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Abstract 
This study investigates, at various scales, the factors that affect the reactivity of granular iron 

(GI) toward chlorinated solvents and link these scale-specific processes with each other. The 

Kinetic Iron Model (KIM), provides a separate estimate for both the sorption and reaction 

processes of contaminant degradation, was used to determine the macro-scale kinetic and 

sorption parameters in all column experiments associated with this work. The intermediate scale 

corresponding to pore spaces was investigated by image analysis technique. This technique was 

used to examine the effects of diluting iron with sand on the availability of reactive iron surface. 

Two morphological parameters were measured in sections: i) grain perimeter, which reflects 

surface in contact with solution, and ii) total grain area in section. Morphological analysis 

showed grain areas exposed in section were highest for 100% iron packings and decreased with 

increasing sand content. However, the estimated iron grain perimeter length for 85% iron-by 

weight mixture was found to be the similar to that of 100% iron by weight. This study supported 

the use of 15% sand (by weight) in iron-sand mixture for the optimum performance of a 

permeable reactive barrier (PRB). Another pore scale issue examined was the effect of  GI 

packing in column experiments. Among the tested  packing variations- vertical packing with 

long axes preferentially along the flow showed higher reaction rates  (2-4 times)  compared to 

packings with long axes preferentially perpendicular to flow (horizontal packing) or randomly 

arranged (regular packing).  The pore-scale differences in grain surface availability to solution 

through image analysis showed that grain surface availability partially accounted for reactivity 

differences between columns of different packings. It was suggested that micro-scale changes to 

the iron surfaces accounted for the remaining differences in reactivity. In order to examine the 

micro-scale changes that occur on the iron surface due to corrosion and to link these changes 

with macro-scale KIM parameters, long term column experiments were performed under 
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dynamic flow conditions. Micro-scale grain characteristics were made by recovering single 

grains from sampling port along the length of columns, and examining them through time using 

Raman spectroscopy and scanning electron microscopy (SEM)/Energy dispersive spectroscopy 

(EDS). Trichloroethylene (TCE) reduction kinetics showed considerable changes in both TCE 

sorption and reaction with time. Similarly, spectroscopic studies also indicated profound changes 

to the iron grain surfaces. It was found that over time, with exposure to TCE and water, iron 

tended to loose small number of sorption sites associated with highest reactivities (k) whereas 

large number of less reactive sorption sites increased in number.  Raman spectra collected along 

the column showed the loss of hematite, and transition of intermediate phases to magnetite. 

Weakening of  Raman signals for surface carbon  correspond to declining k values and the non-

reactive sorption parameter, suggesting that surface carbon serves as  non-reactive sorption sites 

as well as a reactive one. Further the role of carbon present in GI during reductive dechlorination 

was assessed by comparing 2 iron types of GI in column experiments: Connelly Iron (GI)(~3% 

C) and Electrolytic Iron (EI) (≤ 0.01% C). Kinetic data suggested a shift in rate constant (k) and 

sorption parameters for both iron types with time. This work demonstrated the implication of 

carbon during the retardation (Rapp) of TCE i.e high Rapp for GI and low for EI.   
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1. Introduction  
 

The goal of this thesis is to investigate, at various scales, the factors that affect reactivity of 

granular iron toward chlorinated solvents and to gain insight into how the scale-specific 

processes relate to each other. The Kinetic Iron Model (KIM) (Devlin, 2009) was used to 

determine the macro-scale kinetic and sorption parameters in column experiments.  

Spectroscopic and scanning techniques were used to investigate micro-scale characteristics on 

the iron grains as a function of age. A novel column design was adopted with which it was 

possible to obtain data sets from both the micro and macro scales. Between the column scale 

(macro) and the sub grain scale (micro) is an intermediate scale corresponding to pore spaces. 

Image analysis techniques were used to explore factors that might be of importance at that 

intermediate scale.  Finally, different iron types with known compositional differences that 

would influence micro-scale processes were examined at the column scale to observe factors that 

directly connect the micro and macro scales. 

1.1. Chlorinated Solvents 
 

Chlorinated solvents are common groundwater contaminants found at hazardous waste sites 

and many industrial properties. Their widespread and extensive use, indiscriminate disposal 

history, leaks and spills have caused an important threat to groundwater resources (Gavaskar, 

1998) and posed serious health affects to human population (WHO, 2003). Chlorinated 

compounds and some of the intermediate breakdown products that form in the subsurface tend to 

be highly toxic or carcinogenic at low concentrations (parts per billion) and have been designated 

as priority pollutants by the United States Environmental Protection Agency (EPA). For 
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example, the maximum contaminant level (MCL) standards of trichloroethene (TCE) for 

drinking water has been set to 5µg/l with a maximum contaminant level goal (MCLG) of 0 µg/l 

(Jia and Chu, 2009). 

Many chlorinated solvents have densities greater than water and belong to a class of pollutant 

know as dense non-aqueous phase liquids (DNAPLs). When they are spilled, they move 

downward, below the water table, under the influence of gravity until they encounter a low 

permeability zone or aquitard. Their physio-chemical properties allow them to partition into 

several phases including the aqueous phase, or so-called “dissolved phase”, they may volatilize 

into soil gas, the so-called “vapor phase”, they may become sorbed to subsurface geological 

material, the “sorbed phase” or remain in an undissolved liquid phase known as a “residual 

phase”. Due to their low solubilities, a contaminant source zone containing chlorinated solvents 

in an aquifer can persist from years to several decades. Relatively small amounts of these 

compounds can result in large scale groundwater contamination. Due to their low solubilities, 

tendencies to sink and resistance to degradation in many aquifers, these compounds pose a 

serious challenge to both detection in the subsurface and subsequent remediation (Brusseau et 

al., 1999). 

1.2. Permeable Reactive Barriers  
 
Early methods of remediating contaminated groundwater focused on pumping, followed by 

above-ground treatment, a practice commonly called “pump-and-treat” (Kim et al., 2010). 

Because of the nature and behavior of DNAPLs in the subsurface, coupled with the 

heterogeneity and complexity of groundwater systems, this treatment proved to be lengthy, 

expensive and ineffective at most of the hazardous sites (NAS, 1994; Mackay and Cherry, 1989). 

The inefficiency of pump-and-treat systems led to the development of alternate technologies.  In 
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particular, in-situ methods for groundwater remediation were favored because they promised to 

be effective and relatively inexpensive over the long term. 

 The selection of a remediation technology depends on site specific conditions, long-term 

performance, and cost effectiveness.  Permeable reactive barriers (PRBs) have been put forward 

as potential alternatives to pump-and-treat. A PRB treatment system consists of a reactive porous 

medium, placed in situ in the path of contaminated groundwater that flows under a natural 

hydraulic gradient. The reactive material sorbs or  degrades contaminants thus immobilizing or 

converting them into potentially non-toxic compounds, respectively (Liang et al., 2000). PRBs 

require low operating and maintenance costs and are highly effective for wide range of 

chlorinated solvents (Gillham and O'Hannesin, 1994; Phillips et al., 2000) as well as inorganic 

contaminants (Blowes et al., 2000).  

1.3. Zero valent iron 
 

Zero-valent iron (Fe0), or its commercial equivalent, granular iron (GI) is the leading reactive 

material used in a PRB because it is capable of chemically reducing a wide variety of 

groundwater contaminants (Burris et al., 1995; Gillham and O'Hannesin, 1994; Matheson and 

Tratnyek, 1994). GI consists of granular or platy grains of a light steel or cast iron (Burris et al., 

1998) mixed in a rotary kiln at several hundred degrees Fahrenheit. The kiln atmosphere, cooling 

time, and milling procedure leads to different surface morphologies and chemical compositions 

(Landis, 2001) which lead to slight variations in the commercially available GI brands. For 

example Connelly® Iron, exhibits platy texture (Bi et al., 2009) and is covered with layers of 

several types of iron oxide (Odziemkowski et al., 1998).  Other zero valent metals like Cu0, Al0, 

galvanized Zn0 (Gavaskar, 1998) have been investigated for their potential to reduce chlorinated 

compounds but, except for applications involving a small number of specific contaminants 
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resistant to degradation by iron, they have been found to offer no significant advantages over GI 

(Roh et al., 2000b). Bimetallic Fe-Pd media have also been investigated for its dechlorination 

efficiency and found to enhance reaction rates by factor of 10 or more (Gui and Gillham, 2002; 

Wan et al., 1999) because of the catalytic effect of Pd (Gavaskar, 1998).  However, their use in 

PRB is limited mainly because of high cost compared to the GI. Similar studies have 

demonstrated advantages in other bimetallic systems, most notably Fe-Ni (Gunawardana and 

Swedlund, 2011; Kim and Carraway, 2003; Nyer and Vance, 2001). GI based PRBs have 

received much attention as a passive and cost-effective remediation technique for contaminated 

groundwater. However, its cost effectiveness is directly linked to its long-term performance in 

removing contaminants from groundwater. The main issues that might decrease the efficiency of 

a GI in PRB are 1) loss of reactivity (Gotpagar et al., 1997) and 2) reduction in permeability 

through clogging (Mackenzie et al., 1999; Roh et al., 2000). Researchers have paid much 

attention to the passivation of the iron surface due to corrosion and precipitation (Mackenzie et 

al., 1999; Ritter et al., 2002) and have identified it as the major factor contributing to declining 

PRB performance (Devlin and Allin, 2005; Henderson and Demond, 2007; Vikesland et al., 

2003). Macro-scale factors, including solution composition, iron type, and available surface area 

are also know to affect reactivity (Bi et al., 2009; Devlin and Allin, 2005; Su and Puls, 1999).   

1.4. Reaction mechanism, corrosion and oxide formation 
 The carbon atoms in chlorinated solvents, such as TCE, are in an oxidized state because of 

the presence of chlorine, and undergo a reduction when the molecules come into contact with GI. 

Omitting the mechanistic details, which are still not fully understood, the solvent reduction is 

accompanied by iron oxidation, and by the disassociation of water (Gillham and O'Hannesin, 

1994). Several mechanisms have been suggested for contaminant degradation in Fe0-H2O system 

which include direct electron transfer or catalyzed hydrogenolysis by H2 (Matheson and 
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Tratnyek, 1994), β-elimination (Roberts et al., 1996) or by catalytic hydrogenation (Farrell et al., 

2000). Studies have shown a combination of both hydrogenolysis and β-elimination (TCE →

	chloroacetylene → acetylene ) pathways occur at the same time during the reduction of TCE 

(Roberts et al., 1996b).  In any of these cases, the GI core is believed to be the ultimate source of 

electrons in the reduction process (equation 1.1), 

଴݁ܨ 	→  2݁ି             1.1	൅	ଶା݁ܨ	

This half reaction is coupled with the reduction of chlorinated compounds 

ܮܥܴ ൅	2݁ି ൅	ܪା 	ൌ ܪܴ ൅  1.2                   ି݈ܥ

Other important electron acceptors present in the system are H2O and O2, which undergo the 

following reductions (Johnson et al., 1996), 

ଵ

ଶ
	ܱଶ	 ൅	ܪଶܱ ൅	2݁ି 	→   1.3        ିܪ2ܱ	

ଶܱܪ2 ൅	2݁ି 	→ ଶሺ௚ሻܪ	 ൅	2ܱ1.4        ିܪ 

Combining half reactions 1.1 and 1.4 

	଴݁ܨ ൅	2ܪଶܱ	 ൌ ଶା݁ܨ	 ൅	ܪଶሺ௚ሻ ൅	2ܱ1.5      ିܪ 

Several of the above reactions produce OH- which increase the solution pH (Henderson and 

Demond, 2007; Matheson and Tratnyek, 1994)(equation 1.5). The corrosion and the increased 

pH lead to the precipitation of ferrous hydroxide (Fe(OH)2) due to availability of iron ions in 

solution (Matheson and Tratnyek, 1994) (equation 1.6). 

଴݁ܨ ൅	2ܪଶܱ	 ൌ ሻଶܪሺܱ݁ܨ	 ൅ ାܪ2	 ൅	2݁ି      1.6 

The overall reaction can thus be written, 

଴݁ܨ ൅ ܮܥܴ	 ൅ 	ଶܱܪ2 ൌ ሻଶܪሺܱ݁ܨ	 ൅ ܪܴ	 ൅ ାܪ ൅	1.7                                      ି݈ܥ 
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Fe(OH)2 is thermodynamically unstable in the presence of Fe0 and is further converted to 

magnetite (Fe3O4) (Odziemkowski et al., 1998; Pourbaix, 1973; Reardon, 1995) which occurs as 

the dominant corrosion product on the iron surface under anaerobic conditions (equation 1.8). 

ሻଶܪሺܱ݁ܨ3 → 	ଷ݁ܨ	 ସܱ ൅ ଶܪ	 ൅	2ܪଶܱ        1.8 

Magnetite (Fe3O4) acts as a conductor, which permits the exchange of electrons between Fe0 

and an oxidant (Schultze, 1978) through a process referred to as electron tunneling (Stimming 

and Schultze, 1979). Hematite (Fe2O3) can also be present as an outer oxide layer on GI.  It may 

be removed by an auto-reduction reaction when in contact with solution and Fe0 (Odziemkowski 

et al., 1998), but can also build up on the GI surface if the flux of oxidant to the surface is 

sufficiently high.  Hematite has been described as a semi-conductor (Schultze, 1978), or insulator 

(Cohen, 1978).  Nevertheless, relative to magnetite or Fe0, it will inhibit electron transfer (Ritter 

et al., 2002).  

Depending on the type of contaminants and ambient groundwater chemistry different 

corrosion products can form on the iron surface. Over time, mixed valent iron oxyhydroxides 

(Fe2+ and Fe3+), also known as green rusts, form on the iron surface.  These later act as 

intermediates in the formation of magnetite (Sumoondur et al., 2008). Formation of goethite (α-

FeOOH), lepidocrocite (γ- FeOOH) and magnetite (Fe3O4) have all been reported on Master 

builders GI contacting an anaerobic solution for 72 hours (Allin, 2000). Likewise, Ritter et al 

(2000) identified maghemite, which precipitated during nitrate reduction on Connelly Iron. 

Besides oxides, carbonates such as aragonite(CaCO3), calcite (CaCO3), siderite (FeCO3) and 

carbonate green rust have been identified on Peerless GI from Y-12 PRB, installed to treat U and 

NO3 in high carbonate and calcium rich groundwater (Phillips et al., 2003).  
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1.5. Surface characterization 
Researchers have used various methods to identify and characterize the GI surface 

(Farrell et al., 2001; Odziemkowski et al., 1998; Phillips et al., 2000). Among them are 

spectroscopy, diffractometry, thermal analysis and microscopy. Spectroscopic methods are 

widely used because they are non-invasive and provide useful information about any oxide 

phases on the iron surface. This is important because, with the exception of some platinum group 

elements, zero-valent metals – including iron – are not thermodynamically stable under normal 

environmental conditions on the Earth’s surface, and tend to become covered with thin films of 

oxides (Chawla and Gupta, 1993) when exposed to the atmosphere, or dissolved oxygen.  

 Raman Spectroscopy has been used to investigate corrosion products on GI surfaces 

(Thibeau et al., 1978) and gained importance in the characterization of near-surface Fe phases 

and carbonaceous materials because the method is sensitive to these phases, i.e., they are strong 

Raman scatterers. Raman techniques are widely accepted as they are nondestructive, require little 

or no sample preparation, and provide chemical and structural information at the micrometer 

scale (Marshall and Marshall, 2011). In addition, spectra of water-metal interfaces can be 

obtained in-situ (Devine, 1991). In prior work reported concerning GI, Raman spectra of dry 

Connelly iron showed the presence of magnetite (Fe3O4), maghemite (α-Fe3O4) and hematite 

(Fe2O3)(Odziemkowski et al., 1998; Ritter et al., 2002) whereas magnetite, maghemite and 

wustite were observed on the pristine Peerless iron surface (Satapanajaru et al., 2003).  

Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) 

have also been used to evaluate the morphology and elemental composition of the solid phases 

formed on the GI surface due to corrosion and precipitation (Lee and Wilkin, 2010; Min et al., 

2008; Min et al., 2009). For example, micrographs of iron grains collected from Elizabeth city 
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PRB showed the presence of needle like crystals on the iron surface with an elemental  

composition close to that of the iron-carbonate phase, chukanovite (Lee and Wilkin, 2010).   

Raman and SEM/EDS mapping techniques are available and have been applied to the 

study of graphite surfaces (Costa et al., 2008; Dresselhaus et al., 2010) They offer the possibility 

of establishing the special distributions of various phases – including oxides and carbonaceous 

phases – on a surface, and to highlight changes in those distributions over time.   This methods 

has yet to be applied to the examination of GI surfaces. 

As alluded to above, the GI grain surface has been demonstrated to be composed of 

variety of mineral phases, and elemental impurities with which contaminants might interact.  

Sorption and chemical reduction of many chlorinated solvents is believed to be fast at surface 

sites not covered with oxides, or only thinly covered (Huang, 2011). Additionally, the presence 

of impurities, such as carbon, further increases the complexity of the iron surface as they have 

been associated with non-reactive sites (Burris et al., 1998).  Notably and paradoxically, carbon 

has also been shown to serve as a reactive site (Oh et. al., 2002).  

In addition, the surface is morphologically complex, with pits, edges, and corners that 

may serve as sorption or reaction sites for contaminants. Changes in the nature and composition 

of oxide phases developed during the manufacturing process commonly exhibit stress points in 

oxide coating (Chawla and Gupta, 1993).  These can lead to fractures and crevices within the 

oxide layers (Gotpagar et al., 1999), which in turn serve as high energy points for corrosion 

when immersed in solution (Roh et al., 2000).  

1.6. Reactive and Non-Reactive Sites 
Despite the known heterogeneous nature of granular iron surfaces, most studies treat 

them as being homogenous, and all sorption sites are assumed reactive.  In light of the preceding 
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discussion, this view is oversimplified.  Some of the various sites mentioned have the potential 

for chemical reactions with contaminants over relevant time frames (reactive sites) while others 

may not (non-reactive sites) (Burris et. al., 1998).   Distinguishing between them is important 

since the non-reactive sites represent temporary storage of contaminants, not permanent removal. 

Attempts have been made to quantify the proportions of “reactive” and “non-reactive” 

sites (Burris et. al., 1998). A conceptual model put forward by Huang (2011) divided the iron 

surface into 4 types of sites; (1) non-reactive and non-sorptive; (2) non-reactive sorption; (3) 

slow reactive sorption and (4) fast reactive sorption.  The occurrence of these sites is presumed 

dependent, in part, on the thickness of the oxide layers. The terminology of “reactive sites” and 

“non-reactive sites” was adopted for this work where “reactive sites” refers to locations on GI 

where a chemical reaction can take place in a time frame relevant to the period of observation 

(the column pore volume exchange time was about 0.5 to 1 hour in the experiments conducted 

here).  Non-reactive sites are capable of sorption but do not support chemical reactions over the 

relevant time period. Both reactive and non-reactive sites can decrease contaminant mass in 

solution, but complete and permanent removal only occurs at reactive sites (Bi et al., 2010). 

1.7. Iron-Sand Mixtures 
Mass transfer limitations to sorption of TCE on GI have been shown to be practically 

insignificant in 100%  iron media due to the close proximity of grains (Bi et al., 2009). However, 

diluting GI with sand – generating media <100% iron – is a common field practice adopted to 

prevent clogging and reduce cost (O'Hannesin and Gillham, 1998; Yabusaki et al., 2001a). A 

variety of iron-sand mixture ratios have been examined, - ranging from 10% iron to as high as 

100% iron by weight (Bi et al., 2009; Miyajima and Noubactep, 2013; Sivavec et al., 2002). 

Various mixing ratios resulted in different reaction rates not necessarily proportional to the 
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fraction of iron in the medium (Bi et al., 2009), the reasons for these differences have not been 

fully elucidated.  Further work in this area could be of practical importance for PRB design. 

 

1.8. Grain Geometry 
The effect of grain shape on the reactivity of commercially available GI has received little 

attention.  This seems like an oversight since studies conducted on other granular media have 

shown grain shape to be a factor of hydrologic importance, and by extension (more efficient 

contact between the solution and the GI surface leads to faster corrosion) of chemical importance  

(Dullien, 1991). Commercially available GI, for example the Connelly product, is platy in 

texture and therefore may pack in different orientations relative to the flow direction.  Wu et. al., 

(2005) reported the differences of 10%  in model-fitted parameters for identically prepared 

columns, and these variations attributed to differences due to grain packing. However, despite 

these differences, the effect of grain packing on reactivity has never been experimentally 

established.   

 

1.9. TCE Dechlorination Reaction Kinetics involving GI 
 
Knowledge of reaction rates of chlorinated solvents is essential for PRB design. A kinetic 

model should ideally account for all the chemical processes that affect dechlorination rates. In 

the past, reductive dechlorination by GI has been modeled by pseudo-first order kinetics (Devlin, 

2009; Johnson et al., 1996). 

࡯ࢊ
࢚ࢊ

ൌ 	െ࡯࢙࢈࢕࢑ 
1.9 
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Where C is the aqueous concentration of chlorinated solvents (M/L3); kobs is the observed first 

order rate constant (T-1); and t is time (T).  This simple approach fits any particular experimental 

data reasonably well with an empirically fitted value of kobs (Bi et al., 2009; Johnson et al., 

1996). However, this model does not represent the reaction processes realistically, as reaction 

rates depend on both the amount of iron and the aqueous concentration of the reactant (Johnson 

et al., 1996). This is immediately apparent by virtue of the fact that kobs is experiment specific 

and not a true constant.  To partially address this deficiency, researchers have incorporated the 

iron surface area into the rate equation as shown in the following equation, 

ௗ஼

ௗ௧
ൌ 	െ݇ௌ஺ߩ௔1.2.0          ܥ 

where kSA is surface area normalized reaction rate constant (L3T-1M-2), ρa is the surface 

concentration of Fe0 (m2L-1). Eq 1.2.0 represents an improvement in the representation of TCE 

dechlorination on GI, but it does not account for self-competition for the surface by the reacting 

organic. Since in reality the surface is finite, the kinetics of reaction can be better represented by 

the Langmuir-Hinshelwood (L-H) rate equation (Lee and Batchelor, 2002).  

ௗ஼

ௗ௧
ൌ

௞஼೘ೌೣி௘/௏

ଵ/௃ା஼
 1.2.1                                                                                                           ܥ

where k  (min-1) is the first order rate constant for the surface reaction, Cmax is a parameter 

representing sorption capacity (µmolg-1),  J  is the sorption affinity to reactive sites on the 

surface (µM-1), Fe/V is the iron mass to column pore water volume ratio (g L-1) and C is the 

aqueous concentration of TCE (µM). The basic assumptions in this model are that target 

compounds sorb to a finite number of reactive site on the iron surface; reductive dechlorination 

occurs at these sites by first order reaction; absorption of chlorinated compounds and desorption 

of daughter products are both very fast compared to the chemical reaction that produces the 
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daughter; and sorption can be described by the Langmuir isotherm (Arnold and Roberts, 2000; 

Burris et al., 1995; Devlin and Allin, 2005). The model accounts for sorption and electron 

transfer, which are fundamentally different processes, but two of the associated  parameters are 

lumped in the kCmax term in the L-H rate equation making it impossible to uniquely identify their 

individual values and characterize the two processes separately.  

ܥ݀
ݐ݀

ൌ
ܸ/݁ܨ௠௔௫ܥ݇

ܬ/1 ൅
ோ	௠௔௫ܥ ܸ/݁ܨ
1 ൅ ௢ܥோܬ

൅ ௢ܥ
௢ܥ ൌ ݇௔௣௣ܥ௢ 

1.2.2 

  To overcome this limitation, Devlin (2009) introduced Kinetic Iron Model (KIM), 

which is a generalized form of the L-H model, and can be used to obtain unique estimates of the 

surface-reaction rate constant (k), sorption capacity of reactive sites (Cmax) and the sorption 

affinity of reactive sites (J), in some cases. The parameters are typically estimated with a non-

linear optimization algorithm (Devlin, 1994).  However, preliminary estimations can sometimes 

be obtained using a linearization approximation (Devlin, 2009; Marietta and Devlin, 2005).  As 

part of this work, these procedures were coded together in the Visual Basic environment, within 

Excel, to streamline the analysis.  

1.10. Hypothesis and Objectives of this Dissertation 
The overall objective of this study is to establish cross-scale links between iron grain 

surface chemistry and macroscopic kinetic measurements.  The specific tasks are geared at 

testing the following hypotheses: (1) a reported enhancement in reactivity associated with the 

addition of 15% sand to GI is due to increased GI surface area exposure at the pore scale; (2) 

Grain packing affects the GI surface area available to solution at the pore scale and therefore it 

also affects macro-scale reactivity: (3) the primary locations associated TCE reactions and 

sorption on GI are associated with micro-scale occurrences of carbon in the oxide layer or on the 
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metal surface, (4) the micro-scale surface carbon sites change in number and type as GI weathers 

with a corresponding effect on macro-scale kinetics.  

1.11. Organization and Scope of this Dissertation 
This document is organized into chapters based on the objectives listed above. Chapter 2 

addresses  mixing non-reactive media (sand) with GI in varying ratios, and compares trends in 

the pore-scale morphological parameters with those in the kinetic estimates. The effect of grain 

packing on the kinetics of TCE dechlorination is investigated in Chapter 3. Column experiments 

with different grain orientation were performed to evaluate the variability in the reactivity due to 

different packing practices, supported by pore scale investigations to observe the difference in 

morphological parameters among packings. In all experiments, comparisons of observations at 

the various scales were made with macro (column)-scale tests. In these experiments, the KIM 

parameters were identified using a VBA Excel Program presented in Chapter 4. This program 

code is embedded with two optimization algorithms, one transport code and two solution 

methods for the KIM.  In Chapter 5, a comparison is made between iron types (Connelly iron 

with 3% carbon by weight, and an electrolytic iron, 99.99% pure by weight) The goal was to 

investigate the variability in sorption and reaction parameters connected to iron types with 

(relatively) high and low carbon contents. A comparison of the results of macro-scale column 

tests involving iron samples of differing ages and associated changes in micro-scale grain surface 

characteristics is reported in chapter 6. Column experiments were performed in a custom design 

column to recover grains for Raman spectroscopy and SEM/EDS analyses. The mapping tools 

available on the SEM instruments were used to document the changes in surface phases over 

time. The thesis concludes with a summary of the overall findings of the work. 
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2.  Visualizations and Optimization of Iron-Sand Mixtures for Permeable 
Reactive Barriers. 

 

2.1. Abstract  
Diluting granular iron with sand is a common practice performed to minimize clogging and 

to reduce the cost of permeable reactive barrier (PRB) installations. A variety of mixture ratios 

have been tested, ranging from 16% iron to 100% iron by weight. However, a determination of 

the iron:sand  ratio to achieve optimal performance from granular iron PRBs (GIPRB) has 

received little attention. This study used a pore-scale image analysis technique to examine the 

effects of mixing sand with iron on the availability of reactive iron surface. Four mixing ratios 

(100%, 85%, 75% and 50% iron by weight) were compared on the basis of two morphological 

parameters measured in section: 1) grain perimeter available to solution, which reflects surface in 

contact with solution,  and 2) total grain area in section, which is most closely related to the total 

amount of iron present.  Grain areas exposed in section were highest for 100% iron packings and 

decreased with increasing sand content, as expected.  Counter-intuitively, the estimated iron 

grain perimeter lengths in sections of  the 85% iron-by weight mixtures were found to be similar 

as of 100%, and followed by 75%, and 50% iron mixtures.  This analysis supports an earlier 

hypothesis that the addition of sand to iron opens up the packing structure, exposing more grain 

surface.  The full benefit of the associated enhancement in reactivity appears to be realized in the 

85% iron mixtures, and declines in more dilute iron mixtures due to overall lower iron surface 

area and the onset of mass transport controlled reaction rates.  

2.2.  Introduction 
 Granular iron permeable reactive barriers (GIPRB) have emerged as an effective 

groundwater remediation technology (Agrawal and Tratnyek, 1995; Matheson and Tratnyek, 

1994; O'Hannesin and Gillham, 1998; Puls et al., 1999). The use of iron as a reactive media in 
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PRBs is most common due to its ability to remediate wide variety of groundwater contaminants 

(Baciocchi et al., 2003; Farrell et al., 2000; Higgins and Olson, 2009; Phillips et al., 2010). The 

success of a PRB depends on its long term ability to remove groundwater contaminants while 

maintaining permeability within the barrier.  While reactivity losses are expected to be the main 

limits on PRB lifetimes (Henderson and Demond, 2007), the potential for clogging has received 

much attention (Btatkeu K et al., 2013; Gu et al., 1999; Liang et al., 2000). Indeed, clogging has 

been documented in field studies (Korte et al., 1997) and can cause the development of  

preferential flow paths and, in some cases, promote complete bypassing of the barrier (Benner et 

al., 1999; Moraci and Calabrò, 2010).    

Out of concern for the effects of clogging, and in order to reduce the cost of the barrier 

backfill (Bi et al., 2009), the idea of diluting granular iron with sand (O'Hannesin and Gillham, 

1998; Yabusaki et al., 2001) and other non-reactive materials (Moraci and Calabrò, 2010) was 

conceived and put into practice. It was hoped that non-reactive granular material would maintain 

permeability in the barrier; prolonging the time that water could access the iron surface and be 

subject to treatment. To evaluate the performance of iron-sand backfill mixtures researchers have 

examined various iron:sand ratios in benchtop experiments (Bi et al., 2009; Wu et al., 2005). A 

variety of mixture ratios have been tested,  ranging from as low as 10% iron to as high as 100% 

iron by weight (Miyajima and Noubactep, 2013; Sivavec et al., 2002).  However,  an iron 

content of 50% by weight has received the most attention (RTDF, 2001). A recent study reported 

the iron:sand ratio of 30 to 50% by volume was the most efficient mixture based on methylene 

blue disappearances in columns of 0% through 100% iron, with 10% increments of sand by 

volume.  However, the removal rates varied considerably over the tested range with the highest 

tested removal coming from the 0% column.  Thus, the conclusion must be considered 

provisional.  The earliest work on iron-sand mixtures showed that a linear relationship exists 
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between the iron surface area (or mass) and apparent reactivity (expressed as the pseudo first 

order rate constant, or rate) (Agrawal and Tratnyek, 1995; Gillham and O'Hannesin, 1994). 

However, a more detailed study indicated that 100% iron backfill and 85% iron 15% sand 

backfill (% by weight) exhibited nearly identical reactivities (Bi et al., 2009).  Bi et al. (2009) 

also noted that iron grains used in their experiments were platy and prone to packing in a fashion 

that could restrict full access of the solution to the iron surface. Therefore, the loss of total iron 

surface in going from 100% iron backfill to 85% backfill was hypothesized to be offset by an 

increase in iron surface available to solution due to the separation of platy grains by sand.  

 The objective of this work was to test the explanation given by Bi et al. (2009) by 

examining iron and sand mixtures at the pore scale.  This was achieved through direct 

observations of serially sectioned media, and subjecting the sections to image analyses to obtain 

computer aided visualizations, and quantifications of the pore geometries in the different iron-

sand mixtures.  

2.3. Materials and Methods 
All chemicals were used as received.  Connelly Iron was provided by GMP Inc.  Iron 

grains were hand sieved and grain sizes ranging from 0.71 to 2.0 mm were used. Fine silica sand 

was received from Quikrete Company was mixed with iron to get different iron: sand ratios for 

image analysis.   
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Table 2.1: Summary of the image characteristics of iron-sand mix packings 

*mass iron:mass sand 

2.3.1. Sample preparation for pore scale investigations/Digital Image Processing  
Pore scale investigations were carried out by preparing the desired iron:sand mixtures in 

plastic vials of diameter 2.9 cm, which closely matched the cross-sectional dimensions of the 

columns used by Bi et al. (2009).  Vials were flooded and subsequently cemented with epoxy 

(EPO-TEK 301).  Vertical cross-sections of the cemented material were cut from the solid  

 

Figure 2.1:  Pre-processing of raw data for image analysis (a) Original image of rectangle block on 
glass slide, (b) cropped image, (c) 8-bit grey scale image .  The scale bars are 3 mm in length. 

cylinders  and mounted on glass slides.  Altogether, 25 serial sections of 100% iron, and single 

sections for each of 85%, 75% and 50 % iron were prepared by grinding the surfaces in 50 m 

steps using Hillquist Thin Sectioner. In 25 serial sections completed with the 100% iron-packed 

medium, the variability between morphological estimates, perimeter and area, was found not to 

exceed 10%, justifying further analysis on the basis of single sections. At each step the surface 

was photographed using a Olympus Stylus-5010 digital camera. All images were saved at 600 

Packing type Slice thickness 
(mm) 

No.  of slices
 

Original image 
size            

(pixel x pixel) 

Image size for 
analysis         

(pixel x pixel) 

Image size for 
analysis       

(mm x mm) 
100:0* 0.05 25 615 x 382 510 x 368 20.99 x 15.14 
85:15* - 1 616 x 434 510 x 368 20.99 x 15.14 
75:25* - 1 626 x 442 510 x 368 20.99 x 15.14 
50:50* - 1 619 x 473 510 x 368 20.99 x 15.14 
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dpi, however analysis of dpi versus morphological parameters showed minimum of 300 dpi can 

be used effectively for the optimal result (appendix E). All original images were of 710 x 604 

pixels size in 24 bit (Figure 2.1a), and were cropped to extract a common-sized region of interest 

(ROI) for image analysis (Figure 2.1b). Final images were stored as 8-bit grey level images 

(Figure 2.1c) (Table 2.1).   The image analysis was based on methods given by Rasband (2007), 

using image analysis software NIH Image J (Rasband, 2007). 

 The following steps were taken to quantify pore geometry in Image J: 1) 8-bit grey level 

images were converted to binary representations of solid iron grains (white) and spaces between 

iron grains, containing sand (black) and pore space; ii) binary images were stacked together and 

3D reconstructions made to render the total volume and porosity (Figure 2.2); iii) perimeters, 

area and grain counts were estimated for each prepared section using the “Analyze particles” 

function in Image J (Figure 2.3)(Table 2.2).   

 

Figure 2.2: Post processing of the data using Image J freeware (a) serial binary images , (b) 3-D 
reconstruction for pore scale analysis. X and Y are pixel size. 
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Perimeter

Area

Grain counts

 

Figure 2.3: 75:25 Iron:sand mixture showing the grain boundaries in green as perimeter and white as grain 
area. Sand grains and pore spaces are shown by black pixels. 

Table 2.2: Summary of pore analysis for iron:sand mixtures 

Iron: Sand Total perimeter Total Area (mm2) Iron area %  

 (mm)   

100:00 1050.03 172.25 54 

85:15 1010.17 130.16 40.7 

75:25 576.05 66.00 21 

50:50 504.79 54.80 18 

 

2.4. Results and Discussion 

2.4.1. Image Analysis of Pore-Scale Changes Due to mixing 
The structure of the porous medium and shape of the grains are known to affect flow and 

transformation rates of dissolved substances (Loraine, 2001).  Other, related, factors with similar 

influence include porosity and permeability of the porous medium (Nield, 1992; Phillips, 1991; 

Zhao et al., 2008). Therefore, the pore morphologies of porous media consisting of 100% iron, 

and mixtures of iron and sand, are relevant to PRB backfill material characterization. The image 

analysis technique used in this work clearly showed differences in grain packings between the 

different media investigated (Figure 2.4).  As mentioned in the Introduction, the iron grains used 

in this study were platy and tended to pack with a high proportion of pores likely to restrict water 
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flow (Figure 2.4a). In 25 serial sections completed with the 100% iron-packed medium, the 

variability between morphological estimates, perimeter and area, was found not to exceed 10%, 

justifying further analysis on the basis of single sections.  In contrast, a visual inspection of the 

spatial distributions of the iron grains showed large variations in packings where sand was 

present (Figure 2.4).  As expected, the presence of sand in the medium opened pore spaces 

between closely packed iron grains (Figures 2.4b, c & d).   

As mentioned previously, Bi et al. (2009) found that 85% iron (by weight) reacted with 

trichloroethene (TCE) with about the same initial reaction rate (kobs * Co) as 100% iron despite 

the lower iron content.  Two important morphological parameters were considered to explain this 

finding: solution accessible grain perimeter, hereafter referred to as the ‘perimeter’, which is 

defined as the cumulative lengths of the outside boundaries of the grains, and the grain area 

visible in section, hereafter referred to as the ‘area’, which is defined as the cumulative 2-

dimensional spaces bounded by the perimeters (Figure 2.3). 
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Figure 2.4: Binary images of iron-sand mix (showing iron grains in white) (a) 100% iron by weight 
(b) 85% iron (c) 75% iron and (d) 50% iron. 

Estimated perimeters serve as a metric for the amount of iron surface accessible by solution, and 

areas serve as a metric for the total iron mass present. The image analysis showed that the 

perimeter of a mixture of 85%  iron by weight is very close to a 100% iron medium despite the 

fact that the trend in areas was exactly the reverse (Figure 2.5a) (Table 2.2). This supports the 

hypothesis that portions of the iron surface is partially unavailable to the solution in the case of 

the 100% iron medium, presumably due to the close proximity of iron grains to one another. 

Table 2.3: Summary of KIM parameters analyzed on different iron to sand ratios. 

Iron % Porosity Fe/V (gL-1) k (min-1) Cmax (µmolg-1) J (µM-1) 

80 g iron 100% 0.55 4577 0.030 0.0210 0.0327 
68 g iron : 12 g sand 85% 0.46 4416 0.011 0.0731 0.0279 
60 g iron : 20 g sand 75% 0.49 3548 0.178 0.0048 0.0062 
40 g iron : 40 g sand 50% 0.47 2223 0.032 0.0166 0.0098 
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   The addition of 15% sand noticeably maintained the estimated perimeter by opening the 

pore spaces and exposing more of the iron surface to solution.  Therefore, these results support 

the hypothesis proposed by Bi et al. (2009), that the lower iron mass in the 85% column was 

offset by the higher available iron surface.  

To test the hypothesis further, the Kinetic Iron Model (KIM) (Devlin, 2009), eq 2.1,  was 

utilized to estimate the maximum sorption capacity of the granular iron, Cmax.   
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2.1 

where k is first order rate constant (min-1), Cmax represents maximum sorption capacity (µmolg-1), 

and J is sorption affinity to reactive sites (µM-1) and Fe/V is the iron mass to water volume ratio 

(g/L). If solution accessible surface was truly limiting in selected iron-sand packed columns, then 

sorption capacity would be expected to be less in those cases than in the 85% iron columns.  At 

the same time, the reactivity of the surface, indicated by k, and the affinity of the surface for 

TCE, indicated by J, would not be expected to change as a function of the amount of available 

surface.  As predicted, both Cmax and the perimeter estimates corresponded well, showing their 

highest values for 85% iron packed columns (Figure 2.5a). Furthermore, on the basis of the error 

estimates, the  Cmax for 85% iron was found to be significantly greater than other values while 

Cmax estimates for the 100% and 50% packings were found not to be significantly different from 

each other. These data provide independent and corroborating evidence for the hypothesis of Bi 

et al. (2009) to explain the similar reactivities of 100% and 85% iron packed columns (Appendix 

A). 
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Figure 2.5: Comparison of morphological data through image analysis and KIM parameters in column 
experiment. a) k, Cmax, and J estimated from each of the sand-iron packed columns.  b) Comparison of 
perimeter, area, and Cmax of 100:0, 85:15, 75:25 and 50:50 iron –sand mix packings. Error bars represent  
one standard deviation, .  The  for k, Cmax, J were estimated from a Monte Carlo analysis of the rate vs. Co 
data and eq. 2.1.    

