KU ScholarWorks

The Role of the Equilibrative Nucleoside Transporter 1 (ENT1) in Ribavirin Disposition in Mice

Item Type	Presentation			
Authors	Endres, Christopher J.			
Download date	2024-08-16 21:44:34			
Link to Item	https://hdl.handle.net/1808/1160			

The Role of the Equilibrative Nucleoside Transporter 1 (Ent1) in Ribavirin Disposition in Mice

Christopher J. Endres

University of Washington Department of Pharmaceutics

GPEN 2006 - Strategies in Drug Delivery: Intestines to Intracellular Organelles

October 26, 2006

Overview

Nucleoside drugs such as:

Ribavirin

Gemcitabine

Fialuridine

are substrates of the nucleoside transport systems

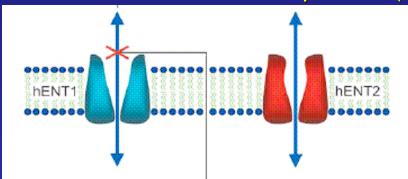
 These transporters may therefore contribute to the absorption, disposition, efficacy or toxicity of these drugs

– e.g. Ribavirin: hemolytic anemia

Fialuridine: hepatotoxicity

 To better guide the future development of nucleoside drugs, the contribution of the nucleoside transporters to absorption, disposition, efficacy or toxicity must be characterized

Outline


- Background
 - Nucleoside Transporters
 - Ribavirin
- Research Design, Methods and Preliminary Results
 - Ex vivo Erythrocyte Transport of Ribavirin
 - Pharmacokinetics and Tissue Distribution
- Conclusions

Nucleoside Transporters

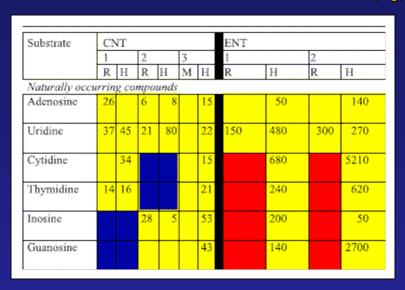
- Endogenous role in nucleoside salvage for nucleotide biosynthesis and autocrine and paracrine cellular signaling
- Two major families:

Equilibrative nucleoside transporters (ENTs)

Na+-independent
Low affinity/high capacity
Three members: ENT1, ENT2, ENT3

Nucleoside Transporters

Two major families:

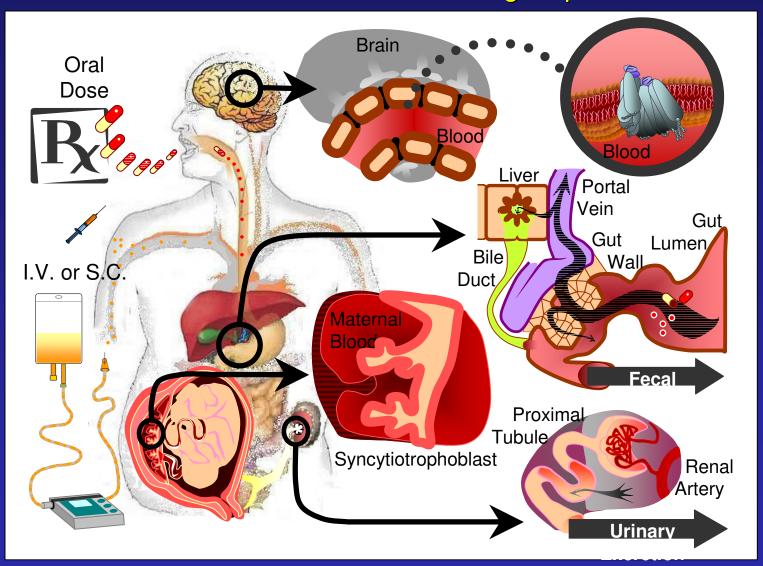

Concentrative nucleoside transporters (CNTs)

