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Abstract

Firewalls, network devices, and the access control lists that manage traffic are

very important components of modern networking from a security and regulatory

perspective. When computers were first connected, they were communicating

with trusted peers and nefarious intentions were neither recognized nor impor-

tant. However, as the reach of networks expanded, systems could no longer be

certain whether the peer could be trusted or that their intentions were good.

Therefore, a couple of decades ago, near the widespread adoption of the Internet,

a new network device became a very important part of the landscape, i.e., the

firewall with the access control list (ACL) router. These devices became the sen-

tries to an organization’s internal network, still allowing some communication;

however, in a controlled and audited manner. It was during this time that the

widespread expansion of the firewall spawned significant research into the science

of deterministically controlling access, as fast as possible. However, the success of

the firewall in securing the enterprise led to an ever increasing complexity in the

firewall as the networks became more inter-connected. Over time, the complex-

ity has continued to increase, yielding a difficulty in understanding the allowed

access of a particular device.

As a result of this success, firewalls are one of the most important devices

used in network security. They provide the protection between networks that

only wish to communicate over an explicit set of channels, expressed through the

protocols, traveling over the network. These explicit channels are described and

implemented in a firewall using a set of rules, where the firewall implements the



will of the organization through these rules, also called a firewall policy. In small

test environments and networks, firewall policies may be easy to comprehend

and understand; however, in real world organizations these devices and policies

must be capable of handling large amounts of traffic traversing hundreds or thou-

sands of rules in a particular policy. Added to that complexity is the tendency

of a policy to grow substantially more complex over time; and the result is often

unintended mistakes in comprehending the complex policy, possibly leading to

security breaches. Therefore, the need for an organization to unerringly and de-

terministically understand what traffic is allowed through a firewall, while being

presented with hundreds or thousands of rules and routes, is imperative.

In addition to the local security policy represented in a firewall, the modern

firewall and filtering router involve more than simply deciding if a packet should

pass through a security policy. Routing decisions through multiple network inter-

faces involving vendor-specific constructs such as zones, domains, virtual routing

tables, and multiple security policies have become the more common type of de-

vice found in the industry today. In the past, network devices were separated by

functional area (ACL, router, switch, etc.). The more recent trend has been for

these capabilities to converge and blend creating a device that goes far beyond

the straight-forward access control list.

This dissertation investigates the comprehension of traffic flow through these

complex devices by focusing on the following research topics:

• Expands on how a security policy may be processed by decoupling the orig-

inal rules from the policy, and instead allow a holistic understanding of the

solution space being represented. This means taking a set of constraints on

access (i.e., firewall rules), synthesizing them into a model that represents

an accept and deny space that can be quickly and accurately analyzed.
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• Introduces a new set of data structures and algorithms collectively referred

to as a Firewall Policy Diagram (FPD). A structure that is capable of mod-

eling Internet Protocol version 4 packet (IPv4) solution space in memory

efficient, mathematically set-based entities. Using the FPD we are capable

of answering difficult questions such as: what access is allowed by one policy

over another, what is the difference in spaces, and how to efficiently parse

the data structure that represents the large search space. The search space

can be as large as 288; representing the total values available to the source

IP address (232), destination IP address (232), destination port (216), and

protocol (28). The fields represent the available bits of an IPv4 packet as

defined by the Open Systems Interconnection (OSI) model. Notably, only

the header fields that are necessary for this research are taken into account

and not every available IPv4 header value.

• Presents a concise, precise, and descriptive language called Firewall Policy

Query Language (FPQL) as a mechanism to explore the space. FPQL is a

Backus Normal Form (Backus-Naur Form) (BNF) compatible notation for a

query language to do just that sort of exploration. It looks to translate con-

cise representations of what the end user needs to know about the solution

space, and extract the information from the underlying data structures.

• Finally, this dissertation presents a behavioral model of the capabilities

found in firewall type devices and a process for taking vendor-specific nu-

ances to a common implementation. This includes understanding interfaces,

routes, rules, translation, and policies; and modeling them in a consistent

manner such that the many different vendor implementations may be com-

pared to each other.
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Chapter 1

Introduction

1.1 Motivation

Computer networking has arguably been one of the most important advancements in modern

computing. Allowing disparate applications to trade information, conduct business, exchange

financial transactions, and even the routine act of sending an email are some of the most

common things we do with computers today. Even with the advancement of ever faster

computer chips, the trend continues to connect devices at an astounding rate. In addition,

there is also a thriving mobile device market, thus increasing the amount of traffic flowing

between systems. An important aspect of this interconnected system is security. Without

security, the convenience and speed of networked transactions would present more risk than

the majority of applications could handle. In order to mitigate the risk and provide a much

more secure communication channel, the firewall device was designed and deployed. It is

one of the most widely used and important networking tools, existing in virtually every

organization connected to a network. In fact, over the past two decades the landscape of

network security has come to rely heavily on this single type of device. The primary purpose

of a firewall is to act as the first line of defense against malicious and unauthorized traffic,

keeping the information that the organization does not want out, while allowing approved
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access to flow [Cheswick et al., 2003]. Figure 1.1 illustrates how a firewall is commonly used

in a network environment.

Figure 1.1: Common firewall placement in a network.

Since the introduction of the first packet filtering software, the configuration of the soft-

ware has been built upon the concept of a firewall rule. A firewall rule, in general, is what

most rules represent, an explicit regulation governing the conduct within a particular activity.

In this case the rule states what traffic will be allowed to pass. As with most configurable

software, firewall rules start off as an “easy to understand” set of instructions. However,

time and use result in increased complexity, especially if that use is not well managed and

understood. As a result, in most medium to large organizations, firewall configurations con-

sist of hundreds and sometimes thousands of individual rules that must be managed by a

team of security professionals in the most efficient manner possible. The fact is that an

organization’s network security is only as good as its firewall configuration; and as discussed

in subsequent sections, the security is often lacking. This is not a lack of effort on the part

of the security or management team, instead it is a shortcoming in algorithms available to
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understand the complexities. Therefore, the motivation for this research effort is the fact

that firewall configuration and the research underlying comprehension of access policy have

not advanced to address the algorithmic problem and the size of the solution space.

1.2 Firewall Basics

Firewalls have become an important part of the network landscape because they will often

provide the first defense against malicious attacks and unauthorized traffic. Firewalls allow

two entities to connect their networks together through existing infrastructure and protocols,

while securing the private networks behind them [Chapman and Zwicky, 1995; Chapman,

1992]. The common placement of a firewall is at the entry point into a network so that all

traffic must pass through the firewall in order to enter the network. The traffic that passes

through the firewall is derived from existing packet-based protocols, and a packet can be

thought of as a tuple with a set number of fields [Chapman and Zwicky, 1995; Chapman,

1992]. Examples of these fields are the source/destination IP address, port number, and the

protocol field. A firewall will inspect each packet that travels through it and decide if it

should allow that packet to pass based on a sequence of rules. This sequence of rules is made

up of individual rules that follow the general form:

〈predicate〉 → 〈decision〉

The predicate defines a boolean expression over the fields in a packet tuple that are

evaluated and the physical network interface from which the packet arrives. For example,

source IP is 10.2.0.1 and destination IP address is 192.168.1.1 on eth0 (a common label for

a linux interface). Then the decision portion of a rule is what happens if the predicate

matches to a true evaluation. A decision will likely be accept or deny with the possibility

of additional actions, such as an instruction to log the packet [Chapman and Zwicky, 1995;

Chapman, 1992]. However, for the purpose of this research we are only concerned with the

accept or deny decision.
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A firewall policy is made up of an ordered list of these rules such that as a packet is

processed by the firewall, it attempts to match the packet to the predicate. Matching the

packet means that the firewall evaluates a packet based on the fields in the rule tuple, a

packet matches the rule if it matches all the fields identified in the predicate of the rule.

The predicate does not necessarily need to contain a value for all possible fields and can

sometimes contain the “any” variable in a field to indicate to the rule processing software

that this is a “do not care” condition or U of the predicate. This means that any value for

that variable will match. It must completely match all the fields for the firewall to take the

appropriate action. These rules are processed in order, until the firewall finds a match, at

which time it will take the appropriate action as identified by the decision.

1.2.1 Interfaces

An interface on a firewall is the physical network connection to the wire (or radio) that will

transmit the traffic to and from the parties communicating [Kurose and Ross, 2007]. In the

strictest definition of the firewall and packet filtering device, two network interfaces exist.

This represents a physical separation between one network and another, requiring the traffic

to flow through the firewall from one interface to the other, and vice versa. However, as

discussed in [Chapple et al., 2009], the firewall will commonly have many more than two

interfaces, which means that a firewall is no longer just a filtering device, but must also

decide the appropriate egress (outbound) interface for traffic. The firewall will then use a

routing table to find the egress interface.

1.2.2 Routes

In this work a route can be defined as a simple one tuple rule with a decision being the egress

interface. The one tuple of the traffic being processed is the destination. For a particular

routing rule, the destination can be identified as an IP Address, address range, or Classless

Inter-Domain Routing (CIDR) format. Therefore, in a similar manner as security rules, the

4



solution space can be split as the traffic is processed. Traffic is attempted to be matched

from the top to bottom in the routing table.

1.2.3 Rules and Policies

Firewalls commonly have multiple ingress (inbound) and egress (outbound) network con-

nections. The purpose of multi-homed (multi-interface) firewalls is to allow the physical

separation between networks, forcing the data to be processed by that firewall device, with

no other route around the device. Each interface of the firewall relates to a policy such that

some firewall vendors allow the definition of multiple policies based on the interface where

the packet was received. A policy is then “applied” to the packet and a routing decision is

made based on that application.

