.

In addition, clustering often provides insight to the relationships between seemingly

disparate data elements. Given the flexibility in transforming element instance graphs

using transformations as discussed in section 4.2.3, we can employ a variety of clustering

[181] and biclustering [106] algorithms to discover these relationships. Note that we are
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especially interested in temporal and spatial ones [28, 34, 73, 138] as will be used in

section 6.2. Another technique that we are able to directly map is pattern matching

[78]. In particular, graph expressions can be used to incorporate statistical (i.e., certain

amount of features match), syntactical (i.e., structural, hierarchical based) and template

matching (i.e., assign pattern to closest template that matches) approaches.

5.3.4 Knowledge Processing: Computational Aspects

Note that our framework in contrast to others does not dictate how processing and

assessment is performed (see chapter 3). We discuss our reference implementation in

chapter 7. Instead, the approaches are modeled as graph expressions that are evalu-

ated on graph components representing data. As such, our framework can work in a

distributed way based on the individual and parallel evaluation of graph expressions

hence overcoming limitations often seen in centralized systems. In the case where graph

expressions include relationships and interdependencies our abstract graph model basis

allows for various forms of clustering to be performed in terms of graph transformations

(see section 4.2.3) to provide clear definitions of computational boundaries.

Furthermore, dynamic application scenarios often require the ability to partially

reprocess and reassess knowledge. Since graph expressions provide formal computational

models they can be evaluated on any range of graph components. Therefore, in dynamic

application scenarios when new data is added or existing data is updated we only have to

reevaluate the graph expressions that are impacted. Note that this can be accomplished

without having to modify the overall knowledge derivation process. The distributed

aspect of our framework also lends itself to the modeling of heterogeneous multi-agent

systems such as radiation (section 6.2) and intrusion detection (section 6.3).
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5.3.5 Knowledge Processing: Processing Lineage

As discussed in the knowledge extraction phase, we associate meta information with

data elements. This includes lineage information on how it was extracted (i.e., data

source, time, “local” context) and how it was transformed into graph components. In

the knowledge processing component, we can attach additional lineage information that

describes how data is processed. Since processing approaches as well as quality and

trust assessment which provides “global” context are implemented as graph expressions,

they are formally defined and allow tracing of lineage.

As an example, consider the calculation of the average radiation level in a region

using several sensors with the following metric.

Expression 5.1 Average radiation level metric

In order to determine related element nodes we can use the neighbors

model expression. Here, we filter sensors based on a same location met-

ric (include expression) and retrieve the radiation values of the sensors

(evaluating expression). Finally, we average the resulting list of radiation

values using a math expression.

Sensor
apply to

average radiation level

average

Neighbors

ElementNode

same location

ElementNode

radiation

evaluatingExpression includeExpression

Let us assume we apply this metric to a list of 10 sensors in the same location where

5 sensors were provided radiation values from data source A, 3 from data source B, and

2 from data source C. We can then associate the resulting average radiation level with
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the appropriate lineage context in absolute (i.e., number of values incorporated from

particular data sources) as well as relative terms (i.e., percentage of impact of specific

data sources). The lineage meta information incorporated during the knowledge extrac-

tion phase is automatically propagated to the result of the metric. The combination of

this with the data source context allows us to weight meta information accordingly.

In addition, we are able to attach context about processing to the result of graph

expressions. This includes the metric that was used to produce the result as well as

the graph components on which the metric was evaluated. Note that, all processing

approaches and belief engines implemented as graph expressions can be annotated with

this type of lineage context. Therefore, our framework improves knowledge derivation by

providing formal definitions of knowledge processing techniques which allow for extensive

tracing of data lineage which results in better informed and more realistic decision

making.

5.3.6 Knowledge Processing: Cost Assessments

Determining cost aspects of knowledge processing is based on assessing the cost of

performing graph expression evaluations on graph components. Since these graph expres-

sions represent both processing and assessment approaches they provide a unified cost

modeling technique based on graph theory (see [15, 19, 127, 128, 157] graph metrics).

As such, the cost of knowledge processing can be expressed as the sum of the processing

and assessment costs.

costknowledgeprocessing = costprocessing + costglobalassessment

Our TrustKnowOne framework enables graph components to be associated with meta

information and context. For the abstract graph model we can use a similar approach

when determining the cost of graph expressions. In particular, every expression within

the expression tree can be annotated with a cost factor. Note that this cost factor can be

97



either static (i.e., fixed cost) or dynamic (i.e., based on number inputs and parameters)

depending on the particular graph expresssion used. While static cost factors make

overall cost estimation straightforward, dealing with dynamic cost factors, especially

for model expressions, is more difficult. However, parameterizing those dynamic costs

allows our framework to incorporate them into cost assessments.

The following example shows one approach that can be used by our TrustKnowOne

framework to determine the cost of processing a particular graph expression.

Expression 5.2 Temperature within range metric

In order to determine whether a sensor’s temperature is within a specified

range, we can use a number of mathematical graph expresssions and two

system parameters, the temperature to compare against (threshold) and

the acceptable range.

Sensor
apply to

within range

less or equal

range
absolute value

subtract

thresholdtemperature

We need to associate cost factors with types of graph expressions. Here, we choose

1 for mathematical computations and 0 for retrieving attribute values from graph com-

ponents and using system parameters. In this specific example we apply the metric to

a set of 10 sensor element nodes.

As shown in figure 5.4, the cost of evaluating a particular expression depends on

the cost factors of its inputs and parameters (for model expressions) as well as its

own cost factor. Note that while we only discussed a limited example of performing
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10xcost of evaluating metric: 3× 10 = 30

1cost of evaluating expression: 3

01cost of evaluating expression: 2

1cost of evaluating expression: 1

00

Figure 5.4: Cost assessment for temperature within range metric evaluated
on 10 sensor element nodes

a cost assessment it works for both processing and assessment approaches because our

framework models them both as expression trees.

Since the evaluation of expression trees is performed hierarchically, determining the

cost of these expression trees can be achieved in a similar way as shown in figure 5.4.

This formalization of knowledge processing cost assessments provides a number of advan-

tages. First, it enables the analysis of different approaches found in literature. Second,

because of the modeling as graph expressions to which cost factors can be attached,

processing and assessment techniques can be compared to each other using a common

methodology. Third, one of the problems found in a variety of other approaches is the

lack of formalization which inhibits their modification, improvement, and reuse in other

application scenarios. Our TrustKnowOne framework provides a formal method for cost

assessment of knowledge processing approaches that is flexible and extensible.

The output of the knowledge processing phase is the graph model augmented with

the “processed knowledge” as well as additional quality and trust assessments based on

“global” meta information, context, and relationships. This becomes the input to the

knowledge evaluation phase.
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5.4 Knowledge Evaluation

The third and final layer of our TrustKnowOne framework is knowledge evaluation.

Making decisions is a difficult process. Furthermore, many decision processes do not

even consider quality and trust aspects because they are complicated and their inte-

gration is problematic. However, our TrustKnowOne framework provides the ability to

model various decision processes while incorporating trust and quality of data.

These decision processes are represented by graph expressions similar to the ones

used in the knowledge processing component. This allows one to operate directly on the

graph components and the assessment provided as input by the knowledge processing

phase to derive decisions. As a result of the knowledge evaluation phase, we have a

set of decision options derived by evaluating a decision process on the data provided

by the knowledge extraction and processing phases. These options include confidence

assessments that can be traced all the way back to individual data elements and data

sources as well as cost metrics of the entire decision process. Furthermore, the knowledge

evaluation component provides the ability to increase the confidence in a decision by

either requesting additional data or reevaluating existing data.

In order to provide the functionality described above, we discuss the following aspects

of the knowledge evaluation component.

• Providing a formal description of decision making techniques using decision pro-

cesses

• Incorporating quality and trust assessment aspects into decision making

• Requesting additional and challenging existing data if configurable confidence

thresholds are not reached

• Providing interfaces to other systems (e.g., notification, propagation)

• Including evaluation lineage through the formal definition of decision processes as
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graph expressions

• Determining cost for decision making approaches thereby enabling evaluation and

comparison

5.4.1 Knowledge Evaluation: Architecture

In our TrustKnowOne framework, we model decision processes as graph expressions.

The knowledge evaluation phase provides decision options based on the knowledge and

assessments derived from the previous phases. This includes knowledge in the form of

graph components and “local” assessments from the knowledge extraction component. In

addition, we are able incorporate additional processed knowledge (i.e., knowledge as the

result of processing of knowledge) and “global” assessments derived by the knowledge

processing component. Knowledge evaluation is able to utilize a variety of decisions

processes to evaluate this knowledge and determine the possible decision options.

Note that our evaluation approach follows the decision principles outlined by Pearl

[126] which we incorporated into our framework as follows.

Rational Criteria We provide measurable factors in terms of quality and trust as-

sessment metrics based on which a particular decision can be chosen over another.

Flexible Specification Our abstract graph model provides a unified and formal ap-

proach to modeling data, knowledge derived from data, and uncertainty (i.e., quality,

trust) assessments.

Efficient Algorithms The knowledge evaluation part is able to base decisions on the

rational criteria, data model, and assessments through the use of graph expressions.

Since decision processes are implemented using graph expressions we are able to

model various simple (e.g., voting, ranking, weighting) as well as complex decision

making (e.g., Markov decision processes [137], ensemble classifiers [153]). Note that
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this approach represents a natural extension of the processing techniques used in the

knowledge processing component.

It is important to point out that our framework does not require a decision to be

based on only a single quality or trust assessment approach. Instead, the TrustKnowOne

framework incorporates ideas from ensemble learning [119, 134, 165] and consensus

learning [12, 55, 116]. The former combines a set of topic specific techniques into

a larger decision engine while the latter deals with changes in time and topology as

found in dynamic scenarios. The flexibility of our abstract graph model allows decision

processes of any kind to be incorporated. Since they are graph-based, approaches such

as generic aspects [81], valuations [150], evidential networks [14] and expected outcome

[13] which are frequently used in business applications are a natural fit for our abstract

graph model.

Furthermore, knowledge evaluation incorporates trust and quality of data into the

decision options. In particular, our framework provides a flexible knowledge evaluation

approach that combines knowledge and assessments in ways ranging from simple voting

or quorum schemes to complicated formulas that require a large number of parameters.

Note that the knowledge evaluation component has access to all data managed in the

abstract graph model as well as meta information and assessment metrics provided by the

belief engines of the knowledge processing component. This allows us to enhance decision

processes significantly by enabling context and various quality and trust assessments to

affect decision making. For instance, decision processes have the ability to focus on high

quality data or ignore data with low trustworthiness. While the specifics may depend on

the particular decision engine used, our framework makes additional meta information

available to be incorporated.

By extension, the decision of whether a data source is providing high quality and

trustworthy data can be based on the assessment of data quality and trustworthiness

of the individual data elements used in the decision. Furthermore, the knowledge eval-

uation component is able to maintain a history of previous decision options thereby
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allowing iterative improvements of decision making approaches.

5.4.2 Knowledge Evaluation: Requesting Additional or Chal-

lenging Existing Data

An important aspect of our framework is its ability to deal with changes in dynamic

environments. Hence, the knowledge evaluation component needs to be flexible enough

to address these changes (see [54, 57]). In particular, we provide the ability to ask for

more data and perform challenges on existing data. As discussed earlier, this incorpo-

rates reinforcement learning [83, 163] into the TrustKnowOne framework. For instance,

requesting additional data can be performed selectively by evaluating cost metrics of

data sources and determining the one with the best estimated return. Furthermore,

there are often multiple approaches to combining available information and deriving

knowledge from it. Therefore, knowledge evaluation could also adjust which quality

and trust assessments it incorporates as part of the decision process. This means the

application of different or improved belief engines such as choosing more complex ones

to increase decision confidence.

Since we provide confidence assessments with every decision option, thresholds can

be used to determine which action to take. For example, within intrusion detection

systems one could apply our framework in a manner where additional data is requested

from the monitored resources until the decision of whether they are trustworthy or have

been compromised can be made with a certain level of confidence.

5.4.3 Knowledge Evaluation: Interfaces to Other Systems

Knowledge derivation processes are often part of a larger system designed to solve a

scenario specific problem. For instance, determining which resources have been compro-

mised in an intrusion detection system should trigger notifications to relevant parties

and countermeasures from the system administrators. Because of the flexibility of our
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abstract graph model where graph expressions are used to perform a variety of functions

(e.g., knowledge processing, belief engines, decision processes), one could associate cer-

tain administrative graph expressions with appropriate actions to be executed. Since

knowledge evaluation provides a set of decision options with confidence assessments,

these graph expressions can be used to trigger various notifications based on config-

urable confidence thresholds (e.g., anomaly detection, outlier notification). In addition,

this approach allows queries from other processes (i.e., control systems, business logic)

concerning decision confidence, processed knowledge, and trustworthiness of data in-

cluding its sources which enhances the usefulness of the TrustKnowOne framework.

5.4.4 Knowledge Evaluation: Evaluation Lineage

As discussed in the knowledge extraction and knowledge processing components,

it is important to keep track of meta information about where data originated and

how it was processed. Since decision processes are implemented as graph expressions

similar lineage information (i.e., metric, graph components used) can be attached to the

resulting decisions.

Lineage allows for a key aspect of knowledge evaluation which is the ability to de-

termine the impact and relevance of specific data elements. In particular, we will base

our approach on the idea of minimum redundancy where data should be reasonably

separated in terms of their contribution and maximum relevance which means that only

measurements with the highest relevance should be included [131].

This approach has several advantages. First, it allows the framework to perform

knowledge and assessment model reduction which reduces complexity and increases

performance by including only a subset of the original graph components in the knowl-

edge evaluation component. Note that similar approaches include principal component

analysis [111]. However, one of the problems with reducing the amount of knowledge and

assessments is that it can potentially decrease the overall quality of the decision. Second,
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knowledge evaluation is able to optimize decision processes. By providing the formal

descriptions of decision processes our framework enables evaluation and comparison of

decision approaches. In particular, techniques such as maximum likelihood estimation

[3] can be used on sample knowledge and assessment distributions to determine suitable

parameters for decision processes as well as overcoming problems with partial evidence

during the decision making. Third, given the extensive lineage information provided

by the knowledge extraction and knowledge processing components we can determine

the usefulness of certain data sources which in combination with cost assessments al-

lows them to be evaluated and compared. This aspect can prove extremely valuable in

resource constrained (i.e., cost, time, performance) as well as dynamic scenarios (i.e.,

determining from which data source to request additional data).

5.4.5 Knowledge Evaluation: Cost Assessments

Since decision processes are modeled as graph expressions we use a similar cost

assessment approach to the one performed by the knowledge processing component.

In particular, parts of the decision processes can be annotated to include cost factors

representing aspects such as resources and time required to arrive at a decision. As

discussed in the architecture, knowledge evaluation is able to incorporate requests for

additional and challenge existing data. Because both of these costs are usually dynamic

the resulting cost factors need to include parameters to reflect this. Hence, the cost of

the knowledge evaluation is the sum of the decision process as well as any addition data

requests or challenges that need to be performed as part of the decision making.

costknowledgeevaluation = costdecision + costadditionaldata + costchallengedata

The formal representation of decision processes using graph expressions provides

advantages similar to the ones discusses in the knowledge processing. First, we are

able to perform a detailed cost analysis of individual decision techniques. Second, the
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formalization as graph expressions allows for comparison based on cost factors. Third,

decision processes can be reused in different application scenarios and in order to improve

decision approaches, adjustments can be made by simply extending graph expressions

in order to achieve better cost factors.

The overall cost of performing knowledge derivation is the sum of the costs of the

individual framework components.

costknowledgederivation =

costknowledgeextraction +costknowledgeprocessing + costknowledgeevaluation

Note that our TrustKnowOne provides a complete cost assessment approach that

includes all aspects of knowledge derivation. Specifically, our formalization allows for in-

dividual approaches (i.e., extraction, transformation, “local” and “global” assessments,

processing, decision making) to be evaluated, compared, and improved. Since our Trust-

KnowOne framework provides a clear separation between individual phases, the com-

binations of different approaches, especially in terms of belief engines with decision

processes, can be evaluated in detail in order to find the best possible for a particu-

lar scenario. Furthermore, using parameters in cost factors enables our framework to

perform cost assessment in both static and dynamic environments.

5.5 Evaluation of Model Vulnerabilities

Our TrustKnowOne framework provides a formal approach for knowledge derivation

that incorporates trust and quality of data. Given the fact that there is an overabun-

dance of different decision and assessment techniques all with their specific strengths

and weaknesses, it becomes crucial to assess the impact of attack models (see [162, 180])

in order to choose a combination of approaches that is fair, reliable, and secure. There-
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fore, we need to distinguish between operational system impairments that are random

and the assumption that correlated changes (possibly across time and space) in data

are often part of an attack.

In general, attack scenarios can affect two parts of our framework, data and context.

In particular, within the knowledge extraction phase, we face the problem of malicious

or compromised data sources and incorrect “local” meta information. As the knowledge

processing phase depends on this data from knowledge extraction in terms of graph

components, it is indirectly affected by any attack scenario. Furthermore, malicious

“global” information could be incorporated at this phase. The knowledge evaluation

phase is also indirectly affected since its decision processes are based on the data as well

as assessments provided by the previous phases.

One of the advantages of our framework is that it enables the evaluation of different

attack models (see [162, 180]) on an individual approach (i.e., belief engine, decision

process) as well as the entire knowledge derivation process. In particular, we determine

the robustness of approaches based on their ability to perform their respective function

(i.e., processing, assessment) with and without an attack present. In case of an indi-

vidual approach we take the result of no attack as a baseline and compare it against

the results achieved during various attack scenarios. As for the evaluation of the en-

tire knowledge derivation the process is similar while the baseline is represented by the

decision options available when no attack is present.

Using the robustness metrics in combination with cost assessments we can compare

the relative value and robustness of different schemes in various scenarios (e.g., [54, 57,

99, 122]). Note that, since all the decisions are ultimately based on some data, we can

evaluate the impact of missing, inaccurate or purposefully modified information using

the approach discussed above.
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5.6 Chapter Summary

The value and novelty of the TrustKnowOne framework lies in its formal descrip-

tion of knowledge derivation and assessment. We utilize the flexibility of our abstract

graph model Berlin to manage heterogeneous data. Furthermore, processing as well as

performing assessments are formalized as graph expressions that are evaluated on the

abstract graph model.

Our framework is divided into three phases, each with their clear responsibilities and

boundaries. Knowledge extraction provides an adapter approach to data acquisition that

transforms raw data into graph component equivalents. Furthermore, it assesses data on

a “local” level that does not require additional context. Knowledge processing enables

the implementation of processing approaches as graph expressions in order to derive

additional derived knowledge. It also incorporates belief engines which purpose is to

model “global” assessments that includes relationships. Knowledge evaluation provides

the ability to arrive at decisions using decision processes with various data, processed

data, “local” and “global” assessments available as basis.

For each of the components there are a number of aspects that make the framework

stand out from regular processing approaches found in literature. TrustKnowOne is

capable of dealing with dynamic environments by allowing various data acquisition

models, requesting additional data from data source, and challenging existing data. In

addition, the framework provides formal means to integrate data from different sources

with varying levels of trust.

The use of graph expressions to model approaches enables the formal description of

belief engines for assessments and decision processes for decisions thus enabling eval-

uation and comparison. Furthermore, graph expressions can easily be computed in

parallel thereby ensuring scalability. One of the main benefits of our approach is the

way the framework provides lineage information and cost assessments by annotating

graph components. As such, our TrustKnowOne framework is able to improve knowl-
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edge derivation through the use of an abstract graph model on which graph expressions

representing knowledge and assessments are evaluated.
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6
Scenario Analysis

The proposed framework will be of value to many applications such as sensor net-

works, participatory sensing, smart grids, cloud computing, and health care. In each

of these cases data is obtained from geographically distributed heterogeneous sources,

data is then processed and decisions need to be made. However, managing and integrat-

ing data from distributed heterogeneous sources as needed in these types of scenarios

presents a variety of problems.

In the previous chapters we presented the TrustKnowOne framework which allows

trust and quality of data aspects to be incorporated into knowledge derivation processes.

Here we present its application to three distinct scenarios. As part of the discussion we

will highlight how our approach exhibits both the formalization and flexibility neces-

sary to model each of the realistic scenarios. These scenarios are used to confirm the

advantages of the TrustKnowOne framework over current approaches.

We focus our analysis on the following representative and realistic scenarios. The

selected scenarios and their implementations are realistic in terms of being geograph-

ically distributed, exhibiting time dynamics, and consisting of large and diverse data

sets. First, we discuss how we can evaluate the trustworthiness of Smartphone Apps
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by incorporating a variety of relationship and context assessments. We show that this

approach yields a significant improvement over current methods that are based on basic

App attributes [95]. Our data set for this scenario contains a total 11326 Apps, 790940

reviews (651801 with text, 139139 without) as well as 134 different kinds of permissions

captured in July 2012. For this purpose we developed a web crawler to pull the real

and rich App attributes out of Google Play (Android Market). As such, our data is a

diverse representation of realistic data with complex attributes and relationships.

Second, we apply our framework to distributed collaborative sensing in the domain

of radiation detection. Here, we deal with changes in sensor values over time as well as

complex relationships between them. In particular, we combine data from three data

sources amounting to ≈ 2.5 million time stamped data points over the course of nine

months which are geographically distributed across Japan. Two of the data sets were

provided by the International Atomic Energy Agency [75] whereas the third data set

from Safecast [144] represents measurements taken from thousands of people in a col-

laborative sensing effort. As such, the Safecast [144] data represents a challenging data

set in terms of correlating related measurements, a common challenge in collaborative

sensing environments. Thus, the measurements captured in the three data sets provide

a realistic basis for evaluating our framework.

Third, intrusion detection provides a dynamic and challenging environment for

knowledge derivation because there exist a wide variety of approaches to determine

trustworthiness of system nodes. We discuss how our framework is able to formalize

one approach [54] in order to be able to compare and evaluate it against a number of

attacks. Our evaluation involves simulation of several dynamic systems with up to 60

nodes generating ≈ 9000 time stamped test messages over 75 days. The scope of this

scenario is realistic for demonstrating the effects of a variety of attacks and evaluating

trust assessment approaches on intrusion detection systems.
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6.1 Trusting Smartphone Apps

Smartphones are becoming the mobile hubs of information for many people and

companies. What started as a way to provide users with the flexibility of installing

small software components called Apps to enhance the usability of their phone has grown

into a global market with hundreds of thousands of applications built by thousands of

developers. However, while there are plenty of well established companies developing

useful applications or entertaining games there is no easy way to differentiate them from

companies that put users at risk or worse are directly distributing malware or spyware.

One attribute that is often used in distinguishing “good” Apps from “bad” ones are

their ratings. Nevertheless, research has shown that this can prove to be an unreliable

metric, especially in cases with low rating counts. Reviews are also supposed to provide

the user with an assessment of an App’s trustworthiness by real people. However, fake

reviews written by collaborators of the developer or the developer himself are common

to boost an App’s ranking. How is the average user able to distinguish between real

and fake reviews? Finally, Apps run inside a security sandbox and need permissions to

interact with the smartphone and the data stored on it. The problem is that users are

usually not aware of what specific permissions mean or why they need to be granted.

In this scenario1 we present a trustworthiness assessment model for Apps that takes

into consideration these factors as well as others to provide the user with an indication

of whether an App can be trusted and if so why. Furthermore, the model incorporates

various relations between Apps and we discuss whether or not they should have an

impact on the individual App’s assessment. The research demonstrates that in order to

make a decision to install an App one has to consider more than just App information

and look into its associated meta data as well. The TrustKnowOne framework presented

in chapter 5 enables the modeling of the smartphone App trustworthiness scenario
1A version of this scenario was published in Martin Kuehnhausen and Victor S. Frost. Trusting

Smartphone Apps? To install or not to install, that is the question. In 2013 IEEE International Multi-
Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support, 2013
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discussed here.

6.1.1 Trusting Apps: Overview

Until recently personal information was stored on users’ home computers and busi-

ness information was stored on company servers. Each had developed certain mech-

anisms to secure their information. Users set up passwords, firewalls and antivirus

scanners on their machines and companies employed virtual private networks, sophisti-

cated access control and intrusion detection systems. While this has not changed much

over the past years, what has changed is that information has moved from these “pro-

tected” areas to mobile phones. Phones have made the transition into smart devices

that are powerful enough to perform various functions that used to be limited to per-

sonal computers, laptops or servers. Furthermore, what used to be separated, personal

and business information is now mostly merged on a single device which causes secu-

rity issues. While some solutions have been developed in order to protect personal and

business information, most notably virtualization of multiple systems on a single smart-

phone [7], other areas such as the protection [45] and control over cloud and mobile data

remain problematic [56]. Furthermore, there is a recent initiative to use smartphones

as payment methods replacing credit cards such as Google Wallet [61].

One of the major threats for information stored on a smartphone are Apps that the

user installs. While many of them are used to extend features of the phone and make

it more usable or efficient, others may be malicious and only interested in harvesting

information [48]. The problem is that there is often no clear distinction between the

two, e.g., some Apps provide useful features while also collecting a lot of information.

The domain of mobile phone applications is inherently dynamic with changing App

attributes, relations and trust assessments as well as external context in the form of

meta about the Apps from other sources. Thus the App domain is well matched to

our trust framework which was initially outlined in [96] and discussed in detail as part
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of this research that allows for knowledge extraction, processing, and evaluation while

incorporating quality of data and trust.

We use three common approaches to evaluating perceived trust in Apps – ratings,

reviews and permissions – that when taken into consideration on their own they are

flawed. Therefore, as part of this dissertation we propose several trust assessments for

the approaches and show that the evaluation of basic App properties in combination with

these assessments can be useful. In particular, we discuss why each of the assessments

is necessary and evaluate their impact on the trustworthiness of a Apps as perceived by

the user.

The goal here is to make the user aware of any trust issues related to an App by

providing confidence metrics for its attributes because it improves the overall decision

process of whether or not to install an App. It is out of the scope of this discussion to

determine if an App is malicious or spyware as discussed in [132]. This determination is

hard since, as stated earlier, many Apps provide useful functionality while also exposing

private information (requesting read access to contact lists, calendars and social network

accounts, etc.). However, we develop metrics that can be used to alert users to take a

closer look at questionable Apps.

6.1.2 Trusting Apps: Framework Modeling Approach

Determining if Apps are trustworthy or not is a large scale data mining problem

since the number of Apps available is large (>500,000) and relationships between them

complex (similar set of permissions, one person reviewing multiple Apps, etc.). How-

ever, we propose to utilize a graph modeling approach where Apps and other related

information such as reviews and permissions are represented as nodes which allows us

to describe the various relationships as edges in a graph. This approach makes it easy

to traverse and correlate information by choosing a particular App and limiting the

number of related items (hops in graph terms) to consider.
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As stated above it is important to look at the information available directly such

as average rating and the number of reviews. However, also evaluating meta data like

whether a review is positive or negative or whether the App’s permissions requested are

reasonable may yield a better overall trustworthiness assessment. The problem is that

retrieving and utilizing this information is more complicated. For example, we could

assess the perceived sentiment of a review by the appearance of keywords (e.g., good,

great, bad) and the risks of a set of permissions by comparing them against other App’s

within the same category. However, in order to do this we need a flexible framework

that allows us to incorporate relationships between Apps, reviews and permissions as

well as meta information such as sentiment and rankings (position in Top Free, Top

Paid, etc.) into trustworthiness assessments.