Na⁺-dependent High affinity/low capacity Three members: CNT1, CNT2, CNT3

Nucleoside Transporters Function

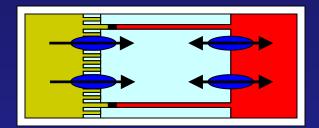
Substrate	CNT	CNT				ENT				
	1		2		3				2	
		Н	R	Н	M	H	R	H	R	H
Antiviral agen										
Zidovudine	500									
Zalcitabine	500							23000		
Didanosine			46	19				7400		2300
Floxidine	50							50		320
Lamivudine										
Ribavirin								1150		
Acyclovir										
Gancyclovir										T
Stavudine	T									T

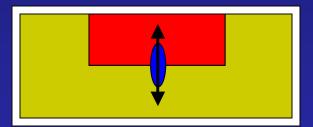
Substrate	CNT				ENT					
	1	1 2		3		Need		2		
	R	Н	R	Н	M	H	R	Н	R	H
Antineoplastic	Antineoplastic agents and metabolites									
Cytarabine	1880							1500		120
Gemeitabine		24						160		74
Cladribine			13	371				71		
Fluorouridine								50		22
5-Flurouracil										
Capecitabine										
5dFU							***************************************	18		34
Fludarabine										
Vidarabine										
Trox										
Zebularine										


Values (in μM): K_m (black) IC₅₀ (black/ital) K_i (blue) EC₅₀ (green) Yellow: Known Substrate Red: Known Inhibitor

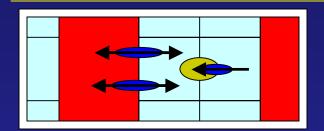
Blue: Neither White: Unknown

(Ribavirin IC₅₀ of [³H]-inosine uptake in hENT1 expressed in yeast)

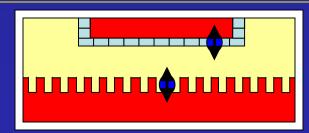

Drug Transporters Role of Tissue Distribution on Drug Disposition



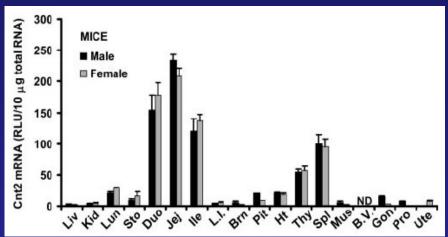
Nucleoside Transporters Tissue Distribution

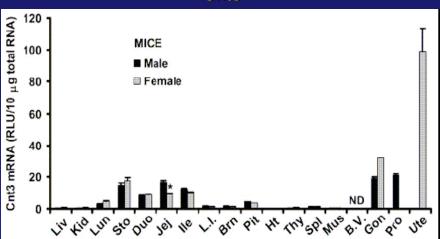

Polarized Epithelial Cells (e.g. Intestine, Kidney)

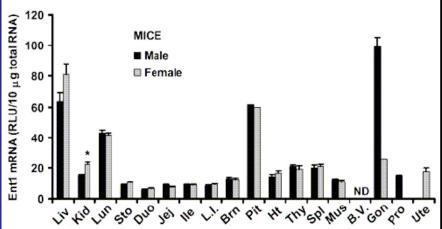
Erythrocytes

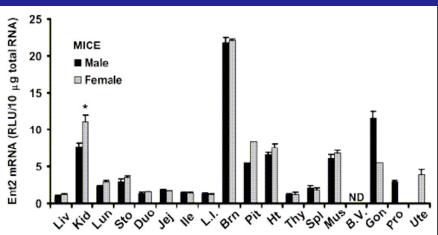

Hepatocytes

Blood Brain Barrier


Placental Syncytiotrophoblasts




Nucleoside Transporters Mouse Tissue Distribution



Ent1 Ent2

Outline

- Background
 - Nucleoside Transporters
 - Ribavirin
- Research Design, Methods and Preliminary Results
 - Ex vivo Erythrocyte Transport of Ribavirin
 - Pharmacokinetics and Tissue Distribution
- Conclusions

Ribavirin Introduction

- Ribavirin is used as first line treatment of compensated chronic hepatitis C virsus (HCV) infection and is coadministered with interferon-α at doses of 800 to 1200 mg/kg/day
- The dose-limiting toxicity of ribavirin is hemolytic anemia, occurring in 10-13% of patients
- Ribavirin is contraindicated in pregnancy because of teratogenicity observed in animals an in case reports

