

Empirical phase diagrams

- Multiple analytical techniques employed to characterize the physical properties of protein therapeutics under various solution conditions (experimental parameters, i.e. pH and temperature)
- A multidimensional phase space approach used to describe patterns connecting resultant complex data sets
- Empirical phases identified to represent parameter regions with substantially uniform and coherent structural data
- A phase diagram constructed employing an RGB color system to allow visualization and interpretation of the complex data sets

Method	$_{\rm pH}$	Initial λ^{σ} (nm)	Transition Start ^b (°C)	Transition Finish ^b (°C)	Transition Midpoint ^e (°C)	Final λ^{σ} (nm)
Absorbance peak 1	2	252.65 (0.01)	67.5	>90	NAd	253.91 (0.14)
	3	252.66 (0.01)	62.0	>90	NA	253.98 (0.09)
	4	252.62 (0.02)	57.5	65.0	61.7 (0.4)	254.26 (0.10)
	5	252.67 (0.01)	50.0	ND $(A)^{e}$	ND (A)	ND (A)
	6	252.67 (0.02)	50.0	65.0	58.5 (1.2)	~ 255.0
	7	252.68 (0.00)	45.0	65.0	58.5 (1.1)	ND (A)
Absorbance peak 2	2	258.81 (0.01)	47.5	60.0	NA	259.35 (0.02)
	3	258.83 (0.01)	57.5	67.5	NA	259.35 (0.01)
	4	258.81 (0.01)	55.0	65.0	60.8 (0.7)	259.88 (0.04)
	5	258.82 (0.01)	50.0	65.0	ND (A)	260.24 (0.16)
	6	258.82 (0.01)	47.5	65.0	ND (A)	260.93 (0.47)
	7	258.81 (0.01)	47.5	70.0	ND (A)	ND (A)
Absorbance peak 3	2	265.52 (0.00)	47.5	65.0	57.1 (0.4)	265.88 (0.03)
	3	265.55 (0.01)	57.5	67.5	63.7 (0.2)	267.49 (0.06)
	4	265.53 (0.01)	55.0	67.5	61.1 (0.1)	268.22 (0.10)
	5	265.53 (0.01)	52.5	ND (A)	ND (A)	267.59 (0.63)
	6	265.52 (0.01)	50.0	ND (A)	ND (A)	267.70 (0.70)
	7	265.50 (0.01)	45.0	ND (A)	ND (A)	269.28(1.24)
Absorbance peak 4	2	277.48 (0.02)	40.0	62.5	53.4 (0.2)	276.22 (0.06)
	3	277.52 (0.01)	52.5	72.5	60.5(0.1)	275.92(0.14)
	4	277.58 (0.01)	57.5	72.5	61.6(0.2)	ND (A)
	5	277.60 (0.01)	52.5	ND (A)	ND (A)	277.68 (0.11)
	6	277.74 (0.01)	55.0	ND (A)	ND (A)	276.86 (0.35)
	7	277.77 (0.02)	47.5	ND (A)	ND (A)	276.74 (0.44)
Absorbance peak 5	2	283.88 (0.01)	82.5	>90	NA	283.75 (0.01)
	3	283.90 (0.01)	NA	NA	NA	283.54 (0.01)
	4	283.93 (0.00)	55.0	67.5	61.2(0.0)	284.61 (0.01)
Absorbance peak 6	5	283.95(0.01)	52.5	67.5	60.0	284.38 (0.13)
	6	283.99(0.01)	50.0	67.5	60.0	284.29 (0.11)
	7	284.02 (0.01)	47.5	NA	57.5	284.10 (0.14)
	2	290.59 (0.01)	37.5	67.5	50.6 (0.1)	290.58 (0.01)
	3	290.54 (0.00)	37.5	70.0	59.3 (0.1)	291.32 (0.01)
	4	290.53 (0.01)	52.5	65.0	60.4 (0.1)	291.81 (0.02)
	5	290.54 (0.00)	52.5	67.5	60.0	291.62 (0.28)
	6	290.51 (0.01)	52.5	67.5	60.0	291.69 (0.07)
	7	290.76 (0.25)	45.0	NA	57.5	290.90 (0.20)

