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Using Bayesian Networks for Bankruptcy Prediction  

Abstract 

This study provides operational guidance for using naïve Bayes Bayesian network (BN) models 

in bankruptcy prediction. First, we suggest a heuristic method that guides the selection of 

bankruptcy predictors from a pool of potential variables. The method is based upon the 

assumption that the joint distribution of the variables is multivariate normal. Variables are 

selected based upon correlations and partial correlations information. A naïve Bayes model is 

developed using the proposed heuristic method and is found to perform well based upon a ten-

fold analysis, for both samples with complete information and samples with incomplete 

information. Second, we analyze whether the number of states into which continuous variables 

are discretized has an impact on a naïve Bayes model performance in bankruptcy prediction. We 

compare the model’s performance when continuous variables are discretized into two, three, …, 

ten, fifteen, and twenty states. Based upon a relatively large training sample, our results show 

that the naïve Bayes model’s performance increases when the number of states for discretization 

increases from two to three, and from three to four. Surprisingly, when the number of states 

increases to more than four, the model’s overall performance neither increases nor decreases. It 

is possible that the relative large size of training sample used by this study prevents the 

phenomenon of over fitting from occurring. Finally, we experiment whether modeling 

continuous variables with continuous distributions instead of discretizing them can improve the 

naïve Bayes model’s performance. Our finding suggests that this is not true. One possible reason 

is that continuous distributions tested by this study do not represent well the underlying 

distributions of empirical data. More importantly, some results of this study could also benefit 

the implementation of naïve Bayes models in business decision contexts other than bankruptcy 

prediction. 

Key words: bankruptcy prediction; Bayesian networks; naïve Bayes; selection of predictors; 

discretization of continuous variables 
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Using Bayesian Networks for Bankruptcy Prediction: Some Methodological Issues 

Abstract 

This study provides operational guidance for building naïve Bayes Bayesian network (BN) 

models for bankruptcy prediction. First, we suggest a heuristic method that guides the selection 

of bankruptcy predictors. Based on the correlations and partial correlations among variables, the 

method aims at eliminating redundant and less relevant variables. A naïve Bayes model is 

developed using the proposed heuristic method and is found to perform well based on a ten-fold 

validation analysis. The developed naïve Bayes model consists of eight first-order variables, six 

of which are continuous. We also provide guidance on building a cascaded model by selecting 

second-order variables to compensate for missing values of first-order variables. Second, we 

analyze whether the number of states into which the six continuous variables are discretized has 

an impact on the model’s performance. Our results show that the model’s performance is the best 

when the number of states for discretization is either two or three. Starting from four states, the 

performance starts to deteriorate, probably due to over-fitting. Finally, we experiment whether 

modeling continuous variables with continuous distributions instead of discretizing them can 

improve the model’s performance. Our finding suggests that this is not true. One possible reason 

is that continuous distributions tested by the study do not represent well the underlying 

distributions of empirical data. Finally, the results of this study could also be applicable to 

business decision-making contexts other than bankruptcy prediction. 

Key words: bankruptcy prediction; Bayesian networks; naïve Bayes; variable selection; discretization of 

continuous variables 
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1. INTRODUCTION 

In today’s dynamic economic environment, the number and the magnitude of bankruptcy filings 

are increasing significantly. Even auditors, who have good knowledge of firms’ situations, often 

fail to make an accurate judgment on firms’ going-concern conditions (e.g., Hopwood et al. 

1994; McKee 1998, 2003). Therefore, bankruptcy prediction models have become important 

decision aids for organizations’ stakeholders, including auditors, creditors, and stockholders. 

 Techniques employed to develop bankruptcy prediction models have evolved from the 

simple univariate analysis (Beaver 1966) and multiple discriminant analysis (MDA) (Altman, 

1968) in the 1960s, to logit and probit models in the 1980s (Ohlson 1980, Zmijewski 1984), to 

neural network models (NN) (Tam and Kiang 1992), rough set theory (McKee 1998), discrete 

hazard models (Shumway 2001), Bayesian network (BN) models (Sarkar and Sriram 2001), and 

genetic programming (McKee and Lensberg 2002). Among these techniques, BN models have 

many attractive features. They are easy to interpret, perform well as a classification tool, have no 

restriction on variables’ underlying distributions, and have no requirement of complete 

information. 

 In order to allow a formal Bayesian model to become useful decision aids, adequate 

operational guidance needs to be provided (Senetti 1995). Although some prior work (e.g., 

Sarkar and Sriram 2001; Kotsiantis et al. 2005) have introduced BNs to bankruptcy predicting, 

there is still a lack of proper guidance in the selection of variables and the discretization of 

continuous variables. This study attempts to fill this void. This study focuses on one type of BN 

models: naïve Bayes, which are simple to implement and have been shown to perform well in 

bankruptcy prediction (Sarkar and Sriram 2001). First, there exists a large pool of potential 

bankruptcy predictors, including various financial ratios, stock market information, industry 
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level factors, etc. A method is needed to guide the selection of variables that can be used to 

develop a well-performing naïve Bayes BN for bankruptcy prediction.  This work proposes such 

a heuristic method based on the assumption of linear dependence as measured by correlations 

between variables. Grounded on existent feature selection literature (e.g., Koller and Sahami 

1996), the proposed method aims at identifying key predictors and eliminating redundant or 

irrelevant ones. Secondly, BN models generally use discrete-valued variables. Through 

discretization, continuous variables are converted into discrete variables with several states. It is 

unclear whether and how the number of states into which continuous variables are discretized 

have an impact on BN models’ performance. This study explores this issue. The study further 

examines whether modeling continuous variables with continuous distributions instead of 

discretizing these variables can improve the model’s performance. 

 The remainder of this paper is organized as follows. Section 2 provides a literature 

review on bankruptcy prediction techniques. In section 3, we discuss the probabilistic concepts 

underlying BN models. In section 4, we describe our sample and data. Section 5 describes 

research process and present results. Section 6 summarizes and concludes the paper. 

2. LITERATURE REVIEW 

In this section, we briefly review some techniques employed to develop bankruptcy prediction 

models in prior research and discuss the advantages of BN as a classification tool. 

 Different methods have been implemented in developing bankruptcy prediction models. 

Beaver (1966) used univariate analysis to compare patterns of 29 ratios in the five years 

preceding bankruptcy, for a sample of failed firms, with a control group of firms that did not fail. 

During the late 1960s and throughout the 1970s, multiple discriminant analysis (MDA) was used 

to develop bankruptcy prediction models. Two of the well-known bankruptcy prediction models, 
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Altman’s Z-score (Altman 1968) and ZETA (Altman et al. 1977) were developed using MDA. 

Beginning in the 1980s more advanced estimation methods, such as logit (Ohlson 1980) and 

probit (Zmijewski 1984), were employed. 

 During the 1990s, the neural network (NN) model was introduced into bankruptcy 

prediction. Research has shown contradictory results regarding NN’s superiority over linear 

models (Altman et al. 1994; Tam and Kiang 1992). Later on, Sarkar and Sriram (2001) 

developed Bayesian network (BN) models for early warning of bank failures. They found that 

both a naïve BN model and a composite attribute BN model have comparable performance to the 

well-known induced decision tree classification algorithm. Some other techniques, such as rough 

set theory (McKee 1998), discrete hazard models (Shumway 2001), and genetic programming 

(McKee and Lensberg 2002), have also been introduced to the bankruptcy prediction area. 

