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Abstract 

Dissolution plays various roles throughout drug development, including assessment of 

the lot-to-lot quality of a drug product, guidance for development of new formulations, and 

assurance of continuing product quality and performance throughout a drug’s lifecycle.  To that 

end, one of the most important and useful applications of dissolution testing is to predict the in 

vivo performance of solid oral dosage forms.   

However, there are several limitations of the traditional dissolution method that often 

emphasizes its quality control role with the primary objective to achieve 100% drug release, 

particularly during first in human trials.  Some of these limitations include inadequate dissolution 

of poorly soluble drugs as well as the use of simple aqueous buffer solutions and hydrodynamics, 

which do not represent the in vivo environment. 

The USP apparatus 4 in the open system configuration has more laminar hydrodynamics 

than other USP apparatuses.  Together with the use of biorelevant dissolution media, this in vitro 

dissolution system may better mimic the in vivo environment, which may provide information 

that is clinically-relevant throughout clinical development.  Using this system, an in vitro 

dissolution method was developed in a systematic way using the BCS class II compound, 

ibuprofen as the model compound. 

This in vitro dissolution method was then applied to additional BCS class II compounds 

spanning a broad range of commercial and development compounds within this BCS class.  

Specifically, the work presented in this thesis suggests there are several potential applications for 

the in vitro biorelevant dissolution method developed.  These applications include rank ordering 

of formulations, evaluation of pH modifiers, evaluation of food effect, evaluation of dose 

assessment, and lot-to-lot consistency. 
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Chapter 1. Introduction 
 
 

Importance of Dissolution 

Pharmaceutical companies make a profitable business in developing drugs from the start 

of discovery of a new molecular target all the way through to filing, and approval.  While these 

activities can take the better part of a quarter of a century to complete they are paramount to 

address the many ailments of man.  From the simple headache to the complex, ever-enduring 

battle of cancer, each drug will target a different molecular pathway, using a elegantly matched 

dosage form to allow for an effective route of administration so that the drug can address the 

ailment it is indicated for.    

With this in mind, the primary focus during preclinical and clinical development is the 

dosage form and how best to modify or formulate the drug to make a successful dosage form.  

While each dosage form is characterized by key attributes with distinct advantages and 

disadvantages related to drug development including ease of manufacturing, ease of dosing, and 

even patient compliance, for the purposes of this thesis work, solid dosage forms (i.e., tablets and 

capsules) are the primary focus of this work. 

Using the solid oral dosage form as a reference, several things must occur before the 

pharmaceutical effects of a drug are experienced when it is administered orally to the patient.  

Using the commonly used over-the-counter drug Tylenol®, which is used to treat a headache or 

fever as an example, the drug absorption from the Tylenol® tablets after oral administration 

depends on several factors including: 

(1) the release of the drug substance (acetaminophen) from the drug product (Tylenol® 

tablet), 
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(2) the dissolution or solubilization of the drug under physiological conditions, and 

(3) the permeability of the drug across the gastrointestinal tract (GIT) (1). 

It is also important to keep in mind that drug absorption and bioavailability are often 

significantly affected by the route of administration, dosage form, and co-administration of other 

substances, which have been major drivers of pharmaceutical research over the last two decades 

(2).  And because of the important nature of the first two steps of oral administration described 

above (release of the drug substance from the drug product and dissolution or solubilization of 

the drug under physiological conditions), in vitro dissolution may be relevant to the prediction of 

in vivo performance (1).   

In fact, in vitro dissolution tests for immediate release solid oral dosage forms are used to 

accomplish several objectives throughout drug development including: 

1) assess the lot-to-lot quality of a drug product; 

2) guide development of new formulations; and 

3) ensure continuing product quality and performance after certain changes, such as changes 

in the formulation, the manufacturing process, the site of manufacture, and the scale-up 

of the manufacturing process (1). 

Much work has been done to use in vitro dissolution as a quality control (QC) tool to 

ensure lot-to-lot consistency (2-7).  Additionally, in vitro dissolution has been used as a surrogate 

for in vivo bioequivalence and in vivo-in vitro correlation (IVIVC) studies (2-7).  Although used 

less frequently then its QC counterpart, in vitro dissolution can glean equally important 

information to guide formulation development. 
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Traditional Dissolution 

In order for a drug to be absorbed in vivo it must be solubilized in the aqueous 

environment of the gastrointestinal tract (GIT) and for this reason the dissolution test for solid 

oral drug products has emerged as a critical control test for assuring product uniformity and 

batch-to-batch bioequivalence once the drug’s bioavailability has been defined (1, 8). As a 

consequence the primary focus of in vitro dissolution tends to be its quality control applications, 

which typically target 100% drug release regardless of in vivo bioavailability.   

To achieve this “traditional dissolution,” some methods, including United States 

Pharmacopeia (USP) monograph methods use large amounts of surfactants, high pH, and even 

high levels of alcohol (9).  Although such measures need to be justified these methods frequently 

are not biorelevant and applying such an in vitro dissolution method may be overdiscriminating, 

where in vitro dissolution differences are not seen in vivo, or not discriminating enough where 

there are no differences seen by in vitro dissolution when in fact they exist in vivo. 

In addition, methods are commonly product-specific, where different strengths of the 

same formulation may use different media for testing.  In such a case, results from one method 

may not necessarily be comparable to those of the other method so that comparison across 

strengths of the same formulation cannot be evaluated.  Therefore, application of a traditional 

dissolution method in early phase drug product development is often limited due to limited 

clinical experience or poor in vivo correlations, making forecasting of in vivo drug performance 

extremely difficult.  
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Biorelevant Dissolution 

Based on some of the limitations of tradition dissolution mentioned, it has been suggested 

that dissolution testing be carried out under physiological conditions.  This allows interpretation 

of dissolution data with regard to in vivo performance of the product. The testing conditions 

should be based on physicochemical characteristics of the drug substance and the environmental 

conditions the dosage form might be exposed to after oral administration (1). 

In order to properly mimic in vivo conditions in an in vitro environment, particular 

emphasis is made on dissolution media and hydrodynamics.  Dissolution media can directly be 

addressed using critical biorelevant components in the in vitro dissolution method while 

hydrodynamics will be examined in the context of USP apparatuses. 

Biorelevant Media 

Biorelevant media is meant to mimic the physiological conditions in the gastrointestinal 

tract.  In several cases, biorelevant media have been reported to facilitate the prediction of in vivo 

drug release (10-18).  Specifically, there are four standard biorelevant dissolution media that are 

typically used in in vitro dissolution and they include: 

(1) Simulated gastric fluid (SGF) 

(2) Simulated intestinal fluid (SIF) 

(3) Fasted state simulated intestinal fluid (FaSSIF) 

(4) Fed state simulated intestinal fluid (FeSSIF) 

See Table 1 for the corresponding composition for each biorelevant media used. 

In brief, each media represents various pH and or components associated with the 

gastrointestinal tract with SGF representing the pH or components observed in the stomach (pH 

1.2), SIF mimicking the intestinal tract (pH 6.8), and FaSSIF and FeSSIF mimicking the fasted 
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or fed conditions in the intestine, respectively, which may be applied to an in vitro biorelevant 

dissolution method.   

Table 1. Biorelevant Dissolution Media Compositions (15) 

Media Composition 

Simulated gastric fluid (SGF), pH 1.2 2 g 

3.2 g 

7 mL 

1000 mL 

Sodium chloride 

Purified pepsin (omitted) 

Hydrochloric acid 

Water q.s. 

Simulated intestinal fluid (SIF), pH 6.8 6.8 g 

77 mL 

10 g 

1000 mL 

Potassium phosphate monobasic 

Sodium hydroxide (0.2 N) 

Pancreatin (omitted) 

Water q.s. 

Fasted stated simulated intestinal fluid (FaSSIF), pH 6.8, 

Version 1 

0.029 M 

pH 6.8 

5 mM 

1.5 mM 

0.22 M 

1000 mL 

Potassium phosphate monobasic 

Sodium hydroxide q.s. 

Sodium taurocholate 

Lecithin 

Potassium chloride 

Water q.s. 

Fed state simulated intestinal fluid (FeSSIF), pH 5.0, 

Version 1 

0.144 M 

pH 5.0 

15 mM 

4 mM 

0.19 M 

1000 mL 

Acetic acid 

Sodium hydroxide q.s. 

Sodium taurocholate 

Lecithin 

Potassium chloride 

Water q.s. 

 

United States Pharmacopeia (USP) Dissolution Apparatuses (13) 

There are several types of dissolution apparatus described in the USP: 

1) USP apparatus 1: Basket 

2) USP apparatus 2: Paddle 
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3) USP apparatus 3: Reciprocating cylinder 

4) USP apparatus 4: Flow-through cell 

5) USP apparatus 5: Paddle over disk 

6) USP apparatus 6: Cylinder 

7) USP apparatus 7: Reciprocating holder 

USP apparatus 1 and 2 are the most frequently used, however, they do not necessarily 

mimic the conditions in vivo, particularly in terms of hydrodynamics.  In contrast, USP 

apparatus 4 may have biorelevant applications because its flow is more laminar, less 

turbulent than other USP appartuses (19).  Additionally, the USP 4 apparatus is well-suited 

for low solubility, high permeability compounds in the open system configuration.  See 

Figures 1 and 2 for diagrams of USP apparatus 2 and USP apparatus 4, respectively.  

