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Abstract

Background: The interactions among genetic factors related to diseases are called epistasis. With the availability of
genotyped data from genome-wide association studies, it is now possible to computationally unravel epistasis
related to the susceptibility to common complex human diseases such as asthma, diabetes, and hypertension.
However, the difficulties of detecting epistatic interaction arose from the large number of genetic factors and the
enormous size of possible combinations of genetic factors. Most computational methods to detect epistatic
interactions are predictor-based methods and can not find true causal factor elements. Moreover, they are both
time-consuming and sample-consuming.

Results: We propose a new and fast Markov Blanket-based method, FEPI-MB (Fast EPistatic Interactions detection
using Markov Blanket), for epistatic interactions detection. The Markov Blanket is a minimal set of variables that can
completely shield the target variable from all other variables. Learning of Markov blankets can be used to detect
epistatic interactions by a heuristic search for a minimal set of SNPs, which may cause the disease. Experimental
results on both simulated data sets and a real data set demonstrate that FEPI-MB significantly outperforms other
existing methods and is capable of finding SNPs that have a strong association with common diseases.

Conclusions: FEPI-MB algorithm outperforms other computational methods for detection of epistatic interactions
in terms of both the power and sample-efficiency. Moreover, compared to other Markov Blanket learning methods,

FEPI-MB is more time-efficient and achieves a better performance.

Background

In recent years, the success of GWAS (genome-wide
association studies) makes it possible to detect genetic
factors that influence the susceptibility to particular dis-
eases in human populations [1]. While most of GWAS
search for one single contributing locus at a time, they
fail to identify the combinational effect (epistasis) of
genetic variants (i.e., single-nucleotide polymorphisms,
or SNPs) associated with common complex diseases
such as asthma, diabetes, and hypertension [2]. It is well
known that epistatic interactions, not individual variant,
are critical in unravelling genetic causes of complex
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human diseases [3]. However, the number of possible
combinations of SNPs in a genome is enormous, which
is infeasible to be evaluated exhaustively by experimental
methods. Therefore, researchers resort to computational
methods to detect epistatic interactions based on the
genotyped data [2,4].

Recently, a number of statistical methods have been
proposed to detect epistatic interactions. Among these
methods, the most commonly used one is logistic
regression (LR) [5]. However, logistic regression may
not be appropriate for epistasis due to its overfitting
problem due to the fact that the number of parameters
will be much larger than the available samples. To avoid
this shortcoming, Ritchie et al. proposed MDR (multi-
factor dimensionality reduction) [6,7], which utilizes the
ratio of the number of cases to the number of controls
in cells of risk table to reduce the dimensionality to one
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and select SNP combinations that have the highest pre-
diction performance. The process of labelling each cell
of risk table as “high risk” or “low risk” is a process of
estimating parameters, which may also result in the
overfitting problems when the size of SNP combinations
is large. Furthermore, MDR selects the SNP combina-
tions purely by the prediction performance and thus, it
may not find true causal factors. Park and Hastie pro-
posed the stepwise-penalized logistic regression
(stepPLR) to overcome the drawbacks of logistic regres-
sion and MDR [8]. StepPLR makes some simple modifi-
cations for standard logistic regression (LR). For
example, stepPLR combines the LR criterion with a
penalization of the L2-norm of the coefficients. This
modification makes stepPLR more robust to high-order
epistatic interactions. Despite its modifications, stepPLR
is time-consuming when estimating parameters, which
is one essential limitation of regression methods. BEAM
is a Bayesian marker partition model using Markov
Chain Monte Carlo to reach an optimal marker parti-
tion and a new B statistic to check each marker or set
of markers for significant associations [9]. Note that
most statistical methods can not be applied to genome-
wide analysis directly due to their computational com-
plexity. The alternative approaches to parametric statis-
tical methods are machine learning methods including
Support Vector Machine (SVM) [10] and Random For-
est [11]. Machine learning methods consider detecting
epistatic interactions as a feature selection problem [12]
and try to find the best combination of SNPs with the
highest prediction accuracy of disease status. Therefore,
Chen et al. test three feature selection method: RFE
(recursive feature elimination), RFA (recursive feature
addition), and GA (genetic algorithm) in [10] and Jiang
et al. perform a greedy search in [11]. Like MDR,
machine learning methods select SNPs based on classifi-
cation/prediction accuracy and can not find true causal
factors for disease. Moreover, machine learning-based
methods tend to introduce many false positives because
using more SNPs tends to produce higher classification
accuracies.