 Prior research has shown that BNs perform well as a classification and prediction tool in 

different domains (see e.g. Clark and Niblett 1989; Langley et al. 1992; Pazzani et al. 1996; 

Sarkar and Sriram 2001; Anderson et al. 2004). Unlike most regression techniques, BNs do not 

have any requirements on the underlying distributions of variables. BNs can easily model 

complex relationships among variables including partial mediators and “interaction effects”. BNs 

do not require complete information for observations. Observations that have some missing 

variables can still be used to train or test BN models. This is very important for bankruptcy 

studies because bankruptcy samples are usually small and bankrupt firms tend to have missing 

information. BNs are dynamic and interactive. They can easily be updated with new information 

as it is learned. Subjective human knowledge can easily be incorporated into models. Compared 

to other machine learning techniques, such as neural networks, BN models are more transparent 

and intuitive because relationships among variables are explicitly represented by the direct 
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acyclic graph. Users report that BNs’ representations are quite intuitive and easy to understand 

(Kononenko 1990). 

3. BAYESIAN NETWORK MODELS 

Bayesian networks (BN) are probabilistic graphical models that represent a set of random 

variables for a given problem, and the probabilistic relationships between them. The structure of 

a BN is represented by a direct acyclic graph (DAG), in which the nodes represent variables and 

the edges express the dependencies between variables (Pearl 1988). The probabilistic part of the 

BN is represented by a set of conditional probabilities. Next, we discuss the basic concepts of 

BN models in the context of bankruptcy prediction. 

3.1 Bayes Rule 

Bayes rule can be expressed as follows: 

 P(A B) =
P(B A)P(A)

P(B)  (1) 

 In a bankruptcy prediction context, this can be interpreted as follows. Suppose we are 

interested in event A, which represents a company’s bankruptcy filing. We start with a prior 

probability P(A), representing out belief about A before observing any relevant evidence. For 

instance, P(A) can be measured as the mean percentage of firms in the whole population that 

have declared bankruptcy in the past. P(B|A) represents the likelihood for bankruptcy based on 

observing a bankruptcy predictor B such as a late 10-K filing. P(B), the probability of a firm 

filing its 10-K late, is just a normalizing constant. Suppose we observe B. By Eq. (1), our revised 

belief for the probability of bankruptcy, the posterior probability P(A|B), is obtained by 

multiplying the prior probability of bankruptcy P(A) by the likelihood P(B|A) and then 

normalizing the result by dividing by the constant P(B). 
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 Eq. (1) can be rearranged into Eq. (2), which states that the posterior odds for A equals 

the prior odds for A multiplied by the likelihood ratio for A from evidence B, i.e., 

 
  

P( A B)

P(~ A B)
=

P( A)
P(~ A)

P( B A)

P(B ~ A)
 (2) 

where 
  

P( B A)

P(B ~ A)
represents the likelihood ratio for A from evidence B. 

 Based on the graphical structure of a BN model, it can be classified as a naïve Bayes, a 

tree augmented naïve Bayes, a general BN, etc. The present study focuses on the naïve Bayes 

model because it is simple to implement and have been shown to perform well in bankruptcy 

prediction (Sarkar and Sriram 2001). Next, we further discuss the naïve Bayes model. 

3.2 A Naïve Bayes Bayesian Network Model 

The naïve Bayes BN model is named by Titterington et al. (1981) because of its simplicity. 

Figure 1 presents a graphical representation of a naïve Bayesian network model. 

 

Insert Figure 1 Here 

In a naïve Bayes model, the node of interest has to be the root node, which means, it has no 

parent nodes. In a bankruptcy prediction context, in Figure 1, A represents the bankruptcy 

variable. B1, B2 …, Bn represent n bankruptcy predictor variables. The naïve Bayes model 

assumes the following conditional independence:  

 Bi⊥ {B1,B2,....,Bi −1,Bi+1, ....Bn }A,  for i =1, 2, …, n. 

 The above assumption says that predictors, B1, B2 …, Bn are conditionally mutually 

independent given the state of bankruptcy. Based on this conditional independence assumption, 

the posterior odds of A can be expressed as: 
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In the expression (3) above, B represents a vector of observations (B1, …, Bn). If only k of n 

predictors were observed, then the posterior odds for A is given by an equation similar to (3) 

above where only the likelihood ratios from the k predictors are used (instead of all n predictors 

as in (3)). The predictors that are not observed have no effect on the posterior odds for A. 

4.  SAMPLE AND DATA 

Sample firms used in this study are publicly traded firms on major stock exchanges (NASDAQ, 

the New York and American Stock exchanges) across various industries during the period 1989–

2002. We do not impose any selection restriction on the size or industry characteristics when 

forming bankrupt and non-bankrupt samples. The following steps are used to identify bankrupt1 

firms. First, bankrupt firms are identified through Compustat and Lexis-Nexis Bankruptcy 

Report databases. Next, bankruptcy filing dates are identified through searching the Lexis-Nexis 

Bankruptcy Report library, Lexis-Nexis News, and firms’ Form 8-K reports. Firms without 

available bankruptcy filing dates are eliminated. For each bankrupt firm, the most recent annual 

report filed prior to its bankruptcy filing date is identified. The lag between the fiscal year-end of 

the most recently filed annual report and bankruptcy filing date must be less than 2 years2. The 

above procedure results in 890 bankrupt firms. The nonbankrupt sample is formed as described 

                                                 

1 The bankrupt sample in this study consists of firms that file bankruptcy petitions under both Chapter 11 and 

Chapter 7.  
2 Similar to Begley et al. (1996), we use this requirement to ensure the data used for prediction are reasonably 

current.  
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below. First, we identify all active3 firms available in Compustat for each sample year of 89–02. 

Then we randomly select 500 firms from the identified active-firm-pool for each sample year. 

Once a non-bankrupt firm is selected for a year, it is excluded from selection in later years. 

Thus, for 14 sample years (1989–2002), we end up with 7,000 active firms as the initial 

nonbankrupt sample. Among these 7,000 firms, 63 firms have missing information on all 20 

potential predictors and are deleted. Therefore, 6,937 firms are used to examine the correlations 

among variables. Further, another 5 firms have missing information on all the eight variables 

selected. Therefore 6,932 active firms are used to train and test the developed naïve BN models.  

 Through our own analysis and reviewing past research (e.g., Emery and Cogger 1982; 

Hopwood et al. 1989; Altman 1968; Ohlson 1980; Hopwood et al. 1994; Shumway 2001; 

McKee and Lensberg 2002), 20 variables4 are identified as potential bankruptcy predictors. 