2.5. Conclusions and Implications  
 The analysis of iron and sand mixtures at the pore scale and by chemical kinetics analysis 

supports the hypothesis suggested by Bi et al. (2009) that the optimum reactivity of an iron PRB 

can be achieved by mixing the iron with about 15% sand by weight.  Barriers constructed 

without sand will achieve grain packings that limit solution availability to the iron surface, 

particularly when the iron grains are platy in texture.  The addition of more than 15% sand by 

weight may reduce the cost of a barrier, but it is also expected to reduce the reactive surface area 

of the iron, making the barrier less reactive.  Moreover, as grains are separated by greater and 

greater distances, the kinetics of contaminant removal are likely to become increasingly mass 

transfer controlled. 
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3. The Effect of Grain Packing on Reductive Dechlorination Rates of TCE in 
Granular Iron Columns 

 

3.1. Abstract  
 Commercial granular iron (GI) is light steel that is widely used in Permeable Reactive 

Barriers (PRBs).  Investigations into the reactivity of GI have focused mainly on its chemical 

nature and little direct work has been done to account for the effects of grain shape and packing 

on the reactivity of a PRB.  Both of these factors are expected to influence available grain 

surface area, which is known to correlate to reactivity.  Commercial granular iron grains are 

platy and therefore pack in preferential orientations.  Three packing variations were investigated 

using Connelly Iron and trichloroethylene (TCE).  The experimental data showed reaction rates 

2-4 times higher when grains were packed with long axes preferentially parallel to flow (VP) 

compared to packings with long axes preferentially perpendicular to flow (HP) or randomly 

arranged (RP).  The possibility that packing-related pore-scale differences in grain surface 

availability to solution was assessed by conducting an image analysis of the pore structure of 

sectioned columns.  The analyses showed that grain surface availability partially accounted for 

reactivity differences between columns of different packings.  It is hypothesized that smaller 

scale features on the grain surfaces account for the remaining differences. 

3.2. Introduction 
 Granular iron (GI) is the most common reactive material used in Permeable Reactive 

Barriers (PRB) (Baciocchi et al., 2003; Farrell et al., 2000; Higgins and Olson, 2009; Phillips et 

al., 2010).  The chemical behavior of GI, which is commercially available as an oxide covered 

light steel, has been intensively investigated in laboratory tests that regularly substitute pure iron, 

i.e., zero valent iron (ZVI), for the commercial products for the sake of simplifying the 

experimental interpretations.  Since the morphology of ZVI is not necessarily the same as that of 
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the product that is used in field PRBs, there is the possibility that factors related to reactivity 

differences between laboratory and field studies have been overlooked.  The objective of this 

work was to address this need, specifically by comparing the effects of grain packing, 

differentiated on the basis of differing grain orientations, on the reactivity of commercial GI 

towards TCE in column experiments. The context for this investigation is given below. 

Reactive media like GI are selected for their propensity to degrade, sorb, or otherwise 

attenuate groundwater pollutants including chlorinated solvents (Liang, 1997; Mackenzie et al., 

1999), trace elements like arsenic (Wilkin et al., 2009), selenium (Sasaki et al., 2008), 

radionuclides such as  uranium (Gu et al., 2002; Simon et al., 2003) and a variety of other 

substances like nitrates (Lee et al., 2010; Robertson et al., 2008), acid mine drainage (AMD) 

(Bartzas and Komnitsas, 2010) and even landfill leachate (Lee et al., 2010).  Macro-scale factors, 

including solution composition, iron type, and total available surface area (Su and Puls, 1999) 

are known to affect GI reactivity (Devlin and Allin, 2005; VanStone et al., 2004), which is 

defined here as a property directly related to the rate of a specified reactant transformation in the 

presence of the GI surface.  Relative reactivity of an iron sample can thus be compared in series 

of experiments involving the same reactant. 

It is noted that the GI surface consists of a variety of mineral phases (Burris et al., 1998), as 

well as physical features such as edges and corners, that may serve as sorption or reaction sites 

for groundwater contaminants.  The number and availability of these sites is expected to have a 

direct effect on GI reactivity.  However, it is also noted that transformation rates may be affected 

by the delivery rates of dissolved substances to the GI surface.  The formation of precipitates 

within the GI porous medium, related to corrosion (Mackenzie et al., 1999; Odziemkowski et al., 

1998; Ritter et al., 2002), can diminish the permeability of packed GI (Mackenzie et al., 1999; 

Roh et al., 2000) hence decreasing contaminant flux through the GI medium and, consequently, 
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also the apparent reactivity (Puls et al., 1999).  These concepts are well established in the 

literature and continue to receive attention. 

 Another factor affecting PRB performance that has received attention is the grain surface 

area (Gotpagar et al., 1997; Johnson et al., 1996; Sivavec and Horney, 1995).  Linear 

relationships between iron surface area (or mass) and reactivity (expressed as the pseudo first 

order rate constant, or rate) have been noted by different investigators (Agrawal and Tratnyek, 

1996; Gillham and O'Hannesin, 1994).  This linearity has been rationalized in several models of 

the reaction kinetics (Arnold and Roberts, 2000; Devlin, 2009; Johnson et al., 1996; Wüst et al., 

1999).  Reactive transport models that account for these effects have also been developed 

(Huang, 2011; Jeen et al., 2007; Mayer et al., 2001).  With the introduction of nano-scale iron, 

several related studies have dealt with the issue of grain size, hence surface area density (g-Fe/L-

solution), effects on reactivity (Gillham, 2003; Wang and Zhang, 1997). 

 A relevant factor that has received virtually no attention in the literature is the effect of 

GI grain packing on reactivity.  Commercially available GI, for example the Connelly product, is 

platy in texture and therefore may pack in different orientations relative to the flow direction.  

The shape of granular material and its arrangement (Dullien, 1991), is known to affect flow and 

transformation rates of dissolved substances (Willingham et al., 2008), as well as porosity and 

permeability of the porous medium (Nield, 1992; Phillips, 1991; Zhao et al., 2008).  The 

structure of granular media may also affect transport (Coelho et al., 1997; Friedman and 

Robinson, 2002; Sperry and Peirce, 1995; Wyllie and Gregory, 1955; Yang and Xiaofeng, 2007).  

For example, work done on the micro-structure of undisturbed till showed a directional property 

of hydraulic conductivity (Nyborg, 1989); the parameter was smaller in the direction normal to 

the long axis of grains as compared to the direction parallel to the grain axes.  The effective 
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diffusion coefficient also depends on the shape and tortuosity of the pore framework, which is in 

turn largely dependent on the shape of the granular media (Friedman and Robinson, 2002).  

Furthermore, grain packing is known to affect physical properties such as porosity and bulk 

density (Lebron and Robinson, 2003).   

 Despite efforts to achieve homogenous packing, column experiments performed with the 

same iron type have sometimes given notably different results (Ritter et al., 2002).  Differences 

of 10%  have been reported in model-fitted parameters for duplicate columns , and the variations 

hypothesized to be due to differences in grain packing (Wu et al., 2005).  Differences in 

corrosion rates between 4 iron types have similarly been attributed to the combined effects of 

iron surface composition and geometric factors such as packing and shape of the grains (Jin suk 

et al., 2009).  To validate these speculations, it remains to be shown experimentally that packing 

does influence apparent reaction rates in GI media. 

3.3. Materials and Methods 

3.3.1. Materials  
 All chemicals were used as received.  Trichloroethylene (TCE, 99%) was obtained from 

Acros Organics and methanol (HPLC grade) from Fisher Scientific.  Connelly Iron was provided 

by GMP Inc.  Iron grains were hand sieved and grain sizes ranging from 0.71 to 2.0 mm were 

used in the experiments.  Stock solutions for analytical calibration were prepared in methanol 

and stored refrigerated at about 4 oC for not more than a month.   
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Table 3.1:  Characterization of packed columns 

Packing type mass iron 
(g) 

column internal 
diameter (cm) 

column packed 
length (cm) 

Pore Volume 
Vp (ml) 

Porosity Fe/V* 
(g L-1) 

VP-1 80 1.59 16.60 18.56 0.56 4310 
VP-2 80 1.59 15.70 15.95 0.51 5010 
HP-1 80 1.59 15.70 17.99 0.57 4444 
HP-2 80 1.59 15.70 17.75 0.57 4489 
RP-1 80 1.59 16.75 19.42 0.58 4119 

RP-2 (ref ) 80 1.59 15.80 17.50 0.55 4571 

*Fe/V refers to the mass of GI divided by the volume of solution in a saturated packed medium. 

3.3.2. Column Packings 
 All experiments were conducted with 1.59 cm diameter by 40 cm long pyrex glass 

columns.  Vertical packing (VP) – grains preferentially aligned with the flow direction –  was 

achieved by pouring small quantities of GI, 10-12 g at a time, into a column standing vertically 

on the bench-top.  The column was then gently shaken by hand until the grains became aligned 

with the long axis of the column (Figure 3.1a).  Great care was taken to disturb the surface 

coatings of the grains as little as possible during this procedure.  The packing continued until the 

column was filled with 80 g of GI.  Horizontal packing (HP) – with preferential grain alignment 

perpendicular to flow –  was achieved by pouring 8-10 grains at a time into a vertically oriented 

glass column (Figure 3.1b).  No shaking or tapping was necessary for the grains to acquire a 

strong horizontal grain alignment.   
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Figure 3.1: Schematic diagram showing different grain orientation in columns (a) Vertical Packing (b) 
Horizontal Packing and (c) Random Packing.  Arrows indicate the flow direction in columns. 

 

Random packing (RP) was achieved by adding 10-12 g at a time to a vertically oriented column 

with gentle tapping on the column glass to randomly redistribute the grains (Figure 3.1c) 

(Robinson and Friedman, 2001).   

3.3.3. Methods  
 Each column was packed with 80 g Connelly GI (Table 3.1) and fitted with machined 

Plexiglass® end plugs.  The weight of the columns and length of the packed material were 

measured for later porosity determinations.  Prior to flooding, all packed columns were flushed 

with CO2 gas for 20 minutes.  The columns were then saturated with 8 mM electrolyte solution 

(1.124 g/L NaClO4), which had been presparged with N2 for 20 min to remove dissolved oxygen 

(DO).  DO levels were measured in the sparged electrolyte solution with a Chemetrics kit and 

found to contain less than 0.5 mg/L O2(aq). Column flooding was undertaken with a flow rate (Q) 
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of 1 ml/min from air-tight PTFE (polytetrafluoroethylene) bags for at least for 8 hours before 

introducing TCE, to permit the iron surface to approach an equilibrium with the solution.  

NaClO4 was used as a background electrolyte due to its low reactivity on the granular iron 

surface (Devlin and Allin, 2005; Moore et al., 2003).  After flooding, the columns were 

reweighed and the difference used to determine porosity (n).   

 After pretreatment, the solutions in the PTFE bags were spiked with the TCE stock 

solution and used as influent reservoirs for the column experiments.  The solutions were pumped 

through the column using a peristaltic pump with Viton tubing in the pump heads.  TCE 

concentrations were not noticeably different before and after the pump head in prior testing of 

the system (Huang, 2011). 

 The influent solutions were adjusted to pH 10 with the drop-wise addition of NaOH 

solution, prior to de-aeration by nitrogen sparging (minimum 20 minutes).  The choice of pH 10 

was made for consistency with prior work and to represent conditions within the center of a PRB 

(Devlin and Allin, 2005; Gavaskar, 1998; Yabusaki et al., 2001).   

 Column experiments were conducted with a flow rate of 1 ml/min.  TCE was introduced 

to the column at a selected influent concentration (Co) until a steady state TCE effluent 

concentration was achieved.  The column was then flushed with pre-sparged NaClO4 for at least 

12 hours to remove any TCE or chlorinated transformation products present from the earlier 

experiment.  The Co in the reservoir bag was subsequently adjusted upward and another test 

conducted.  This was repeated for six different Co values per experimental suite.  Altogether, 5 

different experimental suites were performed: 2 with vertically oriented grains; 2 with 

horizontally oriented grains; 1 with randomly orientation of the grains. 

 Effluent samples were collected in 2 ml vials at predetermined times.  The collected 

samples were placed in a centrifuge for 5 minutes at 10,000 RPM to drive any solids to the 
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bottom of the vials.  Samples were analyzed immediately after completing an experiment using 

an Agilent 1100 series High Performance Liquid Chromatography (HPLC) with autosampler and 

diode array detector (Marietta and Devlin, 2005).  Two sets of standards covering the range of 

the initial concentrations (25 μM to 500 µM) were analyzed with the samples for calibration 

purposes. The calibration standards were used to determine accuracy and precision (54) which 

was generally within 2 – 10%.  The detection limit of the method was found to be 0.5 . 

A chloride tracer test was performed on both VP and HP to assess the possibility of 

physical non-equilibrium (PNE) transport dominating the apparent reaction rates. Evidence for 

PNE was sought in the form of noticeable tailing in the breakthrough curves. Chloride was 

analyzed using HACH Chloride Test Kit model 8-P Cat. No. 1440-01. Samples were collected in 

2 ml vials, which were diluted with deionized (DI) water to make up the 6 ml sample volume 

necessary for the analysis. Once the breakthrough curves reached a plateau, the columns were 

flushed with DI water to remove the chloride tracer.  Chloride concentrations were analyzed over 

the range of 60 mg/L to 300mg/L.  

3.3.4. Determination of reaction kinetics and retardation factors 
  Effluent concentrations were plotted as breakthrough curves, which were fitted using 

BEARPE, a solution to the advection-dispersion equation with sorption and reaction (eq 3.1) 

coded with a non-linear optimizer (Bear, 1979; Devlin, 1994).  The curves were fitted on 

velocity, v (cm/min), dispersivity,  (cm), pseudo first order rate constant, kapp (min-1), and, when 

v was known in advance, retardation factor Rapp (Appendix B).   
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where Co is the influent TCE concentration (μM), D is dispersion coefficient (m2s-1:, D=v+D*), 

 is dispersivity (m), v is water velocity (m s-1) and D* is effective diffusion coefficient (m2 s-1) 

that was assumed negligible in these experiments compared to v, x is column length (cm).   

3.3.5. Kinetic Modeling  
 The removal of TCE from groundwater in iron-based PRBs is the combined result of 

sorption and chemical reduction on the iron surface (Devlin et al., 1998).  The Kinetic Iron 

Model (KIM) (eq 3.2) (Devlin, 2009), which is capable of separating both the sorption and 

reaction processes, was used in this work to document possible changes in these parameters in 

connection with varying grain orientation.   Changes in surface availability would be expected to 

affect the capacity term, Cmax, to a greater degree than the other terms. 
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3.2 

where k  (min-1) is the first order rate constant for the surface reaction, CmaxR is the maximum 

sorption capacity to reactive sites (µmolg-1),  JR is the sorption affinity to reactive sites on the 

surface (µM-1), Fe/V is the iron mass to column pore water volume ratio (g L-1) and Co is the 

aqueous influent concentration of TCE (µM). 

3.4. Results and Discussion 

3.4.1. Effect of grain packing variation on non-reactive sorption 
 

 The iron grain surface can be conceptualized as consisting of reactive and non-reactive  
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Figure 3.2:  Relationship between retardation factor and injected TCE concentration for all 
packing columns (a) the solid curve fit the data for the VP-1, dash line for HP-1, and dash dotted 
line for RP-1(b) the solid curve fit the data for the VP-2, dash line for HP-2, and dash dotted line 
for RP-2. Data points labeled “?” were not used in model fits.  

 

sites (Bi et al., 2010; Burris et al., 1995).  Over a sufficiently large range of Co, there is non-

linear sorption to both types of sites (Bi et al., 2010).  The non-reactive sorption can be analyzed 

using the transient portion of the breakthrough curve (Bi et al., 2010).  Using eq 3.1, the kapp and 

Rapp were fitted from the breakthrough curves (Appendix B).  The maximum sorption capacity 

CmaxN (μmolg-1) and sorption affinity, JN (μM-1), to non-reactive sites in the iron columns were 

then fitted with eq 3.3 (Bi et al., 2010) (Figure 3.2) (Table 3.2). 

                             ܴ௔௣௣ ൌ 1 ൅
ி௘

௏
 ௗி௘                     3.3ܭ

where, 

ௗி௘ܭ								 ൌ 	
௃ಿ஼೘ೌೣಿ	

ሺଵା௃ಿ஼೚ሻమ
                                                                        3.4 

The lower the KdFe value, the lower the retardation factor (Rapp), and the faster the reacting solute 

migrates through the material.  For non-sorbing species, KdFe will be zero and Rapp will be equal 



 

40 
 

to 1, corresponding to a solute that migrates at the average linear speed of the water.  Generally, 

Rapp  was found to decrease with increasing influent concentration, as previously reported (Bi et 

al., 2010).  This behavior was observed consistently in all experiments, but was particularly 

noticeable for Co > 100 μM (Figure 3.2). 

 Sorption was most pronounced at lower influent concentrations (<100 μM) in all 

experiments.  However, the two VP replicate columns showed higher retardation values at all 

injected TCE concentrations compared to the HP and RP experiments (Figure 3.2).  Note that 

this result is inconsistent with PNE retarded transport, which would be expected to be most 

pronounced in the horizontally packed columns where  the nature of the grain packing would 

make PNE transport most likely (due to the higher number of pores cut off from the main 

direction of flow).  In the present work, the mass of Fe was kept constant (80 g for all columns), 

so any change in the availability of sorption sites, as suggested by the higher sorption in the VP 

experiments, appears to have been associated with the grain packing and orientation rather than 

the amount of iron present.  Apparently, the vertical orientation of grains fostered increased 

availability of the surface for sorption compared to the other packing arrangements. 

The Fe/V  term (eq 3.2, 3.3) is sometimes reported as surface area and sometimes as mass.  

However, the overall solid surface area of packed GI increases over time due to oxide production 

as the iron corrodes (Allin, 2000), producing surfaces that are not necessarily as reactive as the 

original surfaces.  This, and a reported linear relationship between initial surface areas and iron 

mass (Gillham and O'Hannesin, 1994), justifies the use of Fe/V expressed in terms of iron mass, 

which changes very little over an experimental suite.  The mass of solid iron in a column is 

greatly in excess of what can be removed during an experiment, based on typical corrosion rates 

(0.1- 0.7 mmol Kg-1 day-1) and iron leaching rates (max 6 mg L-1 in effluent) (Gillham and 
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O'Hannesin, 1994; Reardon, 1995).  The changing surface area (reactive and non-reactive) is 

primarily taken into account in the Cmax parameters, which is intuitively reasonable since the 

surface area and Cmax terms are both related to sorption capacity.  

Table 3.2:  Summary of fitted kinetic and sorption parameters for reactive and nonreactive sites on 
GI packed in three different (predominant) orientations. 

Packing CmaxN 
(µMg-1) 

JN 
(µM-1) 

k 
(min-1) 

CmaxR 

(µMg-1) 
JR 

(µM-1) 
VP-1 1.70 0.0026 0.0097 0.32 0.065 
VP-2 1.34 0.0034 0.010 0.11 0.099 
HP-1 0.47 0.0044 0.010 0.06 0.07 
HP-2 0.54 0.0048 0.008 0.06 0.16 
RP-1 1.20 0.0024 0.010 0.085 0.055 
 

 The calculated CmaxN followed the trend VP>RP>HP for all columns (Table 3.2).  This 

order was similar to that of the Rapp estimates, for which VP>RP HP (Figures 3.2 a and b).  In 

contrast, there was no clear trend in the JN parameter estimates if an uncertainty of   0.001 M-1 

was applied, based on the differences between replicates.  A t-test was performed to compare the 

means of the estimated parameters from the various tests (Appendix C).  It was found there was 

only a 9% chance that the means of CmaxN were identical between the HP and RP vs. VP 

packings, compared to a 57% chance the means of JN were identical.  The absence of systematic 

variations in JN  indicates the affinity of the iron for TCE was independent of grain packing, 

which was as expected. 

3.4.2. Effect of grain packing variation on reactive sorption 

 The kinetics of transformation, and equilibrium reactive sorption on the iron surface was 

investigated using the TCE concentrations in the steady state portion (dCeffluent/dt = 0) of the 

effluent breakthrough curves and equation 3.2 (Bi et al., 2010).  Using a 2-step linearization 

approximation (Marietta and Devlin, 2005), preliminary estimates of CmaxR, JR, and k were 
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calculated for all experiments.  These were then used as initial guesses for nonlinear regression 

in the KIM (Devlin, 2009), from which the best fit parameters were estimated (Table 3.2).  The 

values of CmaxR for the HP and RP were in the range previously reported (Bi et al., 2010) and 

repeatedly less than those obtained from the VP experiments.  Again, t-tests were performed to 

compare the means of the three packing type tests. They indicated only about a 16% chance that 

the means were the same for the CmaxR parameter, a 78% chance they were the same for the JR 

parameter, and a 92% chance the means were the same for the k parameter.  This result indicates 

that the higher reaction rates in the VP columns were mainly attributable to a greater number of 

available reactive sites rather than higher sorption affinity (through J) or inherent chemical 

reactivity (through k). 

 

Figure 3.3:  Relationship between TCE concentration and reduction rates using KIM (eq 3.2) (a) for 
VP (b) for HP (c) for RP (d) distribution of parameters estimates using Monte Carlo analysis for 
VP (e) for HP and (f) for RP. Note that the best fit parameters represent a single realization and 
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may not correspond to the parameter values with the highest frequencies determined in the Monte 
Carlo analysis. 

 

The estimates of JR were found to be consistently higher than those of JN, suggesting slightly 

greater affinity of TCE for the reactive sites compared to non-reactive sites in these experiments.   

A further check on the possibility that the Cmax terms were significantly different between 

the VP experiments and the other tests was undertaken by performing a Monte Carlo analyses on 

the data sets assuming 20% error on each column rate point (Figures 3.3 a, b, and c) to generate 

distributions of fitted CmaxR, k, and JR parameters (Figures 3.3 d, e, and f).  The Monte Carlo 

exercise was based on 1000 realizations.  The distributions tended to be slightly asymmetrical in 

all cases and for all packings.  Nevertheless, there were differences in the results from the 

variously packed columns: all three parameters exhibited relatively narrow distributions in HP 

and RP experiments, while in both VP tests, the CmaxR parameter exhibited a very wide 

distribution indicating high uncertainties on the best fit values (Figure 3.3d).  The wide 

distribution in CmaxR makes the parameter difficult to define with precision, but nonetheless 

points to likelihood that its value tends to be greater on average in the VP tests than in the HP 

and RP tests, as concluded previously.   

The possibility that the differences in the Cmax terms were influenced by PNE rather than 

sorption was examined with chloride tracer tests.   It was reasoned that stream lines 

perpendicular to the average flow direction would be more common in the HP columns than in 

the VP columns and that these would create conditions favorable for PNE in the HP columns. 

This would occur because in HP columns some streamlines would exhibit much higher water 

speeds than others.  Where PNE is important, solute breakthrough curves would be expected to 

show significant tailing due to the slow release of solute from the restricted pores.  These 
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occurrences would affect tracer breakthrough curves in VP columns, where PNE is expected to 

be minimal, differently from HP columns, where PNE is more likely to occur.  However, 

experimentally, both types of column packings produced nearly identical breakthrough curves 

(Appendix D).  This result suggests that PNE in the HP columns was not a major factor in the 

transport behavior in these columns.  Therefore, the Cmax terms must primarily reflect differences 

in sorption rather than biases introduced by PNE.  

 The important result of this work is that it demonstrates that grain packing and orientation 

in the GI porous medium affects observable transformation rates of TCE.  The initial reaction 

rates (dC/dt= kobsCo)  in HP and RP tests were found to be very similar, and agreed with 

previously reported experiments (Bi et al., 2010).  However, the reaction rates in duplicate VP 

experiments were 2-4 times higher than those from the other packings, apparently due to an 

increased availability of reactive sorption sites.   

3.4.3. Pore-Scale Visualization Experiments  
The possibility that the reactivity differences could be rationalized on the basis of 

solution accessible surface areas in the differently packed columns was evaluated using NIH 

Image J software (Rasband, 2007).  The VP and HP pore networks were found to be quite 

distinct from one another (Figures 3.4a and b).  The vertical packing resulted in a more open 

structure with more apparent solution available grain surface than the horizontal packing.  This 

observation is supported by an examination of skeletonized images, which facilitate visualization 

of the interconnectedness of the pore networks by digitally removing the grains from the images 

and displaying connected pores throats with lines (Figures 3.4c & d) (Baldissera et al., 2011); the 

denser network is seen to correspond to the VP case (Figure 3.4c).  Further support comes from 

consideration of porosity differences between the columns, which were found to be higher on 
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average in the VP cases.  A t-test of the means of the measured porosities from the VP and HP 

columns indicated only a 19% chance they were identical.  The grain perimeters were on average 

greater in the VP columns, but not greatly so.  It was calculated that the average perimeters for 

the VP and HP columns had a ~33% chance of being identical (Appendix E).  Nevertheless, the 

spatial distribution of grains and a more evenly distributed pore network in the VP columns 

allowed better grain to solution contact in those cases.  The grain areas were expected to be 

higher in the more densely packed medium (HP) while lower areas (fewer grains per image) 

were expected for the less densely packed medium (VP), as estimated by image analysis. Further 

t-tests provided support that this expectation was realized; the grain areas showed only 15% 

chance they were identical (Appendix E). 

An increased availability of iron for corrosion in the VP columns is likely to be 

responsible for some of the increased reactivity that was observed (factor of 2 to 4). This raises 

the possibility that the different packings led to different rates of oxide formation, due to an 

increase in grain-solution contact.  This could have fostered increases in reactive surface area (at 

least initially) at a scale too small to assess by the image analysis.  This idea is supported by 

reported increases in BET surface area of 300% for 8 mM NaClO4
-contacted granular iron 

(Master Builder’s iron) in batch tests (Allin, 2000).  However, in order for the hypothesis to be 

plausible, the oxides formed would have had to include a high proportion of reactive phases, i.e., 

oxides of mixed valency in iron, or carbon sorption sites capable of participating in electron 

transfer to TCE – both possibilities that are supported by previous work (Odziemkowski et al., 

1998; Oh et al., 2002; Ritter et al., 2002).  Microscopic analysis of the iron surface is required to 

address these possibilities for the current experimental conditions. 
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3.5. Implications for granular iron reactive barriers  
 This work helps to account for variability in the sorption and kinetic behavior of GI in 

column experiments.  On the basis of this work, attention should be paid to grain packing in 

treatability tests in order to reduce variability between individual column tests, between 

laboratory and field tests, and improve confidence in PRB design calculations.  The HP and RP 

packings were found to lead to quite similar GI reactivities (through the k term).  This is a 

favorable outcome for lab testing repeatability since these packings require little effort to 

achieve.  However, HP and RP packings may not be very representative of packings in PRBs 

where horizontally oriented grains are aligned parallel to flow.  The VP columns, in which grains 

 

Figure 3.4: Threshold images (a) VP-1and (b) HP-1, skeletonize images (c) VP-1 and (d) HP-1 
showing pore network. Red circles indicate selected areas of dense packing and reduced grain 
surface-solution contact. 

a b

c d
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were oriented parallel to flow, were found to be more reactive (based on reaction rates, dC/dt) 

than the HP and RP cases.  Therefore, existing field installation practices for 100% iron PRBs 

may be inadvertently packing the iron to great advantage, though some additional optimization 

might be possible. 

 It is assumed that mass transfer does not initially limit reaction rates in the 100% iron 

media due to close proximity of grains in the columns (Bi et al., 2009).  However, if lower 

reactivity in the HP and RP columns occurs due to a decrease in the available iron surface, or 

immobile zones in the columns, (as shown to exist in the morphological study) this could create 

mass transfer limitations in a 100% HP or RP GI medium.  This possibility was not discernible in 

the chloride tracer tests performed here, but remains a possibility for other iron media 

nonetheless.  As suggested by others (Bi et al., 2009) the addition of sand, or another inert 

granular material, could improve the solution-GI contact and increase transformation rates, at 

least in the short term, by physically separating the grains. 
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4. BEARKIMPE: A VBA Excel Program for Characterizing Granular Iron 
in Treatability Studies 

4.1. Abstract 
The selection of a suitable kinetic model to investigate the reaction rate of a contaminant 

with Granular Iron (GI) can be essential to optimize the Permeable Reactive Barrier (PBR) 

performance in term of its reactivity. The newly developed Kinetic Iron Model (KIM) uniquely 

determines: rate constant (k) and sorption parameters (Cmax & J) which was not possible with 

earlier models. The code presented in this work was written in a Visual Basic Application (VBA) 

for Microsoft Excel is adopted from BEARPE and KIMPE codes written in FORTRAN. The 

program is organized in several user interface screens (UserForms) that guide the user step by 

step through the analyses. BEARKIMPE uses non-linear optimization algorithm based on 

simplex optimization to calculate transport and chemical kinetic parameters.   

4.2. Introduction 
The disappearance rates of groundwater contaminants in the presence of zero-valent iron 

(Fe0) are important to understand for the purposes of groundwater remediation (Bi et al., 2010; 

Gillham and O'Hannesin, 1994; Puls et al., 1999), -in particular where Permeable Reactive 

Barrier (PRB) designs are concerned. Over the last two decades this technology has proven to be 

effective for removing various pollutants, most notably trichloroethene (TCE) from groundwater 

(Agrawal and Tratnyek, 1996; O'Hannesin and Gillham, 1998; Puls et al., 1999).  The choice of 

an appropriate kinetic model to investigate the reaction rate of a contaminant with GI can be 

essential to optimize the barrier performance in term of its reactivity (Henderson and Demond, 

2007; Roh et al., 2000a, b)  

 Much of the existing literature on GI kinetics suggest that reactions with organic 

groundwater pollutants is first order (Gillham and O'Hannesin, 1994; Johnson et al., 1996), or 
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second order if the iron is (more correctly) treated as a reactant (Devlin et al., 1998; Johnson et 

al., 1996). Recent studies have shown that the reaction processes between GI and contaminants 

depend on both electron transfer (k) and sorption that occurs to the surface of iron (Arnold and 

Roberts, 2000; Bi et al., 2010; Devlin, 2009). For example, the Langmuir-Hinshelwood model 

(L-H) accounts for surface saturation and reactivity and have employed sorption capacity of solid 

surface (Cmax), sorption affinity (J)  and rate constant (k) (Arnold and Roberts, 2000). 

Unfortunately, the rate constant (k) and maximum sorption capacity (Cmax) only occur as a 

product kCmax in the model equation, making it impossible to estimate the individual values 

uniquely (Arnold and Roberts, 2000; Bi et al., 2010; Gillham and O'Hannesin, 1994). 

  The newly developed Kinetic Iron Model (KIM) is a more general version of the L-H 

model and is capable of separating these processes and uniquely determine: rate constant (k) and 

sorption parameters (Cmax & J) (Devlin, 2009). In order to make these estimations, a suite of 

column tests, performed with various influent concentrations of the contaminant of interest – 

TCE is used here as an example – are conducted.  Details on the methodology of column 

experiment can be found elsewhere, together with an assessment of the approach compared to 

other methods (Bi et al., 2010).   Upon completion of each test, the column effluent samples are 

analyzed for TCE and breakthrough curves (BTCs) are generated.   The BTCs are then fitted 

with a solution of the advection-dispersion equation (with reaction and sorption terms) to obtain 

an estimate of the pseudo-first order rate constant, kapp.  These values were then used in a 2 step 

linearization approximation of the L-H and KIM equations to obtain preliminary estimates of k, 

Cmax and J parameters (Marietta and Devlin, 2005) followed by non-linear optimization to 

improve on the preliminary estimates (Figure 4.1). Each of the steps has until now been 

facilitated with command line driven codes prepared in FORTRAN, which required considerable 
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file management in the Windows environment, and manipulations including imports to 

spreadsheets or plotting software.   

   

The FORTRAN codes included BEARPE, to fit the advection-dispersion equation, 

KIM2PE, to perform L-H and KIM linearizations, and KIMPE, to perform the non-linear 

optimizations. The procedure involving these codes was satisfactory for single-pass analyses of 

the data, but was found to be inefficient if multiple passes were required.  Multiple passes were 

frequently desirable to correct irregularities in fitted lines in one or more steps.  To improve the 

Figure 4.1: Flow chart illustrating the data analysis steps to assess reactions with GI. 
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ease of movement through the process, and reduce file manipulations at the operating system 

level, the codes were adapted to VBA within the Excel environment. 

The purpose of the present work was to convert the BEARPE, KIM2PE, and KIMPE 

simplex optimization codes into a visual basic procedure in the Excel environment, and to adapt 

the codes to interact seamlessly. BEARKIMPE, name of a new code, uses graphical user 

interface and straightforward Userforms for its functions. The program is also customized to 

make graphic representation of observed and calculated data, which was not possible in the 

earlier work (Appendix F).   

4.3. Breakthrough curves analysis and kinetics analysis 
  BEARKIMPE calculates transport and chemical kinetic parameters for the column tests 

by fitting the experimental data with eqs 4.1 and 4.2, by minimizing the residual sum of square 

(RSS) objective function (eq 4.3).  
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Where yi is the ith observed concentration and f(xi) is the calculated concentration from a  

solution to advection-dispersion Equation (eq 4.1)  (Bear, 1979) or the KIM (eq 4.2). Where Co 

is the influent TCE concentration (μM), D is dispersion coefficient (m2s-1), D=v+D*,  is 

dispersivity (m), v is water velocity (m s-1) and D* is effective diffusion coefficient (m2 s-1) that 

was assumed negligible in these experiments compared to v, x is column length (cm),  dC/dt is 

the observed rate and f(xi) is the calculated rate, kapp is the apparent or observed pseudo-first 

order rate constant (min-1), k  is the first order rate constant for the surface reaction (min-1), CmaxR 

is the maximum sorption capacity (µmolg-1),  JR is the sorption affinity to reactive sites on the 

surface (µM-1), Fe/V is the iron mass to column pore water volume ratio (g L-1) and Co is the 

aqueous influent concentration of TCE (µM). 

The non-linear optimization algorithm is based on simplex optimization (Devlin, 1994; 

Jurs, 1984). Briefly, a simplex or geometrical shape is created in space with N+1(where N is the 

total number of parameters to be estimated) vertices on a response surface, which consists of the 

RSS for all possible sets of parameter values. Initial guesses of parameters serve as the vertices 

of the initial simplex. Upon initialization, the simplex moves by stretching, contracting and 

flipping on the response surface. The response surface is searched until convergence is achieved 

at the lowest RSS location, which corresponds to the optimal parameter estimates.  

4.4. Setup for optimizer 
The BEARKIMPE code is written in VBA and requires Microsoft Excel version of 2007 

or later. Installation is performed by simply saving the “BEARKIMPE” Excel file to hard disk. 

This program contains macros, therefore security settings within Excel should be adjusted 

accordingly (with macros enabled). The only input file required by the program is a spreadsheet 
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listing the effluent TCE concentrations and their corresponding times for each of the tests 

(varying Co) in a suite.  A sample input file is provided with the program file.  

  Upon initializing the BEARKIMPE program the “Welcome to BEARKIMPE” UserForm 

will appear on screen and prompt the user to select either “Import external data” or “Cancel” 

command button as seen in Figure 4.2.                         

  

Figure 4.2: Screen capture of UserForm 1 “We1come to BEARKIMPE” screen. 

Selecting “Cancel” button disables the code and the spreadsheet can subsequently only be used 

for simple excel work. Clicking “Import External Data” allows the user to select the target input 

file from a file directory. Once the user selects the input file, a message box appears requesting 

verification that correct file was selected. Selecting “No” in the message box returns the user to 

the file directory to reselect the input file.  Choosing “Yes” causes the VBA code to continue 

executing.  The data are imported and stored in a spreadsheet named “BearPE2”.  
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 Upon successfully importing the data, UserForm 2 appears (Figure 4.3). The code 

associated with this form creates up to 6 spreadsheets for column test data from a suite with 

editable Co values to be filled in for purpose of naming worksheets.  The input data from the 

BearPe sheet are parsed by test (i.e., Co) and copied to the new spreadsheets. Graphical 

representations of BTCs for the observed data are also created during this step. 

 

 

 

 

4.5. Fitting the Observed data with the Simplex Optimizer 
 With the individual tests spreadsheets created, UserForm 3, “BEARPE First 

Approximation Screen” (Figure 4.4), appears.  This form prompts for input from the user on 

which to base the fitting of eq 4.1 to the column BTC data for each test. This form leads to first 

approximations of the eq. 4.1 parameters, which can be evaluated by the user and improved 

further along in the process.   

Figure 4.3: Screen capture of UserForm 2 "Input Co" showing designated names and target
concentrations. By default target concentrations are suggested for the naming of 6 new
spreadsheets added to the workbook when “View Data” command button is selected 
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Figure 4.4: Screen capture of First approximation input screen. By default column length and velocity are 
fixed. 

Any of the parameters can be held constant in the optimization process by simply clicking the 

“Fix” check box on the parameter line. Column velocity and column length are expected to be 

fixed in the experimental design, therefore both are fixed by default in this UserForm 3 (Figure 

4.4). Column experiments are generally conducted at flow rates that swamp diffusion.  For this 

reason there is no option to optimize on the diffusion coefficient. 

  

The user can choose between 3 weighting options: “Relative”, Bisquare”, and “None”.  By 

default “None” is selected which simply fits the effluent column data weighting each point 

equally, as indicated in eq 4.3.  “Relative” weighting modifies eq 4.3 by weighting the residual 

sums by the magnitude of the concentration, Ci (eq 4.4). 

Figure 4.5: Screen capture of message box for Initial Concentration Co Input. 
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The effect of this change is that each point is given relatively equal weighting in the optimization 

process.  In practice, the fitting procedure de-emphasizes the highest concentration points 

compared to the “None” option. 

The third weighting option is called “Bisquare” weighting, and this has the effect of de-

emphasizing points that depart from the fitted line, i.e., potential outliers – the greater the 

disagreement, the less the weighting in the final fit.  The RSS function in this case is modified as 

follows (Robinson, 1985):  
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Upon selecting the “Run” command, the initial guesses entered into the form are applied to all 

BTCs. As each BTC is considered, the user is prompted for the experimental Co (as opposed to 

the approximate value used to name the sheet (Figure 4.5). Once the experimental Co is entered 

and the “Ok” command button selected, the simplex optimizer runs and the transport/reaction 

parameters estimated (Figure 4.6).The procedure moves sequentially through the spreadsheets 

until all the BTCs are fitted with the simplex optimizer.  
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Usually, the calculated BTC displays a good match with the observed one, but sometimes the 

initial guesses are poor and the optimizer converges on a local RSS minimum on the response 

surface, rather than the global minimum that is sought. In this case manual adjustment of 

parameter estimates is needed, and is done from UserForm 4 (Figure 4.7). The UserForm  

 

 

Figure 4.6: Output of BEARPE approximation UserForm 3 showing optimized transport 
parameters and RSS values. 
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,“BTC Assessment” allow user to refit or accept the breakthrough curve. If “refit curve” is 

selected the UserForm 4 “Approximation Input Screen”, utilizes the  same simplex optimization 

code called from UserForm 3 will appear on screen. This form allows the user to re-enter the 

initial parameter guesses and rerun the optimization routine. The initial parameters can be called 

by “Enter Defaults” command button or by manual input.  In addition, it has an entry option for 

the “Initial Concentration (µmL-1)” which can be either “enabled” or “disabled” by checking an 

option button.  This allows users to revise the experimental Co (Figure 4.7B). Once the curve 

fitted, the UserForm 4 appears on screen for next Co and procedure moves sequentially through 

the spreadsheets until all the BTCs are refitted with the simplex optimizer. User can skip these 

A) 

B) 

Figure 4.7: Screen Capture of (A) Message for BTC assessment and (B) UserForm 4 for second 
optimization 
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steps if first approximation (UserForm 3) fits data well by selecting “accept curve” command 

button (Figure 4.7A).  

4.6. Collecting the data for analyzing retardation and non-reactive sorption 
 Non-reactive sorption is analyzed using the transient portion of the breakthrough curve. 

The apparent rate constant (kapp) and retardation factor (Rapp) are fitted from BTC using eq 4.1. 

Non-reactive sorption is further characterized by examining the dependency of Rapp on Co, 

assuming a Langmuir isotherm describes the sorption. 

ܴ௔௣௣ ൌ 1 ൅
݁ܨ
ܸ

௠௔௫ேܥேܬ

ሺ1 ൅ ௢ሻଶܥேܬ
 

(4.7) 

Where CmaxN is maximum sorption capacity (µMg-1) and JN is sorption affinity, (μML-1), to non-

reactive site (Bi et al., 2010). 