The landscape of the enterprise network will feature multiple entry and exit points, as

well as varying levels of access throughout the internal network. This multi-point egress

and hierarchical model require that the organization employ multiple firewalls to physically

secure those points of access and ensure that the organization’s or sub-organization’s secu-

rity policy is enforced. These multiple firewalls are often acquired over time and often from

different vendors. With these different devices from different origins comes a difference in

methods of configuration and skill-sets required to properly program them to accurately and

securely protect the internal network. The difference might exist in the technical aspects of

representing the policy, but the overall organizations policy is, in itself, generalized. There-

fore part of the challenge to complexity is not only the number of devices, but the types as

well [Wang et al., 2006].

1.2.4 Network Address Translation

A final broad element of a modern firewall is Network Address Translation (NAT). The

primary purpose of a NAT capable firewall is to allow an address on one side of the network

to be translated as it travels through the firewall. NAT implementation will often function

5



as a translation table such that the inbound traffic will match an entry (either source or

destination address) to be translated to another address on the egress side. The firewall

device is then required to keep track of that conversation in order for response packets

to have the reverse translation applied and arrive at the appropriate destination. There

are usually three types of NAT: Source Address Translation (SNAT), Destination Address

Translation (DNAT) and Port Address Translation (PAT). Each of these are roughly the

same idea, and each will require a translation table, yet they will operate on different fields

of the packet [Kurose and Ross, 2007].

1.3 Hierarchical Data Sets and Structures

The Internet protocol addressing and routing scheme as defined by the OSI model: Internet

Protocol (IP), Transmission Control Protocol (TCP), and User Datagram Protocol (UDP);

represent data packet based routing using different fields of binary, numeric data. Each of

these fields of binary data represent a sequence of available numbers, therefore they can be

considered hierarchical data sets available to be represented as a binary tree. Figure 2.1

illustrates the concept. The background section will cover the topic in more detail. Some of

the unique properties of representing binary data as a tree is to know that fully formed child

trees of a particular node assure the model that a range of values is covered and that the

node can be compressed. In addition, the hierarchical nature of the data set can be further

compressed using a Reduced Ordered Binary Decision Diagram (ROBDD) [Bryant, 1992]. In

addition to capturing the innate hierarchy contained in binary data as a compressed format,

the ROBDD posses the capability of performing various mathematical set operations on the

data without having to decompress the structure. Therefore this work uses these types of

data structures to aid in comprehension firewall policies. The Firewall Policy Diagram data

structure is explained in detail in chapter 3.
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1.4 Problem Statement and Key Contributions

Although the deployment of network security devices and firewall technology is a very impor-

tant step in securing the communication of the enterprise, it is only the initial step. As with

many technologies, adoption only begins the process of securing the enterprise and the true

measurement of cost to the organization is in the proper management and understanding

of the technology itself. In this case it is ensuring that the firewall rule sets accurately and

deterministically represent the policy defined by the organization as a whole and ensuring

that as the organization changes over time, the change in the security devices is accurate

and consistent.

Over the past decade firewall rule-bases have grown out of control. In a study finished

in 2001, it was discovered that the average organization typically has 200 firewalls under the

control of its network consisting of an average of about 150 rules per device [Wool, 2004]. In

addition, these rule sets have been shown to grow to thousands of rules controlling routing

between as many as 13 distinct networks [Wool, 2004]. More recent statistics further support

that the growth has only accelerated. In a study finished in 2009, it was determined that the

growth in complexity has out paced the growth in the organization’s ability to synthesize and

comprehend the changes [Chapple et al., 2009]. The average number of rules has substantially

increased from 150 in 2001 to 793, with the largest rule set found comprised of 17,000 rules

[Chapple et al., 2009]. The study did not discuss the number of firewalls deployed, but in

the unlikely case that firewall deployment growth stopped and the number of firewalls at an

average organization stayed at 200 [Wool, 2004], then approximately 160,000 rules (200×793)

would be under active management. In addition, the study also discovered that the average

rule turnover (change) rate for an organization is 9.9% of the rules per month [Chapple et al.,

2009]. This means that the average firewall administration team has to accurately manage

about 160,000 rules where 16,000 of those rules are changing on a monthly basis. Therefore,

the ability to accurately and confidently understand the modern firewall configuration and

know what changes have occurred are more difficult than ever, and continue to increase in
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complexity.

On the surface this may seem like a problem where the organization or community is

losing focus due to the speed of change in the environment. However, upon closer inspection

the problem is exposed as a theoretical puzzle where just adding more human management,

more computing power, or more workers will never bring the sort of understanding necessary.

What is needed is a different way to analyze the modern firewall and the organizational

security policy, a method to provide accurate software modeling and comprehension of the

device. This area of research involves areas not covered completely in related work and we

present the results of the research effort providing a number of key contributions.

The basis of the research presented is a novel set of data structures, together called a

Firewall Policy Diagram (FPD). These data structures seek to solve the problem of large

network access comprehension, as it relates to firewall policies, in several areas:

• De-correlation of the firewall policy from the source rule set in order to gain a holistic

view of access. This will remove any overlapping rules that will often exist in a firewall

policy [Yuan et al., 2006] and the resulting data structure will model the actual accept

and deny spaces.

• Provide the ability to perform arbitrary mathematical set based operations such as

intersection, union, and complements. These operations will assist in reasoning about

firewall policy changes over time. They will also provide the foundation for many

other firewall operations, such as understanding the functional differences between two

policies. In addition, these operations will provide the base for querying an arbitrary

policy.

• Provide the data structure basis for the implementation of an approach to query the

policy.

• Once a policy has been decomposed into a FPD, allow the reconstitution of that policy

into a human comprehensible form, similar to an equivalent policy rule set.
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• Experiments will show that these operations can be executed in seconds of computation

time even on large policies (up to 10,000 rules).

The research presented then builds on the FPD foundation a means in which to gain a

better understanding of large network access comprehension through a domain specific query

language named Firewall Policy Query Language (FPQL), with the following properties:

• Provide an expressive query language that a team of firewall administrators would be

able to use to answer important questions about what is contained in a large, and often

very difficult to understand, set of firewall policies.

• Design a syntax similar to the familiar Structured Query Language (SQL) [Codd, 1970]

such that the users can describe what they desire in a declarative manner, allowing the

system to find and return the information. This is in contrast to a more procedural

style of telling the system how to find the information.

• Provide experimental evidence of the efficacy of this language, presenting the results

of experiments run against large policies (up to 20,000 rules) showing how individual

results can be returned in approximately 120 microseconds of processing time.

• Present how FPQL is capable of formal verification of single and multiple policies in a

manner similar to FIREMAN [Yuan et al., 2006].

Finally, this research further builds upon the existing base FPD by providing a formal

structure for abstracting a modern firewall into its common elements so that vendor nuances

may have a common software simulated implementation. We present a framework called

Behavior Abstraction Modeling in which to simulate individual firewalls in software such

that analysis and other formal methods may be used with the model. Some examples of

industry uses for modeling networks and firewalls in software include:

• Network trace analysis for understanding how a packet will traverse the device without

physically sending the packet. In addition to an individual packet, a packet space in

9



the form of an FPD may traverse the network to understand what will make it from

point A to point B.

• Logical comparisons of firewall vendor implementations. If two firewalls are configured

to behave the exact same way but are from two different implementations, modeling

the behavior of each vendor in software allows testing that each ingress and egress

FPDs are identical. Subsequently, if they are not identical, the FPD used to traverse

the spanning graph can represent what is different from what is potentially a large

solution space.

• Behavior abstraction modeling of specific firewall vendors serve as the basis for auto-

mated translation from one vendor configuration to another with certainty of how the

device will behave.

• Participate in a larger software modeled network for more comprehensive simulations

without requiring the physical cables and radios.

• This research shows Behavior Abstraction Modeling in conjunction with the FPD is

capable of modeling very large firewalls for analysis in milliseconds of time. Allowing

fast verification of changes to the firewall and testing of those changes entirely in

software.

1.5 Dissertation Organization

This dissertation is organized into six chapters. In chapter 2 we discuss background topics

including Internet Protocol basics, firewall history, basic firewall design and modeling the IP

address space as binary trees. Chapter 3 discusses the details of the Firewall Policy Diagram,

the foundation of our work for human comprehension of a firewall. Then, chapter 4 builds

on that foundation with the design and development of the Firewall Policy Query Language,

demonstrating the useful functionality of querying a policy for various access capabilities.
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Chapter 5 outlines a firewall behavior abstraction model, allowing a methodology indepen-

dent of vendor and implementation to simulate and comprehend modern firewalls. Chapter

6 concludes this dissertation.
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Chapter 2

Background

Computer networking and today’s inter-connected system of computers can trace their in-

ception to research done in the 1960’s by telecommunications companies. During that time

frame the telephone network was the primary means in which voices where connected over

an audio signal that was a direct circuit. This meant that one long wire through one or

many switch boards allowed the two ends communication through an analog signal. While

this was fairly common and stood the test of time when the communication was most often

voice, data began being carried over these lines as a means in which to connect two physically

distance computers [Kurose and Ross, 2007].

This era was also the time of the early computer. These early computing machines were

very large and expensive to operate, therefore it was very common for the computer to be

given multiple tasks during the same time frame and the operating system time shared the

computer between multiple tasks [Kurose and Ross, 2007]. It was perhaps natural that

the designers and users of these time-shared computers would see the committed circuit

allocated between only two machines as inefficient and began to devise ways to improve

the efficiency of the link by sharing it with multiple computers [Kurose and Ross, 2007].

Since a computer was already processing data in discrete elements, most of the ideas were to

divide the information flowing between the two computers into discrete packets, hence the
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beginning of packet networks [Kurose and Ross, 2007].

As more and more computers at research facilities were being linked together, other ideas

surfaced to help make those networks more efficient. Packet switching and routing became

more common and the redundant nature of a switched network went on to lead Advance

Research Projects Agency (ARPA) to fund the first packet-switched computer network and

a direct ancestor of the public Internet [Kurose and Ross, 2007].