Method	pH	Transition Start ^a (°C)	Transition Finish ^a (°C)	Transition Midpoint ^b (°C
CD	2	40.0	67.5	$52.7 (0.1)^c$
	3	55.0	75.0	52.7(0.1)
	4	52.5	70.0	59.9 (0.3)
	5	45.0	60.0	54.4 (0.0)
	6	47.5	60.0	53.3 (0.0)
	7	47.5	57.5	51.3(0.0)
DSC	2	48.1	68.2	56.3
	3	51.7	72.7	64.1
	4	42.8	65.7	58.4
	5	44.8	62.3	54.9
	6	43.1	61.1	54.7
	7	43.7	60.6	53.9
Fluorescence intensity	2	24.8	56.5	48.0 (0.2)
	3	34.9	63.5	56.0 (0.3)
	4	44.6	63.8	57.6 (0.2)
	5	49.5	73.2	60.0 (0.2)
	6	52.0	68.3	57.1(2.4)
	7	51.8	68.6	56.3 (0.3)

Table 1.	Characterization	of bGCSF by CD	, DSC, and Fluorescence
----------	------------------	----------------	-------------------------

Standard error fits to sigmoidal function for separate samples (n = 3).

Kueltzo L.A. and Middaugh, C.R. J. Pharm. Sci. (2003) 92, 1793-1804.

	Name	Spacers				
	*NH ₃ -(CH ₂) _n -COO	n = 2 - 7				
	⁴ NH ₃ -(CH ₂) _n -NH ₃ ⁺	n = 0, 2 - 7				
	'OOC-(CH ₂) _n -COO'	n = 0 - 7				
	(Gly) _n	n = 1 - 6				
	Glu-Glu					
	Glu-Lys					
	Lys-Lys					
	NH3-(Lys)-(Gly)a-(Glu)*-COO*	n = 1 - 5				
	$^{*}NH_{3}-(Lys)^{*}-(Gly)_{z}-(Lys)^{*}-CONH_{2}$	n = 1 - 5				
	CH3-NH2-(Glu) ⁻ -(Gly)n-(Glu) ⁻ -COO ⁻	n = 1 - 5				
Figure tains eit	Figure 1. Libraries screened. Each dipolar set con-					

tains either a methylene or glycine spacer (except for dimeric compounds) with at least one charge on each terminal end.

MacLean, D.S., Qian, Q., and Middaugh, C.R. J. Pharm. Sci., (2002) 91, 2220-2229.

MacLean, D.S., Qian, Q., and Middaugh, C.R. J. Pharm. Sci., (2002) 91, 2220-2229.