Here, we have applied the TrustKnowOne framework which is able to extract, pro-

cess and evaluate knowledge and complex relationships from data that incorporates trust

and data quality assessments. First, we describe all relevant elements and relations to

be included in a graph model. Second, one or more belief engines modeling trustwor-

thiness are defined. They are able to utilize data from the graph model as well as meta

information to provide confidence assessments. Third, one or more decision processes

can use data from the graph model as well as incorporate confidence assessments from

the belief engines. Here, we show its application to determine the trustworthiness of

Apps.

A key element of the framework is the definition of metrics which can be thought

of as “computable” items derived from the graph model and meta information. Belief

engines and decision processes can be described using such metrics, which allows us to

abstract processing and evaluating knowledge in a formal way that avoids having to

deal with domain specific models. However, we need to be aware that sometimes data

is incomplete. Hence, we can only compute metrics for data values that exist. In the

case that values used to compute a metric do not exist, the metric itself does not exist

for these values. It is important for the decision engine to factor in those missing values
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and the existence of metrics as they could potentially skew the overall assessment.

We developed a web crawler to retrieve information about Apps from Google Play

(Android Market). In particular, we extracted the top 100 Apps in each of the 30

categories and their respective collections (Top Free, Top Paid, Top Grossing, etc.) in

July 2012. Because of some overlap (the same App could appear in multiple collections)

our data set contains a total 11326 Apps, 790940 reviews (651801 with text, 139139

without). There are 10444 Apps with permissions and we discovered 134 different kinds

of permissions overall.

Using this data set combined with a goal of trust assessment we will demonstrate

the following aspects of the TrustKnowOne framework for this scenario:

• Modeling heterogeneous data (Apps, categories, reviews, permissions) and rela-

tionships in our abstract graph model (section 4.1)

• Formalizing confidence assessments for App attributes using context and expected

behavior as belief engines (section 5.3.1)

• Representing decision making as formal decision processes with the option of

whether or not to incorporate confidence assessments (section 5.4.1)

An overview of how the scenario relates to individual components of our framework

is shown in figure 6.1.1. Here, we introduce these components which we will discuss in

detail throughout this section.

Knowledge Extraction In this scenario we model relevant smartphone entities such

as Apps, categories, reviews, and permissions. Here, we utilize the web crawler described

above to create a data set at a particular time instance. While it is possible to run the

crawler at different times thus creating time series information for Apps we focus our

discussion on one particular instance. As such the element instance graph is a static

representation of Google Play (Android Market).

116



Knowledge Extraction

Knowledge Processing

Ratings
distribution

App information,
categories,
 reviews,

permissions

Confidences for 
App ratings,

 reviews,
permissions

App trustworthiness
assessment

Permission
knowledge base

Knowledge Evaluation

App attributes
and confidence
assessments

Google Play 
(Android Market)

Weighted
Trust

Number 
of ratings

Ratings
distribution

Spelling

Sentiment
analysis

Number of
permissions

Type of
permissions

Word
dictionary

Sentiment
database

Weighted
Trust+

Figure 6.1.1: Framework overview for the trusting smartphone Apps sce-
nario

Knowledge Processing We take into consideration context and expected behavior

(e.g., ratings distributions, word dictionary, sentiment database, permission knowledge

base) in order to derive confidence assessments for the App’s rating value, reviews

and permissions. In particular, belief engines showcase deterministic and probabilistic

approaches in determining trustworthiness and quality of data. As a result we provide

a variety of assessment that can be combined with basic App information to make

decisions about trusting smartphone Apps.

Knowledge Evaluation Using the confidence assessments derived by the knowledge

processing phase we have various options to incorporate them into the decision making

process. Here, we compare two approaches. The first one, does not utilize confidence

assessments and yields a trustworthiness assessment based only on the App attributes.

However, the second approach relates them to the respective attributes thus enabling

decision engines to form better decisions. We compare these approaches and discuss why

the latter provides a better representation of the state of trusting smartphone Apps.

Next, we present a detailed analysis in which aspects of the scenario are related to

the TrustKnowOne framework.
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Figure 6.1.2: App element description graph

6.1.3 Trusting Apps: Knowledge Extraction

Smartphone Apps have a variety of properties and while most users are aware of basic

ones such as the average rating or number of downloads they pay less attention to others

(e.g., number of ratings, number of one star ratings, etc.). In addition Apps can form

complex relationships with other Apps as well as categories, permissions, and reviews.

This needs to be modeled accordingly if one is to derive trustworthiness assessments for

Apps.

The abstract graph model we propose is shown in figure 6.1.2 where the key com-

ponent is the individual App element. The App domain there are a variety of attributes

which we can broadly classify into

informative author name, description, name
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less relevant date published, number of downloads, price

relevant rating count, average rating value, number of one to five star ratings

Specifically, we will focus our trustworthiness assessment on the relevant attributes

and will incorporate only those into our discussion of this scenario. Package names

(e.g., com.google.android.apps.maps for Google Maps) are used to uniquely identify

Apps. Categories are used to group Apps and we model them as elements that are

identified by a name. The relationship between an App and its Category is expressed

by the app-category relation.

Every App has some extended information associated with it. In particular, the

Permissions it requires and the Reviews that were made of it. Permissions contain a

label used to identify it, a description providing additional information, and a level which

can either be safe or dangerous. The user installing an App needs to specifically request

seeing safe permissions whereas dangerous permissions are automatically prominently

displayed. Reviews describe user feedback for an App. It is actually a combination

of rating and textual review. Thus, every Review has a rating but not every Review

contains text. While there are a number of other attributes such as author, date, device,

title, and version our focus is on the rating and text attributes. Since a Review is always

associated with an App its unique identifier is a composite of a review id and the App’s

id. We model relationships accordingly by introducing app-review and app-permissions

relations.

Note that here we only discuss elements and relations relevant to our trustworthiness

approach (figure 6.1.2). Other components of the abstract graph model such as other

elements (e.g., Badge, PermissionGroup, Collection), additional attributes (e.g., file

size, software version), and more complex relationships (e.g., also installed, also viewed,

same developer) are present but not considered in the initial trustworthiness approach

we present here. However, the flexibility of the proposed framework facilitates their

inclusion in the future.
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Figure 6.1.3: App element instance graph example for Google Maps

Figure 6.1.3 shows a subset of the data that is being modeled. For clarity’s sake

we have chosen only a few relevant attributes to be displayed. In particular, we have

a Google Maps Android App element node with the rating count (number of ratings)

and rating value (average rating) attributes. We show two Review element nodes with

their rating attributes. Note that these element nodes make use of a composite id as

specified above. They are connected to the App using the app-reviews relation edge

accordingly. Furthermore, two example Permission element nodes with varying level

states are shown. We express their relationship with the App as app-permissions relation

edges. The Travel & Local category element node is interesting as it only has the name

attribute. It is connected via the app-category relation edge.

6.1.4 Trusting Apps: Knowledge Processing

As part of this dissertation we propose a number of trustworthiness assessments

ranging from 0% to 100% for App attributes. In particular, we consider assessments of

ratings, reviews and permissions as well as relationships between Apps. We will discuss

how they can be utilized and why they are necessary in determining an App’s trust.
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6.1.4.1 App Ratings

Of the several attributes that users look at when considering installing an App is

its rating (on a 1 to 5 star scale). However, the often used average rating score is not

necessarily a good indicator [29] because it is usually large, in our data set the average

rating is 4.2 with a standard deviation of 0.64. Here, we discuss two ways of measuring

the confidence a user should have in the average rating.

Number of Ratings As the number of ratings grows so should our confidence in the

meaning of the average value. We have two options to derive at such a measure. On

the one hand, we can compute the sample standard deviation s of the 1 through 5 star

ratings and use this estimate to determine the standard error SEx̄. On the other hand,

we propose to use the Student’s t-distribution which does not require a known standard

deviation and approximates a normal distribution as the degrees of freedom approach

infinity. This allows us to propose a confidence metric using only the number of ratings

n as

c#rating(n) =


0 if n ≤ 6

1− ST (n)√
n− 1

if n > 6
(6.1.1)

where

ST (n) = CDF−1
T∼(n−1)(0.975) (6.1.2)

is the value of the inverse cumulative distribution function of the Student’s t-distribution

with n− 1 degrees of freedom at a two-sided 95% confidence interval with
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lim
n→∞

CDF−1
ST∼(n−1)(0.975) = 1.96 (6.1.3)

representing a sample estimation of the standard deviation approaching normal distri-

bution. Hence, for very large n the proposed metric can be related to the standard error

as

lim
n→∞

ST (n)√
n− 1

≈ s√
n

= SEx̄ (6.1.4)

One can easily see that using the Student’s t-distribution is preferable because the

standard deviation for a low number of biased ratings would yield an undesired high

confidence. For example, 10 five star ratings give s = 0 and ST (10) = 2.262 which

results in a confidence indicator of 1− s√
10 = 100% for s and a confidence indicator of

1 − ST (10)√
10−1 = 24.6% for the proposed approach. Note that the Bayesian rating in [29]

could also be used to adjust the value of the rating. In terms of our abstract graph

model we have:

Expression 6.1.1 c#rating

The confidence in the number of ratings c#rating is expressed using the

sample size confidence model expression. It is based on equation 6.1.1

and here we apply it to the rating count attribute of an App.

App
apply to

c#rating

SampleSizeConfidence

ratingCount
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Figure 6.1.4: Examples of rating distribution types
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Ratings Distribution Type Figure 6.1.4 shows a variety of distribution types pos-

sible for App ratings. They are important in determining the meaning of the average

rating for an App. In particular, we need to consider the following cases:

Unimodal The average rating is a reasonable reflection of the App’s quality where

the majority of ratings fall within the range of the average rating (Figures 6.1.4a-6.1.4d).

Uniform The ratings do not have a meaningful separation (trending towards good

or bad) and hence, the average is not an accurate interpretation of the overall ratings

(Figure 6.1.4e).

Bimodal The ratings fall into two extreme categories (usually really good and

really bad). This is troublesome since the average rating is a deceiving reflection of the

App’s quality (Figures 6.1.4f and 6.1.4g).

We propose the following weighted means difference algorithm to discover bimodal

trends in these distributions. The result is a metric of how close the distribution is

to either one or two constants. Note that, since we are only interested in discovering

a trend we do not need to separate uniform and symmetrical bimodal distributions.

However, in order to make this distinction one could use Shannon’s information entropy

[149].

Here, we develop a weighted means difference algorithm to ratings distributions but

it can easily be generalized to other discrete or continuous distributions. Some resulting

measures are shown in table 6.1.1.

First, we separate the n ratings into the following sets
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Table 6.1.1: Result of the weighted means difference algorithm for ratings
distributions (number of 1-5 stars)

Difference Distribution

→ 0.0 constant
≈ 0.25 unimodal

1.0 uniform or bimodal
≈ 1.5 bimodal
→ 2.0 two constants

R = {r0, . . . , rn} (6.1.5)

Rs = {r0, . . . , rn|r = s} (6.1.6)

Rlow = {r0, . . . , rn|r ∈ {1, 2, 3}} (6.1.7)

Rhigh = {r0, . . . , rn|r ∈ {3, 4, 5}} (6.1.8)

where ri is the ith rating in stars and |R| = n. The average rating is calculated as

R = 1
n

∑
ri∈R

ri (6.1.9)

Second, we consider the following special cases:

|Rlow| = 0 There are only high ratings (four and five stars) and the distribution

is either skewed left normal or a constant. Hence the weighted means difference only

depends on the high ratings
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wmd(R) =
|R4| × abs

(
R− 4

)
n

+
|R5| × abs

(
R− 5

)
n

(6.1.10)

|Rhigh| = 0 There are only low ratings (one and two stars) and the distribution

is either skewed right normal or a constant. Hence the weighted means difference only

depends on the low ratings

wmd(R) =
|R1| × abs

(
R− 1

)
n

+
|R2| × abs

(
R− 2

)
n

(6.1.11)

Third, we calculate the average of the lower and upper ratings sets

Rlow = 1
|Rlow|

∑
ri∈Rlow

ri (6.1.12)

Rhigh = 1
|Rhigh|

∑
ri∈Rhigh

ri (6.1.13)

and factor in the number of ratings in each of them

wlow = |Rlow|
|Rlow|+ |Rhigh|

(6.1.14)

whigh = |Rhigh|
|Rlow|+ |Rhigh|

(6.1.15)

to derive a weighted means difference with respect to the overall average rating
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wmd(R) = wlow × abs
(
R−Rlow

)
+ whigh × abs

(
R−Rhigh

)
(6.1.16)

Therefore, another confidence metric in the average rating is

crating(R) = 1− wmd(R)
2 (6.1.17)

Expression 6.1.2 crating

The confidence in the ratings distribution crating is based on the described

weigted means difference algorithm which is implemented in the distribu-

tion type model expression. As input we use the distribution of rating

stars. Furthermore, we normalize the result to yield a confidence metric

between 0% and 100% accordingly.

App
apply to

c
rating

subtract

divide

2.0

DistributionType

fiveStarsfourStarsthreeStarstwoStarsoneStars

1.0

6.1.4.2 Reviews

Since users associate a review with a “recommendation” by real people, it is a valu-

able resource for evaluating an App. However, there are a number of problems associated

with evaluating reviews. Influential fake and bad reviews can dominate over interesting
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and useful ones [112, 120]. Furthermore, users review Apps differently when they can

keep their identity anonymous [41]. Identifying fake reviews is beyond the scope of

this discussion. Here, we focus on two other metrics that typically influence a user’s

perception of a review. Let us consider the text of a review as a collection of words

T = {w0, . . . , wn} (6.1.18)

where wi is the ith word of text in the review.

Spelling Correct spelling can be an indicator of professionalism. Therefore, when

looking at reviews we need to factor in the number of misspelled words. The proposed

confidence metric in terms of spelling is defined as

cspelling(T ) = 1− |Tms|
|T |

if |T | ≥ 1 (6.1.19)

where

Tms = {w0, . . . , wn|w ∈ T,w misspelled} (6.1.20)

is the set of misspelled words. Note that for our spell checking purposes we use [1].

As part of our framework we can define this confidence as follows.

Expression 6.1.3 cspelling

The confidence in spelling cspelling can be defined using the spellcheck

model expression which implements equation 6.1.19. In this case we apply

it to the text attribute of a Review.
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Review
apply to

cspelling

SpellCheck

text

Sentiment Analysis Whether a review is positive or negative can be evaluated using

sentiment analysis. One approach is to describe the overall sentiment of a review is by

finding words in the review that represent a positive or negative sentiment for the set

Ts = {w0, . . . , wn|w ∈ T, ∃ sentiment for w} (6.1.21)

with the overall sentiment defined as

sent(T ) =
∑
wi∈Ts

sent(wi) (6.1.22)

where sent(wi) is the sentiment of a word and sent(T ) of the entire review. Because

more text does not necessarily imply more words with sentiments we propose to make

the sentiment proportional to the number of words in the review and bound it by the

number of words with sentiments.

sentp(T ) = sent(T )
max(

√
|T |, |Ts|)

if |T | ≥ 1 (6.1.23)

This means that the same number of words with sentiments have more impact the

shorter the review is. Furthermore, sentiment analysis is based on positive or negative

values associated with specific words. Here, we use a word list by Nielsen [115]. There-

fore, we need to normalize them to a common scale between 0 representing negative,
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0.5 neutral and 1 positive overall sentiments which yields

sentscaled(T ) = sentp(T ) + abs (0− sentmin)
sentmax − sentmin

(6.1.24)

where sentmin and sentmax represent the minimum and maximum possible sentiment

values used. This sentiment is a good additional indirect indicator of the App’s quality.

However, here we are interested in how closely the sentiment of the review text reflects

the review’s star rating. Discrepancies lower the confidence in a review which we leads

us to define a confidence metric as

csentiment(T ) = 1− abs
(
r − 1

4 − sentscaled(T )
)

(6.1.25)

where r−1
4 is the rating given in connection with the review adjusted to range from

1 star (0% confidence) to 5 stars (100% confidence) and the overall confidence the

difference between this rating and the review’s sentiment. This approach is reflected in

the following graph model representation.

Expression 6.1.4 csentiment

The confidence in the sentiment csentiment is modeled as an expression

tree that uses a series of mathematical operations compute the difference

between the sentiment and its rating. In particular, the sentiment model

expression reflects equation 6.1.24. We then combine the sentiment anal-

ysis result with several math expressions as discussed in equation 6.1.25.
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Review
apply to

csentiment

subtract

absolute value

subtract

Sentiment

text

divide

4.0

subtract

1.0rating

1.0

6.1.4.3 Permissions

Apps require permissions to utilize smartphone system functionality as well as to

read and write user data. Users are often overwhelmed by the complexity of permis-

sions and even developers generally lack a thorough understanding of which ones are

necessary and which ones are too invasive [47, 49]. However, permissions are like keys

to information stored on the smartphone. We present several approaches to determine

the trustworthiness of Apps based on the sets of permissions they require but focus on

the dangerous ones.

Number of Permissions The number of permissions used within a particular cate-

gory can be a good indication of how many permissions are adequate for an App in the

specific category. Given the sets

C = {c0, . . . , cn} (6.1.26)

Ac = {a0, . . . , an} (6.1.27)

W = {A0 ∪ · · · ∪An|∀c ∈ C} (6.1.28)
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where ci is the ith category, ai is the ith App in category c and Ac the set of Apps for a

particular category c consider the following sets of permissions

P = {p0, . . . , pn} (6.1.29)

Pa = {p0, . . . , pn|App a has p} (6.1.30)

P c = {P0 ∪ · · · ∪ Pn|a ∈ Ac} (6.1.31)

where pi is the ith permission, Pa the set of permissions for the App a, and P c the

permissions for the category c. We can define the average number of permissions for a

category

P c =
∑
a∈Ac |Pa|
|Ac|

(6.1.32)

and overall

P =
∑
c∈C

∑
a∈Ac |Pa|
|W |

(6.1.33)

This allows us to propose a model for the permission confidence using the following

ratios for categories

ccategory#permissions(n) = P c!
n! × P

cn−P c (6.1.34)

and
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Figure 6.1.5: Distribution of App permissions

c#permissions(n) = P !
n! × P

n−P (6.1.35)

overall where n is the App’s number of permissions as well as P c and P the rounded

averages described above. Note that this confidence is based on the ratio of Poisson

probabilities. We use the Poisson distribution here as it has the advantage of being

displaying tail characteristics that are more suitable to describing the distribution of

permissions as shown in Figure 6.1.5 where most Apps have only few permissions. As

for our evaluation we focus on dangerous App permissions.

Expression 6.1.5 dangerous App permissions

Since permissions are always associated with an App we retrieve all its

neighbors that match the Permission type and are dangerous.
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App
apply to

dangerous App permissions

Neighbors

ElementNode

and

equal

dangerouslevel

is Permission type

ElementNode

label

evaluatingExpression includeExpression

Expression 6.1.6 overall dangerous App permissions

The overall dangerous App permission metric retrieves dangerous per-

missions from all element nodes that are part of the App list. Two list

model expression are used here. For each repeats the evaluating expres-

sion for all Apps while ungroup converts the lists of App permissions into

one combined list of permissions.

overall dangerous App permissions

UnGroup

ForEach

App list

dangerous app permissions

evaluatingExpression

Expression 6.1.7 Pdangerous

The average number of dangerous App permission Pdangerous then be-

comes a straightforward ratio of the number of all dangerous App per-

missions and the number of Apps.
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Pdangerous

divide

count

App list

count

overall dangerous App permissions

Expression 6.1.8 c#permissions

The confidence in the number of dangerous permissions c#permissions can

be expressed using a combination of basic expressions and the Poisson

model expression. Note that we utilize the average number of dangerous

permissions Pdangerous both, as mean for the Poisson distribution and as

best case for the resulting probability density.

App
apply to

c#permissions

divide

Poisson

PdangerouspmfPdangerous

lambda
type

Poisson

count

Neighbors

ElementNode

and

equal

dangerouslevel

is Permission type

includeExpression

pmfPdangerous

lambda
type

Type of Permissions Because some permissions are more common than others (see

table 6.1.2) we also consider the different types of permissions used by a particular
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Table 6.1.2: Most used permissions across 30 categories from our data set
of 11326 Apps with 134 different kinds of permissions as of July 2012

Permission Apps with Average
permission rank

full Internet access 80.83% 1.03
view network state 54.88% 2.57
modify/delete USB storage contents
modify/delete SD card contents 53.88% 2.67
read phone state and identity 39.63% 4.13
control vibrator 27.62% 5.43
prevent tablet from sleeping
prevent phone from sleeping 22.38% 7.30
coarse (network-based) location 16.54% 8.10
automatically start at boot 14.13% 9.53
fine (GPS) location 11.38% 12.60
Market billing service 10.44% 13.40
discover known accounts 9.96% 12.30
take pictures and videos 8.29% 16.47
read contact data 7.97% 14.13
view Wi-Fi state 7.79% 13.13
Market license check 7.58% 13.33

App. Most used permissions are also reported in [47, 132]. We adapt the Jaccard

set similarity [77] and propose the following for bags of permissions to compare an

App’s set of permissions with the weighted set of average permissions required by other

Apps in the same category and overall. Note that a bag is a set of items where each

particular item can occur multiple times. Hence, we normalize the confidence in a set

of permissions by treating 75% similarity and above as 100% confidence for categories

as
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ccategorypermissions(Pa) = min

(
4
3 ×
|P̂a|
|P̂ |

, 1
)

(6.1.36)

where P̂ c is the bag of all permissions {P0 ] · · · ] Pn|a ∈ Ac} for a particular category

and P̂a is the bag of permissions {p0, . . . , pn|p ∈ Pa} ⊆ P̂ c of an App. Similarly, for all

Apps we define the confidence metric as

cpermissions(Pa) = min

(
4
3 ×
|P̂a|
|P̂ |

, 1
)

(6.1.37)

where P̂ is the bag of all permissions {P0 ] · · · ] Pn|a ∈ W} overall and P̂a is the

bag of permissions {p0, . . . , pn|p ∈ Pa} ⊆ P̂ of an App.

Expression 6.1.9 cpermissions

The confidence in the type of dangerous permissions cpermissions is mod-

eled using the Jaccard index model expression applied to the set of dan-

gerous permissions of the particular App and the bag of dangerous per-

missions of all Apps. The similarity level above which the confidence

results in 100% confidence can be adjusted using the system parameter

similarity.

App
apply to

cpermissions

min

1.0

divide

similarity

JaccardIndex

bagsoverall dangerous App permissionsdangerous App permissions

A
B

type
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6.1.5 Trusting Apps: Knowledge Evaluation

In order to assess the trustworthiness of an App we consider the three basic at-

tributes – average rating, average review score, and number of permissions – and their

trustworthiness assessments as described above. We compare a decision process based

only on these attributes with one that includes confidences for the attributes. We pro-

pose a basic decision process (more sophisticated decision engines are a topic for future

research) as a weighted sum of the scaled attributes

trust(App) =
∑

wi ×mi (6.1.38)

where wi is the assigned weight with
∑
wi = 1 and mi one of the following metrics:

m1 = r−1
4 the scaled average rating with r being the App’s rating

m2 = 1
|reviews|

∑
ri∈reviews

ri−1
4 the scaled average review rating with ri as the re-

view’s rating

m3 = max(ϕ−pϕ , 0) the scaled number of dangerous permissions with p as the

number of dangerous permissions and ϕ a scaling parameter (10 by default)

We can model these metrics as the following expressions.

Expression 6.1.10 m1

The scaled average ratingm1 can be modeled using basic math expressions

which are performed on an App’s rating value.
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App
apply to

m1

divide

4.0

subtract

1.0ratingValue

Expression 6.1.11 m2

The scaled average review rating m2 can be expressed using the neighbors

model expression where the rating of each Review is scaled using math

expressions.

App
apply to

m2

average

Neighbors

ElementNode

is Review type

ElementNode

divide

4.0

subtract

1.0rating

evaluatingExpression includeExpression

Expression 6.1.12 m3

The scaled number of dangerous permissions m3 is modeled by using the

neighbors model expression to determine the set of dangerous permissions

and math expressions. The scaling factor is expressed as an adjustable

system parameter ϕ.
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App
apply to

m3

max

0

divide

ϕ

subtract

count

Neighbors

ElementNode

and

equal

dangerouslevel

is Permission type

includeExpression

ϕ

Given the metrics discussed above we can then define equation 6.1.38.

Expression 6.1.13 trust

The trustworthiness of an App considering only the basic attribute met-

rics scaled average rating, scaled average review rating, and scaled num-

ber of dangerous permissions is modeled using a weighted sum model ex-

pression on the previously defined metrics as specified by equation 6.1.38.

We provide the ability to change the weighting scheme by adjusting the

system parameters w1, w2 and w3.
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App
apply to

trust

WeightedSum

List

w3w2w1

List

m3m2m1

values weights

As shown in figure 6.1.6, each of the trustworthiness assessments ranges from 0%

to 100% confidence and allows for a reasonable separation between “good” and “bad”

Apps. Factoring these into our decision process we adjust each metric by the confidence

in it. This means that if a metric is trusted 100% it does not change but that overall

the lower the confidence is the lower the metric score will be. Note that, we associate

the fact that a metric does not exist with 0% confidence. The proposed decision process

becomes

trust+(App) =
∑

wi ×mi ×
(
∆m1

i ×∆m2
i

)
(6.1.39)

where wi and mi are the weights and metrics defined above which we adjust using

the respective assessments ∆m1
i and ∆m2

i for each of the metrics. In particular:

∆m1
1 = c#rating(n) the confidence in the number of ratings

∆m2
1 = crating(R) the confidence in average rating considering the distribution of

ratings

∆m1
2 = 1

|reviews|
∑
T∈reviews cspelling(T ) the average confidence in the reviews con-

sidering their spelling

∆m2
2 = 1

|reviews|
∑
T∈reviews csentiment(T ) the average confidence in the reviews con-

sidering the difference between their rating and sentiment
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(a) Confidence in number of ratings,
µ = 63.88% and σ = 37.54%
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(b) Confidence in average rating con-
sidering distribution of ratings, µ =
67.46% and σ = 23.59%
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(c) Confidence in a review considering
spelling, µ = 91.84% and σ = 15.86%
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(d) Confidence in a review considering
sentiment rating difference, µ = 63.54%
and σ = 16.04%
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(e) Confidence in number of danger-
ous permissions, µ = 68.13% and σ =
31.52%
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(f) Confidence in set of dangerous per-
missions using 75% set similarity as
100% confidence, µ = 56.97% and σ =
29.81%

Figure 6.1.6: Trustworthiness assessments overview
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∆m1
3 = c#permissions(n) the confidence in the number of dangerous permissions

∆m2
3 = cpermissions(Pa) the confidence in the set of dangerous permissions

While some of the metrics have been discussed as part of the knowledge processing

component the other ones can be defined using the following expressions.

Expression 6.1.14 ∆m1
2

The average confidence in the spelling of reviews ∆m1
2 can be expressed

using the neighbors model expression where we evaluate the cspelling metric

on each Review.