In this paper, we propose a new and fast Markov
Blanket method, FEPI-MB (Fast EPistatic Interactions
detection using Markov Blanket), to detect epistatic
interactions. The Markov Blanket is a minimal set of
variables, which can completely shield the target variable
from all other variables. As shown in Figure 1, genome-
wide association studies try to identify the k-way inter-
action among disease SNPs: SNP1, SNP2,...,SNPk and
exclude all other unrelated normal SNPs (SNPk+1,...,
SNPn). Thus, the Markov Blanket learning method is
suitable for detection of epistatic interactions in gen-
ome-wide case-control studies, e.g., to identify a
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Figure 1 Example of genome-wide association studies (GWAS).
The goal of genome-wide association studies is to identify the k-
way interaction among disease SNPs: SNP1, SNP2, ..., SNPk.

minimal set of SNPs which may cause the disease and
require further experiments. Meanwhile the detected
minimal set of causal SNPs can shield the disease from
all other normal SNPs to decrease the false positive rate
and reduce the cost of future validation experiments.
Furthermore, Markov Blanket method performs a heur-
istic search by calculating the association between vari-
ables to avoid the time-consuming training process as in
SVM and Random Forest.

Some Markov Blanket methods take a divide-and-
conquer approach that breaks the problem of identify-
ing Markov Blanket of variable T (MB (T)) into two
subproblems: first, identifying parents and children of
T (PC (T)) and, second, identifying the parents of the
children of T (spouse). The goal of epistatic interac-
tions detection is to identify causal interacting genes
or SNPs for some certain diseases and therefore it is a
special application of Markov Blanket method because
we only need to detect the parents of the target vari-
able T (disease status labels). Our new Markov Blanket
method makes some simplifications to adapt to this
special condition.

We apply the FEPI-MB algorithm to simulated data-
sets based on four disease models and a real dataset (the
Age-related Macular Degeneration (AMD) dataset). We
demonstrate that the proposed method significantly out-
performs other commonly-used methods and is capable
of finding SNPs strongly associated with diseases. Com-
paring to other Markov Blanket learning methods, our
method is faster and can still achieve a better
performance.

Results

Simulated data generation

We first evaluate the proposed FEPI-MB on simulated
data sets, which are generated from three commonly
used two-locus epistatic models [5,9] and one three-
locus epistatic model developed [9]. Table 1 lists the dis-
ease odds for these four epistatic models, where o is the
baseline effect and 6 is the genotypic effect. Assume
that an individual has genotype g4 at locus A and
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Table 1 Four disease models

Model1 AA Aa aa
BB o ol +6) ol + )
Bb ol + 6) a(l + 6 a(l +6)°
bb ol + 67 a(l +6)° a( + 6
Model2 AA Aa aa
BB o o o
Bb a o(l +6) a(l + 67
bb o ol + 67 a(l + 0
Model3 AA Aa aa
BB a a a
Bb o a(l +0) o(l + 6)
bb o a(l +0) o(l + 6)
Model4 AA
BB Bb bb
CcC a a a
Cc o o ol +6)
cc a ol +6) a
Aa
BB Bb bb
CcC o a ol +6)
Cc a a(l +6) a
cc a(l +6) o a
aa
BB Bb bb
cC o ol + 60 o
Cc a(l + 0) o o
cc a a a

genotype gp at locus B in a two-locus epistatic model,
then the disease odds are

p(D[84,85)/P(D ]84 85) (1)

where p(D|ga,gs) is the probability that an individual
has the disease given genotype (g,¢5) and p(D | g4, g5)
is the probability that an individual does not have the
disease given genotype (g4,25)-