During the 1970’s and 1980’s the United States and the world became more intercon-

nected. Protocols and standards emerged to facilitate a distributed growth strategy and

allow disparate systems to communicate just using explicit binary protocols to handshake

[Kurose and Ross, 2007]. These protocols evolved into the three key Internet protocols seen

today: Transmission Control Protocol (TCP), User Datagram Protocol (UDP), and Internet

Protocol (IP).

IP forms the basis on which two devices are connected to each other through a computer

network or the Internet. It defines the standard format that a packet of information is

comprised and also describes the standard headers, which allow the packet to get from one

computer to another. Table 2.1 describes the general format of an IP version 4 datagram.

32 bits of data

Version Header length Type of service Datagram length (bytes)
16-bit Identifier Flags 13-bit Fragmentation offset

Time-to-live Upper-layer protocol Header checksum
32-bit Source IP address

32-bit Destination IP address
Options (if-any)

Data

Table 2.1: General format of an IP version 4 Packet.

Portions of these protocols form some of the basics of this research and allow the deter-

mination of reach-ability and other means of a specific host on the network. Because this

work is focused on levels of network access as they relate to routing and switching, the most

important fields are the source IP address, source port, destination IP address, destination
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port, and protocol. The remaining fields are primarily useful for efficiency in the network

itself rather than security or reach-ability of the network.

Two fields just cited are not defined in the IP version 4 (IPv4) protocol stack, they are

the source and destination port. These two fields were built on top of the IP protocol in

the form of Transmission Control Protocol (TCP) and User Datagram Protocol (UDP). The

data in these two protocols is layered on top of the IP protocol in the Data field (Table 2.1).

Tables 2.2 and 2.3 describe the layout of those packets and the location of the port values.

32 bits of data

Source port # Dest port #
Sequence number

Acknowledgment number

Header length unused U
R

G

A
C

K

P
S
H

R
S
T

S
Y

N

F
IN

Receive window
Internet checksum Urgent data pointer

Options
Data

Table 2.2: General format of a TCP segment.

32 bits of data

Source port # Dest port #
Length Checksum

Application data (message)

Table 2.3: General format of a UDP segment.

It is important to note that IP version 4 is still currently widely used, however IP version 6

has started adoption in the industry, therefore further work can be done using that protocol.

The premise is mostly the same, however the 32-bit address scheme of IPv4 has been nearing

exhaustion due to the large number of computers networked together on the public Internet

and IP version 6 allows a much larger addressing scheme (among other improvements).

However, the large majority of internal networks still make use of the IP version 4 address

scheme.
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2.1 Firewall History

News reports over the last decade about hacking attempts at many prominent organizations

demonstrate that the world of an inter-connected network is not always a safe place for im-

portant data. The anonymity and decentralization that the network protocols have provided

are great for the rapid adoption of a very powerful technology, however they also provide

opportunities for nefarious adversaries to conduct malicious acts against the unsuspecting

public. In many organizations, measures have been taken to protect the most important

assets of their computer system. These measures will almost always involve greater safety

through network devices known as firewalls [Kurose and Ross, 2007].

As with most physically secure facilities, like a building or a compound, there are only a

few points of access to the entity. These points of access are tightly guarded with protection

measures put into place that allow the inspection of personnel crossing that access point.

In a similar manner, a computer network can employ a high level of security between the

trusted and untrusted zones by placing a device that physically separates the two networks

[Kurose and Ross, 2007]. This device is most often called a firewall. Figure 1.1 depicts what

this placement might look like.

In general, a firewall is a hardware or software device that will isolate an organization’s

network from the Internet or other untrusted network. It allows some packets to pass, those

that adhere to the security policy defined by the organization, and denies others. The firewall

provides the network administrator a tool in which to control access to resources within the

organization to only those specified by the overall security policy. In general, a firewall has

three goals [Kurose and Ross, 2007]:

• All traffic from untrusted to trusted and the reverse, must pass through the firewall

device. Just as a few access points must control access to a secure facility, all traffic

must pass through the firewall for adherence to the organizational security policy.

• Authorized traffic is the only traffic allowed to pass through the firewall. Traffic is
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compared against an allowed policy and only those packets that adhere to the policy

are allowed to pass.

• The firewall itself is immune to compromise. This means that the firewall itself is a

device connected to the network that is running software and hardware. Therefore

measures must be taken by the network and firewall administrators to ensure that it

cannot be penetrated.

2.2 Packet Filters

Firewall operation and its ability to keep out unauthorized traffic is based on the IP protocol

and the structure of data packets that are flowing over an IP network. Therefore, the most

basic level of control that a firewall must exhibit is a packet filter, where each packet is

examined in isolation. The firewall then determines if the packet should be accepted or

denied based on a list of administrator-defined filtering rules, most often derived from an

organizational policy [Kurose and Ross, 2007]. Filtering decisions will commonly be based

on [Kurose and Ross, 2007]:

• IP source or destination address

• Protocol type: TCP, UDP, ICMP, etc.

• TCP or UDP source and destination port

• ICMP message type

• Different rules for ingress or egress routing

• Different rules for different router interfaces

A network administrator configures the firewall based on the security policies defined by

the organization. For example, the policy may take into account the e-commerce site that
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the organization operates and allow access to the Web server handling that traffic. It may

also consider that no direct connection to a desktop computer is allowed from the untrusted

network and therefore that traffic would be denied. Table 2.4 demonstrates an access list

that might be defined for a particular organization. It shows access rules 1 and 3 grant traffic

to internal hosts from any computer in the 192.168.0.0/16 range (65,536 hosts) over port 80

and 53 from any port greater than 1023. Access rules 2 and 4 grant response traffic back

to the originating hosts. Finally, rule number 5 automatically denies any traffic that is not

accepted by a previous rule. Most modern packet filtering firewalls will automatically put

the final rule because it is viewed as an industry best practice to deny any traffic that is not

explicitly allowed.

rule action src address dest address protocol src port dest port flag

1 allow 192.168/16
outside of
192.168/16

TCP > 1023 80 all

2 allow
outside of
192.168/16

192.168/16 TCP 80 > 1023 ACK

3 allow 192.168/16
outside of
192.168/16

UDP > 1023 53 all

4 allow
outside of
192.168/16

192.168/16 UDP 53 > 1023 all

5 deny all all all all all all

Table 2.4: Example access control list for a firewall interface.

In this research effort only certain fields will be analyzed and modeled. The source

address, destination address, protocol, and destination port will be used. This is because

most common reach-ability and vulnerabilities are not involved in the use of source port and

flag. The source port is often not used in most firewall products and the flag is only at the

network layer for setup and tear down of TCP connections.
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2.3 Firewall Rule Processing

2.3.1 Policies and Rules

A firewall is primarily a physical device that purposely interrupts the flow of data through a

network link in order to ensure that the data adhere to a defined prescript most often outlined

by an organization’s security group. There are hardware and software based firewalls, but

the general idea behind all the implementations is enforcement of allowed traffic.

This device may segregate one link or many through different interfaces. These interfaces

are commonly setup to have their own subset of the IPv4 address space and route from one

area of the network to another, inspecting the traffic along the way. Each ingress and egress

interface combination will often have a policy associated with that pair and define what

information is allowed to flow. So, a firewall can have multiple policies and in each policy

is an ordered set of rules. As a packet enters the interface and a policy is applied, the

application of the policy attempts to match the packet rules with the predicate of the rule.

As the ordered set of rules is processed, top to bottom, the first rule that matches the packet

is acted upon.

2.3.2 Redundant, Shadowed, and Conflicting Rules

An important concept that serves as the basis for understanding firewall policies as it relates

to their composition (rules) is how representing rule processing as a set of spaces can provide

insight into a policy, thus assisting in comprehension. An example of this idea is that since

the firewall policy is an ordered list of rules, there can sometimes be an overlap of two rules,

which means that a packet may match more than one rule in the policy. As a result it

is said that a firewall has conflicting rules if two rules overlap but have different decisions

[Al-Shaer et al., 2005; Liu and Gouda, 2005]. The premise is that discerning that conflict

can be accurately and quickly found by modeling the rule set in set-based data structures

[Yuan et al., 2006].
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In order to gain this sort of insight and model the policy, it is necessary to introduce

the potential input to a policy represented by I, which is a collection of packets that can

possibly arrive at this policy. For the j th rule 〈Pj, actionj〉 in the policy, the current state is

defined as 〈Aj, Dj〉, where Aj and Dj denote network traffic accepted and denied before the

j th rule, respectively, i.e., the accept and deny spaces. Then Rj denotes the collection of

remaining traffic that can possibly arrive at the j th rule. As a result Rj can be found using

the input I and the current state of information [Yuan et al., 2006].

Rj = I ∩ ¬(Aj ∪Dj) (2.1)

For the first rule in the rule-set, the initial values are A1 = D1 = ∅ and R1 = I. As

the processing of each rule proceeds, the state of each variable is updated. The data are

processed left to right, so the new state of R reflects the change to A and D of that same

line [Yuan et al., 2006]:


〈A,D,R〉, 〈P, accept〉 ` 〈A ∪ (R ∩ P ), D, I ∩ ¬(A ∪D)〉

〈A,D,R〉, 〈P, deny〉 ` 〈A,D ∪ (R ∩ P ), I ∩ ¬(A ∪D)〉
(2.2)

After processing each rule the accept and deny spaces are accurately represented

through A and D, respectively. This premise allows conclusions to then be drawn about

a rule being added to spaces based on the action. The analysis is started by first setting I to

the entire set of possible address space represented by the tuples of a rule, and A1 = D1 = ∅.

Each rule is then processed sequentially based on the type [Yuan et al., 2006].

For 〈P, accept〉 rules:

1. Pj ⊆ Rj ⇒ good: This rule is valid and defines an action for a new set of packets.

There is no overlap with preceding rules.

2. Pj∩Rj = ∅ ⇒ masked rule: Defines an error in the rule as it does not match any packet

because a previous rule has hidden its execution. There are three forms of masking:
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shadowing, redundancy, and correlation.

(a) Pj ⊆ Dj ⇒ shadowing: The rule accepts some packets that have been denied by

previous rules. This represents a misconfiguration.