App
apply to

∆m1
2

average

Neighbors

ElementNode

is Review type

ElementNode

cspelling

evaluatingExpression includeExpression

Expression 6.1.15 ∆m2
2

The average confidence in the sentiment of reviews ∆m2
2 is modeled in

a similar fashion. Hence, the neighbors model expression is used to eval-

uate the csentiment metric for each Review accordingly and the results

subsequently averaged.
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App
apply to

∆m2
2

average

Neighbors

ElementNode

is Review type

ElementNode

csentiment

evaluatingExpression includeExpression

As a result the enhanced version of determining App trustworthiness which incor-

porates confidence assessments is defined as:

Expression 6.1.16 trust+

The trustworthiness of an App considering factoring in confidence assess-

ments for the basic attribute metrics scaled average rating, scaled average

review rating, and scaled number of dangerous permissions is modeled us-

ing a weighted sum model expression on the previously definedmetrics and

the confidences as specified by equation 6.1.39. Here, we provide the abil-

ity to change the weighting scheme by adjusting the system parameters

w1, w2 and w3 as well.

App
apply to

trust+

WeightedSum

List

w3w2w1

List

multiply

multiply

cpermissionsc#permissions

m3

multiply

multiply

∆m2
2∆m1

2

m2

multiply

multiply

c
rating

c#rating

m1

values weights
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(a) only average app rating: w1 =
1, w2 = 0, w3 = 0
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(b) only average review ratings: w1 =
0, w2 = 1, w3 = 0. Note that 58.52%
of the Apps in the data set do not have
any reviews.
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(c) only dangerous permissions: w1 =
0, w2 = 0, w3 = 1
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(d) all attributes equally: w1 = 1
3 , w2 =

1
3 , w3 = 1

3

Figure 6.1.7: Comparison of App trustworthiness assessments between
using only metrics (equation 6.1.38) and including confidence assessments
(equation 6.1.39) for a variety of different weights.

The results for the Apps in the data set using different weights are shown in fig-

ure 6.1.7. It is notable that factoring in confidences results in a significant difference in

the trust assessments. Whenever we include the confidences we generally lower the over-

all trust in an App. However, the overall trustworthiness distribution of the Apps with

confidences seems far more reasonable than without. Especially for often artificially

inflated ratings we notice a more evenly spaced distribution with a lot fewer “good”

Apps (Figure 6.1.7a).

Furthermore, most of the distributions noticeably change which impacts the number

of Apps above certain trust thresholds. For example, considering all attributes with
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equal weights (Figure 6.1.7d) without the confidence metrics about 5% of the Apps

have a trust level above 90% but including the confidence metrics leads to the top 5% of

Apps having trustworthiness assessments between 55% and 65%. This shows that there

is no clear threshold available that could be used by a user to determine trustworthiness

of Apps. However, the results describe overall trends and relative rankings which in

combination with the individual confidence metrics allow the user to perform a more

detailed analysis of an App.

The trustworthiness assessments shown in Figure 6.1.6 make it clear that individual

attributes of Apps have various levels of trust and that this should be considered when

using these attributes to determine trust. Hence, incorporating these assessments into

the overall decision process using a weighted approach such as trust+ (Equation 6.1.39)

or more sophisticated methods is a necessary step towards improving the overall trust

assessment of Apps as shown in Figure 6.1.7.

It is important to note that some App attributes as well as trustworthiness assess-

ments may be better suited to the needs of one decision process than another. One

also needs to consider the fact that some confidence metrics yield contrasting results for

the same App attribute. This means that the ultimate decision on how to utilize these

attributes and their confidences is up to the user. However, as part of this disserta-

tion we proposed potential trustworthiness assessments and showed that it is necessary

to incorporate them into the overall decision process because even though two Apps

may have similar attribute values such as average ratings their “true” value may be far

different.

6.1.6 Trusting Apps: Summary

Trust assessment of Apps is necessary and important since smartphones are becom-

ing the new information hubs for people and companies but their security is generally

lacking (rooting is common, malware and spyware widely circulated) such that there is
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no guarantee that information is safe. In addition, even App stores (Google Play, Apple

App store) often contain unsafe Apps.

In this scenario we discussed the application of our formal but flexible framework

to the domain of smartphone Apps. In particular, we modeled a heterogeneous system

using the abstract graph model described in chapter 4. Furthermore, we proposed several

metrics that can be utilized to determine confidence in App attributes such as average

rating, average reviews rating and number of dangerous permissions and provided formal

representations of them using graph expressions (section 4.4). Most importantly we

showed that incorporating these confidence metrics using our approach described in

chapter 5 is helpful in determining trustworthiness and ultimately whether to install

an App or not. As such, we developed two decision processes and described them in

detail using graph expressions. Furthermore, the entire scenario shows how flexible our

framework since every computation and assessment is simply based on evaluating formal

graph expressions on formal graph components.

Future research will focus on evaluating the quality of the recommendation based

on the proposed techniques and refining the decision engines. For instance, one could

easily extend the current decision process to only consider Apps as trustworthy where

no confidence metric falls below a certain threshold.

Furthermore, even though we proposed trustworthiness assessments that take into

consideration relationships between Apps we need to investigate assessments of Apps

at various levels:

local looking only at the attributes of a single App without considering its relation to

other Apps (rating but not compared to average rating of all Apps, etc.)

similar comparing Apps with “similar” attributes (similar rating, similar number of

reviews, etc.)
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related comparing Apps that share relationships among each other (same developer,

also installed, also viewed, etc.)

category comparing Apps in the same category as they should have similar attributes

but may be unrelated and hence potentially leads to Apps forming clusters

global comparing a single App to all other Apps

external meta data using information from outside the primary source (i.e., Google

Play) and correlating it with the existing Apps attributes and relationships.

By using the TrustKnowOne framework described here we provide an approach based

on graph expressions that allows existing as well as future belief engines and decision

processes to be implemented. In particular, these graph expressions can be associated

with metrics and cost assessments thereby enabling approaches to be evaluated and

compared formally.

6.2 Radiation Detection in Heterogeneous Sen-

sor Networks

Here a radiation detection scenario will be used to illustrate the kind of data and

processes our TrustKnowOne framework will be able to consider. Imagine the following;

a set of sensors are available to measure levels of radiation. These sensors could be

privately owned (connected to or part of a smart phone) or part of a government sensor

network. The goal is to use geographically distributed radiation readings from a set of

heterogeneous sensors to decide if the environment is safe. In general, the groups of

radiation detectors shown in table 6.2.1 may be present.

Note that cost could be an indicator of the accuracy and capabilities of the radiation

sensors; more expensive sensors could not only detect the presence but the type of
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Table 6.2.1: Radiation sensor groups

Type Trustworthiness Security Cost

public not verified not signed low
non-government/private varying varying varying
government verified signed high or medium

radiation, e.g., Alpha, Beta and Gamma radiation. These groups possess sensors of

varying cost, accuracy and trust which means the resulting observations need to have a

differentiated influence on the decision making process of telling whether or not there

is radiation present.

Furthermore, the entire set of heterogeneous sensors forms various physical (geo-

graphically close) and logical (e.g., same owner, same class of sensor, or same age of

sensor) relationships that we are able to utilize in our framework to determine the accu-

racy of the radiation detection and the trust we have in specific sensors. In the decision

making process we may want to trust readings from government sources more than

from public or private sensors because they are signed and verified. In addition, mobile

sensors move and their readings from previous locations are not necessarily accurate

anymore but we could still use the data to a certain degree when determining radiation,

thus making the measurements also time varying.

The use of a network of geographically distributed heterogeneous sensors combined

with the our framework could have proved useful to detect the radiation levels at Japan’s

earthquake-stricken Fukushima nuclear power plant and contributed to decisions con-

cerning the safety of the surrounding environment. We chose this scenario to showcase

how our framework is able to model the heterogeneous system of sensors and its com-

plex relationships necessary to improve the knowledge derivation process for radiation

detection.
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6.2.1 Radiation Detection: Overview

Radiation detection is a natural application of sensor networks. In this section, we

discuss how our framework can be applied to what is referred to as collaborative sensing.

Sensor networks and in particular radiation detection networks used to be expensive to

set up, difficult to maintain and often under the authority of a government agency.

However, the cost of sensors has decreased to the point where consumers are able to

purchase them. Furthermore, the capabilities of sensors have improved dramatically.

This means that both application-specific sensors (e.g., for radiation detection) as well

as multi-purpose sensors (e.g., GPS, temperature, and humidity combined) can now be

utilized more efficiently (i.e., using one multi-purpose sensor instead of multiple specific

ones) and effectively (i.e., higher accuracy with lower cost).

Nevertheless, several problems remain to be solved. For instance, the availability of

a various sensor types is prone to create heterogeneous environments in which data in-

tegration and fusion become necessary preprocessing steps before data can be analyzed.

Specifically for the radiation detection there are several different types of detectors for

individual radiation sources (e.g., cosmic, terrestrial, nuclear), elements (e.g., Caesium,

Plutonium, Uranium), and emissions (e.g., alpha, beta, gamma rays). Furthermore,

detecting radiation is sensitive to several factors such as location (e.g., inside buildings,

open field) as well as measurement inaccuracies (i.e., ground level, at 1 meter height,

sensor calibration).

These physical aspects then need to be considered with respect to logical context

such as ownership and trustworthiness, all of which makes radiation detection one of the

most complex sensor network application scenarios. In particular, during the Fukushima

nuclear incident in 2011 Safecast [144] reported that there were problems with commu-

nicating radiation level measurements in a timely manner because of bureaucracy and

political pressure. When data was released it was often incomplete or inaccurate. While

most of the data was later adjusted after public protest this led to a decrease in trust
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of official government authorities. Hence, activists turned to collaborative sensing ap-

proaches in order to alleviate these issues. In this scenario we will discuss how our

framework can be applied to model knowledge derivation that incorporates trust and

quality of data in this kind of heterogeneous sensor network environment.

6.2.2 Radiation Detection: Framework Modeling Approach

Our TrustKnowOne framework is able to model heterogeneous systems as well as

deal with the dynamic environment often found in sensor networks. Furthermore, many

of the problems described can be solved through the various aspects of our framework.

In particular, the abstract graph model allows us to model different types of sensors

and define relationships between them. Additionally, dimension models can be used to

express notions of the accuracy and constraints of sensors (see section 4.3). As trust

becomes an even more important component of being able to derive knowledge from the

vast amount of data provided by sensor networks, our framework can describe trust and

quality assessments of data in a uniform and flexible manner using graph expressions.

As a case study we will focus on collaborative sensing in the context of Japan’s

Fukushima nuclear incident in 2011. The incident caused the establishment of Safecast

[144] where users can submit radiation measurements they have taken. Furthermore,

there exists an official government database of radiation measurements by the Interna-

tional Atomic Energy Agency [75]. Here, we analyze the combined data sets from both

sources and discuss approaches to assess the confidence in individual measurements as

well as the trustworthiness of sensors and their sources.

In the following sections we will discuss how the TrustKnowOne framework is able

to model data processing from multiple source with varying trust aspects and their

analysis. In particular, we will address:

• Modeling heterogeneous data (Safecast measurements, IAEA sensors), relation-

ships (location clusters, id clusters), and data sources (collaborative, government)
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Figure 6.2.1: Framework overview for the radiation detection scenario

in our abstract graph model (section 4.1)

• Incorporating location dynamics (mobile vs. stationary sensors) and time variant

information (sensor readings are time series data) throughout knowledge processing

and evaluation (section 5.3.1, 5.4.1)

• Performing complex data transformations (conversion of attribute values, combi-

nation of elements, creation of elements) using graph expressions (section 4.4)

• Formalizing confidence assessments for sensors using time series information, con-

text, and group relationships as belief engines (section 5.3.1)

• Representing decision making as formal decision processes with the option of

whether or not to incorporate confidence assessments (section 5.4.1)

Figure 6.2.1 shows an overview of how the individual components discussed in this

section relate to our TrustKnowOne framework.

Knowledge Extraction We model two types of sensors, one representing coming

from the Safecast [144] the other from the IAEA [75] data set. Note that Safecast [144]
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only provides single measurements which makes it difficult to perform extended trust

assessments that incorporate relationships between data. We retrieved the data using

the their web application interface for the entire year of 2011. The data from IAEA

[75] is based on several sensors which makes correlation is possible. However, while

the number of radiation measurements per sensor is high there are only a few sensors

available. As a result of the framework is able to utilize three static data sources that

provide sensor and radiation level information provided with time and location stamps.

Knowledge Processing In order to perform proper processing and trust assessment

we need to transform the individual measurements from Safecast [144] into sensors. Our

approach incorporates two density-based clustering procedures where we exploit location

and id sequence properties of measurements. Confidence assessments are provided in

two ways. First, each sensor is evaluated based on its attributes individually. Second,

we put the sensor into context by examining its relationship with sensors in the same

location (cluster). Hence, a variety of trust and quality assessments is provided that

allows the detailed evaluation of sensors.

Knowledge Evaluation Based on the individual as well as the location cluster as-

sessments of a sensor we are able to evaluate its trustworthiness. We discuss three

approaches that do not depend on choosing particular confidence assessments over oth-

ers but rather combine them in a variety of ways. First, all assessments are incorporated

which allows absolute (e.g., 0%-100% scale) as well as relative (e.g., top 10% percentile)

ranking. Second, we allow the user to pick thresholds to determine trustworthiness lev-

els. Third, based on ownership we incorporate confidences differently into the decisions.

The next sections will provide a detailed analysis of the scenario aspects and their

relationship to our framework.
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6.2.3 Radiation Detection: Knowledge Extraction

We propose the following approach to modeling the collaborative radiation detection

scenario described. The key components of the abstract graph model are various types

of sensors. Hence, we model each type as an independent element. The two data

sources that we consider are user submitted measurements from Safecast [144] and

official measurements from the International Atomic Energy Agency (IAEA) [75]. As

such we define elements with attributes that match their properties.

In addition, we provide a Location element that is relevant because it is used to

relate individual Sensor elements to each other. Specifically, Sensor elements represent

derivations from multiple Measurement elements through means of clustering. Since

IAEASensor elements already provide time series information they can be modeled as

is. During this process the Sensor elements will be automatically assigned to a particular

Location whereas IAEASensor elements are assigned to a single Location. We model

relationships accordingly for each of the sensor types and a particular Location. The

abstract graph model for this scenario is shown in figure 6.2.2.

An example of how the element instance graph might look like is shown in figure 6.2.3.

In particular, it displays how three Measurements are transformed into a Sensor that

incorporates their individual values. Note that we left out a number of attributes for

clarity in the figure.

After the density-based clustering process is performed during the knowledge pro-

cessing stage, only Sensor and IAEASensor element nodes are utilized for determining

trustworthiness aspects. In figure 6.2.4 we show two Sensor element nodes as well as

two IAEASensor element nodes. Each is related to a single Location element node using

the Location-Sensor and the Location-IAEASensor relation edges respectively.

An overview of the data sets we use as part of this scenario is given in table 6.2.2. We

chose the data sets based on their diversity. Whereas Safecast [144] contains thousands

of collaboratively collected measurements which are loosely connected, the IAEA [75]
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Figure 6.2.2: Radiation detection element description graph
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Figure 6.2.3: Radiation detection clustering element instance graph

data sets comprise of official government sensors and their radiation levels. As such

we are able to apply our framework in a heterogeneous environment of sensors with

radiation levels captured as time series and context such as location and ownership
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Figure 6.2.4: Radiation detection element instance graph

Table 6.2.2: Radiation detection data set overview

Data Set Data Points Sensors Time Frame Type

Safecast [144] 2,120,078 ≈ 40,000 2011-04-23–2011-12-31 mobile and
stationary

Fukushima
Daiichi: Fixed
Post gamma
dose rates [75]

311,720 8 2011-04-05–2011-12-31 stationary

Fukushima
Daiichi: Mon-
itoring Car
gamma dose
rates [75]

41,989 12 2011-03-14–2011-12-31 stationary

can be incorporated into the decision process. Note that while the IAEA monitoring

car data set name implies mobile sensors the measurements actually reflect those of

transportable sensors. That is the sensor was transported by car to a specific location,

set up, and measurements taken. Hence, we will refer to the data set transportable

sensors.
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6.2.4 Radiation Detection: Knowledge Processing

In order to assess the trustworthiness of individual measurements, sensors, and data

sources we define metrics that reflect various aspects of confidence in element node

properties. In general, there are two categories of approaches that we will discuss. First,

sensor attributes and metrics computed from these attributes can be used to evaluate

sensors on an individual basis. Second, sensors form various relationships (e.g., sensors

of the same location cluster) that can be exploited to find outliers and anomalies.

However, before we can apply these metrics we need to discuss the how the data

provided by the Safecast [144] can be incorporated into our framework.

6.2.4.1 Deriving Sensor Identities Through Density-based Clustering

We retrieved the collaborative sensing data set from Safecast [144] using their web

application programming interface. The data consists of individual measurements that

were taken and submitted by a variety of users. Specifically, we have information about

time and location of the measurement as well as its radiation value. However, there

are several problems with the data initially provided by Safecast [144]. Some attributes

such as “device id”, “location name”, and “original id” are not set in about 99% of

the cases. Furthermore, the usefulness of other attributes is limited. In particular, all

data from 2011 has the “cpm” which stands for counts per minute and the “user id"

is 1 for about 99% of the measurements. This makes it hard to identify measurements

that were taken by the same sensor or user and model relations between measurements

beyond the basic time (measurements at a similar time) and location (measurements

in a similar location) domains. As such, one of the problems is to transform the “raw”

measurements from the Safecast [144] data set into measurements we can infer came

from specific sensors.

In order to address these problems we employed the following approach. First, we

performed density-based location clustering on the measurements to group measure-
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Figure 6.2.5: Various location clusters within a specified latitude and
longitude identified by color

ments in the same vicinity of each other to infer the identity of specific sensors. The

reason we used a density-based approach here over distance-based clustering lies in

the fact that we want to model mobile as well as stationary sensors. Distance-based

clustering would have worked well on stationary sensors but would have likely split mea-

surements from the same sensor if it was moving along a path. As shown in figure 6.2.5

stationary sensors still appear as individual clusters forming the expected circle like

coloring but mobile sensors are identified as well forming paths of the same color.

Second, within individual density-based location clusters we inferred the identity of

individual sensors by utilizing a property of the Safecast [144] data set. Most measure-

ments were uploaded in sequence and thus have consecutive ids. This fact was discovered

as many sequential measurements had similar location attributes while being specific

time intervals (e.g., 5 seconds, 10 seconds) apart. Therefore, we performed a second

clustering based on series of consecutive ids. figure 6.2.6 shows one of the density-based
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Figure 6.2.6: Several id clusters within an individual location cluster iden-
tified by color

location clusters where consecutive id clustering has been used to identify clusters. We

can clearly see that many sensors move along paths meaning they are mobile. This

validates our density-based approach to infer sensor ids to a certain degree.

Note that we used this two step approach to avoid the case were measurements were

identified as belonging to the same sensor simply because of sequential ids. However,

we need to point out that we cannot identify cases in which a sensor was used to gather

measurements at one location or path and than later elsewhere. In our approach we

would treat this as two different sensors. Next, we will discuss the clustering approaches

in detail and describe how we integrated them into our framework using flexible graph

expressions.

The first step is to cluster based on location. As described above we make use of a

density-based approach. In particular, we chose DBSCAN by Ester et al. [46]. The basic

idea behind the algorithm is as follows. We iterate over the set of data points where we
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determine neighbors using a region query. This region query performs a neighborhood

search and returns all neighbors within a specified distance ε. If the number of neighbors

exceeds a minimum number of points it is considered a new cluster. All neighbors that

do not already belong to a cluster become members of the new cluster. Furthermore,

these neighbors are used as starting points for expanding the cluster. This means that

we determine their neighbors within distance ε and continue recursively.

Using this approach we are able to deal with measurements that were captured by

mobile sensors since the density-based technique will be able to identify path clusters

whereas a distance-based approach will not. The key component of the algorithm is the

region query. It represents the distance calculation function and needs to be implement

in a scalable manner in order to avoid the O(n2) complexity of pair-wise data point

distance computations. There are several spatial indices available. Here, we employ

R-trees developed by Guttman [66] since they give good performance (O(logn)) for

nearest neighbor searches (see Brinkhoff et al. [21]).

Expression 6.2.1 density-based location cluster

We model the density-based location clustering approach as a DBScan

cluster model expression. In particular, we choose the minimum number

of measurements to form a cluster to be 5 and the neighborhood search

radius (epsilon) to be 0.01 which since the calculation is based on the

Euclidean distance of GPS coordinates is about 1100 meters. As a spatial

index we use an R-tree for the coordinates that are stored in the latitude

and longitude attributes. We also add the cluster id as a new location

cluster id attribute.

Measurement list
apply to

density-based location cluster

DBScanClusterExpression

rtree50.01longitudelatitudelocationClusterId

addAsAttribute
coordinates epsilon minPoints

regionQuery
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Expression 6.2.2 density-based location cluster groups

In order to group the Safecast measurements by their location cluster id

we use a model expression called group by. Note that we have to op-

tions for the result of this expression. First, as a list of groups, such

as {{m1,m2}, {m3,m6}, ...} where mi is a particular measurement ele-

ment node or as a map {l1 → m1,m2}, l2 → {m3,m6}, ...} where lj is a

particular location cluster id.

Measurement list
apply to

density-based location cluster groups

GroupBy

density-based location clusterlocationClusterIdfalse

asMap
groupingExpression

The result of the density-based location cluster groups metric is a list of clusters that

follow the density-based location clustering approach where each element in the group

is a measurement with the additional location cluster id attribute. One option is to stop

here and treat all measurements in the same group as coming from a single sensor.

Expression 6.2.3 fold location clusters

We can transform individual element nodes into new element nodes spec-

ified by the element parameter using the fold model expression. Here, we

apply this transformation to each of the location cluster groups using the

for each model expression. Thus the result of the fold location clusters

metric would be location cluster element nodes containing the combined

time series information of all measurements in a particular location clus-

ter.
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Measurement list
apply to

fold location clusters

ForEach

density-based location cluster groups

FoldElementNodes

LocationCluster

element

evaluatingExpression

In our case, as explained above, we proceed and perform additional clustering

based on the fact that measurements with consecutive ids are likely to come from

the same sensor. We can utilize the same density-based clustering approach DB-

SCAN. The one thing we need to modify is the region query. Here, we describe our

sequential neighborhood search technique. For each data point we return the neighbors

by searching the list of measurements for ids before and after the one of the speci-

fied measurement until there is a break. For example, given the set of measurements

{m1,m2,m3,m7,m8,m9,m10,m11,m15,m16, ...} where i of mi is the id, the sequential

region query would return the neighbors {m7,m9,m10,m11} for m8.

Expression 6.2.4 density-based id cluster

We model the density-based id cluster metric by using the DBScan model

expression again. Here, we specify to perform the neighborhood search

based on the sequential id cluster described above. We set the minimum

number of point for a cluster to 5. Note that the epsilon that is part of

the DBSCAN algorithm is ignored here because of the way our sequential

region query works. The clustering is performed on the measurement id

attribute and we add the resulting id cluster as the cluster id attribute.
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Measurement list
apply to

density-based id cluster

DBScanClusterExpression

sequential50.01idclusterId

addAsAttribute
coordinates epsilon minPoints

regionQuery

Expression 6.2.5 density-based id cluster groups

We can model the cluster of sensors with consecutive ids by using the

group by model expression on the cluster id attribute. As a result we

specify a list of cluster id groups.

Measurement list
apply to

density-based id cluster groups

GroupBy

density-based id clusterclusterIdfalse

asMap
groupingExpression

Now that we discussed both, the density-based location and the density-based id

clustering we apply them in order to derive sensor element nodes. Thus we can transform

the “raw” measurements from the Safecast [144] data set into sensors as follows.

Expression 6.2.6 fold measurements into sensors

The transformation of measurements into sensors consists of several steps.

First, we cluster by location using the density-based location cluster group

metric. Second, using the for each model expression we cluster within

each of the location cluster groups by id employing the density-based id

cluster groups metric. Third in order to derive sensor element nodes we

apply the fold nodes model expression to each of the id cluster groups
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with the location cluster groups. This results in a list of location cluster

groups containing individual sensor element nodes. Finally, we merge

all the groups into one list of clustered sensors using the ungroup model

expression.

Measurement list
apply to

fold measurements into sensors

UnGroup

ForEach

density-based location cluster groups

ForEach

density-based id cluster groups

FoldElementNodes

Sensor

element

evaluatingExpression

evaluatingExpression

In order to allow quick and straightforward management of sensors within a location

cluster we can utilize the fact that each sensor maintains the location cluster id attribute.

Hence, after the clustering process we apply the following metric to all sensor element

nodes to create location element nodes and relation edges to them accordingly.

Expression 6.2.7 create location group nodes

The location element nodes can be derived by applying the create group

node mode expression to the groups of sensors provided by the group by

model expression. Here, the group node being created is of type location

and uses the location cluster id of the group as its id attribute. Note that,

we also implicitly create the appropriate relation edges of the specified

location-sensor type.
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Figure 6.2.7: Safecast [144] heatmap of user submitted radiation measure-
ments for Japan

Sensor list
apply to

create location group nodes

ForEach

GroupBy

locationClusterIdfalse

asMap groupingExpression

CreateGroupNode

Location-SensorlocationClusterIdLocation

element
groupId

relation

evaluatingExpression

Since we have various data sources one thing we need to keep in mind is the unit

of the detected radiation values. While Safecast [144] uses counts per minute (cpm)

the International Atomic Energy Agency [75] uses µSv/h. We employ the following

conversion scheme as provided by Safecast [144] where 1µSievert/hour = 350cpm.

Note that Safecast [144] also provides a color coded chart of radiation severity which is

shown in table 6.2.3 and utilized to display the heatmap in figure 6.2.7.

Expression 6.2.8 convert µSv/h to cpm
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Table 6.2.3: Radiation severity according to Safecast [144]

Severity Color cpm µSv/h

very low blue 10 0.03
low purple 100 0.29
medium red 175 0.50
severe orange 350 1.00
very severe yellow 1000 2.86
most severe bright yellow >3500 >10

We can change attribute values using the set attribute model expression.

Here we convert the dose rate time series given in µSv/h into cpm and

set it as the value time series.

IAEASensor
apply to

convert µSv/h to cpm

SetAttribute

multiply

doseRate series350.0

value series

attribute value

6.2.4.2 Individual Sensors

On the individual sensor level, we propose metrics which are based on the time series

of detected radiation measurements. Hence, some of the metrics we discuss here affect

each other. For example, the number of time series values has a definitive correlation

with trend analysis as more values increase our ability to model trends with higher

confidence.

Number of Sensor Readings It is important to evaluate the number of sensor

measurements. This is particular true for time series analysis.
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Figure 6.2.8: The confidence based on the number of ratings c#values
modeled using the Pareto cumulative distribution function with xmin = 1
and α ranging from 0.1 to 1.0

Expression 6.2.9 number of values

The number of detected radiation values of a sensor can be determined

by a basic count of the number of time series values.2

Sensor
apply to

number of values

count

TimeSeriesValues

value series

Here we utilize the form of the cumulative distribution function of the Pareto dis-
2Note that in general all individual and location cluster sensor metrics can be applied to Sensor and

IAEASensor element nodes.
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tribution to express the confidence in the number of values.

Paretocdf (x) =


1−

(xmin
x

)α if x ≥ xmin

0 if x < xmin

(6.2.1)

where x is the number of values, xmin is the initial value for the function before

which the probability is 0 and α is the rate parameter. We choose this function because

it follows a power law and after an initial phase of low number of values it quickly

approaches 1 (see figure 6.2.8).

Expression 6.2.10 c#values

The c#values metric is expressed using a Pareto model expression with

an initial value xmin and a rate parameter alpha. As the result type we

specify the cumulative distribution function (cdf ).