In Modell the odds of disease increase in a multiplica-
tive mode both within and between two loci. For exam-
ple, an individual with Aa at locus A has larger odds,
which are 1 + 6 times relative to those of an individual
who is homozygous AA; the aa homozygote has further
increased disease odds by (1 + ). We can also find
similar effects on locus B. Finally the odds of disease for
each combination of genotypes at loci A and B can be
obtained by the product of the two within-locus effects.
Model2 demonstrates two-locus interaction multiplica-
tive effects because at least one disease-associated allele
must be present at each locus to increase the odds
beyond the baseline level. Moreover the increment of
the disease-associated allele at loci A or B can further
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increase the disease odds by the multiplicative factor 1
+ 6. Model3 specifies two-locus interaction threshold
effects. Like Model 2, Model3 also requires at least one
copy of the disease-associated alleles at both loci A and
B. However the increment of the disease-associated
allele does not increase the risk further. We call this as
disease threshold effect. It means that a single copy of
the disease-associated allele at each locus is required to
increase odds of disease and this is the disease thresh-
old. But after the disease threshold has already been
met, having both copies of the disease-associated allele
at either locus has no additional influence on disease
odds. There are three disease loci in model 4. Some cer-
tain genotype combinations can increase disease risk
and there are almost no marginal effects for each dis-
ease locus. Model 4 is more complex than Models 1, 2
and 3. All these four models are non-additive models
and they differ in the way that the number of disease-
associated allele increases the odds of disease. The pre-
valence of a disease is the proportion the total number
of cases of the disease in the population and we assume
that the disease prevalence is 0.1 for all these four dis-
ease models [9].

To generate data, we need to determine three para-
meters associated with each model: the marginal effect
of each disease locus (1), the minor allele frequencies
(MAF) of both disease loci, and the strength of linkage
disequilibrium (LD) between the unobserved disease
locus and a genotyped locus [5]. LD is a nonrandom
association of alleles at different loci and is quantified
by the squared correlation coefficient 7* calculated from
allele frequencies [5]. In this paper, we set 4 equal to
0.3, 0.3, and 0.6 for models 1, 2, and 3, respectively. For
model 4, we set = 7 arbitrarily because there are
almost no marginal effects in model 4. We let MAF
take four values (0.05, 0.1, 0.2, and 0.5) and let 7 take
two values (0.7, 1.0) for each model. For each non-dis-
ease marker we randomly chose its MAF from a uni-
form distribution in [0.0. 0.5]. We first generate 50
small datasets and each dataset contains 100 markers
genotyped for 1,000 cases and 1,000 controls based on
each parameter setting for each model. To test the scal-
ability of FEPI-MB, we also generate 50 large datasets
and each dataset contains 500 markers genotyped for
2,000 cases and 2,000 controls using the same parameter
setting for each model.

Epistasis detection on simulated data

We compare the FEPI-MB algorithm with three com-
monly-used methods: BEAM, SVM and MDR on the
four simulated disease models. To measure the perfor-
mance of each method, we use “power” as the criterion
function. Power is calculated as the fraction of 50 simu-
lated datasets in which disease associated markers are
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identified and demonstrate statistically significant asso-
ciations (G? test values below a threshold for FEPI-MB)
with the disease [9,11]. The BEAM software is down-
loaded from http://www.fas.harv-ard.edu/~junliut/BEAM
and we set the threshold of the B statistic as 0.1 [9]. For
SVM, we use LIBSVM with a RBF kernel to detect epi-
static interactions and the same searching strategy as
shown in [13]. Since MDR algorithm can not be applied
to a large dataset directly, we first reduce the number of
SNPs to 10 by ReliefF [14], a commonly-used feature
selection algorithm, and then MDR performs an exhaus-
tive search for a SNP set that can maximize cross-vali-
dation consistency and prediction accuracy. For the
large datasets containing 500 markers genotyped for
2,000 cases and 2,000 controls, we only compare the
performance of FEPI-MB, BEAM and SVM because
ReliefF [14] in MDR can not work for large datasets of
this scale.