The value of the parameter Fe/V, the iron mass to column pore water volume ratio (g L-1), is 

required for calculating both non-reactive (eq 4.7) and reactive sorption (eq 4.2).  UserForm 5 is 

designed to prompt for Fe/V and then read the fitted Rapp and kapp estimates from the various Co 

spreadsheets and incorporate them into a new sheet called “RF”.  Also on the same sheet, a 

button “non-reactive sorption” is displayed and linked to the Solver option in Excel. Solver is 

another nonlinear optimizer that minimizes the RSS objective function by fitting CmaxN and JN.   
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4.7. Running 2 Step linearization for kinetic and sorption parameters 
 Once the non-reactive sorption calculations are complete, the program proceeds to 

UserForm 6, coded with a 2-step linearization approximation (Marietta and Devlin, 2005) 

(Figure 4.9). This method provides the preliminary estimate of the reactive sorption parameters 

(CmaxR, JR), and rate surface constant (k). These estimates are then used as initial guesses for 

nonlinear regression in the KIM. In the first step, the L-H model is used to obtain estimates of 

the parameter J, and the parameter product kCmax (Marietta and Devlin, 2005). Briefly, the 

observed dataset from all BTCs is placed into the matrix form, from which the parameter 

estimates of 1/J and kCmax is calculated (Devlin and Allin, 2005). In the second step, the 

estimated J parameter from L-H model is used in a linearized form of the KIM (eq 4.5) to obtain 

the best fit estimates of k and CmaxR (Marietta and Devlin, 2005). In equation 4.5, each row 

represents the linearized form of eq 4.2 for each Co experiment.  

A) 

B) 

Figure 4.8: Screen captures of A) UserForm 5 and B) output file for non-reactive sorption. 
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Once these estimated parameters values are calculated, they serve as initial guesses for the 

“KIMPE Optimization Input screen”, UserForm 7. Selecting “Run” command button will initiate 

the optimizer and run until convergence is successfully met. 

A) 

B) 

Figure 4.9: Screen captures of (A) UserForm 6, KIM2PE and (B) UserForm 7,  KIMPE 
Approximation Input for KIM parameters. 
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4.8. Data for the Monte Carlo analysis 
To quantify the uncertainty attached to the fitted CmaxR, k, and JR  estimates, a Monte 

Carlo analysis can be performed to generate probability distributions of each parameter. The 

Monte Carlo procedure was described by Devlin (2009), and was not duplicated here.   

4.9. Summary and conclusion 
The KIM was used in this study to obtain unique estimates of reaction and sorption 

parameters for the organic reactions with granular iron, which was not possible with earlier 

kinetic models. The procedure was initially developed using codes developed in FORTRAN, 

which was time intensive.  This prompted the development of a user friendly program executable 

in a commonly available spreadsheet environment. The BEARKIMPE spreadsheet contains code 

written in Visual Basic for Excel, adapted from the FORTRAN programs BearPE2 and KIMPE. 

It requires only a single input file to perform a complete analysis of a suite of column tests to 

determine reactive and non-reactive sorption parameters and a first-order rate constant for the 

surface reaction. The program is structured in several user interface screens (UserForms) that 

guide the user step by step through the analyses. BTCs are fitted with simplex optimizer on 

transport parameters. BEAKIMPE also utilizes “Solver”, which is also a nonlinear optimizer that 

minimizes the RSS objective function, is operated to optimize non-reactive sorption and 

retardation. Further, the program is coded with a 2 step linearization method that gives 

approximate estimates of k, Cmax and J.  Once these estimated parameters are processed with a 

nonlinear optimizer to improve them, they are saved in a new file suitable for export to a separate 

spreadsheet capable of running Monte Carlo analyses to quantify parameter uncertainty. On 

completion, user can save the project file on a system for documentation purposes. 
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5. Accessing the importance of carbon in the granular iron during the 
reductive dechlorination process. 

 

5.1.   Abstract 
Granular iron (GI) is commonly used reactive material in the permeable reactive barriers 

(PRBs) to treat wide variety of groundwater contaminants. Commercially available GI which 

replaced electrolytic iron has been investigated in laboratory. A notable difference between 

commercial GI and EI is presence of carbon and other impurities on the surface.  Column 

experiments were conducted to compare 2 types of GI, Connelly and Electrolytic Iron (EI), to 

document the effects on sorption and kinetic parameters as iron aged in TCE solution. It was 

observed that retardation factor (Rapp ) for GI followed non-linear relation and dropped 

significantly as iron age in TCE solution. Whereas Rapp values for EI were substantially lower 

than GI and varied minimally through the injected TCE concentrations and with aging. Kinetic 

data suggested a shift in rate constant (k) and sorption parameters for both iron types. This work 

demonstrates the implication of carbon during the retardation of TCE i.e high Rapp for GI (~3% 

carbon) and low for EI (≤ 0.01%). Furthermore, hydrocarbon tests performed on GI suggested 

the background carbon as a possible source of hydrocarbon formation in Fe/H2O system.   

 

5.2. Introduction 
Commercially available Granular iron (GI) is the leading reactive material used in the 

permeable reactive barriers (PRBs) (Farrell et al., 2000; Gillham et al., 2010; Higgins and Olson, 

2009) and able to treat wide variety of groundwater contaminants (Blowes et al., 2000; 

Mackenzie et al., 1999; O'Hannesin and Gillham, 1998; Sasaki et al., 2008). Differences in the 

manufacturing processes of GI lead to differences in grain morphology as well as chemical and 

physical properties of iron surface. The chemical nature of GI from various manufacturers has 
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been intensively investigated in laboratory tests (Burris et al., 1998; Su and Puls, 1999; 

VanStone et al., 2004), which have sometimes -  substituted electrolytic iron (EI) for commercial 

GI, for the purposes of limiting the investigation to a relatively simple metallic surface, which is 

inferred to provide the active sites where reactions take place (Baciocchi et al., 2003). A notable 

difference between commercial GI and EI is presence of carbon and other impurities on the 

surface.  The importance of this difference was first raised by Burris et al. (1998) who examined 

cast iron as a surrogate for GI.  They found that carbon was important to the sorption of 

hydrophobic chemicals to the iron surface at sites where no reductions took place – so-called 

non-reactive sites.  Later studies have attempted to quantify the sorption to sites where 

reductions could take place (Bi et al., 2010; Deng et al., 2003; Dries et al., 2005), but these did 

not localize the sorption to sites of a particular composition or type (Deng et al., 2003).  

It is well established that the condition of the GI surface has a significant effect on reaction 

rates (Dries et al., 2005; Phillips et al., 2010). The presence of a variety of oxides (Burris et al., 

1998) as well as physical features, like edges and corners (Stumm, 1992), offer many 

possibilities for sorption or reaction sites. Despite detailed investigations of the surface phases 

present on GI, the roles of these various surface phases and features in aqueous solute reductions 

remains uncertain.   A possible site for reaction on the GI surface is carbon originating from the 

steel or during the manufacturing process (Oh et al., 2002). Carbon is also known for its strong 

propensity to act as a sorbent of hydrophobic substances (Cornelissen et al., 2005). For example, 

activated carbon is used for the removal of organic and inorganic contaminants from water 

(Oliveira et al., 2002). Commercially available GI, used in PRBs, is typically a cast iron or light 

steel that contains 2.85 – 3.23%  by weight carbon (Appendix G). The carbon on cast iron 

comes, at least in part, from decomposition of carbide/cementite (Fe3C = 3Fe + C) which 
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promotes graphitization (Chawla and Gupta, 1993). Different morphologies of graphite for 

example flaky or nodular and rounded, have been described and may depend on kiln temperature 

and rate of cooling (Chawla and Gupta, 1993).  

Early investigations identified the role of surface carbon as a non-reactive sorption site 

(Burris et al., 1998).  Later work suggested that carbon can also serve as a reactive sorption site  

for contaminants (Oh et al., 2002). In another study, granular activated carbon was mixed with 

nano-scale zero-valent iron and assessed as a conductor for the shuttling of electrons to improve 

the reactivity of corroded iron (Tang et al., 2011).  

Efforts to examine the role of carbon have been complicated by the formation of 

hydrocarbons in metallic iron/water system (Fe/H2O) - both in the presence and absence of 

chlorinated solvents (Burris et al., 1997; Deng et al., 1997; Hardy and Gillham, 1996) . Primary 

reductive pathways for chlorinated ethylenes is believed to be through β –elimination and or 

hydrogenolysis which could lead to the formation of C2 hydrocarbons (acetylene, ethane, and 

ethane) (Arnold et al., 1999; Roberts et al., 1996). Aqueous CO2 and chloroethylene have also 

been shown as possible source for C1 –C5 hydrocarbon (Hardy and Gillham, 1996; Yabusaki et 

al., 2001).  

The objective of this work was to evaluate the importance of surface carbon on the 

reactivity of GI towards trichloroethylene (TCE). Two iron types were compared in column tests 

to make this assessment:  Connelly Iron GI, a commercial brand with ~3% carbon by weight, and 

Sigma Aldrich EI which is 99.99% Fe. Quantification of reactive sorption was accomplished 

using the kinetic iron model (KIM) (Devlin, 2009; Bi et al., 2010) and the effects of surface 

carbon evaluated by contrasting TCE reduction kinetics in the presence of the two iron types.  
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5.3. Materials and Methods 

5.3.1. Materials  
 All chemicals were used as received. Connelly® Iron was provided by GMP Inc.  The 

iron grains were platy in appearance and hand sieved to isolate sizes ranging from 0.71 to 2.0 

mm in diameter.  Electrolytic iron (EI) (>99.99%), was purchased from Sigma Aldrich, was 

granular in appearance with grain diameters between 0.42 and 2.0 mm.  Trichloroethylene (TCE, 

99%) was obtained from Acros Organics, methanol, pentane (HPLC grade) from Fisher 

Scientific, and CO2, O2, He gases (99+%) were purchased from Air gas, Topeka.   

NaClO4 feed solution (8 mM) was prepared with deionized water (Barnstead International 

Nano Pure Infinity Ultra-pure Water System Series 896). NaClO4 was selected as the 

background electrolyte because is known to be minimally active on the granular iron surface 

(Devlin and Allin, 2005; Huang, 2011; Moore et al., 2003). The solution was adjusted to pH 10 

with the drop wise addition of either 1.1 mM perchloric acid or 0.35 mM sodium hydroxide 

solution. The choice of pH 10 was made for consistency with prior work and to represent 

conditions within the center of a PRB (Devlin and Allin, 2005; Gavaskar, 1998).  The NaClO4 

electrolyte solution was pre-sparged with ultra-high purity nitrogen gas (Air gas, Topeka) for 20 

minutes to remove dissolve oxygen before introducing it to a granular iron column. Chemetrics 

dissolved oxygen (DO) kit (K-7512 and K-7501) was used to confirm that DO levels in the 

influent was less than 0.5 mg/L.  

Stock solutions of TCE were prepared in methanol at concentrations of 5 mM and 100 mM for 

the purpose of analytical calibration and spike source for feed reservoir, respectively. Stock 

solutions were stored refrigerated at about 4o C for times not exceeding one month.  PTFE 

(polytetrafluoroethylene) bags obtained from American Durafilm® served as source reservoirs 

for all column experiments. They were outfitted with stainless steel fittings for the purpose of 
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connecting Peak®  tubing to or from a peristaltic pump with Viton® tubing (Cole Parmer) in the 

pump head.  Columns were each custom-made in 3 parts: a glass cylindrical tube, 1.59 cm in 

diameter and 25 cm long, a funnel shaped glass effluent port fitted at the outlet end of the 

column with a fritted-glass connection,  and a machined Plexiglas® end plug at the inlet end of 

the column.  

 

.  

 

5.3.2. Methods  
Glass columns were packed with 80 g of either Connelly granular Iron (GI) or electrolytic 

iron from Sigma Aldrich (EI) (Figure 5.1;Table 5.1).  The length of the packed material and 

weight of the columns prior to and after saturation were noted for the calculation of porosity. 

Columns were then flushed with the CO2 gas for 20 minutes to replace the atmosphere inside the 

column and facilitate saturation.  Next, the columns were flooded with the deoxygenated, pH 10,  

8 mM NaClO4 solution (1.124 g/L).  The influent was pumped at a flow rate (Q) of 1 ml/min for 

at least 8 hours before introducing TCE, to permit the iron surface to approach an equilibrium 

with the electrolyte solution.   

A B 

Figure 5.1: Glass columns packed with 80 g of (A) Connelly Iron (GI) and (B) Electrolytic Iron 
(EI). 
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Table 5.1: Parameters of packed columns 

Iron type mass iron 
(g) 

column internal 
diameter (cm) 

column packed 
length (cm) 

Pore Volume 
VP (ml) 

Porosity Fe/V 
(g L-1) 

GI 80 1.59 16.60 18.56 0.56 4310 
EI 80 1.59 9.80 5.67 0.29 14159 
 

Following pretreatment, the NaClO4 solutions in the PTFE bags were spiked with TCE 

stock solution, and were then used as the influent reservoirs for the column experiments.   

 

Figure 5.2: Experimental setup for GI column experiment showing PTFE bag, peristaltic pump and 
column. 

 

The TCE in the reservoir was sequentially spiked to predetermined concentrations (Co) that were 

maintained at each step until steady state TCE effluent concentrations were achieved.  At the end 

of each experimental step, the columns were flushed with deoxygenated NaClO4 for at least 12 

hours to remove any TCE or chlorinated by products present from the earlier experiment.  The 

Co in the reservoir bag was then adjusted upward and the next test conducted.  This was repeated 
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for six different Co values per experimental suite.  Altogether, four experimental suites were 

completed, two with each iron type (GI and EI). 

 Effluent samples were collected in 2 ml glass vials at predetermined times.  The collected 

samples were centrifuged using an IEC Micromax centrifuge (model OM 3590) for 5 minutes at 

10,000 RPM to drive any suspended particles to the bottom of the vials.  Samples were then 

immediately analyzed using an Agilent 1100 series High Performance Liquid Chromatography 

(HPLC) with autosampler and diode array detector (Marietta and Devlin, 2005).  Two sets of 

standards covering the range of the initial concentrations (25 μM to 500 µM) were analyzed with 

the samples for calibration purposes. The calibration standards were used to determine accuracy 

and precision  which was generally within 2 – 10% (Devlin, 1996). 

Hydrocarbons from inorganic sources were determined in the headspace of control Fe0/H2O 

batch test vials. Control bottles (40 ml glass vials), containing no iron, were calibrated with 

known amounts of pentane (5µM, 10 µM, 20 µM, 50 µM, 100 µM).  In the active vials, 

approximately 50 g GI was saturated with DI water, leaving a small headspace, and stored for 24 

hours. Vials were sealed with crimped, Teflon-lined septum caps.  Samples were manually 

injected into an Agilent 6890 series gas chromatograph (GC) equipped with fused silica capillary 

column and a flame ionization detector (FID).  Helium was used as the carrier gas with a flow 

rate of 2ml/min.  The oven was maintained at 50ºC for 1 min  and then ramped to 170 ºC for 4 

min.  The column pressure was maintained at 14.88 psi.  TCE (50 µM) as used as an internal 

standard in all cases. 

5.3.3. SEM Analysis 
GI and EI grains were recovered from columns inside a glove box under an ultrapure 

nitrogen atmosphere. Iron grains were rinsed with methanol, dried and stored in nitrogen filled 

glass vials for transport to the SEM laboratory.  SEM/EDS analyses were also performed on the 
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untreated iron grains to permit an assessment of the changes on the iron surface as the iron aged 

in the TCE solution. Grains were carefully mounted on the specimen holder. SEM images were 

collected on Carl Zeiss Leo 1550 Field Emission Scanning Electron Microscope using an in-lens 

detector operated at 10 kV. EDS (energy dispersive X-ray spectroscopy).  Analysis was 

performed on selected sites of the grains using a Si (Li) detector with the Genesis software 

package (EDAX, U.S.).  

 

5.3.4. Determination of reaction kinetics and retardation factors 
  Effluent concentrations were plotted as breakthrough curves, which were fitted using a 

solution to the advection-dispersion equation with sorption and reaction (eq 5.1), using a non-

linear optimizer (Bear, 1979; Devlin, 1994) coded in visual basic, in the Excel® spreadsheet 

environment, as BEARKIMPE-2 (Firdous and Devlin, 2013).  The curves were fitted on 

velocity, v (cm/min), dispersivity, α (cm), pseudo-first order rate constant, kapp (min-1), and, when 

v was known in advance, retardation factor Rapp .   
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where Co is the influent TCE concentration (μM), D is dispersion coefficient (m2s-1), D=αv+D*, 

α is dispersivity (m), v is water velocity (m s-1) and D* is effective diffusion coefficient (m2 s-1) 

(assumed negligible in these experiments compared to  αv), x is column length (cm).   
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5.3.5. Modeling kinetics 
 The KIM (eq 5.2) (Devlin, 2009), was used in this work to determine  possible changes in 

sorption and reaction parameters for reactive sites, on both the GI and EI.    
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5.2 

where k  (min-1) is the first order rate constant for the surface reaction, CmaxR is the maximum 

sorption capacity (µmolg-1),  JR is the sorption affinity to reactive sites on the surface (µM-1), 

Fe/V is the iron mass to column pore water volume ratio (g L-1) and Co is the aqueous influent 

concentration of TCE (µM). 

 The maximum sorption capacity  CmaxN (µmolg-1) and sorption affinity JN (µM-1) to non-

reactive sites in the iron columns were fitted with eq 5.3 (Figure 5.3, 5.4)(Table 5.2).  Both 

equations 5.2 and 5.3 were included in the BEARKIMPE Excel program for fitting. 

	Rୟ୮୮ ൌ 1 ൅
ி௘

௏
	
௃ಿ஼೘ೌೣಿ	

ሺଵା௃ಿ஼೚ሻమ
                                                       5.3 

5.4. Results and Discussion  

5.4.1. Role of carbon in non-reactive sorption 
 Non-reactive sorption was analyzed using the transient portion of the breakthrough curves 

(BTC) (Bi et al., 2010). In all experiments, the BTCs for GI exhibited delayed arrivals of TCE at 

the column outlets, relative to the time predicted for a conservative solute, establishing retarded 

transport (Figure 5.3).   
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Figure 5.3: Breakthrough curve from Connelly Iron (GI-1) column for Co = 25 µM, fitted with eq 
5.2. Symbols represent data points and the line represents the best fit. The column was aged 2 days 
at the time of the experiment. Fitted parameter values are given in Tables 5.1 and 5.2, respectively. 

 

 

Figure 5.4: Breakthrough curve from the Electrolytic Iron (EI) column for Co = 25 µM, fitted with 
eq 5.2. Symbols represent data points and the line represents the best fit. The column was aged 2 
days at time of experiment. Fitted Parameter values are given in Tables 5.1 and 5.2, respectively. 

 

However, the EI column exhibited comparatively little retardation (Figure 5.4, Table 5.3).  The 

difference in behaviors between the EI and GI BTCs can be explained by the comparative 
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absence  of a surface phase on EI associated with non-reactive adsorption of TCE.  It was 

hypothesized that carbon was the dominant sorbing phase in this case.  

Table 5.2: Comparison of best fit CmaxN and JN using eq. 5.3 and CmaxR JR and k using eq 5.2 in 
columns packed with GI and EI. 

Packing  
(time since saturation) 

CmaxN JN k CmaxR JR 

(µMg-1) (µM-1) (min-1) (µMg-1) (µM-1) 

EI (0-10 days) 0.372 0.00026 0.05 0.024 0.00095 

EI (0-90 days) 0.25 0.00045 0.0023 0.082 0.052 

GI (0-10 days) 1.4 0.0025 0.045 0.022 0.016 

GI (0-90 days) 1.01 0.003 0.009 0.149 0.027 

 

 

Figure 5.5: Comparison of 0-10 days and 0-90 days sorption and kinetic parameters for (A) EI and 
(B) GI. Note: Parameter estimates are multiplied to show on graph.   JN x 103 µM-1, CmaxR x 10 µMg-1, JR x 10 
µM-1 and k x 10 min-1. 
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Table 5.3: Comparison of the values of apparent first order rate constants (kapp) and retardation 
factors (Rapp) using eq. 5.1 for Connelly Iron and Pure Iron columns. 

Connelly Iron (GI-1) 
0-10 days 0-90 days 

kapp(s
-1) Co Rapp Calc. Rapp kapp (s

-1) Co Rapp Calc. Rapp 

8.68E-04 24.9 12.72 12.89768 4.42E-04 36.5 12 11.70477 
3.57E-04 73.19 17.7 10.58749 5.00E-04 73.77 9.99 9.73674 

2.15E-04 145.4 5.44 8.211794 2.39E-04 160.8 5.9 6.816906 
5.27E-04 258.5 4.538 5.943354 2.66E-04 194.3 4.836 6.072745 
1.24E-04 386.4 6.618 4.464012 2.00E-04 391 6 3.631451 
4.12E-04 534.3 4.083 3.45288 1.89E-04 447.1 3.6 3.256924 

Electrolytic Iron (EI) 
0-10 days 0-90 days 

kapp (s
-1) Co Rapp Calc. Rapp kapp (s

-1) Co Rapp Calc. Rapp 
1.67E-04 23.22 2.3 2.395534 7.88E-04 31.5 2.28 2.548703 
8.61E-05 44.26 1.9 2.380034 1.60E-04 58.02 2.55 2.512889 
1.12E-04 108.6 3.12 2.334204 1.52E-04 99.5 2.6 2.459313 

2.13E-04 217.3 1 2.261803 1.17E-04 204.2 2.2 2.336092 
8.26E-05 313.7 1.998 2.202413 1.30E-04 353 2.5 2.18615 
1.51E-04 437.3 2.1 2.132208 1.71E-07 395 3.096 2.148386 

 

Figure 5.6: Relationship between retardation factor and injected TCE concentration for Connelly 
Iron (CI-1) and Pure iron (PI)  (a) represents 0- 10 days: the solid curve fit the data for the CI-1, 
dash line for PI, circle markers were observed data for CI-1 and triangle markers were observed 
data for PI (b) represents 90 days: the solid curve fit the data for the CI-1, dash line for PI, circle 
markers were observed data for CI-1 and triangle markers were observed data for PI.  
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   The retardation factors observed in the GI column were found to vary non-linearly with 

TCE concentrations (Figure 5.6). Retardation was particularly high when Co was less than 100 

µM and decreased with increasing concentrations. This result is consistent with the presence of a 

limited number of non-reactive sorption sites for TCE molecules, and saturation of these sites at 

the higher Co values.  This finding is also consistent with previously reported results (Bi et al., 

2010) (Figure 5.7).  

The observed non-reactive sorption on the iron surface can be described by a Langmuir 

isotherm that requires 2 parameters to fully define: the maximum sorption capacity (CmaxN), and 

the sorption affinity (JN). These parameters were investigated using eq 3 and Rapp values from 

BTCs.  CmaxN  was observed to vary between 0.68 and 0.9 mol g-1with no systematic trend  as 

the iron aged (Table 5.4). However, JN  continuously decreased in magnitude, with increasing GI 

age, ending up at a quarter of its initial value after about 300 days of GI in the column. Overall, a 

decrease in  Rapp was observed over the 9 month period of the GI-2 column (Figure 5.7), 

apparently due to mainly to the declining JN parameter (Table 5.4).  

Table 5.4: Comparison of CmaxN  and JN using eq. 5.3 for 3 suits of experiments on Connelly Iron 
(GI-2). 

Connelly Iron (GI-2) 

  
0-10      
days 

150-180 
days 

280-300 
days 

CmaxN  (µmolg-1) 0.68 0.58 0.90 
JN (µM-1) 0.0040 0.0021 0.0010 
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Figure 5.7: Effect of GI age on apparent retardation factors (Rapp). 

 

Estimations of CmaxN  and JN were also attempted for EI . In contrast to the findings for GI, 

Rapp values for EI were comparatively low and showed no dependency on Co (Figure 5.6;Table 

5.3).  This lack of dependency indicated that any sorption that was occurring could be described 

with a linear sorption isotherm (Csorbed = KdCaqueous).  A comparison of the associated partition 

coefficients, Kd,  suggests that if any change to the sorption of TCE occurs as EI ages, it is to 

increase the  affinity of the iron surface for TCE (Figure 5.5).  However, this suggestion is weak 

and a more conservative conclusion is that there was no practical difference in the Rapps in young 

and aged EI columns.  

The pronounced difference in affinities for TCE to the EI and GI surfaces is difficult to 

explain in terms of sorption to oxides or other minerals known to exist on the grain surfaces 

because i) these phases are expected to be common to both types of iron and ii) none of these 

inorganic phases are expected to participate strongly in hydrophobic sorption.  A more likely 

explanation for the differences is the relatively strong presence of reduced carbon on the GI 
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compared to the EI surface, supported by the work of Burris et al, (1998) who identified graphite 

nodules embedded in cast iron grains and suggested these features to be nonreactive sorption 

sites. Unfortunately, that study was not able to provide insights into the nature of reactive 

sorption. 

5.4.2. Assessment of reactive sorption in two iron types 
Equilibrium reactive sorption and reaction rate of transformation of TCE was calculated 

using the steady state portion of the BTC and the method described by Bi et al. (2010) (Table 

5.2). Monte Carlo analyses based on 1000 realizations were then performed, as described by 

Devlin (2009) to assess the uncertainty on these parameters. 

 

Figure 5.8: Relationship between TCE concentration and reduction rates for iron aged 0-7 days, 
using KIM (eq 2) (A) for Connelly Iron GI-1, (B) for Electrolytic Iron (EI). Solid circles represent 
observed rates and lines are fitted with KIM.   
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Figure 5.9: Distribution of parameters estimates using Monte Carlo analysis for 0-7 days aged (A) 
GI-1 and (B) EI. 

 

The rate data exhibited moderate scatter, which is typical in the analysis of untreated 

commercial granular iron (Figure 5.8).This scatter is reflected in the ranges of possible parameter 

values revealed in the Monte Carlo analysis (Figure 5.9). In spite of the notable uncertainties a 

clear difference can be discerned between the commercial GI and the EI. Connelly iron is 

characterised by a considerably larger value of JR than EI, consistent with expectations based on 

a carbon phase acting as the reactive sorption site.   

   

 

Figure 5.10: Relationship between TCE concentration and reduction rates using KIM (eq 2) 
(A) for Connelly Iron CI-1, (B) for Electrolytic Iron (EI) both aged 0-90 days. Solid circles 
represent observed rate for all injected Co and solid lines are fitted with KIM.   
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Figure 5.11:  Distribution of parameters estimates using Monte Carlo analysis for 0-90 days aged 
(A) CI-1 and (B) EI. 

 

The same analysis was repeated after the two columns were aged 3 months (90 days) 

(Figures 5.10 and 5.11). Both iron types were found to have altered parameter values after aging, 

though the EI product exhibited the more profound changes.  Connelly iron was found to have 

lost inherent reactivity (declining k) and gained sorption capacity (increasing CmaxR), with a 

possible moderate increase in JR.  This result was also reported by Bi et al. (2010) and Huang 

(2011).  

In contrast to the GI product, the EI exhibited more dramatic changes in inherent reactivity 

(k), which declined, and sorption affinity (JR), increased, accompanied by a moderate increase in 

capacity (CmaxR).  These changes, in particular that to the affinity parameter, suggest a 

fundamental change to the character of the reactive sorption sites on the EI.   

A possible interpretation of the above trends in KIM parameters is that Connelly iron 

begins with carbon-dominated reactive sites, exhibiting relatively high sorption affinities to TCE, 

and EI begins with inorganic-dominated sites characterized by low sorption affinities.  As the 

Connelly iron ages, the accumulation of oxides and alteration of surface carbon (Burris et al., 
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1998; Lee and Wilkin, 2010; Mackenzie et al., 1999) cause a loss of the most reactive sites.  

Now, reactivity is increasingly dominated by carbon-dominated sites with lower inherent 

reactivities but which are more plentiful, resulting in an increase in sorption capacity, and a 

minimal overall change to the iron reactivity.   

The same reasoning applies to the declining k and increasing CmaxR parameters on EI – with 

a notable difference.  The large increase in JR indicates that the most active locations on the EI 

surface change in character from sites with low sorption affinities to sites with affinities similar 

to Connelly iron.   This finding suggests that carbon-based sorption sites may develop on the 

aged EI product.   

Several previous studies provide clues to the processes that might explain how surface 

carbon changes with time.  Hardy and Gillham, (1996) reported the production of hydrocarbons 

(HC) in Fe0/H2O systems. They tentatively ruled out graphitic carbon from the GI, and firmly 

ruled out background organics in their influent water as sources of the HC carbon, concluding 

that carbon dioxide reduction was the chief process generating the HCs.  Deng et al, (1997) 

examined several different iron types and also detected HCs in the pore water.  They found HC 

concentrations that increased nearly linearly with time. They further suggested background 

carbon in the form of a carbide phase on the GI was a possible source of HC production in 

Fe/H2O systems.  These reports support the idea that surface carbon is a dynamic phase on GI, 

and that CO2 can be a source of reduced carbon  on EI (conversion to a sorbing phase remains an 

unconfirmed possibility), explaining the reactivity trends documented here. 

 



 

87 
 

5.4.3. Demonstration of carbon transformations in GI/H2O systems 

If the EI developed new carbon-based sorption sites over time, it should be possible to 

document an increase in surface carbon on the EI surface over time.  An attempt to do this was  

made by examining fresh EI, before exposure to water, and 90 day old EI recovered from a 

column, using a scanning electron microscope (SEM) and electron dispersive x-rays (EDS) 

(Figure 5.12 A-D).   

 

Figure 5.12: Scanning Electron Microscope images and EDX spectra of EI (A& C) Untreated 
(B&D) treated. EDS also shows elemental distribution in inset table. 

 

 

A B 

C D
Elements Wt% At% 

 C K 00.00 00.00 

 FeK 100.00 100.00

Elements Wt% At% 
 C K 02.31 06.40 
 O K 22.81 47.42 
 SiK 02.67 03.17 

 FeK 72.21 43.01 
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The images clearly show the absence of detectable carbon on the fresh iron sample (Figure 

5.12A,C) and the presence of surface carbon on the 90-day aged sample (Figure B,D).  Further 

work is needed to establish unequivocally that the carbon occurrence is of a type conducive to 

sorption of TCE.  Nevertheless, in principle it is possible to reduce carbon dioxide to graphite on 

the EI surface (Nagasawa et al., 2013), so the carbon detected here is supportive of the carbon-

based sorption interpretation described above. 

It was postulated above that the Connelly iron surface transitioned from one dominated by 

a relatively low number of highly reactive sites to one characterized by a larger number of less 

reactive sites.  In both cases the magnitude of the JR parameter suggested the involvement of 

surface carbon in the sorption. This model suggests that the surface carbon may be subject to 

alterations as the GI ages – possibly related to burial under oxide minerals, or by direct 

transformations.  Evidence for the latter was obtained in a headspace experiment in which GI 

produced 1.4 to 24 µM of C1-C4 hydrocarbons (HC) in deionized water – Fe0 batch vials.  

 

5.5. Conclusions  
 

Retardation factors, Rapp, for TCE in GI-packed columns vary non-linearly as a function of 

input TCE concentrations, rising to values approaching 15 for Co < 100 to 200 µmol.  In contrast, 

Rapp values for TCE in EI-packed columns were independent of  TCE concentrations, and tended 

to remain in the range 1 to 3.   

Aging of the iron columns had no noticeable effect on the Rapp values from the EI column, 

but were found to decline significantly with aging (particularly Co < 200 µmol) in the GI column.  
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Overall reactivities for both young and aged iron samples of both GI and EI types changed little 

during these experiments, but the underlying reasons for the reactivity appeared to shift emphasis 

toward an increasing role for sorption.  For example, the GI column showed an increase in 

available reactive sorption sites with time, shifting rate control from a small number of highly 

reactive sites to a larger number of less reactive sites.  In the case of EI, the sorption affinity 

toward TCE appeared to increase as the solid aged. 

This work suggests that carbon plays an important role in both reactive and non-reactive 

sorption.  On Connelly iron, a replacement of highly reactive sites with more numerous sites of 

lower reactivity – all with sorption affinities in the range expected for surface carbon phases – 

occurred as the iron aged.  On the electrolytic iron surface, a low initial sorption affinity grew 

with aging to one similar to that observed with the Connelly iron, suggesting a transition to 

reactive sites similar in character to those on the Connelly product.  More precise descriptions of 

the character of the reactive sites may be possible with additional work aimed at examining the 

iron surfaces at the micro-scale. 
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6. Assessment of granular iron reactivity at micro and macro scales. 
 

6.1.  Abstract 
Long term column experiments were carried out under dynamic flow conditions to link the 

micro-scale changes that occur on the iron surface due to corrosion, to macro-scale  KIM 

parameters. Micro-scale grain characteristics were investigated by recovering single grains from 

sampling ports along the length of columns, and examining them through time using Raman 

spectroscopy and SEM/Energy dispersive spectroscopy (EDS). TCE reduction kinetics showed 

considerable changes in both TCE sorption and reactivity within the first 150 days. Likewise, the 

Raman spectra indicated that most profound changes to the grain surfaces also occurred within 

the first 150 days of experiment. The spectroscopic data showed two main types of changes: 1) 

rapid (within 15 days of exposure to solution) and column-wide partial degradation of the surface 

carbon signals, and 2) a more complete loss of the carbon signals associated with a reaction 

front, which had progressed about halfway along the columns (~10 cm) in 240 days. Associated 

with the carbon changes, Raman spectra collected along the column showed the loss of hematite, 

and the transition of intermediate phases to magnetite. Weakening of  Raman signals for surface 

carbon, assumed to correspond to both physical and chemical losses of the graphitic carbon, 

corresponded to declining k values and the declines in the non-reactive sorption capacity, 

providing new evidence that surface carbon on granular iron is actively involved in non-reactive 

as well as reactive sorption. 
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6.2. Introduction 
The use of granular iron permeable reactive barriers (GIPRBs) has gained much attention 

as an innovative and cost effective technology  (Blowes et al., 2000; Gillham and O'Hannesin, 

1994; Gillham et al., 2010; Gu et al., 2002; Landis, 2001; Wilkin et al., 2009) to treat wide 

variety of organic (Bi et al., 2010; Burris et al., 1997; Gillham and O'Hannesin, 1994; Liang, 

1997) and inorganic groundwater contaminants (Blowes et al., 2000; Lo et al., 2007; Ritter et al., 

2003; Sasaki et al., 2008; Wilkin et al., 2009). Despite of its removal efficiencies, this 

technology suffers from issues such as loss of reactivity (Gotpagar et al., 1997) and reduction in 

permeability with time (Liang et al., 2000). Loss in reactivity due to corrosion and precipitation 

(Mackenzie et al., 1999; Phillips et al., 2000; Ritter et al., 2002) have been identified as the 

major factor affecting the GIPRB longevity (Vikesland et al., 2003). Although macro-scale 

factors, including solution composition, iron type, and available surface area are also known to 

affect reactivity (Bi et al., 2009a; Devlin and Allin, 2005; Su and Puls, 1999).   

Long term reactivity of the reactive media depends on the ability of the granular iron (GI) 

surface to transfer electrons for the reduction of chlorinated solvents (Farrell et al., 2000). GI, 

such as the product sold by Connelly- GPM, Inc., consists of platy grains (Bi et al., 2009b) of a 

light steel or cast iron (Burris et al., 1998) where the iron core is covered with different oxides 

(Odziemkowski et al., 1998). Reactivity is believed to be associated with both the metal cores of 

the grains and a thin oxide coating that covers most of the grains’ surfaces (Huang, 2011), 

particularly the conductive oxides such as magnetite (Odziemkowski et al., 1998). Graphite from 

the steel is another possible surface phase connected to reactivity (Oh et al., 2002), although 

there is evidence that it is also connected to non-reactive sorption (Burris et al., 1998). 
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Various methods have been employed to identify and characterize the GI surface (Farrell 

et al., 2001; Odziemkowski et al., 1998; Phillips et al., 2000). Among them, spectroscopy and 

microscopic techniques have featured prominently because they can be non-invasive and are well 

suited to the detection and characterization of oxide phases on the iron surface. A notable 

example is the examination of dry Connelly iron by Raman spectroscopy, which showed the 

presence of 3 oxide layers coating a granular iron grain; magnetite (Fe3O4) dominating the inner 

layer, an increasing presence of maghemite (α-Fe3O4) in the middle layer and hematite 

(Fe2O3)occupying the outer layer (Odziemkowski et al., 1998; Ritter et al., 2002). The 

distinction between the layers is important because magnetite can act as a conductor (Schultze, 

1978), while outermost hematite is usually considered a semi-conductor (Schultze, 1978), or 

insulator (Cohen, 1978), with significant implications for electron transfer from the metal core. 

The application of Raman spectroscopy first revealed an auto reduction reaction on iron that 

converted passivating oxides into phases that supported electron transfer (Odziemkowski and 

Gillham, 1997). 

Depending on the type of contaminants, ambient groundwater chemistry, and experimental 

conditions, different corrosion products can form on the iron surface. Over time, the formation 

of mixed valent iron oxyhydroxides (Fe2+ and Fe3+), including green rusts, goethite (α-FeOOH), 

lepidocrocite (γ- FeOOH) and magnetite (Fe3O4) has been reported to occur on GI (Allin, 2000; 

Min et al., 2009; Roh et al., 2000). Besides oxides, microscopic, X-ray diffraction and 

spectroscopic analyses  have identified carbonates such as aragonite (CaCO3), calcite (CaCO3), 

siderite (FeCO3) and carbonate green rust (Furukawa et al., 2002; Phillips et al., 2003; Phillips 

et al., 2000; Roh et al., 2000). Interestingly, the detailed spectroscopic work conducted on GI 

has remained focused on the examination of oxide phases to the virtual exclusion of everything 
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else.  Notably ignored are the  occurrences of carbon on the GI surface despite the fact that sp2 

carbonaceous material (CM) are strong Raman scatters, and therefore well suited to Raman 

spectroscopic analysis (Pimenta et al., 2007).  

Changes to the iron surface due to corrosion occur on the grain scale, but they clearly exert 

macro-scale effects on PRB performance in the form of reactivity and permeability changes. 

These changes are typically assessed in bench-scale studies that measure contaminant 

disappearance rates through kinetic modeling (Hansson et al., 2008; Jeen et al., 2007; Min et al., 

2009), sometimes coupled with solid phase investigations involving spectroscopic techniques 

(Hansson et al., 2006). To evaluate PRB performance and longevity, efforts to reconcile the 

macro-scale parameters and pore scale processes were undertaken but with limited success (i.e., 

primarily qualitative analyses limited to oxide behaviors) due to inadequate kinetic models and 

instrument limitations. Development of the Kinetic Iron Model (KIM) (Devlin, 2009) and more 

powerful spectroscopic instruments has since raised the possibility of improved insights across 

the scales of investigation by re-examining the GI system with linked kinetic and Raman 

spectroscopic tools. 

The objective of this work was to link the kinetic and sorption parameters of the KIM, 

determined at the bench scale, to specific surface phase changes using Raman spectroscopy and 

Scanning electron microscopy (SEM). This was accomplished using long-term (up to 8 months) 

column experiments to assess the macro-scale KIM parameters. Micro-scale grain characteristics 

were investigated by recovering single grains from various locations in the columns, and 

examining them through time  
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6.3. Materials and Methods 

6.3.1. Materials  
 All chemicals were used as received. Trichloroethylene (TCE, CAS# 79-01-6, 99%) was 

purchased from Acros Organics and methanol (CAS# 67-56-1; HPLC grade) from Fisher 

Scientific. Connelly® Iron was provided by GMP Inc. Iron grains were hand sieved and grain 

sizes ranging from 0.71 to 2.0 mm were used in all experiments. N2 and CO2 gases (99+%) were 

purchased from Air gas, Topeka, Kansas.   

8 mM NaClO4 feed solution was prepared using deionized water (Barnstead International 

Nano Pure Infinity Ultra-pure Water System Series 896). The pH of solution was adjusted to 10 

with the drop wise addition of either 1.1 mM perchloric acid or 0.35 mM sodium hydroxide 

solution to mimic the geochemical conditions inside a PRB (Bi et al., 2009b; Bi et al., 2010). 