  

Figure 1. Diagram of USP apparatus 2 (20) 
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Figure 2. Diagram of USP apparatus 4 (21) 

 

Due to the complexity of the human gastrointestinal tract (GIT), it is difficult to mimic in 

vivo hydrodynamics in an in vitro dissolution setting.  The USP apparatus 4 in the open system 

configuration, however, offers some distinct advantages.  See Figure 3 for a schematic of USP 

apparatus 4 open system. 

 

Figure 3. Diagram of USP apparatus 4 open system (22) 

 

In this system, fresh solvent can continuously pass through the flow-cell to bring the 

dissolved material up and out of the cell, analogous to the way high permeability compounds 

Sample Holder

Filter system

Flow Cell

Pump Media 
Select

Medium 1 Medium 2 Medium 3

Online UV To Waste

Glass Beads



13 
 

pass through the human GIT.  This continuous introduction of fresh media allows the USP 

apparatus 4 open system configuration to consistently maintain sink conditions for a poorly 

soluble drug. 

Additionally, the design of the pump, presence of the glass beads, and design of the flow-

cell help control the flow of dissolution media with less turbulence as compared to other 

dissolution apparatuses.  Therefore, the flow-through cell open system has the potential to better 

simulate in vivo hydrodynamics in an in vitro setting.   

 

Overview of Thesis Work 

One of the most important and commonly used applications of dissolution testing during 

drug development is to predict the in vivo performance of solid oral dosage forms.  However, 

traditional dissolution often uses simple aqueous buffers in quality control-type methods and 

therefore rarely represents the physiological conditions in the human gastrointestinal tract.  If the 

relevant in vivo conditions can be mimicked in an in vitro dissolution setting there may be an 

opportunity to predict the in vivo performance of solid oral dosage forms. 

With this in mind, this thesis work will focus on leveraging this concept of biorelevant 

dissolution where the combination of biorelevant dissolution media and USP apparatus 4 in the 

open system configuration may adequately mimic the physiological conditions of the GIT.  

Therefore, this in vitro biorelevant dissolution testing may potentially predict the in vivo 

performance of a solid oral dosage form in a qualitative manner.   

Chapter 2 describes the development of an in vitro biorelevant dissolution method using a 

systematic method development approach. 
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Chapter 3 explores some potential applications of the method through the following 5 

case studies, which may ultimately aid formulation selection during drug development: 

1) Rank ordering of development formulations 

2) Effect of pH modifier 

3) Assessment and prediction of food effect 

4) Dose proportion 

5) Lot-to-lot variability 

Finally, Chapter 4 discusses the overall conclusions of this thesis work. 
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Chapter 2. Development of a Generic Biorelevant In Vitro Dissolution Method 

 

Introduction 

Dissolution testing plays many important roles in drug product development such as 

quality control (QC), predicting in vivo release, guiding formulation development, and 

establishing in vivo-in vitro correlation (IVIVC) to minimize in vivo studies (1).  More 

specifically, there should be enough flexibility in the in vitro dissolution methodology to allow 

for development of methods that truly reflect the in vivo rate controlling process for a given drug; 

this is particularly important for a method that might be used as a surrogate for an in vivo 

bioavailability test (2).  

However, the traditional dissolution approach strongly emphasizes QC applications and 

usually strives to obtain 100% drug release.  As a result, the methods are not necessarily 

biorelevant (3) and quite often do not correspond to in vivo data, making forecasting of in vivo 

drug performance extremely difficult.  Therefore, it is desirable to develop a biorelevant 

dissolution method to predict the rank order of formulation performance.  Such a method may 

indicate a relationship or effect between food and in vivo drug release (3) and may help to 

establish or understand an IVIVC or an in vivo-in vitro relationship (IVIVR), which may 

facilitate the development of new drug products. 

IVIVC and IVIVR has been vigorously attempted for more than four decades (4-8).  

Unfortunately, IVIVC and IVIVR cannot realisticially be applied to all drug products for various 

reasons (4, 5, 8) and typically is only applied to drugs with dissolution rate limited absorption.  

This is particularly true for immediate release products even though they are the most popular 

products on the market (7). 
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In order to properly utilize in vitro dissolution data to predict in vivo performance, it has 

been suggested that in vitro dissolution parameters, should mimic in vivo physiological 

conditions.  Such parameters to consider include media composition, volume, hydrodynamics, 

duration of the test, and even analysis of the data.  Unfortunately, these parameters are somewhat 

limited by our knowledge of the conditions in the gastrointestinal tract (4) making it difficult to 

understand the underlying factors that affect dissolution.   

The modified USP apparatus 4, also known as flow-through cell dissolution (9) is the 

USP dissolution apparatus that most closely mimics in vivo hydrodynamics versus any other 

dissolution apparatus (4).  In conjunction with biorelevant media, this in vitro dissolution system 

may adequately mimic in vivo conditions to help understand the most important factors for 

dissolution. 

 

Instrumentation and Materials 

The subsequent studies were conducted using a USP apparatus 4 system (Sotax CE 7 

Smart semi-automated system, Sotax Corporation, Horsham, PA) along with an online UV fiber 

optic unit (Opt Diss Fiber Optic UV Spectrophotometer with an Opt Diss Flow Through 

Manifold for USP 4 (Distek, North Brunswick, NJ)).  See Figure 1 for a schematic of USP 

apparatus 4/online UV system used throughout this study. 

Two hundred milligram Advil tablets (Wyeth Consumer Healthcare) and Motrin® tablets 

(Ortho-McNeil-Janssen Pharmaceuticals) were purchased from Longs Pharmacy.  Two hundred 

milligram danazol capsules (Barr Laboratories) and 15 mg and 30 mg Prevacid SoluTabs (TAP 

Pharmaceuticals) were purchased from Burt’s Pharmacy for research purposes.  All relevant 
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standards were purchased from USP and/or Sigma-Aldrich and prepared in ethanol (Pharmco-

Aaper, 200 proof). 

All Amgen development compounds were manufactured/developed and formulated at 

Amgen, Inc.  PK and clinical data were obtained from internal Amgen development studies. 

Simulated gastric fluid (SGF, pH 1.2, no pepsin), simulated intestinal fluid (SIF, pH 6.8, 

no pancreatin, fasted state simulated intestinal fluid (FaSSIF, pH 6.8) and fed state simulated 

intestinal fluid (FeSSIF, pH 5.0) were prepared by Amgen, Inc. 

 

Figure 1. Diagram of USP apparatus 4 

 

Method Development 

The method development approach used in this work was different from traditional in 

vitro dissolution method development, in which the goal is to achieve 100% drug release, which 

may or may not take into account in vivo drug performance.  Instead, the known in vivo plasma 
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profiles of several model compounds were used to guide the biorelevant dissolution method 

development in this study.  As mentioned, biorelevant dissolution media was used throughout 

method development and will be discussed in detail in a separate section.  Together with the USP 

4 apparatus, this in vitro dissolution system is meant to mimic the in vivo physiological 

environment as far as pH and hydrodynamics, which may result in more relevant in vitro 

dissolution conditions.  If this is the case, particularly for highly permeable compounds, 

dissolution may be evaluated in a generic fashion, which more closely mimics physiological 

conditions.  Additionally, in vitro biorelevant dissolution may allow method development to 

directly focus on in vivo versus in vitro profile comparisons and therefore may have more 

predictive power for in vivo drug release. 

 

Gastrointestinal Tract (GIT) 

Every dosage form that is administered orally will transit through the gastrointestinal 

tract (GIT).  As the solid oral dosage form travels throughout the GIT, it will undergo absorption.  

Additionally, the solid oral dosage form will encounter varying pHs, transit times, and 

permeabilities associated with the different parts of the GI tract for healthy subjects.  Strong 

acidic conditions are seen in the stomach, whereas higher pHs are seen as transit continues 

towards the intestine.  pH will vary significantly depending on the presence of food.  Some drugs 

will affected by the presence or absence of food while others will not.  See Table 1 for additional 

details on the GIT (10). 
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Table 1. Additional Details of the Gastrointestinal Tract 

 pH 
Transit Time 

(hours) 
Permeabilities 

Stomach 1-3 0.5 Varies 

Duodenum 4-6 - Varies 

Jejunum 6-7 - Varies 

Ileum 6-7 - Varies 

Small Intestine - 3-5 Varies 

Colon 5-7 25 Varies 

 

Biopharmaceutics Classification System (BCS) 

Before describing the model compounds used through this work some background 

information regarding the biopharmaceutics classification system (BCS) is appropriate.  

Specifically, Amidon proposed a biopharmaceutics drug classification scheme for correlating in 

vitro drug product dissolution and in vivo bioavailability based on fundamental parameters that 

control the rate and extent of drug absorption, namely drug solubility and gastrointestinal 

permeability (2). 