We show the results on the simulated data in Figures
2 and 3. As can be seen, FEPI-MB performs the best
comparing to other three methods. BEAM is the second
best. In most cases, the powers of MDR are much smal-
ler than these of the FEPI-MB and BEAM algorithms.
For the MDR algorithm, the poor performance may be
due to the use of ReliefF to reduce SNPs from a very
large dimensionality. We try another comparison experi-
ment based on the simulated data containing only 40
markers, which makes us be able to apply MDR to the
simulated data directly. The performance of MDR is still
poor and this indicates that perhaps using the risk table
as a predictor to detect epistatic interactions is not a
good choice. In some cases, SVM can achieve a compar-
able or even better performance than FEPI-MB and
BEAM, however, at the cost of introducing more false
positives. Figure 3 also demonstrates the scalability of
FEPI-MB on large datasets.

An important issue for epistatic interaction detection
in genome-wide association studies is the number of
available samples. Typically, the size of samples is lim-
ited and consequently, computational model behaves
differently. We explore the effect of the number of sam-
ples on the performance of BEAM and FEPI-MB (SVM
will always introduce a large number of false positives
and thus, is not compared here). We generate synthetic
datasets containing 40 markers genotyped for different
number of cases and controls with 7 = 1 and MAF=0.5.
The result is shown in Figure 4 and we find that FEPI-
MB can achieve a higher power than BEAM when the
number of samples is the same in most cases. On the
other hand, FEPI-MB needs fewer samples to reach the
perfect power comparing to BEAM. So we can conclude
that FEPI-MB is more sample-efficient than BEAM.

We also compare the performance of FEPI-MB with
interlAMBNnPC based on the large dataset from modell
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Figure 2 Performance comparison for small datasets containing 100
markers genotyped from 1000 cases and 1000 controls.

to show the time efficiency of FEPI-MB. Among the
three variants of IAMB, interIAMBNPC can achieve the
best performance [15]. Both FEPI-MB and inter-
IAMBnPC are written in MATLAB and all the
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Figure 3 Performance comparison for large datasets containing 500
markers genotyped from 2000 cases and 2000 controls.

experiments are run on an Intel Core 2 Duo T6600 2.20
GHz, 4GB RAM and Windows Vista. The results are
shown in Table 2. As seen, FEPI-MB runs more than
ten times faster than interlAMBnPC.
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Epistasis detection on AMD data

FEPI-MB demonstrates its greater power, sample-effi-
ciency, and time-efficiency on simulated data with the
number of SNPs less than 500. In practical problems, a
typical GWAS genotype dataset contains at least more
than 30,000 common SNPs. FEPI-MB can also be scal-
able to large-scale datasets in real genome-wide case-
control studies. We apply FEPI-MB to an Age-related
Macular Degeneration (AMD) dataset, which contains
116,204 SNPs genotyped with 96 cases and 50 controls
[16]. AMD (OMIM 603075) [17] is a common genetic
disease related to the progressive visual dysfunction in
age over 70 in the developed country. We use the same
preprocessing method as in [9,16]. After filtering, there
are 97,327 SNPs lying in 22 autosomal chromosomes
remained.

The searching time of FEPI-MB for AMD-related
SNPs on an Intel Core 2 Duo T6600 2.20 GHz, 4GB
RAM and Windows Vista is 96.4s and FEPI-MB detects
two associated SNPs: rs380390 and rs2402053, which
have a G? test p-value of 5.36*1071°. The first SNP,
rs380390, is already found in [16] with a significant
association with AMD. The other SNP detected by the
FEPI-MB algorithm is SNP rs2402053, which is inter-
genic between TFEC and TES in chromosome 7q31
[18].

It is worth noting that several lines of evidence have
previously shown the long arm of 7q harbors genes
implicated in retinal disorders. Among which is map-
ping of a locus on 7q31-q32 for retinitis pigmentosa,
another retinal disease [19]. Ocular abnormalities have
been reported for an individual with terminal deletion
of chromosome 7q [20]. Mutations in a gene located at
7932 have been reported in families with autosomal
dominant retinitis pigmentosa [21]. More recently,
Next-generation sequencing revealed mutations in
another gene located on chromosome 7q31 in patients
with a form of retinopathy [22].

The rs2402053 SNP identified in our study does not
locate in any of the previously reported implicated genes
in retinal disorders. Therefore, it may shed light on dis-
covering a new genetic factor, on chromosome 7q, con-
tributing to the underlying mechanism of AMD, a
complex form of retinal degenerative disorder. The real
mechanism of interaction between rs380390 and
rs2402053 should be explored further by biological
experiments.