The NaClO4 solution was sparged with nitrogen gas for 20 minutes to remove dissolve oxygen.  
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Figure 6.1:  Column design for KIM analysis and Spectroscopic investigations (A) Side view showing 4 ports 
with lids designed to hold iron grains magnetically. Ports were fitted with O-rings to create a watertight seal, 
(B) Glass vials for transferring the grains to the Raman and SEM labs, and  (C) Top view of the column. 

 

Stock solutions of TCE were prepared in methanol at concentrations of 5 mM and 100 mM for 

the purposes of analytical calibration and to serve as a spike source for the feed reservoirs, 

respectively. Stock solutions were stored refrigerated at about 4o C for no more than a month.  

PTFE (polytetrafluoroethylene) bags were used as source reservoirs for column experiments. 

They were obtained assembled from American Durafilm®. Stainless steel fittings for the bags 

were obtained from Swagelock®. 
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Figure 6.2: Experimental setup of the column test showing plexiglas® column, peristaltic pump and Teflon 
bag used as reservoir for TCE solution. 

 

The 25 cm long, 1.59 cm inside diameter, columns were custom manufactured from 

plexiglas® with 4 sampling ports 2 cm deep and 4 cm apart for holding iron grains that could be 

recovered repeatedly for time series analyses (Figure 6.1). Each column was fitted with 

machined Plexiglas® end plugs. Peak® tubing, obtained from Fisher Scientific was used to 

connect the columns with PTFE bags through a (Cole Parmer) peristaltic pump with a Viton® 

tubing in the pump head.  

6.3.2. Methods  
Columns were packed with 80 g of Connelly® Iron (CI) (Table 6.1).  The length of the 

packed section of each column (~19 cm), and the weight of each column prior to and after 

saturation, were noted for porosity estimation purposes. Recoverable iron grains were placed in 

the column sampling ports. The sampling ports were constructed with slit openings inside the 

columns to permit the flow-through of pore water.  This allowed the resampled grains to 
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equilibrate with location-specific pore water multiple times throughout the experiment.  

Accordingly, the grains were removed from the ports at selected times for examination by 

Raman spectroscopy and SEM/EDS analysis.  Immediately following packing, and before 

flooding, the columns were flushed with the CO2 gas for 20 minutes to replace atmospheric air 

trapped between the grains.  The CO2 flush was followed by water flooding with an 8 mM 

electrolyte solution (1.124 g/L NaClO4 ), pH 10 that had been pre-sparged with N2 gas for at least 

20 min in order to remove the dissolved oxygen. The electrolyte solution was pumped into 

columns at a flow rate (Q) of 1 ml/min from the PTFE (polytetrafluoroethylene) reservoir bags 

for at least 8 hours before introducing TCE, to permit the iron surface to approach equilibrium 

with the solution. NaClO4 was used as the background electrolyte due to its low reactivity on the 

granular iron surface (Devlin and Allin, 2005; Huang, 2011; Moore et al., 2003) (Figure 6.2).   

Table 6.1: Parameters of packed column 

Iron type Connelly Iron 

mass iron (g) 80 

column internal diameter (cm) 1.59 

column packed length (cm) 19 

Pore Volume PV (ml) 18 

Porosity 0.48 

Fe/V (= b/n) (g L-1) 4444 

 

Following pretreatment, the solution in the PTFE reservoir source bag was spiked with 

TCE from the stock solution, using glass micro-liter syringes (Fisher Scientific).  Column 

experiments were conducted with a flow rate of 1 ml/min, which could be reliably maintained 

with the peristaltic pump and generated water velocities within the columns that were 

comparable to groundwater velocities in highly permeable media (~ 2 m/day). Column 

experiments were performed at selected TCE concentrations (Co), which were allowed to reach 
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steady state TCE effluent concentrations.  At the end of each experiment, the columns were 

flushed with de-aerated NaClO4 for at least 12 hours to remove any TCE or chlorinated by-

products that might be held over from the prior experiment.  The influent Co was then adjusted 

upward and another test was conducted.  This was repeated for six different Co values per 

experimental suite.  Altogether, three experimental suits were performed to assess the changes in 

TCE removal kinetics over a period of 8 months. 

 Effluent samples were collected in 2 ml glass vials, placed in an IEC Micromax 

centrifuge (model OM 3590) and spun for 5 minutes at 10,000 RPM to drive any suspended 

particles to the bottom of the vials.  Samples were analyzed immediately after completing an 

experiment using an Agilent 1100 series High Performance Liquid Chromatography (HPLC) 

with autosampler and diode array detector (Marietta and Devlin, 2005).  Two sets of standards 

covering the range of the initial concentrations (25 μM to 500 µM) were analyzed with the 

samples for calibration purposes. The calibration standards were used to determine accuracy and 

precision (Devlin, 1996) which was generally within 2 – 10%.   
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Micro-scale grain characteristics were investigated by recovering individual grains from 

the sampling ports along the column (Figure 6.1), and examining them with Raman spectroscopy 

and SEM/EDS.  This process was repeated 3 times over 8 month period of the experiment.  The 

grains were removed from the columns in an anaerobic glove bag under a nitrogen atmosphere. 

Grains were washed with methanol and allowed to dry under a nitrogen atmosphere for 10-15 

minutes before being sealed under nitrogen in glass vials with Teflon® -lined lids, and then 

transported immediately to the appropriate spectroscopy lab (Figure 6.3).  Raman analyses were 

completed with each sampling, SEM/EDS analyses were completed on the fresh grains and the 

grains at the end of the experiment.  

6.3.3. Raman Spectroscopy  
A Renishaw InVia Reflex Raman microprobe with a multi-wavelength facility operating at 

514.5 nm, from a 50 mW Ar+ laser (Spectra-Physics Stabilite 2017 laser) orientated normal to 

the sample, was used to record spectra from the granular iron samples. The collection optics 

were based on a Leica DMLM microscope. A refractive glass 50× objective lens was used to 

Figure 6.3: Setup for recovering iron grains from a column placed in a nitrogen filled glove bag. Grains 
were rinsed with methanol, N2(g) dried and placed in N2(g) filled glass vials all within the glove bag.    
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focus the laser onto a 2 µm spot in order to collect the backscattered light. Two sets of spectral 

acquisition parameters were used, depending on the condition of the iron surface: (1) fresh iron 

surfaces could be effectively analyzed with 1 accumulation, 10 s acquisition, 1-5 mW laser 

power, and (2) corroded iron required 3-5 accumulations, 10 s acquisition, 1-5 mW laser power 

to produce acceptable spectra. The laser power impinging the oxides and carbonaceous material 

was kept between 1-5mW to minimize laser-induced heating of the samples (Marshall et al., 

2010). A scan range of 100-1800 cm-1 was selected because it spans the finger print region of 

both the iron oxyhydroxides and sp2 carbonaceous materials. The spectra were deconvoluted 

using Guassian/Lorentzian fit routine using GRAMS/32 Software. During these analyses, all the 

characteristics of Raman spectra, i.e. the band position, the band intensity, and crystallite size 

(La), were noted. Dry iron grains were removed from the sealed vials and placed, on glass slides 

under room air for the analyses. On average, 5-8 Raman spectra were obtained from each grain 

after each experiment.   

6.3.4. SEM Analysis      
Prior to a column experiment, SEM/EDS analyses were performed on the pristine iron 

grains to establish the background conditions of the surfaces. Grains were removed from the 

sealed vials, mounted on the specimen holders, and placed under vacuum for the analyses. SEM 

images were collected using a Carl Zeiss Leo 1550 Field Emission Scanning Electron 

Microscope using an inlens detector operated at 10 kV. EDS analyses on selected sites of the 

grains were collected using a Si (Li) detector with the Genesis software package (EDAX, U.S.).  

6.3.5. Determination of reaction kinetics and retardation factors 

  Effluent concentrations of TCE were plotted as breakthrough curves (BTC), which were 

fitted using BEARKIMPE, an Excel VBA-coded solution to advection-dispersion equation with 

sorption and reaction (eq 6.1) and a simplex non-linear optimizer  (Bear, 1979; Devlin, 1994).  
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The BTCs were fitted on velocity, v (ms-1), dispersivity, α(cm), pseudo-first order rate constant, 

kapp (min-1), and, when v was known in advance, retardation factor, Rapp .   
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where Co is the influent TCE concentration (μM), D is dispersion coefficient (m2s-1), D=αv+D*, 

and D* is effective diffusion coefficient (m2 s-1), , x is the length of the packed section of the 

column (cm).   

 The KIM (eq 6.2) (Devlin, 2009), was used in this work to determine  possible changes in 

sorption and reaction parameters among two types of GI.    
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6.2 

where k  (min-1) is the first order rate constant for the surface reaction, CmaxR is the maximum 

reactive-sorption capacity (µmolg-1),  JR is the reactive-sorption affinity (µM-1), Fe/V is the iron 

mass to column pore water volume ratio, equivalent to the bulk dry density to porosity ratio 

(b/n) (Bi et al., 2010) (g L-1) and Co is the aqueous influent concentration of TCE (µM). 

 The non-reactive maximum sorption capacity  CmaxN (µmolg-1) and non-reactive-sorption 

affinity JN (µM-1) in the iron columns were fitted with eq 6.3.  
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where Rapp = the apparent retardation factor (dimensionless), assuming a Langmuir type isotherm 

describes the sorption. 

 

 

 

6.4. Results and Discussion  

6.4.1. Effect of aging on reactive and non-reactive sorption. 
The removal of TCE from water in an iron-based PRB is the combined result of sorption 

and chemical reduction on the grain surfaces (Devlin et al., 1998).  Effluent BTCs led to best fit 

kapp and retardation factors Rapp estimations that declined with increasing Co and with increasing 

time (Table 6.2).  

Figure 6.4: Relationship between retardation factors and injected TCE concentration.  Symbols indicate 
measurement values and lines depict model fits.  Circle symbols and solid line represents 0-15 days.  
Triangle symbols and long dashed line represents 140- 154 days.  Diamond symbols and short dashed line 
represents 220 - 240 days. 
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Table 6.2: Comparison of the values of apparent first order rate constants (kapp) and retardation factors (Rapp) 
using eq. 6.1 for T1, T2 and T3. 

 

 

 

 

 

 

 

 

 

 

 

 The trends observed in Rapp were consistent with previous work (Bi et al., 2010) which 

showed a non-linear relation over the range of input TCE concentrations (Figure 6.4). 

Retardation factors were highest when Co was less than 100 µM and decreased with increasing 

concentrations (Figure 6.4). High retardation values at low Co are thought to be due to an 

overabundance of available sorption sites for TCE molecules; sites that eventually became 

saturated at higher Co values.   

Time1(0-15 days) 
kapp(s

-1) Co (µM) Rapp Calc. Rapp 
2.30E-03 27.1 17.41 15.46 
8.60E-04 63.39 10.23 13.13 
5.27E-04 120.7 10.57 10.44 
2.72E-04 287.1 6.65 6.25 
1.86E-04 353.4 5.77 5.33 
2.02E-04 503.7 4.62 3.96 

Time2 (140-154 days) 
kapp (s

-1) Co(µM) Rapp Calc. Rapp 
3.75E-04 23.55 10.69 9.82 
2.29E-04 63 8.26 8.86 
4.20E-04 114.7 7.06 7.81 
1.50E-04 274 5.80 5.63 
5.56E-05 295.8 5.07 5.42 
8.47E-05 431.5 5.24 4.37 

Time3 (220-240 days)
kapp(s

-1) Co(µM) Rapp Calc. Rapp 
2.21E-04 16.3 6.69 4.78 
1.88E-04 43.9 1.43 4.35 
6.99E-05 99.56 4.45 3.68 
2.19E-04 218 3.88 2.78 
4.93E-05 263 0.80 2.56 
9.05E-05 418.2 3.30 2.04 
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Table 6.3: Comparison of CmaxN and JN using eq. 6.3 and CmaxR JR and k using eq 6.2 in GI column. 

Time 
(days) 

Days CmaxN JN k CmaxR JR 

 (µMg-1) (µM-1) (min-1) (µMg-1) (µM-1) 

T1 0-15 1.58 0.0025 0.1223 0.0085 0.05 

T2 140-154 1.35 0.0015 0.016 0.037 0.057 

T3 220-240 0.70 0.0018 0.0028 0.23 0.075 

   

The Langmuir parameters for non-reactive sites, CmaxN and JN, both declined with 

increasing time.  The CmaxN  parameter steadily declined from 1.58 to 0.70 mol g-1 over a period 

of 240 days (Table 6.3).  The JN  parameter declined initially (between days 16 and 154) but then 

rebounded slightly between days 155 and 240, suggesting minimal changes in this parameter 

(Table 6.3 ).  The decrease in the sorption capacity and affinity for non-reactive sites resulted in 

an overall decrease in Rapp over the 240 days period of the experiment, and suggests the loss of 

non-reactive sorption sites, particularly at early time (Table 6.3) (Figure 6.4). 

Within each data set, the KIM was fitted to data plotted as initial rate, (dC/dt)o, vs. Co to 

estimate the reaction and reactive-sorption parameters k, CmaxR and JR (Figure 6.5) (Table 6.3). 

Monte Carlo analyses based on 1000 realizations of the rate data, assuming an effective error of 

about 30%,  were performed to assess the uncertainties on the KIM parameters (Figures 6.6, 

6.7, 6.8). Estimated reaction rates were generally consistent with previous column experiments 

performed with Connelly Iron (Bi et al., 2010), for similarly packed columns. In all experiments 

reaction rates declined over time, as expected. The largest decreases occurred during first 140 

days of GI column (~ 4 to 2 µM/min) with little or no change in rate after 140 days despite the 

fact that similar effluent volumes were pumped through the column before and after 140 days. 
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However, a detailed examination of the reactive-sorption parameters suggested that steady 

changes did occur in the column over the duration of the experiment.  

 

 

Figure 6.5: Relationship between TCE concentration and reduction rates using KIM (eq 2).  Symbols indicate 
measurement values and lines depict model fits.  Circle symbols and solid line represents 0-15 days.  Diamond 
symbols and long dashed line represents 140- 154 days.  Triangle symbols and short dashed line represents 
220 - 240 days. 
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The comparison of histograms from the Monte Carlo analyses indicates that the early-

time columns exhibited reaction kinetics dominated by highly reactive sites, characterized by 

high k and relatively small CmaxR (Figure 6.6). The decline in reaction rates from early time to 

Figure 6.6: Distribution of parameters estimates using Monte Carlo analysis for 0-15 days aged GI 
column. 

Figure 6.7: Distribution of parameters estimates using Monte Carlo analysis for 140-154 days aged GI 
column. 
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approximately day 140 is largely explainable by the decline in the parameter k over this period 

(Figure 6.7). 

 

Figure 6.8: Distribution of parameters estimates using Monte Carlo analysis for 220-240 days aged GI 
column. 

 

 In contrast, the values of the reactive sorption capacity term, CmaxR, were found to increase over 

the duration of the experiment (Figures 6.6- 6.8) (Table 6.3). In comparison to the other 

parameters, JR was found to change relatively little with the aging of the grains. Taken together, 

these findings suggest that the reaction kinetics are initially dominated by a relatively small 

number of very reactive sites, but as the iron ages they become dominated by a larger number of 

less reactive sites.  The similarity of JR throughout the tests may indicate that both kinds of sites 

are associated with the same, or related, phases with similar sorption affinities for TCE.  

6.4.2. Surface Analyses 

6.4.2.1. Identification of surface phases on untreated GI 

The iron oxide and hydroxide Raman bands in the collected spectra were assigned based on 

literature values (Dünnwald and Otto, 1989; Hanesch, 2009; Thibeau et al., 1978).  Three iron 
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oxide species were identified on untreated Connelly iron: αFe2O3 (Hematite), γFe2O3 

(maghemite) and Fe3O4 (magnetite) (Figure 6.10A,B) (Hanesch, 2009; Ritter et al., 2002) The 

presence of these oxide films on the iron surface is associated with the manufacturing process, 

which involves firing in a kiln at temperatures reaching ~ 700 to 1100 oC (Hardy and Gillham, 

1996).  Iron exposed to these temperatures, in the presence of oxygen and or with other oxidizing 

gases, promotes the formation of solid oxidation products (Chawla and Gupta, 1993). 

Accordingly, the first and second mineral layers formed on the iron surface in 

 

Figure 6.9: Connelly Iron showing platy grains with shiny side in oval and red side in rectangular shape. 
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Figure 6.10: Raman spectra of untreated Connelly Iron collected on A) Red side and B) Shiny side. 

 

the kiln are oxides that form strong chemical bonds (chemisorption) with metallic iron surface; 

any oxide beyond second layer is merely physical adsorbed (Uhlig, 1956).  The total thickness of 

these oxides covering the commercial iron fillings was reported to be about to be 2.25µm 

(Sivavec and Horney, 1995). 

A 

B 
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Figure 6.11: Example of  decomposition of carbon first-order region of a Raman spectrum from the shiny 
side of Connelly Iron. Five bands can be resolved into Gaussian-Lorentzian bands, D2 (disorder sp2 lattice), 
G ( in plane C=C in an aromatic ring stretching vibrational mode with E2g2 symmetry), D3(amorphous 
carbon), D1(A1g symmetry), and D4(sp3 bonds or C-C and C=C stretching vibrations). 

 

The Connelly iron used in these experiments exhibited a platy texture possessing two 

different faces.  One side, often slightly convex, tended to be shiny while the other side, slightly 

concave, was dull red in color and well coated with oxides (Figure 6.9). Raman spectra collected 

on the red sides showed strong bands associated with hematite at 225 cm-1, 291 cm-1  and 410 

cm-1 (Figure 6.10A).  These same bands were visible in much lower intensities in spectra 

collected from the shiny sides (Figure 6.10B). Maghemite and magnetite bands were observed at 

720 cm-1 and 670 cm-1 respectively (Figure 6.10A, B). The Raman spectrum of carbonaceous 

material can be divided into first (800-1800cm-1) and second-order (2200-3400cm-1) region 

depending upon the crystallinity, the first-order spectral region contains most of the structural 

information of CM (Marshall and Marshall, 2011) and hence is used in this work.    The first 

band referred to as D band is located at ~1350 cm-1 and is assigned to A1g symmetry and second 

band located at 1582 cm-1, is assigned to G band, an in-plane C=C in an aromatic ring stretching 

vibrational mode with E2g2 symmetry. The D band, only becomes active due to disorder in the 
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sp2 carbon network (Ferrari and Robertson, 2000). Disorder in graphite may be induced by 

relative rotation of adjacent layers, by puckering sheets, or by disruption of the interlayer 

spacings (Rouzaud et al., 1983). The ratio of the D and G band intensities (ID/IG) can be used as 

a metric for the degree of disorder in the CM; with increasing disorder the ID/IG is expected to 

increase compared to crystalline graphite (Ferrari and Robertson, 2000).  By using band 

deconvolution, D and G bands can be separated and a more accurate measurement of ID/IG can be 

obtained, and subsequently used to provide a better quantitative estimate of the structural 

organization of sp2 carbonaceous materials (Figure 6.11) (Marshall and Marshall, 2011). 

C

A

Mag = 6.37KX   EHT = 5.00 kV  WD = 9.1mmMag = 9.23KX   EHT = 5.00 kV  WD = 8.8mm

B

D

 

Figure 6.12: SEM micrographs of untreated GI showing A) spheroidal/nodular CM on red side marked with 
arrows and B) lamellar CM on shiny side (marked with arrows) of untreated iron surface. (C)  representative 
EDS of the spheroidal CM (circle marked on A) and (D) oxide coating on iron surface. 

 

 

On average, spectra collected on the red side of iron showed a narrow and more intense G band 

with a calculated ID/IG ratio of  0.82 ± 0.05, while shiny side showed a broader G band with ID/IG 

of 1.08 ± 0.17. The relative intensity of D to G also provides a good indicator for determining the 
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in-plane crystallite size (La) or the amount of disorder in the carbonaceous material(Tuinstra and 

Koenig, 1970). The formula La = 44[ID/IG] - 1 (nm)  used in this work  to determine the La was 

based on empirical expression derived by Knight and White (1989) and is only valid for  514.5 

nm laser line. It was found that  microcrytalline planer size ranges from 49 – 53nm for CM 

present on red while 32-44nm for the shiny side of grain. Comparison of the intensity of the D 

band, ID/IG ratio and La on both sides of the grain revealed the present of two different types of 

CM on Connelly Iron (Marshall et al., 2012).   

SEM imaging of untreated iron samples showed clusters of oxides and dark patches on 

the iron surface (Figure 6.12A,B). The EDS analyses of these dark patches showed the presence 

of high levels of carbon, specifically 75.25% – 98.97% carbon, 7.96 – 1.03% O, and 16.34 – 0% 

Fe while the clusters of oxides were dominated by other elements, specifically, 72.85% Fe,  

25.48% O, by weight and a small fraction of silica (1.67%).  The distributions of the weight% of 

these elements did vary on iron surface, depending upon specific phase (Figure 6.12C, D).  

Nonetheless, the percentages given are reasonably good indicators of the typical cases. 

Various forms of graphite have been reported to occur on cast/grey iron, such as 

spheroidal, lamellar, and nodular (Ritter et al., 2002; Ritter et al., 2003).  Careful examination of 

micrographs collected in this work also showed differences in the CM forms, including more 

spheroidal/nodular varieties on the red sides of the grains, and flaky or lamellar varieties on the 

shiny sides (Figure 6.12A,B). The detailed effect of the graphite morphology and its effect on 

corrosion has not been tested in this study, however, based on the Raman analyses performed 

here, the spheroidal/nodular graphite may be more ordered form of CM, and therefore the variety 

that dominates TCE sorption, at least in the early times of the column experiments.     
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6.4.3. Phase distributions and transitions associated with aging of the iron surface. 
Systematic investigations of the grain surfaces from all 4 column sampling ports provided 

comprehensive details concerning changes occurring to iron grains at the micro-scale.  Hematite 

bands in the Raman spectra, which were present on untreated iron (Figures 6.10A), were 

removed from grains in all ports within 24 hours of column operation (Figure 6.13, 6.14), 

indicating that immersion in water was sufficient to drive a hematite transformation. The process 

of hematite removal is well discussed in literature (Odziemkowski and Gillham, 1997; Ritter et 

al., 2002), and is thought to involve an autoreduction reaction ultimately producing magnetite.  



 

117 
 

.  

Port 1

Day 2

Day 12

Day 15

Day 151

Day 154

Day 240

G D

Hematite

Magnetite/Maghemite

20040060080010001200140016001800

Raman Shift (cm )

20040060080010001200140016001800

Raman Shift (cm )

20040060080010001200140016001800

Raman Shift (cm )

20040060080010001200140016001800

Raman Shift (cm )

20040060080010001200140016001800

Raman Shift (cm )

20040060080010001200140016001800

Raman Shift (cm )

20040060080010001200140016001800

Raman Shift (cm )

20040060080010001200140016001800

Raman Shift (cm )

20040060080010001200140016001800

Raman Shift (cm )

20040060080010001200140016001800

Raman Shift (cm )

20040060080010001200140016001800

Raman Shift (cm )

20040060080010001200140016001800

Raman Shift (cm )

Port 2

Magnetite

Magnetite

Magnetite

Magnetite

Magnetite

G

D

G D

G D

Intermediate phases

DG

Time 1

Time 2

Time 3

Day 0

Intermediate phases

 

Figure 6.13: Raman spectra collected on red side from port 1 and 2  during T1, T2 and T3. 
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Figure 6.14: Raman spectra collected on red side from port 3 and 4  during T1, T2 and T3. 
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Figure 6.15: SEM images collected after T3 showing (A) octahedral crystals tentativelyu identified as 
magnetite and (B) a lath-like or tabular mineral tentatively identified as lepidocrocite.  Identificatoins were 
based on crystal habit and chemical composition as determined by EDS.  (C) representative EDS analysis of 
(A). 
 

The maghemite band occurring as a shoulder on the magnetite band, at 715 cm-1, also 

disappeared soon after the grains were immersed in water.  

The appearance of bands at 345 cm-1, 510 cm-1  and 710 cm-1, which are in the finger 

print region of iron oxides and (oxy)hydroxides, including the possible phases ferrihydrite 

(Hanesch, 2009), Fe(OH)3 and/or amorphous FeOOH, goethite (α-FeOOH) and lepidocrocite (γ- 

FeOOH), green rust (de Faria et al., 1997; Dünnwald and Otto, 1989; Roh et al., 2000), appeared 

within 48 hours of column flooding.  They were especially noticeable on the grain from port 1 

which was closest to the inlet.  These phases may have acted as intermediates in the formation of 

magnetite (Sumoondur et al., 2008) and are therefore regarded here as intermediate phases. In 
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the presence of Fe2+, lepidocrocite has been shown to transform gradually to crystals of 

magnetite (Eq. 6.4) (Tamaura et al., 1983) (Figure 6.15A, B) 

ܪܱܱ݁ܨ2 ൅	݁ܨଶା	 	→ 	ଷ݁ܨ ସܱ ൅    ା                  Eq. 6.4ܪ2

Goethite and magnetite bands close to 700cm-1 may overlap when both phases are 

present, but magnetite produces the stronger signal and therefore tends to dominates if both are 

present in quantity (Neff et al., 2004).  The shift from a broad band at 710 cm-1 to a sharp, 

narrow band at 670cm-1 is associated with the completion of a phase transition to magnetite 

(Dünnwald and Otto, 1989).   

It was noted that the occurrence and predominance of the mineral phases or phase 

transitions varied with distance along the column.  It is clearly evident from spectra collected 

from all 4 ports that a transformation front, evident at early time near influent end of the column, 

progressed at least halfway down the column after 240 days (ports 2, 3 and 4) (Figures 6.13 and 

6.14).  The greater progress of corrosion at port 1 at the end of the experiment was due its close 

proximity to inlet source and therefore a relatively high degree of exposure to TCE and traces of 

dissolve oxygen that may have been present in the influent.  By comparison, the other ports 

would have been exposed to less of these solutes because they were reduced as they moved 

through the columns. 

 

Figure 6.16: SEM micrographs of treated iron surface showing (A)  Fe (oxy)hydroxides   (B) goethite 
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Figure 6.17: EDS maps for elemental distribution of C, Fe, and O on (A) untreated GI and (B) after 240 days 
of treatment. 
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Figure 6.18: SEM micrograph of green rust  and elemental distribution of C and O after 240 days of 
treatment.  The presence of carbon in these micrographs suggests the presence of inorganic carbon on the 
aged grains. 

As in the cases of the iron phases, surface carbon also underwent changes, as indicated by 

variations in the D and G Raman bands. High corrosion close to inlet resulted in disappearance 

of carbon bands from port 1 during the first 15 days of exposure to solution, whereas ports 2 and 

3 only experienced a more gradual decrease in intensities over a 5 month period (Figures 6.13, 

6.14). In keeping with this trend, the D and G bands weakened but never completely disappeared 

in spectra collected from ports 3 and 4 over the approximately 8 month time of the experiment 

(Figure 6.14).  

SEM micrographs and EDS collected on the untreated iron surface and on the iron 

surface aged in the column for 240 days showed differences in carbon distribution.  The 

untreated grains showed more intense and patchy distributions of carbon compared to the aged 

grains (Figure 6.17A, B). Much of the carbon distribution on EDS map after 240 days was found 

to be similar with respect to oxygen indicated a difference in the characteristics of surface 

carbon- from sp2 CM to the form found in the corrosion product such as green rust (Min et al., 

2009) (Figure 6.18).  
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Figure 6.19: Image showing the movement of front through all 4 ports over time. Magnitude of sorption and 
kinetic parameters were also plotted against each time. (Note: Parameter JR and JN have been exaggerated 
10x)  

 

6.4.4. Reconciliation of Micro-Scale Observations and Macro-Scale Kinetics  
The analysis of TCE reduction kinetics showed declines in both TCE non-reactive 

sorption and reactivity over time, with the more profound changes occurring at earlier times 

(Figure 6.19).  This trend is consistent with previous findings (Devlin et al., 1998).  These 

changes coincided with the spectroscopy-based observations that near the inlet side of the 

column a near complete conversion of Fe3+ oxides (e.g., hematite) to mixed valent oxides (e.g., 

magnetite) occurred.  This finding is also consistent with earlier work (Odziemkowski et al., 

1998).  In addition, at the ports nearest the inlet, there was a complete loss of signal from sp2 

carbon from the grain surfaces.  To our knowledge, this observation has not previously been 

reported.  Near the outlet end of the column these same changes were underway, but had not 

progressed to the same degree by the end of the experiment (240 days). 
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In order to reconcile the above experimental results, it must first be recognized that while 

the spectroscopic data were very location specific, coinciding to changes on several grains at 

particular distances from the inlet, the kinetic data represent column averages.  Together, these 

two views of the same column can provide a compelling picture of the column chemodynamics 

over time.  For example, the fact that the mineral and carbon alterations did not progress at the 

same rates everywhere along the column simultaneously strongly suggests the existence of a 

reaction front that progressed along the column with time.  Reaction fronts have been described 

for granular iron columns in the past, but these were primarily associated with carbonate 

precipitation (Jeen et al., 2006; Zhang and Gillham, 2005).  In this work, the ‘front’ can be 

defined as either 1) the disappearance of hematite, 2) the dominant emergence of magnetite, or 3) 

the disappearance of sp2 carbon.  However it is defined, the front represents a boundary between 

a more reactive zone in the column and a less reactive, or weathered zone.  As the weathered 

zone increases in size, the column-averaged kinetics indicates ever declining reactivities. 
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Figure 6.20: Graphical representations of A) Rate versus hematite, magnetite and carbon fronts B) 
comparison of rate with the KIM parameters and C) comparison of rate with non-reactive sorption 
parameters. Solid lines connect data points read from the left axes and broken lines connect data points read 
from the right axes. 

 

To help determine which of the three ‘fronts’ is most relevant to the reactivity declines 

observed, correlations between reaction rates (kappCo) and both time and distance along the 

column were overlain on the approximate positions of the fronts, as indicated from the Raman 

analyses (Figure 6.20). Spectroscopic measurements collected through time indicate that the 

kinetics of hematite transformation and the appearance of magnetite was relatively fast (Figure 

6.20A). In fact, hematite was removed from all ports within 2 days of contact with solution, 

suggesting a process more tied to a surface reaction involving water than with TCE. The 
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magnetite front appeared at 4cm from inlet within 15 days of experiment and moved through 

column in 240 days. Although the magnetite front moved slower than the hematite front, it did 

not exhibit the same declining rate of progression as the reactivity front did (Figure 6.20A). Of 

the three fronts (hematite, magnetite and carbon), the loss of sp2 carbon front appears to show a 

behavior that is most consistent with the reactivity front behavior.  While reactivity declined 

rapidly at first and then more slowly later in the experiment, the carbon front appeared to move 

rapidly into the column early in the experiment (up to day 150), and then slow in its progression 

later (days 150-240).  Since at least one reported study demonstrated that carbon can serve as a 

reactive sorption site for aqueous organics (Oh et al., 2002), the corresponding alteration of the 

surface carbon and decline in reactivity and  k is evidence that the GI surface carbon serves as a 

reactive surface (Figure 6.20 B).  

In addition to its importance to the reactivity front, changes to surface carbon also 

coincided well with the observed trends in retardation over time.  Distinctly, with the weakening 

of Raman signals for surface carbon, the non-reactive sorption parameter, Rapp was also 

determined to be decreasing in magnitude (Figure 6.20C).  Therefore, carbon sites, known for 

their strong propensity to act as a sorbent of hydrophobic substances (Cornelissen et al., 2005; 

Deng et al., 1997) may represent the most important sites for TCE interactions with GI (Table 

6.2).  

If it can be concluded that surface carbon is an important location for TCE sorption and 

transformations, a closer examination of the nature of the surface carbon is merited.  To begin 

this examination, it is noteworthy that the sorption affinity parameters, JR and JN, changed 

relatively little over the course of the experiment, suggesting that the dominant sorbing surface 

phase(s) remained so throughout the experiment.  Since oxides can be virtually ruled out as 
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sorbing surfaces for hydrophobic organics (Smith, 1998; Klausen et al., 1995), it follows that 

both JR  and JN are most likely associated with surface carbon. However, the magnitude of JR was 

estimated to be about an order of magnitude greater than that of JN, suggesting the presence of at 

least two forms of carbon, with different sorption affinities for TCE.  

To explore the possibility of two or more carbon types being present on the GI, the sp2 

carbon, as it presented on the two distinct sides of GI (shiny and red), was examined. On 

average, spectra collected from the red side was determined to indicate carbon that was more 

ordered or graphitic, on the basis of the relative intensities of the G bands, and low ID/IG ratios, 

compared to the carbon bands observed on the shiny side of the GI, and similar carbon bands 

recorded from electrolytic iron (appendix H).  It is suggestive that two spectroscopically distinct 

carbon types, or end members of a continuum of carbon occurrences, were identifiable  on the 

same samples that produced two distinct sorption affinities presumably related to carbon.  The 

likelihood that these two observations are related is further supported by the studies of 

electrolytic iron (Chapter 5), which showed that the more micro-crystalline form of carbon 

exhibited very low sorption behavior.   By process of elimination, the more ordered carbon form, 

dominating the red oxide layer, would be responsible for the higher sorption affinities, and is 

most closely associated with the reactive sites on the GI. 

These finding suggests that surface carbon serves as a non-reactive sorption sites as well 

as a reactive one.  The fact that none of the oxide phases is considered a good sorbing surface for 

aqueous hydrophobic organics, or that organic reduction reactions involving these phases 

without the presence of metallic iron proceed relatively slowly  (Burris et al., 1998; Smith, 2001) 

argues against the oxides dominating the reaction rates.  Nonetheless, organic reduction reactions 

are well documented in association with iron oxide surfaces (Noubactep, 2008; Pecher et al., 
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2002; Wilkin et al., 2003), so there can little doubt that the oxides contribute something to the 

overall reaction rates.     

6.5.  Conclusions  
 
  Column experiment and spectroscopic investigations were conducted to document the 

surface changes on GI  exposed to simulated contaminated groundwater, and to link those micro-

scale changes to the macro-scale changes in the KIM parameters. It was observed that Rapp for GI 

followed a non-linear trend over the range of input TCE concentrations and was greatest for Co < 

100 µmol. Retardation  factors were found to be higher in young columns than aged ones, with 

Rapp dropping significantly during the periods 140 – 154 days, and 220 – 240 days. Trends in 

KIM parameters suggested systematic changes in kinetic and sorption parameters over time. In 

columns 0-15 days old, high TCE reduction rates were observed in conjunction with relatively 

large values of k and small values of CmaxR.  These findings are consistent with those reported by 

Huang (2011) and suggest the kinetics were dominated by a small number of highly reactive 

sites. GI observed decline in affinity to reactive sites (JR) from 0-15 days to 140-154 days  but 

not noticeable difference was found between  140-154 to 220- 240 days.  At later times (220- 

240 days), k tended to decline and CmaxR  to increase, suggesting that the kinetics were becoming 

dominated by a larger number of less reactive sites with aging of the GI.  Throughout these 

changes the sorption affinity changed relatively little, indicating a general consistency in the 

sorption behavior of the reactive sites, i.e., carbon dominated throughout the experiment. 

Spectroscopic analysis of the surface phases on GI in space and time revealed 3 possible 

fronts that could be related to the reactivity decline in the GI over time.  Once again, the data 

indicated the closest correspondence between reactivity and surface phase changes involved 

carbon.   
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Both the kinetic and spectroscopic work identifies variations in carbon, based on sorption 

behavior and degree of microcrystallinity, respectively.  Connelly GI was characterized by a 

reactive, high affinity carbon type, and a non-reactive, low affinity type.  The former was found 

to exhibit a relatively more ordered crystalline form compared to the latter, based on Raman 

analyses of the oxidized and shiny sides of the GI, and analogous tests on electrolytic iron that 

only display a shiny side.  From these findings, it is concluded that the dominant, but not 

exclusive, reactive sites on Connelly GI are associated with carbon in the oxide layer.  As the 

iron ages, the carbon is increasingly isolated from the solution by burial beneath an ever-

increasing thickness of oxide layer.  It is anticipated that over much greater time periods than 

were investigated here, the GI-TCE kinetics will become dominated by reductions on the oxides 

rather than the carbon, and the overall reactivity of the material will be correspondingly less than 

it was at early times. 
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7. Conclusions and Recommendations. 
Previous studies utilized the Kinetic Iron Model (KIM) (Devlin, 2009) to yield unique 

estimates of surface-reaction rate constant (k) and sorption parameters (CmaxR, JR), and 

documented the contribution of the associated processes to reactivity as iron aged in contact with 

aqueous chlorinated solvents. In this work, the use of KIM was extended to establish cross-scale 

links between iron grain surface chemistry and the macroscopic kinetic measurements mentioned 

above. Image analysis techniques were used to explore factors that were important at pore scale.  

A novel column design was developed with which it was possible to obtain data sets from both 

the micro and macro scales. Spectroscopic and scanning electron microscope techniques were 

used to investigate micro-scale characteristics on the iron grains as a function of age.  

With the KIM, unique estimates of reaction and sorption parameters were obtained and 

analyzed through original data processing software. Long-term column experiments revealed that 

young GI kinetics were dominated by a relatively small number of highly reactive sites (k). As 

iron aged in TCE solution and water, k declined, indicating that the iron surface lost these highly 

reactive sites, but CmaxR  increased, suggesting that the kinetics were becoming dominated by a 

larger number of less reactive sites.  

Pore scale investigations on GI diluted with sand supports an earlier hypothesis suggested 

by Bi et al. (2009) that observable reactivity was a function of GI surface area available to 

solution, which was in turn a function of the sand content. With the help of image analysis on the 

sectioned columns, it was found that the addition of sand to GI opened up pore spaces between 

iron grains, exposing more grain surface to solution. This was clearly reflected in a reported 

reactivity maximum associated with the addition of 15% sand by weight to GI (Bi et al., 2009). 

Both the kinetic and visualization techniques support this finding.  Barriers constructed without 
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sand will achieve grain packings that limit solution availability to the iron surface, particularly 

when the iron grains are platy in texture, as in case of Connelly Iron.  

 The (indirect) effect of grain shape on the reactivity of commercially available GI has 

received very little attention and was never experimentally established.  This work, for the first 

time, addressed this issue and demonstrated that reactivity of GI varies in columns packed in 

varying styles. It was found that columns packed with grains oriented preferentially horizontally 

and those packed randomly led to quite similar GI reactivities.  However, these grain orientations 

may not be very representative of packings in PRBs, which are expected to be effectively packed 

with grains oriented parallel to the flow direction, i.e., equivalently to a vertical direction in the 

column experiments conducted here. The laboratory tests of columns with vertically packed 

grains exhibited 2-4 times higher reaction rates than columns with the other packings, with 

important implications for the execution of benchtop treatability studies in columns. The 

differences in grain surface availability to solution due to packing variations were assessed by 

image analysis of sectioned columns. The sections showed significant differences in the spatial 

distribution of grains and pore network as a function of packing. However, it was found that pore 

scale differences were insufficient to explain the observed reactivity difference of 2-4 times 

between packings. It was suggested that micro-scale changes on grain surface account for the 

remaining reaction rates.  

Separate column experiments together with spectroscopic investigations were conducted 

to document the changes to the GI surface that resulted from exposure to water, and  TCE in 

solution.  The data were also used to relate the observed micro-scale changes to the macro-scale 

changes in the KIM parameters. KIM parameters suggested systematic changes in kinetic and 

sorption parameters over time. The change in kinetic behavior of GI occurred simultaneously 



 

137 
 

with the progressive invasion of a reactivity front that moved through the column over time. The 

initial decline in reactivity (dC/dt) due to declining k was to some degree offset by the increase in 

CmaxR allowing the GI to maintain its reactivity for a longer period of time than might be 

expected. Similar to reactivity front, an absorption front, defined by a decline in TCE retardation 

over time (Rapp) also moved through the iron media as it aged. It was observed that Rapp for GI 

followed a non-linear trend as a function of input TCE concentrations and was greatest at low 

initial concentrations and decreased with increasing concentrations and age.  