The Biopharmaceutics Classification System (BCS) is routinely used by the Food and 

Drug Administration (FDA) to classify drugs based on solubility and permeability.  The BCS 

categorizes drugs into one of four categories based on the solubility of the drug at its highest 

dose in 250 mL of buffer adjusted between pH 1.0 and 7.5 and its permeability determined either 

in vivo or experimentally, which is also described in Figure 2: 
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Case 1: High solubility, high permeability drugs 

Case 2: Low solubility, high permeability drugs 

Case 3: High solubility, low permeability drugs 

Case 4: Low solubility, low permeability drugs 

 

 

Figure 2. BCS Classification System (2) 

 

Based on this classification system, the bioavailability of Class I drugs (high solubility, 

high permeability) and to a certain extent Class III drugs (high solubility, low permeability) is 

not limited by dissolution, but rather gastric emptying since drug dissolution tends to be so rapid 

(1, 2).  In contrast, Class II drugs (low solubility, high permeability) may be limited by the 

drug’s dissolution and are often referred to as “dissolution or solubility-limited drugs” while 

Class IV drugs (low solubility, low permeability) present significant challenges for oral drug 

delivery.  This classification system also helps to guide in vitro dissolution specifications and 

provides a basis for correlating in vivo and in vitro data (1). 
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Model Compounds 

Based on the BCS, Class II compounds have low solubility and high permeability.  In 

terms of drug release or absorption, dissolution of BCS Class II compounds is often the rate-

determining step.  It is for this reason that BCS Class II compounds were selected for initial 

evaluation in the development of this in vitro dissolution method.  In this context, BCS Class II 

compounds should minimize the impact from permeability throughout method development and 

also leverage the fact that dissolution is the rate-limiting step of drug release or absorption.   

Several commercially available BCS class II compounds with known in vivo plasma 

profiles were used as model compounds to guide the biorelevant dissolution method 

development.   

In order to evaluate the dissolution behavior of the model compounds systematically they 

were divided into the following three categories:  

(1) Acidic compounds 

(2) Basic compounds 

(3) Neutral compounds 

See Table 2 for the BCS class II model compounds used throughout method 

development.  Table 3 includes additional details on the model compounds. 

Table 2. BCS Class II Model Compounds 

Acidic Compounds Neutral Compounds Basic Compounds 

Ibuprofen (Advil, Motrin) Carbamazepine (Tegretol) Ketoconazole (Nizoral) 

Naproxen (Naprosyn, Naprelan) Danazol Lansoprazole (Prevacid) 

Warfarin (Coumadin) - Raloxifene (Evista) 
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Table 3. Additional Details on BCS Class II Model Compounds 

Active 
Ingredient 

Acidic 
/Basic 

/Neutral 
pKa(s)11 

Aqueous 
Solubility 
(µg/mL)11 

Strength &  
Brand Name Manufacturer 

Ibuprofen Acidic 4.91 49 
200 mg Advil® 

200 mg Motrin® 

Wyeth Consumer 

Ortho-McNeil-Janssen 

Naproxen Acidic 4.15 15.9 
500 mg Naprosyn 

500 mg Naprelan 

Roche Laboratories 

Hi Tech Pharmacal 

Warfarin Acidic 5.08 17 2, 5, 10 mg Coumadin Bristol-Myers Squibb 

Carbamazepine Neutral - 17.7 200 mg Tegretol Novartis 

Danazol Neutral - 0.0176 200 mg danazol Barr 

Ketoconazole Basic - 0.0866 200 mg Nizoral® ketoconazole Mylan 

Lansoprazole Basic 17.3 0.97 15, 30 mg Prevacid SoluTabs TAP 

Raloxifene Basic 9.55 0.25 60 mg Evista Eli Lilly 

 

Of these model compounds a variety of salt forms (e.g., free base, salt, etc.) and types of 

dosage forms (immediate-release tablets, enteric-coated tablets, and sustained release products) 

were used throughout method development and subsequent testing of the in vitro biorelevant 

dissolution method.   

Ibuprofen (both Advil® and Motrin® tablets), was the primarily model compound used 

throughout method development (12, 13) where the resulting method was used to run all other 

model compounds and development dosage forms. 

 

Biorelevant Media 

In vivo solubilization is a critical consideration during development of an in vitro 

dissolution method and the dissolution media should reflect the in vivo situation (14) which 

allows for interpretation of the dissolution data while keeping the in vivo performance of the 
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product in mind.  The testing conditions should be based on physicochemical characteristics of 

the drug substance and the environmental conditions the dosage form might be exposed to after 

oral administration (1).  In this context, various biorelevant media that mimic the physiological 

conditions in the gastrointestinal tract have been reported to facilitate the prediction of in vivo 

drug release (15-22). 

Four standard biorelevant dissolution media were used in this study: 

(1) Simulated gastric fluid (SGF) 

(2) Simulated intestinal fluid (SIF) 

(3) Fasted state simulated intestinal fluid (FaSSIF) 

(4) Fed state simulated intestinal fluid (FeSSIF) 

See Table 4 for the corresponding composition for each biorelevant media used. 

In brief, each media represents various pH and or components associated with the 

gastrointestinal tract.  SGF represents the pH or components observed in the stomach (pH 1.2) 

without enzymes, SIF mimics the intestinal tract (pH 6.8) without enzymes or bile salts, and 

FaSSIF and FeSSIF mimics the fasted or fed conditions in the intestine, respectively.   

For in vitro testing purposes, the four media described were primarily used without 

enzymes, however, if needed enzymes should be evaluated on a case-by-case basis with adequate 

justification (1).  No other media, organic solvents, or surfactants were used throughout 

dissolution testing although such components may be commonly used in traditional in vitro 

dissolution testing. 
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Table 4. Biorelevant Dissolution Media Compositions (20) 

Media Composition 

Simulated gastric fluid (SGF), pH 1.2 2 g 

3.2 g 

7 mL 

1000 mL 

Sodium chloride 

Purified pepsin (omitted) 

Hydrochloric acid 

Water q.s. 

Simulated intestinal fluid (SIF), pH 6.8 6.8 g 

77 mL 

10 g 

1000 mL 

Potassium phosphate monobasic 

Sodium hydroxide (0.2 N) 

Pancreatin (omitted) 

Water q.s. 

Fasted stated simulated intestinal fluid (FaSSIF), pH 6.8, 

Version 1 

0.029 M 

pH 6.8 

5 mM 

1.5 mM 

0.22 M 

1000 mL 

Potassium phosphate monobasic 

Sodium hydroxide q.s. 

Sodium taurocholate 

Lecithin 

Potassium chloride 

Water q.s. 

Fed state simulated intestinal fluid (FeSSIF), pH 5.0, 

Version 1 

0.144 M 

pH 5.0 

15 mM 

4 mM 

0.19 M 

1000 mL 

Acetic acid 

Sodium hydroxide q.s. 

Sodium taurocholate 

Lecithin 

Potassium chloride 

Water q.s. 

 

Systematic Method Development 

As previously mentioned, representative BCS Class II compounds from acidic, neutral, 

and basic categories were used to carry out systematic method development.  Various parameters 

were evaluated during dissolution method development including: 

(1) Flow rate: 2 mL/min – 20 mL/min 

(2) Flow-through cell size: 12 mm inner diameter, 22.6 mm inner diameter 
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(3) Sample holder: Absence or presence of sample holder in flow-through cell 

(4) Biorelevant dissolution media: SGF, SIF, FaSSIF, and FeSSIF 

(5) Enzymes: Absence or presence of enzymes in dissolution medium 

Some parameters were not varied throughout dissolution method development.  These 

parameters include the following: 

(1) Glass beads: 1 mm 

(2) Filter pore size: 0.7 µm 

Just as the solid oral dosage form encounters both the stomach and intestine after oral 

administration, the necessity of using SGF first and then changing the media to SIF to mimic the 

pH gradient in the gastrointestinal tract was also evaluated during the development.  

The development work was largely conducted using 200 mg Advil and Motrin tablets (1, 

2) with other model compounds used for confirmation and comparison purposes.  Online UV 

data was collected using a product specific wavelength in each case.  The subsequent data was 

then overlaid with the plasma concentration data each plotted against their own axes with each 

axis scaled to line-up the in vitro Cmax and tmax with the respective portions of the in vivo data. 