Conclusions

While many computational methods were used for iden-
tification of epistatic interactions, most existing compu-
tational methods do not consider the complexity of
genetic mechanisms causing common diseases and only
focus on the selection of SNP sets, which show the best
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Figure 4 Effect of number of samples on the performance of FEPI-MB and BEAM.

classification capacity. This will introduce many false
positives inevitably. Furthermore, most existing methods
cannot directly handle genome-wide scale problems. In
this paper, we introduce a new and fast Markov

Blanket-based method, FEPI-MB, to identify epistatic
interactions. We compared FEPI-MB with three other
methods, BEAM, SVM and MDR, over both simulated
datasets and a real dataset. Our results show that the
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Table 2 Comparison of performance of FEPI-MB and
interlAMBNPC for the large datasets of Model1

Model A 7 MAF Algorithm Power  Average time (s)
1 03 07 005 FEPI-MB 3 04574
interAMBNPC 3 7.5505
0.1 FEPI-MB 6 04437
interAMBNnPC 5 9.2449
0.2 FEPI-MB 20 04436
interAMBNnPC 20 94295
0.5 FEPI-MB 42 04449
interAMBNnPC 42 8.2823
1 0.05 FEPI-MB 2 04393
interl AMBnPC 2 73610
0.1 FEPI-MB 12 04421
inter AMBNnPC 12 9.7156
0.2 FEPI-MB 39 04431
interAMBNnPC 38 9.6498
0.5 FEPI-MB 45 04449
interAMBNnPC 43 9.1229

FEPI-MB algorithm outperforms other methods in
terms of the power and sample-efficiency. Moreover, we
compare FEPI-MB with one of the best Markov Blanket
learning method, interlAMBnPC. The FEPI-MB is more
than ten times faster than interlAMBnPC.

Methods

Markov blankets

Bayesian networks represent a joint probability distribu-
tion J over a set of random variables by a directed acyc-
lic graph (DAG) G and encode the Markov condition
property: each variable is conditionally independent of
its nondescendants, given its parents in G[23]. In a
Bayesian network, if the probability distribution of X
conditioned on both Y and Z is equal to the probability
distribution of X conditioned only on Y, i.e., P(X|Y, Z) =
(X | V), X is conditionally independent of Z given Y.
This conditional independence is represented as (X L Z|
Y).

Definition 1 (Faithfulness). A Bayesian network N
and a joint probability distribution ] are faithful to each
other if and only if every conditional independence
entailed by the DAG of N and the Markov Condition is
also present in J[24).

Theorem 1. If a Bayesian network N is faithful to a
joint probability distribution ], then: (1) nodes X and Y
are adjacent in N if and only if X and Y are condition-
ally dependent given any other set of nodes. (2) for the
triplet of nodes X, Y , and Z in N, X and Z are adjacent
to Y, but Z is not adjacent to X, X > Y R Z is a sub-
graph of N if and only if X and Z are dependent condi-
tioned on every other set of nodes that contains Y .
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We can define the Markov Blanket of a variable T,
MB (T), as a minimal set for which (X L T|MB(T)), for
all X € V — {T} — MB(T) where V is the variable set.
The Markov Blanket of a variable T is a minimal set of
variables, which can completely shield variable T from
all other variables. All other variables are probabilisti-
cally independent of the variable T conditioned on the
Markov Blanket of variable T.

Theorem 2. If Bayesian network N is faithful to its
corresponding joint probability distribution ], then for
every variable T, MB(T) is unique and is the set of par-
ents, children, and spouses of T.

Theorem 1 and Theorem 2 are proven in [25,26],
separately. We show an example of the Markov Blanket
in the well-known Asia network in Figure 5. The MB(T)
of the node ‘TBorCancer’ is the set of gray-filled nodes.

Given the definition of a Markov Blanket, the prob-
ability distribution of T is completely determined by the
values of variables in MB(T). Therefore, the detection of
Markov Blanket can be applied for optimal variable
selection and causal discovery. In this paper, we use
Markov Blanket method to detect potential causal SNPs
for common complex diseases.