These variables are financial-accounting factors measuring firms’ size, liquidity, leverage, 

turnover, and profitability, market-based factors including market capitalization and abnormal 

stock returns, and other factors including auditors’ opinions and industry failure rate. All 

variables for bankrupt firms are calculated based upon the most recent available data prior to 

firms’ bankruptcy filings. Table 1 provides definitions of all variables. Table 2 provides 

descriptive statistics and univariate analysis of variables. Table 3 describes the average annual 

                                                 

3 Compustat considers a firm as active as of the end of the year if it has a closing market price for December of the 

year. 
4 The 20 variables are not exhaustive and there are other useful bankruptcy variables we are not able to incorporate 

in this study. The proposed heuristic method of variable selection is applicable to any number of potential 

variables. 
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industry failure rate5 during the study period. The categorization of industries is based on Barth 

et al. (1998). 

Insert Table 1–3 Here 

5 RESEARCH PROCESS AND RESEARCH RESULTS 

5.1 A Heuristic Method for Variable Selection in Naïve Bayes Models 

There exists a large pool of bankruptcy predictors. An appropriate selection of a subset of 

variables is necessary for developing a useful naïve Bayes model. Koller and Sahami (1996) 

elaborate the importance of feature (variable) selection. First, the computation time grows 

dramatically as the number of features increases. Secondly, over-fitting problems occurs when 

we attempt to apply a large number of features to limited data available. Thirdly, irrelevant and 

redundant features may confuse the learning algorithm and obscure the predictability of truly 

effective variables. Therefore, a small number of predictive variables are preferred over a very 

large number of variables including irrelevant and redundant ones. 

 One purpose of this paper is to provide a heuristic method to guide the selection of 

variables in naïve Bayes models. Grounded on prior feature selection literature (e.g., Koller and 

Sahami 1996), the goal is to eliminate variables that provide little or no additional information 

beyond that subsumed by the remaining variables. To achieve the goal, the proposed heuristic 

relies on correlations and partial correlations among variables. This heuristic is based on the 

                                                 

5 When calculating annual industry failure rate, we assume that the instances of bankruptcies identified in this study 

represent the number of bankruptcies in the real population, and the number of active firms in Compustat 

represents the number of nonbankruptcies in the real population. 
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assumption that the dependence between every pair of variables is linear6 and measured by the 

correlation coefficient. 

 Next, we describe how the proposed heuristic works. First, we obtain the correlations 

among all variables, including 20 potential predictors and the variable of interest, firms’ 

bankruptcy status. Variables that have significant correlations (Pearson correlation coefficient ≥ 

0.10) are assumed to be dependent and therefore connected. We use the cutoff of 0.107 to help 

identify a small subset of most important predictors while excluding the unimportant ones. 

Ideally, only the training sample should be used to obtain the correlation coefficient information. 

However, this study uses a ten-fold analysis that requires ten training samples. It is too time-

consuming to analyze the correlation coefficients among all the ten training sample. Therefore, 

the correlations are obtained using the entire (both training and test) sample of 7,827 firms, 

including 6,937 non-bankruptcies and 890 bankruptcies. Figure 2 shows the dependencies among 

the variables. 

 

 

 In Figure 2, eight predictors, LM, CHN, IT, M, AU, R, IFR, and CH are connected with B 

(bankruptcy status), since they have dependency (correlations ≥ 0.10) with B. Among these eight 

predictors, thirteen pairs of variables have dependency (correlations ≥ 0.10) within the pair. To 

avoid double counting information, we analyze whether one variable is dependent with B given 

                                                 

6 Note that this assumption is imposed by the proposed heuristic method for variable selection, not by the BN model 

itself. 
7 Since there is no established cutoff, we experimented with cutoffs of 0.05, 0.1, 0.15, and 0.2. The cutoff of 0.1 is 

the one that leads to the best prediction ability, with the least number of variables. The choice of an optimal 

cutoff is itself a research issue, which is not covered in this paper. 

   Insert Figure 2 Here 



   

 11 

the other variable in the pair by examining the partial correlations between that variable and B, 

while controlling the other variable in the pair. These partial correlations are presented in Panel 

A of Table 4. 

 

 

 In Panel A of Table 4, pair 1 is CH and LM. The significant partial correlation between B 

and CH (–0.10) given LM suggests that CH has incremental contribution in predicting B beyond 

LM; the significant partial correlation between B and LM (–0.13) given CH suggests that LM has 

incremental contribution in predicting B beyond CH. Therefore, both CH and LM are kept in the 

model. Similarly, within each of the rest 12 pairs, one variable has incremental contribution in 

predicting B given the other variable in the pair because all partial correlations are significant 

(correlations ≥ 0.10). Therefore, no variable is eliminated. The structure of the naïve Bayes with 

the eight selected variables, LM, CHN, IT, M, AU, R, IFR, and CH is shown in Figure 3. The 

model consists of financial accounting factors, market variables, auditors’ opinions, and industry 

failure rate. 

 

 

 The naïve Bayes model is typically used with discrete-valued data. Prior research (e.g., 

Sarkar and Sriram 2001) has used bracket median method for discretization, which divides the 

continuous cumulative probability distribution into n equally probable intervals. For the 

demonstration of the proposed heuristic method, we adapt the extended Pearson-Tukey (EP-T) 

method (Keefer and Bodily 1983), a method of three-point approximations, to convert 

continuous variables into discrete. Under the EP-T method, a continuous distribution is 

   Insert Figure 3 Here 

   Insert Table 4 Here 
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approximated by a discrete distribution with probabilities 0.185, 0.63, and 0.185. Compared to 

bracket median method, the EP-T is able to better capture the tails of continuous variables. This 

feature is very suitable for the context of bankruptcy prediction since soon-to-be bankrupt firms 

tend to have values at the tails of the distributions (e.g. unusually high profit (McKee and 

Lensberg 2002), unusually high leverage, unusually low cash flow, etc.). Besides, according to 

Keefer (1994), the EP-T method is one of those three-point discrete-distribution approximations 

that accurately represent certainty equivalents for continuous random variables.  

 To stay in the sample for training and testing the naïve BN model, a firm needs to have at 

least one variable available among the eight selected children nodes. Thus, the maximum sample 

size for this stage of the study is 7,822, including 6,932 non-bankruptcies and 890 bankruptcies. 

Ideally, only data in the training sample should be used to identify the points. However, this ideal 

procedure requires a lot of repetitive work given the ten training samples used under the ten-fold 

analysis. Therefore, for each of children nodes in the naïve Bayes model of Figure 3, we use the 

entire (including both training and test) sample of 7,822 firms to identify two points, x1, x2, 

which are respectively at 18.5 percentile, and 81.5 (18.5 + 63) percentile. These two points, x1 

and x2, are used as cutoffs to determine to which status, ‘High’, ‘Medium’, or ‘Low’, a certain 

variable value should belong. A firm is assigned a status of ‘Low’ for the variable if it has a 

value smaller than x1; a status of ‘Medium’ if it has a value between x1 and x2, and a status of 

‘High’ if it has a value larger than x2. Since we estimate two conditional distributions for each 

predictor variable, one conditioned on bankruptcy and one conditioned on non-bankruptcy, there 

is no bias introduced by the fact that the sample proportion of bankruptcies (11.4%) in this study 

is larger than the population proportion of bankruptcies. 
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 To make the test results more robust, a ten-fold analysis is employed. This means that the 

entire sample (including bankrupt and non-bankrupt sample) is divided randomly into ten equal 

sized subsets. Each time, nine subsets are randomly selected to form the training sample to learn 

the probabilities parameters; the remaining subset is used as the test sample to test the model’s 

performance. On an average, each training sample consists of 801 bankruptcies and 6,239 non-

bankruptcies; each test sample consists of 89 bankruptcies and 693 non-bankruptcies. 