 Based on macro and micro scale examinations it is concluded that the most profound 

changes to the TCE reduction and grain surfaces occurred within the first 150 days of 

experiment. As discussed previously, major changes in KIM parameters were accompanied by 

declines in k estimates and increases in CmaxR, whereas significant declines in retardation were 

associated with the loss of non-reactive sorption sites, reflected in the CmaxN parameter.  

Compared to these parameters, little change was observed in the sorption affinities for both 

reactive and non-reactive sites, JR and JN, indicating a general consistency in the sorption 

behavior, and the possibility that the sorbing surface was chemically similar throughout the 

experiments.  

Spectroscopic analysis revealed 3 possible fronts that could be related to the reactivity 

decline in the GI. The spatial and temporal changes associated with carbon, as observed on 

Raman spectra, corresponded well in timing to the declining reactivity.  Attributing the carbon 

front as the primary influence on reactivity front is a  novel contribution of this work. 

Additionally, changes to surface carbon also coincided well with the observed trends in 

retardation over time, validating its importance to non-reactive sites as well.  
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Based on spectroscopic findings and sorption behavior, variations in carbonaceous 

material  were examined. Connelly GI was found to contain a reactive, hydrophobic carbon type 

with a relatively high affinity for TCE, and a non-reactive, low-affinity type.  The former was 

found to exhibit a relatively more ordered crystalline form compared to the latter, based on 

Raman analyses of two morphologically distinct sides on the Connelly iron grains: a oxidized 

side with a strong presence of red minerals (oxides) and a metallic side, similar in appearance to 

electrolytic iron.  From these findings, and comparisons with the electrolytic iron (which has no 

highly oxidized surface area when new) it is concluded that the dominant reactive sites on 

Connelly GI are associated with carbon in the oxide layer. As the iron ages, these carbon sites 

become increasingly coated with oxides and become inaccessible to the solution. It is anticipated 

that for very long-term exposures to TCE (thousands of pore volumes) the GI/TCE reaction 

kinetics will become dominated by reductions on the oxides rather than the carbon, and the 

overall reactivity of the material will be correspondingly less than it was at early times. 

7.1. Recommendations 
 

Column experiments are required over much greater time periods than were investigated in 

this work to observe the carbon front move completely through the column and to document and 

compare the TCE reduction kinetics and changes to surface carbon at early times, middle, and 

much later times carbon is virtually inaccessible to the solution.   

Improvements in the column design are necessary to better link the scale specific processes. 

This can be done by adding sampling ports along the length of column to collect effluents 

samples from locations other than the end of the column. This will help in delineating the exact 

position of reactivity front between sampling ports, although additional design changes may 

become necessary to ensure that TCE is present in all samples for some period of time in order 
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for the KIM analysis to be possible.  This constraint was the reason sampling ports for solution 

were not included in the current design. Both iron grain and effluents samples collected from the 

same location could provide a more accurate correspondence between micro-scale and macro-

scale changes along the reactivity front(s).       

At present, the BEARKIMPE program is designed to process six experiments in a suite. An 

improvement in the code is required to handle a larger data set and to provide more options for 

the user to stop the code, refit curves or delete sheets, for convenience in data processing.  
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Appendix A. Statistical Assessment of KIM parameters 
In order to assess the possibility that the addition of 15% by weight sand to a granular 

iron porous medium increases the sorption capacity of the metal for TCE, the KIM (eq A.1) was 

used to estimate the Langmuir parameters.  The KIM was derived by Devlin (2009) and 

previously applied to the reduction of nitroaromatic compounds on granular iron. 
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(A.1)

 

where k is the first order rate constant for reaction on the iron surface (min-1), Cmax represents 

maximum sorption capacity of the iron (µmol g-1), J is sorption affinity to reactive sites on the 

iron (µM-1) and Fe/V is the iron mass to water volume ratio (g L-1). To estimate these parameters, 

series of column experiments were performed in which the magnitude of the influent 

concentration,  Co, was increased stepwise and the pumping continued to steady state at each 

step.  The initial TCE reduction rate, (dC/dt)o, was estimated by fitting the breakthrough curves  

Table A. 1:   Summary of column conditions and fitted KIM parameters.  Parameter estimates given 
are means from the Monte Carlo analysis (see text). 

 

Medium Description 
Iron 
% by 

weight 
Porosity 

Fe/Vp 
(g/L) 

k 
(min-1) 

Cmax 

(µmolg-1) 
J 

(µM-1) 

80 g iron 100% 0.55 4577 2.7E-02 3.0E-02 4.5E-02 

68 g iron : 12 g sand 85% 0.46 4416 9.4E-03 1.0E-01 3.9E-02 

60 g iron : 20 g sand 75% 0.49 3548 3.8E-02 5.1E-02 2.1E-03 

40 g iron : 40 g sand 50% 0.47 2223 3.0E-02 2.1E-02 1.2E-02 
Mean over all 
experiments    

2.6E-02 5.1E-02 2.5E-02 

StDev 1.2E-02 3.6E-02 2.1E-02 

t-Inv 1.40003 

1-prob 0.744 



 

143 
 

to a solution of the advection-dispersion equation with first order decay, and then multiplying the 

fitted rate constant, kapp, by Co.  These rates were then plotted against Co and the resulting curve 

fitted with eq A.1 (see Figure 2.5B in Chapter 2) (Table A.1).   

The fitting procedure was based on Gaussian nonlinear regression (Devlin, 2009), and 

made use of a Monte Carlo algorithm to obtain estimates of the parameter uncertainties.  In 

general, the parameters exhibited near-normal distributions from which 

 

Figure A. 0.1:  KIM parameter distributions from the Monte Carlo analysis performed during parameter 
identification. 

means (Table A.1) and standard deviations (Table A.2) could be derived for each experiment.     
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In order to assess whether any experiment-specific mean (n = 1000) was significantly 

different from the overall mean values of all experiments (n = 4) (Table A.1), G-values were 

calculated (eq A.2, Table A. 2) and compared to the t-statistic for the 4 experiments (Table A.1). 
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(A.2) 

where uexperiment is the mean of a parameter for a particular experiment (i.e., involving a particular 

iron-sand mixture), uoverall is the mean of the experiment specific means of a parameter (i.e.,  k, J, 

or Cmax), and s is the parameter specific standard deviation for the experiment.  A parameter was 

considered significantly different from the overall mean if the G-value exceeded the t-statistic for 

n = 4 (t = 1.400), which corresponds to a 75% confidence level. 

Table A. 2: Summary of parameter standard deviations and G - values. 

 Standard Deviations G - values 

Iron % k 
(min-1) 

 

Cmax 

(µmolg-1) 
 

J 
(µM-1) 

k 
(min-1) 

Cmax 

(µmolg-1) 
 

J 
(µM-1) 

100.00% 1.4E-02 1.4E-02 2.0E-02 0.047158 0.579996 0.98819 

85.00% 4.7E-03 3.8E-02 1.4E-02 1.386497 1.401084 0.694348 

75.00% 8.9E-03 1.0E-02 7.1E-04 0.968408 0.015764 1.092164 

50.00% 1.4E-02 8.3E-03 4.3E-03 0.370931 0.836852 0.590373 

 

Inspection of Table A.2 reveals that at 75% confidence only Cmax from the 85% iron experiment 

exceeds the t-statistic, although the k value from the same experiment very nearly matches the 

level of significance.  It is concluded that the addition of 15% sand to the iron medium resulted 

in significant differences in the kinetic behavior of the reactive medium compared to the other 

mixtures. 
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Appendix B:  Breakthrough curves and model fits. 
Breakthrough curves (Figures B.1 through B.5) were produce by  increasing Co in sequential 

tests, and were fitted to Advection dispersion equation equation 3.1 of chapter 3 to obtain 

estimates of Rapp, α and kapp (Table B.1)(Bear, 1979).  Sorption to the granular iron surface was 

assumed to be described by Langmuir isotherm.   

Table B. 1: Comparison of the values of apparent first order rate constants (kapp) and retardation factors 
(Rapp) using eq.  3.1 in chapter 3 for VP, HP and RP columns. 

VP-1 HP-1 RP-1 
Co (μM) kapp (s

-1) Rapp Co (μM) kapp  (s
-1) Rapp   Co (μM) kapp  (s

-1) Rapp   
27.19 1.16E-03 15.69 35.47 1.13E-03 8.677 24.9 8.68E-04 12.72 
78.8 9.70E-04 12.32 47.92 4.78E-05 6.22 73.19 3.57E-04 17.7 
107.4 3.56E-04 8.493 140.1 3.52E-04 5.12 145.4 3.55E-04 7.47 
183.6 8.30E-04 9.2 282.5 1.72E-04 2.81 258.5 4.60E-04 5.18 
355.4 5.74E-04 6.1 409.3 1.05E-04 1.9 386.4 1.24E-04 6.6 
504 4.59E-04 4.568 480.5 8.89E-05 1.78 534.3 3.65E-04 3.6 

VP-2 HP-2 RP-2 (Ref 2) 
Co  (μM) kapp  (s

-1) Rapp Co  (μM) kapp  (s
-1) Rapp   Co  (μM) kapp  (s

-1) Rapp   
30.2 6.85E-04 16.53 31.98 7.61E-04 13.03 61.05 9.12E-04 9.4 
44.05 1.98E-04 22.85 39.98 3.48E-04 6.604 64.70 4.01E-04 10.4 
75.89 1.16E-04 3.57 112.4 3.65E-04 3.681 79.09 4.87E-04 3.1 

189.38 5.53E-04 8.13 254.9 2.97E-04 5.174 114.7 5.86E-04 4.6 
336.35 2.00E-04 7.08 321.0 1.15E-04 3.775 214.9 2.30E-04 2.6 
496.95 1.55E-04 3.00 498.1 6.79E-05 2.984 383.7 9.69E-05 1.9 
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Figure B. 1: Breakthrough curves for VP1: A) CO = 27.19 μM; B) Co = 78.8 μM; C) Co = 107.4 μM; 
D) Co = 183.6 μM; E) Co = 355.4; F) CO = 515.0 μM. Symbols represent experimental data points 
and lines show the best fit using eq 3.1 of the chapter 3. 
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Figure B. 2: Breakthrough curves for HP1: A) CO = 35.47 μM; B) Co = 47.92 μM; C) Co = 140.1 μM; 
D) Co = 282.5 μM; E) Co = 409.3; F) CO = 480.5 μM. Symbols represent experimental data points 
and lines show the best fit using eq 3.1 of the chapter 3. 

 



 

148 
 

 

 

Figure B. 3: Breakthrough curves for RP1: A) CO = 24.9 μM; B) Co = 73.19 μM; C) Co = 145.4 μM; 
D) Co = 258.5 μM; E) Co = 386.4; F) CO = 534.3 μM. Symbols represent experimental data points 
and lines show the best fit using eq 3.1 of the chapter 3. 

. 

 



 

149 
 

 

Figure B. 4: Breakthrough curves for VP2: A) CO = 35.47 μM; B) CO = 47.92 μM; C) CO = 140.1 
μM; D) CO = 282.5 μM; E) CO = 409.3; F) CO = 480.5 μM. Symbols represent experimental data 
points and lines show the best fit using eq 3.1 of the chapter 3. 

 



 

150 
 

 

Figure B. 5: Breakthrough curves for HP2: A) CO = 31.98 μM; B) Co = 39.98 μM; C) CO = 112.4 μM; 
D) CO = 254.9 μM; E) CO = 321.0; F) CO = 498.1 μM. Symbols represent experimental data points 
and lines show the best fit using eq 3.1 of the chapter 3. 
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Appendix C: T-test of KIM parameters 
A t-test was performed to compare the means of the estimated sorption and kinetic parameters 

between horizontal, random packing, and vertical packing (Table C.1). 

Table C. 1: T-Test of the estimated KIM parameters from VP, HP and RP tests. 

  Packing CmaxN (uMg-1) JN (uM-1) k (min-1) CmaxR(uMg-1) JR(uM-1) 
VP-1 1.70 0.0026 0.0097 0.32 0.065 
VP-2 1.34 0.0034 0.01 0.11 0.099 

Mean 1.52 0.003 0.00985 0.215 0.082 
Stdev* 0.25 0.00056 0.00021 0.148 0.024 
  HP-1 0.47 0.0044 0.01 0.06 0.07 
  HP-2 0.54 0.0048 0.008 0.06 0.16 
  RP-1 1.2 0.002 0.01 0.085 0.055 
Mean   0.7366666 0.0037 0.010 0.068 0.095 
Stdev*   0.4027819 0.0015 0.002 0.014 0.056 
T-test   9.74% 57.45% 92.64% 16.049% 78.78% 

* Standard deviation 

 

Figure C. 1: Comparison of KIM parameters between vertical packing, horizontal packing, and 
random packing. 
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Appendix D. Tracer test 
A chloride tracer test was carried out on both VP and HP to assess the magnitude of 

physical non-equilibrium transport (PNE) on breakthrough curves (BTC). Flow conditions in HP 

would favor  conditions for PNE, compare to VP columns. These conditions could be marked by 

enhanced tailing in the BTC for HP. However resulted BTC showed nearly identical degree of 

tailings (Figure C.1) and suggested minimal effect of diffusion on sorption (Cmax) and rate 

constants (k). 

Table D. 1:  Data of tracer test for vertical and horizontal packings 

Vertical Packing  Horizontal Packing 

Time     (mins) Drops as Cl- Time (mins) Drops as Cl- 

0 0 0 0 0 0 

3 1 60 4 1 60 

9 1 60 8 1 60 

14 1 60 15 1 60 

18 1 60 27 2 120 

24 2 120 45 4 240 

27 2 120 68 4 240 

30 2 120 82 5 300 

33 3 180 99 5 300 

39 3 180 117 5 300 

44 4 240 125 5 300 

55 4 240 140 5 300 

77 5 300    

95 5 300    

118 5 300    

140 5 300    

150 5 300    

155 5 300 

160 5 300 

170 5 300 

186 3 180 186 3 180 

202 2 120 198 2 120 

214 1 60 211 2 120 

224 1 60 221 1 60 

237 1 60 231 1 60 
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Figure D. 1: Breakthrough curves with tailings for  (a) VP and (b) HP showing  chloride 
concentration from 60 mg/l to 300 mg/l.  
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Appendix E: Morphological Analysis 
 

Pore scale investigations were carried out by preparing the vertical and horizontal 

packings (in duplicates) in plastic vials of diameter 2.9 cm. Vials were flooded and subsequently 

cemented with epoxy (EPO-TEK 301). Vertical cross-sections of the cemented material were cut 

from the solid cylinders and mounted on slide. Sections were prepared by grinding the surface to 

50 µm using Hillquist Thin Sectioner. 25 sections for each packing were prepared and 

subsequently photographed. Original images were cropped to extract a region of interest (ROI)  

Table E. 1: Summary of the image characteristics of vertical and horizontal packing. 

 

  The range of pore sizes in the various packings investigated was examined in terms of 

pore volumes, grain perimeters, and areas can be found in Table E.2 while details of section wise 

grain perimeter and area estimated by Image J (Rasband, 2007) can be found in Table E.3.  Both 

vertical  packing showed higher estimated perimeters while areas remained higher for horizontal 

packings (Figure E.1, E.2). It is suggested that vertical packing supplemented better grain to 

solution contact which could foster more corrosion and resulted in enhanced reaction rates 

(factors of 2 to 4).  

 

 

 

Packing type Slice 
thickness 

(mm) 

No. of slices 
 
 

Original image 
size 

 (pixel x pixel) 

Image size for 
analysis 

 (pixel x pixel) 

Image size for 
analysis 

(mm x mm) 
VP-1 0.05 25 615 x 382 410 x 308 21.87 x 16.43 
HP-1 0.05 25 596 x 470 410 x 308 21.87 x 16.43 
VP-2 0.05 25 439 x 390 400 x 175 27.20 x 11.90 
HP-2 0.05 25 662 x 328 400 x 175 27.20 x 11.90 
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Figure E.1: Re-analysed sections at 600 dpi for (a)e vertical packing (VP) and (b) Horizontal 
packing. 

 

Table E. 2:  Summary of pore analysis for vertical and horizontal packings 

Image type Pore space 
Volume (mm3) 

Total Volume
(mm3) 

Porosity
% 

Average  grain 
perimeters 

(mm) 

Average grain 
areas 
(mm2)

VP-1 240.16 478.93 50.10 826.06 180.66
HP-1 195.09 478.93 40.70 631.10 213.27
VP-2 248.03 550.54 45.10 643.83 197.82
HP-2 238.74 550.01 43.40 602.18 208.51

VP-1* - - 54 1283.4 162.46 
HP-1* - - 41 1160 210 

*Reanalyzed data with higher resolution (600dpi) and based on single section study (Figure E 1). 
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Table E. 3: Data output from grain analysis for both vertical and horizontal packings.   

Perimeter (mm) Area (mm2) 
   VP1 HP1 VP2 HP2 VP1 HP1 VP2 HP2 

1 963.879 814.413 683.266 582.352 170.381 206.833 170.207 174.952
2 1006.128 625.609 656.545 646.789 164.013 208.601 177.112 179.816
3 893.504 733.454 579.702 735.95 171.326 214.079 180.146 179.633
4 863.386 714.456 448.078 589.72 173.266 215.011 177.244 187.042
5 865.169 559.749 558.624 545.235 170.92 221.023 179.609 188.678
6 845.764 640.126 619.445 496.534 179.423 216.076 180.639 184.642
7 781.59 607.93 619.54 530.27 186.292 217.516 180.353 186.142
8 673.176 616.999 583.092 591.457 184.846 217.078 180.168 187.35
9 808.222 682.275 539.104 502.818 184.282 211.03 180.357 189.612

10 808.003 520.634 624.506 487.846 186.671 216.486 178.313 190.006
11 784.973 464.541 560.596 510.929 187.988 215.812 182.93 193.768
12 801.738 612.262 560.982 382.934 189.408 213.255 179.511 192.917
13 778.924 633.098 570.678 540.756 190.926 211.217 181.608 191.857
14 636.345 678.778 549.952 448.958 193.044 213.549 184.327 193.121
15 738.319 597.148 534.894 557.962 185.106 212.433 179.948 191.138
16 888.017 628.029 457.345 525.092 181.134 211.973 181.24 188.613
17 888.544 718.214 455.589 683.825 180.519 213.888 183.396 187.698
18 832.914 622.601 523.009 580.407 179.316 208.124 175.94 187.956
19 762.903 556.927 622.399 599.51 180.134 213.386 174.703 186.101
20 798.728 548.124 602.457 566.753 179.235 215.144 178.78 185.762
21 847.142 621.323 622.38 429.698 182.492 208.28 175.93 189.33
22 756.69 591.672 586.244 400.242 183.557 210.459 175.824 194.567
23 756.257 657.245 577.19 569.207 181.795 211.91 172.743 184.451
24 931.565 662.902 639.682 552.17 171.872 207.872 170.544 184.194
25 900.933 639.73 696.674 683.825 170.454 210.89 165.374 187.698
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Figure E.2: 25 Serial Sections from the vertical packing (VP1). 
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Figure E.2: 25 Serial Sections from the vertical packing (VP1) continued. 
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Figure E.3: 25 Serial Sections from the Horizontal packing (HP1). 
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Figure E.3: 25 serial sections from horizontal packing (HP1) continued.  

 

 

 



 

161 
 

 

 

 

 

 

 

Feret Angle 

Feret angle (0-180 degrees) is the angle between the Feret's diameter and a line parallel to the x-

axis of the image. Analyze particle algorithm was used to measure the orientation of grains in a 

section. For VP grains were aligned nearly at all angles whereas HP showed much narrow 

distribution of grains arrangement and mainly concentrated between 140º to 180º (Figure E.5).  

Figure E.5: Comparison of ferret angles between vertical and horizontal packing. 

 

Figure E.4: Comparison of morphological parameters between vertical and horizontal packings.
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T-test of Pore Analysis parameters 

A t-test was performed to compare the means of the estimated perimeters and areas between 

horizontal, and vertical packing (Table E.4). 

Table E. 4: T-Test of the estimated pore analysis parameters from VP and HP. 

Image 
type 

Total 
area 

(mm2) 

Porosity 
% 

Perimeter of 
grains 
(mm) 

Area of Iron 
grains 
(mm2) 

Normalized 
perimeters 

(mm) 

Normalized 
areas 

(mm2) 

VP 1 359.32 50.1 824.51 180.33 826.06 180.66 

VP 2 323.68 45.1 578.88 177.87 643.83 197.82 

Mean 47.6 701.69 179.1 734.94 189.24 

Stdev* 3.53 173.68 1.739 128.85 12.133 

Image 
type 

Total 
area 

(mm2) 

Porosity 
% 

Perimeter of 
grains 
(mm) 

Area of Iron 
grains 
(mm2) 

Normalized 
perimeters 

(mm) 

Normalized 
areas 

(mm2) 

HP 1 359.32 40.7 629.92 212.87 631.10 213.27 

HP2 323.68 43.4 541.43 187.48 602.18 208.51 

Mean 42.05 585.67 200.17 616.64 210.89 

Stdev* 1.909 62.57 17.953 20.45 3.361 

T-test 19.00%   32.83% 13.56% 

* Standard deviation 

Test for DPI versus Morphological parameters 

Table E.5. Test for image dpi versus morphological parameters based on a single section. 

dpi %area Perimeter

100 51.444 10.043 

200 65.423 10.73 

300 48.693 4.43 

400 49.394 3.951 

500 49.455 3.575 

600 48.88 3.34 
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Figure E.6: Test result for dpi versus iron area% and average grain perimeter. 
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Appendix F: BEARKIMPE Code 
UserForm 1 code 
Private Sub CommandButton1_Click() 
 
Dim FileToOpen 
Dim FileName As String 
Dim WkbkName As Object 
 
10  FileToOpen = Application.GetOpenFilename("Text Files (*.xlsx), *.xlsx") 
    FileName = ActiveWorkbook.Path + "\" + ActiveWorkbook.Name 
    If FileToOpen = False Then Exit Sub 
    If FileToOpen <> "" Then 
 
        Msg = "Do you want to open " & FileToOpen & " ?"  ' Define message. 
        Style = vbYesNo + vbDefaultButton1  ' Define buttons. 
        Title = "Workbook to Open"  ' Define title. 
        Response = MsgBox(Msg, Style, Title) 
 
            If Response = vbYes Then    ' User chose Yes. 
            Workbooks.Open (FileToOpen)    ' Perform some action. 
            Else: GoTo 10   ' User chose No. 
            End If 
 
End If 
 
 
Application.Run ("Lern") 
UserForm1.Hide 
UserForm2.Show 
 
 
 
End Sub 
 
 
Private Sub CommandButton2_Click() 
    Unload Me 
End Sub 
 
Module 1 code 
Sub Lern() 
'Lern Macro 
' Macro recorded 9/08/2010 by Rubina Firdous 
' 
 
' 
   Application.ScreenUpdating = False 
   Application.DisplayAlerts = False 
    Range("A1:B1").Select 
    Range("D1:E1").Select 
    Range("G1:H1").Select 
    Range("J1:K1").Select 
    Range("M1:N1").Select 
    Range("P1:Q1").Select 
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    Cells.Select 
    Selection.Copy 
    Windows("BEARKIMPE.xlsm").Activate 
    ActiveWindow.WindowState = xlNormal 
    ActiveWindow.WindowState = xlNormal 
    Range("A1").Select 
    ActiveSheet.Paste 
    Range("A1").Select 
    ActiveWindow.WindowState = xlNormal 
    ActiveWindow.WindowState = xlNormal 
    ActiveWindow.WindowState = xlNormal 
     
For Each WkbkName In Application.Workbooks() 
              If WkbkName.Name <> "BEARKIMPE.xlsm" Then WkbkName.Close (False) 
          Next 
End Sub 
 
UserForm 2 code 
 
 
 
 
Private Sub CommandButton1_Click() 
 
 Dim TargetConcentration As Integer 
 Dim i As Double 
 Dim R, foundcell As Range 
 Dim Graph As ChartObject 
 Dim cw, rh As Long 
 Dim Co(6) As Double 
 'Dim Ctarget(6) As String - public variable 
 Dim TextBox(6) As String 
 Dim X As Double 
  
'makes userform input for C Concentration into variable for code 
Ctarget(1) = UserForm2.Co1 
Ctarget(2) = UserForm2.Co2 
Ctarget(3) = UserForm2.Co3 
Ctarget(4) = UserForm2.Co4 
Ctarget(5) = UserForm2.Co5 
Ctarget(6) = UserForm2.Co6 
 
'CTarget(1) = Str(25) 
'CTarget(2) = Str(50) 
'CTarget(3) = Str(100) 
'CTarget(4) = Str(200) 
'CTarget(5) = Str(300) 
'CTarget(6) = Str(400) 
 
 
Application.ScreenUpdating = False 
 
  
 Sheets("Sheet1").Name = "BearPE2" 
 Range("A1,D1,G1,J1,M1,P1").Value = "Time (min)" 
Range("B1,E1,H1,K1,N1,Q1").Value = "Concentration (uM)" 
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'Loop calculates concentration and makes separate worksheets for 6 Cos 
 
 
 Sheets("BearPE2").Activate 
 ActiveSheet.Range("A1:B12").Select 
 Range(Selection, Selection.End(xlDown)).Copy 
 Worksheets.Add(After:=Worksheets(Worksheets.Count)).Name = Co1 
 ActiveCell.Offset(0, 0).Select 
 ActiveSheet.Paste 
     
Sheets("BearPE2").Activate 
 Range("D1:E15").Select 
 Range(Selection, Selection.End(xlDown)).Copy 
 Worksheets.Add(After:=Worksheets(Worksheets.Count)).Name = Co2 
 ActiveCell.Offset(0, 0).Select 
 ActiveSheet.Paste 
    
 Sheets("BearPE2").Activate 
 ActiveSheet.Range("G1:H15").Select 
 Range(Selection, Selection.End(xlDown)).Copy 
 Worksheets.Add(After:=Worksheets(Worksheets.Count)).Name = Co3 
 ActiveCell.Offset(0, 0).Select 
 ActiveSheet.Paste 
 Sheets("BearPE2").Activate 
 ActiveSheet.Range("J1:K15").Select 
 Range(Selection, Selection.End(xlDown)).Copy 
 Worksheets.Add(After:=Worksheets(Worksheets.Count)).Name = Co4 
 ActiveCell.Offset(0, 0).Select 
 ActiveSheet.Paste 
 Sheets("BearPE2").Activate 
 ActiveSheet.Range("M1:N15").Select 
 Range(Selection, Selection.End(xlDown)).Copy 
 Worksheets.Add(After:=Worksheets(Worksheets.Count)).Name = Co5 
 ActiveCell.Offset(0, 0).Select 
 ActiveSheet.Paste 
 Sheets("BearPE2").Activate 
 ActiveSheet.Range("P1:Q15").Select 
 Range(Selection, Selection.End(xlDown)).Copy 
 Worksheets.Add(After:=Worksheets(Worksheets.Count)).Name = Co6 
 ActiveCell.Offset(0, 0).Select 
 ActiveSheet.Paste 
Sheets(Ctarget(1)).Activate 
 
'Loop plots chart in all 6 spreedsheets 
For i = 1 To 6 
Next i 
 
 
'graph is created for the observed data. statements identifies size and location, title, chart type, series selection, axes 
formatting, plot area formatting, title formatting 
   
    
    cw = Columns(1).Width 
    rh = Rows(1).Height 
    Set Graph = ActiveSheet.ChartObjects.Add(cw * 5, rh * 1, cw * 10, rh * 25) 
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    Graph.Name = " Breakthrough Curve" 
    Graph.Chart.ChartType = xlXYScatter 
 
Graph.Chart.SeriesCollection.NewSeries 
 With Graph.Chart.SeriesCollection(1) 
        .Values = ActiveSheet.Range("B2:B20") 
        .XValues = ActiveSheet.Range("A2:A20") 
        .Name = "Observed" 
        .MarkerSize = 6 
        .MarkerStyle = xlMarkerStyleCircle 
         
         
End With 
 
'    Graph.Chart.SeriesCollection.Add Source:=ActiveSheet.Range("B2:B" & LastRowNewSheet) 
     
    With Graph.Chart.Axes(xlCategory) 
        .HasTitle = True 
        .AxisTitle.Caption = "Time (min)" 
        .CategoryNames = Range("A2:A20" & LastRowNewSheet) 
    End With 
 
    With Graph.Chart.Axes(xlValue) 
        .HasTitle = True 
    With .AxisTitle 
        .Caption = "Concentration (uM) " 
    End With 
    End With 
     
    Graph.Chart.Axes(xlValue).HasMajorGridlines = False 
    Graph.Chart.Axes(xlCategory).HasMajorGridlines = False 
    Graph.Chart.ChartArea.Interior.Color = RGB(255, 255, 255) 
    Graph.Chart.PlotArea.Interior.Color = RGB(255, 255, 255) 
    Graph.RoundedCorners = True 
    With Graph.Chart.ChartTitle 
        .Caption = " Breakthrough Curve" 
        .Font.Size = 14 
        .Font.Bold = True 
    End With 
 
Sheets(Ctarget(2)).Activate 
'graph is created for the observed data. statements identifies size and location, title, chart type, series selection, axes 
formatting, plot area formatting, title formatting 
   
    
    cw = Columns(1).Width 
    rh = Rows(1).Height 
    Set Graph = ActiveSheet.ChartObjects.Add(cw * 5, rh * 1, cw * 10, rh * 25) 
    Graph.Name = " Breakthrough Curve" 
    Graph.Chart.ChartType = xlXYScatter 
 
Graph.Chart.SeriesCollection.NewSeries 
 With Graph.Chart.SeriesCollection(1) 
        .Values = ActiveSheet.Range("B2:B20") 
        .XValues = ActiveSheet.Range("A2:A20") 
        .Name = "Observed" 
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        .MarkerSize = 6 
        .MarkerStyle = xlMarkerStyleCircle 
         
         
End With 
 
'    Graph.Chart.SeriesCollection.Add Source:=ActiveSheet.Range("B2:B" & LastRowNewSheet) 
     
    With Graph.Chart.Axes(xlCategory) 
        .HasTitle = True 
        .AxisTitle.Caption = "Time (min)" 
        .CategoryNames = Range("A2:A20" & LastRowNewSheet) 
    End With 
 
    With Graph.Chart.Axes(xlValue) 
        .HasTitle = True 
    With .AxisTitle 
        .Caption = "Concentration (uM) " 
    End With 
    End With 
     
    Graph.Chart.Axes(xlValue).HasMajorGridlines = False 
    Graph.Chart.Axes(xlCategory).HasMajorGridlines = False 
    Graph.Chart.ChartArea.Interior.Color = RGB(255, 255, 255) 
    Graph.Chart.PlotArea.Interior.Color = RGB(255, 255, 255) 
    Graph.RoundedCorners = True 
    With Graph.Chart.ChartTitle 
        .Caption = " Breakthrough Curve" 
        .Font.Size = 14 
        .Font.Bold = True 
    End With 
 
Sheets(Ctarget(3)).Activate 
'graph is created for the observed data. statements identifies size and location, title, chart type, series selection, axes 
formatting, plot area formatting, title formatting 
   
    
    cw = Columns(1).Width 
    rh = Rows(1).Height 
    Set Graph = ActiveSheet.ChartObjects.Add(cw * 5, rh * 1, cw * 10, rh * 25) 
    Graph.Name = " Breakthrough Curve" 
    Graph.Chart.ChartType = xlXYScatter 
 
Graph.Chart.SeriesCollection.NewSeries 
 With Graph.Chart.SeriesCollection(1) 
        .Values = ActiveSheet.Range("B2:B20") 
        .XValues = ActiveSheet.Range("A2:A20") 
        .Name = "Observed" 
        .MarkerSize = 6 
        .MarkerStyle = xlMarkerStyleCircle 
         
         
End With 
 
'    Graph.Chart.SeriesCollection.Add Source:=ActiveSheet.Range("B2:B" & LastRowNewSheet) 
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    With Graph.Chart.Axes(xlCategory) 
        .HasTitle = True 
        .AxisTitle.Caption = "Time (min)" 
        .CategoryNames = Range("A2:A20" & LastRowNewSheet) 
    End With 
 
    With Graph.Chart.Axes(xlValue) 
        .HasTitle = True 
    With .AxisTitle 
        .Caption = "Concentration (uM) " 
    End With 
    End With 
     
    Graph.Chart.Axes(xlValue).HasMajorGridlines = False 
    Graph.Chart.Axes(xlCategory).HasMajorGridlines = False 
    Graph.Chart.ChartArea.Interior.Color = RGB(255, 255, 255) 
    Graph.Chart.PlotArea.Interior.Color = RGB(255, 255, 255) 
    Graph.RoundedCorners = True 
    With Graph.Chart.ChartTitle 
        .Caption = " Breakthrough Curve" 
        .Font.Size = 14 
        .Font.Bold = True 
    End With 
 
Sheets(Ctarget(4)).Activate 
'graph is created for the observed data. statements identifies size and location, title, chart type, series selection, axes 
formatting, plot area formatting, title formatting 
   
    
    cw = Columns(1).Width 
    rh = Rows(1).Height 
    Set Graph = ActiveSheet.ChartObjects.Add(cw * 5, rh * 1, cw * 10, rh * 25) 
    Graph.Name = " Breakthrough Curve" 
    Graph.Chart.ChartType = xlXYScatter 
 
Graph.Chart.SeriesCollection.NewSeries 
 With Graph.Chart.SeriesCollection(1) 
        .Values = ActiveSheet.Range("B2:B20") 
        .XValues = ActiveSheet.Range("A2:A20") 
        .Name = "Observed" 
        .MarkerSize = 6 
        .MarkerStyle = xlMarkerStyleCircle 
         
         
End With 
 
'    Graph.Chart.SeriesCollection.Add Source:=ActiveSheet.Range("B2:B" & LastRowNewSheet) 
     
    With Graph.Chart.Axes(xlCategory) 
        .HasTitle = True 
        .AxisTitle.Caption = "Time (min)" 
        .CategoryNames = Range("A2:A20" & LastRowNewSheet) 
    End With 
 
    With Graph.Chart.Axes(xlValue) 
        .HasTitle = True 
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    With .AxisTitle 
        .Caption = "Concentration (uM) " 
    End With 
    End With 
     
    Graph.Chart.Axes(xlValue).HasMajorGridlines = False 
    Graph.Chart.Axes(xlCategory).HasMajorGridlines = False 
    Graph.Chart.ChartArea.Interior.Color = RGB(255, 255, 255) 
    Graph.Chart.PlotArea.Interior.Color = RGB(255, 255, 255) 
    Graph.RoundedCorners = True 
    With Graph.Chart.ChartTitle 
        .Caption = " Breakthrough Curve" 
        .Font.Size = 14 
        .Font.Bold = True 
    End With 
 
Sheets(Ctarget(5)).Activate 
'graph is created for the observed data. statements identifies size and location, title, chart type, series selection, axes 
formatting, plot area formatting, title formatting 
   
    
    cw = Columns(1).Width 
    rh = Rows(1).Height 
    Set Graph = ActiveSheet.ChartObjects.Add(cw * 5, rh * 1, cw * 10, rh * 25) 
    Graph.Name = " Breakthrough Curve" 
    Graph.Chart.ChartType = xlXYScatter 
 
Graph.Chart.SeriesCollection.NewSeries 
 With Graph.Chart.SeriesCollection(1) 
        .Values = ActiveSheet.Range("B2:B20") 
        .XValues = ActiveSheet.Range("A2:A20") 
        .Name = "Observed" 
        .MarkerSize = 6 
        .MarkerStyle = xlMarkerStyleCircle 
         
         
End With 
 
'    Graph.Chart.SeriesCollection.Add Source:=ActiveSheet.Range("B2:B" & LastRowNewSheet) 
     
    With Graph.Chart.Axes(xlCategory) 
        .HasTitle = True 
        .AxisTitle.Caption = "Time (min)" 
        .CategoryNames = Range("A2:A20" & LastRowNewSheet) 
    End With 
 
    With Graph.Chart.Axes(xlValue) 
        .HasTitle = True 
    With .AxisTitle 
        .Caption = "Concentration (uM) " 
    End With 
    End With 
     
    Graph.Chart.Axes(xlValue).HasMajorGridlines = False 
    Graph.Chart.Axes(xlCategory).HasMajorGridlines = False 
    Graph.Chart.ChartArea.Interior.Color = RGB(255, 255, 255) 
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    Graph.Chart.PlotArea.Interior.Color = RGB(255, 255, 255) 
    Graph.RoundedCorners = True 
    With Graph.Chart.ChartTitle 
        .Caption = " Breakthrough Curve" 
        .Font.Size = 14 
        .Font.Bold = True 
    End With 
 
Sheets(Ctarget(6)).Activate 
'graph is created for the observed data. statements identifies size and location, title, chart type, series selection, axes 
formatting, plot area formatting, title formatting 
   
    
    cw = Columns(1).Width 
    rh = Rows(1).Height 
    Set Graph = ActiveSheet.ChartObjects.Add(cw * 5, rh * 1, cw * 10, rh * 25) 
    Graph.Name = " Breakthrough Curve" 
    Graph.Chart.ChartType = xlXYScatter 
 
Graph.Chart.SeriesCollection.NewSeries 
 With Graph.Chart.SeriesCollection(1) 
        .Values = ActiveSheet.Range("B2:B20") 
        .XValues = ActiveSheet.Range("A2:A20") 
        .Name = "Observed" 
        .MarkerSize = 6 
        .MarkerStyle = xlMarkerStyleCircle 
         
         
End With 
 
'    Graph.Chart.SeriesCollection.Add Source:=ActiveSheet.Range("B2:B" & LastRowNewSheet) 
     
    With Graph.Chart.Axes(xlCategory) 
        .HasTitle = True 
        .AxisTitle.Caption = "Time (min)" 
        .CategoryNames = Range("A2:A20" & LastRowNewSheet) 
    End With 
 
    With Graph.Chart.Axes(xlValue) 
        .HasTitle = True 
    With .AxisTitle 
        .Caption = "Concentration (uM) " 
    End With 
    End With 
     
    Graph.Chart.Axes(xlValue).HasMajorGridlines = False 
    Graph.Chart.Axes(xlCategory).HasMajorGridlines = False 
    Graph.Chart.ChartArea.Interior.Color = RGB(255, 255, 255) 
    Graph.Chart.PlotArea.Interior.Color = RGB(255, 255, 255) 
    Graph.RoundedCorners = True 
    With Graph.Chart.ChartTitle 
        .Caption = " Breakthrough Curve" 
        .Font.Size = 14 
        .Font.Bold = True 
    End With 
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'Deleting Excess Worksheets and activating screen update 
For Each Ws In ThisWorkbook.Worksheets 
    If Application.WorksheetFunction.CountA(Ws.Cells) = 0 Then 
    Application.DisplayAlerts = False 
    Ws.Delete 
    Application.DisplayAlerts = True 
End If 
Next 
 
Application.ScreenUpdating = True 
 
' maximize window, set active sheet to lowest Co, launch userform 3, and hide userform 2 
 
ActiveWindow.WindowState = xlMaximized 
Worksheets(1).Activate 
UserForm2.Hide 
UserForm3.Show 
 
End Sub 
 
UserForm 3 code 
 
 
Private Sub Run_Click() 
 
Dim NSIM As Integer 
Dim NumSheets As Integer 
Dim MaxCnt As Integer 
Dim ILO As Integer 
Dim IHI As Integer 
Dim Scal As Double 
Dim ERRMIN As Double 
Dim ERPCNT As Double 
Dim C(10) As Double 
Dim E(10) As Double 
Dim P(10, 10) As Double 
Dim F(32, 10) As Double 
Dim Co As Double 
Dim Dstar As Double 
Dim ColumnLength As Double 
Dim RSS As Double 
Dim OLDNOBS As Double 
Dim X(10) As Double 
Dim ChartObject As String 
'Dim Phix(10) As Double 
'Dim X(10) As Double 
'Dim Data(2000, 10) As Double 
'Dim Resi(2000) As Double 
'Dim U(2000) As Double 
'Dim W(2000) As Double 
'Dim YCALC(2000) As Double 
'Dim R(10) As Double 
'Dim NP As Integer 
'Dim NP1 As Integer 
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'Dim NOBS As Integer 
'Dim bsw As Integer 
'Dim Kount As Integer 
'Dim Colength As Double 
'dimensions that are commented out are available in the "Public_Variables" Module for use as an array transfer to a 
public function 
DiffusionCoeff = CDbl(DiffusionCoeff.Text) 
Colength = CDbl(Colength.Text) 
ApparentVel = CDbl(ApparentVel.Text) 
Disper = CDbl(Disper.Text) 
Retardation = CDbl(Retardation.Text) 
FirstOrderDecay = CDbl(FirstOrderDecay.Text) 
 