Table 1 Fffe	et of Mul	tiply Ch	ormed Ce	mnounds on	the Inhi	hition Inde	w of Prot	ine							
Table 1. Ene	ct of Miul	upiy on	argeu ot	inpounds on	the min	ontion mue	x of Flob	31115							
Compound	Insulin 100×	Insulin 1.000 v	Lysozyme 1.000×	∝-Lactalbumin 1.000×	FGF-1"	FGF-1 10.000×	HLF" 1000×	HLF 10.000×	CS" 1.000×	CS 10.000×	CS 50.000×	ADH" 1.000 x	ADH 10.000×	pST" 100×	pST 2.000 v
			-,		-,						,				-,
Oxalate	0.9 (0.6)*	0.8 (0.2)"	1.6(1.0)	1.3(0.2)	5.2(1.5)	605.5(89.1)	N.T ^a	666.9 (314.8)	N.T.	1.9(0.5)	6.2(3.8)	N.T.	26.7(3.1)	0.8(0.1)	1.5(0.3)
Malonate	1.2(0.5)	0.8(0.1)	1.5(0.4)	1.8(0.1)	2.2(0.4)	36.6 (29.0)	N.T.	1714.1 (189.1)	N.T.	2.4(0.5)	9	N.T.	18.9 (6.6)	0.9(0.1)	4.9 (0.5)
Succinate	1.0(0.3)	0.8(0.2)	1.0(0.3)	1.1(0.3)	2.1(0.4)	9.2(1.9)	N.T.	33.7(11.9)	N.T.	2.1(0.5)	9.6	N.T.	2.7(0.7)	0.9(0.1)	2.1(0.3)
Glutarate	1.0(0.2)	0.7(0.1)	1.2(0.3)	1.1(0.2)	3.0(0.9)	10.8 (8.4)	N.T.	49.7 (28.9)	N.T.	1.4 (0.5)	6.5 (0.3)	N.T.	1.8 (0.4)	0.9(0.1)	3.1(0.7)
Adipate	1.2(0.7)	0.7(0.1)	1.4(0.8)	1.2(0.3)	3.0(0.7)	5.0 (3.3)	N.T.	113.0 (119.5)	N.T.	1.2(0.5)	19.6	N.T.	4.9 (0.9)	0.9(0.1)	3.9(0.7)
											(17.1)				
Primelate	1.4(0.6)	0.8(0.2)	2.0(0.7)	1.3(0.3)	3.1(1.0)	12.1 (8.8)	N.T.	78.9 (68.2)	N.T.	1.4 (0.4)	6.7(0.1)	N.T.	9.0(1.3)	0.8(0.1)	1.5(0.4)
Suberate	1.6(0.3)	0.8(0.1)	1.4(0.2)	2.0(0.7)	2.3(0.5)	7.1 (5.4)	NT.	95.4 (34.6)	N.T.	1.1(0.2)	14.1(2.1)	N.T.	15.5 (1.4)	0.7(0.0)	1.7(0.3)
Azelaate	1.5(0.4)	0.9(0.1)	1.0(0.2)	2.3(0.6)	1.9(0.2)	6.1 (2.6)	N.T.	1455.0 (437.7)	N.T.	0.7(0.6)	4.4(1.8)	N.T.	40.1(5.2)	0.6(0.0)	1.3(0.3)
Guanidine HCl	0.9 (0.4)	1.2(0.3)	0.9(0.2)	1.7(0.6)	1.2(0.2)	2.8(0.9)	N.T.	0.9(0.1)	N.T.	0.6 (0.4)	0.4(0.1)	N.T.	0.2(0.1)	N.T.	N.T.
Ammonium formate	1.2(0.5)	1.0(0.2)	1.5(0.3)	0.8 (0.3)	0.9(0.1)	1.3(0.3)	N.T.	5.8(1.1)	N.T.	0.6(0.0)	1.2(0.3)	N.T.	1.2(0.1)	N.T.	N.T.
Glycine	1.0(0.3)	0.8(0.2)	1.0(0.2)	1.4 (0.3)	1.3(0.3)	3.0 (1.7)	N.T.	1.5 (0.1)	N.T.	0.8(0.2)	N.T.	N.T.	54.3 (4.5)	0.4(0.1)	1.2(0.2)
Beta-alanine	1.1(0.1)	1.0(0.3)	1.1(0.3)	2.1(0.4)	1.1(0.2)	1.5(0.5)	N.T.	24.2 (1.4)	N.T.	0.6(0.1)	1.9(0.8)	N.T.	2.2(0.3)	0.4(0.1)	0.8(0.1)
4-Aminobuytrate	1.2(0.3)	0.8 (0.0)	1.4(0.4)	2.0 (0.8)	1.5(0.0)	1.4(0.3)	N.T.	9.5 (1.9)	N.T.	0.7(0.1)	1.2(0.4)	N.T.	2.0(0.1)	0.3(0.0)	1.1(0.2)
5-Aminovalerate	1.2(0.1)	0.9(0.1)	1.5(0.4)	2.1(0.8)	1.1(0.2)	2.2(1.4)	N.T.	8.4 (2.6)	N.T.	0.7(0.1)	1.9(0.7)	N.T.	2.7(0.9)	0.4(0.0)	0.7(0.1)