(b) Pj ∩ Dj = ∅ ⇒ redundancy: This rule will not expand the access of the policy

and therefore is unnecessary.

(c) else⇒ redundancy and correlation: Some of the packets allowed by this rule have

been denied. Others are either accepted or will not follow this path.

3. Pj 6⊆ Rj and Pj ∩Rj 6= ∅ ⇒ partially masked rule:

(a) Pj ∩ Dj 6= ∅ ⇒ correlation: Some of the packets have been denied by preceding

rules.

(b) ∀x < j, ∃〈Px, deny〉 such that Px ⊆ Pj ⇒ generalization: Rule x matches a subset

of the current rule j but defined a different action.

(c) Pj ∩ Aj 6= ∅ and ∀x < j, ∃〈Px, accept〉 such that Px ⊆ Pj ⇒ redundancy: the

previous rule 〈Px, accept〉 can be removed and the rule Pj will still accept those

packets.

In a similar manner for 〈P, deny〉 rules:

1. Pj ⊆ Rj ⇒ good.

2. Pj ∩Rj = ∅ ⇒ masked rule:

(a) Pj ⊆ Aj ⇒ shadowing: the rule denies some packets that were accepted by a

previous rule. This could indicate some sort of security violation.

(b) Pj ∩ Aj = ∅ ⇒ redundancy: This rule will not expand the denied space of this

policy and therefore is unnecessary.
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(c) else ⇒ redundancy and correlation: Some of the packets denied by this rule have

already been accepted. Others are either denied or will not follow this path.

3. Pj 6⊆ Rj and Pj ∩Rj 6= ∅ ⇒ partially masked rule:

(a) Pj ∩Aj 6= ∅ ⇒ correlation: Some of the packets have been accepted by preceding

rules.

(b) ∀x < j,∃〈Px, accept〉 such that Px ⊆ Pj ⇒ generalization: Rule x matches a

subset of the current rule j but defined a different action.

(c) Pj ∩ Aj 6= ∅ and ∀x < j,∃〈Px, deny〉 such that Px ⊆ Pj ⇒ redundancy: the

previous rule 〈Px, deny〉 can be removed; and the rule Pj will still be deny those

packets.

The result of the modeling capability discussed in [Yuan et al., 2006] is not only to detect

policy anomalies, but provide the capability to accurately model the system. This concept

is important because the policy spaces that result from a rule validation exercise precisely

represent the system, but are devoid of the original rules. The research presented in this

dissertation will take the model of the policy and allow interesting data to be derived, for

example, true difference between two policies and various querying activities against the

policy model.

2.3.3 Rule Data Modeling

Firewall rules are made up of five elements: source IP address, source port, destination

IP address, destination port, and service. These are all numeric values and are directly

mapped from the lower level transport layer represented in the TCP/IP protocol stack.

In practice only four of those elements are commonly handled when processing rules, the

source IP address, destination IP address, destination port, and service. Therefore, this

dissertation will focus only on those elements when modeling and processing a rule. The
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interesting attribute of those fields is that by representing each of them as binary numbers,

a hierarchy emerges that allows for the representation of those numbers in a smaller memory

structure than the entire space. For a small example, considering the destination port value,

according to the TCP/IP specification [Kurose and Ross, 2007], this value is 8 bits and will

be comprised of the integer range 0 to 65535, therefore have an binary representation of:

00000000→ 11111111

Taking this a step further, this number can be represented as a binary tree where the

children of a particular node will be a numeric subset of that node. Before arriving at that

point, a binary tree is considered where the edges represent a 0 or a 1, a left edge of a node

is considered the value 0 and the right edge is considered a 1. Figure 2.1 is a binary tree

that represents a set of values contained in the range from 0 to 15.

When the sub-tree is 
a full binary tree, it 

represents the range 
1100 to 1111

Represents the 
binary value 1000, 

or decimal 8

Figure 2.1: Hierarchical data set in a binary tree.

2.3.4 Directed Acyclic Graph

A common model used in computer science for representing data is called a graph. A graph is

a set of nodes, or vertices, connected to each other by edges. Figure 2.2 is an example graph
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and illustrates the concept of interconnected nodes by edges. Many problems in computer

science can be decomposed into a graph model, and as a result there are many efficient

algorithms allowing the manipulation of graph models in very useful ways [Cormen et al.,

2009].

2

3

8

11

5

10

7

9

Figure 2.2: Example of a directed acyclic graph (DAG).

A specific kind of graph is one that only allows directed edges that do not result in cycles.

This is referred to as a directed acyclic graph (DAG) and Figure 2.2 is also a representation

of this type of graph. The edges have arrows indicating the direction of connectivity from

one node to another. By following every edge to its stopping point, the same node is never

visited twice. This particular property of a graph is called acyclic. A tree data structure is

a more specific type of DAG that not only enforces directional edges and zero cycles, it also

introduces a hierarchy through the parent vertex and child vertices relationship [Cormen

et al., 2009].

2.3.5 Tries

Firewall researchers have recognized the hierarchical nature of a binary IP address, and fur-

thermore, the benefit of representing the number in a binary tree data structure [Hazelhurst

et al., 2000]. The focus of these research efforts was to improve the performance of packet

classification through matching the incoming packet to a set of filters (or rules). It can be

said that a packet matches a filter if each field of the packet matches the corresponding field

of the filter. This can be an exact, prefix, range match [Hazelhurst et al., 2000]. A filter in
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the policy is associated with a non-negative number, cost(F), and the aim of this research

was to find the least cost filter matching algorithm when matching a packet’s header.

0 1

0

0 1

1

1

1

0 1

(a) Before compression

00 1111

0 1 0 1

(b) After compression

Figure 2.3: A standard compression algorithm merging a single branch into a trie node.

Beyond a binary tree representation, two primary techniques were used, namely, back-

tracking and path compression. Both of these techniques reduced the storage cost by a factor

of 4 to 12, and reduced the look up time by a factor of 2 to 5 [Hazelhurst et al., 2000]. The

concept of path compression is an improvement over the straight representation of a policy

as a binary tree and moves toward the use of binary decision diagrams as an even more ef-

ficient data structure. Figure 2.3 demonstrates the effect of path compression such that the

fully binary tree seen in Figure 2.3(a) can have the redundant paths compressed into edges

that represent the sequence of binary digits. The sequence 00 and 1111 are subsequently
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reduced and compressed into one edge from the previous multiple edge representation. This

compressed representation of a binary tree is called a trie. The effect of the compression

operation is to reduce the number of edges to be processed when matching a packet to the

trie and can be seen in Figure 2.3(b).

2.3.6 Reduced Ordered Binary Decision Diagrams

The Binary Decision Diagram (BDD) is a graph-based data structure first devised in 1986 as

a representation of a boolean equation for use in formal circuit verification, computer aided

design, and fault tree analysis. The primary idea of the model is based off of Shannon’s

expansion, a mathematical method in which a boolean function can be represented by the

sum of two sub-functions of the original function [Bryant, 1986, 1992]. By modeling a data

set as a boolean function, these systems can be represented as directed acyclic graphs with

internal vertices corresponding to the variables over which the function is defined [Bryant,

1992]. A boolean function f(x1, x2, x3) with the truth table defined in Figure 2.4 illustrates

this idea.

x1 x2 x3 f

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

x1

x2 x2

x3 x3 x3 x3

1 1 1 0 1 0 1 0

Figure 2.4: Truth table and decision tree representation of a boolean function.

Each non-terminal vertex v is labeled with the variable var(v) and consists of two arcs

directed to children. There is a low path, low(v) (dashed line), and a high path, high(v) (solid
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line), where they represent a 0 and 1, respectively. The resulting truth table is represented

by the decision tree and for a given boolean assignment to the variables, the value found at

the terminal is what is yielded by the function. For example, if x1 = 0, x2 = 0, and x3 = 0

then the function would yield 1.

While representing a particular truth table as a decision tree is useful for comprehension,

it does not really gain much in terms of space or reduced computing complexity. However,

what researchers found is that by ordering the variables and reducing the tree, the repre-

sentation of the truth table can be much more compact. As a result the Reduced Ordered

Binary Decision Diagram (ROBDD) data structure was derived from the Binary Decision

Diagram to represent and include these properties. Three transformation rules were defined

that allow reduction, and did not alter the function represented [Bryant, 1992]:

• Remove Duplicate Terminals: Since the BDD deals with boolean expressions and truth

assignments, the result of a set of variables is either zero or one. Therefore reducing

the terminal nodes to two reduces the tree depth by one.

• Remove Duplicate Non-terminals: If non-terminal vertices u and v have var(u) =

var(v), lo(u) = lo(v), and hi(u) = hi(v), then eliminate one of the two vertices and

redirect all incoming arcs to the other vertex. This has the effect of removing redundant

nodes horizontally.

• Remove Redundant Tests: If non-terminal vertex v has lo(v) = hi(v), then eliminate v

and redirect all incoming arcs to v to lo(v). This has the effect of removing a redundant

node vertically. For example, hi(x1) points to x2 and lo(x2) = hi(x2) = x3, therefore

redirect hi(x1) to x3.

One can then start with any BDD satisfying the ordering property and reduce its size

through repeated application of the transformation rules. Figure 2.5 shows the progression of

the decision tree from Figure 2.4 through the three reduction rules, first removing duplicate

terminals, then removing duplicate non-terminals, and finally removing redundant tests.
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(a) Remove duplicate terminals

x1

x2 x2

x3 x3

1 0

(b) Remove dupli-
cate non-terminals

x1

x2

x3

1 0

(c) Remove dupli-
cate tests

Figure 2.5: Reduction of the decision tree from Figure 2.4 into a ROBDD.