Ribavirin Pharmacokinetics

- The C_{max} after a single oral dose of ribavirin was: 9.9 μM.
- After discontinuation of an intravenous infusion to steady-state, the plasma concentration time profile exhibited tri-exponential pharmacokinetics with half-lives of:

 α : 0.2 - 0.9 hours

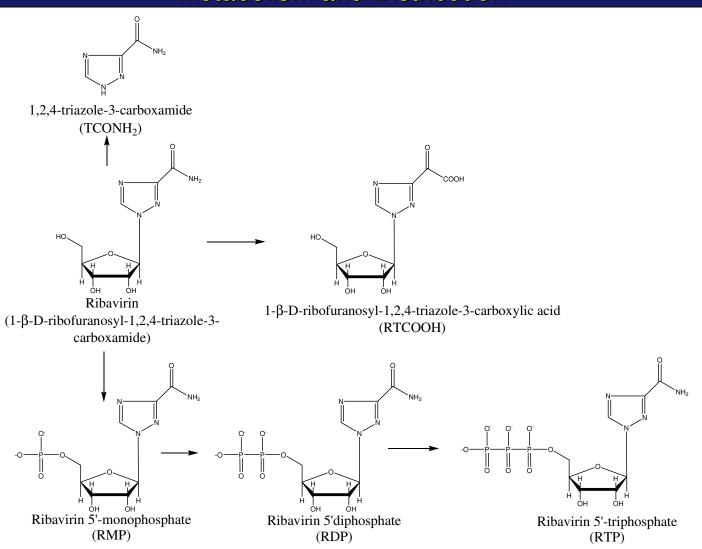
β: 1.6 - 2.0 hours

 γ : 35.5 – 60 hours

 After discontinuation of oral dosing to steady-state, the terminal elimination half-life was:

 λ_7 : 298 hours

and ribavirin steady-state concentrations exhibited approximately 6-fold accumulation (compared to after a single oral dose).

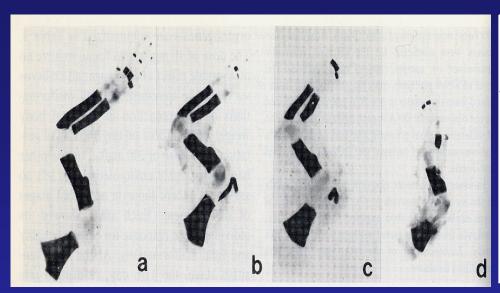


Ribavirin Pharmacokinetics

- The systemic clearance of ribavirin is 280-400 mL/min
- The renal clearance of ribavirin is 99 mL/min
- Ribavirin is completely unbound (0 ± 7%), and is not saturated between 1 and 50 μM
- The V_{ss} of ribavirin after oral dosing is approximatley 650 to 1100 L
- The oral bioavailability of ribavirin is 33 to 64%

Ribavirin Metabolism and Distribution

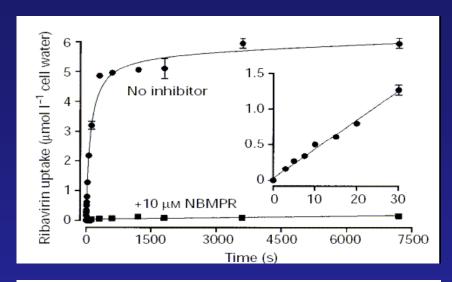
Ribavirin Metabolism and Distribution

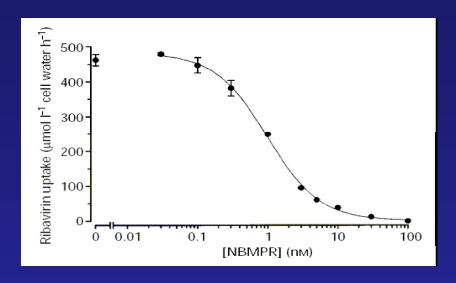

- In *M. mulatta* (Rhesus macaques) 8 hours after receiving [14C]-ribavirin by intramuscular and intravenous administration, the recovery of total radioactivity in the major organs of distribution was (% of total body radioactivity):
 - 37.1 % in skeletal muscle
 - 14.1 % in erythrocytes
 - 8.1 % in the liver

