The Role of the Equilibrative Nucleoside Transporter 1 (Ent1) in Ribavirin Disposition in Mice

Christopher J. Endres

University of Washington
Department of Pharmaceutics

GPEN 2006 - Strategies in Drug Delivery: Intestines to Intracellular Organelles

October 26, 2006
Overview

• Nucleoside drugs such as:
 - Ribavirin
 - Gemcitabine
 - Fialuridine

 are substrates of the nucleoside transport systems

• These transporters may therefore contribute to the absorption, disposition, efficacy or toxicity of these drugs
 - e.g. Ribavirin: hemolytic anemia
 - Fialuridine: hepatotoxicity

• To better guide the future development of nucleoside drugs, the contribution of the nucleoside transporters to absorption, disposition, efficacy or toxicity must be characterized
Outline

- **Background**
 - Nucleoside Transporters
 - Ribavirin

- **Research Design, Methods and Preliminary Results**
 - *Ex vivo* Erythrocyte Transport of Ribavirin
 - Pharmacokinetics and Tissue Distribution

- **Conclusions**
Nucleoside Transporters

- Endogenous role in nucleoside salvage for nucleotide biosynthesis and autocrine and paracrine cellular signaling

- Two major families:

 Equilibrative nucleoside transporters (ENTs)

 Na⁺-independent
 Low affinity/high capacity
 Three members: ENT1, ENT2, ENT3

Christopher J. Endres

Nucleoside Transporters

• Two major families:

Concentrative nucleoside transporters (CNTs)

Na+-dependent
High affinity/low capacity
Three members: CNT1, CNT2, CNT3

Nucleoside Transporters

Function

<table>
<thead>
<tr>
<th>Substrate</th>
<th>CNT 1</th>
<th>CNT 2</th>
<th>CNT 3</th>
<th>ENT 1</th>
<th>ENT 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naturally occurring compounds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenosine</td>
<td>26</td>
<td>6</td>
<td>8</td>
<td>15</td>
<td>50</td>
</tr>
<tr>
<td>Uridine</td>
<td>37</td>
<td>45</td>
<td>21</td>
<td>80</td>
<td>22</td>
</tr>
<tr>
<td>Cytidine</td>
<td>34</td>
<td></td>
<td>15</td>
<td></td>
<td>680</td>
</tr>
<tr>
<td>Thymidine</td>
<td>14</td>
<td>16</td>
<td>21</td>
<td></td>
<td>240</td>
</tr>
<tr>
<td>Inosine</td>
<td>28</td>
<td>5</td>
<td>53</td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>Guanosine</td>
<td>43</td>
<td></td>
<td>140</td>
<td></td>
<td>2700</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Substrate</th>
<th>CNT 1</th>
<th>CNT 2</th>
<th>CNT 3</th>
<th>ENT 1</th>
<th>ENT 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antiviral agents</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zidovudine</td>
<td>500</td>
<td></td>
<td></td>
<td>46</td>
<td>19</td>
</tr>
<tr>
<td>Zalcitabine</td>
<td>500</td>
<td></td>
<td></td>
<td></td>
<td>22000</td>
</tr>
<tr>
<td>Didanosine</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Floxidine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lamivudine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ribavirin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acyclovir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gancyclovir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stavudine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Values (in µM):

- K_m (black)
- IC_{50} (black/ital)
- K_i (blue)
- EC_{50} (green)

Yellow: Known Substrate
Red: Known Inhibitor
Blue: Neither
White: Unknown

(Ribavirin IC_{50} of [3H]-inosine uptake in hENT1 expressed in yeast)

Christopher J. Endres

Drug Transporters
Role of Tissue Distribution on Drug Disposition

Christopher J. Endres

Nucleoside Transporters
Tissue Distribution

- Polarized Epithelial Cells (e.g. Intestine, Kidney)
- Erythrocytes
- Blood Brain Barrier
- Placental Syncytiotrophoblasts
- Hepatocytes

Christopher J. Endres
Nucleoside Transporters
Mouse Tissue Distribution

Outline

• **Background**
 – Nucleoside Transporters
 – Ribavirin

• **Research Design, Methods and Preliminary Results**
 – *Ex vivo* Erythrocyte Transport of Ribavirin
 – Pharmacokinetics and Tissue Distribution

• **Conclusions**
Ribavirin

Introduction

- Ribavirin is used as first line treatment of compensated chronic hepatitis C virus (HCV) infection and is co-administered with interferon-\(\alpha\) at doses of 800 to 1200 mg/kg/day

- The dose-limiting toxicity of ribavirin is hemolytic anemia, occurring in 10-13% of patients

- Ribavirin is contraindicated in pregnancy because of teratogenicity observed in animals an in case reports
Ribavirin
Pharmacokinetics

- The C_{max} after a single oral dose of ribavirin was: 9.9 μM.