At an abstract level, a ROBDD is considered a compressed representation of sets. This

means that membership can be modeled and set operations can be performed on the data

structure, but unlike other compressed relationship representations, a ROBDD does not

need to be decompressed in order to apply an operation. This is accomplished through

two functions that can be performed on a ROBDD, namely, apply and restrict [Bryant,

1986]. The apply operation allows the generation of boolean functions by applying boolean

algebraic operations to other functions. For example, given the functions f and g with the

boolean operator 〈op〉, the apply will return the function f〈op〉g [Bryant, 1986]. Using the

available operators and, or, and not, over all the variables represented in the ROBDD, other

more complicated boolean operations can be derived. The restrict operation allows the

ROBDD to be represented in its most canonical form. It will “restrict” the values represented

for a particular variable if it is a “do not care” condition, thus having the effect of removing

unnecessary nodes as the operation is applied in a depth first walk of the tree [Bryant, 1986].

These available functions are the basis for accurate and efficient operations when applied to

understanding firewall access rules [Hazelhurst et al., 2000].
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2.3.7 Modeling Firewall Rules as ROBDDs

ROBDDs are designed to represent a set of binary variables that yield a binary decision.

With that in mind, the firewall rule can also be modeled in a similar manner by using

the firewall rule tuples as the variables in the ROBDD and the resulting binary decision

is whether the packet is accepted or denied. In this research, a firewall rule consists of

four tuples, source IP, destination IP, destination port, and protocol. Depending on the

configuration of the rule, each of these values can be represented as a single number or as

a range. Considering the example of a source IP address block 74.0.0.0/8 that is of the

Classless Inter-Domain Routing (CIDR) format. A CIDR format allows the expression of

four octet IP address with a routing prefix divided by a forward slash (/). The routing

prefix is a number 0-32 that identifies how many bits of the IP address are not masked out.

Therefore, in the example of 74.0.0.0/8, it means that the first octet is not masked resulting in

the representation of the network address space of 74.0.0.0 to 74.255.255.255, or potentially

16,777,216 individual hosts. A naive implementation using straight binary trees for this

data set would involve a large number of nodes, however, using ROBDDs each bit in the

address can be a variable and the compressed data structure would resemble Figure 2.6(a).

Because of the compression properties, only the variables x1 → x8 are represented in the

form x′
1x

′
2x

′
3x

′
4x5x

′
6x7x

′
8. Figure 2.6(a) and Figure 2.6(b) demonstrate the representation of

IP address 74.0.0.0/8 and 174.0.0.0/8 as ROBDD variables.

In addition to efficiently modeling hierarchical data sets, ROBDDs provide the ability

to perform set operations such as intersection, union, and complements. For example, Fig-

ure 2.6(c) is the union of IP 74.0.0.0/8 and 174.0.0.0/8 and is a canonical form for the union.

The representation of firewall rules can then be extrapolated to contain the source IP, des-

tination IP, port, and protocol in such a way that a large address space can be represented

in a concise and correct form.
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(a) IP 74.0.0.0/8
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(c) IP 74.0.0.0/8 union 174.0.0.0/8

Figure 2.6: ROBDD representation of IP addresses: (a) 74.0.0.0/8, (b) 174.0.0.0/8 and (c)
74.0.0.0/8 union 174.0.0.0/8.
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2.3.8 Rule Processing Conclusion

This research utilizes the ROBDD data structure as the basis for firewall rule and policy

analysis, comparison, and human comprehension. Taking an abstract policy as it is repre-

sented by rules, and then transforming that representation into a compressed data structure

capable of efficient mathematical set operations, such as the ROBDD, facilitates investiga-

tion into policy differences and other interesting operations. By extending related work with

ROBDDs as it relates to firewall rule processing, this research seeks to advance the compre-

hension of the resulting policy and the ability to extract information from the compressed

data structures.

2.4 Backus-Naur Form

In the 1950s two scientists conducting unrelated research efforts generated similar meta-

language description forms which became the most widely used method for formally rep-

resenting a programming language syntax [Sebesta, 2009]. These efforts resulted in the

foundation for formalization of how an artificial language can be described in a method re-

ferred to as context-free grammar, which is capable of describing the syntax of an entire

programming language. In addition, the mathematical correctness of language design is

achieved using the generalization of a particular syntax into token abstractions.

During the same time frame, additional language formalization work occurred with the

design of the ALGOL 58 programming language. John Backus produced research intro-

ducing a new formal notation for specifying programming language syntax and a description

using the new meta-language for the design of ALGOL 58 [Sebesta, 2009]. In subsequent

work, the new meta-language was extended and improved by Peter Naur. The revised

method of syntax description serves as the the basis for the Backus-Naur Form (BNF). The

context-free grammar and BNF are remarkably similar and have been merged into the same

conceptual research area as it relates to programming language formalization.
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< assign >→ < id > = < expr >

< id >→ C | A | B
< expr >→ < id > + < expr >

| < id > ∗ < expr >

| ( < expr > )

| < id >

Figure 2.7: Grammar for a simple assignment statement.

< assign >⇒ < id > = < expr >

⇒ C = < expr >

⇒ C = < id > ∗ < expr >

⇒ C = A ∗ < expr >

⇒ C = A ∗ ( < expr > )

⇒ C = A ∗ ( < id > + < expr > )

⇒ C = A ∗ ( C+ < expr > )

⇒ C = A ∗ ( C+ < id > )

⇒ C = A ∗ ( C + B )

Figure 2.8: Derivation using the BNF grammar from Figure 2.7.

The BNF meta-language uses abstractions for syntactic structures. Compilers then use

these syntactic structures to ensure language correctness during compilation to machine

code. The abstractions in BNF descriptions, or grammar, are composed of non-terminal

and terminal symbols. The non-terminal symbols are assignments or variables, such as expr

and terminal symbols represent lexemes and tokens of the rules themselves. Therefore, a

collection of these grammar rules comprises a full BNF description. Figure 2.7 is an example

BNF grammar for a simple assigment statement.

Taking that simple assignment statement BNF, the conversion of the actual language

construct

C = A ∗ (C + B)
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is generated by the derivation shown in Figure 2.8. The assignment statement is read like a

derivation, it begins with the start symbol assign, and processed through the BNF grammar.

Figure 2.8 follows the processing of the language and the symbol ⇒ is read as “derives”.

A BNF formalized language benefits from being syntactically correct and statically ver-

ifiable. Therefore, the resulting language does not suffer from ambiguity and is better able

to represent the expressiveness needed by the language [Sebesta, 2009].
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Chapter 3

Firewall Policy Diagram (FPD):

Structures for Firewall Behavior

Comprehension

Communication security and regulatory compliance have made the firewall a vital element

for networked computers. They provide the protections between parties that only wish to

communicate over an explicit set of channels, expressed through protocols, traveling over a

network. These explicit set of channels are described and implemented in a firewall using a set

of rules. The firewall implements the will of the organization through an ordered list of these

rules, collectively referred to as a policy. In small test environments and networks, firewall

policies may be easy to comprehend and understand; however, in real world organizations

these devices and policies must be capable of handling large amounts of traffic traversing

hundreds or thousands of rules in a particular policy. Added to that complexity is the

tendency of a policy to grow substantially more complex over time and the result is often

unintended mistakes in comprehending what is allowed, possibly leading to security breaches.

Therefore, it is imperative that an organization is able to unerringly and deterministically

reason about network traffic, while being presented with hundreds or thousands of rules.
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This chapter covers the Firewall Policy Diagram, a set of structures that is an effort to

advance the state of large network behavior comprehension.

3.1 Key Contributions

This chapter presents a novel set of data structures, together called a Firewall Policy Diagram

(FPD). These data structures seek to solve the problem of large network access comprehen-

sion as it relates to firewall policies in several key areas:

• De-correlation of the firewall policy from the source rule set to gain a holistic view of

behavior. This will remove any overlapping rules that will typically exist in a firewall

policy [Yuan et al., 2006] and the resulting data structure will model the actual accept

and deny space.

• Provide the ability to perform arbitrary mathematical set based operations like and,

or, and not. These operations will assist in reasoning about firewall policy changes over

time. They will also provide the foundation for many other firewall operations, such

as understanding the functional differences between two policies. In addition, these

operations will also provide the base for querying an arbitrary policy.

• Provide the foundation data structure for the implementation of a method to query

the policy.

• Once a policy has been decomposed into an FPD, allow the reconstitution of that

policy into a human comprehensible form, like an equivalent policy rule set.

• Finally, the experiments will show that these operations can be executed in seconds of

computation time even on large policies (up to 10,000 rules).

The remainder of the chapter is organized as follows: We begin with an overview of the

FPD data structure and a description of how it is constructed, operated on, and translated
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into a set of de-correllated rules. We will then present the results of performance related

experiments in terms of creation, set operations, and reconstitution of firewall policies of

various sizes. In the final two sections, related work and conclusions about FPDs will be

covered.

3.2 Firewall Policy Diagram

A Firewall Policy Diagram is a set of data structures and algorithms used to model a firewall

policy into an entity allowing efficient mathematical set operations. The entity also has the

ability to reconstitute the policy into a set of human comprehensible rules.

Table 3.1 demonstrates an access list that might be defined for a particular organization

[Kurose and Ross, 2007]. As shown, firewall policy traditionally consists of a list of rules.

