Gastrointestinal Simulation Based on the Advanced Compartmental Absorption and Transit (ACAT)

Michael B. Bolger, Ph.D.
Founding Scientist
Simulations Plus, Inc.

GI Simulation Methods

- Dispersion Model
 - Ho, NFH and Higuchi, WI - 1983
- Compartmental Absorption & Transit (CAT)
 - Yu, LX and Amidon, GL - 1996
- Heterogeneous Tube Model
 - Kalampokis, A and Macheras, P - 1999
- Advanced CAT Model (ACAT)
 - Simulations Plus, Inc. – 1998 - 2006
Data Integration Tool

GastroPlus is a state-of-the-art database and simulation computer program that contains the following elements:

- Differential equations
 - Oral Absorption and related phenomena
 - Release, dissolution, precipitation
 - Transit
 - Absorption – passive diffusion and carrier-mediated transport
 - Pharmacokinetics
 - Gut and liver metabolism
 - Physiologically based pharmacokinetics
 - Pharmacodynamics
 - Direct and indirect models
- Solubility-pH calculation
- Selection of different physiologies
- Numerical integration
- Numerical optimization
- Plotting and file output
- Database and support files

— GPEN, Kansas, 2006

Gastrointestinal Processes

- Blood
- Enterocytes
- Dose
- Lumen
- Absorption
- Gut wall metabolism
- Disintegration
- Dissolution
- Drug in solution
- Precipitation
- Degradation
- Excretion

— GPEN, Kansas, 2006
Advanced Compartmental Absorption and Transit (ACAT) Model

\[K_t(i) = 1/\text{transit time (i)} \]

\[K_r \propto \text{dose * time-release profile} \]

\[K_d(i) = 3 \gamma (C_S - C_L) / (\rho r^2) \]

\[\gamma = \text{diffusion coefficient} \]
\[C_d(pH) = \text{solubility @ local pH} \]
\[C_L = \text{concentration in lumen} \]
\[r = \text{initial particle radius} \]

\[K_a(i) = \alpha(i)P_{eff}(i) \]

\[\alpha = f(S,V) \]
\[S = \text{surface area} \]
\[V = \text{volume} \]

The big picture

- Structure → QMPRPlus
- Physical properties - Peff, Sw, pKa
- Formulation - Dose, dosage form, particle size, release profile
- In vitro Experiments
- In vitro enzyme kinetic constants \(V_{max}(s) \) and \(K_m(s) \)
- Scaling to in vivo clearance
- Fa
 - Cp-time profile
 - Fb + nonlinear kinetics
 - PD profile

PKPlus™: Vd, CL, K12, K21

- In vitro / in vivo PK
- Pharmacodynamic parameters

– GPEN, Kansas, 2006
Advanced Compartmental Absorption and Transit Model (ACAT)

Example 1 Inputs

- MWt = 350
- logP = 2.5
- pKa = acid 5.5
- Solubility = 0.1 mg/mL @ pH 2
- Solubility factor = 500
- Effective permeability = 2E-4 cm/s
- Dose = 100 mg tablet
- Particle density = 1.2 g/cc
- Particle radius = 25 micron
- Diffusion coefficient = ??

– GPEN, Kansas, 2006
Oral Absorption of Ionizable Drugs

LAB687
- Log P = 4.7
- Native Solubility = 0.17 μg/mL
- Permeability = 1.96×10^{-4} cm/s
- Fraction Absorbed: ~8%

Toremifene
- Log P = 6.57
- Native Solubility = 0.069 μg/mL
- Permeability = 12×10^{-4} cm/s
- Fraction Absorbed = 100%

*estimated by ADMET Predictor

LAB687
- SolFactor = 7.8x10^4

Toremifene
- SolFactor = 1.2x10^5

– GPEN, Kansas, 2006
Absorption - Fick’s First Law

• Absorption means crossing the apical membrane of the enterocytes (not entering the portal vein)

• Diffusion of molecules through a membrane results from a difference in concentration across the membrane

• For passive diffusion, molecules move in both directions, but the net flux is from high to low concentration, and is proportional to the concentration difference (unless electrochemical charge is involved)

• For intestinal absorption, D is proportional to \(P_{\text{eff}} \) and the volume in the lumen compartment

\[J = D (C_{\text{hi}} - C_{\text{lo}}) \]

Rate of absorption based on: Permeability = \(f(\text{Surface Area, Physico-chemical Properties, Transporters, and Efflux}) \)

\[
\text{Volume} = \frac{2\pi RL}{\pi R^2 L} = \frac{2}{R}
\]

\[
P_{\text{eff}} = \frac{Q(C_{\text{in}} - C_{\text{out}})}{2\pi R C_{\text{out}}}
\]

\[
\frac{dM}{dt} = P_{\text{eff}} \alpha M
\]

\[
k_{\text{in}} = \frac{2 \times P_{\text{eff}}}{R_i} = \text{ASF}_i \cdot P_{\text{eff}}
\]