Markov blankets learning methods

There are several Markov Blanket learning methods
such as: Koller-Sahami (KS) algorithm [27], Grow-
Shrink (GS) algorithm [28], Incremental association
Markov Blanket (IAMB) algorithm [15], Max-Min Mar-
kov Blanket (MMMB) algorithm [29], HITON_MB [30]
and PCMB [31].

VisitToAsia

LungCancer

TBorCancer

Figure 5 The Aisa network. The gray-filled nodes are the MB(T) of

node TBorCancer'.
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Koller-Sahami (KS) algorithm is the first algorithm to
employ Markov Blanket for feature selection. However,
there is no theoretical guarantee for Koller-Sahami (KS)
algorithm to find optimal MB set [27]. The GS algo-
rithm [24] and IAMB methods [15] are two similar algo-
rithms with two search procedures, forward and
backward. In the forward phase, the nodes of MB(T) are
admitted into MB, while in the backward phase false
positives are removed from MB. Under the assumptions
of faithfulness and correct independence test, both the
GS algorithm and IAMB are proved correct [15]. Com-
paring to GS algorithm, IAMB might achieve a better
performance with fewer false positives admitted during
the forward phase. A common limitation for GS algo-
rithm and IAMB is that both methods require a very
large number of samples to perform well. IAMB can be
revised in two ways: (1) After each admission step in
forward phase, perform a backward conditioning phase
to remove false positives to keep the size of MB(T) as
small as possible. (2) Substitute the backward condition-
ing phase with the PC algorithm instead [20]. In other
words, the backward phase will perform the indepen-
dence test conditioned on all subsets of the current
Markov Blanket. Tsamardinos et al. proposed three
IAMB variants: interlAMB, IAMBnPC and Inter-
IAMBnPC [15]. They also proved the correctness of
InterTAMBNPC. The time complexity of IAMB is O(|
MB|xN) where |[MB| is the size of MB and N is number
of variables.

To overcome the data inefficient problem of IAMB
and its variants, Max-Min Markov Blanket (MMMB)
algorithm [29], HITON_MB [30] and PCMB [31] are
proposed. All these three algorithms take a divide-and-
conquer method that breaks down the problem of iden-
tifying Markov Blanket of variable T into two subpro-
blems: First, identifying parents and children of T (PC
(T)) and, second, identifying the spouses of T. Mean-
while, they have the same two assumptions as [AMB (i.
e. faithfulness and correct independence test) and take
into account the graph topology to improve data effi-
ciency. However, results from MMPC/MB and HITON-
PC/MB are not always correct since some descendants
of T other than its children will enter PC(T) during the
first step of identifying parents and children of T [31].
PCMB can be proved correct in [31]. In every loop,
PCMB first remove unrelated variables, then PCMB use
IAMBnPC method to admit one feature and remove
false positives. The problem of PCMB is that the PC
algorithm performs an exhaustive conditional indepen-
dence test, which is very time consuming. The reason
that PC algorithm was used in PCMB and inter-
IAMBnNPC is that PC algorithm is a more sample-effi-
cient method and is sound under the assumption of
faithfulness [15]. In fact if the size of Markov Blanket is
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large, PC algorithm still needs a lot of samples to guar-
antee its performance. There is no theoretical proof and
guarantee that the PC algorithm admits less false posi-
tives than other methods.

Method description: FEPI-MB

Detecting gene-gene interaction is a special application
of Markov Blanket learning method because we only
need to detect the parents of the target variable T and
don’t need to design a complex algorithm to detect
spouses of T. Here target variable T is the disease status
labels and the parents of T are those disease SNPs. MB
(T) only contains the parents of T.

All Markov Blanket learning methods are based on the
following two Theorems.

Theorem 3. If a variable belongs to MB(T) which only
contains the parents of T, then it will be dependent on T
given any subset of the variable set V-{T} .

Proof: This is a direct consequence of Theorem 1
because now MB(T) only contains the parents of T. O

Theorem 4. If a variable is not a member of MB(T),
then conditioned on MB(T), or any superset of MB(T), it
will be independent of T.