Sensor
apply to

c#values

Pareto

number of values1cdfrate

alpha
type xmin

Outliers in Data Variance in data and specifically data points that do not align

with a general trend should make us question whether an overall time series of data is

accurate. There exist several techniques for detecting outliers in multidimensional data.

However, here we focus on time series data. As such, we utilize Cook’s distance [35] for

finding “influential” data points. The basic idea of the approach is that we perform a

regression on the available data and compare the sum of the squared residuals of the

regression including all data points with one that leaves one data point out. Hence, the

distance for an individual data point i can be defined as
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distancei =

n∑
j;j 6=i

Ŷall(j)− Ŷwithout i(j)

p×MSE( ˆYall)
(6.2.2)

where Ŷall(j) is the predicted value for j using the regression model for all data

points, Ŷwithout i(j) is the predicted value for j using the regression model without i,

p the number of regression parameters, and MSE( ˆYall) the mean squared error of the

original regression model. Note that, for example, the number of parameters p is two

for a linear regression (i.e., slope and intercept) and n+ 1 for an nth order polynomial

regression (i.e., the factors).

In order to determine the “influential” data points or outliers Cook originally sug-

gested distancei > 1. However, we choose distancei >
4
n

where n is the number of data

points because this criterion has been identified by Bollen and Jackman [18] as being

better suited.

Expression 6.2.11 Cook’s distance outlier percentage

We express outliers in data as the percentage of outliers according to

Cook’s distance for a given time series of detected radiation values. The

Cook’s distance outlier model expression yields a list of all data points

that have a distancei >
4
n
. The requested percentage thus becomes the

ratio of number of Cook’s outliers over the number of values in the time

series.

Sensor
apply to

Cook’s distance outlier percentage

divide

count

TimeSeriesValues

value series

count

CooksDistanceOutlier

value series
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Our confidence in a time series of values considering outliers follows the intuition

that the more outliers there are the less confidence we should have in the time series

being an accurate representation of its true values.

Expression 6.2.12 coutliers

The coutliers metric is modeled as being anti-proportional to the Cook’s

distance outlier percentage metric. This reflects the fact that more outliers

mean less confidence and less outliers mean higher confidence.

Sensor
apply to

coutliers

subtract

Cook’s distance outlier percentage1.0

Time Series Trend Analysis Trend analysis is key in determining whether a time

series follows a specific pattern or not. In the case of the radiation detection we would

like to see either constant or slowly declining radiation values, both can be detected by

analyzing the slope of a linear regression.

However, there are several issues that need to be addressed. First, the slope is

directly related to the time scale begin used. This means that we need to be careful

to use the same time scale (e.g., milliseconds, seconds, minutes) across comparisons.

Second, if the time scale becomes to small (i.e., milliseconds) and the distance between

data points of the time series large (i.e., weeks or months) there are computational

challenges in terms of dealing with floating points. Third, there exist a variety of

approaches to estimating the slope such as

• treating the first time series as the starting point with time t0 = 0 and estimating

the slope relative to that time

• ignoring time intervals between data points completely and thus treating time as
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a discrete sequence t0, t1...tn

• defining a generic start time accross all time series that are being compared and

calculating the slope relative to that time

Finally, one needs to consider the fact that outliers and anomalies often affect statis-

tical trend analysis. This gives rise to robust estimators such as the Theil-Sen estimator

(see Fernandes and G. Leblanc [50]).

Our approach addresses some of these problems while deferring others. For instance,

we perform a linear regression on the time series data using the first data point as time

t0 = 0. Furthermore, by default we use milliseconds as a time unit but also provide the

means to include a time scaling factor. The question of robustness against outliers is

avoided by having a separate confidence metric such as coutliers focus on that aspect.

Expression 6.2.13 time series slope

The slope of a time series is determined using a linear regression model

expression. Note that we treat the first data point of the time series as

having time t0 = 0 and determine the slope relative to that time.

Sensor
apply to

time series slope

LinearRegression

value seriesslopestartAtZero

approach
property

As described above, for the radiation detection the slope of radiation values should

be almost constant or slightly negative. In order to determine the confidence in the time

series trend we utilize a ratio of Normal distribution probability densities such that

cslope = N(s|0, σ2)
N(0|0, σ2) (6.2.3)
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Figure 6.2.9: The confidence based on the time series slope cslope modeled
using the ratio of Normal distributions probability densities with µ = 0 and
σ ranging from 0.1 to 1.0

where s is the slope of the linear regression and

N(x|µ, σ2) = 1
σ
√

2π
e−

(x−µ)2

2σ2 (6.2.4)

Note that the denominator part N(0|0, σ2) reflects the highest possible probability

density (see figure 6.2.9).

Expression 6.2.14 cslope

The cslope metric is expressed as the ratio of Normal distribution probabil-

ity densities using Gaussian model expressions. Specifically, we determine

density for the time series slope over the maximum possible density. Here,

we factor in the system parameter scale for time scale purposes as well

as ε to allows adjustments to the confidence degradation rate as slopes
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deviate more and more from constant.

Sensor
apply to

cslope

divide

Gaussian

0.0pdf

divide

scaleε

standardDeviation
type

Gaussian

multiply

time series slopescale

pdf

divide

scaleε

standardDeviation
type

Time-Value Correlation The relationship between detected radiation values and

time is important when determining trustworthiness. Linear dependence is one of the

most noteworthy correlation measures as it can be used to predict the behavior of one

variable based on another. We employ a basic approach, the Pearson product-moment

correlation coefficient for set of data X and Y defined as

R(X,Y ) =

n∑
i=1

(xi − x̄)(yi − ȳ)

(n− 1)sxsy
(6.2.5)

where x̄ and ȳ are the sample mean and sx and sy are the sample standard deviations.

We want to point out that the sample correlation is used because the radiation time

series values are only complete up to a certain point in time.

Expression 6.2.15 sample correlation coefficient

The sample correlation coefficient according to Pearson can be modeled

as a byproduct of the linear regression model expression
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Figure 6.2.10: The confidence based on the sample correlation ccorrelation
modeled using ratios of Normal distributions probability densities with µ =
0 and σ ranging from 0.1 to 1.0

Sensor
apply to

sample correlation coefficient

LinearRegression

value seriesRstartAtZero

approach
property

Linear correlation ranges from −1 to 1 such that the closer the value is to either the

stronger the correlation. We utilize a similar approach as the for the slope confidence.

However, we are interested in the complement probability. Hence

ccorrelation = 1− N(r|0, σ2)
N(0|0, σ2) (6.2.6)
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where r is the correlation coefficient and N(x|µ, σ2) the Normal distribution as

defined in equation 6.2.4.

Expression 6.2.16 ccorrelation

The ccorrelation metric is expressed as the ratio of Normal distribution

probability densities using Gaussian model expressions. We determine

density for the time series correlation over the maximum possible density.

In addition, we factor in the system parameter ε to allow adjustments to

the confidence degradation rate as correlations are not as strongs.

Sensor
apply to

ccorrelation

subtract

divide

Gaussian

0.0pdfε

standardDeviation
type

Gaussian

sample correlation coefficientpdfε

standardDeviation
type

1.0

Sensor Radiation Values Distribution The distribution of detected radiation val-

ues can be used to determine calibration accuracy of sensors and as such trustworthiness

in their values. The assumption is that after initial calibration the sensors reading er-

rors should follow a Normal distribution. Here, we base our confidence assessment on

the Anderson-Darling test [5], specifically in the context of testing whether a given

distribution is a Normal distribution. It defines the following test statistic

A2 = −n− 1
n

n∑
i=1

(2i− 1)(ln Φ(Yi) + ln(1− Φ(Yn+1−i))) (6.2.7)
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where n is the number of values, Φ the cumulative distribution function of the

Normal distribution, and Yi = Xi−µ̂
σ̂ the standardized radiation values.

However, because of the limited availability of critical values we perform an approx-

imation of the critical values provided by Stephens [161] using a Normal distribution.

Furthermore, the Anderson-Darling test is originally designed as a hypothesis test yield-

ing two outcomes. In order to model confidence we modify the approach and report the

cumulative distribution probability of the test statistic A2 given the Normal distribution

approximating the critical values best.

Expression 6.2.17 cdistribution

The cdistribution metric uses a modified Anderson-Darling test as described

above to determine whether time series values come from a normal distri-

bution with µ = 0 and standard deviation specified by system parameter

ε. This confidence is calculated with the Anderson-Darling model expres-

sion.

Sensor
apply to

cdistribution

AndersonDarlingConfidence

TimeSeriesValues

value series

ε

standardDeviation

Mobile vs. Stationary We need to model two categories of sensors, stationary and

mobile. Earlier, we discussed how our density-based clustering has the ability to identify

both. Another aspect that we need to consider is that detected radiation measurements

from stationary sensor should be trusted more than mobile ones because environmental

changes have a lesser effect on the readings.

In order to factor this aspect into our trustworthiness assessment of sensors, we

need methods to identify sensors whether a sensor is mobile or stationary. We utilize

176



the following technique. We designate the first coordinates of a time series of radiation

values as the center. Then we assess how many of the other coordinates in the time

series fall with a certain radius using one of two approaches

• determine the percentage of time series values whose coordinates fall with in the

specified radius, thus treating the radius as a cut-off

• calculate the average probability of the coordinates being part of the sensor based

on ratios of Normal distributions and using the radius as standard deviation

Expression 6.2.18 cstationary

The cstationary metric is modeled using a specific stationary model expres-

sion. It supports both of the approaches discussed above where radius is

expressed as a system parameter. Here, we apply the stationary on the

latitude and longitude attributes.

Sensor
apply to

cstationary

Stationary

radiuslongitude serieslatitude seriesGaussian

approach
coordinates

radius

6.2.4.3 Location Clusters

Given the fact that sensors close to each other should detect similar radiation values

leads us to model relationships between them. In particular, our density-based clustering

results in location clusters. All sensors within the same location cluster are related. We

can exploit these relationships and in this section discuss several approaches to assessing

trustworthiness of individual sensors based on their relationship with others.

First, we need to discuss some of the basic relationship metrics we will use. For

instance, each location element node is related to a collection of sensor and IAEA

sensor element nodes.
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Expression 6.2.19 location cluster nodes

We can retrieve the related sensor and IAEA sensor element nodes us-

ing the neighbors model expression limited to these two types of element

nodes.

Location
apply to

location cluster nodes

Neighbors

ElementNode

or

is IAEASensor typeis Sensor type

includeExpression

Furthermore, from the perspective of an sensor or IAEA sensor element node we

need to be able to fetch related element nodes as in element nodes belonging to the

same location cluster.

Expression 6.2.20 same location cluster nodes

The element nodes related to a particular sensor or IAEA sensor element

node can be retrieved by first getting the according location element node

using the neighbors model expression and then getting all its related el-

ement nodes while excluding itself from the list using the filter model

expression.
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Sensor
apply to

same location cluster nodes

Filter

Neighbors

ElementNode

is Location type

ElementNode

location cluster nodes

evaluatingExpression includeExpressionElementNode

excludeExpression

For most of the location cluster confidence metrics we perform comparisons between

sensor or IAEA sensor element nodes within the cluster. Therefore we need to be able

to express these relationships accordingly.

Expression 6.2.21 same location cluster relations

Relationships can be created temporarily, i.e., as part of the evaluation of

an expression, using the relation model expression which simply specifies

the source and target of a relation edge. In this case, we choose the source

to be the particular element node the metric is applied to and the target

as the list of element nodes from the same location cluster. This will

automatically model a list of relation edges where the source node is fixed

and the target node drawn from the provided list of element nodes.

Sensor
apply to

same location cluster relations

RelationExpression

same location cluster nodesElementNode

source target

As such we can develop several trustworthiness assessments based on the relation-

ships between sensors within the same location cluster.
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Number of Location Cluster Members The number of correlated sensors within

a location cluster directly impacts our trustworthiness. This is due to the fact that we

could view a location cluster as a system of “checks and balances” where it becomes

harder for a sensor to be dishonest given that it will not fare well in comparison to

others. Thus, a low number reduces the number of comparisons possible and therefore

should decrease our trustworthiness in the sensor that are part of the cluster as well.

Expression 6.2.22 number of group members

The number of group members is a straightforward count of the element

nodes in a location cluster. We can reference the appropriate location

cluster using the neighbor model expression. Note that this includes the

sensor itself in the count.

Sensor
apply to

number of group members

count

Neighbors

ElementNode

is Location type

ElementNode

location cluster nodes

evaluatingExpression includeExpression

We utilize the same approach as for the number of detected radiation values in a time

series where the confidence is modeled using the Pareto distribution (see equation 6.2.1

and figure 6.2.8)

Expression 6.2.23 cgroup#members

The cgroup#members metric is expressed using a Pareto model expression with

an initial value xmin and a rate parameter alpha. As the result type we

specify the cumulative distribution function (cdf ).
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Sensor
apply to

cgroup#members

Pareto

number of group members1cdfrate

alpha
type xmin

Trend/Slope Comparison The trend of sensor values gives an indication of the

overall radiation over time. Here, we are interested in determining whether the trend of

a time series is vastly different from trends in the same location cluster. Note that each

comparison is performed on a pair of time series values. As we have several options to

express the trend of a time series we choose a linear regression to estimate the slopes.

This approach allows us to compute the average degree difference of the slopes of one

sensor compared to all others.

Expression 6.2.24 trend comparison metric

We express trend comparison as a model expression which is performed

pairwise on the time series of the specified sensor and the other sensors

in the same location cluster. We choose the result of each comparison to

be in degree difference based on a linear regression of the time series.
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Sensor
apply to

trend comparison

average

ForEach

same location cluster relations

TrendComparison

List

target node

value series

source node

value series

degrees

LinearRegression

value seriesslopestartAtZero

approach
property

trendRegression
type

evaluatingExpression

The confidence in the average slope difference can then be modeled using the ra-

tio of Normal distribution densities similar to the one used for the cslope metric (see

equation 6.2.3 and figure 6.2.11).

Expression 6.2.25 cgroup
trends

The cgroup
trends

metric is defined as the ratio of two Normal distribution den-

sities represented by Gaussian model expressions. We use the system pa-

rameter ε to allow for confidence adjustments by adjusting the standard

deviation of the distributions.
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Figure 6.2.11: The confidence based on the comparison of time series
slopes cgroup

trends
modeled using the ratio of Normal distributions probability

densities with µ = 0 and σ ranging from 0.01 to 0.1

Sensor
apply to

cgroup
trends

divide

Gaussian

0.0pdfε

standardDeviation
type

Gaussian

trend comparisonpdfε

standardDeviation
type

Recency When comparing measurements one important factor to consider is how old

they are. For instance, recent sensor measurements should be considered more valuable

and more trustworthy than older ones. Here, we incorporate this notion of recency to
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assess the confidence in a particular sensor’s values given sensors in the same location

cluster.

In order to evaluate the time relationship between two time series we need to be

able to refer to the start and end of each. Since we choose to model the comparison

as an expression tree, the two sensors with their respective time series are expressed as

part of a relation. This enables us to define the start and end times of the time series

as follows.

Expression 6.2.26 time series start and end time metrics

The time series values model expressions can be used to retrieve a list

of values as well as a list of time instances reflecting the time series of

a particular sensor. Our framework supports several list expressions of

which first and last refer to the first and last elements of a particular list

respectively. As such we are able to express the start and end of the first

time series using the source node reference.

Sensor

target node

Sensor

source node

apply to
start 1

source node

First

TimeSeriesValues

value seriestime

property

Sensor

target node

Sensor

source node

apply to
end 1

source node

Last

TimeSeriesValues

value seriestime

property

The second time series corresponds to the target node of the relation the

expression is being applied to.
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Sensor

target node

Sensor

source node

apply to
start 2

target node

First

TimeSeriesValues

value seriestime

property

Sensor

target node

Sensor

source node

apply to
end 2

target node

Last

TimeSeriesValues

value seriestime

property

There exist three cases that we need to evaluate when comparing two time series

A and B with respect to recency. First, time series A occurred strictly before B (i.e.,

no overlap with end1 < start2). Second, the time series are reversed and time series B

occurred strictly before A (i.e., no overlap with end2 < start1). Third there is a partial

or complete overlap of the two time series. Hence, we define recency as follows.

receny(A,B) =



start2 − end1 if end1 < start2

start1 − end2 if end2 < start1

0 otherwise

(6.2.8)

Using the start and end time metrics from above we can model this formula accord-

ingly.

Expression 6.2.27 recency metric

The three cases are modeled using case expressions inside a switch expres-

sion. Here, the replacement expression is only applied to the case where

the pattern expression evaluates to true. Note that this case testing is

done in sequence such that the last case can be seen as the default case

being applied when no pattern matches. By default the result of the re-

cency calculation is in milliseconds. We provide a system parameter scale
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Figure 6.2.12: The confidence based on recency cgrouprecency modeled using
the Pareto survival function with xmin = 10minutes and α ranging from
0.1 to 1.0

that allows conversion into other units of time.

Sensor

target node

Sensor

source node

apply to
recency

divide

scale

SwitchExpression

CaseExpression

0true

pattern replacement
CaseExpression

subtract

end 2start 1

less than

start 1end 2

pattern replacement
CaseExpression

subtract

end 1start 2

less than

start 2end 1

pattern replacement
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Here we utilize the survival function of the Pareto distribution to express the confi-

dence in the recency of values.

Paretosurvival(x) =


(xmin

x

)α if x ≥ xmin

1 if x < xmin

(6.2.9)

where xmin is the initial value after which the survival rate (i.e., confidence) decreases

and α is the rate parameter (see figure 6.2.12). This approach is well suited for modeling

a graceful decline in confidence after a certain time threshold has been exceeded.

Expression 6.2.28 cgrouprecency

The cgrouprecency metric can be expressed using the Pareto model expression

of type survival applied to the recency of a particular relation. Here

we average the resulting confidences to provide an aggregate confidence

assessment of a sensor with regards to others.

Sensor
apply to

cgrouprecency

average

ForEach

same location cluster relations

Pareto

recency
multiply

scale10

survivalrate

alpha
type xmin

evaluatingExpression

Forecast Apart from comparing the recency of two time series we can also evaluate

how well one predicts the other. There exist several approaches to forecasting time

series values. In line with other metrics discussed above we perform a linear regression

on the earlier time series and evaluate the percentage of values of the other that fall

within a certain confidence interval (e.g., 99%, 95%, etc.).
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Expression 6.2.29 cgroupforecast

We model the cgroupforecast metric using a forecast comparison model expres-

sion because of the complexity of having to perform a linear regression

and determining time series values that have been correctly forecast. The

overall confidence is then the average of the forecast confidences for all

the relations of a sensor with others in the same location cluster.

Sensor
apply to

cgroup
forecast

average

ForEach

same location cluster relations

ForecastComparison

List

target node

value series

source node

value series

withinConfidenceIntervalPercentage

property

evaluatingExpression

Distribution Comparison In order to evaluate whether time series values of one

sensor follow the same distribution as values of another sensor we can utilize Welch’s t

test Welch [177]. It represents a statistical test that allows us to determine if the means

of two distributions are equal. The advantage here is that this test does not depend

on the distributions having the same standard deviations. As such we can determine

whether sensors generally yield similar results even if their accuracy varies. Welch’s test

statistic for two time series A and B can be defined as

Welch(A,B) = A−B√
s2
A

|A|
+ s2

B

|B|

(6.2.10)

where X is the sample mean, s2 the sample variance, and |X| the number of time
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series values.

The null hypothesis of the two means being equal is evaluated using a two-sided sig-

nificance test with the Student’s t-distribution. The degrees of freedom for the Student’s

t-distribution in this case is specified as

ν =

(
s2
A

|A|
+ s2

B

|B|

)2

(
s2
A

|A|

)2

|A| − 1 +

(
s2
B

|B|

)2

|B| − 1

(6.2.11)

Note that we normalize the time series values by calculating a linear regression on

them and adjusting the values based on their difference to the trend.

Expression 6.2.30 Welch’s T Test metric

For both time series we apply time series values model expressions with

the type of normalization set to linear regression. The Welch’s T Test

model expression then calculates the t and ν terms (i.e., according to equa-

tion 6.2.10 and 6.2.11) and performs a two-sided test with the specified

significance.

Sensor

target node

Sensor

source node

apply to
Welch’s T Test

WelchsTTest

List

target node

TimeSeriesValues

value serieslinearRegression

normalization

source node

TimeSeriesValues

value serieslinearRegression

normalization

equalMeans0.01

significanceLevel
type
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Since the Welch’s t test only provides a binary decision (i.e., equal means or not)

due to the hypothesis testing approach we need to convert this into a proper confidence

assessment. We chose to compute the average of the test results using 1 for true and 0

for false.

Expression 6.2.31 cgroupdistribution

The cgroupdistribution makes use of several model expressions. For instance,

the for each model expression takes care of evaluating the Welch’s t test

results for every relation that involves the specified sensor element node.

The switch and case model expression then deal with the conversion of

true or false into the appropriate numbers.

Sensor
apply to

cgroup
distribution

average

ForEach

same location

cluster relations

SwitchExpression

CaseExpression

nulltrue

pattern replacement

CaseExpression

0.0

equal

falseWelch’s T Test

pattern replacement

CaseExpression

1.0

equal

trueWelch’s T Test

pattern replacement

evaluatingExpression

Outliers in Data As with the outliers in sensor readings of one sensor we can perform

a similar analysis within a location cluster. Our approach here is to combine all time
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series data from the sensors in a particular location and detect possible outliers. We

can utilize the same technique of Cook’s distance [35] applied to individual sensors for

finding “influential” data points.

The following metric can be used to combine the time series’ of all sensors within a

location cluster.

Expression 6.2.32 location cluster time series metric

First, we determine the time series for each of the sensor element nodes

in the location. Second, we use the ungroup model expression to convert

the individual time series into a single time series.

Location
apply to

location cluster time series

UnGroup

ForEach

location cluster nodesvalue series

evaluatingExpression

As such, we are able to calculate the percentage of outliers in a location cluster from

the perspective of a particular sensor.

Expression 6.2.33 location cluster outlier percentage metric

We model outliers within a location cluster as the percentage of outliers

according to Cook’s distance. Here, we utilize the neighbor model expres-

sion to determine the respective location cluster of a sensor element node.

The location cluster outlier percentage is thus the ratio of the outliers to

the overall number of values in the combined time series.
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Sensor
apply to

location cluster outlier percentage

Neighbors

ElementNode

is Location type

ElementNode

divide

count

TimeSeriesValues

location cluster time series

count

CooksDistanceOutlier

location cluster time series

evaluatingExpression includeExpression

We use the same logic as for individual outliers where the more outliers exist the

less confidence we have in a particular sensor.

Expression 6.2.34 cgroupoutliers

The cgroupoutliers metric is expressed as the difference between 1 and the lo-

cation cluster outlier percentage. This reflects the fact that more outliers

mean less confidence and less outliers mean higher confidence.

Sensor
apply to

cgroup
outliers

subtract

location cluster outlier percentage1.0

Table 6.2.4 shows an overview of the metrics we discussed as part of the knowledge

processing phase of the framework. In the following section we will describe how these

metrics can be incorporated into evaluating the trustworthiness of sensors.
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Table 6.2.4: Radiation detection metrics overview

Type Metric Description

individual sensor c#values number of sensor measurements
individual sensor coutliers outliers in data
individual sensor cslope time series trend analysis
individual sensor ccorrelation time-value correlation
individual sensor cdistribution sensor radiation values distribution
individual sensor cstationary sensor being stationary
location cluster cgroup#members number of group members
location cluster cgroup

trends
trend/slope comparison

location cluster cgrouprecency recency of time series values
location cluster cgroupforecast forecast of time series values
location cluster cgroupdistribution distribution of time series values comparison
location cluster cgroupoutliers outliers in data of the group’s time series values
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6.2.5 Radiation Detection: Knowledge Evaluation

Determining the trustworthiness of a particular sensor can be accomplished in a

variety of ways. We propose three approaches that can be easily be extended to more

complex ones in future work. The goal here is not necessarily presenting the best overall

approach but rather discuss how our TrustKnowOne framework is flexible enough to

support a variety of approaches in a uniform way.

First, the metrics of the knowledge processing component provide two types of con-

fidence assessments, sensor attributes on an individual level and relations to sensors

within the same location cluster. The combination of these assessments can then be

used to evaluate the trustworthiness of a sensor overall.

Second, instead of incorporating the continuous values of confidence assessments,

e.g., on a 0 to 1 scale we can put them into class such as low, medium, and high based

on thresholds. This simplification would allow easier decision making as it abstracts the

assessments and presents them in a more user-friendly format.

Third, there are two different authorities (owners) providing the radiation data upon

which our decisions are based. A natural consequence of this is that we are able to weight

assessments differently based on ownership.

6.2.5.1 Individual Sensors

On an individual basis sensors can be assessed in a variety of ways. We described in

detail several approaches as part of the knowledge processing section. Here, we discuss

the results of these metrics from applying them to sensors.
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(a) IAEA fixed monitoring post, µ =
95.8% and σ = 0.0%
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(b) IAEA transportable sensor, µ =
57.4% and σ = 29.0%
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(c) Safecast , µ = 24.1% and σ = 25.5%

Figure 6.2.13: Individual sensors confidence in number of sensor readings
by data source overview

Number of Sensor Readings (expression 6.2.10) As shown in figure 6.2.13 sen-

sors of the fixed monitoring post data set provide constantly high assessments whereas

sensors from the transportable sensor or Safecast data set give mixed results. In par-

ticular, the Safecast data set exhibits a high number of sensors with no confidence in

them. This is may be due to the nature of collaborative filtering where usually only

short bursts of measurements are taken rather than over an extended amount of time.
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(a) IAEA fixed monitoring post, µ =
94.1% and σ = 1.6%
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(b) IAEA transportable sensor, µ =
91.0% and σ = 8.7%
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(c) Safecast , µ = 85.9% and σ = 16.2%

Figure 6.2.14: Individual sensors confidence in outliers in data by data
source overview

Outliers in Data (expression 6.2.12) Figure 6.2.14 shows that the percentage of

outliers is a potentially useful discriminator for deciding trustworthiness as it determines

a number of sensors with lower confidence values. This is true for the Safecast as well

as the transportable sensor data set. For the fixed monitoring post data set high levels

of confidence are to be expected since the sensors contain a large number of time series

values thus decreasing the overall percentage of potential outliers.
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(a) IAEA fixed monitoring post, µ =
36.2% and σ = 37.3%
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(b) IAEA transportable sensor, µ =
0.0% and σ = 0.0%
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(c) Safecast, µ = 70.5% and σ = 37.2%

Figure 6.2.15: Individual sensors confidence in time series trend analysis
by data source overview

Time Series Trend Analysis (expression 6.2.14) Analysis of the time series trend

is difficult and yields mixed results as shown in figure 6.2.15. This is due to the fact

that there are a number of parameters affecting the calculation of this confidence such

as start time, time interval, and time scale. As such, it may provide good separation

just for the Safecast data set. However, it is hard to determine whether this kind of

separation is useful.
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(a) IAEA fixed monitoring post, µ =
92.2% and σ = 5.4%
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(b) IAEA transportable sensor, µ =
74.3% and σ = 35.3%
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(c) Safecast, µ = 60.2% and σ = 47.0%

Figure 6.2.16: Individual sensors confidence in time-value correlation by
data source overview

Time-Value Correlation (expression 6.2.16) Figure 6.2.16 shows the results of

assessing the time-value correlation of a sensor’s radiation time series. This confidence

can be interpreted as a sign of how “stable” a time series is. For instance, the fixed

monitoring post data set displays high confidence because of high linear correlation of

time and values. The Safecast data set shows more of a separation which is useful for

distinguishing between sensors of high and low trustworthiness.
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(a) IAEA fixed monitoring post, µ =
99.9% and σ = 0.0%
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(b) IAEA transportable sensor, µ =
100.0% and σ = 0.0%
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(c) Safecast, µ = 79.9% and σ = 14.1%

Figure 6.2.17: Individual sensors confidence in sensor radiation values
distribution with ε = 10cpm by data source overview

Sensor Radiation Values Distribution (expression 6.2.17) As shown in fig-

ure 6.2.17 a lot of sensors have radiation values that appear to be drawn from a normal

distribution with a low standard deviation. This metric is in a way similar to the out-

lier percentage as we try to determine if there are any anomalies in the time series

radiation levels. For the Safecast data set it provides a useful distribution of confi-

dence assessments that can be used to identify sensors with low and sensors with high

trustworthiness.
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(a) IAEA fixed monitoring post, µ =
100.0% and σ = 0.0%
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(b) IAEA transportable sensor, µ =
100.0% and σ = 0.0%
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(c) Safecast, µ = 30.3% and σ = 34.4%

Figure 6.2.18: Individual sensors confidence in sensor being stationary
with Gaussian radius = 0.0001 ≈ 100m by data source overview

Mobile vs. Stationary (expression 6.2.18) Distinguishing whether a sensors is

mobile or stationary is difficult. However, our method with a Gaussian radius provides

an approximation that can yield a powerful assessment of confidence in a sensor. As

discussed earlier, mobile sensors are impacted more by environmental changes than

stationary ones. Here, figure 6.2.18 correctly identifies both IAEA data sets to consist

of stationary sensors and provides a wide distribution of confidence for Safecast sensors.
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6.2.5.2 Location Clusters

Trustworthiness assessments can also be derived by comparing a sensor with sensors

in the same location. The assumption is that physically close sensors often exhibit

similar environments and should detect similar radiation values. The sensors in the

Safecast and IAEA data sets already have been associated with the appropriate location

cluster. However, incorporating new sensors requires identifying the closest location

cluster for the particular sensor.