 Models with probabilities parameters learned from training samples are used to predict 

the status of bankruptcy for firms in the test sample. When testing the model, we ignore the prior 

since the sample proportion of bankruptcies is larger than the population proportion (e.g., McKee 

and Greenstein 2000). If a firm’s posterior likelihood of bankruptcy given values of observed 

predictors is larger than 1, it is predicted as bankrupt, otherwise nonbankrupt. The predicted 

results are checked for accuracy with actual statuses of firms’ bankruptcy status. Table 5 reports 

models’ prediction ability in ten test samples. 

 

 

 On an average, the naïve BN model with eight selected variables accurately predicts 

81.12% of bankruptcies, and 81.85% of non-bankruptcies. For comparison, we also obtain the 

prediction ability of the naïve model with all twenty potential variables (without any selection), 

listed on the right side of Table 5. The naïve model with all variables, on an average, correctly 

predicts 81.57% of bankruptcies, and 81.78% of non-bankruptcies. To conduct statistical tests of 

significance in models’ performance differences, we assume the prediction rate (of the 10 fold 

results) to be normally distributed with the same variance. Thus, test of significance in the 

average rate between models after ten-fold analysis is equivalent to testing for difference of 

   Insert Table 5 Here 
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means of normal distribution. Untabulated T-test results suggest that there is no significant 

difference in two models’ performance. This indicates that our proposed heuristic of variable 

selection has successfully eliminated redundant and less relevant variables, and achieved an 

equivalent level of performance with much fewer variables. 

Appendix A presents the tables of conditional probabilities8 underlying the Naïve BN 

model in Figure 3. These conditional probabilities are informative in regard to the relationships 

between B (bankruptcy status) and its predictors. For instance, the probability of having a low M 

(market capitalization) given B is 44%, which is much higher than that (15%) given NB (non-

bankruptcy). 

5.2 Missing Information and Second-order Variables 

Some sample firms have missing values on one or multiple children nodes used in Figure 3. 

Specifically, among the entire sample of 7,822 firms, 1,678 firms have missing value on child 

node IT; 2,419 firms have missing values on M; 1,537 firms missing on AU; 2,331 firms missing 

on R; 964 firms missing on IFR; 5,345 firms missing on LM; 1,086 firms missing on CH, 1,679 

missing on CHN. In the following discussion, we call the eight children nodes in Figure 3 first-

order variables. Next we discuss how to identify second-order variables to compensate for the 

missing information among first-order variables. Conceptually, second-order variables are those 

that have significant correlations with first-order variables and therefore are expected to provide 

information on the missing values of first-order variables. To select a given first-order variable’s 

second-order variables, we follow the similar method used to select first-order variables. The 

                                                 

8 The conditional probabilities are learned based upon each set of training sample for each fold of analysis. 

Conditional probabilities presented in Appendix A are learned from one set. Conditional probabilities learned 

from each of the other nine sets are substantially similar to those in Appendix A.  
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major difference is that now we consider each first-order variable instead of B as a root variable. 

Next we explain how each first-order variable’s second order variables are selected.  

 To select second-order variables for CH, we identify those non-first-order variables that 

are connected to CH in Figure 2. These variables have significant correlations with CH. Such 

variables include OF, CR, CS, TA, CA, S. Among these variables, there are ten pairs of 

significant relationships. Next we examine the partial correlation between one variable with CH 

after controlling for the other variable in the pair (Pair 14-23, Panel B.1 of Table 4). For the pair 

of OF and CR (Pair 14), CR has a significant (≥ 0.10) partial correlation with CH, given OF, but 

OF does not have a significant partial correlation with CH, given CR. This indicates that OF 

does not have significant incremental contribution in predicting CH beyond CR, therefore, OF is 

deleted. Similarly, for the pair of CR and CS (Pair 17), CS is eliminated. Partial correlations 

among all other pairs are significant. Therefore, no other variable is deleted. To summarize, CH 

has four second-order variables, which are, CR, TA, CA, S. 

 Non-first-order variables that have significant correlations with LM include CR, and S. 

Since there is a significant correlation between CR and S, we obtain the partial correlation 

between LM and CR (S) given S (CR) (Pair 24, Panel B.3 of Table 4). CR has a significant partial 

correlation with LM, given S, but S does not have a significant partial correlation with LM after 

controlling for CR. Therefore, S is deleted. LM’s second-order variable is CR. Non-first-order 

variables that have significant correlations with IT include TA, and OF. Since there is a 

significant correlation between TA and OF, next we examine the relevant partial correlations 

(Pair 25, Panel B.3 of Table 4). Neither of the partial correlations is significant. In such case, the 

one with the higher partial correlation is selected while the one with the lower partial correlation 

is deleted. Therefore, OF is deleted. IT’s second-order variable is TA.  
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 Non-first-order variables that have significant correlations with M include OF, TA, CA, E, 

NT, and RE. There exist significant correlations between TA and OF, OF and CA, TA and CA, TA 

and E, TA and NT, TA and RE, E and NT, RE and E, RE and NT. To avoid double counting 

information, next we examine the partial correlation between one variable with M after 

controlling for the other variable in the pair. The partial correlations are presented in Panel B.4 

(Pair 26-34). For the pair of OF and TA (Pair 26), TA has a significant (≥ 0.10) partial correlation 

with M, given OF, but OF does not have a significant partial correlation with M, given TA. 

Therefore TA is selected, while OF is deleted. Similarly, for the pair of RE and TA (Pair 31), RE 

is deleted; for the pair of NT and E (Pair 32), NT is eliminated. Partial correlations among other 

pairs are all significant, which does not suggest elimination of any other variable. To summarize, 

M’s second-order variables include TA, CA, E.  

 Only one non-first-order variable, E, has a significant correlation with R. Therefore, E is 

the second-order variable for R. Similarly, S is the second-order variable for IFR; CA is the 

second-order variable for AU. There are no non-first-order variables that have significant 

correlations with CHN. Therefore, CHN has no second-order variables. By incorporating selected 

second-order variables into the naïve Bayes model in Figure 3, we form the following cascaded 

naïve Bayes model shown in Figure 4. 

 

 

 Using the ten-fold analysis, we obtain the average prediction performance of the 

cascaded naïve Bayes model as presented in Panel A of Table 6. The cascaded BN model 

accurately predicts 81.12% of bankruptcies and 80.08% of nonbankruptcies. T-test results 

suggests that, compared to  the naïve model with only eight first-order variables, the cascaded 

   Insert Figure 4 Here 
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model has indifferent prediction ability in predicting bankruptcy, but has a significantly (p < 

0.05) worse performance in predicting nonbankruptcy. 

 It is possible that for the full sample, the above comparison result is affected by the 

performance of those instances for which missing information on first-order variables is not that 

much. Take an extremely case in which the sample has complete information on all eight first- 

order variables, the performance of the cascaded model would be identical to the naïve model 

because adding second-order variables does not make any difference given the Markov 

properties of BNs. To better examine whether the cascaded model is able to compensate for 

missing values on first-order variables, next, we identify firms with missing values on at least 2 

first-order variables9 and redo the comparison between the cascaded model and the naïve model. 