These rules are comprised of a subset of the fields in the Internet Protocol version 4 (IPv4)

packet as defined by the Open Systems Interconnection (OSI) model [Kurose and Ross,

2007]. In this research effort only certain fields will be analyzed and modeled. The source

address, destination address, protocol, and destination port will be used. The decision was

made for two reasons, the source port is not often used in most firewall products and the

flag is primarily used at layer three for setup and tear down of TCP connections [Kurose and

Ross, 2007]. However, if source port is necessary, it is a straightforward process to extend

an FPD to include an additional 16 variables.

rule action src address dest address protocol dest port

1 allow 192.168/16 outside of 192.168/16 TCP 80

2 allow outside of 192.168/16 192.168/16 TCP > 1023

3 allow 192.168/16 outside of 192.168/16 UDP 53

4 allow outside of 192.168/16 192.168/16 UDP > 1023

5 deny all all all all

Table 3.1: Example access control list for a firewall interface.
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The internal storage mechanism of an FPD uses Reduced Ordered Binary Decision Dia-

grams (ROBDD or BDD) [Bryant, 1986, 1992; Shannon, 1938]. These data structures were

introduced as an efficient way to capture hierarchical binary data and related works have

described their use in firewall policy validation [Hazelhurst et al., 2000; Ingols et al., 2009;

Yuan et al., 2006]. In addition to those that support the use of the BDD compressed data

structure, there are research efforts that argue against its use in favor of other combination

data structures [Liu and Gouda, 2008]. However, in our work, the BDD provides the effi-

cient storage and the necessary operations that allow our algorithms to reason about policy

changes over time and differences between policies. Also, using network address translation

(NAT) methods presented by [Ingols et al., 2009], multi-firewall behavior over time can be

modeled using BDDs, a missing research component in other policy comprehension work to

date.

In a similar manner to the FIREMAN system [Yuan et al., 2006], policies and rules

are modeled as variable sets represented as BDDs. Using a BDD is an efficient way to

represent a Boolean expression, like (a ∨ b) ∧ c. Extending this concept to firewall policies,

the variables in the expression become the bits of the associated IPv4 field. In this research,

32 bits representing the source address, 32 bits representing the destination address, 8 bits

representing the protocol, and 16 bits representing the destination port. This means that for

a particular accept space, there are 88 variables and 288 potential combination of variable

values.

3.2.1 Creation and Decomposition

When an FPD is initialized and created, the process begins by iterating over the policy rule

set one rule at a time. Each rule is decomposed into its constituent parts relevant to our

research: source, destination, protocol and destination port. At this point, each bit of each

field is converted into an input vector of an appropriate size for the field. For example,

the source field is 32 bits and therefore the vector is of size 32. Once the input vectors are
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constructed, the four input vectors are appended and added as a constraint in the underlying

BDD [Yuan et al., 2006].

3.2.2 Operations

Based on set mathematics, if a data structure can accurately implement the union, inter-

section, and complement operation, other operations can be derived. For the purposes of

this research and experimentation there are two primary operations that are being studied,

namely, Difference and Symmetric Difference.

Difference is used in the situation where there exists a base policy P and the desire

is to understand what has changed in a later version of the policy, P ′.

4 = P ′ − P

= P ′ ∧ ¬P

Symmetric difference is used in the situation where there exists two policies P1 and

P2 and the desire is to know what is not shared between the two policies.

4 = (P1− P2) ∨ (P2− P1)

= (¬P2 ∧ P1) ∨ (¬P1 ∧ P2)

Using these two operations with basic set functions, we are able to reason about policy

discrepancies and understand how one policy is related to another arbitrary policy. In

addition, these operations can be chained together to produce a FPD′ such that changes to

a policy over time or as a set of access flows through multiple policies, the data structure can

then be used to extract the resulting allowed (or denied) rules in a human comprehensible

form.
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3.2.3 Human Comprehension

Using the resulting policy represented by 4, the procedure to reconstitute that policy into

a human consumable set of rules involves transforming the BDD. The first step in the

algorithm is to only explore the space necessary for the operation, typically the accept

space. Therefore, starting at the root node the graph is traversed to the accept node and

avoids having to explore the potentially large opposite space. During this traversal, the BDD

is transformed into human comprehensible rules. To accomplish this sort of rule extraction

without having to completely decompress the data structure, two additional data structures

and algorithms are used.

The first data structure is a Ternary Tree, which, as the name suggests, consists of three

child nodes for every parent. The purpose behind this tree is to take the fully compressed

BDD and decompress portions of it without the full cost of the worst case of 288 leaf nodes

being represented. There is a low, high, and combination child node, such that the low

represents a 0, the high represents a 1, and the combination represents both 0 and 1. The idea

behind using a Ternary Tree was inspired by [Bryant, 1986, 1992] and other systems allowing

the processing of a “do not care” variable, such as ternary content-addressable memory

(TCAM). Therefore, for a particular sequence of ordered variables in a BDD, solutions that

occupy the same space (i.e., accept) have variables of three potential values: 0, 1, or both.

The representation of the potential values is 0, 1, and X, respectively. The definition of the

0 and 1 are the same as a binary tree, and the variable represented in the node assumes

that value. The new edge value of X represents that it is both 0 and 1 for that particular

variable at that particular node in the tree. The result is compression in the size of the tree

by removing the need for a left and right sub tree.

Figure 3.1 illustrates the concept and what the model would resemble when a binary

tree is represented as a Ternary Tree. The tree still maintains the hierarchical nature of the

data, but in a more compressed format. There are two important differences as a binary

tree transforms to a Ternary tree. The first is the representation of the values of a particular
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Figure 3.1: Identical binary numbers in a (a) binary tree and (b) Ternary tree.

variable (identified by bit location) is stored with the node. The second difference is the

order of the variables in the Ternary Tree, as they are representative of how a tree formed

from the algorithm shown in Figure 3.2 resulting in the least significant bit (LSB) variable

at the root. These differences allow the tree to be pruned in reverse such that the process

begins at the root and generates intervals as it traverses to a leaf. The binary numbers

represented in these identical trees are 1, 3, 4, and 5.

The Ternary Tree provides an intermediary between the BDD and the pruned rules by

allowing ranges in data to be represented and subsequently combined as the tree is pruned.

This is information that cannot be easily ascertained from a canonical BDD representation.

The algorithm to transform the ROBDD into a Ternary tree is shown in Figure 3.2.

An additional concern is that a true tree structure has the potential to have a higher

storage cost because of replicated data nodes in child trees when the pattern could be shared

where appropriate. This has been addressed in the Ternary Tree by allowing it to share nodes

where the underlying pattern is shared. The resulting rule set deals with any collisions that
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may occur when pruning by copying intervals. For example, if the pattern starting at a

certain variable is common and shared by parent variables, then the Ternary Tree will share

those nodes by an edge pointing to those nodes. This accomplishes the goal of reducing

space requirements without sacrificing the expressiveness of the data structure.

Input: ROBDD Bdd
Output: A fully formed Ternary Tree T
1: procedure Translate(Bdd)

. Bdd Variables labels start with 0
2: T ← newTernaryTree
3: for all R ∈ RootNodes(Bdd) do
4: N ← createTernaryRoot(T )
5: WalkEdge(R.low,N)
6: WalkEdge(R.high,N)
7: end for
8: end procedure
9: procedure WalkEdge(bN, tN)
10: for bN.parent.var to bN.var − 1 do
11: tN ← tN.middle← newTernaryNode(X)
12: end for
13: if bN.var = Bdd.One then return
14: end if
15: if bN.low 6= Bdd.Zero then
16: tN.left← newTernaryNode(0)
17: WalkEdge(bN.low, tN.left)
18: end if
19: if bN.high 6= Bdd.Zero then
20: tN.right← newTernaryNode(1)
21: WalkEdge(bN.high, tN.right)
22: end if
23: end procedure

Figure 3.2: Algorithm for translation of a ROBDD to Ternary tree.

3.2.4 Pruning the Ternary Tree

The Ternary tree acts as an intermediate data structure where the primary purpose is to allow

a second algorithm to collapse the tree into a set of human comprehensible data structures.

The second algorithm is the pruning procedure that starts at the place-holder root of the
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for i = Min; i <= Max; i + = 2 Conversion Factor do
V alue← i

end for

Figure 3.3: Algorithm for expressing all interval values.

Ternary tree and then traverses the tree to the leaves, pruning and generating intervals.

The resulting data structure captures an interval and a count of bits in a conversion factor.

The interval has a starting and ending number, with the conversion factor identifying how

the interval sequence progresses. As an example, the source IP address Ternary Tree that

represents an odd number of IP addresses is considered. In this example, the interval would

be the starting and ending values of the range with a conversion factor of 1. All individual

values in an interval can be expressed using the procedure shown in Figure 3.3.

As the tree is walked to the heuristically defined leaves of the tree, the interval is trans-

formed by bit shifting and sometimes cloning of the interval to represent a transformation

from a hierarchical data set into a rule. Additional details of the algorithm are identified in

Figure 3.4. As the algorithm progresses, a number of these intervals are captured and get

merged when appropriate. The internal representation of the ranges makes use of a red-black

tree algorithm [Cormen et al., 2009] to maintain a balanced structure while the intervals are

assembled into a human readable form.

Notably, the entire rule is represented on the originating BDD; and therefore heuristics

are used to help separate the data and make the rules more human comprehensible. This

means that for a particular policy model, the data structure represents the concatenation of

the source IP, destination IP, destination port, and protocol. The algorithms will separate

the data structure into three separate Ternary Tree boundaries during the processing of the

algorithm, namely, a source IP boundary, destination IP boundary, and service boundary.

The process of extracting human comprehensible rules from an FPD runs at O(V +E) where

V and E are the number of vertices and edges in the Ternary trees, respectively.

The upper bound on the number of copies an interval must endure is 16. This is because

a copy must occur when a variable transitions from 0 or 1 to X, and for a 32 variable number
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that can only occur a maximum of 16 times. This is also an upper bound on the number of

intervals that could potentially exist at 216.

The final useful function achieved by using the interval data structure with conversion

factor is a simple way to determine the number of addresses, ports or services in a particular

rule. For an interval in a rule, it results in the equation:

[
(Interval Maximum− Interval Minimum)

2 Conversion Factor

]
+ 1

The result of the pruning is a list of de-correlated rules with three intervals, the source IP

range, destination IP range, and service range. An interesting result of the way that we have

chosen to order the BDD variables is that the source IP to destination IP variable transition

drives the number of distinct rules present in the final reconstituted rule set. This means

that when that boundary in the variables is crossed while traversing the Ternary Tree, a

new rule is generated and the remaining destination IP and service ranges are collected in

that rule. Additional research could be done using the BDD variable reordering capability

to find the most concise rule set representing a particular policy.