6-Aminocaproate	1.4(0.2)	0.9(0.1)	0.8(0.2)	2.3(0.6)	2.2(0.3)	2.4(0.5)	N.T.	7.9 (3.4)	N.T.	0.5(0.1)	1.5(0.8)	N.T.	3.2(0.3)	0.5(0.1)	1.2(0.2)
7-Aminoheptancate	2.4(1.0)	1.1(0.2)	1.3(0.2)	3.9(2.1)	0.9(0.4)	1.3(0.1)	N.T.	4.7 (0.7)	N.T.	0.5(0.1)	1.7(0.4)	N.T.	4.9(0.5)	0.4(0.0)	1.6(0.2)
Hydrazine	0.9 (0.4)	1.0(0.2)	$12.2\ (6.0)$	0.5 (0.5)	1.6(0.6)	7.0(1.2)	N.T.	16.0 (6.2)	N.T.	0.9(0.2)	6.8	N.T.	0.3(0.1)	N.T.	N.T.
Ethylenediamine	0.9(0.3)	1.3(0.3)	70.2(6.8)	0.7(0.4)	2.2(0.7)	3.3 (1.3)	N.T.	44.5 (13.9)	N.T.	1.8(0.5)	18.5	N.T.	202.6 (69.7)	0.7(0.0)	1.3(0.1)
1,3-Diaminopropane	1.3(0.3)	1.4(0.3)	2.7(0.4)	0.9 (0.3)	2.2(0.3)	3.5(2.3)	N.T.	31.5 (12.0)	N.T.	0.7(0.3)	7.7	N.T.	0.7(0.1)	0.6(0.0)	1.7(0.2)
1,4-Diaminobutane	1.4(0.4)	1.3(0.2)	1.6(0.2)	1.0(0.2)	2.5(1.3)	33.7 (6.6)	N.T.	34.5 (13.0)	N.T.	0.9(0.3)	4.0(2.3)	N.T.	0.8(0.1)	0.6(0.1)	1.4 (0.4)
1,5-Diaminopentane	1.5(0.6)	1.2(0.1)	1.3(0.3)	0.9 (0.0)	3.3(0.7)	46.5 (19.8)	N.T.	28.8(13.3)	N.T.	0.8(0.2)	8.3 (4.5)	N.T.	0.9(0.0)	0.8(0.3)	1.7(0.4)
1,6-Diaminohexane	1.5(0.3)	1.5(0.2)	1.0(0.1)	1.3 (0.4)	1.6(0.6)	27.0 (9.8)	N.T.	18.0 (4.9)	N.T.	0.6(0.2)	4.8(1.5)	N.T.	0.8(0.0)	0.6(0.1)	1.9(0.2)
1,7-Diaminohexane	2.7(1.0)	1.3(0.2)	1.0(0.3)	1.8(0.7)	2.0(0.7)	6.2 (2.4)	N.T.	11.0(2.1)	N.T.	0.6(0.2)	1.7(0.7)	N.T.	0.6(0.1)	1.7(0.0)	1.6(0.7)
Glu-Glu	1.0(0.1)	0.6(0.1)	1.2(0.7)	1.0(0.1)	1.3(0.2)	7.1(2.7)	9.8 (0.8)	2.1	0.8(0.1)	1.5(0.1)	1430.3	1.4(0.2)	5.3(1.2)	0.6(0.1)	N.T.
Glu-Lys	1.0(0.1)	0.8(0.1)	1.0(0.4)	1.0(0.1)	1.6(0.3)	11.0(3.0)	9.8 (0.3)	44.5	0.8(0.2)	1.6(0.2)	21.5	1.7(0.1)	18.4	N.T.	N.T.
Lys-Lys	1.1(0.1)	0.9(0.3)	1.3(0.1)	1.0(0.1)	1.1(0.1)	3.1(0.8)	13.5(1.2)	11.2	0.9(0.1)	1.6(0.3)	86.8	1.4(0.2)	2.7	0.9(0.1)	1.9(0.3)
Diglycine	1.0(0.2)	0.8(0.1)	0.9 (0.0)	1.0(0.0)	1.0(0.1)	1.2(0.4)	7.4 (1.0)	10.0	0.8(0.1)	0.9(0.3)	30.3	1.5(0.2)	4.0 (0.9)	0.7(0.1)	N.T.
Triglycine	1.4(0.1)	0.8 (0.4)	1.6(0.3)	0.9(0.1)	2.2(1.1)	3.1(0.9)	0.2(0.1)	5.7 (4.0)	1.0(0.2)	0.7(0.2)	1.0	6.0 (1.4)	$187.6\ (46.1)$	0.7(0.0)	2.5(0.3)
Tetraglycine	1.5(0.3)	N.T.	2.1(0.5)	1.3(0.4)	3.8(0.8)	N.T.	8.3(9.5)	0.1	1.5(0.1)	N.T.	N.T.	8.4(2.7)	5313.1	0.8(0.1)	3.4 (0.6)
Pentaglycine	1.0(0.2)	N.T.	0.2(0.1)	3.1(1.2)	N.T.	N.T.	979.0 (7.5)	0.5 (0.0)	0.6(0.2)	N.T.	N.T.	5.8(3.1)	Infinite	0.7(0.2)	N.T.
Hexaglycine	1.5 (0.7)	N.T.	0.0 (0.0)	4.2 (1.1)	N.T.	N.T.	1.7(1.5)	N.T.	0.5(0.1)	N.T.	N.T.	1.7(0.5)	20.3	0.7(0.1)	N.T.