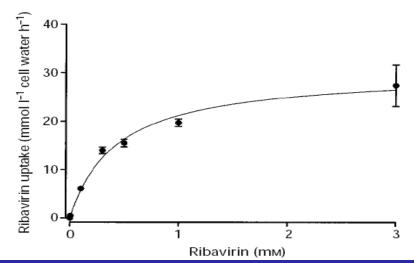
minor amounts were recovered in:


- 1.0 % kidneys
- 0.5 % brain

Ribavirin Fetal Toxicity




Single Dose (mg/kg)	% Fetuses Resorbed	% Surviving Fetuses Malformed
0	0	0
10	0	0
25	0	0
50	42	41
100	44	77
200	100	NA



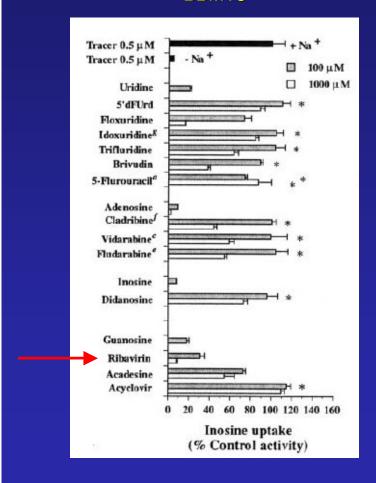
Nucleoside Transporters Ribavirin Transport: hENT1

Ribavirin

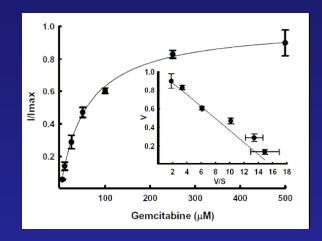
 V_{max} : 30 ± 1.6 mmol/hr/L cell water

 K_m : 420 \pm 67 μM

NBMPR


 IC_{50} : 0.99 ± 0.05 nM

Christopher J. Endres



Nucleoside Transporters Ribavirin Transport: hCNTs

hCNT2 Mediated [3H]inosine uptake in human BBMVs

Ribavirin stimulated inward current in *X. laevis* oocytes expressing hCNT3

Ribavirin V_{max}: 638 ± 58.1 nA K_m: 59.7 ± 17.5 μM

Inhibition of [³H]-uridine transport, and ribavirin stimulated inward current in *X. laevis* oocytes expressing hCNT1

Conc. (μM)	% Inhibition	I_{RBV}/I_{URI}
1000	51 ± 7	0.06 ± 0.01

Hypothesis

"The mouse equilibrative nucleoside transporter 1 (mEnt1) significantly contributes to the absorption, tissue distribution, elimination and toxicity of ribavirin."

Specific Aims

- 1. To characterize the *ex vivo* transport of [³H]-ribavirin in erythrocytes from mEnt1(+/+) and mEnt1(-/-) mice.
- To characterize the pharmacokinetics and tissue distribution of ribavirin in mEnt1(+/+) and mEnt1(-/-) mice.

Outline

- Background
 - Nucleoside Transporters
 - Ribavirin
- Research Design, Methods and Preliminary Results
 - Ex vivo Erythrocyte Transport of Ribavirin
 - Pharmacokinetics and Tissue Distribution
- Conclusions

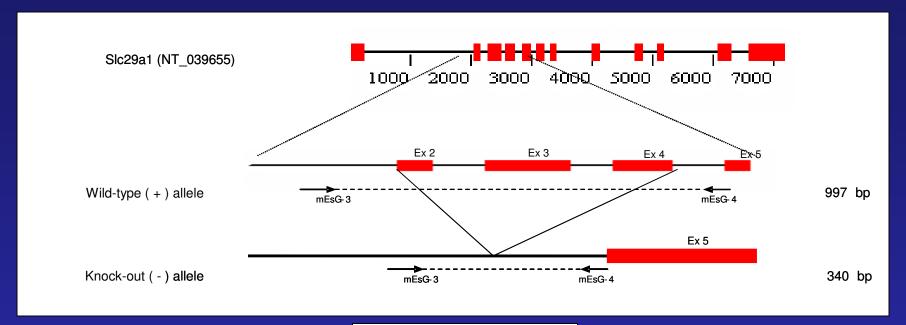
Ex vivo Erythrocyte Transport of Ribavirin Introduction

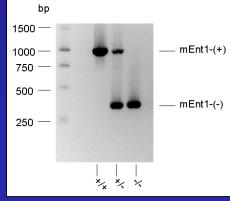
 The goal of this aim is to characterize the transport kinetics of ribavirin in erythrocytes from mEnt1(+/+) and mEnt1(-/-) mice.