There exist several metrics that can be used to calculate the distance between two

sensors given their coordinates. Here, we use a basic Euclidean distance computation.

Expression 6.2.35 sensor distance metric

The distance metric is applied to two sensor or IAEASensor element

nodes. While the particular distance function may be substituted (e.g.,

Euclidean distance model expresssion) the rest of the metric remains the

same. We retrieve the coordinates for each of the sensors the metric is

applied to and use it as the input for the distance calculation. Note that

here we only calculate the distance give the last/most recent coordinates.

As such the metric could be extended to determine the distances at all

time instances.

Sensor

target node

Sensor

source node

apply to
distance

EuclideanDistance

List

target node

longitudelatitude

source node

longitudelatitude
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This distance metric or another can then be used to determine the sensor’s closest

location cluster. We need to keep in mind that the smallest distance may be greater

than the maximum radius that was used for density-based clustering. In this case the

sensor would not be part of the location. However, we can relax this requirement and

assume that unless the distance is too great, comparisons within location cluster group

members yield useful confidence assessments.

Expression 6.2.36 closest location cluster metric

In order to determine the closest location cluster we need to determine the

closest sensor. Note that while this metric uses the pair-wise comparison

approach to find that sensor an improved version could make use of a

spatial index such as R-trees [66]. First we combine the list of Sensor and

IAEASensor element nodes using the list and ungroup model expressions.

Then we create relation edges to those sensors with the relation model

expression which are then sorted by the result of the distance metric.

Finally, we derive the Location element node respectively.

Sensor
apply to

closest location cluster

Neighbors

target node

First

Sort

RelationExpression

UnGroup

List

IAEASensor listSensor list

ElementNode

source targetdistance

comparisonExpression

is Location typeElementNode

evaluatingExpression
includeExpression
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(a) IAEA fixed monitoring post, µ =
46.4% and σ = 0.0%

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5
0.55

0.6
0.65

0.7
0.75

0.8
0.85

0.9
0.95

1

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

confidence range

p
e

rc
e

n
ta

g
e

 o
f s

e
n

s
o

rs

(b) IAEA transportable sensor, µ =
52.5% and σ = 0.0%
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(c) Safecast, µ = 70.4% and σ = 10.9%

Figure 6.2.19: Location cluster sensors confidence in number of location
cluster members by data source overview

Number of Location Cluster Members (expression 6.2.23) Figure 6.2.19 shows

a medium confidence for the sensors from the IAEA data set. This is due to the fact that

both data sets contain only a limited number of sensors. On the other hand, Safecast

sensors show a distribution that can be used to categorize sensors into low and high

trustworthiness.
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(a) IAEA fixed monitoring post, µ =
99.9% and σ = 0.0%
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(b) IAEA transportable sensor, µ =
0.4% and σ = 1.2%
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(c) Safecast, µ = 76.8% and σ = 33.3%

Figure 6.2.20: Location cluster sensors confidence in trend/slope compar-
ison by data source overview

Trend/Slope Comparison (expression 6.2.25) As shown in figure 6.2.20 there

is a vast difference between the data sets. For the fixed monitoring post the trend is

overwhelmingly similar. Hence, the high confidence. In contrast, the transportable sen-

sor data set seems to be the opposite with all trends being almost completely different.

Safecast provides an assessment that ranks the majority of sensors highly while also

establishing a wide distribution for other sensors.
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(a) IAEA fixed monitoring post, µ =
100.0% and σ = 0.0%
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(b) IAEA transportable sensor, µ =
74.7% and σ = 13.5%
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(c) Safecast, µ = 54.9% and σ = 15.2%

Figure 6.2.21: Location cluster sensors confidence in recency within 10
minutes by data source overview

Recency (expression 6.2.28) The comparison of how recent radiation detection

values were captured, helps us correlate time series. The idea is that sensor readings

that happen close in time to each other should have similar values (given that they

are in the same location cluster as well). As shown in figure 6.2.21 we can use this

confidence assessment effectively to distinguish between low and high trustworthiness.
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(a) IAEA fixed monitoring post, µ =
0.0% and σ = 0.0%
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(b) IAEA transportable sensor, µ =
18.4% and σ = 15.9%
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(c) Safecast, µ = 60.4% and σ = 29.9%

Figure 6.2.22: Location cluster sensors confidence in forecast within 95%
confidence interval by data source overview

Forecast (expression 6.2.29) In figure 6.2.22 we can see that forecasting can be

problematic since sensors from the fixed monitoring post have very low confidence while

Safecast sensors exhibit confidence assessments in an almost a uniform distribution.

This could indicate that sensors in general do not have have a lot of forecasting power

over other sensors. Note that this metric aligns both time series’ and therefore may not

be as useful as others.
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(a) IAEA fixed monitoring post, µ =
0.0% and σ = 0.0%
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(b) IAEA transportable sensor, µ =
5.5% and σ = 6.9%
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(c) Safecast, µ = 42.6% and σ = 24.2%

Figure 6.2.23: Location cluster sensors confidence in distribution compar-
ison with linear regression normalized values and significance level of 0.01
by data source overview

Distribution Comparison (expression 6.2.31) The results comparing the means

of two time series’ are shown in figure 6.2.23. It is noticeable that they are similar to

figure 6.2.22. As such, the separation in terms of distribution for the Safecast data set

may prove useful when categorizing sensors by trustworthiness. However, the generally

low level of trustworthiness for the IAEA data set is surprising since they are stationary

and consist of a large number of time series values.
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(a) IAEA fixed monitoring post, µ =
97.6% and σ = 2.1%
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(b) IAEA transportable sensor, µ =
98.8% and σ = 0.0%
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(c) Safecast, µ = 95.4% and σ = 2.1%

Figure 6.2.24: Location cluster sensors confidence in outliers in data by
data source overview

Outliers in Data (expression 6.2.34) Figure 6.2.24 shows a metric that essentially

shows a distribution of outlier confidence assessments for an entire location. As such,

sensors from the IAEA data set display high levels of confidence and confidence for

sensors from Safecast is equally high. Note that this metric is primarily impacted by

the number of group members and the number of time series radiation values. The more

non-outliers the smaller the ratio of outliers to non-outliers and thus the percentage is.
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6.2.5.3 Weighted Trustworthiness Assessment

A straightforward approach to assess the overall trustworthiness of a sensor is to

consider the confidence assessments discussed above. Here, we have three options. First,

we only take into consideration metrics that focus on an individual sensor. Second,

we evaluate a sensor with regards to others in the same location cluster. Third, we

model trustworthiness as a combination of individual and location cluster confidence

assessments.

Incorporating individual sensor assessments can be done using a weighted sum ap-

proach.

trustindividualweighted (Sensor) =
∑

wi × ci (6.2.12)

where wi is the assigned weight with
∑
wi = 1 and ci one of the following individual

sensor metrics

c#values the confidence in the number of sensor measurements

coutliers the confidence in the outliers in data

cslope the confidence in the time series trend analysis

ccorrelation the confidence in the time-value correlation

cdistribution the confidence in the sensor radiation values distribution

cstationary the confidence in the sensor being stationary

which can be modeled as follows.
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Expression 6.2.37 trustindividualweighted

We express the trustindividualweighted metric using the weighted sum model ex-

pression.

Sensor
apply to

trustindividualweighted

WeightedSum

List

w6w5w4w3w2w1

List

cstationarycdistributionccorrelationcslopecoutliersc#values

values weights

In a similar way we can model the confidence assessments regarding a sensor’s rela-

tionship with others in the same location cluster.

trustgroupweighted(Sensor) =
∑

wi × cgroupi (6.2.13)

where wi is the assigned weight with
∑
wi = 1 and cgroupi one of the following individual

sensor metrics

cgroup#members the confidence in the number of group members

cgroup
trends

the confidence in the trend/slope comparison

cgrouprecency the confidence in the recency of time series values

cgroupforecast the confidence in the forecast of time series values

cgroupdistribution the confidence in the distribution of time series values comparison

cgroupoutliers the confidence in the outliers in data of the group’s time series values

and can be expressed using the following expression.
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Expression 6.2.38 trustgroupweighted

We can model the trustgroupweighted metric using the weighted sum model

expression.

Sensor
apply to

trustgroup
weighted

WeightedSum

List

w6w5w4w3w2w1

List

cgroup
outliers

cgroup
distribution

cgroup
forecast

cgrouprecencycgroup
trends

cgroup#members

values weights

The combination of both of these assessments can then be captured as follows:

trustweighted(Sensor) = windividual × trustindividualweighted + wgroup × trustgroupweighted (6.2.14)

where windividual + wgroup = 1 is the assigned weight to the respective trustworthiness

assessment.

Expression 6.2.39 trustweighted

The trustweighted metric can be expressed as a simple mathematical weighted

sum of the trust metrics.

Sensor
apply to

trustweighted

add

multiply

trustgroup
weighted

wgroup

multiply

trustindividualweighted
windividual

The results of the individual, group, and weighted evaluation are shown in fig-
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(a) IAEA fixed monitoring post
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(b) IAEA transportable sensor
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(c) Safecast

Figure 6.2.25: Weighted trustworthiness assessment by data source
overview

ure 6.2.25. In general, the combined version of our trust assessment ranks between

only using individual metrics and only using location cluster metrics. Note that sensors

from the fixed monitoring post tend exhibit high levels of trust whereas data from the

transportable sensor data set shows reduced trustworthiness. Sensors derived from the

Safecast data source display a mix of trustworthiness. This follows the intuition that

information that is from a non-government, collaborative sensing environment is less

trustworthy than official. Furthermore, this is validated through our analysis which

shows that radiation measurements are more likely to be taken in short bursts (i.e., few

measurements) than over the long term (i.e., many measurements).
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6.2.5.4 Determining Trust Classes Using Thresholds

Another approach to assess the trustworthiness of sensors is by moving away from

specific values to classes. This makes it easier to quickly get an overview of trustwor-

thiness assessments. Here, we categorize the trustworthiness of sensors into the distinct

classes low, medium, and high to represent sensors that fall within specific thresholds.

Hence, we need to define a mapping function such as the following that given a particular

confidence assessment will yield an appropriate class.

trustthreshold(metric) =



low if metric < tlow

medium if metric ≥ tlow and metric < thigh

high if metric ≥ thigh

(6.2.15)

Note that tlow and thigh represent the assessment thresholds used to distinguish

between classes. As part of our framework we are able to transform the confidence

assessments discussed above into classes using a variety of expressions.

Expression 6.2.40 threshold class

We are able to convert values to classes utilizing the switch model expres-

sion where each threshold class represents a case model expression.
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threshold class

SwitchExpression

CaseExpression

high

greater

or equal

thighmetric

pattern replacement

CaseExpression

medium

and

less than

thighmetric

greater

or equal

tlowmetric

pattern replacement

CaseExpression

low

less than

tlowmetric

pattern replacement

Applying the threshold class metric to all confidence assessment results in the trust

assessments shown in figure 6.2.26. We can see that there is often a stark contrast

between the results when incorporating only individual metrics versus group metrics.

In particular, for the fixed monitoring post individual metrics generally rate the trust-

worthiness of sensors higher than is the case when considering group metrics. This is

similar for the transportable sensor data set. However, for the Safecast data set group

metrics seem to assess sensor higher. The combination of the individual and group met-

rics represents the average (i.e., arithmetic mean) of the two. Note that these combined

distributions follow our intuition that sensors from the fixed monitoring post data set

rank higher than from the transportable sensor and Safecast data set.

6.2.5.5 Impact of Ownership on Trust

Since there are two distinct authorities providing radiation measurements it is of

interest to evaluate how varying levels of ownership trust affects trustworthiness assess-

ments of sensors. Our framework is able to incorporate different weights based on sensor

ownership through means of lineage of sensor type.
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Figure 6.2.26: Threshold trustworthiness assessment distributions by data
source overview with tlow = 33% and thigh = 66%

Expression 6.2.41 ownership factor metric

We express the factor that is used as a weight in evaluating graph ex-

pression using a switch model expression. The case model expressions

represent the two ownership types which in the abstract graph model of

this scenario is incorporated as the type of an element node.
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ownership factor metric

SwitchExpression

CaseExpression

wIAEASensoris IAEASensor type

pattern replacement

CaseExpression

wSensoris Sensor type

pattern replacement

These weights only factor into a confidence assessment that is based on compar-

ing attributes of a sensor to others. This is the case for the location cluster metrics.

However, two of the metrics, c#values and coutliers are independent of ownership in their

calculation. This leaves four metrics for which we will evaluate the impact of ownership.

In order to derive the respective weights for the location cluster metrics we can use

the following expression.

Expression 6.2.42 ownership weights metric

We can model the list of weights as the result of applying the ownership

factor metric to each of the element nodes in the same location.

ownership weights metric

ForEach

same location cluster nodesownership factor metric

evaluatingExpression

Instead of computing the simple average of the confidences for the location cluster

metric expressions we then need to replace the average math expression with a weighted

by ownership average expression.

Expression 6.2.43 ownership adjusted average metric

The values of the weighted sum model expression reflect the for each model

expression of the location cluster metrics which is then combined with the

ownership weights list. The weighted average is then simply a result of
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(a) trend/slope comparison
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(b) recency
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(c) forecast
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(d) distribution comparison

Figure 6.2.27: Comparison of location cluster trustworthiness assessment
metrics based on weighting ownership

the weighted sum divided by the sum of the ownership weights.

ownership adjusted metric

divide

sum

ownership weights metric

WeightedSum

ownership weights metricfor each expression

values weights

Because of the limited number of IAEA sensors provided there is only one location

overlap with Safecast sensors. Hence, in figure 6.2.27 we show results of the location
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cluster metrics in that particular location. In order to analyze the impact of different

ownership we compare three cases. First, equal weights between Safecast and IAEA

sensors make no distinction in terms of their trustworthiness based on ownership. Sec-

ond, we discount the trustworthiness of Safecast sensor by 50% in order to favor IAEA

government sensors. Third, the 50% discount of trustworthiness is applied to every

IAEA sensor and the Safecast data is favored.

For trend/slope comparison the different ownership preferences yield mixed results.

In particular, when the Safecast data is favored trustworthiness assessments go up while

favoring IAEA sensors provides a wide distribution of trustworthiness assessments. This

is the quite the opposite for the recency metric where preferring Safecast sensors results

in lower trustworthiness assessments. For the forecast metric as well as the distribution

comparison ownership does not seem to have the impact we hoped for as it does not

provide a clear enough separation for the trust assessments.

In general, incorporating ownership seems to have mixed results. While for some

metrics discounting Safecast improves the average trust assessments, for others it ac-

tually decreases them. This is different from the results that we saw for the threshold

based trust classes approach.

6.2.6 Radiation Detection: Summary

Sensor networks can be used in a variety of applications such as weather monitor-

ing, cargo tracking, and radiation detection. Here we analyzed a collaborative sensing

environment related to the Japan Fukushima nuclear plant incident in 2011. Our Trust-

KnowOne framework is not only able to model the data from various radiation level data

sources but also process and evaluate it in light of several trustworthiness assessment

approaches.

Throughout this section we discussed in detail how heterogeneous data, relationships

and different data sources can be modeled using our abstract graph model. Furthermore,
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we incorporated the fact that sensors depending on whether they are mobile or station-

ary exhibit should be trusted differently. This scenario also shows how time series data

can be stored, managed and processed using graph expressions. We also described a

complex transformation of graph components through the application of density-based

clustering that resulted in sensors being derived from simple radiation measurements.

The assessment of sensor attributes was performed in two ways. First, we presented

several metrics that only incorporate individual attributes of a sensor. Second, we pro-

vided group metrics that take into consideration that sensors within the same location

cluster should be related and have similar attributes (e.g., time series values, trends).

In terms of evaluating the overall trustworthiness of sensors based on the individual

and group metrics derived throughout the knowledge processing phase of our framework,

we discussed three approaches. First, a basic weighting scheme of individual and group

metrics can be used to assess the trustworthiness of a sensor from a pure analytical

standpoint. Second, we proposed a method to transform trustworthiness assessments

into trust classes such that it becomes easier to determine the state of a sensor as well as

groups of sensors. Finally, we discussed what impact ownership can have on the overall

trustworthiness assessment of sensors.

6.3 Trust in Collaborative Intrusion Detection

Networks

Intrusion detection is a growing field in the the area of computer networks. As data

has become more distributed across a diverse set of resources, one faces the challenge

of providing reliable access to data as well as protecting it from a variety of security

threats. Additionally, resources are often diverse in terms of hardware (e.g., network

interfaces, processing capabilities, memory and storage availability), operating systems

(e.g., Windows, MacOS, Linux, etc.) and software (e.g., applications, tools) compo-
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nents. This is due to the fact that systems need to be flexible enough to serve a large

number of users each with their own requirements. However, it is exactly this provided

flexibility that makes it difficult to implement data protection mechanisms and enforce

security policies.

Instead of having to constantly adapt and extend security systems to work across

different platforms and configurations, the focus has shifted towards utilizing agent-

based approaches [9, 68, 82]. In particular, resources are being equipped with sensors

on the hardware or software level that constantly monitor the state of the resource and

possibly connected components. They then often utilize a common security protocol for

event and alert notification. This approach has several advantages such as being easily

extendable and reducing management requirements.

Several collaborative trust modeling and management systems have recently been

proposed [110, 136, 140]. These systems have been shown to be able to deal with a

variety of attacks (e.g., sybil, newcomer, betrayal, collusion, inconsistency [54]). How-

ever, the approaches taken on the hardware, software or protocol layers often differ

drastically. This makes the comparison of their complexity and performance difficult.

Furthermore, it requires significant effort to adapt (i.e., exchange one particular compo-

nent or algorithm for another) and extend (i.e., implement additional monitoring and

management capabilities) these systems.

6.3.1 Intrusion Detection: Framework Modeling Approach

We have developed a framework to model various entities and their relationships in

an abstract graph model on which graph expressions can be evaluated. In particular,

our approach incorporates the trustworthiness and quality of data. This makes it well

suited for the intrusion detection domain. In order to show that it is feasible to use our

framework for the modeling, analysis and evaluation of intrusion detection approaches,

we will discuss a collaborative trust management system for intrusion detection by Fung
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et al. [54] as a case study. The system makes use of several heterogeneous entities and

relationships. Furthermore, it is fully dynamic as new observations are incorporated

over time into the trustworthiness assessment of entities changes.

Here we discuss how our framework can be used to evaluate attacks on the knowledge

derivation process. To test their approach Fung et al. [54] simulate the responses to test

messages probabilistically. To generate sensed intrusion data we also incorporate a

simulator into our framework. There are two distinct options for modeling attacks on

knowledge. First, we can incorporate attacks such as malicious nodes into the data

before the knowledge extraction phase. This is the classical approach which allows

all data to be processed and evaluated in a “static” manner where graph components

do not change after the initial knowledge extraction. Second, the basic scenario can

be described in generic terms for the knowledge extraction phase and attacks can be

modeled as part of the knowledge processing phase. This approach has the advantage

that attacks are formally specified parts of the framework. Hence, graph components

that are part of the element instance graph are “dynamic” and can be added, modified

or removed according to specific types of attacks. For the scenario discussed here, we

choose to incorporate the modeling of attacks into our framework in order to enable a

discussion of the following aspects of the TrustKnowOne framework.

• Modeling dynamic entities (Host-Based Intrusion Detection components, peers,

test messages) and relationships in our abstract graph model (section 4.1)

• Formalizing components of an intrusion detection system as belief engines (sec-

tion 5.3.1)

• Representing trustworthiness assessments as formal decision processes that incor-

porate confidence assessments (section 5.4.1)

• Evaluating the impact of attacks on knowledge derivation using robustness mea-

sures represented by graph expressions (section 5.5)
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Figure 6.3.1: Framework overview for the trust in collaborative intrusion
detection scenario

Figure 6.3.1 shows an overview of how the scenario can be modeled using our frame-

work. As such, we are able to describe in detail how our framework is able to model

the approach by Fung et al. [54].

Knowledge Extraction This phase consists of a general description of the compo-

nents for the collaborative trust management approach of Fung et al. [54]. In par-

ticular, we provide the foundation for adding intrusion detection components such as

hosts, peers, and test messages as well as the relationships between them. As a result,

the element description graph is fully specified and the element instance graph remains

empty.

Knowledge Processing As part of a particular intrusion detection scenario graph

components can be added, modified, and removed from the element instance graph.

Which components and relationships this entails is dependent on system parameters

(e.g., number of satisfaction levels, test message generation rate) and the type of at-

tacks performed. Note that we can assess the trustworthiness and data quality aspects
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proposed by [54] using formal graph expressions dynamically as the system evolves in

time (enabled by simulator) as well as at a specified time or state. This gives us the

ability to evaluate and compare approaches as well as analyze system parameters.

Knowledge Evaluation There are several decisions that can be made using the intru-

sion detection data modeled in our framework. For instance, we can determine which

hosts are trustworthy based on thresholds or other decision processes. Additionally,

given the trustworthiness assessments provided by the knowledge processing phase we

are able to compare patterns against different types of attacks and provide an estimate

of how likely it is that a particular attack occurred.

Model Vulnerabilities Throughout the phases of the knowledge derivation process

we can analyze the impact of particular type of attack. Specifically, given a specific

scenario (i.e., system parameters fully defined) we can decide whether a type of attack

has occurred and determine how it affected specific intrusion detection components.

Furthermore, our framework provides the formal means for performing these robustness

checks and as such can be utilized to improve and optimize intrusion detection ap-

proaches against a variety of attacks. In a similar manner, different approaches can be

compared in terms of their complexity (i.e., graph expressions), performance (i.e., time

and graph components necessary to reach decision), and robustness (i.e., performance

during attacks).

In the next sections we provide a detailed discussion of the individual TrustKnowOne

framework components as the intrusion detection scenario relates them.

6.3.2 Intrusion Detection: Knowledge Extraction

Collaborative intrusion detection systems operate on the basis of building relation-

ships between individual monitoring agents or intrusion detection systems. As such,

Fung et al. [54] propose a system in which individual host-based intrusion detection
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Figure 6.3.2: Intrusion detection element description graph

systems (HIDS) collect information about peers through a series of test messages (i.e.,

challenges which are often in the form of knowledge base questions). Test messages

consist of an associated difficulty (i.e., the ability of a peer responding correctly), ex-

pected answer (i.e., knowledge base classification of alert risk)3, and received answer

(i.e., the actual classification by a peer). Peers then provide feedback (i.e., responses)

based on their respective expertise level. Each HIDS is able to manage its set of peers

dynamically in the form of an acquaintance list for trustworthy peers and a probation

list for those that are less trustworthy. As more information is gathered about the peers

they can be promoted from the probation list to the acquaintance list or discarded.

Using the TrustKnowOne framework we model this intrusion detection system as

shown in figure 6.3.2. The individual hosts are described by the HIDS element. The

main component of information that needs to be modeled is the expertise level which

reflects the HIDS ’ ability to respond to test messages. Fung et al. [54] describe their

collaborative system as potentially fully connected. This means that there exists a

relation between all HIDS without any constraints, i.e., no metric attached.

Each HIDS keeps track of the perceived trustworthiness of its peers. We model this
3Note that Fung et al. [54] use the term alert risk and expected answer interchangeably. However,

most of the formulas refer to expected answer which is why we chose expected answer in our discussion.
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trustworthiness by introducing a separate Peer element that contains a time series of

satisfaction levels. The details of how these satisfaction levels are derived from test

messages is discussed in the next section. The Peer element is a reflection of how a

HIDS perceives other HIDS elements. Hence, we introduce a reference HIDS relation

that correlates each Peer with the HIDS whose trustworthiness is being assessed. A

HIDS manages these Peers in two separate lists, a probation list and an acquaintance

list depending on perceived trustworthiness. We model both of these lists as relations

between a HIDS and a Peer. The reason Fung et al. chose this approach is that it is nec-

essary to bound the complexity of the relationships between HIDS and Peer elements.

Note that the existence of a relation description only implies that there is the potential

for a relation edge to be present in the element instance graph. Thus, without limiting

the number of Peers each HIDS is evaluating, we would see an exponential growth of

relationships (relation edges in our model) that we need to keep track of, specifically

number of relation edges = n× (n− 1) (6.3.1)

compared to a linear bound for the list approach used here that results in

number of relation edges = (|P |+ |A|)× n (6.3.2)

where n is the number of HIDS elements and |P | and |A| the size of the probation

and acquaintance lists respectively. Fung et al. [54] discuss the size limits of these lists

in terms of resource constraints which means that their approach defines a combined

maximum for both, i.e., |P |+ |A| ≤ sizemax.

In order to determine the trustworthiness of HIDS elements, a HIDS will send

out test messages which we describe in our model as TestMessage elements. These

TestMessage elements are associated with a certain level of difficulty which directly

impacts the ability of another HIDS to respond with the expected answer. As we

will see later, Fung et al. [54] actually abstract the generation and response of these
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Figure 6.3.3: Intrusion detection element instance graph

test messages for evaluation purposes. As part of this abstraction real world intrusion

detection test messages are replaced by test messages consisting of tuples of numbers

between 0 and 1 for keeping track of a test message’s difficulty, expected answer and

received answer. This also simplifies the modeling process in our framework where

instead of having separate request and response elements we can use one TestMessage

element which includes the received answer as an additional attribute. Because the

trustworthiness of a HIDS is modeled in terms of Peer elements we form a relation

between a Peer and TestMessage elements.

Note that all elements contain an id as well as a time attribute in order to uniquely

identify individual element nodes in our graph model and to allow for dynamic changes

of attribute values as the process evolves.