- After discontinuation of an intravenous infusion to steady-state, the plasma concentration time profile exhibited tri-exponential pharmacokinetics with half-lives of:
 - α: 0.2 - 0.9 hours
 - β: 1.6 - 2.0 hours
 - γ: 35.5 – 60 hours

- After discontinuation of oral dosing to steady-state, the terminal elimination half-life was:
 - λ_z: 298 hours
 and ribavirin steady-state concentrations exhibited approximately 6-fold accumulation (compared to after a single oral dose).
Ribavirin
Pharmacokinetics

- The systemic clearance of ribavirin is 280-400 mL/min
- The renal clearance of ribavirin is 99 mL/min
- Ribavirin is completely unbound (0 ± 7%), and is not saturated between 1 and 50 μM
- The V_{ss} of ribavirin after oral dosing is approximately 650 to 1100 L
- The oral bioavailability of ribavirin is 33 to 64%
Ribavirin
Metabolism and Distribution

1,2,4-triazole-3-carboxamide (TCNH₂)

Ribavirin (1-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide)

1-β-D-ribofuranosyl-1,2,4-triazole-3-carboxylic acid (RTCOOH)

Ribavirin 5'-monophosphate (RMP)

Ribavirin 5'-diphosphate (RDP)

Ribavirin 5'-triphosphate (RTP)
Ribavirin
Metabolism and Distribution

• In *M. mulatta* (Rhesus macaques) 8 hours after receiving [14C]-ribavirin by intramuscular and intravenous administration, the recovery of total radioactivity in the major organs of distribution was (% of total body radioactivity):

 – 37.1 % in skeletal muscle
 – 14.1 % in erythrocytes
 – 8.1 % in the liver

 Minor amounts were recovered in:

 – 1.0 % kidneys
 – 0.5 % brain

Christopher J. Endres

Ribavirin Fetal Toxicity

<table>
<thead>
<tr>
<th>Single Dose (mg/kg)</th>
<th>% Fetuses Resorbed</th>
<th>% Surviving Fetuses Malformed</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>42</td>
<td>41</td>
</tr>
<tr>
<td>100</td>
<td>44</td>
<td>77</td>
</tr>
<tr>
<td>200</td>
<td>100</td>
<td>NA</td>
</tr>
</tbody>
</table>

Nucleoside Transporters
Ribavirin Transport: hENT1

Ribavirin
V_{max}: 30 ± 1.6 mmol/hr/L cell water
K_m: 420 ± 67 µM

NBMPR
IC_{50}: 0.99 ± 0.05 nM

Christopher J. Endres

Nucleoside Transporters
Ribavirin Transport: hCNTs

Ribavirin stimulated inward current in X. laevis oocytes expressing hCNT3

Inhibition of [³H]-uridine transport, and ribavirin stimulated inward current in X. laevis oocytes expressing hCNT1

<table>
<thead>
<tr>
<th>Conc. (µM)</th>
<th>% Inhibition</th>
<th>I_{RBV}/I_{URI}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>51 ± 7</td>
<td>0.06 ± 0.01</td>
</tr>
</tbody>
</table>

Christopher J. Endres
Hypothesis

“The mouse equilibrative nucleoside transporter 1 (mEnt1) significantly contributes to the absorption, tissue distribution, elimination and toxicity of ribavirin.”

Specific Aims

1. To characterize the ex vivo transport of [³H]-ribavirin in erythrocytes from mEnt1(+/+) and mEnt1(-/-) mice.

2. To characterize the pharmacokinetics and tissue distribution of ribavirin in mEnt1(+/+) and mEnt1(-/-) mice.
Outline

• Background
 – Nucleoside Transporters
 – Ribavirin

• Research Design, Methods and Preliminary Results
 – Ex vivo Erythrocyte Transport of Ribavirin
 – Pharmacokinetics and Tissue Distribution

• Conclusions
Ex vivo Erythrocyte Transport of Ribavirin

Introduction

• The goal of this aim is to characterize the transport kinetics of ribavirin in erythrocytes from mEnt1(+/+) and mEnt1(-/-) mice.

• The:
 – time-course
 – activity
 – and kinetics

were examined.
Ex vivo Erythrocyte Transport of Ribavirin

Experimental Design

- Mouse erythrocytes were washed in transport buffer and used within 2 hours of collection.