In our sample, 265 bankruptcies and 3,501 nonbankruptcies qualify for such a selection. Given 

the reduced sample size, we perform five-fold analysis instead of ten-fold analysis here. T-test 

results (Panel B of Table 6) suggests that, compared to the naïve model, the cascaded model 

performs the same in predicting bankruptcy, while still performs significantly (p < 0.05) worse in 

predicting nonbankruptcy. Overall speaking, we do not observe significant improvement on the 

model’s performance after adding the second-order variables. From this perspective, the naïve 

Bayes model presented in Figure 3 becomes more appealing with fewer variables and equivalent 

performance. Nevertheless, our results do not deny the possible superiority of the cascaded 

model over the naïve model in situations where missing information on first-order variables are 

even more substantial.  

 
                                                 

9 The verification would be more appropriate if we select firms with missing values on more than 2 first-order 

variables, for instance 3, or more. However, this is not doable in our sample because the number of bankrupt 

firms in our sample which have missing values on at least 3 first-order variables is very few. 

   Insert Table 6 Here 
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5.3 Number of States for Discretization 

Bankruptcy prediction often involves continuous random variables. To apply these continuous 

variables to BN models, past research usually employs a discretization approach (Sarkar and 

Sriram 2001). This approach converts continuous variables into discrete variables with limited 

states, often two. During the discretization process, one problem that researchers face is to decide 

the number of states for discretization. Does the number of states chosen for discretization 

impact models’ prediction power? In this study, we empirically examine this issue. The 

advantage of increasing the number of states is to reduce the information loss during the 

discretization process. However, more states require more parameters to define models. Unless 

one has either data or knowledge to estimate these parameters, one can easily succumb to over-

fitting resulting in degradation in performance. 

 We use the naïve Bayes model in Figure 3 to test the effect of discretization states. In the 

naïve Bayes model, six continuous variables, M, R, IFR, CH, LM, CHN, are discretized into 

various states, from 2, 3, 4,…, 10. Since bankrupt firms tend to have extreme values that reside 

in the tails of distributions, we use the following n–1 points: 1
n +1

, 2
n +1

, 3
n +1

...n −1
n +1

 or 

2
n +1

, 3
n +1

, 4
n +1

... n
n +1

.10 to discretize continuous variables into n states. The model’s 

performance with continuous variables discretized into various states is tested using the ten-fold 

analysis. Table 7 presents the model’s average performance in the ten test samples.  

                                                 

10 If bankrupt firms tend to have extreme values at the left tails of variables, 
1

n +1
, 2
n +1

, 3
n +1

...n −1
n +1

are used to 

discretize them (M, R, CH, LM, CHN), while if bankrupt firms tend to have extreme values at the right tails of 

the variable (IFR), 
2

n +1
, 3
n +1

, 4
n +1

... n
n +1

. are used to discretize such variable. 
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When continuous variables are discretized into 2 states, the model’s accuracy in predicting 

bankruptcy is 82.58%, and its accuracy in predicting nonbankruptcy is 77.55%. When the 

number of discretization states increases to 3, the model’s accuracy in predicting bankruptcy is 

83.37% and its accuracy in predicting non-bankruptcy is 77.44%. Untabulated T-test results 

suggest that there is no significant difference in the model’s performance between 2 states and 3 

states. When the number of states increases to 4, the model’s accuracy in predicting bankruptcy 

is 83.82%, which is statistically indifferent to the model’s performance with 2 or 3 states. 

However, the model’s accuracy in predicting nonbankruptcy is decreased to 74.94%, which is 

significantly (p<0.001) worse than that with 2 or 3 states. When we increase the number of states 

for discretization further, the model’s performance continues to drop. With the 10 states of 

discretization, the model’s accuracy in predicting bankruptcy is decreased to 80.67% 

(insignificantly different from that with 2 or 3 states), and its accuracy in predicting 

nonbankruptcy is decreased to only 69.46% (significantly (p<0.001) worse than that with 2 or 3 

states). To summarize, using a large training sample (on average 801 bankruptcies and 6,239 

non-bankruptcies) and a naïve Bayes model in which 6 out of 8 predictor variables are 

continuous, we find that discretizing continuous variables into 2 or 3 states leads to the best 

performance. One possible interpretation of this finding is that bankrupt firms tend to have 

extreme values at one end of the distributions, while non-bankrupt firms tend to have extreme 

values at the opposite end. Two or three states are sufficient enough to capture the distinction. 

With four or more states, the model’s performance significantly deteriorates, probably due to 

over-fitting. 

 

   Insert Table 7 Here 
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5.4 Modeling Continuous Variables with Probability Density Functions 

The discretization of continuous variables has been criticized by researchers (Poland and 

Shachter 1993). For instance, Miller and Rice (1983) and Keefer (1992) note that representing 

continuous distributions accurately with a few points is tricky if the tails of the distributions are 

significant. Next instead of discretizing continuous variables (M, R, LM, CH, CHN), we fit them 

using the normal distribution to see whether the prediction ability of the naïve Bayes model in 

Figure 3 can be improved. Note that we choose to discretize IFR here because the goodness-of-

fit of the normal distribution for this variable is too low. One possible reason for the low 

goodness-of-fit is that, different from other variables that are firm specific, Industry failure rate, 

IFR, is an industry level factor. Again, the ten-fold analysis is used here. For each fold, we use 

the training sample to estimate the parameters (mean and standard deviation) of the normal 

distributions modeling continuous variables. The probability density function for each 

continuous variable given bankruptcy (B) and that given non-bankruptcy (NB) are then used to 

calculate the likelihood of bankruptcy given values of variables. Assuming that the prior of 

bankruptcy is unknown ( 1
)(

)( =
NBP
BP ), the posterior likelihood of bankruptcy is calculated as:  

)(
)(

)(
)(

)(
)(

)(
)(

)(
)(

)(
)(

)(
)(

)(
)(

)
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NBLMf
BLMf
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××××

×××=  

 The right column of Table 8 presents the ten-fold analysis result when modeling five 

continuous variables (M, R, LM, CH, CHN) using normal distributions. For comparison 

purposes, the left column of Table 8 shows the model’s performance when continuous variables 
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are discretized into three discrete states under the EP-T method.  Untabulated T-test results 

suggest that compared to discretizing continuous variables into 3 states, modeling them with 

normal distributions leads to a statistically indifferent performance in predicting bankruptcy 

(83.60% vs. 81.13%), but a statistically significantly (p < 0.001) worse performance in predicting 

nonbankruptcy (77.51% vs. 81.85%). One possible explanation for this finding is that the normal 

distribution does not represent the underlying distributions of empirical data very well because 

financial ratios tend to be skewed (e.g., Karels and Prakash 1987). We also experimented to 

identify and use the best-fit distributions for continuous variables using Crystal Ball software11. 

The results are substantially similar to those using the normal distribution. Again, it is possible 

that even the best-fit distributions do not represent the underlying distribution of the real world 

data very well. This finding provides some justification for discretizing continuous variables in 

the context of bankruptcy prediction. 