• The:

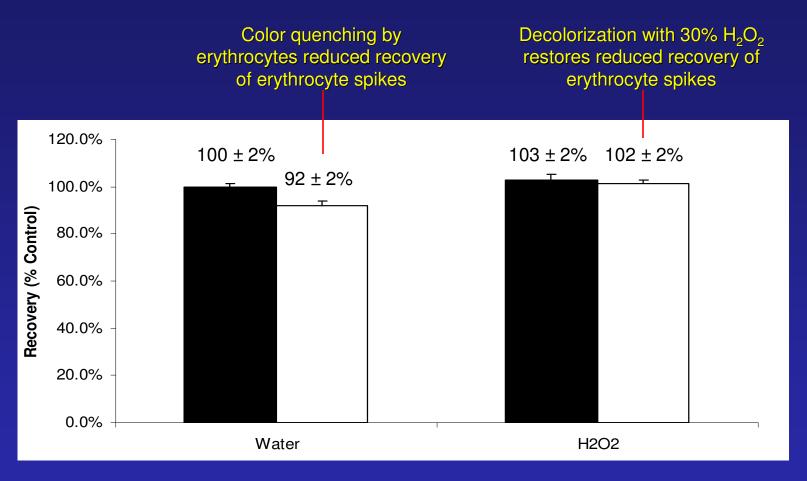
- time-course
- activity
- and kinetics

were examined.

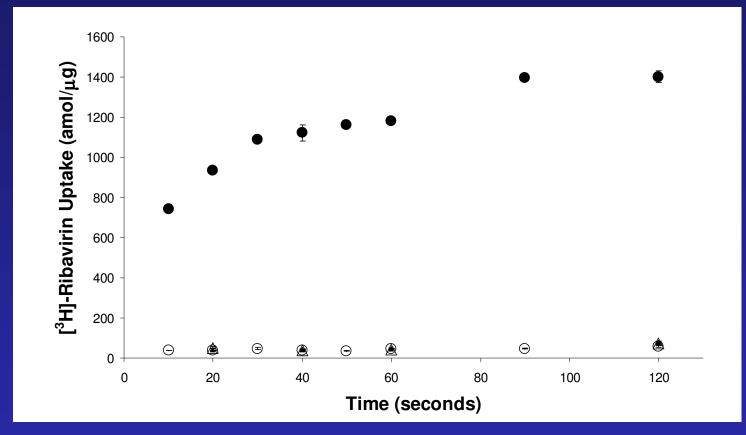



Ex vivo Erythrocyte Transport of Ribavirin Experimental Design

- Mouse erythrocytes were washed in transport buffer and used within 2 hours of collection
- Transport was initiated by adding 0.77 μM [³H]-ribavirin to erythrocytes in transport buffer (20% hematocrit), and stopped by dilution the suspensions 5-fold in transport buffer containing 10 mM NBMPR. The erythrocytes were immediately pelleted into an oillayer ("oil-stop"), to limit further diffusional uptake
- Transport rates were calculated and normalized to total total protein amount
- Kinetic parameters (V_{max} and K_m) were determined using a "tracer-displacement" analysis


Ex vivo Erythrocyte Transport of Ribavirin PCR Genotyping Assay of mEnt1 in Mice

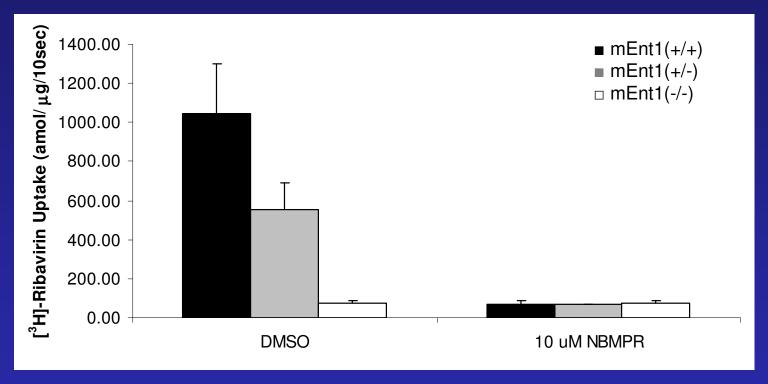
Ex vivo Erythrocyte Transport of Ribavirin Spike Recovery from Erythrocytes