ActiveSheet.Range("V1") = "First guess of Parameters" 
ActiveSheet.Range("v2") = "D* = " 
ActiveSheet.Range("v3") = "Col L = " 
ActiveSheet.Range("v4") = "vapp = " 
ActiveSheet.Range("v5") = "D = " 
ActiveSheet.Range("v6") = "R = " 
ActiveSheet.Range("v7") = "k = " 
 
ActiveSheet.Range("w2") = DiffusionCoeff 
ActiveSheet.Range("w3") = Colength 
ActiveSheet.Range("w4") = ApparentVel 
ActiveSheet.Range("w5") = Disper 
ActiveSheet.Range("w6") = Retardation 
ActiveSheet.Range("w7") = FirstOrderDecay 
 
Worksheets(2).Activate 
 
NP = 4 
NP1 = NP + 1 
manip = "" 'manip is a debugging variable used to denote which manipulation is going on (reflection, expansion, 
contraction) 
NSIM = 1 
MaxCnt = 500 
ER = 1 
ERRMIN = 0.0001 
Dstar = DiffusionCoeff * 60 
ColumnLength = Colength.Text 
X(1) = ApparentVel * 60 
X(2) = Disper 
X(3) = Retardation 
X(4) = FirstOrderDecay * 60 
 
If X(4) > 0 Then X(4) = Log(X(4)) 
 
 
For i = 1 To 10 
    Phix(i) = 0 
Next 
 
' fix input sets values negative to allow code to hold negative parameter constant 
If GWV.Value = True Then Phix(1) = 1 
If Dis.Value = True Then Phix(2) = 1 
If RF.Value = True Then Phix(3) = 1 
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If FODC.Value = True Then Phix(4) = 1 
If X(4) = 0 Then Phix(4) = 1 'if a zero is enetered for the first order decay constant, then it is automatically fixed 
 
'count total sheets to process and set up loop to go through them all with BearPE code 
 
NumSheets = Worksheets.Count 
For q = 2 To NumSheets 
    Worksheets(q).Activate 
 
Co = CDbl(InputBox("Enter Initial Concentration (ug/l)", "Co Input Required")) 
 
    NOBS = ActiveSheet.Range("A2").End(xlDown).Row - 1 
    OLDNOBS = ActiveSheet.Range("E2").End(xlDown).Row 
    'clearing data from Columns E&F from "undo" function in userform 3 
    ActiveSheet.Range("E2:F" & OLDNOBS).Clear 
     
    'clearing data array to remove previous data 
 
    For i = 1 To 2000 
        For J = 1 To NP1 
            data(i, J) = 0# 
        Next 
    Next 
     
    For i = 1 To NOBS 
            data(i, 1) = ActiveSheet.Cells(i + 1, 1) 
            data(i, 2) = ActiveSheet.Cells(i + 1, 2) 
    Next 
     
'starting error function value 
 E(1) = ErrorFun(X, Dstar, data, NOBS, Kount, Resi, U, W, YCALC, Co, NP, BSW, manip) 
     
    'INITIALIZE THE SIMPLEX 
    Kount = 0 
     
    For J = 1 To NP 
        P(1, J) = X(J) 
    Next 
 
    For i = 2 To NP1 
     
        For J = 1 To NP 
            P(i, J) = X(J) 
        Next 
 
    P(i, i - 1) = 1.1 * X(i - 1) 
        If (Phix(i - 1) = 1) Then P(i, i - 1) = X(i - 1) 
        If (Abs(X(i - 1)) < 0.000000000001) Then P(i, i - 1) = 0.0001 
        If (X(4) = 0#) Then P(5, 4) = 0# 
        Next 
 
'Find PLOW Ad PHIGH / BEST = PLOW / WORST = PHIGH 
31   ILO = 1 
     IHI = 1 
       
       For i = 1 To NP1 
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            For J = 1 To NP 
                X(J) = P(i, J) 
            Next 
 
          E(i) = ErrorFun(X, Dstar, data, NOBS, Kount, Resi, U, W, YCALC, Co, NP, BSW, manip) 
          If (E(i) < E(ILO)) Then ILO = i 
          If (E(i) > E(IHI)) Then IHI = i 
       Next 
 
'FIND PNHI THE NEXT HIGHEST NEXT=PNHI 
 
41    NHI = ILO 
      For i = 1 To NP1 
            If (E(i) >= E(NHI) And i <> IHI) Then NHI = i 
43    Next 
 
'COMPUTE THE CENTROID 
      For J = 1 To NP 
           C(J) = -P(IHI, J) 
           For i = 1 To NP1 
                C(J) = C(J) + P(i, J) 
44         Next 
           C(J) = C(J) / NP 
46    Next 
 
i = 1 
 
51 GoTo 52 
 
52 'STOPPING CRITERION 
      If (Kount > MaxCnt) Then 
        UserForm3.Hide 
        UserForm4.Show 
            If MsgBox("EXECUTION TERMINATED; MAXCOUNT EXCEEDED. Please Enter Correct Distance 
from Source and Retry Manually", vbCritical) = vbOK Then 
                Exit Sub 
      End If 
      End If 
 
ERPCNT = Abs(E(ILO) - E(IHI)) / E(ILO) * 100 
       
If (Abs(E(ILO) - E(IHI)) / E(ILO) < ERRMIN) Then GoTo 200 
If Kount = 0 Then GoTo 61 
If (ER < 0.000001) Then GoTo 200 
 
GoTo 61 
 
'REFLECTION 
61    For J = 1 To NP 
           R(J) = 1.9985 * C(J) - 0.9985 * P(IHI, J) 
62    Next 
      manip = "REFLECT" 
      ER = ErrorFun(R, Dstar, data, NOBS, Kount, Resi, U, W, YCALC, Co, NP, BSW, manip) 
   
'REFLECTION AGAIN IF SUCCESSFUL 
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      If (ER < E(ILO)) Then GoTo 91 
      If (ER >= E(IHI)) Then GoTo 122 
 
'REPLACE WORST VERTEX WITH NEW ONE 
79    For J = 1 To NP 
           P(IHI, J) = R(J) 
80    Next 
 
      NSIM = NSIM + 1 
      E(IHI) = ER 
      If (ER > E(NHI)) Then GoTo 51 
      IHI = NHI 
      GoTo 41 
 
'EXPAND THE SIMPLEX 
91    ILO = IHI 
      IHI = NHI 
      For J = 1 To NP 
           X(J) = 1.95 * R(J) - 0.95 * C(J) 
93    Next 
      manip = "EXPAND" 
      EX = ErrorFun(X, Dstar, data, NOBS, Kount, Resi, U, W, YCALC, Co, NP, BSW, manip) 
      If (EX < ER) Then GoTo 104 
       
'R IS BETTER THAN X 
      For J = 1 To NP 
           P(ILO, J) = R(J) 
99    Next 
 
      NSIM = NSIM + 1 
      E(ILO) = ER 
      GoTo 110 
 
'X IS BETTER THAN R 
104   For J = 1 To NP 
           P(ILO, J) = X(J) 
105   Next 
 
      'IF(IDB > 0) then EX,(X(j),j=1,NP) 
      NSIM = NSIM + 1 
      E(ILO) = EX 
110   GoTo 41 
 
i = 1 
 
'CONTRACT THE SIMPLEX 
122   For J = 1 To NP 
           R(J) = 0.5015 * C(J) + 0.4985 * P(IHI, J) 
123   Next 
      manip = "CONTRACT" 
      ER = ErrorFun(R, Dstar, data, NOBS, Kount, Resi, U, W, YCALC, Co, NP, BSW, manip) 
      If (ER < E(ILO)) Then GoTo 91 
      If (ER < E(IHI)) Then GoTo 79 
       
'Scale 
Scal = CDbl(InputBox("Enter Scale to Continue: <0 Expands, >0 Shrinks, =0 Stops", "Scale Factor Required")) 
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If (Scal = 0#) Then GoTo 200 
137   For i = 1 To NP1 
           For J = 1 To NP 
                P(i, J) = P(i, J) + Scal * (P(ILO, J) - P(i, J)) 
138        Next 
139   Next 
      GoTo 31 
 
'WRITING THE OUTPUT 
 
200 
 
ActiveSheet.Range("C1") = "Calculated Conc (ug/l)" 
ActiveSheet.Range("D1") = "Residuals" 
 
For i = 1 To NOBS 
    ActiveSheet.Cells(i + 1, 3) = YCALC(i) 
    ActiveSheet.Cells(i + 1, 4) = Resi(i) 
Next 
 
ActiveSheet.Range("A1:D" & NOBS + 1).Select 'Follwowing With statement formats A through D columns for 
headers and data alignment 
With Selection 
    .ColumnWidth = 10 
    .NumberFormat = "General" 
    .HorizontalAlignment = xlCenter 
    .VerticalAlignment = xlCenter 
    .WrapText = True 
End With 
 
 
     
ActiveSheet.ChartObjects(" Breakthrough Curve").Activate 
For Each Series In ActiveChart.SeriesCollection 
        Series.Delete 
        Next Series 'deletes all series to prevent more than two series from being added to the same chart 
        ActiveChart.SeriesCollection.NewSeries 
 With ActiveChart.SeriesCollection(1) 
        .Values = ActiveSheet.Range("B2:B" & NOBS + 1) 
        .XValues = ActiveSheet.Range("A2:A" & NOBS + 1) 
        .Name = "Observed" 
        .MarkerSize = 6 
        .MarkerStyle = xlMarkerStyleCircle 
    End With 
 
ActiveChart.SeriesCollection.NewSeries 'plots calculated data 
 With ActiveChart.SeriesCollection(2) 
        .Values = ActiveSheet.Range("C2:C" & NOBS + 1) 
        .XValues = ActiveSheet.Range("A2:A" & NOBS + 1) 
        .Name = "Calculated" 
        .MarkerSize = 6 
        .ChartType = xlXYScatterSmoothNoMarkers 
    End With 
'places text in spreadsheet to identify output parameters 
ActiveSheet.Range("G28") = "OPTIMIZED PARAMETER ESTIMATES" 
ActiveSheet.Range("G30") = "VELOCITY(m/sec)" 
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ActiveSheet.Range("G31") = "DISPERSIVITY (m)" 
ActiveSheet.Range("G32") = "RF" 
ActiveSheet.Range("G33") = "FODC ( /sec)" 
ActiveSheet.Range("G34") = "RESDIUAL SUM OF SQUARES =" 
ActiveSheet.Range("G39") = "INITIAL GUESSES AND INPUT OF PARAMETERS" 
ActiveSheet.Range("G41") = "VELOCITY(m/sec)" 
ActiveSheet.Range("G42") = "DISPERSIVITY (m)" 
ActiveSheet.Range("G43") = "RF" 
ActiveSheet.Range("G44") = "FODC ( /sec)" 
ActiveSheet.Range("G45") = "ColumnLength (m)" 
ActiveSheet.Range("G46") = "DIFFUSION COEFF (m^2/sec)" 
ActiveSheet.Range("G47") = "Co (ug/l)" 
ActiveSheet.Range("M40") = "FIX" 
ActiveSheet.Range("G1").ColumnWidth = 10 ' allows all text to be seen 
 
 
'places values for optimized parameter estimates 
ActiveSheet.Range("J30") = X(1) / 60 
ActiveSheet.Range("J31") = X(2) 
ActiveSheet.Range("J32") = X(3) 
ActiveSheet.Range("J33") = Exp(X(4)) / 60 
ActiveSheet.Range("K34") = E(ILO) 
 
If (Co) = True Then 
ActiveSheet.Range("J47") = CDbl(InitialConcentration.Text) 
End If 
 
' places values for initial guesses 
ActiveSheet.Range("J41") = CDbl(ApparentVel.Text) 
ActiveSheet.Range("J42") = CDbl(Disper.Text) 
ActiveSheet.Range("J43") = CDbl(Retardation.Text) 
ActiveSheet.Range("J44") = CDbl(FirstOrderDecay.Text) 
ActiveSheet.Range("J45") = CDbl(Colength.Text) 
ActiveSheet.Range("J46") = CDbl(DiffusionCoeff.Text) 
ActiveSheet.Range("J47") = Co 
'denoting parameters fixed at input 
If GWV.Value = True Then ActiveSheet.Range("M41") = "Y" 
If Dis.Value = True Then ActiveSheet.Range("M42") = "Y" 
If RF.Value = True Then ActiveSheet.Range("M43") = "Y" 
If FODC.Value = True Then ActiveSheet.Range("M44") = "Y" 
If GWV.Value = False Then ActiveSheet.Range("M41") = " " 
If Dis.Value = False Then ActiveSheet.Range("M42") = " " 
If RF.Value = False Then ActiveSheet.Range("M43") = " " 
If FODC.Value = False Then ActiveSheet.Range("M44") = " " 
ActiveSheet.Range("M45:M46") = "Y" 'distance and diffusion coeff never varied 
 
'code for confidence int 
Confit = CONFINT(X, Dstar, data, NOBS, Kount, Resi, U, W, YCALC, Co, NP, BSW, Phix, R, C) 
 
Next 
 
UserForm3.Hide 
 
 
SheetCounter = 1 
Sheets(Ctarget(SheetCounter)).Activate 
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UserForm9.Show 
 
 
End Sub 
 
Public Function ErrorFun(X, Dstar As Double, data, NOBS As Integer, Kount As Integer, Resi, U, W, YCALC, Co 
As Double, NP As Integer, BSW As Integer, manip As String) As Double 
 
   'COMPUTES THE ERROR FUNCTION FOR THE DATA SET 
    'SMALLER VALUE IS BETTER 
 
Dim SMRESI As Double 
Dim u1 As Double 
Dim u2 As Double 
Dim uA As Double 
Dim uB As Double 
      u1 = 0# 
      u2 = 0# 
       
      ErrorFun = 0# 
      SMRESI = 0# 
 
If Bisquare.Value = True Then BSW = 1 
If Relative.Value = True Then BSW = 2 
If None.Value = True Then BSW = 0 
 
'Sometimes negative values are predicted by the optimizer that are not real and will cause VBA run time errors. 
'The following function simply converts them to positive values prior to evaluating the error function 
 For J = 1 To NP - 1 
        If X(J) < 0 Then X(J) = -X(J) 
 Next 
If (X(4) <> 0#) Then X(4) = Exp(X(4)) 
         
For i = 1 To 2000 
    Resi(i) = 0# 
    U(i) = 0# 
    W(i) = 0# 
10 Next 
 
For i = 1 To NOBS 
 
'CHANGE THE NEXT STATEMENT TO CHANGE THE FUNCTION BEING FIT 
      'SquareRoot = num ^ (1 / 2) 
      DCOEF = Dstar + X(1) * X(2) 
      ColumnLength = CDbl(Colength.Text) 
      'If (Data(i, 1) <= 0#) Then 
           'EXPU1 = 0# 
           'GoTo 20 
      'Else 
           u1 = (X(1) * ColumnLength / (2 * DCOEF)) * (1 - (1 + (4 * X(4) * DCOEF) / X(1) ^ 2) ^ 0.5) 
           EXPU1 = Exp(u1) 
      'End If 
 
20    'If (Data(i, 1) <= ColumnLength / X(1)) Then 
           'ERFCU2 = 0# 
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           'GoTo 30 
       'Else 
           u2 = (X(3) * ColumnLength - X(1) * data(i, 1) * (1 + (4 * X(4) * DCOEF / X(1) ^ 2)) ^ 0.5) / (2 * (DCOEF * 
X(3) * data(i, 1)) ^ 0.5) 
            
           ERFCU2 = ERFC(u2) 
           uA = uA 
      'End If 
     
30    GoTo 40 
 
40    YCALC(i) = 0.5 * Co * (EXPU1 * ERFCU2) 
      Resi(i) = data(i, 2) - YCALC(i) 
      SMRESI = SMRESI + Abs(Resi(i)) 
60    Next 
       
      If (BSW = 1) Then 
           C = 4# * SMRESI / CDbl(NOBS) 
           For i = 1 To NOBS 
                U(i) = Resi(i) / C 
                W(i) = (1 - U(i) * U(i)) ^ 2 
                If (U(i) > 1#) Then W(i) = 0# 
                ErrorFun = ErrorFun + W(i) * Resi(i) * Resi(i) 
70         Next 
      End If 
       
      If (BSW = 2) Then 
           For i = 1 To NOBS 
                If (data(i, 2) = 0#) Then 
                     W(i) = 0# 
                Else 
                     W(i) = 1# / (data(i, 2) ^ 2#) 
                End If 
                ErrorFun = ErrorFun + W(i) * Resi(i) * Resi(i) 
75         Next 
      End If 
       
      If (BSW = 0) Then 
        For i = 1 To NOBS 
              ErrorFun = ErrorFun + Resi(i) * Resi(i) 
80      Next 
       
      End If 
       
      Kount = Kount + 1 
       
    If (X(4) > 0#) Then X(4) = Log(X(4)) 
       
    
'fills calculated data and residuals into spreasheet for debugging purposes. X(1) through X(4) units are converted to 
those used in BEARPE for comparison 
           
      'ActiveSheet.Cells(Kount, 17) = X(1)/60 
      'ActiveSheet.Cells(Kount, 18) = X(2) 
      'ActiveSheet.Cells(Kount, 19) = X(3) 
      'ActiveSheet.Cells(Kount, 20) = X(4)/60 
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      'ActiveSheet.Cells(Kount, 23) = manip 
      'ActiveSheet.Cells(Kount, 24) = ErrorFun 
 
  
  
End Function 
 
 
Public Function ERFC(arg As Double) 
 
 
'COMPLIMENTARY ERROR FUNCTION SUBROUTINE REAL*8 FUNCTION ERFC(ARG) 
'COMPUTES THE COMPLIMENTARY ERROR FUNCTIOn FOR AN ARGUMENT 
'IMPLICIT REAL*8 (A-H,L,M,O-Z) 
'PARAMETER (P=0.3275911, A1=0.254829592, A2=-0.284496736, 
'    1           A3=1.421413741, A4=-1.453152027, A5=1.061405429) 
'TU = 1 / (1 + p * Abs(ARG)) 
 
'     ERFC=(A1*TU+A2*TU**2+A3*TU**3+A4*TU**4+A5*TU**5) 
'    1      *EXP(-(ARG**2)) 
'     IF(ARG .LT. 0) ERFC=2-ERFC 
 
'     RETURN 
'     END 
 
 
Dim P As Double 
Dim A1 As Double 
Dim A2 As Double 
Dim A3 As Double 
Dim A4 As Double 
Dim A5 As Double 
Dim TU As Double 
 
P = 0.3275911 
A1 = 0.254829592 
A2 = -0.284496736 
A3 = 1.421413741 
A4 = -1.453152027 
A5 = 1.061405429 
 
 
TU = 1 / (1 + P * Abs(arg)) 
 
     ERFC = (A1 * TU + A2 * TU ^ 2 + A3 * TU ^ 3 + A4 * TU ^ 4 + A5 * TU ^ 5) * Exp(-(arg ^ 2)) 
      
     If (arg < 0) Then ERFC = 2 - ERFC 
 
 
'*********** FUNCTION DERFC(ARG) 
'   ROUTINE FOR ERFC (ARG) BY SERIES EXPANSION 
'   DOUBLE PRECISION VERSION 
       
       
 '     Dim IL As Integer 
 '     Dim LJL As Integer 
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 '     Dim JLJ As Integer 
 '     Dim XOX As Double 
 '     Dim SUMXOX As Double 
 '     Dim Fact As Double 
 '     Dim UOX As Double 
 '     Dim US As Double 
 '     Dim ZOZ As Double 
 '     Dim TXOX As Double 
 '     Dim OLDFACT As Double 
       
 
  '    Pi = 3.14159265358 
  '    SUMXOX = 1# 
  '    XOX = Abs(arg) 
  '    If (XOX > 3.4) Then GoTo 5160 
 
'  THIS SERIES EXPANSION IS FOR ARG <= 3.4 
 
  '    Fact = 1# 
   '   IL = 1 
    '  UOX = XOX * XOX 
    '  US = UOX 
'5085  Fact = Fact * IL 
'      ZOZ = -1# 
'      If ((IL / 2) * 2 = IL) Then ZOZ = 1# 
'      TXOX = UOX / ((2# * IL + 1#) * Fact) 
'      SUMXOX = SUMXOX + ZOZ * TXOX 
'      UOX = UOX * US 
'      IL = IL + 1 
 
 
'     STOP THIE SUMMATION WHEN THE CURRENT TERM 
'     IS LESS THAN 1E-20 
 
 
 '     If (TXOX > 1E-20) Then GoTo 5085 
 '     ERFC = 1# - 2# * XOX / (Pi) ^ 0.5 * SUMXOX 
 '     If (arg < 0#) Then ERFC = 2# - ERFC 
 '     GoTo 5430 
'5160  If (XOX > 14#) Then GoTo 5410 
 
'   THIS SERIES EXPANSION IS FOR ARG>3.4 
 
  '    UOX = 2# * XOX * XOX 
  '    LJL = 1 
  '    JLJ = 1 
  '    Fact = 1# 
'5300  OLDFAC = Fact 
'      Fact = Fact / UOX * JLJ 
 
'  STOP THE SUMMATION WHEN THE CURRENT TERM BECOMES LARGER THAN 
'  THE PREVIOUS TERM 
 
'      If (Fact > OLDFAC) Then GoTo 5333 
'      ZOZ = -1# 
'      If ((LJL / 2) * 2 = LJL) Then ZOZ = 1# 
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'      TXOX = ZOZ * Fact 
'      SUMXOX = SUMXOX + TXOX 
'      LJL = LJL + 1 
'      JLJ = JLJ + 2 
'5333  ERFC = Exp(-XOX * XOX) / (Pi) ^ 0.5 / XOX * SUMXOX 
'      GoTo 5420 
'5410  ERFC = 0# 
'5420  If (arg < 0#) Then ERFC = 2# - ERFC 
5430 End Function 
 
Public Function CONFINT(X, Dstar As Double, data, NOBS As Integer, Kount As Integer, Resi, U, W, YCALC, 
Co As Double, NP As Integer, BSW As Integer, Phix, R, C) As Double 
       
Dim NME(4) As String 
       
NME(1) = "VELOCITY(m/sec)" 
NME(2) = "DISPERSIVITY(m)" 
NME(3) = "RF" 
NME(4) = "FODC(1/sec)" 
 
 
ActiveSheet.Range("G50:K60").Clear 
 
  'DEFINING NPP TO BE THE NUMBER OF PARAMETERS BEING FIT 
      NPP = 0 
      For i = 1 To NP 
           If Phix(i) = 0 Then NPP = NPP + 1 
10    Next 
      If NPP = 0 Then GoTo 300 
 
   'DETERMINING THE CRITICAL RESIDUAL SUM OF SQUARES 
   'WHICH DEFINES THE UPPER AND LOWER CONFIDENCE INTERVAL 
 
      ER = ErrorFun(X, Dstar, data, NOBS, Kount, Resi, U, W, YCALC, Co, NP, BSW, manip) 
      'FESTI = FESTIM(NOBS, NPP, IDB) alternative below 
      ActiveSheet.Range("G51") = NOBS 'allows NOBS to be used in Excel's FINV function 
      ActiveSheet.Range("G50") = "=FInv(0.05, G51-4, 4)" '0.05 = 95% confidence interval, G51 = NOBS, 4 = NP, 
degrees of freedom = NOBS-NP, NP 
      FESTI = ActiveSheet.Range("G50").Value 
      'Fnpp = float(NPP) 
      'FNOBS = float(NOBS) 
      'RSSCRIT = ER * (1 + Fnpp / (FNOBS - Fnpp) * FESTI) 
       RSSCRIT = ER * (1 + NPP / (NOBS - NPP) * FESTI) 
 
'    LOOPING THROUGH THE PARAMETERS TO DETERMINE CONFIDENCE INTERVALS 
 
For i = 1 To NP 
    For J = 1 To NP 
       R(J) = X(J) 
       C(J) = X(J) 
90  Next 
 
     If Phix(i) = 1 Then GoTo 199 
 
'   LOOKING FOR THE UPPER LIMIT 
           NCOUNT = 1 
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100 
            
     'IF(FLOAT(I) .EQ. 4. .AND. X(I) .LT. 0.) THEN 
      If i = 4 And X(i) < 0 Then 
                R(i) = R(i) - 0.1 * X(i) 
           Else 
                R(i) = R(i) + 0.1 * X(i) 
           End If 
           ER = ErrorFun(R, Dstar, data, NOBS, Kount, Resi, U, W, YCALC, Co, NP, BSW, manip) 
           If R(4) < -100 Or R(4) > 100 Then GoTo 120 
           If NCOUNT > 1 Then 
                If Abs((ERCHK - ER) / ER * 100) < 0.001 Then 
                     R(i) = -1# 
                     GoTo 120 
                End If 
           Else 
                NCOUNT = 2 
           End If 
           ERCHK = ER 
           If ER < RSSCRIT Then GoTo 100 
 
110 
 
        'IF(FLOAT(I) .EQ. 4. .AND. X(I) .LT. 0.) THEN 
        If i = 4 And X(i) < 0 Then 
 
            R(i) = R(i) + 0.01 * X(i) 
            Else 
            R(i) = R(i) - 0.01 * X(i) 
        End If 
            
    ER = ErrorFun(R, Dstar, data, NOBS, Kount, Resi, U, W, YCALC, Co, NP, BSW, manip) 
        If ER > RSSCRIT Then GoTo 110 
 
      'LOOKING FOR THE LOWER LIMIT 
120 
        'IF(FLOAT(I) .EQ. 4. .AND. X(I) .LT. 0.) THEN 
         If i = 4 And X(i) < 0 Then 
                C(i) = C(i) + 0.1 * X(i) 
           Else 
                C(i) = C(i) - 0.1 * X(i) 
           End If 
          'IF(C(I) .LT. 0. .AND. FLOAT(I) .NE. 4.) THEN 
          If C(i) < 0 And i <> 4 Then 
                C(i) = C(i) + 0.1 * X(i) 
125             C(i) = C(i) - 0.01 * X(i) 
                If C(i) < 0 Then 
                     C(i) = 0# 
                     GoTo 249 
                End If 
           End If 
            
           ER = ErrorFun(C, Dstar, data, NOBS, Kount, Resi, U, W, YCALC, Co, NP, BSW, manip) 
           If C(4) < -100 Or C(4) > 100 Then GoTo 249 
           If ER < RSSCRIT Then GoTo 120 
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130 
           'IF(FLOAT(I) .EQ. 4. .AND. X(I) .LT. 0.) THEN 
           If i = 4 And X(i) < 0 Then 
                C(i) = C(i) - 0.01 * X(i) 
           Else 
                C(i) = C(i) + 0.01 * X(i) 
           End If 
            
           ER = ErrorFun(C, Dstar, data, NOBS, Kount, Resi, U, W, YCALC, Co, NP, BSW, manip) 
           If ER > RSSCRIT Then GoTo 130 
 
249 
           If i = 4 Then 
                X(i) = Exp(X(i)) 
                If R(i) < -99 Then 
                     R(i) = 0# 
                Else 
                     R(i) = Exp(R(i)) 
                End If 
                C(i) = Exp(C(i)) 
           End If 
 
259  'Writing to the output file 
         
        ActiveSheet.Range("G50") = "95% CONFIDENCE INTERVALS FOR ESTIMATED PARAMETERS" 
        ActiveSheet.Range("G51") = "Parameter" 
        ActiveSheet.Range("I51") = "Low" 
        ActiveSheet.Range("J51") = "Optimized" 
        ActiveSheet.Range("K51") = "High" 
        ActiveSheet.Range("G60") = "CRITICAL RSS VALUE =" 
        ActiveSheet.Range("J60") = RSSCRIT 
 
        If R(i) > 0 Then 
         
            ActiveSheet.Cells(i + 52, 7) = NME(i) 
            ActiveSheet.Cells(i + 52, 9) = C(i) 'lower limit 
            ActiveSheet.Cells(i + 52, 10) = X(i) 'optimized 
            ActiveSheet.Cells(i + 52, 11) = R(i) 'upper limit 
                     
                If i = 1 Then 'converts velocity to m/sec 
                    ActiveSheet.Cells(i + 52, 9) = C(i) / 60 'lower limit 
                    ActiveSheet.Cells(i + 52, 10) = X(i) / 60 'optimized 
                    ActiveSheet.Cells(i + 52, 11) = R(i) / 60 'upper limit 
                End If 
                 
                If i = 4 Then ' converts FODC to /sec 
                    ActiveSheet.Cells(i + 52, 9) = C(i) / 60 'lower limit 
                    ActiveSheet.Cells(i + 52, 10) = X(i) / 60 'optimized 
                    ActiveSheet.Cells(i + 52, 11) = R(i) / 60 'upper limit 
                End If 
                 
           Else 
            ActiveSheet.Range("G52") = "No Convergence" 
           End If 
199 
200   Next 
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        If R(i) = 0 Then 
         
            ActiveSheet.Cells(i + 52, 7) = "" 
            ActiveSheet.Cells(i + 52, 9) = "" 
            ActiveSheet.Cells(i + 52, 10) = "" 
            ActiveSheet.Cells(i + 52, 11) = "" 
        End If 
 
299 
300 
      If X(4) > 0 Then 
           X(4) = Log(X(4)) 
      Else 
           X(4) = 0# 
      End If 
 
End Function 
 
UserForm 4 code 
Private Sub EnterDefaults_Click() 
Dim sh As String 
 
sh = ActiveSheet.Name 
 
Worksheets(1).Activate 
DiffusionCoeff = ActiveSheet.Range("w2") 
Colength = ActiveSheet.Range("w3") 
ApparentVel = ActiveSheet.Range("w4") 
Disper = ActiveSheet.Range("w5") 
Retardation = ActiveSheet.Range("w6") 
FirstOrderDecay = ActiveSheet.Range("w7") 
 
Sheets(sh).Activate 
 
 
End Sub 
 
Private Sub EnableButton_Click() 
 
Dim White As String 
Dim Grey As String 
 
White = "&H80000005" 
Grey = "&H8000000B" 
 
If UserForm4.EnableButton.Value = True Then 
    InCo.BackColor = White 
    InCo.Enabled = True 
End If 
 
End Sub 
 
Private Sub DisableButton_Click() 
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Dim White As String 
Dim Grey As String 
 
White = "&H80000005" 
Grey = "&H8000000B" 
 
If UserForm4.DisableButton.Value = True Then 
    InCo.BackColor = Grey 
    InCo.Enabled = False 
End If 
 
End Sub 
 
 
Private Sub Run_Click() 
 
Dim NSIM As Integer 
Dim NumSheets As Integer 
Dim MaxCnt As Integer 
Dim ILO As Integer 
Dim IHI As Integer 
Dim Scal As Double 
Dim ERRMIN As Double 
Dim ERPCNT As Double 
Dim C(10) As Double 
Dim E(10) As Double 
Dim P(10, 10) As Double 
Dim F(32, 10) As Double 
Dim Co As Double 
Dim Dstar As Double 
Dim ColumnLength As Double 
Dim RSS As Double 
Dim OLDNOBS As Double 
Dim X(10) As Double 
Dim ChartObject As String 
Dim InitialConcentration As Double 
Dim Edit As Integer 
'Dim Phix(10) As Double 
'Dim X(10) As Double 
'Dim Data(2000, 10) As Double 
'Dim Resi(2000) As Double 
'Dim U(2000) As Double 
'Dim W(2000) As Double 
'Dim YCALC(2000) As Double 
'Dim R(10) As Double 
'Dim NP As Integer 
'Dim NP1 As Integer 
'Dim NOBS As Integer 
'Dim bsw As Integer 
'Dim Kount As Integer 
'Dim Colength As Double 
'Dim Co As Double 
'dimensions that are commented out are available in the "Public_Variables" Module for use as an array transfer to a 
public function 
 
NP = 4 
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NP1 = NP + 1 
manip = "" 'manip is a debugging variable used to denote which manipulation is going on (reflection, expansion, 
contraction) 
NSIM = 1 
MaxCnt = 500 
ER = 1 
ERRMIN = 0.0001 
If EnableButton = True Then 
    Co = CDbl(InCo.Text) 
    Edit = 1 
Else 
    Co = ActiveSheet.Range("J47") 
End If 
 
Dstar = CDbl(DiffusionCoeff.Text) * 60 
ColumnLength = CDbl(Colength.Text) 
X(1) = CDbl(ApparentVel) * 60 
X(2) = CDbl(Disper) 
X(3) = CDbl(Retardation.Text) 
X(4) = CDbl(FirstOrderDecay.Text) * 60 
 
If X(4) > 0 Then X(4) = Log(X(4)) 
 
 
For i = 1 To 10 
    Phix(i) = 0 
Next 
 
' fix input sets values negative to allow code to hold negative parameter constant 
If GWV.Value = True Then Phix(1) = 1 
If Dis.Value = True Then Phix(2) = 1 
If RF.Value = True Then Phix(3) = 1 
If FODC.Value = True Then Phix(4) = 1 
If X(4) = 0 Then Phix(4) = 1 'if a zero is enetered for the first order decay constant, then it is automatically fixed 
 
'count total sheets to process and set up loop to go through them all with BearPE code 
 
NumSheets = Worksheets.Count 
'For q = 2 To NumSheets 
    'Worksheets(q).Activate 
 
 
 
    NOBS = ActiveSheet.Range("A2").End(xlDown).Row - 1 
    OLDNOBS = ActiveSheet.Range("E2").End(xlDown).Row 
    'clearing data from Columns E&F from "undo" function in userform 3 
    ActiveSheet.Range("E2:F" & OLDNOBS).Clear 
     
    'clearing data array to remove previous data 
 
    For i = 1 To 2000 
        For J = 1 To NP1 
            data(i, J) = 0# 
        Next 
    Next 
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    For i = 1 To NOBS 
            data(i, 1) = ActiveSheet.Cells(i + 1, 1) 
            data(i, 2) = ActiveSheet.Cells(i + 1, 2) 
    Next 
     
'starting error function value 
 E(1) = ErrorFun(X, Dstar, data, NOBS, Kount, Resi, U, W, YCALC, Co, NP, BSW, manip) 
     
    'INITIALIZE THE SIMPLEX 
    Kount = 0 
     
    For J = 1 To NP 
        P(1, J) = X(J) 
    Next 
 
    For i = 2 To NP1 
     
        For J = 1 To NP 
            P(i, J) = X(J) 
        Next 
 
    P(i, i - 1) = 1.1 * X(i - 1) 
        If (Phix(i - 1) = 1) Then P(i, i - 1) = X(i - 1) 
        If (Abs(X(i - 1)) < 0.000000000001) Then P(i, i - 1) = 0.0001 
        If (X(4) = 0#) Then P(5, 4) = 0# 
        Next 
 
'Find PLOW Ad PHIGH / BEST = PLOW / WORST = PHIGH 
31   ILO = 1 
     IHI = 1 
       
       For i = 1 To NP1 
     
            For J = 1 To NP 
                X(J) = P(i, J) 
            Next 
 
          E(i) = ErrorFun(X, Dstar, data, NOBS, Kount, Resi, U, W, YCALC, Co, NP, BSW, manip) 
          If (E(i) < E(ILO)) Then ILO = i 
          If (E(i) > E(IHI)) Then IHI = i 
       Next 
 
'FIND PNHI THE NEXT HIGHEST NEXT=PNHI 
 
41    NHI = ILO 
      For i = 1 To NP1 
            If (E(i) >= E(NHI) And i <> IHI) Then NHI = i 
43    Next 
 
'COMPUTE THE CENTROID 
      For J = 1 To NP 
           C(J) = -P(IHI, J) 
           For i = 1 To NP1 
                C(J) = C(J) + P(i, J) 
44         Next 
           C(J) = C(J) / NP 
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46    Next 
 
i = 1 
 
51 GoTo 52 
 
52 'STOPPING CRITERION 
      If (Kount > MaxCnt) Then 
        UserForm3.Hide 
        UserForm4.Show 
            If MsgBox("EXECUTION TERMINATED; MAXCOUNT EXCEEDED. Please Enter Correct Distance 
from Source and Retry Manually", vbCritical) = vbOK Then 
                Exit Sub 
      End If 
      End If 
 
ERPCNT = Abs(E(ILO) - E(IHI)) / E(ILO) * 100 
       
If (Abs(E(ILO) - E(IHI)) / E(ILO) < ERRMIN) Then GoTo 200 
If Kount = 0 Then GoTo 61 
If (ER < 0.000001) Then GoTo 200 
 
GoTo 61 
 
'REFLECTION 
61    For J = 1 To NP 
           R(J) = 1.9985 * C(J) - 0.9985 * P(IHI, J) 
62    Next 
      manip = "REFLECT" 
      ER = ErrorFun(R, Dstar, data, NOBS, Kount, Resi, U, W, YCALC, Co, NP, BSW, manip) 
   
'REFLECTION AGAIN IF SUCCESSFUL 
      If (ER < E(ILO)) Then GoTo 91 
      If (ER >= E(IHI)) Then GoTo 122 
 
'REPLACE WORST VERTEX WITH NEW ONE 
79    For J = 1 To NP 
           P(IHI, J) = R(J) 
80    Next 
 
      NSIM = NSIM + 1 
      E(IHI) = ER 
      If (ER > E(NHI)) Then GoTo 51 
      IHI = NHI 
      GoTo 41 
 
'EXPAND THE SIMPLEX 
91    ILO = IHI 
      IHI = NHI 
      For J = 1 To NP 
           X(J) = 1.95 * R(J) - 0.95 * C(J) 
93    Next 
      manip = "EXPAND" 
      EX = ErrorFun(X, Dstar, data, NOBS, Kount, Resi, U, W, YCALC, Co, NP, BSW, manip) 
      If (EX < ER) Then GoTo 104 
       



 

191 
 

'R IS BETTER THAN X 
      For J = 1 To NP 
           P(ILO, J) = R(J) 
99    Next 
 
      NSIM = NSIM + 1 
      E(ILO) = ER 
      GoTo 110 
 
'X IS BETTER THAN R 
104   For J = 1 To NP 
           P(ILO, J) = X(J) 
105   Next 
 
      'IF(IDB > 0) then EX,(X(j),j=1,NP) 
      NSIM = NSIM + 1 
      E(ILO) = EX 
110   GoTo 41 
 
i = 1 
 
'CONTRACT THE SIMPLEX 
122   For J = 1 To NP 
           R(J) = 0.5015 * C(J) + 0.4985 * P(IHI, J) 
123   Next 
      manip = "CONTRACT" 
      ER = ErrorFun(R, Dstar, data, NOBS, Kount, Resi, U, W, YCALC, Co, NP, BSW, manip) 
      If (ER < E(ILO)) Then GoTo 91 
      If (ER < E(IHI)) Then GoTo 79 
       
'Scale 
Scal = CDbl(InputBox("Enter Scale to Continue: <0 Expands, >0 Shrinks, =0 Stops", "Scale Factor Required")) 
If (Scal = 0#) Then GoTo 200 
137   For i = 1 To NP1 
           For J = 1 To NP 
                P(i, J) = P(i, J) + Scal * (P(ILO, J) - P(i, J)) 
138        Next 
139   Next 
      GoTo 31 
 
'WRITING THE OUTPUT 
 
200 
 
ActiveSheet.Range("C1") = "Calculated Conc (ug/l)" 
ActiveSheet.Range("D1") = "Residuals" 
 
For i = 1 To NOBS 
    ActiveSheet.Cells(i + 1, 3) = YCALC(i) 
    ActiveSheet.Cells(i + 1, 4) = Resi(i) 
Next 
 