In figure 6.3.3, we show a small example of a possible element instance graph de-

rived from the element description graph we described. The graph consists of two HIDS

element nodes that are related (HIDS-HIDS relation edge). Both HIDS elements have a

different expertise level for responding the test messages. HIDS 1 models the trustwor-

thiness of HIDS 2 in terms of Peer 1 where Peer 1 is in the probation list (probationList

relation edge) of HIDS 1 and references HIDS 2 (referenceHIDS relation edge). Initially,

the trustworthiness of HIDS 2 is based on some a priori trustworthiness because test
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messages have not been assessed and hence there is no history of satisfaction levels from

which trustworthiness could be derived. We also show in figure 6.3.3 two TestMessage

elements each with varying degrees of difficulty, expected answers and request times.

6.3.3 Intrusion Detection: Knowledge Processing

In this section we will describe in detail how the framework proposed here is used

to determine trustworthiness aspects of a HIDS based on the approach by Fung et al.

[54]. In particular, we will discuss how our framework is able to perform the same

assessments while utilizing a flexible abstract graph model. There are several advantages

of modeling various trust management approaches in a unified framework such as the

ability to compare and evaluate performance of the approach as a whole and on an

individual component level. Furthermore, this framework enables reuse, reconfiguration,

and extension as well as replacement of components across approaches.

6.3.3.1 Evaluating Feedback

One of the primary components of collaborative trust management concerns the

evaluation of the responses to test messages. Fung et al. [54] define a mapping function

Sat(r, a, d) ∈ [0, 1] which determines a satisfaction level based on the difficulty, expected

answer, and the received answer as

Sat(r, a, d) =


1−

(
a− r

max(c1r, 1− r)

) d
c2 a > r

1−
(

c1(r − a)
max(c1r, 1− r)

) d
c2 a ≤ r

(6.3.3)

While r, a, and d represent expected answer, received answer, and difficulty respec-

tively, c1 and c2 are user selected system parameters. Each TestMessage element node

contains these values in the form of attributes. One needs to distinguish between two
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cases. In order to maintain flexibility we model both result terms as separate metrics,

a > r and a ≤ r whose expression trees are as follows.

Expression 6.3.1 a > r replacement

The a > r replacement metric is modeled using basic mathematical ex-

pressions on attributes and system parameters.

TestMessage
apply to

a > r replacement

subtract

power

divide

c2difficulty

divide

max

subtract

expectedAnswer1.0

multiply

expectedAnswerc1

subtract

expectedAnswerreceivedAnswer

1.0

Expression 6.3.2 a ≤ r replacement

The a ≤ r replacement metric can be expressed using basic mathematical

expressions on attributes and system parameters.
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TestMessage
apply to

a ≤ r replacement

subtract

power

divide

c2difficulty

divide

max

subtract

expectedAnswer1.0

multiply

expectedAnswerc1

multiply

subtract

receivedAnswerexpectedAnswer

c1

1.0

Our framework supports a switch model expression that takes case model expres-

sions as parameters. This approach is similar to one that would be used in a regular

programming language. For each case model expression, the pattern parameter is evalu-

ated and if true the current expression is replaced by the replacement parameter. Since

case model expressions are evaluated in sequence, the evaluation stops when one of the

pattern parameters is true. We model the entire process of determining the satisfaction

of a test message as the feedback satisfaction metric.

Expression 6.3.3 feedback satisfaction

The feedback satisfaction metric makes use of the switch model expression

and according case model expressions that reflect the cases as well as the

a > r and a ≤ r replacements defined by equation 6.3.3 .
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TestMessage
apply to

feedback satisfaction

SwitchExpression

CaseExpression

a ≤ r replacement

less or equal

expectedAnswerreceivedAnswer

pattern replacement

CaseExpression

a > r replacement

greater than

expectedAnswerreceivedAnswer

pattern replacement

The result is inserted into the satisfaction level attribute of the Peer element node

thus creating a time series of test message feedback satisfaction levels.

6.3.3.2 Probabilistic Representation of Observations

The basis of performing trustworthiness assessments on each of the HIDS used by

Fung et al. [54] is the Dirichlet distribution. It can be used to model the probability of

a set of discrete states S based on concentration parameters α which in this case are

updated as more data becomes available. Fung et al. [54] chose to divide the possible

satisfaction levels defined in equation 6.3.3 into k number of ranges (i.e., 10 by default

ranging from 0.1 to 1.0). Here, the discrete states of the Dirichlet distribution represent

various satisfactions level ranges s1, . . . , sk and the α parameters are modeled as the

combination of initial beliefs and subsequent observations of satisfaction levels −→γ =

γ1, . . . , γk. Given that the probability of pi = P (S = si) from [54] we have

Dirichlet(p1, . . . , pk|γ0, γ1, . . . , γk) =
Γ
(∑k

i=1 γi
)∏k

i=1 Γ(γi)

k∏
i=1

pγi−1
i (6.3.4)

where

γ0 =
k∑
i=1

γi (6.3.5)

In order to improve the impact of recent observations, a forgetting factor is in-
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troduced which discounts prior observations based on the time difference between the

previous observations and the newest observation. The combination of the initial belief,

the series of observations, and the forgetting factor results in the observation vector
−→γ (n) at a particular time n which is recursively defined by Fung et al. [54] as

−→γ (n) =


c0
−→
S 0 n = 0

λ4tn ×−→γ (n−1) +−→S n n > 0
(6.3.6)

where c0 is a priori constant used for the initial beliefs represented by −→S 0, λ4tn

the discounted forgetting factor4, and −→S n the discretized satisfaction level at time n.

The observation vector yields the basis for modeling the probability distribution of

satisfaction levels at specific times using the Dirichlet distribution. While the time

dynamic observation vector approach could have been implemented using a combination

of basic expressions, we decided to create a separate reusable gamma vector model

expression.

Expression 6.3.4 Observation vector −→γ

The −→γ metric can be represented using the gamma vector model expres-

sion which parameters include the forgetting factor, its unit, the priori

constant and the number of satisfaction levels as system parameters λ,

co, and k respectively as well as a time series of satisfaction levels.

4Note that Fung et al. [54] do not explicitly state the unit of this forgetting factor. As such, we
assume the factor is per day.
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Peer
apply to−→γ

GammaVector

satisfactionLevel serieskc0λ unitλ

forgettingFactor
forgettingFactorUnitInMilliSeconds prioriConstant satisfactionLevels

This is an example which shows that complex techniques and formulas can be ab-

stracted as model expressions with parameters that can be reused more easily and

incorporated into other models.

The combination of initial belief and a time series of satisfaction level observations

adjusted using a forgetting factor forms the basis of the Dirichlet concentration param-

eters. As shown above we model the evolution of the prior for the Dirichlet distribution

from a time series of satisfaction levels as the −→γ metric. This allows us to use a standard

model expression for a Dirichlet distribution where we use the observation vector −→γ in

place of the regular α parameters.

In general, we model probability distributions asmodel expressions with all necessary

parameters (i.e., set of α for Dirichlet, α and β for Beta distributions, etc.) and include

a type parameter that specifies the result of the expression such as probability density

or cumulative probability. As for the probabilistic representation of observations and

satisfaction levels, we define the Dirichlet probability vector metric.

Expression 6.3.5 Dirichlet probability vector

The Dirichlet probability vector metric is modeled as the Dirichlet distri-

bution model expression using the −→γ metric as a basis (α concentration

parameters) for deriving a distribution of satisfaction levels in form of a

probability vector.
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Peer
apply to

Dirichlet probability vector

Dirichlet

probabilityVector−→γ

alphas type

6.3.4 Intrusion Detection: Knowledge Evaluation

Now that we can derive the Dirichlet probability vector representing the distribution

of satisfaction levels for individual Peers, we are able to assess their trustworthiness.

Fung et al. [54] define the trustworthiness of a Peer by utilizing the weighted sum of

this probability vector

T (peer) =
k∑
i=1

wiE[pi] = 1
γ0

k∑
i=1

wiγi (6.3.7)

where k is the number of satisfaction levels, γ0 =
∑
γi, and E[pi] the expected prob-

ability of a particular satisfaction level given the Dirichlet distribution (equation 6.3.4)

for the selected Peer.

Note that the weights used in the trustworthiness assessment are simply the sat-

isfaction level ranges. For example, if k = 10 then the weights vector would be

{0.1, 0.2, . . . , 0.9, 1.0}. In our framework we can compute these weights by utilizing

a custom model expression.

Expression 6.3.6 weights

The weights metric can be represented using the satisfaction level ranges

model expression which has as parameter the number of satisfaction levels

as system parameter k.
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weights

SatisfactionLevelRanges

k

satisfactionLevels

As such the trustworthiness of a particular Peer can then be determined using the

Dirichlet distribution of satisfaction level observations and the satisfaction level ranges

accordingly.

Expression 6.3.7 trustworthiness of a Peer

The trustworthiness of a Peer metric is modeled based on equation 6.3.7

as the weighted sum of the weights and
−→
λ normalized by λ0 which can

be expressed by the sum of
−→
λ .

Peer
apply to

trustworthiness of a Peer

divide

sum

−→γ

WeightedSum

weights−→γ

values weights

Fung et al. [54] also provide the means to compute a confidence level for this trust-

worthiness assessment based on the same weights and gamma vector

C(peer) = 1− 4√
1 + γ0

√√√√√ k∑
i=1

w2
i

γi
γ0
−
(

k∑
i=1

wi
γi
γ0

)2

(6.3.8)

We need to point out that in contrast to trustworthiness which ranges from 0 to 1,

the confidence given in equation 6.3.8 ranges from -1 to 1.

Expression 6.3.8 confidence in Peer trustworthiness

The confidence in Peer trustworthiness is more complex than the trust-
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worthiness. However, it is based on the same input, weights and gamma

vector metrics. Thus we defined a Confidence model expression that re-

flects equation 6.3.8.

Peer
apply to

confidence in Peer trustworthiness

Confidence

weights−→γ

gammas weights

6.3.5 Intrusion Detection: Evaluation of Model Vulnera-

bilities

Fung et al. [54] use simulation to generate sensor data (i.e., data for each HIDS)

to evaluate their trust assessment approach. Here, we also use simulation to generate

sensor data dynamically. In addition we show that this simulation can also be modeled

in our framework which enables us to analyze the behavior of the proposed approach in

various types of attack scenarios.

6.3.5.1 Generating Test Messages

An important part of evaluating the system is the ability to probabilistically model

responses to test messages. Fung et al. [54] base this off the expertise level of a Peer

as well as the difficulty and expected answer of a particular test message. As described

above, difficulty and expected answer are attributes of TestMessage elements while the

expertise level can be retrieved using the referenceHIDS relation.

Expression 6.3.9 peer expertise level

The peer expertise level metric utilizes the flexible Neighbors model expres-

sion. This model expression has two parameters. First, an includeExpres-

sion which defines what neighbors should be included in the evaluation
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process. Here, we set up a constraint on the type of relation to refer-

enceHIDS. Second, the evaluatingExpression is evaluated on the resulting

element nodes and relation edges accordingly. Since we are interested in

retrieving the expertise level of a HIDS we reference its expertise level

attribute.

Peer
apply to

peer expertise level

Neighbors

RelationEdge

is referenceHIDS type

ElementNode

expertiseLevel

evaluatingExpression includeExpression

The actual test message feedback is modeled as discussed by [54] using the proba-

bility density function of the Beta distribution

Beta(x|α, β) = Γ(α+ β)
Γ(α)Γ(β)x

α−1(1− x)β−1 (6.3.9)

where x ∈ [0, 1] is the response to the test message. In particular, Fung et al. [54]

specify the parameters α and β as follows

α = 1 + l(1− d)
d(1− l)

√
r

1− r

√
2
l
− 1 (6.3.10)

and

β = 1 + l(1− d)
d(1− l)

√
1− r
r

√
2
l
− 1 (6.3.11)

to incorporate the difficulty of the test message d, its expected answer r, and the

expertise level of the HIDS l. While this represents a complex approach, we use this

part to showcase the flexibility of our framework.

Upon closer inspection we can see that both equation 6.3.10 and 6.3.11 are similar
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except for the second factor. Thus, the calculation of α and β is broken down into

individual factors which are represented by metrics as follows.

Expression 6.3.10 Beta distribution first factor

The first factor of the Beta distribution l(1− d)
d(1− l) can be expressed by a

combination of math expressions and attribute references. Note that, we

determine the expertise level by applying the peer expertise level metric

to the Peer element node which is the source node whereas the difficulty

attribute is derived from the target node of the test message relation.

TestMessage

target node

Peer

source node

apply to
factor 1

divide

multiply

subtract

source node

peer expertise level

1.0

target node

difficulty

multiply

subtract

target node

difficulty

1.0

source node

peer expertise level

Expression 6.3.11 Beta distribution second factor for α

The second factor of the Beta distribution is
√

r

1− r for the α term. We

utilize a series of math expressions on the expected answer r to model

this.
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TestMessage

target node

Peer

source node

apply to
α factor 2

square root

divide

subtract

target node

expectedAnswer

1.0

target node

expectedAnswer

Expression 6.3.12 Beta distribution second factor for β

The second factor for the Beta distribution is
√

1− r
r

for the β term.

We can express this is similar terms as the factor for α, a combination of

math expressions.

TestMessage

target node

Peer

source node

apply to
β factor 2

square root

divide

target node

expectedAnswer

subtract

target node

expectedAnswer

1.0

Expression 6.3.13 Beta distribution third factor

The third factor of the Beta distribution
√

2
l
− 1 is a straightforward

computation on the peer expertise level.
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TestMessage

target node

Peer

source node

apply to
factor 3

square root

subtract

1.0

divide

source node

peer expertise level

2.0

Hence, we can determine the parameters α and β of the Beta distribution accord-

ingly.

Expression 6.3.14 Beta distribution α

The α term 1 + l(1− d)
d(1− l)

√
r

1− r

√
2
l
− 1 becomes a combination of the

previously modeled expressions.

TestMessage

target node

Peer

source node

apply to
α

add

multiply

factor 3

multiply

α factor 2factor 1

1.0

Expression 6.3.15 Beta distribution β

The β term 1 + l(1− d)
d(1− l)

√
1− r
r

√
2
l
− 1 is modeled using its necessary

factor expressions accordingly.
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TestMessage

target node

Peer

source node

apply to
β

add

multiply

factor 3

multiply

β factor 2factor 1

1.0

The combined α and β metrics show the advantage of defining generic reusable

expressions and metrics which make modeling less complex and more efficient. In par-

ticular, we utilized the overlapping first and third factors in both expressions.

Expression 6.3.16 response to challenge generation

The simulated answer to a test message is based its difficulty, the ex-

pected answer as well as the expertise level of the peer. We utilize a Beta

model expression which models its probability distribution. The required

parameters are taken from the α and β metrics as defined above.

TestMessage

target node

Peer

source node

apply to
simulated answer

Beta

sampleβα

alpha
beta

type

As such, the simulated answer then simply becomes the result of drawing a value for

the test message feedback from a Beta distribution model expression with the parameters

α and β as discussed above as well as the type sample. As we require information from

both, we apply this metric to a relation between a TestMessage and a Peer.

240



6.3.5.2 Evaluating Model Robustness

In order to fully evaluate the impact of various types of attacks on the intrusion

detection approach proposed by Fung et al. [54] we need to define the appropriate met-

rics. In the following we will compare a basic average trustworthiness metric discussed

by Fung et al. [54] and a new robustness index metric proposed here.

In the intrusion detection system proposed by Fung et al. [54] trustworthiness as-

sessments are based on the modeled Dirichlet distribution of satisfaction levels. As

discussed above, each HIDS maintains a probation list and an acquaintance list where

Peers represent the assessment of neighboring HIDS. In order to assess the overall trust-

worthiness of a particular HIDS we therefore need to combine all Peers with the same

reference HIDS accordingly. A straightforward approach is to calculate the average of

these Peer trustworthiness assessments.

T (HIDS) = 1
|peers→HIDS |

∑
peers→HIDS

T (peer) (6.3.12)

In our abstract graph model we can refer to the specific relations shown in figure 6.3.2

and 6.3.3. Specifically, every Peer has a relationship with the HIDS it is assessing and

this can be used to aggregate the trustworthiness assessments.

Expression 6.3.17 average HIDS trustworthiness metric

The average trustworthiness of a particular HIDS can be computed by

first determining all Peer element nodes that have a relation edge of type

reference HIDS with the HIDS. This can be done using the Neighbor model

expression. For each of these Peers we can then apply the trustworthiness

of a Peer metric and compute the respective average.
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HIDS
apply to

HIDS trustworthiness

average

Neighbors

RelationEdge

is referenceHIDS type

ElementNode

trustworthiness of a Peer

evaluatingExpression includeExpression

The overall average trustworthiness can be defined as

T = 1
|HIDS|

∑
HIDS

T (HIDS) (6.3.13)

Note that this average can be computed over any number of HIDS element nodes.

For instance, in the discussion of our simulation results we will apply this metric to

HIDS element nodes with varying expertise levels.

Expression 6.3.18 average trustworthiness metric

The average trustworthiness of a list of HIDS element nodes can be com-

puted by using the for each model expression to determine the trustwor-

thiness of each HIDS and then averaging the results.

average trustworthiness

average

ForEach

HIDS list

HIDS trustworthiness

evaluatingExpression

Our approach to assessing the impact of various attacks on the intrusion detection

system by Fung et al. [54] goes beyond looking at the average trustworthiness. The basic

idea is that the overall system should provide a measure to clearly separate HIDS ele-
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Table 6.3.1: Robustness Score Card

Observed value

True value good normal malicious

good 1 0.5 -1
malicious -1 -0.5 1

ments that are good and ones that are malicious based on trustworthiness assessments.

Therefore, we propose a robustness index that takes into consideration the average trust-

worthiness of the system and determines which HIDS elements have a trustworthiness

assessment significantly higher or lower than the average. During testing we can then

check validate these assessments against the known true values.

In order to compute the robustness index we need to consider the possible cases

shown in table 6.3.1 for each of the HIDS elements.

The true value refers to whether a HIDS is malicious or not. The observed value rep-

resents the assessment of the system where good means significantly higher trustworthi-

ness (i.e., higher than average trustworthiness + threshold), normal reflects uncertainty

(i.e., within the average trustworthiness ± threshold), and malicious significantly lower

trustworthiness (i.e., lower than average trustworthiness - threshold). We can formally

define this robustness index using the following approach.

Note that the robustness assessments for the good HIDS are just opposite of the

HIDS. As such we define a binary function modeling the goodness of a HIDS.

G(HIDS) =


1 if HIDS is good

-1 if HIDS is malicious
(6.3.14)

Expression 6.3.19 goodness metric

The goodness metric is defined by two distinct cases and as such we can
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use the switch model expression and according case model expressions to

determine the value of the metric.

HIDS
apply to

goodness

SwitchExpression

CaseExpression

-1.0

equal

truemalicious

pattern replacement

CaseExpression

1.0

equal

falsemalicious

pattern replacement

We can then define the robustness of a particular HIDS according to the cases shown

in table 6.3.1 as

ρ(HIDS) = G(HIDS)×



1 if T (HIDS) > T + ∆T

0.5 if T −∆T ≤ T (HIDS) ≤ T + ∆T

−1 if T (HIDS) < T −∆T

(6.3.15)

where T (HIDS) is the HIDS trustworthiness to be assessed, T the average trust-

worthiness, and ∆T the threshold surrounding the average.

For clarity reasons we will break down the modeling of this robustness metric. The

first case deals with trustworthiness assessments that are significantly above normal.

Expression 6.3.20 above average trustworthiness metric

The above average trustworthiness metric performs basic math, logic and

attribute reference calculations to determine whether the HIDS has an

above normal trustworthiness.
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HIDS
apply to

above

greater than

add

thresholdaverage trustworthiness

HIDS trustworthiness

Second, we need to determine whether the trustworthiness assessment falls within

the range where the system is uncertain about the status of a HIDS.

Expression 6.3.21 within range of average trustworthiness metric

The within range of average trustworthiness metric performs a more com-

plex comparison that involves checking two bounds (i.e., average trust-

worthiness ± threshold).

HIDS
apply to

in range

and

less or equal

add

thresholdaverage trustworthiness

HIDS trustworthiness

less or equal

HIDS trustworthiness

subtract

thresholdaverage trustworthiness

Third, trustworthiness assessments that are significantly below the average need to

be considered.

Expression 6.3.22 below average trustworthiness metric

The below average trustworthiness metric utilizes a straightforward math

and logical expression.
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HIDS
apply to

below

less than

subtract

thresholdaverage trustworthiness

HIDS trustworthiness

The individual robustness of a particular HIDS can then be computed using a com-

bination of the metrics above.

Expression 6.3.23 robustness of a HIDS

The robustness of a HIDS metric implements equation 6.3.15 by multiply-

ing the result of the goodness metric with the results for the appropriate

case of where the particular HIDS trustworthiness assessment falls.

HIDS
apply to

robustness

multiply

SwitchExpression

CaseExpression

-1.0below

pattern replacement

CaseExpression

0.5in range

pattern replacement

CaseExpression

1.0above

pattern replacement

goodness

We define the overall robustness index for the intrusion detection system as the

average of the individual robustness assessments of the HIDS elements.

ρ = 1
|HIDS|

∑
HIDS

ρ(HIDS) (6.3.16)

Expression 6.3.24 robustness index ρ metric

The robustness index ρ metric is computed by averaging the robustness
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assessments of the given list of HIDS elements.

HIDS list
apply to

ρ

average

ForEach

robustness

evaluatingExpression

We show some examples of possible robustness indices in figure 6.3.4. Note that here

we chose a threshold ∆T = 10%. Figure 6.3.4a shows a likely case where some good

and some malicious HIDS are correctly identified while the majority does not deviate

significantly from the average trustworthiness. The other three cases represent special

occurrences that show the extreme values of the robustness index. In figure 6.3.4b there

is not separation between good and malicious HIDS elements because all trustworthiness

assessments are close to the average. As such the robustness index will approach 0.

Figure 6.3.4c show the best case scenario where the trustworthiness assessments of all

good and malicious HIDS elements fall into the right range. The worst case scenario

happens when all HIDS elements are misclassified figure 6.3.4d.

6.3.5.3 Evaluating Attacks

In the following we will discuss how robust the intrusion detection system by Fung

et al. [54] is when facing a variety of attacks. For this purpose we developed a model

that allows us to dynamically evaluate graph expressions even when the abstract graph

model is changing. We will analyze and evaluate the following four different attack

scenarios:

• newcomer attack with constantly joining nodes

• newcomer attack with a sudden flood of nodes
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(a) Normal robustness (ρ = 0.4) with
some good and some malicious HIDS
correctly identified

1 2 3 4 5 6 7 8 9 10
0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Good Malicious above average below

HIDS

tr
u
s
tw
o
rt
h
in
e
s
s

(b) No robustness (ρ = 0.0) because
of missing separation between good and
malicious HIDS
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(c) Perfect robustness (ρ = 1.0) with
all good and malicious HIDS correctly
identified
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(d) Worst robustness (ρ = −1.0) with
all good and malicious HIDS misclassi-
fied

Figure 6.3.4: Comparison of example cases for different types of robustness
for 10 HIDS (5 good, 5 malicious) and ∆T = 10%

• betrayal attack with constantly betraying nodes

• betrayal attack with a sudden flood of betrayals

Since a full system trade-off analysis is out of the scope of this research we made a

series of assumptions for our evaluation. Note that the focus of this scenario analysis is

to show the flexibility of our TrustKnowOne framework, provide approaches to formally

measure the impact of attacks on the knowledge derivation process, and deal with

dynamically changing environments.
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Table 6.3.2: Simulation Parameters

Parameter Value Description

R 2/day test message rate
λ 0.9 forgetting factor
λ unit day forgetting factor unit
c0 10 Priori constant
c1 1.5 cost rate
c2 1 satisfaction sensitivity factor
k 10 number of satisfaction levels
Sp 10 probation list size

Difficulty of test messages We select a difficulty level between low (0.1), medium

(0.5), and high (0.9) with equal probability

Expertise level of HIDS The selection of the expertise level will be between low

(0.05), medium (0.5), and high (0.95) with equal probability

Alert risk/ expected answer The expected answer is fixed to 0.5 for all test mes-

sages

Message rate Instead of dynamically increasing or decreasing the rate at which test

messages are being sent, we fix it to 2 per day

Deception strategies A malicious node always evaluates the expected answer of a

test message to 0.0 in order to create maximum harm.

Peer management For our evaluation there exists only a single list to maintain Peers

and after it is filled with random Peers it does not change

Given these adjustments we can evaluate the impact of attacks on knowledge deriva-

tion using the system parameters shown in table 6.3.2 as defined by Fung et al. [54].
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However, we need to discuss what it means for a HIDS to be malicious. There are

three ways a malicious HIDS can behave:

Basic The malicious HIDS downgrades the alert risk of a test message to 0.0

Enhanced In addition to basic, a malicious HIDS reduces the satisfaction levels for

test messages responses sent to other HIDS thus decreasing the trustworthiness of HIDS

elements it is supposed to evaluate

Collaborative In addition to enhanced, the group of malicious HIDS increases the

satisfaction levels for test messages from malicious HIDS elements thus increasing their

trustworthiness

Note that in our results we compare these attacks with a baseline that acts as if

the malicious HIDS element was good. Throughout our evaluation we will discuss the

results for all three malicious behaviors. In general, each of the attack scenarios is

modeled over 75 days. An overview of the number of malicious nodes in the system is

shown in figure 6.3.5.

Newcomer Attack A newcomer attack introduces malicious HIDS elements into the

system that were not there previously. The ideas is to overwhelm the existing HIDS.

Here the system consisted of 30 HIDS elements with evenly distributed expertise levels

exchange test messages for 25 days. Then we add 1 malicious newcomer HIDS join the

system every day for 30 days, followed by 20 days of no change for stabilization.

As shown in figure 6.3.6a the intrusion detection system by Fung et al. [54] ex-

periences a clear decline in average trustworthiness. However, if malicious nodes are

collaborating the system actually behaves incorrectly because it shows a continuous rise

in trustworthiness even as more malicious nodes are introduced.

The same pattern is reflected using the robustness index. Figure 6.3.6b clearly shows

that the robustness index gives a better indication of how the intrusion detection system
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Figure 6.3.5: Intrusion evaluation malicious nodes per scenario overview
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(b) Robustness index

Figure 6.3.6: Comparison of average trustworthiness assessments of HIDS
nodes and robustness index for the newcomer attack scenario

is affected. We see that there are some robustness measures that are able to counter the

basic and enhanced behaviors of malicious HIDS. However, when they are collaborating

the system is vulnerable.
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Figure 6.3.7: Comparison of average trustworthiness assessments of HIDS
nodes and robustness index for the newcomer flooding attack scenario

Newcomer Flooding Attack A variation of the newcomer attack is when instead

of continuously joining the system, an attacker creates a flood of new malicious HIDS

elements. This system consisted of starting off with 30 HIDS elements with evenly

distributed expertise levels sending test messages. After 25 days 30 new malicious

HIDS join the system which then has 50 days of no change to stabilize.

Figure 6.3.7a shows the sudden decrease in trustworthiness across all expertise lev-

els. We can also recognize that for the basic and enhanced malicious behaviors the

system behaves as expected and decreases average trustworthiness. As such, it is an-

other indication that the system does not do well with malicious HIDS elements that

collaborate.