Proof: Let X, Y, Z and W represent four mutually dis-
joint variable sets. Any probability distribution p satisfies
the weak union property: X L(YUW)|Z= X LY(ZUW)[25].
Based on the definition of Markov Blanket, we get that
X¢ MB(T)= (X LT|MB(T)). Thus, by the weak
union property, we have (X L T |(MB(T)US) for any
subset S ¢V —{T} - {X} - MB(T) .0

The G test is used to test independence and condi-
tional independence between two variables for discrete
data [13,24,32]. The null hypothesis for G* test is that
two variables are independent. As described next, the
proposed FEPI-MB uses G? to test the association and
independence between SNPs and disease status.

The detail of our FEPI-MB algorithm is shown in
Figure 6. It consists of three phases: Remove-MB,
Forward-MB and Backward-MB. During the phase of
Remove-MB, unrelated variables are removed from the
candidate set for Markov Blanket (canMB) based on the
conditional independence test. This will reduce the
searching space after each iteration and can help to
decrease the computational complexity. After the phase
of Remove-MB, the variable which has the maximal G>
score and is associated with the target variable T in
canMB enters MB(T) in the phase of Forward-MB,
where false positives are removed during the phase of
Backward-MB. Comparing to PCMB, we get rid of the
time-consuming PC algorithm and use the maximal sub-
set of current MB(T) to perform the conditional inde-
pendence test in the phase of Backward-MB. The time
complexity of FEPI-MB is less than the O(|MB|xN) of
IAMB because in each iteration after the first iteration
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/*Initialization*/
V : set of all variables; T: Target variables;
MB(T)=¢;
canMB=V-{T};
/*our algorithm®*/
Begin procedure
Repeat
Remove-MB,;
Forward-MB,;
Backward-MB,;
Until MB(T) has not changed;
End procedure
/*Remove phase*/
Begin Remove-MB
For allx; € canMB;
g(x)=G*(x,:T | MB(T))
If (x, LT|MB(T))
canMB = canMB — x;,

End If
End For

End

/*Forward phase*/
Begin Forward-MB
X = argmax(g(x,))
If (X LT|MB(T))
MB(T)= MB(T)U{X};
canMB = canMB — X
End If

x; € canMB ;

End

/*Backward phase*/
Begin Backward-MB
Forall Y e MB(T)
If (YLT|MB(T)-Y)
MB(T)= MB(T)— {V};
End If
End For
End

Figure 6 FEPI-MB algorithm.
.

the number of conditional independence tests per-
formed in the phase of Remove-MB is less than N. The
optimal time complexity of FEPI-MB is O(N).

Like IAMB and PCMB, the soundness of FEPI-MB is
based on the assumptions of DAG-faithfulness and cor-
rect independence test.

Theorem 5. Under the assumptions that the indepen-
dence tests are correct and that the data D are
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generated from a probability distribution which is faith-
ful to a DAG G, FEPI-MB returns all parents of T.

Proof: First, each node in MB(T) enters MB(T) in the
Forward-MB phase and will not be removed during the
Backward-MB phase because if X;e MB(T), then
(X; L T|Z) forany Z cV —{T}—{X;} owing to The-
orem 3. Second, the nodes outside the MB(T) will be
removed sooner or later during the Backward-MB phase
especially after all elements in the Markov Blanket of T
enter the current MB(T) because of the definition of
Markov Blanket and Theorem 4. ©

Even though FEPI-MB is a method based on the
greedy algorithm, Theorem 3 and Theorem 4 can guar-
antee that FEPI-MB will not get stuck in a local
optimum.

List of abbreviations used

GWAS: genome-wide association studies; FEPI-MB: Fast EPistatic Interactions
detection using Markov Blanket; SNP: single nucleotide polymorphisms; LR:
logistic regression; MDR: multifactor dimensionality reduction; stepPLR:
stepwise penalized logistic regression; BEAM: Bayesian epistasis association
mapping; MCMC: Markov Chain Monte Carlo; SYM: Support Vector Machine;
RFE: recursive feature elimination; RFA: recursive feature addition; GA: genetic
algorithm; AMD: Age-related Macular Degeneration; MAF: minor allele
frequencies; LD: linkage disequilibrium; HWE: Hardy-Weinberg Equilibrium;
DAG: directed acyclic graph.
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