	ADH CD	Fluorescence	HLF CD	Fluorescence	Lysozyme CD	Fluorescence
None	58.7 (0.6)	57.3 (0.3)	71.0 (1.2)	65.6 (1.8)	73.4 (1.2)	71.5 (1.6)
Oxalate	59.7 (0.6)	54.6 (2.6)	$81.5(2.6)^a$	$79.5 (5.3)^{a}$	72.8 (1.5)	$72.8 (0.8)^a$
Malonate	60.3 (2.3)	56.3 (1.2)	$68.7 (1.0)^{b}$	66.6 (3.0)	72.9 (0.7)	$75.9 (0.6)^a$
Glycine	59.3 (0.6)	55.8 (1.4)	70.5 (2.2)	66.3 (1.3)	73.8 (1.0)	71.8 (0.7)
Beta-alanine	$59.9 (0.3)^a$	58.6 (1.3)	$75.4(1.5)^a$	67.2 (0.6)	73.2 (0.3)	71.8 (1.4)
Ethylenediamine	$60.5 \ (0.5)^a$	58.7 (1.3)	69.5(0.9)	65.8(0.7)	75.0 (0.3)	70.1 (1.7)

Table 2. Spectral Transition Temperatures $(T_m s, C)$ (±SD) for Alcohol Dehydrogenase, Apolactoferrin, and Lysozyme in the Presence of Various Ligands

The CD thermal transition was monitored at 222 nm. The fluorescence thermal transition was determined by the shift in the wavelength emission maxima. [ADH] = 1.59E-6M for CD and 6.64E-7M for fluorescence. [HLF] = 1.05E-6M for CD and 4.36E-7M for fluorescence. fluorescence. [lysozyme] = 7.74E-6M for CD and 2.75E for fluorescence. Fluorescence measurements were obtained at 2.5°C ^aDelays initiation of thermal transition.

^bHastens initiation of thermal transition.

MacLean, D.S., Qian, Q., and Middaugh, C.R. J. Pharm. Sci., (2002) 91, 2220-2229.

Table 3.	The Effect of Terminally	Charged Ligands on Selected	Protein's Relative Activities

Compound	$rac{ ext{ADH}}{ ext{10,000} imes}$	Lysozyme 10,000 $ imes$	Citrate Synthase $10,000 \times$	50,000×
None	1.00 (0.02)	1.00 (0.05)	1.00 (0.02)	NA
Oxalate	0.99 (0.13)	$1.30 (0.02)^a$	$0.90 (0.01)^{\alpha}$	0.90 (0.06)
Malonate	0.93 (0.07)	$1.36 (0.04)^a$	$1.26 (0.14)^{\alpha}$	$0.82 (0.02)^{\alpha}$
Glycine	$1.12 (0.03)^{a}$	$1.17 (0.03)^a$	1.14 (0.14)	ND
Beta-alanine Ethylenediamine	0.98 (0.08) $1.40 (0.04)^{\alpha}$	$1.24 (0.02)^a$ $2.55 (0.02)^a$	ND 0.93 (0.06)	ND 1.05 (0.05)

ND—Not done. NA—not applicable. a Significant difference (P<0.05).

MacLean, D.S., Qian, Q., and Middaugh, C.R. J. Pharm. Sci., (2002) 91, 2220-2229.