The evolution of the robustness index shown in figure 6.3.7b clearly identifies the

flooding attack and the subsequent recovery. Note that when compared to the aver-

age trustworthiness figure the robustness index seems to be better suited for detecting

certain attack scenarios. We can also notice the impact on the robustness index of

malicious HIDS elements collaborating.

Betrayal Attack A betrayal attack works by malicious HIDS first pretending to be

good to the intrusion detection system. After establishing some trust with neighboring
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Figure 6.3.8: Comparison of average trustworthiness assessments of HIDS
nodes and robustness index for the betrayal attack scenario

HIDS elements we start turning malicious. The system starts with 60 HIDS elements

and evenly distributed expertise levels. After 25 days 1 HIDS turns malicious every day

for 30 days. The remaining 20 days are then used for stabilization.

As shown in figure 6.3.8a the average trustworthiness of the HIDS elements in the

system starts to decline immediately. Interestingly there is hardly a distinction between

the malicious behaviors and their impact on the average trustworthiness. However,

when evaluating figure 6.3.8b there is a clear impact on the robustness index once

HIDS elements start turning malicious. Note that robustness decreases for all types of

malicious behavior which is different from the system facing a newcomer attack that was

fairly robust against basic and enhanced. The robustness terms also approach 0 which

would indicate that the system is unable to clearly separate trustworthiness assessments

(see figure 6.3.4b.

Betrayal Flooding Attack A betrayal flooding attack works by turning multiple

HIDS elements into malicious ones at the same time. In this system we are starting off

with 60 HIDS whose expertise level was evenly distributed until 25 days have passed.

Then we betrayed 30 HIDS elements at once and gave the simulation another 50 days

to stabilize.
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Figure 6.3.9: Comparison of average trustworthiness assessments of HIDS
nodes and robustness index for the betrayal flooding attack scenario

The resulting average trustworthiness assessments are similar to the continuous be-

trayal attack scenario (figure 6.3.9a). However, there is a small difference as the average

diverge slightly after the betrayal flooding. The robustness index shows a drastic drop

off as soon as the flooding started and recovers slightly afterwards (figure 6.3.9b). Nev-

ertheless, the low robustness values indicate that the intrusion detection system is not

able to deal well with betrayal attacks. Note that the robustness index provides a better

assessment of the impact an attack has on the system than the average trustworthiness

approach.

6.3.6 Intrusion Detection: Summary

Intrusion detection is an important field in the area of computer system security.

While there are many proposed approaches they can usually only be broadly classified

into categories (e.g., network-based, host-based, centralized, distributed, etc.). More

detailed analysis and comparison is often difficult due to the lack of a formal way of

describing intrusion detection systems and their performance metrics.

In this section we showed that our framework is capable of modeling a collaborative

trust management approach by Fung et al. [54]. We discussed in detail how individual
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components such as a HIDS, peers and test messages as well as their relationships can

be represented by our abstract graph model. As such, we showcase how our framework

is capable of modeling dynamic environments.

Furthermore, we examined the specific trust assessment methodology of the Fung ap-

proach and demonstrated in this section that they can be formalized using various graph

metrics and expressions. This includes the extensive modeling of deriving trustworthi-

ness and confidence assessments by determining satisfaction levels of test messages. As

such, we showed how our framework is able to express the intrusion detection system

approach by Fung et al. [54] as belief engines and decision processes.

Furthermore, we discussed two approaches to evaluating the system against vari-

ous types of attacks. In particular, we showed that the basic average trustworthiness

metric by Fung et al. [54] is insufficient. Therefore, we developed and evaluated a new

robustness index which is based on how clearly the intrusion detection system is able to

separate good nodes from malicious ones. Here, we provided a detailed analysis of the

both metrics with regards to newcomer and betrayal attack scenarios. Even though our

analysis is not a complete system design and trade-off analysis we demonstrated that

our TrustKnowOne framework is flexible and expressive enough to model a complex

intrusion detection system.

Additional benefits for this scenario of modeling algorithms and approaches using

our generic framework based on the abstract graph model include:

Comparison The formalized nature of the components (i.e., HIDS, Peer, TestMes-

sage) and algorithms (i.e., evaluating feedback, peer trustworthiness, peer confidence,

feedback simulation) allows for the comparison to other intrusion detection approaches

modeled in the same manner. For instance, we introduced a new robustness metric and

successfully compared it to the one suggested by Fung et al. [54]
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Extension New components as well as new algorithms can be introduced simply on

the basis of adding elements and relations to the abstract graph model. The imple-

mentation of new algorithms can be performed using graph expressions (e.g., a different

trustworthiness approach for Peers, a simpler test message feedback formula).

Reusability We showcased how individual graphmetrics and expressions can be com-

bined into more complex ones (e.g., gamma vector, weights, peer expertise level). Com-

mon element and relation descriptions of the graph model could be used across various

trust management approaches such that they can be compared easily.

Performance Since algorithms are described as a combination of graph expressions

we are able to pinpoint cost measures to evaluate them. This allows us to assess aspects

of the particular algorithm as well as potential changes to them in detail.

6.4 Chapter Summary

In this chapter we showed how our framework can be applied to a variety of scenarios.

Specifically, we discussed three diverse scenarios and how they can be expressed using

the methodology the TrustKnowOne framework. A detailed comparison and evaluation

of these scenarios with regards to other frameworks and approaches will be performed

as part of chapter 8.
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7
Implementation

We developed a reference implementation of the TrustKnowOne framework in Java.

While the choice of Java already provides a certain platform independence for the frame-

work, note that the approaches and processes described in the previous chapters (chap-

ter 4, 5) and applied to several scenarios (chapter 6) can be implemented in other

languages and on a variety of platforms. As such, our TrustKnowOne framework as

discussed throughout this dissertation provides a description of interfaces as well as

processes necessary for implementing knowledge derivation processes that incorporate

trust and quality of data.

As part of our implementation the formal aspects of our approach can be specified

according to respective XML schema definitions which have been developed with a

focus on interoperability. Hence, all graph components (elements, relations, metrics,

etc.), data sources (files, databases, etc.), and mappings (data extraction adapters)

can be described formally using a set of XML tags. Furthermore, we provide a Java

application programming interface (API) that allows future extensions to use visual

tools, domain specific languages, and a wide range of graph formats for the description

of the abstract graph model as well as graph expressions.
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The incorporation of dynamic aspects is central to our framework. Therefore, in our

implementation we timestamp all data instances and can maintain extensive provenance

information. This allows us to deal with changes in meaning (values, data types, etc.)

and structure/topology (relations, connections, etc.) throughout the graph model. We

also differentiate data and data sources using their determined trustworthiness and

incorporate these trustworthiness assessments into decision processes thus improving

them.

Flexibility, one of the key aspects of our approach is reflected in the implementation

of the TrustKnowOne framework. We support various abstract graph model storage

approaches (initially in-memory and graph database) that can be incorporated by im-

plementing an interface accordingly. Additionally, the computational model used for

applying graph expressions to graph components can be exchanged as well to support

additional approaches than the ones currently implemented (sequential, thread-based

parallelization). Note that both storage and computational model are independent from

other parts of the framework as they only need to adhere to formal interface definitions.

Thus, the framework can be adapted to specific application scenarios simply by ex-

changing one implementation for another.

In this chapter we showcase implementation aspects1 by discussing parts of the

Trusting Smartphone Apps scenario (section 6.1) where we applied our framework to

the domain of trustworthiness assessment of Android Apps. In particular, we investi-

gated why basic App attributes such as average rating and a number of positive reviews

are not necessarily good indicators of an App’s trustworthiness. Hence, we considered

three different data sources for the data extraction component: rating information, re-

views, and permissions. As part of the data processing component, we then developed

two metrics for each type of information (ratings, reviews, permissions) that incorpo-

rate a variety of meta and relationship information. Furthermore, in order to derive
1The examples used in this chapter are based on the Trusting Smartphone Apps application sce-

nario described in section 6.1. They are simplified for illustration purposes and do not reflect the full
complexity of the scenario.
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Figure 7.1: Implementation components overview

a trustworthiness assessment for individual Apps we implemented a linear weighting

scheme that functions as the decision engine in our evaluation component.

An overview of the components required for an implementation of our TrustKnowOne

is shown in figure 7.1. In the following sections we will discuss the components and

provide details of our reference implementation.

7.1 Input

Formally specifying the input to our knowledge derivation framework follows the

methodology described in section 5.2.1. As such our implementation provides techniques

to describe the elements and relations of a particular scenario, the respective data

sources, and the mappings from data sources to graph components in the abstract graph

model.

7.1.1 Elements And Relations

We provide a number of options to describe the graph components used to model a

particular application scenario. First, a flexible, interoperable, and extensible technique

involves the use of Extensible Markup Language (XML). As shown in listing 7.1, we can
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Figure 7.2: Simplified element description graph

define basic graph components such as elements and relations using tags and attribute

values. In particular, we show three elements where the unique identifier and timestamp

properties are derived from a particular attribute of an element. Furthermore, we specify

an appropriate type for each of the attributes.

Figure 7.2 shows the same simplified version of the abstract graph model in graphical

form. This type of graphical modeling can be used to organize more complex application

scenarios.

In order to provide the most flexibility we also provide an application programming

interface (API) to our framework implementation for describing elements and relations.

As shown in listing 7.2 this approach achieves the same objective of providing a flex-

ible and extensible way to model graph components of the trusting Smartphone Apps

scenario.
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1 <element name="App">
2 <id>
3 <attribute ref="id"/>
4 </id>
5 <time name="datePublished" pattern="yyyy-MM-dd"/>
6 <attribute name="authorName" type="xs:string" />
7 <attribute name="id" type="xs:ID" />
8 <attribute name="name" type="xs:string" />
9 <attribute name="numDownloads" type="xs:string" />

10 <attribute name="ratingCount" type="xs:positiveInteger" />
11 <attribute name="ratingValue" type="xs:double" />
12 </element>
13

14 <element name="Permission">
15 <id>
16 <attribute ref="label"/>
17 </id>
18 <time name="time" pattern="yyyy-MM-dd" />
19 <attribute name="description" type="xs:string" />
20 <attribute name="label" type="xs:string" />
21 <attribute name="level" type="xs:string" />
22 </element>
23

24 <element name="Review">
25 <id>
26 <attribute ref="appId"/>
27 <attribute ref="id"/>
28 </id>
29 <time name="date" pattern="yyyy-MM-dd" />
30 <attribute name="appId" type="xs:ID" />
31 <attribute name="id" type="xs:ID" />
32 <attribute name="author" type="xs:string" />
33 <attribute name="rating" type="xs:positiveInteger" />
34 <attribute name="text" type="xs:string" />
35 <attribute name="title" type="xs:string" />
36 </element>
37

38 <relation name="app-reviews" sourceRef="App" targetRef="Review"
39 type="one-to-many"/>
40 <relation name="app-permissions" sourceRef="App" targetRef="Permission"
41 type="one-to-many"/>

Listing 7.1: Simplified XML Element and Relation description
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1 Element appElement = new Element("App", new IdAttribute("id"));
2 appElement.setTimeAttribute(new TimeAttribute("datePublished");
3 appElement.add(new TypedAttribute<>("id", String.class));
4 appElement.add(new TypedAttribute<>("authorName", String.class));
5 appElement.add(new TypedAttribute<>("ratingValue", Double.class));
6 appElement.add(new TypedAttribute<>("ratingCount", Integer.class));
7

8 Relation relation = new Relation("app-reviews", "App", "Review");

Listing 7.2: Simplified Java Element and Relation description

7.1.2 Data Sources

Formally describing data sources is difficult due the complexity of non-standard

interfaces. Our reference implementation provides an approach that is flexible and

extensible since we only need to specify how to connect to a data source and retrieve

raw data. The actual integration of data into the abstract graph model is performed as

part of the mapping process. This allows us to incorporate a variety of data sources

such as databases and files into the knowledge derivation process.

In addition, by using the API we are able to efficiently deal with the continuous

integration of new data. In case of the trusting Smartphone Apps scenario, we devel-

oped a web crawler that provided a snapshot of the data we wanted to model. While

this allowed us to perform a detailed analysis of trust aspects (see section 6.1), the data

remained static. However, we could have easily extended our scenario to have a dy-

namic web crawler that continuously fed new data into the framework. As discussed in

section 5.2.2, dynamic retrieval of additional data can improve decision processes and is

a necessary step in enable knowledge derivation in real-time and streaming applications.

Hence, we can also model a data source as a process that either continuously provides

data or provide data when requested.

An example of dynamically creating an additional App element node for the appli-

cation scenario is shown in listing 7.3.
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1 ElementNode one = new ElementNode(appElement);
2 ElementInstance oneInstance = one.createInstance();
3 oneInstance.set("id", "com.google.android.maps");
4 oneInstance.set("authorName", "Google");
5 oneInstance.set("ratingValue", "4.6");
6 oneInstance.set("ratingCount", "9020");
7 one.add(oneInstance);

Listing 7.3: Dynamically creating a new element node using the API

7.1.3 Mappings

Given the description of the graph components and the data sources for an appli-

cation scenario, we are able to define a mapping process that will transform raw data

from a data source into a respective graph component. Our reference implementation

provides an approach based on XML in order to perform the mapping. As discussed in

section 5.2.1, we enable incorporating custom adapters for handling application specific

data transformations efficiently.

In listing 7.4, we map data from a comma separated value file onto the abstract graph

model by describing the row format of the file. Note that we split the information found

in a row into an App and a Category element node. In addition, our implementation

automatically adds a relationship accordingly.

An efficient way to store information about which entities in a graph are related is

an adjacency list where a list of neighboring nodes is kept for each node of the graph. As

such, our reference implementation allows the mapping of data onto element nodes and

relationships onto relation edges in a flexible manner. For example, listing 7.5 shows a

mapping in which the number of Permission element nodes per App varies.

7.2 Knowledge Derivation Process

In order to provide an framework implementation that allows knowledge derivation

as described in this dissertation we need to discuss the following. The previous section
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1 <data name="apps">
2 <csv file="apps.csv" header="false" separator=","
3 quoteCharacter="double" >
4 <rowFormat>
5 <element ref="App" number="1">
6 <attribute ref="id" />
7 <attribute ref="name" />
8 </element>
9 <element ref="Category">

10 <attribute ref="name" />
11 </element>
12 <element ref="App" number="1">
13 <attribute ref="authorName" />
14 <attribute ref="datePublished" />
15 <attribute ref="numDownloads" />
16 <attribute ref="softwareVersion" />
17 <attribute ref="ratingCount" />
18 <attribute ref="ratingValue" />
19 </element>
20 </rowFormat>
21 </csv>
22 <relation ref="app-category"/>
23 </data>

Listing 7.4: Simplified XML mapping description

1 <data name="appPermissions">
2 <csv file="appPermissions.csv" header="false">
3 <rowFormat>
4 <element ref="App">
5 <attribute ref="id"/>
6 </element>
7 <group max="unbounded">
8 <element ref="Permission">
9 <attribute ref="label"/>

10 </element>
11 </group>
12 </rowFormat>
13 </csv>
14 <relation ref="app-permissions"/>
15 </data>

Listing 7.5: Variable number of relationships mapping

264



discussed in detail how our reference implementation describes graph components, data

sources, and mappings. However, an efficient implementation our framework requires

an efficient abstract graph model backend responsible for storage and retrieval of graph

components. Furthermore, how do we describe graph expressions in a flexible and ex-

tensible manner and more importantly how do we evaluate them on the abstract graph

model. Our reference implementation provides a solution that is flexible yet scalable in

size and performance.

7.2.1 Abstract Graph Model Backends

There exist a variety of data storage approaches. However, we focus on a particular

type that is our abstract graph model. In order to remain flexible and extensible our

implementation performs storage and retrieval operations on an abstract graph model

interface. This allows the underlying storage model to be adapted to specific needs. For

instance, if the amount of data is highly dynamic (e.g. streaming data) then storing

it in memory improves performance since data does not have to be written and read

from disk. On the other hand, relational or graph databases offer advantages in the

retrieval of data because of complex index systems. Furthermore, document mining

usually follows a file based approach. As such, it is important to note that by not

depending on a single type of backend but rather providing the ability to choose our

reference implementation allows for the flexibility necessary to deal with a variety of

applications scenarios. Note that this enables extension to distributed (e.g., Hadoop

[169, 178]) as well as hybrid (e.g., using a database for old data and in-memory for

newer data) backend approaches.

7.2.2 Metrics

Our TrustKnowOne framework performs knowledge derivation by evaluating graph

expressions on the graph components stored in the abstract graph model. Whereas belief
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engines assess aspects such trust and quality of data, metrics and decision processes

are usually utilized to compute values from graph components. These graph expressions

can be implemented using several approaches. Our reference implementation utilizes an

expression interface for which every graph expression needs to provide specific imple-

mentations (listing 7.6). Note that this can easily be extended to include other graph

components or combinations thereof.

1 public interface Expression {
2 public Object evaluate(ElementNode node);
3 public Object evaluate(List<ElementNode> nodes);
4 public Object evaluate(RelationEdge edge);
5 }

Listing 7.6: Java reference implementation expression interface

We then incorporate this interface when defining possible relationships between

graph expressions. For instance, a binary comparison as shown in listing 7.7 requires

two child graph expressions which are then evaluated on a particular graph component.

1 public class Equal implements Expression {
2 protected Expression a;
3 protected Expression b;
4

5 public Equal(Expression a, Expression b) {
6 this.a = a;
7 this.b = b;
8 }
9 public Object evaluate(ElementNode node) {

10 return (a.evaluate(node)).equals(b.evaluate(node));
11 }
12 public Object evaluate(List<ElementNode> nodes) {
13 return (a.evaluate(nodes)).equals(b.evaluate(nodes));
14 }
15 public Object evaluate(RelationEdge edge) {
16 return (a.evaluate(edge)).equals(b.evaluate(edge));
17 }
18 }

Listing 7.7: Java expression example implementation
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The results can then be compared accordingly. This approach maintains great flex-

ibility in terms combining graph expressions of all different types and make it straight-

forward to incorporate additional ones into the framework.

In chapter 4, we already presented an expression tree form to define graph expressions

and in this section we provide two additional methods. As an example, we choose the

following metric from the trusting Smartphone Apps scenario.

Expression 7.1 Scaled average review rating

App
apply to

scaled average review rating

average

Neighbors

ElementNode

is Review type

ElementNode

divide

4.0

subtract

1.0rating

evaluatingExpression includeExpression

Because of its flexibility and interoperability we also chose XML in our reference

implementation to specify metrics. An advantage of XML is its inherent tree structure

which makes the transformation into an expression tree straightforward and efficient

(see listing 7.8).

As discussed earlier, our implementation provides an API that allows for metrics to

be dynamically added (listing 7.9).

7.2.3 Computational Engines

Evaluating graph expressions on the graph components can be done in a variety

of ways. Our reference implementation of the TrustKnowOne framework provides an
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1 <metric name="scaled average review rating">
2 <element ref="App">
3 <average>
4 <neighbors>
5 <parameter name="includeExpression">
6 <element ref="Review"/>
7 </parameter>
8 <parameter name="evaluatingExpression">
9 <element ref="Review">

10 <divide>
11 <subtract>
12 <attribute ref="rating"/>
13 <value>1.0</value>
14 </subtract>
15 <value>4.0</value>
16 </divide>
17 </element>
18 </parameter>
19 </neighbors>
20 </average>
21 </element>
22 </metric>

Listing 7.8: XML scaled average review rating metric definition

1 Neighbors reviewRatingNeighbors = new Neighbors();
2 reviewRatingNeighbors.set(NeighborsParameter.includeExpression,
3 new ElementReference(new TypeConstraint("Review")));
4 reviewRatingNeighbors.set(NeighborsParameter.evaluatingExpression,
5 new ElementReference(
6 new Divide(
7 new Subtract(
8 new AttributeReference("rating"),
9 new Constant<Double>(1.0)),

10 new Constant<Double>(4.0))));
11

12 Average averageReviewRating = new Average(reviewRatingNeighbors);
13

14 Metric scaledAverageReviewRating =
15 new Metric("scaled average review rating", averageReviewRating);

Listing 7.9: Java scaled average review rating metric definition
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abstraction layer that makes it possible to utilize currently well-known as well as future

computational approaches. In order to maintain scalability our implementation deals

with model keys that consist of the identifier and type instead of the complete graph

component whenever possible. This approach in essence follows the key-value mapping

approaches found in large-scale data processing frameworks (e.g., [39, 42, 103, 109, 139]).

This makes it easy to extend single machine to distributed computations such as Hadoop

[169, 178].

Our reference implementation not only allows for sequential and parallel but also

agent-based processing. In contrast to frameworks such as Hadoop, we are able to per-

form dynamic evaluation and reevaluation on parts of the abstract graph model without

the need for a central control functionality. Essentially, the abstract graph model could

be maintained independently of the entities that perform queries and computations on

it. An advantage of the abstract graph model approach is that clustering becomes more

efficient since relationships are already known. This also makes it easier to coordinate

potential synchronization issues that arise on shared data during parallel processing.

7.3 Output

Providing the results of the knowledge derivation process in a variety of formats

is important because it increases the usefulness of our framework. As such we provide

several mechanisms to retrieve the results of evaluating graph expressions. In particular,

one can utilize the Java API to implement output adapters. This allows the creation

of static results such as tables, files, and charts as well as dynamic ones such as event

notifications and propagation to other systems.
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7.4 Application Programming Interface

While we chose Java for the reference implementation of our TrustKnowOne frame-

work, the approaches and methodologies discussed throughout this dissertation can be

incorporated into other existing or future frameworks. The framework itself is language

agnostic, platform independent, and because of the clearly defined interfaces such as the

ones between knowledge extraction, processing, and evaluation, our framework is flexible.

Our implementation provides an abstract graph model that can be used for managing

data in heterogeneous and dynamic environments. Furthermore, our TrustKnowOne

framework enables the incorporation of trust and quality of data aspects into decision

making process in a formalized manner.

Throughout our reference implementation we have focused on providing the most

flexible and open approach possible. By providing an API in addition to the XML and

graph based formalization of our reference implementation, interfaces could be provided

to other languages such as C++, Python, etc.

7.5 Chapter Summary

In addition to the TrustKnowOne framework discussed throughout this dissertation,

we provide a reference implementation. In this chapter, we described the components

of our implementation including input, knowledge derivation process, and output.

As discussed in section 5.2.2, we need to describe the graph components used in

the respective application scenario. Here we provided three equivalent ways to model

elements and relations (XML, expression tree, and Java). Furthermore, data sources

often lack formal descriptions because of their variety of formats. Here we proposed an

approach where we capture basic information that can be used to connect to a data

source and define mappings that transform raw data into equivalent graph components.

As part of the mappings, relationships can be determined and added automatically.
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In this chapter we also discussed the requirements regarding data management and

processing. Specifically, our reference implementation provides an abstract graph model

interface that allows various backends to be used that range from in-memory to dis-

tributed and hybrid approaches. A similar layer of abstraction is provided for compu-

tational engines such that they can be adjusted depending on the requirements of the

application scenario (e.g., sequential, parallel, distributed, agent-based). Metrics have

been discussed in detail in section 4.4 and 6. However, in this chapter we provided two

additional ways to define them (XML, Java).

The output of the framework can be converted into a variety of formats using the ap-

plication programming interface (API) provided by our implementation. While we have

presented a number of techniques to describe parts of the TrustKnowOne implementa-

tion, our approaches as discussed in this chapter make the overall framework flexible

and extensible.
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8
Evaluation

We discussed the details of our TrustKnowOne framework in previous chapters.

Furthermore, we showed how the framework can be applied in various scenarios. Here,

we build on the related work chapter to evaluate TrustKnowOne within the context of

trust assessment, data modeling, and large-scale processing. We confirm our claims con-

cerning the contributions of our TrustKnowOne framework. In particular, we compare

important aspects of our approach to representative frameworks found in literature. In

order to provide the reader with an accurate assessment of our framework, the literature

representatives were chosen based on the fact that they are best in class, highly utilized

and widely referenced. As such, we evaluate and compare our TrustKnowOne frame-

work with approaches focused on large-scale data processing (i.e., Hadoop [169, 178],

Dryad [76]), graph algorithms (i.e., Pregel [107], Pegasus [86], GraphLab [104]), and

distributed trust approaches (i.e., EigenTrust [85], TrustRank [67], PowerTrust [187]).

The main advantage of Hadoop [169, 178] is that it bases large-scale data process-

ing on the abstract MapReduce paradigm [37–39] which allows for a formal yet flexible

approach to “big data” analysis. While Dryad [76] shares the same goal, its approach

is different. Instead of providing an abstract layer where large-scale data processing
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is performed automatically on a distributed set of computing nodes, Dryad represents

a distributed execution engine. In particular, users have to specifically define compu-

tational nodes and their processing relationships. Nevertheless, both frameworks have

weaknesses in areas such as formalization of data and processes. Furthermore, they do

not incorporate trust and quality of data into the knowledge derivation process which

we will discuss in detail as part of this chapter.

There exist a variety of graph frameworks that we can compare our TrustKnowOne

framework against. Specifically, Pregel [107] represents a computational model based

on nodes. Programs are defined as a series of iterations in which nodes send messages

around to other nodes which then modify data stored in nodes, edges, and graph topol-

ogy. In similar fashion, Pegasus [86] provides a collection of graph mining algorithms

that can be implemented using node-based computations. However, instead of message

passing, approaches are modeled as matrix-vector multiplications which limits their

ability to be scaled and distributed. GraphLab [104] provides a parallel abstraction for

machine learning algorithms with a data graph that models computational dependen-

cies. It incorporates a variety of techniques to address issues such as data consistency

and process scheduling. However, most graph frameworks often do not consider hetero-

geneous data and relationships as well as trust assessment aspects.

Approaches that focus on the assessment of trust relationships are often limited in

terms of formalization and flexibility. For instance, EigenTrust [85] provides a technique

for distributed trust assessment of nodes in peer-to-peer systems. It is based on local

trust values (binary positive or negative assessments of transactions) and normalized

local trust value that lead to transitive trust assessments (i.e., trust of peer’s friends

weighted by trust in peer). While this approach works well in a distributed way and is

robust against a variety of attacks, it ignores other trust and quality of data aspects (e.g.,

non-binary, global relationships). Furthermore, it lacks formalization and flexibility.

PowerTrust [187] extends the principles of EigenTrust but instead of using a seed set

of known trust nodes, it relies on historical information to determine power nodes from
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Table 8.1: Comparison of major aspects in knowledge derivation processes
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heterogeneous systems
dynamic systems
formal representations
quality and trust assessments
flexibility in approaches

no support partial support full support

which to propagate trust. TrustRank [67] is similar to PageRank [20] in the way it

incorporates trust dampening and splitting techniques but is still based on the same of

trust derivation from seed nodes. The most notable aspects of these trust approaches

are that they are data agnostic (i.e., only concerned about providing a trust assessment

approach) but often lack flexibility which would allow their reuse in heterogeneous and

dynamic application domains. In contrast, our TrustKnowOne framework provides a

complete knowledge derivation approach with the ability to incorporate various data

processing as well as trust approaches. With regards to trust assessment techniques, we

are able to combine, modify, and evaluate them because of their formalization as belief

engines.