- Transport was initiated by adding 0.77 µM [³H]-ribavirin to erythrocytes in transport buffer (20% hematocrit), and stopped by dilution the suspensions 5-fold in transport buffer containing 10 mM NBMPR. The erythrocytes were immediately pelleted into an oil-layer (“oil-stop”), to limit further diffusional uptake.

- Transport rates were calculated and normalized to total total protein amount.

- Kinetic parameters (V_{max} and K_m) were determined using a “tracer-displacement” analysis.
Ex vivo Erythrocyte Transport of Ribavirin

PCR Genotyping Assay of mEnt1 in Mice

Slc29a1 (NT_039655)

Wild-type (+) allele

Knock-out (-) allele

997 bp

340 bp
Ex vivo Erythrocyte Transport of Ribavirin

Spike Recovery from Erythrocytes

Color quenching by erythrocytes reduced recovery of erythrocyte spikes

Decolorization with 30% H$_2$O$_2$ restores reduced recovery of erythrocyte spikes

Solid Bars: Water Spike
Open Bars: Erythrocyte Spike
Ex vivo Erythrocyte Transport of Ribavirin

Time Course of Erythrocyte Ribavirin Uptake

Filled: Vehicle
Open: 10 μM NBMPR
mEnt1(+/+): circles
mEnt1(-/-): triangles
Values represent mean ± S.D. (n=3)

Christopher J. Endres
Ex vivo Erythrocyte Transport of Ribavirin
Ribavirin Transport Activity in Erythrocytes

[3H]-Ribavirin Uptake After 10 Seconds of Transport

Values represent mean ± S.D. (n=3)
Ex vivo Erythrocyte Transport of Ribavirin
Ribavirin Transport Kinetics in Erythrocytes

Tracer Displacement Kinetics Analysis

\[V_{\text{max}} = 417 \pm 86.7 \, \text{amol/\(\mu\text{g}/10 \, \text{sec}\) } \]
\[K_m = 382 \pm 75.1 \, \mu\text{M} \]

Mean ± S.D. (n=4)

Values represent mean ± S.D. (n=3)

Christopher J. Endres
Ex vivo Erythrocyte Transport of Ribavirin

Conclusions

- The time-course of $[^3\text{H}]-$ribavirin uptake in mEnt1(+/+) erythrocytes rapidly reaches equilibrium within 60 seconds, and was completely inhibited by 10 μM NBMPR.

- There is no NBMPR inhibitable $[^3\text{H}]-$ribavirin transport in erythrocytes from mEnt1(-/-) mice.

- The transport activity of the mEnt1(+/-) erythrocytes was approximately half that of the mEnt1(+/+) erythrocytes, suggesting a gene-dose effect on activity.

- The K_m of $[^3\text{H}]-$ribavirin transport in mEnt1(+/+) erythrocytes was similar to that observed in humans (420 μM).
Outline

• Background
 – Nucleoside Transporters
 – Ribavirin

• Research Design, Methods and Preliminary Results
 – Ex vivo Erythrocyte Transport of Ribavirin
 – Pharmacokinetics and Tissue Distribution

• Conclusions
Pharmacokinetics and Tissue Distribution

Introduction

• The goal of this aim is to characterize the pharmacokinetics and tissue distribution of ribavirin in mEnt1(+/+) and mEnt1(-/-) mice.

• We will estimate pharmacokinetic parameters after both oral and intravenous administration of $[^3\text{H}]-\text{ribavirin}$

• We will examine the tissue distribution of $[^3\text{H}]-\text{ribavirin}$ after intravenous administration in tissues where mEnt1 expression may be important in drug distribution:
 i.e. liver, intestine, kidney, brain, skeletal muscle, heart and pancreas
Pharmacokinetics and Tissue Distribution

Experimental Design

- $[^{3}\text{H}]$-Ribavirin was administered orally (10 μg/g) or intravenously (3 μg/g) to mEnt1(+/+) and mEnt1(-/-) mice.

- Plasma, and erythrocyte samples were obtained by retro-orbital bleeding 15, 30, 60, 120, 240, 480, 720 and 1440 minutes after administration.

- Ribavirin concentrations were determined by:
 - Direct counting for total radioactivity
 - HPLC / Fraction collection to determine percent ribavirin composition of the total radioactivity (t.b.d)
Pharmacokinetics and Tissue Distribution
Experimental Design

- Tissues were collected at necropsy and concentrations were determined using a similar methodology (direct counting/HPLC fraction collection).