 

5.5 Naïve Bayes vs. Logistic Regression 

In this section, we compare the performance of the naïve Bayes model in Figure 3 with that of 

logistic regression, a widely used bankruptcy prediction tool. Since logistic regression is not 

applicable to observations with missing data unless proper techniques are used to estimate the 

missing values, this comparison12 is restricted to firms with complete information on the eight 

                                                 

11 Crystal Ball software selected the following distributions for our experiment: Normal, Inverse Gaussian, Pareto, 

and Error Function, among a potential pool of 14 distributions, including Beta, Exponential, Extreme Value, 

Logistic, Log-Logistic, Lognormal, Pearson Type V, Triangular, Uniform, and Weibull. 
12 We also experimented the stepwise logistic regression at a selection criterion of p=0.05 (Jones 1987). In order to 

enter the stepwise logistic regression, a sample firm needs to have complete information on all twenty potential 

predictors used in this study. This restriction further reduces the sample to 304 bankruptcies and 1,151 

   Insert Table 8 Here 



   

 22 

predictors in Figure 3. Thus, the study sample is reduced to 414 bankruptcies and 1,435 non-

bankruptcies. Given the small sample size, a five-fold analysis is performed. Using the same 

eight variables presented in Figure 3, logistic regression has an average prediction rate of 79.48% 

in bankruptcy sample, and 82.02% in non-bankruptcy sample. The naïve Bayes model in Figure 

3 has an average prediction rate of 80.43% in bankruptcy sample, and 80.00% in non-bankruptcy 

sample. Untabulated T-tests suggest that there is no significant difference (at the 5% level of 

significance) between two models’ performance. The estimation13 of logistic regression is as 

follows: 

M
IFRCHNRLMCHITAUy

156.0
356.0391.0222.2056.0165.3098.1933.0755.4

−
+−−−−++−=

 

where 
B

By
−

=
1

ln . 

It is important to note that the naïve Bayes model is able to achieve an equivalent level of 

performance in a sub-sample of firms with missing data (See Panel B of Table 6), to which 

logistic regression is not applicable unless certain techniques of filling missing data is employed. 

                                                                                                                                                             

nonbankruptcies. The stepwise logistic regression is estimated as: 

TAE
TLMIFRRLMITAUy

701.0564.0
377.1728.0205.0452.1219.0661.0881.0678.11

+−
+−+−−++−=

 

where
B

By
−

=
1

ln . Stepwise logistic regression selects nine predictors, six of which are the same as those used in 

the naïve Bayes model in Figure 3. Based upon a five-fold analysis, logistic regression has an average 

prediction rate of 84.20% in bankruptcy sample, and 84.10% in non-bankruptcy sample. For the same sample of 

firms, the naïve Bayes model has a prediction rate of 81.90% and 80.20%. Untabulated T-tests suggest that 

there is no significant difference (at the 5% level of significance) between two models’ performance. 
13 Estimations of coefficients reported here are the averages of coefficient values in five regressions obtained in five-

fold analysis. 
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6. SUMMARY AND CONCLUSIONS 

In this study, we examine several important methodological issues related to the use of naïve 

Bayes Bayesian network (BN) models to predict bankruptcy. None of these issues have been 

studied by existing literature. First, we provide a heuristic method that guides the selection of 

predictor variables from a pool of potential variables. This method is very easy to implement and 

proves to be effective by the empirical results. Under this method, only variables that have 

significant correlations with the variable of interest, the status of bankruptcy, are selected. As a 

result, 8 variables are selected from a pool of 20 potential predictors. Based on a ten-fold 

analysis, the naïve BN consisting of these 8 selected variables have an average prediction 

accuracy of 81.12% for the bankruptcy sample and 81.85% for the non-bankruptcy sample. This 

prediction accuracy is appealing given the difficulty nature of bankruptcy prediction and is 

comparable to results reported by some other studies (e.g. Ohlson 1980; Hopwood et al. 1994; 

McKee and Greenstein 2000; McKee and Lensberg 2002) in this domain (see Table 9). 

 

 

Bankruptcy prediction often involves incomplete information on some predictors. We 

further discuss how to select second-order variables that can compensate for missing information 

on selected predictors. Our empirical evidence does not show a significant improvement upon 

models’ performance by incorporating second-order variables. Similar results are observed even 

after we restrict sample firms to those with at least 2 first-order variables missing. Nevertheless, 

our results do not deny the possible superiority of the cascaded model over the naïve model in 

situations where missing information on first-order variables are even more substantial.  

   Insert Table 9 Here 
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 Second, we investigate the impact on a naïve Bayes model’s performance of the number 

of states into which continuous variables are discretized. The naïve Bayes model consists of 

eight variables, six of which are continuous. Using an average training sample size of 801 

bankruptcies and 6,239 non-bankruptcies, we find that the model’s performance is the best with 

the six continuous variables being discretized into 2 or 3 states. When the number of states is 

increased to 4 or more, the model’s performance deteriorates, probably due to over-fitting. 

 Finally, we compare the performance of the naïve Bayes model with continuous variables 

being discretized and the performance of the model with continuous variables being modeled 

with normal distributions. Our results show that replacing discretization with probability density 

functions does not increase the model’s performance. On the contrary, modeling continuous 

variables with normal distributions leads to a significant decrease in predicting nonbankruptcy 

sample. We also experimented to identify and use the best-fit distributions for continuous 

variables. The results are substantially similar to those using the normal distribution. One 

potential explanation is that normal distributions (or even the best-fit distributions) do not 

represent variables’ underlying distributions very well.  

 More importantly, the above reported results could also be applicable to contexts other 

than bankruptcy prediction. Of course, the study has its limitations, some of which imply the 

need for additional research. Based upon this study’s results, we can conclude that our proposed 

heuristic for variable selection is simple to implement and performs well. However, this study 

does not examine the relative performance of the proposed heuristic compared to other 

correlation-based algorithm (e.g. Hall 1999). This is a limitation of our paper which desires some 

future research. This study adapts the extended Pearson-Tukey (EP-T) method (Keefer and 

Bodily 1983), a method of three-point approximations, to convert continuous variables into 



   

 25 

discrete. According to Keefer (1994), the EP-T method is one of those three-point discrete-

distribution approximations that accurately represent certainty equivalents for continuous 

random variables. However, we do not test the relative performance of the EP-T method 

compared to other discretization methods as proposed in machine learning literature (e.g., 

Fayyad and Irani 1992). Future research is useful to do such a comparison. Various variable 

selection algorithms have been developed/utilized for other bankruptcy prediction techniques, 

such as genetic algorithms for neural networks (Back, Laitinen, and Sere 1996). It is interesting 

future research to explore how these algorithms can be applied into BN models. 

In addition, the sample proportion of bankruptcies used in this study is larger than the 

realistic population proportion of bankruptcies, which leads to the ignorance of the prior during 

our study process. There are other important bankruptcy predictors which are not examined by 

the study. Finally, this study focuses on only one type of BN models: naïve Bayes. Future 

research is also needed to explore how to better apply other types of BN models, such as noisy-

OR (Vomlel 2003), to bankruptcy prediction.  
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Table 1: Definitions of Potential Predictor Variables 

Construct Name Definition 

Size TA Natural log of (Total Assets/ GNP Implicit Price Deflator Index). The index assumes a base value of 100 for 
1968. 