Table 1. Inhibition of rPA	thermal aggregation at 37°C by
various GRAS excipients	

Excipient	Molar ratio (Excipient: PA), Molarity (excipient) or wt. Percent (Excipient)	% Inhibition
•	,	
Sorbitol	20.00%	106
Mannitol	10.00%	100
Sodium Citrate	0.2 M	95
Sodium Citrate	0.1 M	94
Trehalose	20.00%	94
Dextrose	10.00%	93
Histidine	0.3 M	88
Dextrose	20.00%	85
Malic Acid	0.15 M	83
Dietanolamine	0.3 M	62
Sucrose	20.0%	59
Glycerol	10.00%	48
Sucrose	10.00%	46
Tween 80	0.10%	46
Brij 35	0.01%	41
CaCl ₂	0.015 M	40
Tween 20	0.10%	14
2-OH propyl β-CD	5.00%	14
Dextran T40	0.1	12
α Cyclodextrin	2.50%	6
Álbumin	1.00%	0
Pluronic F-68	0.05%	-14

Inhibition of Aggregation of recombinant ricin toxin A- chain V76M/Y80A at 45°C by various GRAS excipients							
	% Inhibition	Dietanolamine (0.3M)	67%	Glu + Arg (0.05M each)	43%		
Pluronic F-68 (0.1%)	93%	2-OH propyl γ-CD (5%)	66%	Dextran Sulfate (10x)	42%		
Brij 35 (0.1%)	* 89%	Gelatin (2.5%)	65%	Lactose (1.7%)	36%		
Glycine (0.3M)	82%	2-OH propyl β-CD (10%)	65%	Heparin (1x)	13%		
Histidine (0.3M)	81%	SOS (10x)	64%	Sucrose Octasulfate (0.1x)	12%		
Lysine (0.3M)	79%	Dextrose (10%)	64%	Tween 80 (0.1%)	12%		
Pluronic F-68 (0.05%)	78%	Trehalose (10%)	63%	Dextran Sulfate (0.1x)	10%		
Glycerol (20%)	78%	Sorbitol(20%)	63%	Tween 80 (0.05%)	10%		
Dextrose (20%)	77%	Guanidine (0.3M)	63%	Dextran Sulfate (1x)	9%		
Sucrose (20%)	76%	Glycerol (10%)	63%	Tween 80 (0.01%)	5%		
Proline (0.3M)	75%	Pluronic F-68 (0.01%)	62%	Heparan Sulfate (1x)	3%		
Gelatin (5%)	73%	Mannitol (10%)	62%	Phytic Acid (1X)	2%		
Brij 35 (0.05%)	* 73%	2-OH propyl γ-CD (10%)	62%	Phytic Acid (0.1X)	2%		
Brij 35 (0.01%)	* 71%	2-OH propyl β-CD (5%)	60%	Heparin (0.1x)	2%		
Sorbitol (10%)	70%	Heparin (10x)	58%	Heparan Sulfate (0.1x)	2%		
Arginine (0.3M)	70%	Phytic Acid (10x)	55%	Ascorbic acid (0.15M)	AGG		
Lactose (20%)	69%	Malic Acid (0.15M)	51%	Tween 20 (0.1%)	-13%		
Sucrose(10%)	68%	Lactose (10%)	51%	Tween 20 (0.05%)	-56%		
Trehalose (20%)	67%	Lactic Acid (0.15M)	49%	Tween 20 (0.01%)	-86%		
Heparan Sulfate (10x)	67%	$_{\alpha}$ Cyclodextrin (2.5%)	44%	SOS (1x)	-10		
*An initial increase in OD ₃₆₀ was observed.							