 

Method Development Optimization 

Flow rate was the first parameter evaluated using the 22.6 mm inner diameter flow-

through cell and SIF as the dissolution medium.  Flow rates ranged from 2 mL/min to 20 

mL/min.  See Figures 3, 4, 5, and 6 for dissolution profiles at 4 mL/min, 6 mL/min, 8 mL/min, 

and 20 mL/min, respectively. 
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Figure 3. Plasma Profiles and In Vitro Dissolution Profiles of 200 mg Advil® and Motrin® 
 at 4 mL/min using 22.6 mm Inner Diameter Flow-Through Cell in SIF 

 

Figure 4. Plasma Profiles and In Vitro Dissolution Profiles of 200 mg Advil® and Motrin® 
 at 6 mL/min using 22.6 mm Inner Diameter Flow-Through Cell in SIF 
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Figure 5. Plasma Profiles and In Vitro Dissolution Profiles of 200 mg Advil® and Motrin® 
 at 8 mL/min using 22.6 mm Inner Diameter Flow-Through Cell in SIF 

 

Figure 6. Plasma Profiles and In Vitro Dissolution Profiles of 200 mg Advil® and Motrin® 
 at 20 mL/min using 22.6 mm Inner Diameter Flow-Through Cell in SIF 
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Results indicated that flow rate changes within this range led to the same rank ordering of 

drug release profiles.  The appearance of the dissolution profiles, however, varied slightly as the 

flow rate changed, with sharper profiles observed for the higher flow rates and “flattened” 

profiles seen for slower flow rates.  When the flow rate was at or below 6 mL/min, the resulting 

curves were more erratic with much noisier UV readings.  A similar observation was noted when 

the small flow cell (12 mm inner diameter) was used, which might be attributed to the reduced 

homogeneity of the hydrodynamic flow in the system.  See Figures 7 and 8 for dissolution 

profiles using 12 mm and 22.6 mm inner diameter flow-through cells, respectively. 

 

Figure 7. Plasma Profiles and In Vitro Dissolution Profiles of 200 mg Advil® and Motrin® 
 at 8 mL/min using 12 mm Inner Diameter Flow-Through Cell in SIF 
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Figure 8. Plasma Profiles and In Vitro Dissolution Profiles of 200 mg Advil® and Motrin® 
 at 8 mL/min using 22.6 mm Inner Diameter Flow-Through Cell in SIF 

 

The need for SGF followed by a switch to a simulated intestinal fluid (e.g., SIF, FaSSIF, 

or FeSSIF), which mimics the pH gradient in the gastrointestinal tract was also evaluated during 

method development.  In this testing, SGF and SIF were used as the dissolution test media.  See 

Figures 9 and 10 for relevant dissolution profiles. 

0

0.005

0.01

0.015

0.02

0.025

0.03
0 2 4 6 8 10 12 14 16

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100 120

P
la

sm
a 

C
on

ce
nt

ra
tio

n 
(m

g/
m

L)

PK Time (hours)

C
on

ce
nt

ra
tio

n 
(m

g/
m

L)

Time (Minutes)
200 mg Advil (Wyeth) 200 mg Motrin (Ortho-McNeil-Janssen)

PK: 200 mg Advil (Wyeth) PK: 200 mg Motrin (Ortho-McNeil-Janssen)



32 
 

  

Figure 9. Plasma Profiles and In Vitro Dissolution Profiles of 200 mg Advil® and Motrin® 
 at 8 mL/min using 22.6 mm Inner Diameter Flow-Through Cell in SIF (120 minutes)  
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Figure 10. Plasma Profiles and In Vitro Dissolution Profiles of 200 mg Advil® and Motrin® 
at 8 mL/min using 22.6 mm Inner Diameter Flow-Through Cell 

in SGF (5 minutes) then SIF (120 minutes) 
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substituted as appropriate for poorly soluble drugs.  One additional consideration when selecting 

media for capsule dosage forms is the need for enzymes and/or bile salts when cross-linking is 

evident.  While cross-linking is not typically an issue in vivo, it is a very important factor to 

understand when applying an in vitro dissolution method because the dissolution of cross-linked 

capsules can be severely hindered in the absence of enzymes. 

It was also observed that when an 8 mL/min flow rate was used, a five min hold time in 

SGF prior to switching to a simulated intestinal fluid provided a better match of the in vivo 

profiles yet maintained the appropriate rank order of the model compounds tested.  When a 

significantly longer duration (e.g., 30 min) was used for SGF before the medium was switched to 

SIF, the discriminating power was lost and an in vitro “drug release burst” was observed.  See 

Figures 11 and 12 for relevant dissolution profiles. 

 

Figure 11. Plasma Profiles and In Vitro Dissolution Profiles of 200 mg Advil® and Motrin® 
at 8 mL/min using 22.6 mm Inner Diameter Flow-Through Cell 

in SGF (5 minutes) then SIF (120 minutes) 
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Figure 12. Plasma Profiles and In Vitro Dissolution Profiles of 200 mg Advil® and Motrin® 

at 8 mL/min using 22.6 mm Inner Diameter Flow-Through Cell 
in SGF (30 minutes) then SIF (120 minutes) 

 

Rate Profiles versus Cumulative Profiles 
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(25). 
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Method Development Summary 

As a result of the systematic method development described above, the following 

conditions were selected: 

(1) Flow rate: 8 mL/min 

(2) Flow-through cell size: 22.6 mm inner diameter 

(3) Sample holder: Presence of sample holder in flow-through cell 

(4) Biorelevant dissolution media: Various as needed (SGF, SIF, FaSSIF, and FeSSIF) 

(5) Enzymes: Absence of enzymes in dissolution medium 

(6) Glass beads: 1 mm 

(7) Filter pore size: 0.7 µm 

Note that selection of a specific biorelevant dissolution media depends on the purpose of 

the study.  For example, if the evaluation of the food effect is the main objective of the study, 

FaSSIF or FeSSIF should be used instead of the SIF.  When both SGF and SIF media were used 

(i.e., switch from SGF to SIF), a hold time of 5 min was used for the initial SGF condition.  One 

mm glass beads and a filter with 0.7 µm pore size were routine used.  Glass wool was used to 

reduce backpressure when needed.  All analyses were conducted using online UV detection with 

an appropriate UV wavelength that was compound-dependent.  See Table 5 for the method 

development summary and Figure 13 for a representative dissolution profile. 
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Table 5. Biorelevant Dissolution Method Development Summary 

Parameter Evaluated Condition(s) Final Method 

Flow rate 2, 4, 6, 8, 16, and 20 mL/min 8 mL/min 

Size of cell 12 or 22.6 mm inner diameter 22.6 mm inner diameter 

Sample holder Absence or presence of sample holder in flow-through cell Presence 

Biorelevant medium 

 Simulated gastric fluid (SGF) 

 Simulated intestinal fluid (SIF) 

 Fasted state simulated intestinal fluid (FaSSIF) 

 Fed state simulated intestinal fluid (FeSSIF) 

Various as needed 

Enzyme Absence or presence of enzymes  in dissolution media Absence 

Glass beads 1 mm 1 mm 

Filter pore size 0.7 µm 0.7 µm 

 

 

Figure 13. Plasma Profiles and In Vitro Dissolution Profiles of 200 mg Advil® and Motrin® 
 at 8 mL/min using 22.6 mm Inner Diameter Flow-Through Cell in SIF (120 minutes) 
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The rate profile (concentration vs. time) was collected real-time and the cumulative 

profile (% dissolved vs. time) calculated later if needed.  The resulting method was used directly 

without further product-specific development for all applications described.   

Once the in vitro biorelevant dissolution method using USP apparatus 4 was developed, 

additional BCS class II drugs from Table 3 were tested for confirmatory purposes.  For example, 

see Figure 14 for the in vitro biorelevant dissolution data for 200 mg Nizoral® ketoconazole 

tablets. 

 

Figure 14. Plasma Profile and In Vitro Dissolution Profile of 200 mg Nizoral® Ketoconazole 
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Chapter 3. Applications of the In Vitro Biorelevant Dissolution Method Using USP 
Apparatus 4 

 

Introduction 

As described in Chapter 3, an in vitro biorelevant dissolution method was developed 

using USP apparatus 4 and commercially-available BCS class II compounds with known in vivo 

profiles.  Ibuprofen (both Advil and Motrin tablets) was the primary model compound used 

throughout systematic method development where one parameter was varied at a time.   

Once developed, additional BCS class II drugs were tested for confirmatory purposes.  

Additionally, the in vitro dissolution method was used in various applications including Amgen 

development compounds and other commercially available products. 

Five case studies are presented to demonstrate the potential applications of this in vitro 

biorelevant dissolution method: 

I. Rank ordering of development formulations 

II. Effect of pH modifier 

III. Assessment and prediction of food effect 

IV. Dose proportion 

V. Lot-to-lot variability 

 

Methods 

The in vitro biorelevant method described previously in Chapter 2 was used directly 

where online UV was collected at a product-specific wavelength.  See Table 1 for the conditions 

of the in vitro biorelevant dissolution method developed.  See Figure 1 for the in vitro dissolution 

results of the model compound, ibuprofen using the final conditions described in Table 1. 
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Table 1. Biorelevant Dissolution Method Summary 

Parameter Final Method 

Flow rate 8 mL/min 

Size of cell 22.6 mm inner diameter 

Sample holder Presence 

Biorelevant medium 

Various as needed: 

• Simulated gastric fluid (SGF) 

• Simulated intestinal fluid (SIF) 

• Fasted state simulated intestinal fluid (FaSSIF) 

• Fed state simulated intestinal fluid (FeSSIF) 

Enzyme Absence 

Glass beads 1 mm 

Filter pore size 0.7 µm 

 

 

Figure 1. Plasma Profiles and In Vitro Dissolution Profiles of 200 mg Advil® and Motrin® 
 at 8 mL/min using 22.6 mm Inner Diameter Flow-Through Cell in SIF (120 minutes) 
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See Table 2 for the compounds used for each case study. 