– GPEN, Kansas, 2006
Absorption

Absorption term in compartment number i:

$$\frac{dM_{\text{diss}}(i)}{dt} = \alpha(i) Peff(i) V_{\text{lum}}(i) (C_{\text{lum}}(t) - C_{\text{ent}}(t))$$

k_a = absorption rate constant

$M_{\text{diss}}(i)$ = mass in compartment i

$\alpha(i)$ = absorption scale factor in compartment i (nominal value is surface/volume, which is $2/R_i$)

R_i = radius of compartment i

$P_{\text{eff}}(i)$ = permeability in compartment i

$V_{\text{lum}}(i)$ = volume of lumen for compartment i

$C_{\text{lum}}(t)$ = lumen concentration in compartment i

$C_{\text{ent}}(t)$ = enterocyte concentration in compartment i

* permeability may be net, or only passive component

Ketoprofen ASF Profile

$Fa = 100\%$

$\log D(6.5) = 0.74$

$Peff(7) = 8.7$

$pKa = 4.3$ (Acid)
Simulations Plus log D Model

- \(\log(\text{Peff}_{\text{pH}}) = a \Delta \log \text{D}_{\text{pH}} + \log(\text{Peff}_0) \) (1)
 - Where: \(\Delta \log \text{D}_{\text{pH}} = \log P - \log \text{D}_{\text{pH}} \)

- Reference pH = 6.5 (Jejunal pH)

\[
ASF_{SI} = C_2 \left(\frac{\Delta \log \text{D}_{\text{pH}} - C}{\Delta \log \text{D}_{\text{pH}_{\text{ref}}} - C} \right)
\] (2)

\(C = 6.26 \) (empirical estimation)

Rabbit Isolated Tissue Permeability
Size of Circle = $P_{\text{colon}} / P_{\text{ileum}}$ Ratio

Simulations Plus log D Model for Colon

$$ASF_{\text{Colon}} = C_3 10^{C_4 \log D_{\text{pH}}}$$
Lisinopril ASF profile

Fa = 25%
logD(6.5) = -3.3
Peff(7)=0.12

Lisinopril ASF as Function of pH

<table>
<thead>
<tr>
<th>SI Region and pH</th>
<th>Duod</th>
<th>J1</th>
<th>J2</th>
<th>I1</th>
<th>I2</th>
<th>I3</th>
<th>I4</th>
<th>Colon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>6</td>
<td>6.2</td>
<td>6.4</td>
<td>6.6</td>
<td>6.8</td>
<td>7.2</td>
<td>7.5</td>
<td>5</td>
</tr>
</tbody>
</table>

LogD model Colon ASF estimation

- Fosinopril (logP=4.5, JejPeff=1.26)
- Carbamazepine (logP=1.5, JejPeff=4.3)
- Ranitidine (logP=0.1, JejPeff=0.43)

- GPEN, Kansas, 2006
Rate of solution of solid substances in their own solution

In conducting the experiments, exactly 100 cc. of distilled water were placed in each of the six bottles, and these were suspended in a thermostat kept at 25°C within a few thousandths of a degree. After the temperature of the bath had been attained, the corks bearing the sticks of substance were inserted in the bottles so that the cylinders were in the middle of the bottle, and covered with water, as shown in the cut. The rate at which a substance dissolves in its own solution is proportional to the difference between the concentration of that solution and the concentration of the saturated solution.

\[
\frac{dx}{dt} = C(S - x)
\]

\(x = \text{Concn. at time } t\)
\(S = \text{Solubility}\)
\(C = \text{Constant}\)

"The rate at which a substance dissolves in its own solution is proportional to the difference between the concentration of that solution and the concentration of the saturated solution."

--- GPEN, Kansas, 2006

Noyes - Whitney Data

Dissolution of:

Benzoic Acid:
- Solubility = 27.9 mM
- \(t_{1/2} = 25.4\) m

Lead Acetate:
- Solubility = 38.7 mM
- \(t_{1/2} = 35.6\) m

\[
Y = S - (S \times e^{-k_d t})
\]

\(S = \text{solubility}\)
\(k_d = \text{dissolution rate constant (m}^{-1})\)

--- GPEN, Kansas, 2006
Dissolution and Precipitation
Nernst & Brunner (1904)

Dissolution/precipitation processes are defined by the rate constants k_i^d and k_i^p