- \(^{14}\text{C}\text{-Sucrose (tracer dose, 0.05 \(\mu\text{Ci/g}\)) was administered to correct tissue ribavirin concentrations for ribavirin present in the tissue vascular volume.}\)
Pharmacokinetics and Tissue Distribution
Direct Counting Fluid and Tissue Spike Recovery

Fluid Spike Recovery

Tissue Spike Recovery

Solid bars: $[^3\text{H}]-\text{Ribavirin}$
Open bars: $[^{14}\text{C}]-\text{Sucrose}$

Values represent mean ± S.D. percent recovery
n=3
Pharmacokinetics and Tissue Distribution
Plasma Pharmacokinetics: $[^3H]$-Total Radioactivity

Intravenous $[^3H]$-Rivavirin Dose (3 µg/g; 0.4 µCi/g)

Filled Circles: mEnt1(+/+)
Open Circles: mEnt1(−/−)

Values represent mean ± S.D. percent recovery
n=2-3
Pharmacokinetics and Tissue Distribution
Erythrocyte Pharmacokinetics: 3H-Total Radioactivity

Intravenous $[^3H]$-Rivavirin Dose (3 µg/g; 0.4 µCi/g)

Filled Circles: mEnt1(+/-)
Open Circles: mEnt1(-/-)

Values represent mean ± S.D. percent recovery
n=2-3
Pharmacokinetics and Tissue Distribution

Intravenous $[^{14}\text{C}]-\text{Sucrose Dose (0.05 } \mu\text{Ci/g)}$

Values represent mean ± S.D. percent recovery, n=2-3

Christopher J. Endres
Pharmacokinetics and Tissue Distribution

Liver Distribution: $[^3]$H-Total Radioactivity

Liver $[^3]$H-Total Radioactivity Concentration (μCi/g tissue) 15 Minutes After 3 μg/g (0.4 μCi/g) $[^3]$H-Ribavirin Retro-Orbital Injection

Data correct for vascular contribution of $[^3]$H-total radioactivity
Values represent mean ± S.D. percent recovery
n=3

Solid Bars: mEnt1(+/+)
Open Bars: mEnt1(-/-)

Christopher J. Endres
Pharmacokinetics and Tissue Distribution

Conclusions

- There is an 8-fold decrease in hepatic distribution in the mEnt1(-/-) mice
 - This is consistent with mEnt1 expression on the hepatic sinusoidal membrane,
 - and mEnt1 mediated hepatic uptake of ribavirin
Pharmacokinetics and Tissue Distribution

Conclusions

- The plasma $[^3]H$-total radioactivity concentrations were greater in the mEnt1(-/-) mice than the mEnt1(+/-) mice consistent with decreased distribution to the peripheral compartment(s) in the mEnt1(-/-) mice.

- The erythrocyte $[^3]H$-total radioactivity concentrations were greater in the mEnt1(+/-) mice than the mEnt1(-/-) mice, consistent with reduced uptake in the mEnt1(-/-) mice. Surprisingly, the magnitude of this difference was much smaller than that observed *in vitro.*
Outline

- **Background**
 - Nucleoside Transporters
 - Ribavirin

- **Research Design, Methods and Preliminary Results**
 - *Ex vivo* Erythrocyte Transport of Ribavirin
 - Pharmacokinetics and Tissue Distribution

- **Conclusions**
General Conclusions

- mEnt1 contributes to erythrocyte uptake of ribavirin \textit{ex vivo}.

- mEnt1 significantly contributes to the hepatic and erythrocyte distribution of ribavirin \textit{in vivo}.

- Because of this, the ENT1 may also play an important role in other tissue distribution, elimination and toxicity of ribavirin and other nucleoside drugs.
Future Directions

- Validate HPLC assay for $[^3\text{H}]-$ribavirin quantitation from fluids and tissue

- Complete I.V. ribavirin pharmacokinetics and tissue distribution

- Complete oral ribavirin pharmacokinetics
Acknowlegments

GPEN 2006
Shinji Yamashita, Ph.D.

Doctoral Committee
Jashvant D. Unadkat, Ph.D.

Danny D. Shen, Ph.D.
Kenneth E. Thummel, Ph.D.
John T. Slattery, Ph.D.
Joanne Wang, Ph.D.

Unadkat Lab
Raj Govindarajan, Ph.D.
Aaron Moss
Peng Hsiao
Brian Kirby
Huixia Zhang

Department of Pharmaceutics
Ed Kelley, Ph.D.

Comparative Medicine
Rosita Morales
Virginia Gunderson-Batterson, Ph.D.
Ron Varnam
Steve Marks
Carol Ware, Ph.D.

Ernest Gallo Research Center
Jackie Connolly
Doo-Sup Choi, Ph.D.
Robert Messing, Ph.D.

Funding
NIH GM54447
NIH GM07750

Christopher J. Endres
Thank You

plank@u.washington.edu

Christopher J. Endres