Table 2. Summary Details Compounds Used in Case Studies 

Case 
Studies 

Active 
Ingredient 

Acidic 
/Basic 

/Neutral 
pKa(s) 

Aqueous 
Solubility 
(µg/mL) 

Strength & Brand Name  
(if applicable) Manufacturer 

I, III, IV AMG 853 Weak acid 4.00, 7.90 32 20, 25, 50, 100 mg Amgen 

II Compound A Weak base 5.1 0.13 25, 100 mg Amgen 

II, III Lansoprazole Basic 17.3 0.97 15, 30 mg Prevacid SoluTabs TAP 

III Danazol Neutral - 0.0176 200 mg danazol Barr 

V AMG 221 Weak base 1.5 60 (pH 6.1) 10 mg Amgen 

 

Case Study I. Rank Ordering of Development Formulations 

The ability to quickly and concisely select formulations for further clinical development 

is paramount to drug development.  With the use of the in vitro biorelevant dissolution method 

described in this thesis, rank ordering of various development formulations may be evaluated, 

where AMG 853 is presented in this case study.  

AMG 853 is a free acid, small molecule Amgen clinical development candidate that 

posed significant challenges throughout formulation development because of its low aqueous 

solubility (32 µg/mL) and high predicted dose.  AMG 853 is a BCS Class II compound that is a 

weak acid with pKa values of 4.0 and 7.9 and a measured logP of 4.5.  See Figure 2 for 

compound’s structure. 

Two different 20 mg immediate release formulations were initially developed for early 

clinical development.  Each formulation had similar excipients with these noted differences: 

different grades of microcrystalline cellulose and lactose monohydrate as well as absence or 

presence of HPMC.  See Table 2 for complete formulation composition of each formulation. 
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Figure 2. AMG 853 Free Acid Structure 
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Table 2. Formulation Compositions for AMG 853 Development Lots 

  Formulation 1 Formulation 2 

 Process: Wet Granulation Direct Compression 

 Dosage Form: Tablet Tablet 

Ingredient Purpose % w/w % w/w 

AMG 853 Active 20.0 20.0 

Microcrystalline cellulose, 
Avicel PH101 Diluent 25.5 - 

Microcrystalline cellulose, 
Avicel PH102 Diluent - 28.5 

Lactose monohydrate, 
Impalpable 313 Diluent 45.0 - 

Lactose monohydrate, 
Impalpable 316 Diluent - 45.0 

Hypromellose, 
HPMC-K3 Prem LV Binder 3.0 - 

Sodium Starch Glycolate, 
Explotab Disintegrant 4.0 4.0 

Poloxamer, 
Lutrol Micro 68 MP Surfactant 2.0 2.0 

Magnesium Stearate 
(non-bovine) Lubricant 0.5 0.5 

 

Forced degradation studies as well as quality control dissolution results using USP 

apparatus 2 were very similar for the two formulations.  However, USP apparatus 4 dissolution 

results in SIF indicated that the wet granulation formulation (Formulation 1) would have a much 

better in vivo performance versus the direct compression formulation (Formulation 2).  See 

Figures 3 and 4 for concentration and cumulative percent dissolved versus time plots. 
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Figure 3. In Vitro Concentration Profiles of 20 mg AMG 853 Tablets in SIF 
 

 

Figure 4. In Vitro Percent Dissolved Profiles for 20 mg AMG 853 Tablets in SIF 
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This prediction was later confirmed by an in vivo nonclinical pharmacokinetic (PK) study 

(cyno monkeys, n = 4), which indicated that although the tmax values for Formulation 1 and 

Formulation 2 were similar, Formulation 1 had approximately three times the Cmax and 

approximately four times the AUC compared to Formulation 2.  See Figure 5 for PK data.  Based 

on these results, Formulation 1 was selected for further development. 

 

 

Figure 5. Animal Plasma Profiles for 20 mg AMG 853 Tablets in SIF 
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achieve 100% drug release, none of which may be biorelevant.  Based on these limitations of 

traditional dissolution, the generic in vitro biorelevant dissolution method described in this thesis 

may provide an alternative approach during early phase formulation development, particularly 

when an in vitro/in vivo correlation has not been previously established as is the case for Case 

Study I.   

In this case study, AMG 853 Formulation 1 had significantly better exposure compared to 

that of Formulation 2, which was subsequently confirmed by monkey PK studies.  Based on the 

data, this may be attributed to the presence of HPMC in Formulation 1, which can significantly 

improve the wettability of the compound and therefore enhance AMG 853 dissolution.   

 

Case Study II. Effect of pH Modifier 

Various formulation techniques are employed to improve a drug’s absorption in vivo.  

Such techniques may involve change the microenvironment of the drug with the use of pH 

modifiers, which can enhance drug solubility at the microenvironment level and may in turn 

improve the drug’s absorption in vivo.  To that end, Compound A is presented in this case study 

using the effect of pH modifier to change Compound A’s microenvironment in an attempt to 

improve its low aqueous solubility in vivo. 

Compound A is an Amgen clinical development compound that is a BCS Class II 

compound.  It is a weak base formulated as a mesylate salt with low aqueous solubility (0.13 

µg/mL in pH 6.8 phosphate buffer), a pKa of 5.1 and a log P of 3.3.  Compound A was 

formulated as 25 mg and 100 mg immediate release tablets for early phase clinical studies. 
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In order to maintain a supersaturated microenvironment at high pH, fumaric acid was 

used as a pH modifier in two prototype formulations (Lots 2 and 3).  Additionally, two 

formulations without the pH modifying agent, fumaric acid (Lots 1, 4, and 5) were developed to 

serve as negative controls.  See Table 3 for the formulation compositions of Lots 1, 2, 3, 4, and 

5. 

Lot 2 contains 15% fumaric acid (15% intragranular, 0% extragranular) while Lot 3 

contains 20% of fumaric acid (15% intragranular, 5% extragranular).  The excipient HPMC-K3 

was present in all formulations to minimize precipitation and help maintain supersaturation. 
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Table 3. Formulation Compositions for Compound A Development Lots 

Lot: 1 2 3 4 5 

Process: Blend in 
Capsule 

Direct 
Compression 

Dry 
Granulation 

Dry 
Granulation 

Dry 
Granulation 

Dosage Form: Capsule Tablet Tablet Tablet Tablet 

Ingredient % w/w % w/w % w/w % w/w % w/w 

Compound A Mesylate salt 40.70 40.70 40.70 40.70 39.50 

Microcrystalline cellulose, 
Avicel PH102 14.10 24.20 12.80 15.00 - 

Microcrystalline cellulose, 
Avicel PH200 - - - - 50.00 

Lactose monohydrate, 
Impalpable 316 36.70 11.10 - 24.80 - 

Fumaric Acid - 15.00 20.00 - - 

Hypromellose, 
HPMC-K3 LV 8.00 4.00 4.00 4.00 4.00 

Crospovidone - 3.00 3.00 4.00 5.00 

Syloid 244 FP - 1.00 1.00 0.25 - 

Magnesium Stearate 
(non-bovine) 0.50 1.00 0.50 0.50 0.75 

 - - Extra-granular 

Syloid 244 FP-ex - - - 0.25 - 

Fumaric Acid-ex - - 5.00 - - 

Microcrystalline cellulose, 
Avicel PH102-ex - - 12.50 10.00 - 

Magnesium Stearate-ex 
(non-bovine) - - 0.50 0.50 0.75 

 

The biorelevant dissolution results using SGF (5 minutes) followed by SIF (120 minutes) 

predicted that Lots 1, 2, 3, and 4 would have similar in vivo bioavailability.  Additionally, results 
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indicated that the formulations with pH modifiers (Lots -2 and 3) would have similar in vivo 

performance compared to the lots without pH modifiers (Lots 1 and 4) all exhibiting similar 

cumulative percent dissolved (~20%).  See Figures 6 and 7 for the biorelevant dissolution data.   

 

Figure 6. In Vitro Concentration Profiles of 25 mg Compound A Tablets in SGF  SIF 

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120

C
on

ce
nt

ra
tio

n 
(µ

g/
m

L)

Time (minutes)

25 mg Compound A, Lot 1 (Amgen) 25 mg Compound A, Lot 2 with fumaric acid (Amgen)

25 mg Compound A, Lot 3 with fumaric acid (Amgen) 25 mg Compound A, Lot 4 (Amgen)



53 
 

 

Figure 7. In Vitro Percent Dissolved Profiles for 25 mg Compound A Tablets in SGF  SIF 
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Figure 8. Animal Plasma Profiles for 25 mg Compound A Tablets 
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Figure 9. In Vitro Concentration Profiles of 25 mg Compound A Tablets in SIF 

 

Figure 10. In Vitro Percent Dissolved Profiles of 25 mg Compound A Tablets in SIF 
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As noted earlier, Lots 2 and 3 both included an acid modifier (i.e., fumaric acid), which 

was a formulation technique to maintain an acidic microenvironment during absorption and 

therefore enhance in vivo dissolution.  The results indicated that when the drug was released in a 

higher pH environment (neutral or alkaline pH), the use of a weak acid modifier is a good 

strategy to enhance drug bioavailability.  However, if the drug disintegrates and releases in a 

lower pH environment (acidic stomach), the weak fumaric acid may not function effectively as 

an internal pH modifier and may account for the lack of discrimination between formulations 

seen in vivo. 