W (Current Assets – Current Liabilities)/Total Assets 

CR Current Assets/ Current Liabilities 

OF Operating Cash Flows /Total Liabilities 

LM (L + µ)/σ. L = cash + short-term marketable securities, µ= mean, σ=standard deviation of quarter-to-quarter 
change in L over prior 12 quarters 

CA Current Assets/Total Assets 

 
Liquidity 

CH Cash/Total Assets 

TL (Total Liabilities/Total Assets) x 100% 
Leverage 

LTD Long Term Debts/Total Assets 

S Sales/Total Assets 
Turnover 

CS Current Assets/Sales 

E Earnings before Interest and Taxes/Total Assets 

NT Net income/Total assets 

IT One if net income was negative for the last two years, else zero 

RE Retained Earnings/Total Assets 

Fi
na

nc
ia

l-a
cc
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nt
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Fa
ct

or
s 

Profitability 

CHN (Net income in year t – Net income in t–1)/(Absolute net income in year t + Absolute net income in year t–1) 
M natural log of each firm’s size relative to the CRSP NYSE/AMEX/NASDAQ market capitalization index 

Market-Based Factors 
R the firm’s stock return in year t – 1 minus the value-weighted CRSP NYSE/AMEX/NASDAQ index return in 

year t – 1 

AU AU = Zero if Compustat codes auditors’ opinions as “1.unqualified”; AU = One if Compustat codings are “0. 
unaudited”; “2.qualified”; “3. no opinion”; “4.unqualified with additional language”; “5.adverse opinion”. 

Other Factors 
IFR 

Industry failure rate, calculated as the average bankruptcy rate in the past two years, where bankruptcy rate = 
( the number of bankruptcies in a two-digit SIC industry ÷ the total number of firms in the same industry ) × 
100% 
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Table 2: Descriptive Statistics 

Variable N Mean Median Std Dev Minimum Maximum 

 
NB B NB B NB B NB B NB B NB B 

Test of 
means 

(proportion) 
difference 

Continuous variables            T-test  
TA 5887 871 –1.322 –1.192 –1.448 –1.181 2.516 1.932 –12.200 –7.142 7.707 5.522 –1.46 
W 4877 767 –0.098 –0.145 0.227 0.018 6.583 0.890 –272.000 –15.332 0.995 0.849 0.20 
CR 4886 790 3.300 1.432 1.873 1.071 7.618 1.559 0.000 0.012 239.333 17.728 6.87*** 
OF 4782 854 –0.137 –0.318 0.091 –0.043 2.428 1.258 –91.333 –25.397 55.730 1.279 2.13* 
LM 1884 593 1.730 0.612 1.186 0.345 2.862 1.300 –3.191 –3.515 63.987 10.059 9.21*** 
CA 4888 793 0.530 0.469 0.548 0.460 0.265 0.245 0.000 0.000 1.000 1.000 6.02*** 
CH 5869 867 0.175 0.101 0.075 0.034 0.225 0.162 –0.012 0.000 1.000 0.991 9.39*** 
TL 5882 867 0.947 1.002 0.551 0.831 7.999 1.223 0.000 0.000 331.429 24.027 –0.20 

LTD 5864 866 0.236 0.304 0.088 0.187 2.215 0.388 0.000 0.000 114.286 4.297 –0.90 
S 5844 857 1.027 1.307 0.817 1.040 1.085 1.779 –0.081 –0.930 27.355 39.912 –6.40*** 

CS 4748 780 3.729 1.997 0.445 0.373 47.075 13.714 0.000 0.000 1818.000 305.919 1.02 
E 5842 748 –0.321 –0.309 0.046 –0.071 9.164 1.000 –590.125 –13.486 3.734 0.342 –0.03 

NT 5860 868 –0.445 –0.521 0.017 –0.165 10.209 1.546 –602.500 –23.993 42.478 0.354 0.22 
RE 5740 814 –3.629 –1.787 0.035 –0.358 100.491 8.831 –6625.500 –206.975 1.717 0.581 –0.52 

CHN 5298 845 0.003 –0.315 0.048 –0.372 0.565 0.583 –1.000 –1.000 1.000 1.000 15.13*** 
M 4776 627 –11.133 –13.086 –11.267 –13.062 2.058 1.670 –18.818 –18.331 –4.022 –7.188 22.79*** 
R 4808 683 0.028 –0.582 –0.086 –0.686 0.825 0.421 –0.996 –1.000 20.395 3.274 18.96*** 

IFR 5997 861 0.725 1.545 0.486 1.136 0.978 1.508 0.000 0.000 12.500 16.667 –21.24*** 
Dichotomous variables Proportion         Z-test 

IT 5299 845 0.244 0.634 0.000 1.000 0.429 0.482 0.000 0.000 1.000 1.000 –23.06*** 
AU 5424 861 0.251 0.559 0.000 1.000 0.434 0.497 0.000 0.000 1.000 1.000 –18.42*** 

 
*Significant at p-value < 0.05; **Significant at p-value < 0.01; ***Significant at p-value < 0.001 
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   Table 3:                                                                   
Average Annual Percentage of Bankruptcies by Two-digit SIC during the Entire Study 

Period    

Industry Primary SIC code 
Average Industry 

Failure Rate 
   
0. Agriculture, forestry, and fisheries 0100–0999 0.78% 
1. Mining and Construction 1000–1999 except for 1300–1399 1.10% 
2. Food 2000–2111 0.81% 
3. Textiles, printing and publishing 2200–2799 1.45% 
4. Chemicals 2800–2824, and 2840–2899 0.52% 
5. Pharmaceuticals 2830–2836 0.18% 
6. Extractive industries 2900–2999, and 1300–1399 0.68% 
7. Durable manufacturers 3000–3999, except 3570–3579, and 3670–

3679 0.82% 
8. Computers 7370–7379, 3570–3579, and 3670–3679 0.80% 
9. Transportation 4000–4899 1.58% 
10. Utilities 4900–4999 0.74% 
11. Retail 5000–5999 1.94% 
12. Financial institutions 6000–6411 0.33% 
13. Insurance and real estate 6500–6999 0.18% 
14. Services 7000–8999, except 7370–7379 1.14% 
15. Other  >9000 1.13% 
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Table 4: Partial Correlations 
Panel A: Selection of First-order Variables 

Pair 
No. 