An overview of the major aspects of knowledge derivation supported by our Trust-

KnowOne and confirmed through the implementation of the three scenarios is shown

in table 8.1. Table 8.1 also shows how well these major aspects are supported by the

representative frameworks. In the following, we will discuss these aspects and then

evaluate the frameworks in the context of the research areas outlined in related work

(chapter 3).
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8.1 Major Aspects

When developing our TrustKnowOne framework we identified five major aspects

as requirements for a complete knowledge derivation system: heterogeneous systems,

dynamic systems, formal representations, quality and trust assessments, and flexibility

in approaches. Knowledge derivation in heterogeneous systems is difficult because one

needs to address issues of data integration and conflicting data. However, a framework

should be flexible enough to incorporate various types of data as well as relationships in

order to allow for known information and more importantly information that is not yet

known to be incorporated into decision making. TrustKnowOne provides an abstract

graph model approach that provides this capability in a uniform and formalized way

(see chapter 4,6). In contrast, other approaches often focus on particular applications

which results in them lacking support for true heterogeneous systems. For instance,

trust approaches such as EigenTrust [85], TrustRank [67], and PowerTrust [187] assume

a homogeneous system of related peer nodes.

Another aspect that is often disregarded because it increases complexity is dealing

with changes in dynamic systems. In its most basic form this means keeping track of

changes in data over time. However, relationships between data elements may change

as well. Many knowledge derivation approaches only consider snapshots of data which

often does not capture all the context. Our abstract graph model approach provides a

direct methodology to store data in time series.

The formalization of data, data sources, relationships, trust approaches, and deci-

sion processes is important to enable analysis, evaluation and comparison of various

approaches. Nevertheless, most existing frameworks do not address this aspect which

makes it difficult to determine their strengths and weaknesses. In addition, it becomes

problematic to improve or exchange existing techniques as well as apply them in dif-

ferent application domains. As discussed in chapter 4 and chapter 5 TrustKnowOne

provides an approach to knowledge derivation which formalizes all parts of the process.
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The premise of our research is that knowledge derivation can be improved by incor-

porating trust and quality of data. Apart from trust approaches (e.g., EigenTrust [85],

TrustRank [67], PowerTrust [187]) our framework is the only one that provides a formal

approach to incorporating context, expected behavior and other meta information and

deriving trust and quality assessments for data.

Instead of developing a specific quality and trust assessment approach that is limited

to a particular scenario our research provides a generic abstract framework that is

flexible and extensible enough to support existing as well as future knowledge derivation

processes. Note that this includes approaches that only focus on a particular part of the

framework such as large-scale data processing or modeling trust assessment techniques.

8.2 Trust Assessment and Management

In order to model knowledge derivation we need to make sure that we are able

to evaluate the context of a particular piece of data. Specifically, incorporating trust

and quality of data aspects requires a number of features to be supported by frame-

works. First, determining what is fact and what not is based on a framework’s ability

to model heterogeneous and dynamic systems. Second, assessments of the reputation of

data and data sources are crucial in evaluating their usefulness. Third, only full trans-

parency throughout the knowledge derivation process ensures better decision making.

An overview of supported trust assessment and management aspects of our and other

frameworks is shown in table 8.2 and in the following sections we will discuss them in

detail. Table 8.2 also includes references to the most relevant scenario that discusses a

particular aspect.
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8.2.1 Fact Finding and Data Representation

As shown in table 8.2, Hadoop provides the most complete approach to model flexible

fact finding techniques. However, it does not incorporate trust and quality of data

assessment. Heterogeneous systems require the ability to model a diverse set of data

and relationships. Large-scale processing approaches have the advantage here as they

are flexible and designed to be applicable in a variety of applications. In contrast, trust

approaches are often designed for homogeneous systems and deal with relationships

only as part of their trust assessment. We provide an abstract graph model which is able

to model heterogeneous entities as well as relationships in a formal manner as graph

components (chapter 4) and showed its application in chapter 6.

In addition to enabling its application in heterogeneous systems our approach over-

comes the general lack of formal data representations found in other frameworks. For

instance, there exist a number of serialization approaches for Hadoop (e.g., Avro [167],

Thrift [154], Protocol Buffers [60]). However they do not provide a unified way of de-

scribing data and relationships. Another problem found in related approaches such as

DFDL [135] and DSPL [62] is the combination of data source information and data

description. As discussed in chapter 5 during the knowledge extraction our framework

deals with data source and data element descriptions separately and defines a mapping

using adapters which makes this approach more flexible. This flexibility can be seen in

the use of our framework for a variety of scenarios (chapter 6).

The biggest challenge for fact finding is that trust and quality assessments are often

not directly incorporated into knowledge derivation frameworks. Apart from the trust

techniques (i.e., EigenTrust [85], TrustRank [67], PowerTrust [187]) our TrustKnowOne

framework is the only one that provides mechanisms to incorporate trust and quality

assessments in the form of formal belief engines (see section 6.1.4, 6.2.4, 6.3.3).

Furthermore, many “big data” analysis frameworks focus on efficient distributed

processing on a static data set. However, many real world applications deal with data
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that is constantly changing. Thus it is necessary to consider time series of data and rela-

tionships. While Hadoop [169, 178] does not directly provide support for dynamic data,

its input format is flexible enough to address this. Pregel [107] is based on computations

perform on graph vertices and message passing between them. As such dynamic aspects

could be implemented into the process directly. Our framework provides the flexible

abstract graph model described in chapter 4 to provide this functionality. We utilized

this aspect extensively in the radiation and intrusion detection scenarios (section 6.2,

6.3).

Note that while fact finding represents one of the foundations of knowledge derivation

we need to ensure that aspects such as quality and trust assessments can be incorporated

from other systems. This means providing a way to query facts as well as annotating

or modifying them which requires a flexible approach such as our abstract graph model

(see chapter 4, section 6.2.4.1) or separate interfaces as in the case of Hadoop [169, 178],

Dryad [76], and Pregel [107].

8.2.2 Reputation Management

Reputation management is an important component of fact finding that allows us

to weight data and resolve conflicting information. Many of the large-scale processing

and graph frameworks do not consider data coming from different sources (e.g., sec-

tion 6.2) but assume a single data set. Distributed trust approaches such as EigenTrust

[85] and PowerTrust [187] incorporate a limited version of reputation of data sources

as part of their peer assessments. Our TrustKnowOne framework provides a formaliza-

tion of “local” assessments through dimension models during knowledge extraction and

“global” assessments through belief engines during knowledge processing (see chapter 5,

section 6.2.5.5).

Furthermore, knowledge derivation frameworks need to be able to deal with objec-

tive and subjective challenges to data. However, most frameworks do not address both
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but focus on one or the other. In particular, large-scale processing approaches often

incorporate techniques that ensure data consistency and fault tolerance and ignore at-

tack models that would introduce malicious or modify existing data. Trust approaches

on the other hand provide the means to identify and often deal with attacks on data.

Note that our TrustKnowOne framework does not specify particular techniques to deal

with either objective or subjective challenges but instead provides a flexible approach

based on belief engines modeled as graph expressions that allows existing and future

techniques to be implemented (see section 4.4, section 6.3)

In addition, this formalization is necessary to enable reuse of trust and quality assess-

ment techniques in other application domains. Most of the representative frameworks

do not provide mechanisms to incorporate other approaches. Furthermore, while the

trust approaches are in some way formally specified their evaluation and comparison

against each other is still difficult because of a missing unified formalization model. By

defining trust approaches as graph expressions that are evaluated on an abstract graph

model storing the data we solve this problem and enable evaluation and comparison of

the approaches (see section 6.2.5, section 6.3.5.3).

8.2.3 Data Lineage

The formalization of the entire knowledge derivation processing as provided by our

TrustKnowOne framework has the advantage of allowing detailed tracing of data and

assessments (chapter 5). In particular, the knowledge extraction phase annotates data

with meta information about its origin while the knowledge processing phase provides

additional information about how it is processed. This approach enables us to assess

why we reach certain decision results and trace back influential data as well as pro-

cesses that shaped the decision making. Furthermore, in contrast to other frameworks

we are able to use this extensive lineage information to evaluate and improve knowl-

edge derivation (e.g., not incorporating data from untrustworthy sources, only using a
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subset of the available data, see section 6.2.5.5). In addition, since we provide lineage

information as additional attributes to element nodes in our abstract graph model this

approach is flexible enough to allow for varying degrees of granularity ranging from cap-

turing straightforward origin meta information to detailed processing and assessment

derivation annotations.

8.3 Data Modeling, Integration, and Fusion

Knowledge derivation is complex because it requires a variety of data processing

problems to be addressed. First, frameworks need to provide capabilities to formalize

aspects of data processing such as data sources, relationships, assessments and decision

processes. This is an important step that is often neglected by existing research resulting

in frameworks that are difficult to evaluate and compare. Second, trust and quality of

data assessments need to be directly incorporated into the overall knowledge derivation

process. Separating data processing from assessments limited our ability to provide the

best possible decision options. Third, in order to enable evaluation and comparison of

approaches as well as improve the knowledge derivation process we need to be able to

define metrics and assess costs. In this section we will discuss data modeling, integration,

and fusion aspects of our and other frameworks (see table 8.3 for an overview). In

addition, table 8.2 indicates the most relevant scenario discussing these aspect.

8.3.1 Formalization

Many data processing frameworks provide mechanisms to describe the data they use

as part of their processing. For instance, there exist a number of serialization frame-

works for Hadoop [169, 178] (e.g., Avro [167], Thrift [154], Protocol Buffers [60]) and

graph frameworks usually allows arbitrary data to be associated with graph nodes. The

problem lies in the fact that without a formal description it becomes difficult to exchange
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data and use it in another application domain. In addition, while our framework di-

rectly incorporates aspects such as different classes of nodes and node identities other

frameworks do not (see section 5.2). Similar formalization problems affect descriptions

of relationships which are often only provided as adjacency lists or matrices. In general,

knowledge derivation frameworks tend to ignore heterogeneous aspects that could prove

useful but increase complexity such as relationship attribute (e.g., time, weights). In

addition, the lack of formalizing data sources, extracting knowledge from them, and

their incorporation into the knowledge derivation process makes it difficult to provide

proper data lineage and “local” assessments for data. As shown in chapter 5 knowledge

extraction is fully formalized in our framework. This includes provisions for adding meta

information and context to the data as part of graph components within the abstract

graph model (chapter 4).

Because many of the frameworks do not incorporate trust aspects there is no for-

mal approach to modeling trust and quality of data assessments. Note that while trust

approaches such as EigenTrust [85], TrustRank [67], and PowerTrust [187] provide a for-

malization of their techniques they are not generic enough to describe other assessment

approaches. Approaches for decision making are often not part of frameworks because

they are considered separate from the data processing. However, Hadoop [169, 178]

includes some built-in functionality and there exist several extensions (e.g., Mahout

[121, 171], Giraph [168]) for formalizing decision processes. Our approach allows data

processing, assessment and decision making to be formalized using graph expressions

(section 4.4). This provides a unified approach that is flexible enough for existing and

extensible for future approaches and techniques (see chapter 6).

As discussed earlier, we need to be able to analyze data that is dynamic. Hence,

our data model needs to be able to formally describe dynamic aspects such as time

and location data and relationships (e.g., section 6.2, 6.3). Our abstract graph model

inherently stores keeps track of data as a time series and we provide dimension models

for expressing dynamic data (chapter 4). Hadoop [169, 178] allows processing on ar-
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bitrary data and as such provides limited support for this type of dynamic modeling.

PowerTrust [187] partially addresses the issue in terms of peer nodes joining or leaving

the system.

8.3.2 Trust and Relationship Models

Trust and relation models are often of limited relevance in large-scale data pro-

cessing frameworks. Similarly, trust approaches (e.g., EigenTrust [85], TrustRank [67],

PowerTrust [187]) often ignore data processing aspects and focus on trust and rela-

tionship models. In general, it is important to provide support for homogeneous and

heterogeneous systems in order for trust approaches to be applicable to a wide range

of scenarios. This means that trust and relationship model need to be formal in their

description yet flexible enough to support a wide variety of domains. Our approach of

expressing data as graph components and relationships as relation edges between them

achieves this. Furthermore, trust approaches can then be modeled as graph expressions

in a standardized manner (see chapter 6).

As discussed above, providing a formal integration of trust aspects into the knowl-

edge derivation process can improve decision making. In particular, having “local”

(dimension models chapter 4) and “global” (belief engines chapter 5) assessments avail-

able allows us to determine what data is of high quality and trustworthy as well as

provide confidence levels for decision options.

8.3.3 Metrics

Providing cost assessments of individual components in large scale systems is diffi-

cult due to complexity and various interconnecting components being formalized using

different methodologies. Hadoop [169, 178], Dryad [76], and Pegasus [86] utilize a lim-

ited set of predefined counters and computational statistics for monitoring and analysis

of data processing. We allow cost assessments to be attached to data (graph compo-
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nents) as well as processes (graph expressions) which enables evaluation and comparison

of data processing and assessment techniques (section 5.2.6, 5.3.6, 5.4.5).

Furthermore, while optimization is often considered one of the primary reasons for

defining metrics, many frameworks provide only limited capabilities to formally describe

and incorporate them. This means that it is difficult to implement other metrics than

the ones existing in the frameworks. Our TrustKnowOne framework is based on a

flexible abstract graph model on which metrics can be defined and evaluated using graph

expressions (chapter 4). These metrics can then be calculated at each phase (chapter 5)

and thus cover the entire knowledge derivation process.

It is important to provide trust metrics that reflect aspects of trust relationships such

as confidence in data and reputation of data sources. Especially the assessment of data

sources is only factored in in trust approaches and mostly ignored in data processing

frameworks. For instance, as part of our framework meta information such as lineage

can be used in combination with these assessments to improve decision processes by

determining the trustworthiness of data sources (see section 6.2.5.5). This is not possible

in frameworks that do not provide formal trust metrics.

8.4 Large-scale Data Processing

In order to provide the scalability and flexibility necessary to model complex appli-

cation scenarios, frameworks should support a variety of aspects related to “big data”.

In particular, scalability is often closely tied to distributed processing whereas flexibility

in terms of data modeling comes from approaches that are based in graph theory. As

such, large-scale processing requires combination of “big data” and graph framework

aspects that maintains the advantages of both areas. Furthermore, every framework

needs to be able to provide mechanisms for data processing as well as analysis of data,

assessments, and processes in form of a query system. Without the ability to retrieve

additional information such as context, cost assessments, and metrics evaluation and
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comparison becomes difficult. We provide an overview of the supported large-scale data

processing aspects in table 8.4 and will discuss details as part of this section. Table 8.4

also shows which of scenario is the most relevant regarding the discussion of a specific

aspect or confirmed through reference implementation.

8.4.1 Big Data

There exist a variety of approaches to achieve scalability. However, most important

is the choice of flexible data structures. In particular with regards to storage, data

structures need to be able to deal with being distributed across various entities such

as computing clusters. Furthermore, basic operations such as adding, modifying, or

removing data needs to be bound by the number of data entries and should not be

exponential. For this reason, using matrix data structures with a large number of values

can become problematic. However, most large-scale data processing frameworks have

solved this problem either through efficient data structures or scalable implementation

of processes.

An approach to solve the problem of storage and computational power limitations

of single systems is to perform processing in a distributed manner. Note that this

can be considered a natural evolution from single-threaded sequential processing on a

single machine to multi-threaded parallel processing on a single machine and finally to

parallel processing on multiple machines. Many frameworks have focused on providing

this capability through a variety of abstract programming paradigms (e.g., MapReduce

[37–39] in Hadoop [169, 178], vertex-based iterative computations in Pregel [107]). Our

framework is provides an abstract graph model on which graph expressions are evaluated

(chapter 4). As such nodes as well as edges of the graph can be distributed across

machines.

Note that while platform independence is something that is often not considered a

priority when designing frameworks, it leads to additional flexibility. In particular, it
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allows data processing and assessment approaches to be applicable to more scenarios

because they can be incorporated into other systems more easily. Similarly, maintain-

ing flexibility in input and output formats is important ensures that a framework can

deal not just with existing data sources but future ones as well. Apart from Trust-

KnowOne which uses an adapter approach (chapter 5) general large-scale processing

frameworks (e.g., Hadoop [169, 178], Dryad [76]) support this kind of integration while

trust approaches (e.g., EigenTrust [85], TrustRank [67], PowerTrust [187]) do not.

We already discussed the need to flexible data storage options in terms of scalability.

In addition, note that providing multiple storage options through a common abstract

interface frameworks could adapt better to various scenarios (see chapter 6). Specifically,

data for large-scale data analysis could be stored based on how data is used. For

instance, frequently used data can be stored in memory for faster processing while

historic data can be stored in databases. This kind of approach for splitting the data

across multiple storage systems is supported by our framework (chapter 7). Other

frameworks provide a variety of file systems (Hadoop [169, 178]) or process-based storage

(e.g., Dryad [76]) but many simply define their own storage approach that often does

not translate to other domains.

There exist several approaches to perform large-scale data processing, most notably

MapReduce [37–39] (e.g., in Hadoop [169, 178]), user-defined computational topologies

(e.g., in Dryad [76]), and vertex-based iterative computations (e.g., in Pregel [107]).

Our approach does not dictate one specifically but rather provides a framework based

an abstract graph model that is conducive to existing as well as future computational

paradigms (chapter 4, 5, 7). In particular, MapReduce can be modeled as a sequence

of graph expressions that represent “map” and “reduce” functions accordingly. Further-

more, graph expressions can be nested and thus be used to represent computational

dependencies (chapter 4) as in Dryad. Finally, since graph components in our abstract

graph model can be annotated we are able to keep track of information across several it-

erations while evaluating graph expressions in parallel on nodes of the graph like Pregel.
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As such our TrustKnowOne framework provides a flexible approach to large-scale data

processing as compared to the existing frameworks. Note that it is also important to

distinguish between defined and derived knowledge. While it is often straightforward

to define data processing techniques our framework includes the ability to incorporate

meta information and various assessments to derive additional knowledge to be used

during decision making.

One of the premises of our research is the incorporation of trust and quality of data

into the knowledge derivation process. Large-scale data processing and context analysis

such as trust or quality assessments are often seen as diverging interests. The problem

is that in order to allow for the fastest and most efficient large-scale processing one

needs to ignore these aspects in favor of performance because they increase complexity.

However, while providing trust and quality of data assessments decreases performance

it can improve decision processes and in some instances overcome additional compu-

tational costs (see chapter 6). For instance, determining which data sources are less

trustworthy or which data elements are of low quality we could optimize knowledge

derivation and thus decision making processes by only performing computations on

high trustworthy and high quality data (e.g., section 6.2.5.5). Approaches like the one

described would be able to potentially balance out the decrease in performance that is

due to the incorporation of trust and quality of data aspects. However, in contrast to

the general large-scale processing approaches our TrustKnowOne framework is be able

to provide a better assessment of decision options that includes confidence levels and

ranges.

8.4.2 Graph Frameworks

With the growing number of relationships in data that occur in many real world sce-

narios (e.g., social networks, distributed sensing), graph frameworks represent a natural

fit for providing extensive and yet flexible data modeling. However, it is key to maintain
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this flexibility by having a graph framework that is able to incorporate heterogeneous

entities and relationships. Many large-scale processing frameworks do not provide a

graph-based interface which puts the burden of modeling possibly extensive relation-

ships on the developer. In addition, it can lead to custom non-standard representations

of graph concepts that are difficult to evaluate, improve, or adapt to other domains. Our

TrustKnowOne framework uses an abstract graph model which as described in chapter 4

is flexible enough to model current and future application scenarios (see section 6.1.2,

6.2.2, 6.3.1). Note that GraphLab [104] is the only one of the representative frame-

works that is entirely based on graph theoretic constructs and allows arbitrary data to

be stored with graph nodes and edges.

As discussed above another problem with many frameworks is the lack of support for

dynamic aspects. With regards to graph frameworks we need to be able to store data

as time series in nodes and edges. Furthermore, graph topology may change over time

as new nodes are added, nodes are removed, and relationships adjusted. Our abstract

graph model provides an approach where all data is timestamped which means that we

are able to trace back when a relationship was created, adjusted, or removed. This

allows us to incorporate dynamic aspects into the knowledge derivation process (see

section 6.2, 6.3).

Furthermore, being able to provide methods for associating meta information with

nodes and edges in a graph model is important. Without meta information frameworks

are able to perform only limited assessments of data, data sources and processes. In

addition, it makes it difficult to adapt processing and assessment approaches to new

application scenarios. Note that as described in chapter 5 we discuss how we are able

to utilize meta information to derive trust and quality assessments as well as provide

cost assessments and data lineage.

Overall the aspects described here for graph frameworks determine whether or not

a framework is flexible enough to be applicable to multiple domains. Note that of the

representative frameworks some can be considered to support this flexibility through
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the means of graph extensions (e.g., Giraph [168], Mahout [171]). As shown in the

application scenarios (chapter 6), our TrustKnowOne framework with its abstract graph

model can be applied to multiple domains effectively.

8.4.3 Query Systems

The main focus of data processing frameworks is to provide support for mechanisms

that derive knowledge from data. However, as part of evaluating and comparing trust

and quality of data approaches we need to have techniques available that enable metrics

and cost assessments to be determined. In particular, we require a flexible and ex-

tensible approach to retrieve data and assessments. Furthermore, this approach needs

to able to express complex heterogeneous relationships between data. There exist sev-

eral extensions for large-scale data processing frameworks such as Pig [118, 172] and

Hive [170, 173] for Hadoop [169, 178] as well as DryadLINQ [186] and SCOPE [24]

for Dryad. Our TrustKnowOne provides a flexible and expressive approach using the

abstract graph model presented in chapter 4 where graph expressions are evaluated on

graph components.

Furthermore, with the incorporation of trust and quality of data assessments into

the knowledge derivation process one should be able to provide an approach to include

those into the “big data” analysis part as well. This means that instead of treating

assessments as secondary results of knowledge derivation, decision processes can be

improved by utilizing assessments throughout data processing phases (e.g., only utilize

data from trustworthy data sources).

8.5 Chapter Summary

The goal of this chapter is to put our research into context and evaluate how our

TrustKnowOne framework compares to other representative frameworks in a variety of
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aspects. Existing frameworks deal with large-scale data processing (i.e., Hadoop [169,

178], Dryad [76]), graph algorithms (i.e., Pregel [107], Pegasus [86], GraphLab [104]),

and distributed trust approaches (i.e., EigenTrust [85], TrustRank [67], PowerTrust

[187]).

In contrast to our framework none of the existing representative systems are able

to incorporate all major aspects of knowledge derivation. Modeling heterogeneous and

dynamic systems extensively is often dismissed as the focus of many frameworks is

large-scale data processing where performance is most important. Furthermore, the

lack of formal representations of data, data sources, and processes makes it difficult to

improve upon and reuse existing approaches as well as incorporate future techniques.

This is in spite of the flexibility of many existing frameworks with regards to platforms,

programming languages, storage options, and computational engines. However, one

of the main premises of our work is to incorporate trust and quality of data into the

knowledge derivation process. As such, our framework is the only one that fully supports

both large-scale data processing as well as quality and trust assessments.

As part of the evaluation we also provide a more detailed assessment of aspects

in the areas defined by the related work chapter (chapter 3). First, trust assessment

and management deals with fact finding and data representation as well as reputation

management and data lineage. Here it is important to note that we provide formal

approaches to problems such as incorporating reputation and lineage into the knowledge

derivation process. In particular, our TrustKnowOne framework enables the modeling of

various trust and quality aspects in order to determine the value of data for knowledge

derivation.

Second, data modeling, integration, and fusion relates to the topics of formalization,

trust and relationship models, and metrics. As discussed throughout this research,

formalization allows evaluation, comparison, improvement, and exchange of data and

approaches. Our approach consists of a formal abstract graph model Berlin and a formal

framework TrustKnowOne to model the entire knowledge derivation process. Many
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of the other frameworks provide limited formalization that is often focused on their

domain and not able to generalize well. In addition, models for aspects such as meta

information and dynamic systems (e.g., time, location) are missing in many frameworks.

As large-scale data processing frameworks focus on performance and disregard trust

and relationship models the only approaches for formalizing them comes from trust

techniques and frameworks. Furthermore, evaluation and comparison of data processing

and assessment approaches is dependent on the existence of formal metrics. While our

framework enables the definition of various metrics such as cost assessments and lineage

in a flexible manner using graph expressions (chapter 5) other existing frameworks do

not.

Third, large-scale data processing is an important area as the available data that

can be used for analysis and decision making has increased drastically. In the era of “big

data” there are a number of necessary aspects that every data processing framework

needs to address. This is a field in which research has yielded a variety of flexible,

distributed, and high performance frameworks (i.e., Hadoop [169, 178], Dryad [76],

Pregel [107], etc.). The main issue here is the lack of natural support for trust and

quality of data aspects. Furthermore, because there is a growing number of applications

that require extensive relationship modeling, graph frameworks have been identified as

possible solutions. However, combining aspects of high performance while maintaining

flexibility for heterogeneous and dynamic systems is difficult and thus addressed only

partially in many frameworks. Our abstract graph model Berlin provides an approach

that is able to solve this problem (chapter 4). With the amount of data that is analyzed

and processed it also becomes important to enable techniques to be incorporated for

analyzing data processing and assessment approaches. In particular, frameworks should

be able to provide information about how decisions were made and knowledge was

derived. Furthermore, when trust and quality assessments are available one needs to

be able to incorporate them and other meta information into decision making and data

analysis.
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9
Conclusion

In this dissertation we presented TrustKnowOne, a framework for knowledge deriva-

tion incorporating trust and quality of data. Our framework is based on the Berlin

abstract graph model on which formal graph expressions are evaluated. The combina-

tion of graph expressions in the form of metrics forms the basis of trust and data quality

assessments. Through these metrics we incorporate context, historical behavior, and

other meta information as well as relationships between data elements that can be used

to implement a variety of knowledge processing approaches, belief engines, and decision

processes.

Throughout this dissertation we described in detail our approaches and methods in

developing this novel framework. Furthermore, we applied the TrustKnowOne frame-

work to three diverse and realistic scenarios to showcase its formalization capabilities

as well as its flexibility. As such we demonstrated throughout this dissertation that our

research yields a number of key contributions:

• A new abstract graph modeling approach that allows the management of hetero-

geneous data with dynamic aspects (e.g., time, location) in a variety of application

scenarios while inherently incorporating trustworthiness and data quality assess-
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ments

• A new formalization approach to describing belief engines and decision processes

in the form of graph expressions

• A new framework for knowledge derivation that provides a flexible and extensible

approach using clearly defined extraction, processing, and evaluation components

• The means to evaluate and compare different belief, trustworthiness, and decision

making techniques in a variety of application scenarios using a formal approach

9.1 Future work

We have identified the following areas of our framework for further research.

Computation engines As there exist a number of large-scale data processing ap-

proaches, we need to explore in more depth how our graph expressions can be efficiently

distributed and evaluated in parallel. Furthermore, a computation engine needs to be

able to optimize individual as well as groups of graph expressions in order to achieve

scalability.

Graph model backends While our reference implementation provides two backends

(i.e., in-memory and graph database) there is the need to further evaluate the effi-

cient storage and management of the abstract graph model. Specifically, distributed

approaches such as Hadoop provide inherent benefits that our framework could make

use of.

Objective challenges Our framework and in particular the abstract graph model sup-

ports the notion of objective challenges such environmental factors, calibration issues,

and time variance through dimension models. However, despite the usefulness of provid-
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ing generalized assessments modeling these object challenges it is difficult to construct

a repository for these models such that they can be shared among applications.

Query system Using graph expressions the data stored in the abstract graph model

can be processed, compared and evaluated. However, our approach requires thinking in

a new declarative paradigm which may make it difficult to transform existing knowledge

derivation processes.
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