Solid Bars: Water Spike

Open Bars: Erythrocyte Spike

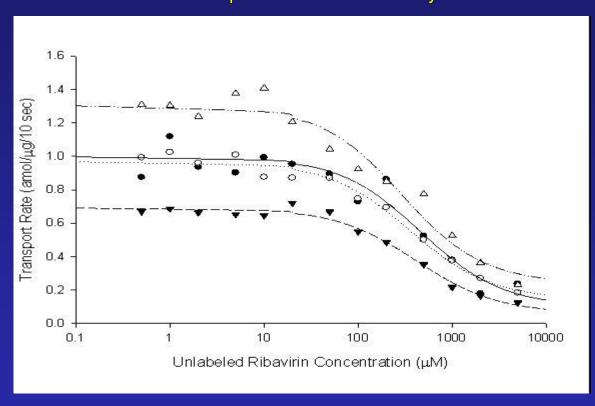
Ex vivo Erythrocyte Transport of Ribavirin Time Course of Erythrocyte Ribavirin Uptake



Filled: Vehicle Open: 10 μM NBMPR mEnt1(+/+): circles mEnt1(-/-): triangles Values represent mean \pm S.D. (n=3)

Ex vivo Erythrocyte Transport of Ribavirin Ribavirin Transport Activity in Erythrocytes

[3H]-Ribavirin Uptake After 10 Seconds of Transport



Values represent mean ± S.D. (n=3)

Ex vivo Erythrocyte Transport of Ribavirin Ribavirin Transport Kinetics in Erythrocytes

Tracer Displacement Kinetics Analysis

 V_{max} 417 ± 86.7 amol/ μ g/10 sec

 $K_{\rm m}$ 382 ± 75.1 μM

Mean ± S.D. (n=4)

Values represent mean ± S.D. (n=3)

Ex vivo Erythrocyte Transport of Ribavirin Conclusions

- The time-course of [³H]-ribavirin uptake in mEnt1(+/+) erythrocytes rapidly reaches equilibrium within 60 seconds, and was completely inhibited by 10 μM NBMPR.
- There is no NBMPR inhibitable [³H]-ribavirin transport in erythrocytes from mEnt1(-/-) mice.
- The transport activity of the mEnt1(+/-) erythrocytes was approximately half that of the mEnt1(+/-) erythrocytes, suggesting a gene-dose effect on activity.
- The K_m of [3H]-ribavirin transport in mEnt1(+/+) erythrocytes was similar to that observed in humans (420 μ M).

Outline

- Background
 - Nucleoside Transporters
 - Ribavirin
- Research Design, Methods and Preliminary Results
 - Ex vivo Erythrocyte Transport of Ribavirin
 - Pharmacokinetics and Tissue Distribution
- Conclusions

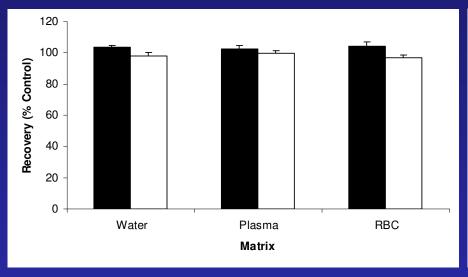
Pharmacokinetics and Tissue Distribution Introduction

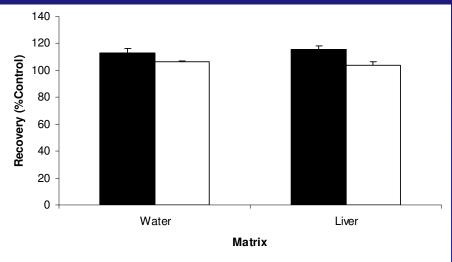
- The goal of this aim is to characterize the pharmacokinetics and tissue distribution of ribavirin in mEnt1(+/+) and mEnt1(-/-) mice.
- We will estimate pharmacokinetic parameters after both oral and intravenous administration of [3H]-ribavirin
- We will examine the tissue distribution of [³H]-ribavirin after intravenous administration in tissues where mEnt1 expression may be important in drug distribution:
 - i.e. liver, intestine, kidney, brain, skeletal muscle, heart and pancreas