3.2.5 Heuristics Applied to Policies

Knowledge about the data set being modeled is important to the conversion and pruning

algorithms. The heuristics provide the knowledge about where the hierarchical data sets

begin and allow the summary of those data as the tree is pruned.

In this work the size of each of the fields drives the separation of the trees such that the

32nd, 64th, and 88th variables divide the hierarchy of a solution into the source IP address,

destination IP address, and service (a combination of protocol and port). Notably, these

algorithms can be applied to other hierarchical data sets in different domains. They may

be especially useful when dealing with large solution spaces and multiple hierarchies being

combined to provide the composition of a desired “space”.
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Input: Ternary Tree
Output: List of Rules that composed the space
1: procedure PruneRules(T )
2: for all L ∈ Children(T.root) do
3: Interval← create(from = 0, to = 0)
4: Depth← 0
5: ParseNode(L, Interval, 0)
6: end for
7: end procedure
8: procedure ParseNode(N, Interval, lnV al)
9: if N.value = X and Interval.factor empty and lnV al 6= X then
10: Interval.factor ← Depth
11: end if
12: if N.value = X then
13: Interval.to← to | 1 << depth
14: end if
15: if N.value = 1 then
16: Interval.from← from | 1 << depth
17: Interval.to← to | 1 << depth
18: end if
19: if N is boundary then
20: Rules← Interval
21: Interval← create(from = 0, to = 0)
22: Depth← 0
23: ParseNode(N.parent, Interval, 0)
24: else if N not root then
25: Depth = Depth + 1
26: if lnV al 6= X and N.value = X then
27: Interval′ ← clone(Interval)
28: ParseNode(N.left, Interval′, N.value)
29: ParseNode(N.right, Interval′, N.value)
30: ParseNode(N.middle, Interval′, N.value)
31: end if
32: ParseNode(N.parent, Interval,N.value)
33: end if
34: end procedure

Figure 3.4: Algorithm for rule extraction
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3.2.6 Generalized Example

This section will step through an example of how the algorithms of the FPD function on

a smaller solution space in an effort to both show how the boundary heuristics may be

applied to other domains, as well as a better description of how the algorithms function.

A example is considered where we represent the solution space as 28, with a fictitious rule

being made up of two fields of 4 binary variables, A and B, which subsequently form an

8 binary variable solution space. As the stored ROBDD is generated, A will represent the

decimal values 2 through 12 and B will represent the decimal values 3 through 13. Figure 3.5

visualizes the canonical ROBDD data structure representing A and B with the LSB at the

root, and referred to as variable zero. As the ROBDD is traversed from root to leaf, the tree

is transformed into the graph as seen in figure 3.6. The variable transition values high and

low are shifted to the variable values in the individual nodes. The new root node with label

1 is created and the tree is rooted at that node. In addition, the solution space removes the

need for the edges leading to the zero value as we do not care about those numbers when

extracting the stored data. The change from one tree to another is what is described in the

algorithm shown in Figure 3.2.

As indicated in earlier explanations of the Ternary tree, it acts as an intermediary data

structure as human comprehensible intervals are extracted. Therefore, the next step of

process is to traverse the Ternary Tree from root to leaf in an effort to generate a set of

rules with the described intervals that make up those rules. We have already identified our

single boundary heuristic in this generalized example as variable 4 of our 8 variables (using

a zero index). Therefore as the algorithm shown in Figure 3.4, begins with that knowledge

by traversing the root to leaf in an effort to create intervals.

The initial result is two groupings or rules being generated. This can be visually con-

firmed in the Ternary tree with the existence of two nodes for variable 4. Subsequently, in

each rule there are two sets of intervals, those representing the variables 0 through 3 and
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those representing the variables 4 through 7. Rule 1, segment 1 (variables 0-3):

2 to 10 every 23

3 to 11 every 23

4 to 12 every 23

5, 6, 7, 8, 9

Rule 1, segment 2 (variables 4-7):

4 to 12 every 23

6, 8, 10

Thus, the intervals may be merged into segment 1 (variables 0 through 3) being represented

by the decimal numbers 2 through 12. Subsequently the segment 2 interval may be merged

into 4 to 12 every 2, so even numbers 4 through 12. Based on a similar interval merging

procedure for Rule 2, segment 1 (variables 0-3) becomes:

2 to 10 every 23

3 to 11 every 23

4 to 12 every 23

5, 6, 7, 8, 9

Rule 2, segment 2 (variables 4-7):

3 to 11 every 23
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5 to 13 every 23

7, 9

The intervals may then be merged into segment 1 being represented by the decimal numbers

2 through 12. Then segment 2 may be merged into 3 to 13 every 2, so odd numbers 3 through

13.

The final merge may then be reviewed between two rules such that when a segment of

a rule matches another segment, as it does with segment 1, it may become one rule with

the segment that is not matching (segment 2), being combined and reviewed for merges.

Therefore, after rule 1 merges with rule 2, and since the segment 2 intervals represents

overlapping odd and even ranges, i will become a contiguous decimal interval from 3 to 13.

This reconstitutes our original rule that created the BDD: A = 2-12, B = 3-13; which is fit

for human comprehension.

This algorithm is in contrast to a more naive, brute force approach to processing all

known “solutions” to the BDD. In the example presented here, there are 64 8-bit numbers

that will need to be parsed back into the known intervals that created the BDD from the

start. While that number may seem small, the example and solution space are small by

design. The important difference is between the number of solutions and the number of

nodes in the Ternary tree. In addition, the brute force method removes the hierarchical

relationships between the nodes, i.e. the heuristic value of node 4, further complicating

reconstituting related intervals.

3.2.7 De-correlation

When a list of rules in a policy is decomposed into an FPD, a reconstituted policy that

covers the same equivalent accept or deny space will result in a rule set with none of the

resulting rules overlapping in any area. The primary reason for this behavior is that as a

policy is decomposed one rule at a time, all inconsistent or overlapping rules are removed and
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Figure 3.5: ROBDD generalized example.

just the space is represented. The de-correlation property is useful in a number of scenarios:

• A policy no longer has a need to be processed as an ordered set of rules, since the

FPD removes any overlapping rules. As a result, if the FPD is built by the rules in

the policy from last to first, the resulting system can match an incoming packet to all

rules simultaneously.

• A policy may be substantially smaller and take much less time to process once it has

been de-correlated. This behavior is the effect of the procedure that converts rules into
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Figure 3.6: ROBDD as Ternary tree.

the FPD where it has also merged adjacent rules and removed any redundancies. In

addition, the matching operation of a rule can be performed in constant time. This is

because matching a rule involves walking the data structure from root to result, which

is a constant 88 elements.
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Figure 3.7: FPD generation and extraction of rules for policy sizes 100 to 10,000 rules.

3.3 Experiments

The experiments designed for our work seek to review and address problems seen in the

outside industry, i.e., large and difficult to understand firewall policies. We will first measure

the time required to construct an FPD from rule sets of various sizes. We will then measure

the time to extract a set of human comprehensible rules from an FPD. Finally, we will

review the results of the difference and symmetric difference operations between

two policies that share from 0% to 90% of the same space. The FPD data structure and

algorithms are implemented in the JavaTM 6 programming language and the tests are run on

a Mac Book Pro laptop computer. For ROBDD software, the Buddy and JavaBDD libraries

were used [Lind-Neilsen, 2004; Whaley, 2007].

For the data sets used to test creation and extraction of rules, policies of sizes 100 to 10,000

with 100 rule increments were created. When testing the difference and symmetric
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difference operations, we created two randomly generated 200 rule policies that share

from 0% to 90% of the same space. Security reasons prevented us from being able to gain

access to actual industry rule sets, as the majority of companies with firewall policies of

those sizes are hesitant to allow outside parties access.

Figure 3.7 charts the performance of the FPD data structure for creation of a policy from

a set of rules through to extraction of the policy into an equivalent set of rules. For creation

of the FPD from a set of rules, the performance is consistently below one second for policies

up to 5,500 rules. The creation times then begins to take more than a second until finally

approximately 3 seconds to create a policy that originated from 10,000 rules. The extraction

stays consistently less than a second to produce an equivalent set of rules and stays less than

500 ms for the majority of the data sets.
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Figure 3.8: FPD difference and symmetric difference operations for a 200 rule policy.

Figure 3.8 charts the performance of a difference operation and symmetric dif-
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ference operation between two 200 rule policies. The experiment involved executing the

appropriate operation; and then extracting the human comprehensible rules from the FPD.

The performance of the algorithms takes the most time when the overlap of the space is

zero or very small. This is indicative of those results being the largest resulting solutions

space but also demonstrates the algorithms are fast enough to be used in larger simulations

and larger solution spaces. Symmetric difference operations exhibited slower average

processing performance due to the size of the resulting space represented by that operation.

Difference operations yielded smaller resulting data set sizes and reflected that fact in

the computation times.

3.4 Related Work

The first work to discuss binary decision diagrams in the context of solving interesting

problems, such as constraint satisfaction (SAT) and boolean expressions is [Bryant, 1986].

This is the basis for some of the previous algorithmic discussions and covers a couple of

important items. The first are the manipulation algorithms necessary to accomplish ROBDD

behaviors reduce and apply. The behaviors are the basis for a compressed data structure,

thus saving space; and the mathematical set operations and and or, thus providing the more

advanced set manipulation. These operations are described in full and the paper covers the

binary manipulation that is based on the mathematical concept called the Shannon expansion

[Bryant, 1986; Shannon, 1938]. The second item is a discussion of the worst case running

time, and how a compressed data structure typically does not hit the worst case of a fully

decompressed structure because it is not required to touch every decompressed node in the

ROBDD. Thus, the time complexity of ROBDD operations is proportional to the size of the

graphs being manipulated. A later work, advanced the state of the binary decision diagram

by introducing variable ordering and reducing operations for further efficiencies of the model

[Bryant, 1992].
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Qiu et al. (2001) were interested in how to implement data structures in the firewalls for

the most efficient processing of the packet as it entered the inbound interface. The research

focused on how to implement the algorithms that made packet analysis data structures as

fast as possible. The work combined backtracking search backed by database technology

and pruning tries. The techniques allowed routers based on software and hardware to im-

prove how packets are analyzed [Qiu et al., 2001]. So, while this effort did not expand on

policy comprehension, the work provides some background on how existing devices quickly

process packets and serves as the basis to differentiate between packet matching and policy

comprehension. It also introduced modeling binary numbers as fast lookup trees.