ActiveSheet.Range("A1:D" & NOBS + 1).Select 'Follwowing With statement formats A through D columns for 
headers and data alignment 
With Selection 
    .ColumnWidth = 10 
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    .NumberFormat = "General" 
    .HorizontalAlignment = xlCenter 
    .VerticalAlignment = xlCenter 
    .WrapText = True 
End With 
 
 
     
ActiveSheet.ChartObjects(" Breakthrough Curve").Activate 
For Each Series In ActiveChart.SeriesCollection 
        Series.Delete 
        Next Series 'deletes all series to prevent more than two series from being added to the same chart 
        ActiveChart.SeriesCollection.NewSeries 
 With ActiveChart.SeriesCollection(1) 
        .Values = ActiveSheet.Range("B2:B" & NOBS + 1) 
        .XValues = ActiveSheet.Range("A2:A" & NOBS + 1) 
        .Name = "Observed" 
        .MarkerSize = 6 
        .MarkerStyle = xlMarkerStyleCircle 
    End With 
 
ActiveChart.SeriesCollection.NewSeries 'plots calculated data 
 With ActiveChart.SeriesCollection(2) 
        .Values = ActiveSheet.Range("C2:C" & NOBS + 1) 
        .XValues = ActiveSheet.Range("A2:A" & NOBS + 1) 
        .Name = "Calculated" 
        .MarkerSize = 6 
        .ChartType = xlXYScatterSmoothNoMarkers 
    End With 
'places text in spreadsheet to identify output parameters 
ActiveSheet.Range("G28") = "OPTIMIZED PARAMETER ESTIMATES" 
ActiveSheet.Range("G30") = "VELOCITY(m/sec)" 
ActiveSheet.Range("G31") = "DISPERSIVITY (m)" 
ActiveSheet.Range("G32") = "RF" 
ActiveSheet.Range("G33") = "FODC ( /sec)" 
ActiveSheet.Range("G34") = "RESDIUAL SUM OF SQUARES =" 
ActiveSheet.Range("G39") = "INITIAL GUESSES AND INPUT OF PARAMETERS" 
ActiveSheet.Range("G41") = "VELOCITY(m/sec)" 
ActiveSheet.Range("G42") = "DISPERSIVITY (m)" 
ActiveSheet.Range("G43") = "RF" 
ActiveSheet.Range("G44") = "FODC ( /sec)" 
ActiveSheet.Range("G45") = "ColumnLength (m)" 
ActiveSheet.Range("G46") = "DIFFUSION COEFF (m^2/sec)" 
ActiveSheet.Range("G47") = "Co (ug/l)" 
ActiveSheet.Range("M40") = "FIX" 
ActiveSheet.Range("G1").ColumnWidth = 10 ' allows all text to be seen 
 
 
'places values for optimized parameter estimates 
ActiveSheet.Range("J30") = X(1) / 60 
ActiveSheet.Range("J31") = X(2) 
ActiveSheet.Range("J32") = X(3) 
ActiveSheet.Range("J33") = Exp(X(4)) / 60 
ActiveSheet.Range("K34") = E(ILO) 
' places values for initial guesses 
ActiveSheet.Range("J41") = CDbl(ApparentVel.Text) 
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ActiveSheet.Range("J42") = CDbl(Disper.Text) 
ActiveSheet.Range("J43") = CDbl(Retardation.Text) 
ActiveSheet.Range("J44") = CDbl(FirstOrderDecay.Text) 
ActiveSheet.Range("J45") = CDbl(Colength.Text) 
ActiveSheet.Range("J46") = CDbl(DiffusionCoeff.Text) 
'ActiveSheet.Range("J47") = CDbl(InCo.Text) 
 
If InCo.Enabled = True Then 
ActiveSheet.Range("J47") = CDbl(InCo.Text) 
End If 
'denoting parameters fixed at input 
If GWV.Value = True Then ActiveSheet.Range("M41") = "Y" 
If Dis.Value = True Then ActiveSheet.Range("M42") = "Y" 
If RF.Value = True Then ActiveSheet.Range("M43") = "Y" 
If FODC.Value = True Then ActiveSheet.Range("M44") = "Y" 
If GWV.Value = False Then ActiveSheet.Range("M41") = " " 
If Dis.Value = False Then ActiveSheet.Range("M42") = " " 
If RF.Value = False Then ActiveSheet.Range("M43") = " " 
If FODC.Value = False Then ActiveSheet.Range("M44") = " " 
ActiveSheet.Range("M45:M46") = "Y" 'distance and diffusion coeff never varied 
 
'code for confidence int 
Confit = CONFINT(X, Dstar, data, NOBS, Kount, Resi, U, W, YCALC, Co, NP, BSW, Phix, R, C) 
 
'Next 
 
UserForm4.Hide 
UserForm9.Show 
 
End Sub 
 
Public Function ErrorFun(X, Dstar As Double, data, NOBS As Integer, Kount As Integer, Resi, U, W, YCALC, Co 
As Double, NP As Integer, BSW As Integer, manip As String) As Double 
 
   'COMPUTES THE ERROR FUNCTION FOR THE DATA SET 
    'SMALLER VALUE IS BETTER 
 
Dim SMRESI As Double 
Dim u1 As Double 
Dim u2 As Double 
Dim uA As Double 
Dim uB As Double 
      u1 = 0# 
      u2 = 0# 
       
      ErrorFun = 0# 
      SMRESI = 0# 
 
If Bisquare.Value = True Then BSW = 1 
If Relative.Value = True Then BSW = 2 
If None.Value = True Then BSW = 0 
 
'Sometimes negative values are predicted by the optimizer that are not real and will cause VBA run time errors. 
'The following function simply converts them to positive values prior to evaluating the error function 
 For J = 1 To NP - 1 
        If X(J) < 0 Then X(J) = -X(J) 
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 Next 
If (X(4) <> 0#) Then X(4) = Exp(X(4)) 
         
For i = 1 To 2000 
    Resi(i) = 0# 
    U(i) = 0# 
    W(i) = 0# 
10 Next 
 
For i = 1 To NOBS 
 
'CHANGE THE NEXT STATEMENT TO CHANGE THE FUNCTION BEING FIT 
      'SquareRoot = num ^ (1 / 2) 
      DCOEF = Dstar + X(1) * X(2) 
      ColumnLength = CDbl(Colength.Text) 
      'Co = CDbl(InCo.Text) 
      'If (Data(i, 1) <= 0#) Then 
           'EXPU1 = 0# 
           'GoTo 20 
      'Else 
           u1 = (X(1) * ColumnLength / (2 * DCOEF)) * (1 - (1 + (4 * X(4) * DCOEF) / X(1) ^ 2) ^ 0.5) 
           EXPU1 = Exp(u1) 
      'End If 
 
20    'If (Data(i, 1) <= ColumnLength / X(1)) Then 
           'ERFCU2 = 0# 
           'GoTo 30 
       'Else 
           u2 = (X(3) * ColumnLength - X(1) * data(i, 1) * (1 + (4 * X(4) * DCOEF / X(1) ^ 2)) ^ 0.5) / (2 * (DCOEF * 
X(3) * data(i, 1)) ^ 0.5) 
            
           ERFCU2 = ERFC(u2) 
           uA = uA 
      'End If 
     
30    GoTo 40 
 
40    YCALC(i) = 0.5 * Co * (EXPU1 * ERFCU2) 
      Resi(i) = data(i, 2) - YCALC(i) 
      SMRESI = SMRESI + Abs(Resi(i)) 
60    Next 
       
      If (BSW = 1) Then 
           C = 4# * SMRESI / CDbl(NOBS) 
           For i = 1 To NOBS 
                U(i) = Resi(i) / C 
                W(i) = (1 - U(i) * U(i)) ^ 2 
                If (U(i) > 1#) Then W(i) = 0# 
                ErrorFun = ErrorFun + W(i) * Resi(i) * Resi(i) 
70         Next 
      End If 
       
      If (BSW = 2) Then 
           For i = 1 To NOBS 
                If (data(i, 2) = 0#) Then 
                     W(i) = 0# 
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                Else 
                     W(i) = 1# / (data(i, 2) ^ 2#) 
                End If 
                ErrorFun = ErrorFun + W(i) * Resi(i) * Resi(i) 
75         Next 
      End If 
       
      If (BSW = 0) Then 
        For i = 1 To NOBS 
              ErrorFun = ErrorFun + Resi(i) * Resi(i) 
80      Next 
       
      End If 
       
      Kount = Kount + 1 
       
    If (X(4) > 0#) Then X(4) = Log(X(4)) 
       
    
 
End Function 
 
 
Public Function ERFC(arg As Double) 
 
 
'COMPLIMENTARY ERROR FUNCTION SUBROUTINE REAL*8 FUNCTION ERFC(ARG) 
'COMPUTES THE COMPLIMENTARY ERROR FUNCTIOn FOR AN ARGUMENT 
'IMPLICIT REAL*8 (A-H,L,M,O-Z) 
'PARAMETER (P=0.3275911, A1=0.254829592, A2=-0.284496736, 
'    1           A3=1.421413741, A4=-1.453152027, A5=1.061405429) 
'TU = 1 / (1 + p * Abs(ARG)) 
 
'     ERFC=(A1*TU+A2*TU**2+A3*TU**3+A4*TU**4+A5*TU**5) 
'    1      *EXP(-(ARG**2)) 
'     IF(ARG .LT. 0) ERFC=2-ERFC 
 
'     RETURN 
'     END 
 
 
Dim P As Double 
Dim A1 As Double 
Dim A2 As Double 
Dim A3 As Double 
Dim A4 As Double 
Dim A5 As Double 
Dim TU As Double 
 
P = 0.3275911 
A1 = 0.254829592 
A2 = -0.284496736 
A3 = 1.421413741 
A4 = -1.453152027 
A5 = 1.061405429 
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TU = 1 / (1 + P * Abs(arg)) 
 
     ERFC = (A1 * TU + A2 * TU ^ 2 + A3 * TU ^ 3 + A4 * TU ^ 4 + A5 * TU ^ 5) * Exp(-(arg ^ 2)) 
      
     If (arg < 0) Then ERFC = 2 - ERFC 
 
 
'*********** FUNCTION DERFC(ARG) 
'   ROUTINE FOR ERFC (ARG) BY SERIES EXPANSION 
'   DOUBLE PRECISION VERSION 
       
       
 '     Dim IL As Integer 
 '     Dim LJL As Integer 
 '     Dim JLJ As Integer 
 '     Dim XOX As Double 
 '     Dim SUMXOX As Double 
 '     Dim Fact As Double 
 '     Dim UOX As Double 
 '     Dim US As Double 
 '     Dim ZOZ As Double 
 '     Dim TXOX As Double 
 '     Dim OLDFACT As Double 
       
 
  '    Pi = 3.14159265358 
  '    SUMXOX = 1# 
  '    XOX = Abs(arg) 
  '    If (XOX > 3.4) Then GoTo 5160 
 
'  THIS SERIES EXPANSION IS FOR ARG <= 3.4 
 
  '    Fact = 1# 
   '   IL = 1 
    '  UOX = XOX * XOX 
    '  US = UOX 
'5085  Fact = Fact * IL 
'      ZOZ = -1# 
'      If ((IL / 2) * 2 = IL) Then ZOZ = 1# 
'      TXOX = UOX / ((2# * IL + 1#) * Fact) 
'      SUMXOX = SUMXOX + ZOZ * TXOX 
'      UOX = UOX * US 
'      IL = IL + 1 
 
 
'     STOP THIE SUMMATION WHEN THE CURRENT TERM 
'     IS LESS THAN 1E-20 
 
 
 '     If (TXOX > 1E-20) Then GoTo 5085 
 '     ERFC = 1# - 2# * XOX / (Pi) ^ 0.5 * SUMXOX 
 '     If (arg < 0#) Then ERFC = 2# - ERFC 
 '     GoTo 5430 
'5160  If (XOX > 14#) Then GoTo 5410 
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'   THIS SERIES EXPANSION IS FOR ARG>3.4 
 
  '    UOX = 2# * XOX * XOX 
  '    LJL = 1 
  '    JLJ = 1 
  '    Fact = 1# 
'5300  OLDFAC = Fact 
'      Fact = Fact / UOX * JLJ 
 
'  STOP THE SUMMATION WHEN THE CURRENT TERM BECOMES LARGER THAN 
'  THE PREVIOUS TERM 
 
'      If (Fact > OLDFAC) Then GoTo 5333 
'      ZOZ = -1# 
'      If ((LJL / 2) * 2 = LJL) Then ZOZ = 1# 
'      TXOX = ZOZ * Fact 
'      SUMXOX = SUMXOX + TXOX 
'      LJL = LJL + 1 
'      JLJ = JLJ + 2 
'5333  ERFC = Exp(-XOX * XOX) / (Pi) ^ 0.5 / XOX * SUMXOX 
'      GoTo 5420 
'5410  ERFC = 0# 
'5420  If (arg < 0#) Then ERFC = 2# - ERFC 
5430 End Function 
 
Public Function CONFINT(X, Dstar As Double, data, NOBS As Integer, Kount As Integer, Resi, U, W, YCALC, 
Co As Double, NP As Integer, BSW As Integer, Phix, R, C) As Double 
       
Dim NME(4) As String 
       
NME(1) = "VELOCITY(m/sec)" 
NME(2) = "DISPERSIVITY(m)" 
NME(3) = "RF" 
NME(4) = "FODC(1/sec)" 
 
 
ActiveSheet.Range("G50:K60").Clear 
 
  'DEFINING NPP TO BE THE NUMBER OF PARAMETERS BEING FIT 
      NPP = 0 
      For i = 1 To NP 
           If Phix(i) = 0 Then NPP = NPP + 1 
10    Next 
      If NPP = 0 Then GoTo 300 
 
   'DETERMINING THE CRITICAL RESIDUAL SUM OF SQUARES 
   'WHICH DEFINES THE UPPER AND LOWER CONFIDENCE INTERVAL 
 
      ER = ErrorFun(X, Dstar, data, NOBS, Kount, Resi, U, W, YCALC, Co, NP, BSW, manip) 
      'FESTI = FESTIM(NOBS, NPP, IDB) alternative below 
      ActiveSheet.Range("G51") = NOBS 'allows NOBS to be used in Excel's FINV function 
      ActiveSheet.Range("G50") = "=FInv(0.05, G51-4, 4)" '0.05 = 95% confidence interval, G51 = NOBS, 4 = NP, 
degrees of freedom = NOBS-NP, NP 
      FESTI = ActiveSheet.Range("G50").Value 
      'Fnpp = float(NPP) 
      'FNOBS = float(NOBS) 
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      'RSSCRIT = ER * (1 + Fnpp / (FNOBS - Fnpp) * FESTI) 
       RSSCRIT = ER * (1 + NPP / (NOBS - NPP) * FESTI) 
 
'    LOOPING THROUGH THE PARAMETERS TO DETERMINE CONFIDENCE INTERVALS 
 
For i = 1 To NP 
    For J = 1 To NP 
       R(J) = X(J) 
       C(J) = X(J) 
90  Next 
 
     If Phix(i) = 1 Then GoTo 199 
 
'   LOOKING FOR THE UPPER LIMIT 
           NCOUNT = 1 
100 
            
     'IF(FLOAT(I) .EQ. 4. .AND. X(I) .LT. 0.) THEN 
      If i = 4 And X(i) < 0 Then 
                R(i) = R(i) - 0.1 * X(i) 
           Else 
                R(i) = R(i) + 0.1 * X(i) 
           End If 
           ER = ErrorFun(R, Dstar, data, NOBS, Kount, Resi, U, W, YCALC, Co, NP, BSW, manip) 
           If R(4) < -100 Or R(4) > 100 Then GoTo 120 
           If NCOUNT > 1 Then 
                If Abs((ERCHK - ER) / ER * 100) < 0.001 Then 
                     R(i) = -1# 
                     GoTo 120 
                End If 
           Else 
                NCOUNT = 2 
           End If 
           ERCHK = ER 
           If ER < RSSCRIT Then GoTo 100 
 
110 
 
        'IF(FLOAT(I) .EQ. 4. .AND. X(I) .LT. 0.) THEN 
        If i = 4 And X(i) < 0 Then 
 
            R(i) = R(i) + 0.01 * X(i) 
            Else 
            R(i) = R(i) - 0.01 * X(i) 
        End If 
            
    ER = ErrorFun(R, Dstar, data, NOBS, Kount, Resi, U, W, YCALC, Co, NP, BSW, manip) 
        If ER > RSSCRIT Then GoTo 110 
 
      'LOOKING FOR THE LOWER LIMIT 
120 
        'IF(FLOAT(I) .EQ. 4. .AND. X(I) .LT. 0.) THEN 
         If i = 4 And X(i) < 0 Then 
                C(i) = C(i) + 0.1 * X(i) 
           Else 
                C(i) = C(i) - 0.1 * X(i) 
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           End If 
          'IF(C(I) .LT. 0. .AND. FLOAT(I) .NE. 4.) THEN 
          If C(i) < 0 And i <> 4 Then 
                C(i) = C(i) + 0.1 * X(i) 
125             C(i) = C(i) - 0.01 * X(i) 
                If C(i) < 0 Then 
                     C(i) = 0# 
                     GoTo 249 
                End If 
           End If 
            
           ER = ErrorFun(C, Dstar, data, NOBS, Kount, Resi, U, W, YCALC, Co, NP, BSW, manip) 
           If C(4) < -100 Or C(4) > 100 Then GoTo 249 
           If ER < RSSCRIT Then GoTo 120 
 
130 
           'IF(FLOAT(I) .EQ. 4. .AND. X(I) .LT. 0.) THEN 
           If i = 4 And X(i) < 0 Then 
                C(i) = C(i) - 0.01 * X(i) 
           Else 
                C(i) = C(i) + 0.01 * X(i) 
           End If 
            
           ER = ErrorFun(C, Dstar, data, NOBS, Kount, Resi, U, W, YCALC, Co, NP, BSW, manip) 
           If ER > RSSCRIT Then GoTo 130 
 
249 
           If i = 4 Then 
                X(i) = Exp(X(i)) 
                If R(i) < -99 Then 
                     R(i) = 0# 
                Else 
                     R(i) = Exp(R(i)) 
                End If 
                C(i) = Exp(C(i)) 
           End If 
 
259  'Writing to the output file 
         
        ActiveSheet.Range("G50") = "95% CONFIDENCE INTERVALS FOR ESTIMATED PARAMETERS" 
        ActiveSheet.Range("G51") = "Parameter" 
        ActiveSheet.Range("I51") = "Low" 
        ActiveSheet.Range("J51") = "Optimized" 
        ActiveSheet.Range("K51") = "High" 
        ActiveSheet.Range("G60") = "CRITICAL RSS VALUE =" 
        ActiveSheet.Range("J60") = RSSCRIT 
 
        If R(i) > 0 Then 
         
            ActiveSheet.Cells(i + 52, 7) = NME(i) 
            ActiveSheet.Cells(i + 52, 9) = C(i) 'lower limit 
            ActiveSheet.Cells(i + 52, 10) = X(i) 'optimized 
            ActiveSheet.Cells(i + 52, 11) = R(i) 'upper limit 
                     
                If i = 1 Then 'converts velocity to m/sec 
                    ActiveSheet.Cells(i + 52, 9) = C(i) / 60 'lower limit 
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                    ActiveSheet.Cells(i + 52, 10) = X(i) / 60 'optimized 
                    ActiveSheet.Cells(i + 52, 11) = R(i) / 60 'upper limit 
                End If 
                 
                If i = 4 Then ' converts FODC to /sec 
                    ActiveSheet.Cells(i + 52, 9) = C(i) / 60 'lower limit 
                    ActiveSheet.Cells(i + 52, 10) = X(i) / 60 'optimized 
                    ActiveSheet.Cells(i + 52, 11) = R(i) / 60 'upper limit 
                End If 
                 
           Else 
            ActiveSheet.Range("G52") = "No Convergence" 
           End If 
199 
200   Next 
 
        If R(i) = 0 Then 
         
            ActiveSheet.Cells(i + 52, 7) = "" 
            ActiveSheet.Cells(i + 52, 9) = "" 
            ActiveSheet.Cells(i + 52, 10) = "" 
            ActiveSheet.Cells(i + 52, 11) = "" 
        End If 
 
299 
300 
      If X(4) > 0 Then 
           X(4) = Log(X(4)) 
      Else 
           X(4) = 0# 
      End If 
 
End Function 
 
 
 
Private Sub Finished_Click() 
UserForm5.Show 
UserForm4.Hide 
End Sub 
 
UserForm 5 code 
 
Private Sub CollectData_Click() 
 
Dim pm As Double 
Dim NSIM As Integer 
Dim NumSheets As Integer 
Dim wks As Double 
Dim MaxCnt As Integer 
Dim ILO As Integer 
Dim IHI As Integer 
Dim Scal As Double 
Dim ERRMIN As Double 
Dim ERPCNT As Double 
Dim C(10) As Double 
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Dim E(10) As Double 
Dim P(10, 10) As Double 
Dim F(32, 10) As Double 
Dim Co As Double 
Dim Dstar As Double 
Dim ColumnLength As Double 
Dim RSS As Double 
Dim OLDNOBS As Double 
Dim X(10) As Double 
Dim ChartObject As String 
 
 
 
 
'create results worksheet 
Worksheets.Add(After:=Worksheets(Worksheets.Count)).Name = "RF" 
 
pm = CDbl(FeV.Text) 
pm = ActiveSheet.Range("A1") 
 
'Selecting the optimized data from all worksheets and placing it in RF WKS 
'loop to copy the opimized FODC, Co, R and report the findings in the RF 
For i = 2 To 6 
   
Worksheets(2).Activate 
 ActiveSheet.Range("J47,J54,J55,J56").Select 
 Selection.Copy 
 Worksheets("RF").Select 
 Range("A30").Select 
 ActiveSheet.Paste 
  
 Next 
Worksheets(3).Activate 
 ActiveSheet.Range("J47,J54,J55,J56").Select 
 Selection.Copy 
 Worksheets("RF").Select 
 Range("B30").Select 
 ActiveSheet.Paste 
 
Worksheets(4).Activate 
 ActiveSheet.Range("J47,J54,J55,J56").Select 
 Selection.Copy 
 Worksheets("RF").Select 
 Range("C30").Select 
 ActiveSheet.Paste 
  
 Worksheets(5).Activate 
 ActiveSheet.Range("J47,J54,J55,J56").Select 
 Selection.Copy 
 Worksheets("RF").Select 
 Range("D30").Select 
 ActiveSheet.Paste 
  
 Worksheets(6).Activate 
 ActiveSheet.Range("J47,J54,J55,J56").Select 
 Selection.Copy 
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 Worksheets("RF").Select 
 Range("E30").Select 
 ActiveSheet.Paste 
  
 Worksheets(7).Activate 
 ActiveSheet.Range("J47,J54,J55,J56").Select 
 Selection.Copy 
 Worksheets("RF").Select 
 Range("F30").Select 
 ActiveSheet.Paste 
'places text in spreadsheet to identify output parameters 
ActiveSheet.Range("A8") = "Co (ug/l)" 
ActiveSheet.Range("B8") = "R" 
ActiveSheet.Range("C8") = "k (1/sec)" 
ActiveSheet.Range("D8") = "Dispersivity" 
ActiveSheet.Range("E8") = "k (1/Min)" 
ActiveSheet.Range("A1") = "FeV" 
ActiveSheet.Range("B1") = CDbl(FeV.Text) 
ActiveSheet.Range("A2") = "Cmax" 
ActiveSheet.Range("A3") = "J" 
ActiveSheet.Range("A4") = "RSS" 
ActiveSheet.Range("F8") = "Calc R" 
ActiveSheet.Range("G8") = "Res Sq" 
 
Range("A30").Select 
    Selection.Cut Destination:=Range("A9") 
    Range("B30").Select 
    Selection.Cut Destination:=Range("A10") 
    Range("C30").Select 
    Selection.Cut Destination:=Range("A11") 
    Range("D30").Select 
    Selection.Cut Destination:=Range("A12") 
    Range("E30").Select 
    Selection.Cut Destination:=Range("A13") 
    Range("F30").Select 
    Selection.Cut Destination:=Range("A14") 
    Range("A32").Select 
    Selection.Cut Destination:=Range("B9") 
    Range("B32").Select 
    Selection.Cut Destination:=Range("B10") 
    Range("C32").Select 
    Selection.Cut Destination:=Range("B11") 
    Range("D32").Select 
    Selection.Cut Destination:=Range("B12") 
    Range("E32").Select 
    Selection.Cut Destination:=Range("B13") 
    Range("F32").Select 
    Selection.Cut Destination:=Range("B14") 
    Range("A33").Select 
    Selection.Cut Destination:=Range("C9") 
    Range("B33").Select 
    Selection.Cut Destination:=Range("C10") 
    Range("C33").Select 
    Selection.Cut Destination:=Range("C11") 
    Range("D33").Select 
    Selection.Cut Destination:=Range("C12") 
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    Range("E33").Select 
    Selection.Cut Destination:=Range("C13") 
    Range("F33").Select 
    Selection.Cut Destination:=Range("C14") 
    Range("A31").Select 
    Selection.Cut Destination:=Range("D9") 
    Range("B31").Select 
    Selection.Cut Destination:=Range("D10") 
    Range("C31").Select 
    Selection.Cut Destination:=Range("D11") 
    Range("D31").Select 
    Selection.Cut Destination:=Range("D12") 
    Range("E31").Select 
    Selection.Cut Destination:=Range("D13") 
    Range("F31").Select 
    Selection.Cut Destination:=Range("D14") 
    Range("D7").Select 
    Range("A30:F33").Clear 
 
 
'Converting k (1/sec) to k (1/min) 
     
    ActiveSheet.Range("E9").Select 
    Application.CutCopyMode = False 
    ActiveCell.FormulaR1C1 = "=60*RC[-2]" 
    Range("E9").Select 
    Selection.AutoFill Destination:=Range("E9:E14"), Type:=xlFillDefault 
    Range("E9:E14").Select 
     
    
   'graph is created for the observed data. statements identifies size and location, title, chart type, series selection, 
axes formatting, plot area formatting, title formatting 
    
    cw = Columns(1).Width 
    rh = Rows(1).Height 
    Set Graph = ActiveSheet.ChartObjects.Add(cw * 7, rh * 1, cw * 8, rh * 20) 
    Graph.Name = " Retardation Curve" 
    Graph.Chart.ChartType = xlXYScatter 
    Graph.Chart.SeriesCollection.NewSeries 
  
 With Graph.Chart.SeriesCollection(1) 
        .Values = ActiveSheet.Range("B9:B14") 
        .XValues = ActiveSheet.Range("A9:A14") 
        .Name = "Retardation" 
        .MarkerSize = 8 
        .MarkerStyle = xlMarkerStyleCircle 
    End With 
    With Graph.Chart.Axes(xlCategory) 
        .HasTitle = True 
        .AxisTitle.Caption = "Co (uM)" 
    With Graph.Chart.Axes(xlValue) 
        .HasTitle = True 
        .AxisTitle.Caption = "RETARDATION" 
    End With 
    End With 
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    ActiveSheet.Buttons.Add(144.6, 45, 78.6, 29.4).Select 
    Selection.OnAction = "SolverMacro1" 
    ActiveSheet.Shapes("Button 1").Select 
    Selection.Characters.Text = "Non-Reactive Sorption" 
    With Selection.Characters(Start:=1, Length:=21).Font 
        .Name = "Calibri" 
        .FontStyle = "Regular" 
        .Size = 11 
        .Strikethrough = False 
        .Superscript = False 
        .Subscript = False 
        .OutlineFont = False 
        .Shadow = False 
        .Underline = xlUnderlineStyleNone 
         
    End With 
    UserForm5.Hide 
     
    End Sub 
   Sub SolverMacro1() 
' 
' SolverMacro1 Macro 
' 
 
' 
    Range("F9").Select 
    ActiveCell.FormulaR1C1 = _ 
        "=1+R[-8]C[-4]*((R[-6]C[-4]*R[-7]C[-4])/(1+R[-6]C[-4]*RC[-5])^2)" 
    Range("F9").Select 
    ActiveCell.FormulaR1C1 = "=1+R1C2*((R3C2*R2C2)/(1+R3C2*RC[-5])^2)" 
    Range("F9").Select 
    Selection.AutoFill Destination:=Range("F9:F14") 
    Range("F9:F14").Select 
    Range("G9").Select 
    ActiveCell.FormulaR1C1 = "=(RC[-1]-RC[-5])^2" 
    Range("G9").Select 
    ActiveSheet.ChartObjects(" Retardation Curve").Activate 
    ActiveSheet.ChartObjects(" Retardation Curve").Activate 
    Range("G9").Select 
    Selection.AutoFill Destination:=Range("G9:G14") 
    Range("G9:G14").Select 
    Range("B4").Select 
    ActiveCell.FormulaR1C1 = "=SUM(R[5]C[5]:R[10]C[5])" 
    Range("B2").Select 
    ActiveCell.FormulaR1C1 = "0.5" 
    Range("B3").Select 
    ActiveCell.FormulaR1C1 = "0.001" 
    Range("B4").Select 
    SolverOk SetCell:="$B$4", MaxMinVal:=2, ValueOf:="0", ByChange:="$B$2:$B$3" 
    SolverSolve 
     
    ActiveSheet.ChartObjects(" Retardation Curve").Activate 
    ActiveChart.SeriesCollection.NewSeries 
    ActiveChart.SeriesCollection(2).Name = "=""Calc R""" 
    ActiveChart.SeriesCollection(2).XValues = "='RF'!$A$9:$A$14" 
    ActiveChart.SeriesCollection(2).Values = "='RF'!$F$9:$F$14" 
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    ActiveSheet.ChartObjects(" Retardation Curve").Activate 
    ActiveChart.SeriesCollection(2).Select 
    Selection.ChartType = xlXYScatterSmoothNoMarkers 
   ActiveSheet.ChartObjects(" Retardation Curve").Activate 
    ActiveChart.SeriesCollection(2).Select 
    With Selection.Format.Line 
        .Visible = msoTrue 
        .ForeColor.ObjectThemeColor = msoThemeColorAccent1 
        .ForeColor.TintAndShade = 0 
        .ForeColor.Brightness = 0 
    End With 
    With Selection.Format.Line 
        .Visible = msoTrue 
        .ForeColor.ObjectThemeColor = msoThemeColorText1 
        .ForeColor.TintAndShade = 0 
        .ForeColor.Brightness = 0 
        .Transparency = 0 
    End With 
    ActiveChart.SeriesCollection(2).Smooth = True 
 
End Sub 
 
Module 2 
Sub SolverMacro1() 
' 
' SolverMacro1 Macro 
' 
 
' 
    Range("F9").Select 
    ActiveCell.FormulaR1C1 = _ 
        "=1+R[-8]C[-4]*((R[-6]C[-4]*R[-7]C[-4])/(1+R[-6]C[-4]*RC[-5])^2)" 
    Range("F9").Select 
    ActiveCell.FormulaR1C1 = "=1+R1C2*((R3C2*R2C2)/(1+R3C2*RC[-5])^2)" 
    Range("F9").Select 
    Selection.AutoFill Destination:=Range("F9:F14") 
    Range("F9:F14").Select 
    Range("G9").Select 
    ActiveCell.FormulaR1C1 = "=(RC[-1]-RC[-5])^2" 
    Range("G9").Select 
    ActiveSheet.ChartObjects(" Retardation Curve").Activate 
    ActiveSheet.ChartObjects(" Retardation Curve").Activate 
    Range("G9").Select 
    Selection.AutoFill Destination:=Range("G9:G14") 
    Range("G9:G14").Select 
    Range("B4").Select 
    ActiveCell.FormulaR1C1 = "=SUM(R[5]C[5]:R[10]C[5])" 
    Range("B2").Select 
    ActiveCell.FormulaR1C1 = "0.5" 
    Range("B3").Select 
    ActiveCell.FormulaR1C1 = "0.001" 
    Range("B4").Select 
    SolverOk SetCell:="$B$4", MaxMinVal:=2, ValueOf:="0", ByChange:="$B$2:$B$3" 
    SolverSolve Userfinish:=True 
     
    ActiveSheet.ChartObjects(" Retardation Curve").Activate 



 

206 
 

    ActiveChart.SeriesCollection.NewSeries 
With ActiveChart.SeriesCollection(1) 
    .Name = "=""Obs R""" 
    .Values = ActiveSheet.Range("$b$9:$b$14") 
    .XValues = ActiveSheet.Range("$a$9:$a$14") 
    .MarkerSize = 6 
    .MarkerStyle = xlMarkerStyleCircle 
End With 
 
ActiveChart.SeriesCollection.NewSeries 'plots calculated data 
With ActiveChart.SeriesCollection(2) 
    .Name = "=""Calc R""" 
    .Values = ActiveSheet.Range("$f$9:$f$14") 
    .XValues = ActiveSheet.Range("$a$9:$a$14") 
    .ChartType = xlXYScatterSmoothNoMarkers 
End With 
 
UserForm6.Show 
End Sub 
 
UserForm 6 code 
 
Private Sub KIM2PE_Click() 
 
 
Dim NumSheets As Integer 
Dim wks As Double 
Dim FeV As Double 
Dim KIM2PE As Action 
 
 
 
 
'create results worksheet 
Worksheets.Add(After:=Worksheets(Worksheets.Count)).Name = "KIM2PE" 
 
     
    Sheets("RF").Select 
    ActiveSheet.Range("A8:A14,E8:E14").Copy 
    Sheets("KIM2PE").Select 
    ActiveCell.Offset(0, 0).Select 
    ActiveSheet.Paste 
    ActiveSheet.Range("C1") = "Fe/V" 
      
    Sheets("RF").Select 
    ActiveSheet.Range("B1").Copy 
    Sheets("KIM2PE").Select 
    ActiveSheet.Range("C2").Select 
    ActiveSheet.Paste 
    Selection.AutoFill Destination:=Range("C2:C7") 
     
     
    'Run Matrix for L-H Model for J and kCmax 
    Range("C9").Select 
    ActiveCell.Value = "-1" 
    Selection.AutoFill Destination:=Range("C9:C14") 
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    Range("D9").Select 
    ActiveCell.FormulaR1C1 = "=R[-7]C[-1]/R[-7]C[-2]" 
     
    Selection.AutoFill Destination:=Range("D9:D14") 
    Range("D9:D14").Select 
    ActiveWindow.SmallScroll Down:=3 
    Range("C16:H17").Select 
    Selection.FormulaArray = "=TRANSPOSE(R[-7]C:R[-2]C[1])" 
    ActiveWindow.SmallScroll Down:=3 
    Range("C19:D20").Select 
    Selection.FormulaArray = "=MMULT(R[-3]C:R[-2]C[5],R[-10]C:R[-5]C[1])" 
    Range("C22:D23").Select 
    Selection.FormulaArray = "=MINVERSE(R[-3]C:R[-2]C[1])" 
    Range("C25:H26").Select 
    Selection.FormulaArray = "=MMULT(R[-6]C:R[-5]C[1],R[-16]C:R[-11]C[1])" 
    Selection.ClearContents 
    Selection.FormulaR1C1 = "=MMULT(R[-3]C:R[-2]C[1],R[-9]C:R[-8]C[5])" 
    Selection.ClearContents 
    Selection.FormulaArray = "=MMULT(R[-3]C:R[-2]C[1],R[-9]C:R[-8]C[5])" 
    ActiveWindow.SmallScroll Down:=-3 
    Range("C28:C29").Select 
    Selection.FormulaArray = "=MMULT(R[-3]C:R[-2]C[5],R[-26]C[-2]:R[-21]C[-2])" 
     
     
    'WRITING THE OUTPUT 
 
 
ActiveSheet.Range("D1") = "Obs Rate (uM/Min)" 
ActiveSheet.Range("E1") = "Calc Rate (uM/min)" 
ActiveSheet.Range("F1") = "Residuals" 
ActiveSheet.Range("A9") = "J" 
ActiveSheet.Range("A10") = "k*Cmax" 
 
'Gathering the values of J and kCmax and converting 1/J to J 
With Range("B9").Select 
    ActiveCell.FormulaR1C1 = "=1/R[19]C[1]" 
    Range("B10").Select 
    ActiveCell.FormulaR1C1 = "=R[19]C[1]" 
Range("D2").Select 
    ActiveCell.FormulaR1C1 = "=RC[-3]*RC[-2]" 
    Range("D2").Select 
    Selection.AutoFill Destination:=Range("D2:D7") 
    Range("D2:D7").Select 
    Range("E2").Select 
    ActiveCell.FormulaR1C1 = "=(R10C2*RC[-2]*RC[-4])/(1/R9C2+RC[-4])" 
    Selection.AutoFill Destination:=Range("E2:E7") 
    Range("F2").Select 
    ActiveCell.FormulaR1C1 = "=RC[-1]-RC[-2]" 
    Range("F2").Select 
    Selection.AutoFill Destination:=Range("F2:F7") 
    Range("F2:F7").Select 
     
 
End With 
 
'Matrix for linearized equation for KIM for the estimation of k, Cmax, J for simplex optimizer 
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 ActiveCell.Offset(29, -4).Range("A1").Select 
    ActiveCell.FormulaR1C1 = "STEP 2" 
    ActiveCell.Offset(0, 1).Range("A1").Select 
    ActiveCell.FormulaR1C1 = "=(R[-29]C[-2]+R9C2)/R[-29]C" 
    ActiveCell.Offset(1, 0).Range("A1").Select 
    ActiveWindow.SmallScroll Down:=6 
    ActiveCell.Offset(-1, 0).Range("A1").Select 
    Selection.AutoFill Destination:=ActiveCell.Range("A1:A6"), Type:= _ 
        xlFillDefault 
    ActiveCell.Range("A1:A6").Select 
    ActiveCell.Offset(0, 1).Range("A1").Select 
    ActiveWindow.SmallScroll Down:=-18 
    ActiveCell.FormulaR1C1 = "=1/R[-29]C[-2]" 
    ActiveCell.Offset(1, 0).Range("A1").Select 
    ActiveWindow.SmallScroll Down:=9 
    ActiveCell.Offset(-1, 0).Range("A1").Select 
    Selection.AutoFill Destination:=ActiveCell.Range("A1:A6") 
    ActiveCell.Range("A1:A6").Select 
    ActiveWindow.SmallScroll Down:=0 
    ActiveCell.Offset(7, -1).Range("A1:F2").Select 
    Selection.FormulaArray = "=TRANSPOSE(R[-7]C:R[-2]C[1])" 
    ActiveCell.Offset(3, 0).Range("A1:B2").Select 
    Selection.FormulaArray = "=MMULT(R[-3]C:R[-2]C[5],R[-10]C:R[-5]C[1])" 
    ActiveWindow.SmallScroll Down:=9 
    ActiveCell.Offset(3, 0).Range("A1:B2").Select 
    Selection.FormulaArray = "=MINVERSE(R[-3]C:R[-2]C[1])" 
    ActiveCell.Offset(3, 0).Range("A1:F2").Select 
    Selection.FormulaArray = "=MMULT(R[-3]C:R[-2]C[1],R[-9]C:R[-8]C[5])" 
    ActiveCell.Offset(3, 0).Range("A1:A2").Select 
    Selection.FormulaArray = "=MMULT(R[-3]C:R[-2]C[5],R[-19]C[2]:R[-14]C[2])" 
    ActiveCell.Offset(-19, 2).Range("A1").Select 
    ActiveCell.FormulaR1C1 = "=(1/1+R9C2*R[-29]C[-4])" 
    ActiveCell.Offset(1, 0).Range("A1").Select 
  
    ActiveWindow.SmallScroll Down:=18 
    ActiveCell.Offset(-1, 0).Range("A1").Select 
    Selection.AutoFill Destination:=ActiveCell.Range("A1:A6") 
    ActiveCell.Range("A1:A6").Select 
    ActiveWindow.SmallScroll Down:=-24 
    ActiveCell.Offset(-20, -4).Range("A1").Select 
    ActiveCell.FormulaR1C1 = "k" 
    ActiveCell.Offset(1, 0).Range("A1").Select 
    ActiveCell.FormulaR1C1 = "Cmax" 
    ActiveCell.Offset(-1, 1).Range("A1").Select 
    ActiveCell.FormulaR1C1 = "=R[40]C[1]" 
    ActiveCell.Offset(1, 0).Range("A1").Select 
    ActiveCell.FormulaR1C1 = "=1/R[38]C[1]" 
    ActiveCell.Offset(1, 0).Range("A1").Select 
    ActiveWindow.SmallScroll Down:=-15 
 