Pharmacokinetics and Tissue Distribution Experimental Design

- [³H]-Ribavirin was administered orally (10 μg/g) or intravenously (3 μg/g) to mEnt1(+/+) and mEnt1(-/-) mice.
- Plasma, and erythrocyte samples were obtained by retro-orbital bleeding 15, 30, 60, 120, 240, 480, 720 and 1440 minutes after administration
- Ribavirin concentrations were determined by:
 - Direct counting for total radioactivity
 - HPLC / Fraction collection to determine percent ribavirin composition of the total radioactivity (t.b.d)

Pharmacokinetics and Tissue Distribution Experimental Design

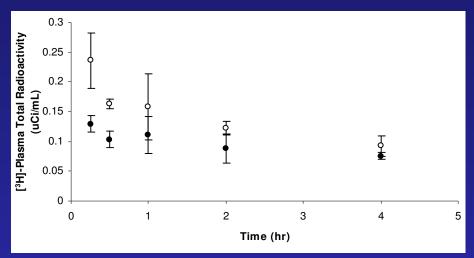

- Tissues were collected at necropsy and concentrations were determined using a similar methodology (direct counting/HPLC fraction collection).
- [¹⁴C]-Sucrose (tracer dose, 0.05 μCi/g) was administered to correct tissue ribavirin concentrations for ribavirin present in the tissue vascular volume.



Pharmacokinetics and Tissue Distribution Direct Counting Fluid and Tissue Spike Recovery

Fluid Spike Recovery

Tissue Spike Recovery

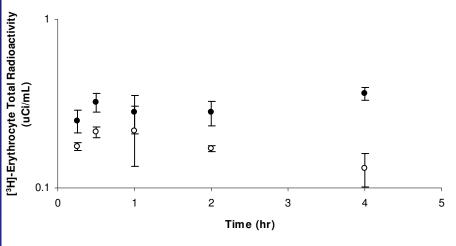

Solid bars: [³H]-Ribavirin Open bars: [¹⁴C]-Sucrose

Values represent mean ± S.D. percent recovery n=3

Pharmacokinetics and Tissue Distribution Plasma Pharmacokinetics: [3H]-Total Radioactivity

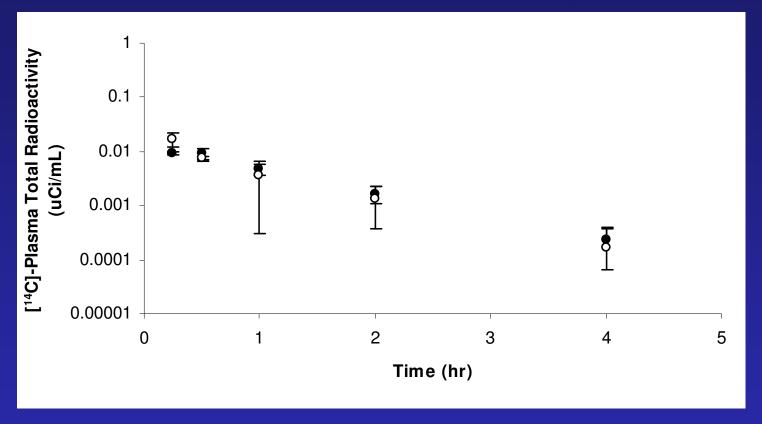
Intravenous [³H]-Rivavirin Dose (3 μg/g; 0.4 μCi/g)


Filled Circles: mEnt1(+/+)
Open Circles: mEnt1(-/-)


Values represent mean ± S.D. percent recovery n=2-3

Pharmacokinetics and Tissue Distribution Erythrocyte Pharmacokinetics: ³H-Total Radioactivity

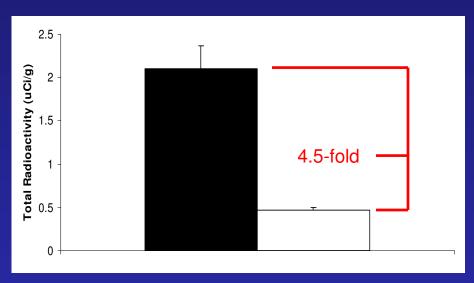
Intravenous [³H]-Rivavirin Dose (3 μg/g; 0.4 μCi/g)