- $C_s > C_L \Rightarrow$ dissolution
- $C_s < C_L \Rightarrow$ precipitation

\[
k(i)^d = \frac{3\gamma(C_s - C_L)}{\rho r T}
k(i)^p = -\frac{1}{t_p}
\]

- $\gamma =$ diffusion coefficient
- $\rho = $ particle density
- $r = $ initial particle radius
- $C_s(pH) = $ solubility @ local pH
- $C_L = $ concentration in lumen
- $t_p = $ mean precipitation time

Dissolution with Particle Size Distribution

- Particles are divided into n bins ($n \leq 16$)
- Each bin is represented with a mean radius and a fraction of the total mass of solid particles at any instant
- Distribution can be normal, log-normal, or user-provided (.psd file)
- Smaller particles dissolve faster, increasing drug concentration
- Particles in each bin become smaller with time
- Each ACAT gut compartment has n bins, so if 16 bins are used with 9 gut compartments, a total of $9 \times 16 = 144$ differential equations for dissolution must be integrated – simulation runs slower
- Precipitation can cause particles to grow
\(F_a = f(\text{Permeability and Solubility}) \)

– GPEN, Kansas, 2006

Zhao & Abraham Dataset

- Selected 238 compounds and converted SMILES to 3D with CORINA.
- Used ADMET Predictor to generate pKas.
- Used ADMET Predictor to generate estimates for Permeability, Solubility, and Diffusivity.
- Sub-classified into groups for passive absorption and transport via influx or efflux transporters.
- Calculated fraction absorbed using GastroPlus.

– GPEN, Kansas, 2006
GastroPlus Simulation Results

115 Comp. Calib: Simple Peff and Meylan Sw
84% within 25% of observed

\[y = 1.01x - 5.75 \]
\[R^2 = 0.73 \]

Predicted Fa% vs Observed Fa%

Sw > 8 ug/mL
Sw <= 8 ug/mL

36 Active Transport

36 Actively Transported Compounds

Efflux
Influx
Identity

Predicted Fa% vs Observed Fa%
GastroPlus Physiologies

- Human Physiological Fasted
- Human Physiological Fed
- Human Equal Transit Time Fasted
- Human Equal Transit Time Fed
- Beagle Dog Fasted
- Beagle Dog Fed
- Rat Fasted
- Mouse Fasted
- Cynomologous Monkey Fasted
- Rabbit Fasted
- Cat Fasted
- **User-defined**

Each physiology includes default values for:
- pH’s
- Transit times
- SI length & radius
- Stomach volume
- Colon volume
- Hepatic blood flow rate
- Gut enzyme and transporter distributions

Parameter Sensitivity Analysis

What experiments need to be run for a compound, and which ones can be skipped or delayed until we’re sure we need them?

- **Sensitivity analysis** identifies critical experimental parameters
 - pKa measurements (vs predictions)
 - permeability measurements – PAMPA, Caco-2, MDCK
 - solubility measurements (vs predictions) – PBS vs FASSIF, FESSIF

- **Toxicity experiments**
 - no need to run if compound can be eliminated for other reasons
 - if needed, what dose levels to use (and which can be eliminated) in dose escalation studies in animals

-- GPEN, Kansas, 2006 --
Parameter Sensitivity Analysis (PSA)

What parameters have a significant effect for this drug?
- pKa?
- Dose?
- Dose volume?
- Particle radius?
- Solubility?
- Diffusion coefficient?
- Permeability?
- Transit times?
- Hepatic blood flow?

"Brick Dust"

25 micron radius

![Graph 1](image1)

5 micron radius

![Graph 2](image2)
Neurosteroid Sim/PK/PD Methods

• ADMET Predictor™ - 3D struc. used to estimate:
 – Peff, Solubility, pKa, Diffusivity, log P
• GastroPlus™ used to simulate:
 – Fraction absorbed
 – Plasma concentration vs. time profile
 – Pharmacodynamic response vs. time profile
• MS-Excel pivot table used to create 3D plot of log IC\textsubscript{50} vs. log S\textsubscript{w} vs. Maximal Response

Neuroactive Steroid SAR

– GPEN, Kansas, 2006
Activity vs. BioPharm.

– GPEN, Kansas, 2006
PD Profile for most potent drug

$IC_{50} = 4.7 \text{ nM}$ Sol. = 0.000058 mg/mL

PD Profile for most effective drug

$IC_{50} = 104 \text{ nM}$ Sol. = 0.046 mg/mL
Conclusions

- Data integration is a key factor in drug discovery and development.
- Gastrointestinal simulation provides us with a mechanistic understanding of preclinical and clinical data.
- Parameter sensitivity is more important than the exact solution.
- Most potent compound is not always the best drug.