 
 
UserForm6.Hide 
UserForm7.Show 
 
End Sub 
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UserForm 7 code 
 
Private Sub Run_Click() 
'Adding worksheet after KIM2PE for KIMPE optimizer 
 
Dim pm As Double 
Dim NSIM As Integer 
Dim NumSheets As Integer 
Dim MaxCnt As Integer 
Dim ILO As Integer 
Dim IHI As Integer 
Dim Scal As Double 
Dim ERRMIN As Double 
Dim ERPCNT As Double 
Dim C(10) As Double 
Dim E(10) As Double 
Dim P(10, 10) As Double 
Dim F(32, 10) As Double 
Dim Co As Double 
Dim Dstar As Double 
Dim ColumnLength As Double 
Dim RSS As Double 
Dim OLDNOBS As Double 
Dim X(10) As Double 
Dim ChartObject As String 
Dim Kount As Integer 
Dim Phix(10) As Double 
'Dim X(10) As Double 
'Dim Data(2000, 10) As Double 
'Dim Resi(2000) As Double 
'Dim U(2000) As Double 
'Dim W(2000) As Double 
'Dim YCALC(2000) As Double 
'Dim R(10) As Double 
'Dim NP As Integer 
'Dim NP1 As Integer 
'Dim NOBS As Integer 
'Dim bsw As Integer 
'Dim Kount As Long 
'Dim Colength As Double 
'dimensions that are commented out are available in the "Public_Variables" Module for use as an array transfer to a 
public function 
 
Sheets("KIM2PE").Activate 
pm = ActiveSheet.Range("c2") 
 
Worksheets.Add(After:=Worksheets(Worksheets.Count)).Name = "KIMPE" 
ActiveSheet.Range("A12") = "J (um/l)" 
ActiveSheet.Range("A13") = "k (1/min)" 
ActiveSheet.Range("A14") = "Cmax (um/g)" 
 
'Writing output of Matrix 
Sheets("KIM2PE").Select 
ActiveSheet.Range("A1:C7").Copy 
Sheets("KIMPE").Select 
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ActiveSheet.Range("A1:C7").Select 
ActiveSheet.Paste 
Sheets("KIM2PE").Select 
ActiveSheet.Range("B12,B9,B11").Copy 
Sheets("KIMPE").Select 
ActiveSheet.Range("B12:B14").Select 
ActiveSheet.Paste 
 
'Following With statement formats A through B columns for headers and data alignment 
 ActiveSheet.Range("A1").Select 
 
With Selection 
    .ColumnWidth = 12 
    .NumberFormat = "General" 
    .HorizontalAlignment = xlCenter 
    .VerticalAlignment = xlCenter 
    .WrapText = True 
End With 
'Starting optimizer 
 
 
NP = 3 
NP1 = NP + 1 
manip = "" 'manip is a debugging variable used to denote which manipulation is going on (reflection, expansion, 
contraction) 
NSIM = 1 
MaxCnt = 500 
ER = 1 
ERRMIN = 0.0001 
 
X(1) = CDbl(Cmax.Text) 
X(2) = CDbl(affn.Text) 
X(3) = CDbl(k.Text) 
If X(3) > 0 Then X(3) = Log(X(3)) 
 
For i = 1 To 10 
    Phix(i) = 0 
Next 
 
' fix input sets values negative to allow code to hold negative parameter constant 
 'If k.Value = True Then Phix(1) = 1 
'If Cmax.Value = True Then Phix(2) = 1 
'If affn.Value = True Then Phix(3) = 1 
 
 'if a zero is enetered for the first order decay constant, then it is automatically fixed 
 
    ActiveSheet.Range("C2").Select 
    ActiveCell.FormulaR1C1 = "=RC[-1]*RC[-2]" 
    Range("C2").Select 
    Selection.AutoFill Destination:=Range("C2:C7") 
 
 
 
 
 
    NOBS = ActiveSheet.Range("A2").End(xlDown).Row - 1 
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    OLDNOBS = ActiveSheet.Range("E2").End(xlDown).Row 
    'clearing data from Columns E&F from "undo" function in userform 3 
    ActiveSheet.Range("E2:F" & OLDNOBS).Clear 
     
    'clearing data array to remove previous data 
 
    For i = 1 To 2000 
        For J = 1 To NP1 
            data(i, J) = 0# 
        Next 
    Next 
     
    For i = 1 To NOBS 
            data(i, 1) = ActiveSheet.Cells(i + 1, 1) 
            data(i, 2) = ActiveSheet.Cells(i + 1, 2) 
    Next 
     
'starting error function value 
 E(1) = ErrorFun(X, Dstar, data, NOBS, Kount, Resi, U, W, YCALC, Co, NP, BSW, manip, pm) 
     
    'INITIALIZE THE SIMPLEX 
    Kount = 0 
     
    For J = 1 To NP 
        P(1, J) = X(J) 
    Next 
 
    For i = 2 To NP1 
     
        For J = 1 To NP 
            P(i, J) = X(J) 
        Next 
 
    P(i, i - 1) = 1.1 * X(i - 1) 
        If (Phix(i - 1) = 1) Then P(i, i - 1) = X(i - 1) 
        If (Abs(X(i - 1)) < 0.000000000001) Then P(i, i - 1) = 0.0001 
        If (X(1) = 0#) Then P(2, 1) = 0# 
        Next 
 
'Find PLOW Ad PHIGH / BEST = PLOW / WORST = PHIGH 
31   ILO = 1 
     IHI = 1 
       
       For i = 1 To NP1 
     
            For J = 1 To NP 
                X(J) = P(i, J) 
            Next 
 
          E(i) = ErrorFun(X, Dstar, data, NOBS, Kount, Resi, U, W, YCALC, Co, NP, BSW, manip, pm) 
          If (E(i) < E(ILO)) Then ILO = i 
          If (E(i) > E(IHI)) Then IHI = i 
       Next 
 
'FIND PNHI THE NEXT HIGHEST NEXT=PNHI 
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41    NHI = ILO 
      For i = 1 To NP1 
            If (E(i) >= E(NHI) And i <> IHI) Then NHI = i 
43    Next 
 
'COMPUTE THE CENTROID 
      For J = 1 To NP 
           C(J) = -P(IHI, J) 
           For i = 1 To NP1 
                C(J) = C(J) + P(i, J) 
44         Next 
           C(J) = C(J) / NP 
46    Next 
 
i = 1 
 
51 GoTo 52 
 
52 'STOPPING CRITERION 
      If (Kount > MaxCnt) Then 
        UserForm1.Hide 
        UserForm2.Show 
            If MsgBox("EXECUTION TERMINATED; MAXCOUNT EXCEEDED. Please Enter Correct Distance 
from Source and Retry Manually", vbCritical) = vbOK Then 
                Exit Sub 
      End If 
      End If 
 
ERPCNT = Abs(E(ILO) - E(IHI)) / E(ILO) * 100 
       
If (Abs(E(ILO) - E(IHI)) / E(ILO) < ERRMIN) Then GoTo 200 
If Kount = 0 Then GoTo 61 
If (ER < 0.000001) Then GoTo 200 
 
GoTo 61 
 
'REFLECTION 
61    For J = 1 To NP 
           R(J) = 1.9985 * C(J) - 0.9985 * P(IHI, J) 
62    Next 
      manip = "REFLECT" 
      ER = ErrorFun(R, Dstar, data, NOBS, Kount, Resi, U, W, YCALC, Co, NP, BSW, manip, pm) 
   
'REFLECTION AGAIN IF SUCCESSFUL 
      If (ER < E(ILO)) Then GoTo 91 
      If (ER >= E(IHI)) Then GoTo 122 
 
'REPLACE WORST VERTEX WITH NEW ONE 
79    For J = 1 To NP 
           P(IHI, J) = R(J) 
80    Next 
 
      NSIM = NSIM + 1 
      E(IHI) = ER 
      If (ER > E(NHI)) Then GoTo 51 
      IHI = NHI 
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      GoTo 41 
 
'EXPAND THE SIMPLEX 
91    ILO = IHI 
      IHI = NHI 
      For J = 1 To NP 
           X(J) = 1.95 * R(J) - 0.95 * C(J) 
93    Next 
      manip = "EXPAND" 
      EX = ErrorFun(X, Dstar, data, NOBS, Kount, Resi, U, W, YCALC, Co, NP, BSW, manip, pm) 
      If (EX < ER) Then GoTo 104 
       
'R IS BETTER THAN X 
      For J = 1 To NP 
           P(ILO, J) = R(J) 
99    Next 
 
      NSIM = NSIM + 1 
      E(ILO) = ER 
      GoTo 110 
 
'X IS BETTER THAN R 
104   For J = 1 To NP 
           P(ILO, J) = X(J) 
105   Next 
 
      'IF(IDB > 0) then EX,(X(j),j=1,NP) 
      NSIM = NSIM + 1 
      E(ILO) = EX 
110   GoTo 41 
 
i = 1 
 
'CONTRACT THE SIMPLEX 
122   For J = 1 To NP 
           R(J) = 0.5015 * C(J) + 0.4985 * P(IHI, J) 
123   Next 
      manip = "CONTRACT" 
      ER = ErrorFun(R, Dstar, data, NOBS, Kount, Resi, U, W, YCALC, Co, NP, BSW, manip, pm) 
      If (ER < E(ILO)) Then GoTo 91 
      If (ER < E(IHI)) Then GoTo 79 
       
'Scale 
Scal = CDbl(InputBox("Enter Scale to Continue: <0 Expands, >0 Shrinks, =0 Stops", "Scale Factor Required")) 
If (Scal = 0#) Then GoTo 200 
137   For i = 1 To NP1 
           For J = 1 To NP 
                P(i, J) = P(i, J) + Scal * (P(ILO, J) - P(i, J)) 
138        Next 
139   Next 
      GoTo 31 
 
'WRITING THE OUTPUT 
 
200 
ActiveSheet.Range("C1") = "Obs Rate (uM/Min)" 
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ActiveSheet.Range("D1") = "Calc Rate (uM/min)" 
ActiveSheet.Range("E1") = "Residuals" 
 
For i = 1 To NOBS 
    ActiveSheet.Cells(i + 1, 4) = YCALC(i) 
    ActiveSheet.Cells(i + 1, 5) = Resi(i) 
Next 
 
ActiveSheet.Range("A1:D" & NOBS + 1).Select 'Follwowing With statement formats A through D columns for 
headers and data alignment 
With Selection 
    .ColumnWidth = 10 
    .NumberFormat = "General" 
    .HorizontalAlignment = xlCenter 
    .VerticalAlignment = xlCenter 
    .WrapText = True 
End With 
 
 
  
     
    'graph is created for the observed data. statements identifies size and location, title, chart type, series selection, 
axes formatting, plot area formatting, title formatting 
   
    
    cw = Columns(1).Width 
    rh = Rows(1).Height 
    Set Graph = ActiveSheet.ChartObjects.Add(cw * 6, rh * 1, cw * 8, rh * 10) 
    'Graph.Name = " Rate Curve" 
    Graph.Chart.ChartType = xlXYScatter 
    Graph.Activate 
     
    With ActiveChart.SeriesCollection.NewSeries 
        .XValues = ActiveSheet.Range("A2:A" & NOBS + 1) 
        .Values = ActiveSheet.Range("C2:C" & NOBS + 1) 
        .Name = "Obs Rate" 
        .MarkerSize = 6 
        .MarkerStyle = xlMarkerStyleCircle 
    End With 
 
ActiveChart.SeriesCollection.NewSeries 'plots calculated data 
 With ActiveChart.SeriesCollection(2) 
        .Values = ActiveSheet.Range("D2:D" & NOBS + 1) 
        .XValues = ActiveSheet.Range("A2:A" & NOBS + 1) 
        .Name = "Calculated" 
        .MarkerSize = 6 
        .ChartType = xlXYScatterSmoothNoMarkers 
    End With 
       
   
 
'    Graph.Chart.SeriesCollection.Add Source:=ActiveSheet.Range("B2:B" & LastRowNewSheet) 
     
    With Graph.Chart.Axes(xlCategory) 
        .HasTitle = True 
        .AxisTitle.Caption = "Co (min)" 
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        .CategoryNames = Range("A2:A7" & LastRowNewSheet) 
    End With 
 
    With Graph.Chart.Axes(xlValue) 
        .HasTitle = True 
    With .AxisTitle 
        .Caption = "Rate (uM/l/min) " 
    End With 
    End With 
     
    Graph.Chart.Axes(xlValue).HasMajorGridlines = False 
    Graph.Chart.Axes(xlCategory).HasMajorGridlines = False 
    Graph.Chart.ChartArea.Interior.Color = RGB(255, 255, 255) 
    Graph.Chart.PlotArea.Interior.Color = RGB(255, 255, 255) 
    Graph.RoundedCorners = True 
    'With Graph.Chart.ChartCaption = "Rate Curve" 
        '.Font.Size = 14 
        '.Font.Bold = True 
   ' End With 
 
 
     
 
'places text in spreadsheet to identify output parameters 
ActiveSheet.Range("G28") = "OPTIMIZED PARAMETER ESTIMATES" 
ActiveSheet.Range("G30") = "Cmax" 
ActiveSheet.Range("G31") = "Affn" 
ActiveSheet.Range("G32") = "k" 
 
ActiveSheet.Range("G34") = "RESDIUAL SUM OF SQUARES =" 
ActiveSheet.Range("G39") = "INITIAL GUESSES AND INPUT OF PARAMETERS" 
ActiveSheet.Range("G41") = "Cmax" 
ActiveSheet.Range("G42") = "Affn" 
ActiveSheet.Range("G43") = "k" 
 
ActiveSheet.Range("G1").ColumnWidth = 10 ' allows all text to be seen 
 
 
'places values for optimized parameter estimates 
ActiveSheet.Range("J30") = X(1) 
ActiveSheet.Range("J31") = X(2) 
ActiveSheet.Range("J32") = Exp(X(3)) 
 
ActiveSheet.Range("K34") = E(ILO) 
 
 
 
' places values for initial guesses 
ActiveSheet.Range("J41") = CDbl(Cmax.Text) 
ActiveSheet.Range("J42") = CDbl(affn.Text) 
ActiveSheet.Range("J43") = CDbl(k.Text) 
 
 
 
'code for confidence int 
Confit = CONFINT(X, Dstar, data, NOBS, Kount, Resi, U, W, YCALC, Co, NP, BSW, Phix, R, C, pm) 
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UserForm7.Hide 
UserForm8.Show 
UserForm8.Hide 
End Sub 
 
Public Function ErrorFun(X, Dstar, data, NOBS, Kount, Resi, U, W, YCALC, Co, NP, BSW, manip, pm) 
'Public Function ErrorFun(X, Dstar As Double, data, NOBS As Integer, Kount As Integer, Resi, U, W, YCALC, Co 
As Double, NP As Integer, BSW As Integer, manip As String, pm As Double) 
 
   'COMPUTES THE ERROR FUNCTION FOR THE DATA SET 
    'SMALLER VALUE IS BETTER 
 
Dim SMRESI As Double 
Dim u1 As Double 
Dim u2 As Double 
      u1 = 0# 
      u2 = 0# 
   
      ErrorFun = 0# 
      SMRESI = 0# 
 
If Bisquare.Value = True Then BSW = 1 
If Relative.Value = True Then BSW = 2 
If None.Value = True Then BSW = 0 
 
'Sometimes negative values are predicted by the optimizer that are not real and will cause VBA run time errors. 
'The following function simply converts them to positive values prior to evaluating the error function 
 For J = 1 To NP - 1 
        If X(J) < 0 Then X(J) = -X(J) 
 Next 
If (X(3) <> 0#) Then X(3) = Exp(X(3)) 
         
For i = 1 To 2000 
    Resi(i) = 0# 
    U(i) = 0# 
    W(i) = 0# 
10 Next 
 
For i = 1 To NOBS 
            data(i, 1) = ActiveSheet.Cells(i + 1, 1) 
            data(i, 2) = ActiveSheet.Cells(i + 1, 2) 
            data(i, 3) = ActiveSheet.Cells(i + 1, 3) 
             
  pm = 4444 
 
 
u1 = X(3) * X(1) * pm * data(i, 1) 
            
      'End If 
 
20    'If (Data(i, 1) <= ColumnLength / X(1)) Then 
           'ERFCU2 = 0# 
           'GoTo 30 
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       'Else 
           u2 = ((1 / X(2)) + ((X(1) * pm) / (1 + X(2) * data(i, 1))) + data(i, 1)) 
            
 
40    YCALC(i) = (u1 / u2) 
      Resi(i) = data(i, 3) - YCALC(i) 
      SMRESI = SMRESI + Abs(Resi(i)) 
60    Next 
       
      If (BSW = 1) Then 
           C = 1# * SMRESI / CDbl(NOBS) 
           For i = 1 To NOBS 
                U(i) = Resi(i) / C 
                W(i) = (1 - U(i) * U(i)) ^ 2 
                If (U(i) > 1#) Then W(i) = 0# 
                ErrorFun = ErrorFun + W(i) * Resi(i) * Resi(i) 
70         Next 
      End If 
       
      If (BSW = 2) Then 
           For i = 1 To NOBS 
                If (data(i, 2) = 0#) Then 
                     W(i) = 0# 
                Else 
                     W(i) = 1# / (data(i, 2) ^ 2#) 
                End If 
                ErrorFun = ErrorFun + W(i) * Resi(i) * Resi(i) 
75         Next 
      End If 
       
      If (BSW = 0) Then 
        For i = 1 To NOBS 
              ErrorFun = ErrorFun + Resi(i) * Resi(i) 
80      Next 
       
      End If 
       
    Kount = Kount + 1 
       
    
  If (X(3) > 0#) Then X(3) = Log(X(3)) 
    
'fills calculated data and residuals into spreasheet for debugging purposes. X(1) through X(4) units are converted to 
those used in BEARPE for comparison 
           
      'ActiveSheet.Cells(Kount, 17) = X(1) 
      'ActiveSheet.Cells(Kount, 18) = X(2) 
      'ActiveSheet.Cells(Kount, 19) = X(3) 
      'ActiveSheet.Cells(Kount, 23) = manip 
      'ActiveSheet.Cells(Kount, 24) = ErrorFun 
 
  
  
End Function 
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Public Function ERFC(arg As Double) 
 
 
'COMPLIMENTARY ERROR FUNCTION SUBROUTINE REAL*8 FUNCTION ERFC(ARG) 
'COMPUTES THE COMPLIMENTARY ERROR FUNCTIOn FOR AN ARGUMENT 
'IMPLICIT REAL*8 (A-H,L,M,O-Z) 
'PARAMETER (P=0.3275911, A1=0.254829592, A2=-0.284496736, 
'    1           A3=1.421413741, A4=-1.453152027, A5=1.061405429) 
'TU = 1 / (1 + p * Abs(ARG)) 
 
'     ERFC=(A1*TU+A2*TU**2+A3*TU**3+A4*TU**4+A5*TU**5) 
'    1      *EXP(-(ARG**2)) 
'     IF(ARG .LT. 0) ERFC=2-ERFC 
 
'     RETURN 
'     END 
 
 
Dim P As Double 
Dim A1 As Double 
Dim A2 As Double 
Dim A3 As Double 
Dim A4 As Double 
Dim A5 As Double 
Dim TU As Double 
 
P = 0.3275911 
A1 = 0.254829592 
A2 = -0.284496736 
A3 = 1.421413741 
A4 = -1.453152027 
A5 = 1.061405429 
 
 
TU = 1 / (1 + P * Abs(arg)) 
 
     ERFC = (A1 * TU + A2 * TU ^ 2 + A3 * TU ^ 3 + A4 * TU ^ 4 + A5 * TU ^ 5) * Exp(-(arg ^ 2)) 
      
     If (arg < 0) Then ERFC = 2 - ERFC 
 
 
'*********** FUNCTION DERFC(ARG) 
'   ROUTINE FOR ERFC (ARG) BY SERIES EXPANSION 
'   DOUBLE PRECISION VERSION 
       
       
 '     Dim IL As Integer 
 '     Dim LJL As Integer 
 '     Dim JLJ As Integer 
 '     Dim XOX As Double 
 '     Dim SUMXOX As Double 
 '     Dim Fact As Double 
 '     Dim UOX As Double 
 '     Dim US As Double 
 '     Dim ZOZ As Double 
 '     Dim TXOX As Double 
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 '     Dim OLDFACT As Double 
       
 
  '    Pi = 3.14159265358 
  '    SUMXOX = 1# 
  '    XOX = Abs(arg) 
  '    If (XOX > 3.4) Then GoTo 5160 
 
'  THIS SERIES EXPANSION IS FOR ARG <= 3.4 
 
  '    Fact = 1# 
   '   IL = 1 
    '  UOX = XOX * XOX 
    '  US = UOX 
'5085  Fact = Fact * IL 
'      ZOZ = -1# 
'      If ((IL / 2) * 2 = IL) Then ZOZ = 1# 
'      TXOX = UOX / ((2# * IL + 1#) * Fact) 
'      SUMXOX = SUMXOX + ZOZ * TXOX 
'      UOX = UOX * US 
'      IL = IL + 1 
 
 
'     STOP THIE SUMMATION WHEN THE CURRENT TERM 
'     IS LESS THAN 1E-20 
 
 
 '     If (TXOX > 1E-20) Then GoTo 5085 
 '     ERFC = 1# - 2# * XOX / (Pi) ^ 0.5 * SUMXOX 
 '     If (arg < 0#) Then ERFC = 2# - ERFC 
 '     GoTo 5430 
'5160  If (XOX > 14#) Then GoTo 5410 
 
'   THIS SERIES EXPANSION IS FOR ARG>3.4 
 
  '    UOX = 2# * XOX * XOX 
  '    LJL = 1 
  '    JLJ = 1 
  '    Fact = 1# 
'5300  OLDFAC = Fact 
'      Fact = Fact / UOX * JLJ 
 
'  STOP THE SUMMATION WHEN THE CURRENT TERM BECOMES LARGER THAN 
'  THE PREVIOUS TERM 
 
'      If (Fact > OLDFAC) Then GoTo 5333 
'      ZOZ = -1# 
'      If ((LJL / 2) * 2 = LJL) Then ZOZ = 1# 
'      TXOX = ZOZ * Fact 
'      SUMXOX = SUMXOX + TXOX 
'      LJL = LJL + 1 
'      JLJ = JLJ + 2 
'5333  ERFC = Exp(-XOX * XOX) / (Pi) ^ 0.5 / XOX * SUMXOX 
'      GoTo 5420 
'5410  ERFC = 0# 
'5420  If (arg < 0#) Then ERFC = 2# - ERFC 
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5430 End Function 
 
Public Function CONFINT(X, Dstar, data, NOBS, Kount, Resi, U, W, YCALC, Co, NP, BSW, Phix, R, C, pm) 
       
Dim NME(3) As String 
 
       
NME(1) = "Cmax" 
NME(2) = "affn" 
NME(3) = "k" 
 
 
ActiveSheet.Range("G50:K60").Clear 
 
  'DEFINING NPP TO BE THE NUMBER OF PARAMETERS BEING FIT 
      NPP = 0 
      For i = 1 To NP 
           If Phix(i) = 0 Then NPP = NPP + 1 
10    Next 
      If NPP = 0 Then GoTo 300 
 
   'DETERMINING THE CRITICAL RESIDUAL SUM OF SQUARES 
   'WHICH DEFINES THE UPPER AND LOWER CONFIDENCE INTERVAL 
 
      ER = ErrorFun(X, Dstar, data, NOBS, Kount, Resi, U, W, YCALC, Co, NP, BSW, manip, pm) 
      'FESTI = FESTIM(NOBS, NPP, IDB) alternative below 
      ActiveSheet.Range("G51") = NOBS 'allows NOBS to be used in Excel's FINV function 
      ActiveSheet.Range("G50") = "=FInv(0.05, G51-4, 4)" '0.05 = 95% confidence interval, G51 = NOBS, 4 = NP, 
degrees of freedom = NOBS-NP, NP 
      FESTI = ActiveSheet.Range("G50").Value 
      'Fnpp = float(NPP) 
      'FNOBS = float(NOBS) 
      'RSSCRIT = ER * (1 + Fnpp / (FNOBS - Fnpp) * FESTI) 
       RSSCRIT = ER * (1 + NPP / (NOBS - NPP) * FESTI) 
 
'    LOOPING THROUGH THE PARAMETERS TO DETERMINE CONFIDENCE INTERVALS 
 
For i = 1 To NP 
    For J = 1 To NP 
       R(J) = X(J) 
       C(J) = X(J) 
90  Next 
 
     If Phix(i) = 1 Then GoTo 199 
 
'   LOOKING FOR THE UPPER LIMIT 
           NCOUNT = 1 
100 
            
     'IF(FLOAT(I) .EQ. 3. .AND. X(3) .LT. 0.) THEN 
      If i = 3 And X(i) < 0 Then 
                R(i) = R(i) - 0.1 * X(i) 
           Else 
                R(i) = R(i) + 0.1 * X(i) 
           End If 
           ER = ErrorFun(R, Dstar, data, NOBS, Kount, Resi, U, W, YCALC, Co, NP, BSW, manip, pm) 
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           If Kount > 10000 Then 
             ActiveSheet.Range("G49") = "CONFIDENCE INTERVALS DID NOT CONVERGE" 
             GoTo 400 
           End If 
           If R(3) < -100 Or R(3) > 100 Then GoTo 120 
           If NCOUNT > 1 Then 
                If Abs((ERCHK - ER) / ER * 100) < 0.001 Then 
                     R(i) = -1# 
                     GoTo 120 
                End If 
           Else 
                NCOUNT = 2 
           End If 
           ERCHK = ER 
           If ER < RSSCRIT Then GoTo 100 
 
110 
 
        'IF(FLOAT(I) .EQ. 3. .AND. X(I) .LT. 0.) THEN 
        If i = 3 And X(i) < 0 Then 
 
            R(i) = R(i) + 0.01 * X(i) 
            Else 
            R(i) = R(i) - 0.01 * X(i) 
        End If 
            
    ER = ErrorFun(R, Dstar, data, NOBS, Kount, Resi, U, W, YCALC, Co, NP, BSW, manip, pm) 
    If Kount > 10000 Then 
             ActiveSheet.Range("G49") = "CONFIDENCE INTERVALS DID NOT CONVERGE" 
             GoTo 400 
    End If 
        If ER > RSSCRIT Then GoTo 110 
 
      'LOOKING FOR THE LOWER LIMIT 
120 
        'IF(FLOAT(I) .EQ. 3. .AND. X(I) .LT. 0.) THEN 
         If i = 3 And X(i) < 0 Then 
                C(i) = C(i) + 0.1 * X(i) 
           Else 
                C(i) = C(i) - 0.1 * X(i) 
           End If 
          'IF(C(I) .LT. 0. .AND. FLOAT(I) .NE. 3.) THEN 
          If C(i) < 0 And i <> 1 Then 
                C(i) = C(i) + 0.1 * X(i) 
125             C(i) = C(i) - 0.01 * X(i) 
                If C(i) < 0 Then 
                     C(i) = 0# 
                     GoTo 249 
                End If 
           End If 
            
           ER = ErrorFun(C, Dstar, data, NOBS, Kount, Resi, U, W, YCALC, Co, NP, BSW, manip, pm) 
           If Kount > 10000 Then 
             ActiveSheet.Range("G49") = "CONFIDENCE INTERVALS DID NOT CONVERGE" 
             GoTo 400 
           End If 
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           If C(3) < -100 Or C(3) > 100 Then GoTo 249 
           If ER < RSSCRIT Then GoTo 120 
 
130 
           'IF(FLOAT(I) .EQ. 3. .AND. X(I) .LT. 0.) THEN 
           If i = 3 And X(i) < 0 Then 
                C(i) = C(i) - 0.01 * X(i) 
           Else 
                C(i) = C(i) + 0.01 * X(i) 
           End If 
            
           ER = ErrorFun(C, Dstar, data, NOBS, Kount, Resi, U, W, YCALC, Co, NP, BSW, manip, pm) 
           If Kount > 10000 Then 
             ActiveSheet.Range("G49") = "CONFIDENCE INTERVALS DID NOT CONVERGE" 
             GoTo 400 
           End If 
           If ER > RSSCRIT Then GoTo 130 
 
249 
           If i = 3 Then 
                X(i) = Exp(X(i)) 
                If R(i) < -99 Then 
                     R(i) = 0# 
                Else 
                     R(i) = Exp(R(i)) 
                End If 
                C(i) = Exp(C(i)) 
           End If 
 
259  'Writing to the output file 
         
        ActiveSheet.Range("G50") = "95% CONFIDENCE INTERVALS FOR ESTIMATED PARAMETERS" 
        ActiveSheet.Range("G51") = "Parameter" 
        ActiveSheet.Range("I51") = "Low" 
        ActiveSheet.Range("J51") = "Optimized" 
        ActiveSheet.Range("K51") = "High" 
        ActiveSheet.Range("G60") = "CRITICAL RSS VALUE =" 
        ActiveSheet.Range("J60") = RSSCRIT 
 
        If R(i) > 0 Then 
         
            ActiveSheet.Cells(i + 52, 7) = NME(i) 
            ActiveSheet.Cells(i + 52, 9) = C(i) 'lower limit 
            ActiveSheet.Cells(i + 52, 10) = X(i) 'optimized 
            ActiveSheet.Cells(i + 52, 11) = R(i) 'upper limit 
                     
                If i = 1 Then 'converts velocity to m/sec 
                    ActiveSheet.Cells(i + 52, 9) = C(i)  'lower limit 
                    ActiveSheet.Cells(i + 52, 10) = X(i) 'optimized 
                    ActiveSheet.Cells(i + 52, 11) = R(i)  'upper limit 
                End If 
                If i = 2 Then 'converts velocity to m/sec 
                    ActiveSheet.Cells(i + 52, 9) = C(i)  'lower limit 
                    ActiveSheet.Cells(i + 52, 10) = X(i) 'optimized 
                    ActiveSheet.Cells(i + 52, 11) = R(i)  'upper limit 
                End If 
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                If i = 3 Then ' converts FODC to /sec 
                    ActiveSheet.Cells(i + 52, 9) = C(i)  'lower limit 
                    ActiveSheet.Cells(i + 52, 10) = X(i)  'optimized 
                    ActiveSheet.Cells(i + 52, 11) = R(i) 'upper limit 
                End If 
                 
           Else 
            ActiveSheet.Range("G52") = "No Convergence" 
           End If 
199 
200   Next 
 
        If R(i) = 0 Then 
         
            ActiveSheet.Cells(i + 52, 7) = "" 
            ActiveSheet.Cells(i + 52, 9) = "" 
            ActiveSheet.Cells(i + 52, 10) = "" 
            ActiveSheet.Cells(i + 52, 11) = "" 
        End If 
 
299 
300 
 If X(3) > 0 Then 
           X(3) = Log(X(3)) 
      Else 
           X(3) = 0# 
      End If 
400 
 i = i 
End Function 
 
UserForm 8 code 
 
Private Sub CommandButton1_Click() 
 
'create results worksheet 
Worksheets.Add(After:=Worksheets(Worksheets.Count)).Name = "MonteCarlo" 
 
Sheets("KIMPE").Select 
    ActiveSheet.Range("A1:A7,C1:C7").Copy 
    Sheets("MonteCarlo").Select 
    ActiveCell.Offset(0, 0).Select 
    ActiveSheet.Paste 
Sheets("KIMPE").Select 
    ActiveSheet.Range("g30:g32,j30:j32").Copy 
    Sheets("MonteCarlo").Select 
    ActiveCell.Range("A12:B14").Select 
    ActiveSheet.Paste 
     
'reorder parameters to match Monte Carlo order 
    ActiveSheet.Range("a14:b14").Cut 
    ActiveSheet.Range("a11:b11").Select 
    ActiveSheet.Paste 
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    Response = MsgBox("Analysis Complete. Do you wish to save your project with a unique name?", vbYesNo) 
 
If Response = vbYes Then    ' User chose Yes. 
            NewName = InputBox("Enter New File Name", "Save As") 
            ActiveWorkbook.SaveAs FileName:=ThisWorkbook.Path & NewName, FileFormat:=xlNormal, 
Password:="", WriteResPassword:="", ReadOnlyRecommended:=False, CreateBackup:=False 
            Else: GoTo 10    ' User chose No. 
End If 
     
    UserForm8.Hide 
     
10 End Sub 
 
UserForm 9 code 
Private Sub AcceptCurve_Click() 
 
a = DiffusionCoeff 
If SheetCounter = 6 Then 
    UserForm9.Hide 
    UserForm4.Show 
    GoTo 10 
End If 
SheetCounter = SheetCounter + 1 
Sheets(Ctarget(SheetCounter)).Activate 
 
10  SheetCounter = SheetCounter 
End Sub 
 
Private Sub RefitCurve_Click() 
 
UserForm9.Hide 
UserForm4.Show 
 
End Sub 
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Appendix G: Connelly Iron Specifications 
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Appendix H: Raman Spectra Collected on Shinny Side of Connelly Iron and 
Electrolytic Iron. 

 

Figure H. 1: Raman spectra collected on the shinny side of grain at port 1 for A) 2 days B) 12 days 
C)15 days D) 152 days E) 154 days and F) 240 days of column aging. 



 

229 
 

 

Figure H. 2: Raman spectra collected on the shinny side of grain at port 2 for A) 2 days B) 12 days 
C)15 days D) 152 days E) 154 days and F) 240 days of column aging. 
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Figure H. 3: Raman spectra collected on the shinny side of grain at port 3 for A) 2 days B) 12 days 
C)15 days D) 152 days E) 154 days and F) 240 days of column aging. 
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Figure H. 4: Raman spectra collected on the shinny side of grain at port 4 for A) 2 days B) 12 days 
C)15 days D) 152 days E) 154 days and F) 240 days of column aging. 
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Table H.1: Raman shifts, intensities (ID and IG), and Full width half maximum (FWHM) of  
Carbon D and G bands. 

Co (uM) IMAGE # D band ID G band IG ID/IG FWHMID FWHMIG

1 1353 1381 1584 1397 0.988547 

0 CI1 1346 5907 1575 6663 0.886538 98.66 31.9 

0 CI2 1346 13488 1571 42826 0.314949 49.165 30.25 

0 CI3 1340 5681 1580 4181 1.358766 

0 CI4 1346 6609 1578 6628 0.997133 96.37 41.57 

0 CI5 1344 6609 6637 0.995781 

SYSTAMATIC ANLYSIS SET 1 

redraw1 1348 3655 1575 4711.9 0.775696 56.64 62.35 

redraw4 1350 8216 1577 9245.9 0.88861 60.44 47.27 

redraw5 1348 7260 1571 8880 0.817568 54.74 51.07 

shinyraw2 1352 7979 1584 8661 0.921256 69.94 62.35 

shinyraw6 1321 3250 1586 3231 1.005881 107.73 71.58 

VIAL 1 

50µM 

50 RC 1351 1137 1580 1179 0.964377 77.55 33.96 

50 RD 1346 3507 1575 4971 0.705492 52.97 32.065 

50 RL 1342 1517 1588 1502 1.009987 81.35 83.13 

50 RM 1351 3401 1588 3283 1.035943 105.82 68.04 

50 SE 1346 1506 1582 1561 0.964766 81.3 37.76 

50 SG 1353 1428 1580 1916 0.745303 68.05 28.38 

50 SH 1346 1397 1586 1411 0.990078 104.04 71.82 

VIAL2 

50 50µM 

50 RA 1350 5542 1588 5407 1.024968 109.74 68.05 

50 RC 1343 994 1588 1018 0.976424 

50 SC 1348 2558 1575 2754 0.928831 62.47 45.36 

50 SE 1344 3847 1582 3520 1.092898 69.95 54.86 

100µM 

100 SB 1365 2527 1582 2496 1.01242 

100 SC 1355 2110 1580 2112 0.999053 54.86 47.26 

100 SD 1353 1127 1584 1146 0.983421 139.85 33.96 

100 SE 1351 1269 1580 1419 0.894292 56.65 28.26 

200µM 
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200 RA 1342 2827 1588 2959 0.95539 64.25 -56.77 

200 RB 1350 2582 1588 2666 0.968492 81.13 66.15 

200 RC 1355 2497 1588 2576 0.969332 

200 RD 1348 972 1584 967 1.005171 

200 SA 1348 1240 1580 1260 0.984127 62.35 41.57 

200 SB 1350 4919 1584 5435 0.90506 47.27 37.77 

200 SC 1351 6671 1584 6438 1.036191 58.55 56.65 

200 SD 1351 8650 1586 7996 1.081791 54.75 60.45 

200 SE 1353 2623 1588 2466 1.063666 50.95 56.65 

200 SF 1351 3017 1584 2920 1.033219 54.75 58.55 

300µM 100.23 54.94 

300 RE 1350 3232 1590 3164 1.021492 49.15 68.12 

300 SB 1350 2907 1594 2788 1.042683 

300 SC 1346 2309 1584 2335 0.988865 

400µM 

400 SA 4609 1584 5105 0.90284 47.26 20.9 

VIAL3 

50µM 

50 RA 1348 1408 1576 2144 0.656716 47.38 22.68 

50 RB 1346 3700 1575 4002 0.924538 117.27 24.58 

50 SB 1353 1639 1582 2738 0.598612 49.16 28.26 

50 SE 1346 3347 1576 3376 0.99141 117.22 49.25 

100µM 

100 RB 1348 979 1576 943 1.038176 

100 RC 1351 3496 1578 3209 1.089436 

100 RE 1348 1048 1573 1225 0.85551 128.62 24.58 

100 RF 1346 2991 1588 2930 1.020819 

100 SA 1357 1051 1582 1170 0.898291 52.76 34.08 

100 SB 1353 6339 1576 6457 0.981725 52.96 35.85 

100 SC 1348 1560 1575 2273 0.686318 60.45 26.48 

200µM 

200 RA 1363 2393 1590 2406 0.994597 

1350 3018 1590 2796 1.079399 

400µM 
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400 SB 1352 1573 1579 1599 0.98374 

400 SC 1352 1511 1579 1567 0.964263 

400 1350 4593 1586 4708 0.975573 

400 1342 4519 1584 4652 0.97141 

VIAL4 

50µM 

50 RB 1359 1259 1576 1723 0.730702 77.55 26.48 

50 SA 1353 1376 1578 2247 0.612372 47.26 20.9 

50 SB 1350 1712 1580 2562 0.668228 51.06 30.16 

50 SC 1348 1789 1578 2358 0.758694 51.06 33.95 

100µM 

100 RA 1355 1084 1575 1098 0.98725 

100 RC 1353 3404 1576 3630 0.937741 56.65 37.75 

100 SA 1346 4657 1573 4650 1.001505 62.35 52.92 

100 SC 1353 1544 1580 1519 1.016458 68.05 35.85 

100 SD 1353 2036 1573 3289 0.619033 81.23 22.67 

200µM 

200 SA 1350 3563 1584 3926 0.907539 79.45 30.17 

200 SC 1350 1404 1586 1279 1.097733 

200 RB 1342 2675 1584 2662 1.004884 

1348 2592 1599 2570 1.00856 

300µM 

300 RA 1350 1146 1588 1110 1.032432 113.42 66.14 

300 RB 1353 3284 1584 3168 1.036616 98.33 53 

300 RC 1333 1137 1575 1190 0.955462 

300 SA 1352 2943 1586 2985 0.98593 54.74 45.48 

300 SC 1352 2373 1582 2804 0.846291 47.27 33.96 

300 SD 1352 2264 1575 3365 0.672808 46.57 30.28 

300 SE 1353 2049 1580 3271 0.626414 50.96 24.58 

400 RB 1335 1788 1588 1855 0.963881 

400 RC 1346 5239 1592 5270 0.994118 

400 SB 1352 5775 1582 5981 0.965558 
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Figure H. 5: Raman spectras collected on the Electrolytic Iron showing magnetite band at 670cm-1 
and two carbonaceous material bands at 1606 cm-1 is G’ and at 1336 cm-1 is D band. 
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