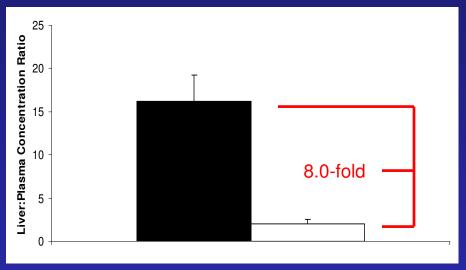

Filled Circles: mEnt1(+/+)
Open Circles: mEnt1(-/-)

Values represent mean ± S.D. percent recovery n=2-3

Pharmacokinetics and Tissue Distribution Plasma Pharmacokinetics: 14C-Total Radioactivity

Intravenous [¹⁴C]-Sucrose Dose (0.05 μCi/g)


Values represent mean ± S.D. percent recovery, n=2-3



Pharmacokinetics and Tissue Distribution Liver Distribution: [3H]-Total Radioactivity

Liver [³H]-Total Radioactivity Concentration (μCi/g tissue) 15 Minutes After 3 μg/g (0.4 μCi/g) [³H]-Ribavirin Retro-Orbital Injection

Total Radioactivity

Liver: Plasma Ratio

Solid Bars: mEnt1(+/+) Open Bars: mEnt1(-/-) Data correct for vascular contribution of [3H]-total radioactivity Values represent mean ± S.D. percent recovery n=3

37

Pharmacokinetics and Tissue Distribution Conclusions

- There is an 8-fold decrease in hepatic distribution in the mEnt1(-/-) mice
 - This is consistent with mEnt1 expression on the hepatic sinusoidal membrane,
 - and mEnt1 mediated hepatic uptake of ribavirin

Pharmacokinetics and Tissue Distribution Conclusions

- The plasma [³H]-total radioactivity concentrations were greater in the mEnt1(-/-) mice than the mEnt1(+/+) mice consistent with decreased distribution to the peripheral compartment(s) in the mEnt1(-/-) mice.
- The erythrocyte [³H]-total radioactivity concentrations were greater in the mEnt1(+/+) mice than the mEnt1(-/-) mice, consistent with reduced uptake in the mEnt1(-/-) mice. Surprisingly, the magnitude of this difference was much smaller than that observed *in vitro*.

Outline

- Background
 - Nucleoside Transporters
 - Ribavirin
- Research Design, Methods and Preliminary Results
 - Ex vivo Erythrocyte Transport of Ribavirin
 - Pharmacokinetics and Tissue Distribution
- Conclusions

General Conclusions

- mEnt1 contributes to erythrocyte uptake of ribavirin ex vivo.
- mEnt1 significantly contributes to the hepatic and erythrocyte distribution of ribavirin in vivo
- Because of this, the ENT1 may also play an important role in other tissue distribution, elimination and toxicity of ribavirin and other nucleoside drugs.

Future Directions

- Validate HPLC assay for [³H]-ribavirin quantitation from fluids and tissue
- Complete I.V. ribavirin pharmacokinetics and tissue distribution
- Complete oral ribavirin pharmacokinetics

Acknowledgments

GPEN 2006

Shinji Yamashita, Ph.D.

Doctoral Committee

Jashvant D. Unadkat, Ph.D.

Danny D. Shen, Ph.D.

Kenneth E. Thummel, Ph.D.

John T. Slattery, Ph.D.

Joanne Wang, Ph.D.

Unadkat Lab

Raj Govindarajan, Ph.D.

Aaron Moss

Peng Hsiao

Brian Kirby

Huixia Zhang

Department of Pharmaceutics

Ed Kelley, Ph.D.

Comparative Medicine

Rosita Morales

Virginia Gunderson-Batterson, Ph.D.

Ron Varnam

Steve Marks

Carol Ware, Ph.D.

Ernest Gallo Research Center

Jackie Connolly

Doo-Sup Choi, Ph.D.

Robert Messing, Ph.D.

Funding

NIH GM54447

NIH GM07750

Thank You

University of Washington Health Science Building

plank@u.washington.edu