(A) HP-SEC analysis of rhFVIII samples showing formation of aggregates with time. The data for the incubation time points have been stacked for easy visualization. From top to bottom: 0 h, 6 h, 1 day, 2 day, 3 day, 4 day, 5 day, 6 day, and 7 day incubation time points. Gel filtration performed in 50 mM Tris, 400 mM NaCl, 5mM CaCl2, 0.05% NaN3, pH 7.0. The flow rate was 0.65mL/min

(B) Dynamic light scattering analysis of rhFVIII samples as a function of incubation time. The mean diameters obtained by secondorder cumulant (triangles) and NNLS (circles) analysis are shown. Protein concentration was ~0.1mg/mL.

time	% activity	% aggregation
0 h	100	0
6 h	101	0
1 day	96	10
2 days	97	15
3 days	90	20
4 days	92	20
5 days	89	20
6 days	92	18
7 days	85	26

Biological Activity and Extent of Aggregation of RhFVIII Samples as a Function of Incubation Time at 37 °C

 $^{\rm a}$ Activity was determined from a one-stage activated partial thromboplastin time assay

Grillo et al. Biochemistry, 40 (2), 586 -595, 2001

(A) Effect of guanidine hydrochloride concentration on the temperature dependence of the fluorescence emission maximum of rhFVIII: rhFVIII (squares), rhFVIII + 0.5 M GdnHCl (triangles), and rhFVIII + 2 M GdnHCl (circles). (B) Effect of propanol concentration and incubation time (at 37 °C) on rhFVIII size as determined by dynamic light scattering: time 0 (closed squares), day 1 (open circles), day 2 (closed triangles), day 3 (open squares), day 4 (closed diamonds), and day 5 (open triangles). (C) Effect of GdnHCl concentration and incubation time (at 37 °C) on rhFVIII size as determined by DLS: day 0 (closed squares), day 1 (open circles), day 2 (closed triangles), day 3 (open squares), day 2 (closed triangles), day 3 (open squares), day 4 (closed triangles).

Grillo et al. Biochemistry, 40 (2), 586 -595, 2001

The very crowded environment of the cell

Actin (red)

macromolecules, primarily ribosomes (green)

membranes (blue) are represented.

Figure from : Medalia, O., Weber, I., Frangakis, A. S., Nicastro, D., Günther Gerisch, G. and Baumeister, W. *Science* (2002) **298**, 1209-1213.

Potential Biophysical Methods to Examine Ultra-high Protein Concentration Formulations

- Tertiary Structure:
 - Front surface fluorescence
 - Ultra-high resolution near ultra-violet absorbance spectroscopy
 - Near-UV circular dichroism spectroscopy
 - Raman spectroscopy

- Secondary Structure:
 - Far-UV circular dichroism spectroscopy
 - FTIR/Raman spectroscopy
- Thermal/Dynamic:
 - Differential scanning calorimetry
 - Pressure perturbation calorimetry
 - Ultra-sonic spectrometry
 - Dynamic light scattering
 - NMR

High Resolution 2nd Derivative UV Absorbance

- Absorbance requirements
 - 1-10 µm path length
 - <1.5 AU
- OD_{350nm}
- 2nd derivative peak positions of aromatics

Transition Temperatures								
Protein	DSC	UV(°C)	I	I	O.D.350nm	Fluo	rescence(°C)	CD
(°C)	(°C)	peak4	peak5	peak6	(°C)	λ_{max}	Intensity	(°C)
Lysozyme								
0.41mg/ml	77.7±0.02	75	75	76.7±1.2	No transition	80	No transition	80
350mg/ml	73.2	72.5	73.3±1.2	73.3±1.2	69.3±0.4	75	72.5	74
Hb		-						
0.3mg/ml	67.0±0.4	62.5	61.3±1.3	63.8±1.3	58.7±0.6	*	*	73±1.5
245mg/ml	75±0.7	64±1	71±2	72±1	68.3±1.2	*	*	73±0.5
Fibrinogen								
0.17mg/ml	50.7±0.2	50±2.0	50	50	53.1±1.1	42.5 ±2.5	47.5	47.5
59mg/ml	53.5±0.1	51.9±2.1	51.7±1.2	52.5±1.8	53.3±1.2	50	47.5	50
BSA								
0.55mg/ml	78±0.2	60 ^a	51.3±1.3ª	50 ^a	63.2±0.2	40 ^a	46.3±1.3 ^a	73.5±1
399mg/ml	76	75 ^a	67 5 ^a	60 ^a	80	60 ^a	62.5ª	78 9±0

Acknowledgments

- Nick Harn
- Jianxin Guo
- Medimmune (Chris Allen)
- Monsanto (Yunhua Jeng and Jim Kostele)