For comparison purposes, 15 mg Prevacid SoluTabs were tested using the same in vitro 

biorelevant dissolution method using SIF as the dissolution medium.  Prevacid SoluTabs are 

commonly used as a proton pump inhibitor to treat various acid-related disorders, where the 

active ingredient is lansoprazole, a BCS class II compound that is a weak base with a pKa value 

of 4.15.  See Figure 11 for the molecular structure of lansoprazole. 

 

Figure 11. Lansoprazole molecular structure 

 
 

In contrast to the Compound A tablets, the Prevacid tablets are enteric-coated tablets and 

contain two weak acid pH modifiers, methacrylic acid and citric acid. (1)  The observations in 
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the in vitro biorelevant dissolution studies using 15 mg Prevacid SoluTabs were very different 

from those for Compound A (Figure 12).  This may be attributed to the fact that the 

microgranules that comprise Prevacid tablets are enteric-coated.  Because of this enteric coating, 

the drug can only be released in the neutral or alkaline environment (i.e., duodenum).  As a 

result, the two weak acids present in this tablet formulation functioned as intended, as pH 

modifiers in this microenvironment. 

 

Figure 12. Plasma Profile and In Vitro Concentration Profile of 15 mg Prevacid Tablets 
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lots without pH modifier (Lots 1 and 4).  This may be due to the fact that Compound A, a 

mesylate salt of weak base that was formulated as an immediate-release tablet with fumaric acid 

used as a pH modifier, where the table disintegrated and was released in the stomach where 

strong acidic conditions are commonly observed.  In the strongly acidic environment of the 

stomach, it is conceivable that the designed microenvironment that was expected to be modified 

by the weak acid was difficult to establish. 

In contrast, the effect of the pH modifiers for the Prevacid SoluTabs® was clearly 

observed.  In this case, the tablets were formulated as delayed-release orally disintegrating 

tablets with the use of enteric-coated microgranules.  Although the tablets were designed to 

disintegrate quickly in the mouth, the enteric-coated microgranules allowed the drug to travel 

through the upper GIT unscathed, which was later to be released in the neutral or alkaline 

environment of the duodenum.  As a result, the weak acids (i.e., methacrylic acid and citric acid) 

in the Prevacid SoluTab formulation were able to function effectively as pH modifiers in the 

neutral or alkaline environment of the duodenum.   

Additionally, the presence of enteric-coated microgranules may also explain why similar 

dissolution profiles are observed regardless of a medium switch (i.e., SIF data versus SGF – SIF 

data), which is very different from the case study for Compound A.  See Figure 13 for the 

biorelevant dissolution data with and without the medium switch. 
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Figure 13. Plasma Profile and In Vitro Concentration Profiles of 15 mg Prevacid Tablets 
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development (2, 3, 4).  With this in mind, there is a great need to understand and predict food 

effects early in development to maximize overall drug bioavailability and help design the most 

effective animal and human PK studies.  With the use of FaSSIF and FeSSIF, food effect may be 

qualitatively evaluated using the in vitro USP apparatus 4 biorelevant dissolution method. 

Numerous compounds have been tested using this approach to assess or confirm different 

drug release rates under fasted or fed conditions (5).  Lansoprazole (15 mg Prevacid SoluTabs®), 

danazol (200 mg danazol capsules), and Amgen development compound AMG 853 were 

evaluated for food effect using USP apparatus 4.   

See Figures 14 and 15 for in vitro dissolution results for lansoprazole and danazol, 

respectively.   

As previously described in Case Study I, AMG 853 is a free acid, small molecule Amgen 

clinical development candidate that posed significant challenges throughout formulation 

development because of its low aqueous solubility (32 µg/mL) and high predicted dose.  AMG 

853 is a BCS Class II compound that is a weak acid with pKa values of 4.0 and 7.9 and a 

measured logP of 4.5.  AMG 853 was formulated as immediate-release 25 mg and 100 mg 

tablets for the clinic.  See Figure 2 for compound’s structure and Figures 16 and 17 for the in 

vitro dissolution results for AMG 853, including concentration and cumulative percent dissolved 

versus time, respectively.  Figure 18 describes the AMG 853 pharmacokinetic data. 



61 
 

 

Figure 14. Plasma Profile and In Vitro Concentration Profile of 15 mg Prevacid Tablets  

 

Figure 15. In Vitro Concentration Profile of 200 mg Danazol Capsules in FaSSIF and FeSSIF 
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Lansoprazole should be administered under fasted conditions (6, 7).  In agreement with 

this recommendation, the in vitro biorelevant dissolution test results indicate that lansoprazole 

would have significantly higher bioavailability in the fasted state versus the fed state (Figure 14).  

It was reported that danazol has at least three times higher bioavailability in the fed state was 

observed versus the fasted state (8, 9), which was confirmed by the in vitro biorelevant 

dissolut7ion data (Figure 15). 

 

Figure 16. In Vitro Concentration Profile of 25 mg AMG 853 Phase 1b Tablets in FaSSIF and FeSSIF 
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Figure 17. Percent Dissolved Dissolution Data for 25 mg AMG 853 Phase 1b Tablets in FaSSIF 
and FeSSIF 

 

 

Figure 18. Animal Plasma Profiles for AMG 853 
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In vitro biorelevant dissolution results for the Phase 1b AMG 853 tablets using USP 

apparatus 4 with both FaSSIF and FeSSIF suggest that this product has a significant negative 

food effect with higher bioavailability seen in the fasted condition compared to the fed condition 

(Figures 16 and 17).  The results of the Phase 1b tablets were later confirmed with a partial-

crossover human PK study (n = 6) where Cmax values of 58.3 and 18.6 ng/mL and AUC values of 

335 and 114 h.ng/mL for the fasted and fed states, respectively were observed (Figure 19).  Note 

that the solution and tablet dosed in the fasted condition have the same AUC, whereas the tablet 

dosed in the fed condition results in an approximate 50% decrease in AUC.  Additionally, dose 

proportion was not observed at higher strengths.  At the time of this clinical study, no suitable 

salts, hydrates, or other potential forms were identified. 

Based on the negative food effect observed, several alternate formulations were evaluated 

to mitigate this food effect risk during Phase 2a formulation development.  These formulations 

include a sodium salt formulation as well as several amorphous formulations including hot melt 

extrusion, solid dispersion, and lipid-filled capsules.  Of these formulations, two were available 

for in vitro biorelevant dissolution testing (sodium salt and hot melt extrusion) and were 

compared to the original clinical trial material.  See Tables 4 and 5 for the formulation 

compositions of all AMG 853 tablets described in this case study.  See Figures 19, 20, 21, and 22 

for respective dissolution data.  Please note that the in vitro dissolution was conducted in SGF (5 

minutes) followed by FaSSIF (120 minutes) to mimic the  worst-case scenario and simulate the 

GIT observed under this negative food effect. 
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Table 4. Formulation Compositions for 25 mg AMG 853 Tablet Formulations 

Lot: 0010011635 
(Phase 1b) 

0010026598 
(Phase 2a) 

Process: Wet Granulation Wet Granulation 

Ingredient % w/w % w/w 

AMG 853 5.0 5.0 

Lactose monohydrate, 
Impalpable 313 56.0 56.0 

Microcrystalline cellulose, 
Avicel PH102 29.0 29.0 

Sodium starch glycolate, 
Explotab 4.0 4.0 

Hypromellose, 
HPMC-K3 Prem LV 3.0 3.0 

Poloxmer, 
Lutrol Micro 68 MP 2.0 2.0 

Magnesium stearate 
(non-bovine) 1.0 1.0 

Purified water, 
Granulating fluid -* -* 

Spray rate, 
Granulating fluid 5%/min 7.5%/min 

Granulation fluid level, 
Granulating fluid 37.7% 34.9% 

*Removed from process during drying 
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Table 5. Formulation Compositions for 25 mg AMG 853 Alternate Tablet Formulations 