 
Partial Correlation 

1 Corr(B, CH | LM) = –0.10, Corr(B, LM | CH) = –0.13; 
2 Corr(B, CH | IT) = –0.19, Corr(B, IT | CH) = 0.33; 
3 Corr(B, CH | AU) = –0.11, Corr(B, AU | CH) = 0.22; 
4 Corr(B, LM | M) = –0.13, Corr(B, M | LM) = –0.31; 
5 Corr(B, LM | AU) = –0.13, Corr(B, AU | LM) = –0.30; 
6 Corr(B, IT | CHN) = 0.28, Corr(B, CHN | IT) = –0.17; 
7 Corr(B, IT | IFR) = 0.28, Corr(B, IFR | IT) = 0.22; 
8 Corr(B, IT | R) = 0.29, Corr(B, R | IT) = –0.22; 
9 Corr(B, IT | M) = 0.22, Corr(B, M | IT) = –0.22; 
10 Corr(B, IT | LM) = 0.32, Corr(B, LM | IT) = –0.12; 
11 Corr(B, IT | AU) = 0.25, Corr(B, AU | IT) = 0.19; 
12 Corr(B, M | R) = –0.26, Corr(B, R | M) = –0.19; 
13 Corr(B, CHN | R) = –0.22, Corr(B, CHN | R) = –0.14; 
   

Panel B: Selection of Second-order Variables 
 

B.1: Selection of second-order variables for CH 
14 Corr(CH, OF | CR) = –0.04, Corr(CH, CR | OF) = 0.34; 
15 Corr(CH, OF | CS) = –0.22, Corr(CH, CS | OF) = 0.12; 
16 Corr(CH, OF | TA) = –0.18, Corr(CH, TA | OF) = –0.25; 
17 Corr(CH, CR | CS) = 0.42, Corr(CH, CS | CR) = 0.08; 
18 Corr(CH, CR | TA) = 0.38, Corr(CH, TA | CR) = –0.23; 
19 Corr(CH, CR | CA) = 0.34, Corr(CH, CA | CR) = 0.52; 
20 Corr(CH, S | CR) = –0.16, Corr(CH, CR | S) = 0.38; 
21 Corr(CH, TA | CA) = –0.11, Corr(CH, CA | TA) = 0.52; 
22 Corr(CH, TA | S) = –0.31, Corr(CH, S | TA) = –0.21; 
23 Corr(CH, CA | S) = 0.63, Corr(CH, S | CA) = –0.41; 

 
B.2: Selection of second-order variables for LM 

24 Corr(LM, CR | S) = 0.31, Corr(LM, S | CR) = –0.03; 
   

B.3: Selection of second-order variables for IT 
25 Corr(IT, OF | TA) = –0.04, Corr(IT, TA | OF) = 0.06; 

 
B.4: Selection of second-order variables for M 

26 Corr(M, OF | TA) = 0.02, Corr(M, TA | OF) = 0.72; 
27 Corr(M, OF | CA) = 0.14, Corr(M, CA | OF) = –0.15; 
28 Corr(M, TA | CA) = 0.72, Corr(M, CA | TA) = 0.16; 
29 Corr(M, TA | E) = 0.69, Corr(M, E | TA) = 0.11; 
30 Corr(M, TA | NT) = 0.69, Corr(M, NT | TA) = 0.12; 
31 Corr(M, TA | RE) = 0.68, Corr(M, RE | TA) = 0.03; 
32 Corr(M, E | NT) = 0.15, Corr(M, NT | E) = 0.02; 
33 Corr(M, E | RE) = 0.16, Corr(M, RE | E) = 0.10; 
34 Corr(M, RE | NT) = 0.14, Corr(M, NT | RE) = 0.10. 
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Table 5: Prediction Ability in the Test Sample  
 

  
The naïve Bayesian in Figure 4 with 8 

selected variables 
The naïve Bayesian with all 20 potential 

variables 

set no % bpt correct % nbpt correct % bpt correct % nbpt correct 
1 79.78% 82.25% 74.16% 80.38% 
2 86.52% 81.24% 84.27% 81.82% 
3 78.65% 82.56% 80.90% 83.29% 
4 87.64% 83.14% 85.39% 83.86% 
5 74.16% 83.69% 73.03% 83.98% 
6 79.78% 81.53% 87.64% 82.40% 
7 85.39% 77.06% 89.89% 78.35% 
8 79.78% 82.25% 80.90% 81.24% 
9 79.78% 82.40% 78.65% 81.10% 
10 79.78% 82.40% 80.90% 81.39% 

average 81.12% 81.85% 81.57% 81.78% 
 
  
Table 6: Prediction Ability in the Test Sample for the Cascaded Naïve Bayes Model in Figure 4 
 
Panel A: Average performance in ten-fold analysis using the full 
sample 

 % bpt correct % nbpt correct 

Cascaded 81.12% 80.08% 

Naïve 81.12% 81.85% 

T-test  
 

 
0.000 

 
2.101* 

 
Panel B: Average performance in five-fold analysis using the 
sample with two or more missing values on first-order variables 

 % bpt correct % nbpt correct 

Cascaded 77.74% 81.09% 

Naïve  77.36% 83.80% 
 

T-test  
 

0.081 
 

1.860* 
 

* significant at p < 0.05 
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Table 7: The Effect of Number of States for Discretizing Continuous Variables 

Average performance in the ten-fold analysis # states for 
discretization % bpt correct % non-bpt correct 

2 82.58% 77.55% 
3 83.37% 77.44% 
4 83.82% 74.94% 
5 83.37% 75.45% 
6 83.15% 73.83% 
7 82.25% 75.13% 
8 82.36% 72.36% 
9 81.57% 71.44% 
10 80.67% 69.46% 

 

Table 8: The Effect of Fitting Continuous Variables Using Normal Distribution 
 

  
Discretizing Continuous 

Variables 
Fitting Continuous Variables 
Using Normal Distribution 

Test Set #. % bpt correct % nbpt correct % bpt correct % nbpt correct 

1 79.78% 82.25% 79.78% 78.64% 

2 86.52% 81.24% 84.27% 75.47% 

3 78.65% 82.56% 86.52% 78.53% 

4 87.64% 83.14% 89.89% 77.81% 

5 74.16% 83.69% 83.15% 80.09% 

6 79.78% 81.53% 80.90% 76.62% 

7 85.39% 77.06% 86.52% 71.28% 

8 79.78% 82.25% 82.02% 78.79% 

9 79.78% 82.40% 82.02% 78.21% 

10 79.78% 82.40% 80.90% 79.65% 

Average 81.13% 81.85% 83.60% 77.51% 
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Table 9: Bankruptcy Prediction Accuracy Rates Reported in some Prior Studies 
 

Study 
% bpt 
correct 

% nbpt 
correct 

Ohlson (1980) 87.6% 82.6% 

Hopwood et al. (1994) [cost ratio of 50:1] 70.3% 83.3% 

McKee and Greenstein (2000) 85% 

McKee and Lensberg (2002) 80.3% 
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Figure 3: The Structure of the Naïve Bayes Model 

 

 
 
 
 
 
 
 
Figure 4: The Structure for the Cascaded Naïve Bayes Model with First and Second Order 
Variables. 
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Appendix A: Conditional Probabilities Underlying the Naïve Bayes Model in Figure 3 
 

 M    AU  
 Low Medium High   1 0  

B 44% 54% 2%  B 56% 44%  
NB 15% 65% 20%  NB 25% 75%  

         
           
 CH   IT  
 Low Medium High   1 0  

B 29% 63% 8%  B 63% 37%  
NB 19% 63% 18%  NB 24% 76%  

         
           
 CHN   IFR 
 Low Medium High   Low Medium High 

B 35% 53% 12%  B 9% 69% 22% 
NB 16% 64% 20%  NB 19% 75% 6% 

         
           
 LM   R 
 Low Medium High   Low Medium High 

B 31% 64% 5%  B 67% 28% 5% 
NB 15% 63% 23%  NB 12% 68% 21% 