Description: Na Salt, Lot 1 Na Salt, Lot 2 Hot Melt Extrusion, 
Lot 1 

Hot Melt Extrusion, 
Lot 2 

Process: Direct Compression 
with Na Salt* 

Direct Compression 
with Na Salt* 

Hot Melt Extrusion 
with PVP/PVP-VA# 

Hot Melt Extrusion 
with PVP^ 

Ingredient % w/w % w/w % w/w % w/w 

AMG 853 5.2* 5.2* 40.0# 40.0^ 

Lactose monohydrate, 
Impalpable 313 55.8 54.8 - - 

Lactose monohydrate, 
Impalpable 316 - - 20.0 20.0 

Microcrystalline cellulose 
Avicel PH 101 29.0 29.0 - - 

Microcrystalline cellulose, 
Avicel PH102 - - 33.0 33.0 

Sodium starch glycolate, 
Explotab 4.0 4.0 6.0 6.0 

Hypromellose, 
HPMC-K3 Prem LV 3.0 3.0 - - 

Poloxmer, 
Lutrol Micro 68 MP 2.0 2.0 - - 

Sodium carbonate 
anhydrous 

- 1.0 - - 

Magnesium stearate 
(non-bovine) 1.0 1.0 1.0 1.0 

*AMG 853 Na salt 
#50.6% AMG 853/49.4% Vinylpyrrolidone-vinyl acetate (PVP-VA) 64 (w/w) 
^50.6% AMG 853/30.% Vinylpyrrolidone-vinyl acetate (PVP-VA) 64/19.4% Vinylpyrrolidone (PVP) (w/w/w) 
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Figure 19. In Vitro Concentration Profiles of 25 mg AMG 853 Free Acid (Phase 1b)  
and Na Salt Tablets 

 

 

Figure 20. In Vitro Percent Dissolved Profiles of 25 mg AMG 853 Free Acid (Phase 1b)  
and Na Salt Tablets 
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Figure 21. In Vitro Concentration Profiles of 25 mg AMG 853 Free Acid (Phase 1b)  
and Hot Melt Extrusion Tablets  

 

Figure 22. In Vitro Percent Dissolved Dissolution Data for 25 mg AMG 853 Free Acid  
(Phase 1b) and Hot Melt Extrusion Tablets 
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Discussion: Case Study III 

Based on the data presented in case study III, the results suggest that one cause of food 

effect, or the effect of bile salts may be assessed by in vitro means using this biorelevant 

dissolution method with FaSSIF and FeSSIF.  Specifically, danazol, a poorly soluble neutral 

compound, demonstrated a significant positive food effect in the fed state, similar to troglitzone, 

a poorly soluble lipophilic weak acid (10).  This may be explained by the fact that danazol is a 

lipophilic compound with a logP of 4.2.  The increase of bile salt and lecithin concentrations in 

the fed state may play a key role to enhance the solubility of danazol. 

On the other hand, the negative food effect observed for AMG 853, a weak acid with pKa 

values of 4.0 and 7.9 and a measured logP of 4.5, might be attributed to its pH-dependent 

solubility, where solubility increases markedly as pH increases. 

 

Case Study IV. Dose Proportion 

As previously described in Case Studies I and III, AMG 853 is a free acid, small 

molecule Amgen clinical development candidate that posed significant challenges throughout 

formulation development because of its low aqueous solubility (32 µg/mL) and high predicted 

dose.  AMG 853 is a BCS Class II compound that is a weak acid with pKa values of 4.0 and 7.9 

and a measured logP of 4.5.  See Figure 2 for compound’s structure. 

Recall from Case Study III that AMG 853 has a significant negative food effect with 

higher bioavailability seen in the fasted condition compared to the fed condition for both in vitro 

biorelevant dissolution using USP apparatus 4 (Figures 16 and 17) as well as a partial-crossover 

human PK study (n = 6, Figure 19).  Note that the solution and tablet dosed in the fasted 
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condition have the same AUC, whereas the tablet dosed in the fed condition has an approximate 

50% decrease in AUC.  Additionally, dose proportion was not observed at higher strengths.   

AMG 853 was intended to treat asthma, and therefore at the time it was important to 

understand any dose proportion issues that might have restricted the dosing regimen of the drug.  

With this in mind, three doses within the dose range, 5, 25, and 50 mg were evaluated to assess 

dose proportion using the FaSSIF which gave the greatest bioavailablility for AMG 853 during 

human PK studies (Figure 18).  Note that in the clinic, the 50 mg strength was dosed via two-25 

mg tablets.  In the same way, this in vitro experiment mimicked the same dosing regimen to 

better understand the implications in vivo.  See Table 6 for the dosing regimen of 5 and 25 mg 

AMG 853 tablets covering the range of 5 mg – 200 mg doses.  See Figures 23 and 24 for in vitro 

dissolution data, including concentration and cumulative percent dissolved versus time, 

respectively while Table 7 describes the Cmax and AUC data for the 5 mg, 25 mg, and 50 mg 

doses for the in vitro dissolution data. 

Table 6. Phase 1b Clinical Dosing Regimen for AMG 853 Tablets 

Dose (mg) # of 5 mg Tablets # of 25 mg Tablets 

5 1 - 

10 2 - 

25 - 1 

50 - 2 

75 - 3 

100 - 4 

150 - 6 

200 - 8 
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Figure 23. In Vitro Concentration Profiles of 5 mg, 25 mg, and 50 mg AMG 853 Tablet Doses 

  

Figure 24. In Vitro Percent Dissolved Dissolution Profiles of 5 mg, 25 mg, and 50 mg AMG 853 
Tablet Doses 
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Table 7. Cmax and AUC Data for 5 mg, 25 mg, and 50 mg AMG 853 Doses 

Dose Cmax 
(μg/mL) Versus 5 mg AUC 

(mg*min/mL) Versus 5 mg 

5 mg 18 - 0.5 - 

25 mg 54 3X 2.3 5X 

50 mg 
(2 x 25 mg) 69 4X 4.5 9X 

 

The 5 mg, 25 mg, and 50 mg doses all have similar concentration versus time profiles 

(Figure 23).  Cmax, which is a measure of rate of absorption increased with increasing dose with 

the 50 mg dose giving the largest Cmax followed by 25 mg and 5 mg doses as expected.  The 

cumulative percent dissolved plot gave an inverse relationship versus Cmax with the largest 

cumulative percent dissolved observed in the 5 mg tablet, followed by the 25 mg and 50 mg 

doses.   

Table 7 indicates an increase of approximately 3 times in Cmax of the 25 mg dose versus 

the 5 mg dose and approximately 4 times for the 50 mg dose.  The table also indicates that AUC, 

which is a measure of extent of absorption, increased approximately 5 times for the 25 mg dose 

versus the 5 mg dose and approximately 9 times for the 50 mg dose.  Based on the AUC 

comparison, the data indicates that the 5, 25, and 50 mg doses are approximately proportional.  

Additionally, the data indicates that AMG 853 dissolves at a similar rate across all doses tested. 

Note that testing on the 100 mg dose was not completed due to filter clogging during in 

vitro dissolution testing.  In order to test the 100 mg dose, four 25 mg tablets were needed, each 

individual tablet weighing 600 mg resulting in more than 2 grams of total material within the 

USP apparatus 4 flow cell.  Even with the addition of approximately 0.2 grams of glass wool, 
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which is added to minimize the amount of excipients/materials that the filter encounters, the 

filters still tended to over-pressurize and clog compromising the subsequent online UV data 

collection.  Due to these experiment issues, dose proportion for AMG 853 could not be assessed 

above 50 mg. 

 

Discussion: Case Study IV 

The results from case study IV suggest that it may be possible to assess dose proportion 

for a drug as was seen in for 5 mg, 25 mg, and 50 mg doses of AMG 853.  However, it is 

important to note that such evaluations may be limited by the physical constraints of the USP 

apparatus 4 flow-through cell.  Specifically, doses above 50 mg could not be assessed for AMG 

853 because at least four 25 mg tablets are needed, which amounts to over 2 grams of total 

material.  This amount of material, even with the additional of glass wool as an additional 

filtration step, appears to exceed the limitations of the filter paper and therefore it is believed that 

this application, evaluation of dose proportion, has limited utility during drug development. 

 

Case Study V. Lot-to-Lot Variability 

AMG 221 is classified as a BCS Class II compound according to the Biopharmaceutics 

Classification System.  It is a weak base with a pKa of 1.5.  See Figure 25 for its structure.  

AMG 221 was formulated as a 10 mg immediate-release tablet for early phase clinical studies. 
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Figure 25. AMG 221 Free Base Structure 

 

During release testing of a re-supply lot slower disintegration and dissolution was 

observed when using the quality control release method (USP apparatus 2, 900 mL, 0.1N HCl, 

50 rpm).  See Figures 26 and 27 for the dissolution data. 

 

Figure 26. Plasma Profile and In Vitro Concentration Profiles for 10 mg AMG 221 Tablets 
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Figure 27. In Vitro Percent Dissolved Profiles for 10 mg AMG 221 Tablets 
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Further investigation of the resupply lot (Lot 2) indicated that while the formulation’s 

composition was consistent between lots the process parameters were modified during the 

manufacture of the resupply lot (Lot 2) in an attempt to improve the material’s flow properties.  

In particular, the resupply lot was manufactured using a higher percent granulating fluid level 

and higher impeller speed during the granulating process.  See Table 8 for the process parameters 

for each lot.   

Table 8. Processing Parameters of 10 mg AMG 221 Tablets 

 Lot 1 
(Original Supply) 

Lot 2 
(Re-Supply) 

Batch size (g) 4500 4000 

Granulating fluid level (%) 30 35 

Impeller speed (rpm) 200 300 

   Fines (< 43 µm) 19.3% 7.2% 

%Yield of Compression 84.3% 94.2% 

   Bulk Density (g/mL) 0.56 0.67 

Tap Density (g/mL) 0.69 0.75 

Compressibility Index (qualitative flow) 19 (fair) 11 (good) 

D10 (µm) 26.4 ± 0.3 65.7 ± 5.4 

D50 (µm) 102.2 ± 4.6 194.6 ± 12.7 

D90 (µm) 498.3 ± 15.6 716.3 ± 78.6 

In-Process Tablet Hardness (kP) 2.1 ± 0.3 2.6 ± 0.2 

Tablet Disintegration Time (first to last) 0:45 – 1:21 1:41 – 3:28 

kP = N/m2 = kg/m/s2 
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These process changes resulted in improved flow properties by making denser granules 

with larger granule size, however, as a consequence when this material was compressed, the 

resulting tablets exhibited slower disintegration and dissolution properties versus the original lot 

(Lot 1). 

An in vivo crossover study (beagle dog, n = 4) using the original lot (Lot 1) and the re-

supply lot (Lot 2) indicated that the re-supply lot had an approximately 70% reduction in 

maximum concentration (Cmax) and an approximately 65% reduction in area under the curve 

(AUC) versus Lot 1.  These pharmacokinetic results supported the USP apparatus 4 in vitro 

results that Lot 2 was not suitable for re-supply of AMG 221 clinical materials versus the 

original lot (Lot 1).  Lot 2 was not used to re-supply the clincial study. 

 

Discussion: Case Study V 

Lot-to-lot equivalency can be difficult to assess using a quality control in vitro 

dissolution method, particularly when the discriminating power of the method is not fully 

characterized and an IVIVC has not been established.  In this case study, the process parameter 

changes during the manufacture of the re-supply lot led to slower dissolution using the quality 

control in vitro dissolution release method, where the suitability of the re-supply lot versus the 

original supply lot was inconclusive. 

  The in vitro biorelevant dissolution method using SIF also indicated a difference in 

dissolution between the two lots.  However, while both methods seem to indicate that the re-

supply lot of tablets was not suitable for the clinical study, it was hypothesized that the reduction 

in Cmax and AUC for this in vitro biorelevant dissolution method may have clinical relevance 

based on the biorelevant approach during method development.  An animal pharmacokinetic 
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study confirmed that the re-supply lot was unsuitable for the clinical study, giving similar 

reduction in Cmax and AUC as was seen in the in vitro biorelevant dissolution method.  This may 

be due to the combination of the pH-dependent solubility properties of the compound as well as 

the different hydrodynamics for USP apparatus 2 and USP apparatus 4. 

AMG 221 has a solubility of 0.06 mg/mL, or approximately 6 times sink conditions in 

0.1N HCl, the dissolution medium for the USP apparatus 2 method.  In contrast, the solubility in 

the dissolution medium for the USP apparatus 4 method, SIF is 0.037 mg/mL, which is less than 

4 times sink conditions.  Based on this data, the results from the USP apparatus 4 method appear 

to have better biorelevant discrimination power.   

It is interesting to note that SIF was used directly for AMG 221, a weak base with pKa of 

1.5, rather than switching the medium from SGF to SIF, which is the recommendation for weak 

bases.  This may be due to AMG 221’s low pKa and the relatively flat solubility curve in this pH 

range.  For other weak bases with higher pKas, a medium switch is still recommended to better 

reflect the in vivo dissolution behavior. 

 

Conclusions 

Five case studies were presented to demonstrate the potential applications of this in vitro 

biorelevant dissolution method: 

I. Rank ordering of development formulations 

II. Effect of pH modifier 

III. Assessment and prediction of food effect 

IV. Dose proportion 

V. Lot-to-lot variability 
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Case study I demonstrated the application of the in vitro biorelevant dissolution method 

for rank ordering different formulations.  This qualitative evaluation of formulations during drug 

development may significantly help select formulations for further clinical development.   

The results from case study II demonstrated the potential to evaluate pH modifiers in a 

formulation composition using the in vitro biorelevant dissolution method.  Specifically in cases 

where a delayed-release strategy (e.g., enteric-coated microgranules) is used, pH modifiers may 

significantly improve dissolution of the drug at the microenvironment level, which may 

overcome solubility issues or differences seen during transit through the gastrointestinal tract. 

Case study III suggests that the food effect due to bile salt solubility may be assessed in 

vitro using this biorelevant dissolution method with FaSSIF and FeSSIF as the dissolution media.  

When applied at the appropriate time in a product’s development lifecycle, this approach may 

provide valuable information to understand whether a mitigation strategy is needed to minimize 

a potential food effect.  The results may also facilitate the design of more efficient 

pharmacokinetic studies or clinical trials later in development. 

The results from case study III also suggest that food effect of individual drugs need to be 

assessed on a case-by-case basis, and it remains challenging to predict the food effect in a 

reliable fashion since there are many potential causes for a food effect related to a solid oral 

dosage form (12).  For example, it is not sufficient to evaluate the presence of a food effect based 

solely on physicochemical properties of the drug and solubilization capacity of bile salts and 

surfactants. 

Case study IV suggests that it may be possible to assess dose proportion for a drug using 

the in vitro biorelevant dissolution method.  However, it is important to note that such 

evaluations may be limited by the physical constraints of the USP apparatus 4 flow-through cell.  
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In example of AMG 853 presented in case study IV, the large amounts of drug product material 

exceeded the limitations of the filter paper therefore disrupting the laminar hydrodynamics of the 

flow cell, which is meant to mimic the in vivo environment.  Therefore, it is believed that this 

application may have has limited utility during drug development. 

And finally, the in vitro biorelevant dissolution results from case study V indicate the 

potential to evaluate lot-to-lot consistency using the in vitro dissolution method, which is a more 

common application of the traditional dissolution method.  Based on the case study presented, 

the results from the USP apparatus 4 method appear to have better biorelevant discrimination 

power versus the traditional USP apparatus 2 dissolution method.  This suggests that the in vitro 

biorelevant dissolution method may be able to provide information regarding in vivo 

performance as well as provide the discrimination needed for a quality control method.  If this is 

the case, a fewer number of future PK studies may be needed in the future as greater 

understanding is gleaned from these in vitro biorelevant dissolution studies. 
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Chapter 4. Conclusions 
 
 

Overall Conclusions 

As previously mentioned, in vitro dissolution plays various roles throughout drug 

development and the traditional QC dissolution method alone may not satisfy the multiple needs 

for in vitro dissolution testing.  To that end, one of the most important and commonly used 

applications of dissolution testing is to predict the in vivo performance of solid oral dosage 

forms.  However, there are several limitations of the traditional QC dissolution method, 

including inadequate dissolution of poorly soluble drugs as well as the use of simple aqueous 

buffer solutions and hydrodynamics, which do not represent the in vivo environment. 

The in vitro biorelevant dissolution method developed addressed some of these 

limitations by using biorelevant dissolution media and equipment (i.e., USP apparatus 4 open 

system) with optimized instrument parameters (e.g., glass beads, flow rate, flow cell size and 

design, etc.) to mimic the hydrodynamics in vivo in a qualitative manner. 

The work presented in this thesis suggests there are several potential applications for the 

in vitro biorelevant dissolution method developed, particuarly for BCS Class II compounds.  

These applications include rank ordering of formulations, evaluation of pH modifiers, evaluation 

of food effect, evaluation of dose assessment, and lot-to-lot consistency. 

 

Considerations for Future Work 

While there are several applications of the in vitro biorelevant dissolution method 

developed, there are also several potential limitations for the widespread use of this method.  

One apparent, but not trivial limitation is the difficult set-up and use of the system.  Specifically, 
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there are several intricate parts to the assembly of the flow cell, which are not only tedious to put 

together, but the process may be difficult to remember after a long period of disuse.  With this in 

mind, it would be recommended to have a dedicated person(s) to run this system to ensure 

consistency from experiment to experiment. 

Additionally, it is important to note that all of the cases described in this thesis work are 

of BCS class II compounds, where dissolution is a rate-limiting step in the drug absorption 

process.  With this in mind, it is possible that the constraints of this thesis work may have 

contributed to these findings including the use of: 

• systematic method development approach guided by known in vivo profiles,  

• USP apparatus 4 open system that simulates in vivo hydrodynamics and continuously 

removes the dissolved material to maintain sink conditions, 

• biorelevant dissolution media that mimics the in vivo GIT environment,  

• and physicochemical characteristics of BCS class II compounds  

More work is this area is needed to further understand and explain these empirical 

observations, which may be an opportunity for integration of simulation work to explain a drug’s 

absorption behavior.  While this was of interest during the thesis research, there was not 

adequate time to learn the simulation software to yield fruitful results.   

Ultimately, this in vitro biorelevant dissolution method yielded some interesting 

qualitative results, however may be limited in its utility in a quantitative nature due to some of 

the limitations described.   With this in mind, in some cases USP apparatus 2 with biorelevant 

dissolution media may still be more straightforward to evaluate qualitative relationships during 

preliminary in vitro biorelevant dissolution. 
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