One of the first papers to address large rule sets was published in 2000 [Hazelhurst et al.,

2000]. It is the primary data structure paper that has allowed the analysis of large and

complex rule sets in much faster time. Essentially it is a demonstration of how ROBDDs

are used to improve the look up algorithm without sacrificing performance; and allowed

for the completely accurate validation of rules sets to ensure that the accept and deny

spaces were as desired. This is the first paper to discuss using a compressed data structure

to handle the IPv4 large search space. In addition, the paper built a query engine on top

of a formal verification system named Voss [Hazelhurst et al., 2000]. They implemented a

simple functional language that is capable of modeling a firewall policy in a formal verification

system. While the underlying Voss hardware verification system used ordered binary decision

diagrams to model a rule set, it is unclear as to the method in which the results were extracted

from the canonical BDD form. It appears that a brute force method was implemented to

parse through the entire solution space resulting from a query. The algorithm complexity

was reported to be linear with respect to the number of rules for creation of the policy and

constant time with respect to the number of variables in the BDD for any set operations

on the policy [Hazelhurst et al., 2000]. This is consistent with our work on processing FPDs.

However, that analysis neglects to take into account the processing time related to extracting

human comprehensible data from a binary decision diagram. This is a large segment of
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processing and could involve millions of individual BDD solutions. Our analysis shows that

the complexity should have been a function of the resulting BDD and the number of distinct

solutions, a potentially much larger complexity that is not correlated to the number of rules.

As research progressed on the use of ROBDDs for modeling policies, additional work was

done using a new data structure called a Firewall Decision Diagram (FDD) to simplify a rule

set. This first paper appears to be a blend of the ROBDD reduction algorithms to remove

unnecessary rules from the policy [Gouda and Liu, 2004]. Of note, the FDD does not seek

to provide the most canonical form of a policy space. As such, the FDD is not a compressed

data structure. Furthermore, the work is strictly focused on modeling a security policy and

is not shown to represent routing space or NAT. In a subsequent work, they used a special

type of FDD called the Firewall Decision Tree (FDT) for use in detecting redundant rules

[Liu and Gouda, 2005]. As indicated, this is an alternate means outlined by [Hazelhurst

et al., 2000] and instead of using ROBDD data structures, devises a new FDD derived data

structure.

Gouda and Liu further expanded on their previous work with the FDD data structure to

allow a policy to be compared to another similar policy, and rules to be extracted from the

merging of those two policies [Liu and Gouda, 2004]. The ideas are rooted in the premise

of better methods to design firewall rule sets and attempt to apply programming techniques

and static analysis used in redundant system design to find the best solution to a particular

overall security policy design [Engler et al., 2001; Feamster, 2004; Feamster and Balakrishnan,

2005; Liu, 2007; Mahajan et al., 2002; Maltz et al., 2004; Spring et al., 2004; Sung et al.,

2009]. It is not clear in the original work if the algorithms could be used for arbitrary

policies to be compared, nor what sort of information comes from the comparison, just that

it could be used to determine the differences of when a particular decision for a packet is

different that another policy [Liu and Gouda, 2004]. In later experiments from the same

FDD data structure, they further describe FDDs as being able to compare two firewalls that

have been synthetically changed to have 0-50% of the rules changed or removed; however
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the two policies always had the same origin [Liu and Gouda, 2008]. It is in this work that

they specifically state problems with using a ROBDD as the core of the data structure [Liu

and Gouda, 2008], however our work seeks to overcome those concerns.

The FDD data structure is most functionally similar to what the FPD seeks to achieve

[Gouda and Liu, 2004; Liu and Gouda, 2005, 2008]. The goal of the data structure is

similar to ours, but they chose a different internal representation of a policy, specifically a

combination of prefix and interval trees with additional data structures. It is capable of

some difference operations, and is portrayed as a tool in which to achieve more accurate

firewall design and change impact analysis. In addition, it is not clear that they are capable

of handling more complicated situations, such as network address translation or routing

tables, key components in analyzing modern firewall configurations. In addition, the data

structure is very specific to firewalls and it does not appear to handle arbitrary mathematical

set operations or arbitrary hierarchical data sets, both functionalities the FPD is capable

of modeling.

Wang et al. (2006) and Yin et al. (2006) also developed a comparison model between

two policies. The work introduces a new data structure called Firewall Policy Tree (FPT),

but appears to be a derivation of the FDT. The efforts take a firewall policy and transforms

it into a FPT, and from that state it is able to be compared to another FPT to discern

the differences between the two policies [Wang et al., 2006; Yin et al., 2006]. The resulting

construction and comparison algorithms appear to be less efficient than our work. The work

also does not cover NAT or routing related to modern firewall technology.

Horowitz and Lamb (2009) also designed a policy extraction framework for taking a

particular policy rule set and de-correlating any overlapping, or correlated, rules. The data

structures are not covered, but the algorithm is a rule by rule comparison for those rules that

are deemed as correlated. How the correlation is determined is not clear, but the assumption

is that related work on correlated rule sets is used. This is another step in the direction of

human comprehension of the difference between two arbitrary firewalls and introduces the
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notion that a rule set does not have to be ordered if the rules are all completely disjoint

and de-correlated. The methods are strictly for de-correlating rules with an exponential

running time correlated to the size of the original policy and no overall policy comprehension

[Horowitz and Lamb, 2009].

Other work has been done modeling firewall policies, however, most of the models reflect

their intended use and not all are capable of the sort of operations described in the FPD.

Much of the research has focused on rule processing and validation of those rules where

the goal is to identify hidden, shadowed, and inconsistent rules [Al-Shaer and Hamed, 2002,

2004a,b; Bartal et al., 1999; Chao, 2011; Eronen and Zitting, 2001; Golnabi et al., 2006;

Gouda and Liu, 2004; Liu and Gouda, 2005; Yuan et al., 2006]. In general the focus in those

efforts is on algorithms for finding policy anomalies both from a single policy model to a

multi-policy model. A portion of the related research introduced the use of BDDs for the

models and became the foundation for some of the algorithms in our work [Bryant, 1986,

1992; Hazelhurst et al., 2000; Shannon, 1938; Yuan et al., 2006].

The latest firewall access data structure to emerge is referred to as Rule Anomaly Relation

(RAR) tree [Chao, 2011]. This data structure and work is another way to detect and display

anomalies and inconsistencies in firewall policy design. The system allows a single or multiple

firewall security policy to be modeled as a RAR and successfully detect hidden, shadowed,

redundant, or correlated rules. The work is similar to that of FIREMAN in that it seeks to

find anomalies in a security policy [Yuan et al., 2006].

3.4.1 Rule Processing and Validation

Application of these policy modeling data structures was first reviewed in the Firmato re-

search project [Bartal et al., 1999]. The Firmato firewall management toolkit is some of the

first work that focuses on the complexity of an organization’s firewall policy. Broadly speak-

ing, it was a research tool for generalizing firewall policies from different vendors, applying a

entity relationship diagram (ERD) model to the system, and allowing some analysis of the
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policy through the ERD. This research did not really address the complexity of the rules,

but instead began the work of a generalized management structure of the firewall policy. It

attempted to separate the security policy design from the actual network topology through

the use of an ERD and modeling language that could be statically checked for correctness

[Bartal et al., 1999].

Firewall Policy Advisor is an early effort to find hidden, shadowed, and otherwise mis-

configured rules in a particular policy [Al-Shaer and Hamed, 2004a]. They utilize their own

tree algorithms and finite state machine for identifying problems. The data structures do

not compress, therefore the space and time complexity will grow with the number of rules

in the policy [Al-Shaer and Hamed, 2002]. They continued working on the Firewall Policy

Advisor and improved some of the analysis to identify general anomalies in a policy. They

continue to use the same data structures, and improved on some of the available functionality

[Al-Shaer and Hamed, 2004a,b]. In a paper they extended the model to include distributed

firewalls, extending the reach to the organizations [Al-Shaer and Hamed, 2004b].

A problem that had typically been addressed by manual configuration and faster hardware

is the problem of traffic flow analysis and rule ordering. The basis behind rule ordering is

to place the most used rules at the top of the policy so that less time is spent finding a

match. [Hamed and Al-Shaer, 2006] researched the ability to autonomously optimize rule

order through statistical distributions of traffic analysis followed by automatically ordering

the rules. They made use of FDD data structures to ensure that the policy is consistent

after reordering (as best as we can tell). It is not explicitly spelled out, but they must have

had a mechanism to ensure that re-ordering rules does not alter the firewall behavior.

FIREMAN is a project that allowed the checking of the accept and deny space as it

relates to an entire policy and checked the policy for inconsistencies and misconfiguration

[Yuan et al., 2006]. The primary contributions of this work was to represent the firewall

rules in a ROBDD, and then show how performing different set operations on the data sets

as a rule was added to the space allowed the fast and accurate detection of rule anomalies
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[Yuan et al., 2006]. The work accomplished with FIREMAN is the basis for the research in

our work. The construction of the ROBDD in relation to the firewall rule sets starts the

process of comprehending a policy and understanding what is allowed or denied.

Two works use data mining algorithms on firewall traffic logs to find a more efficient and

possibly smaller set of rules. One looks at mining log frequency to deduce a better policy

based on that frequency, and follows that up with a filtering rule generalization algorithm to

reduce the size of the rule set [Abedin et al., 2010]. In addition to making the policy more

efficient, the research use FDDs [Gouda and Liu, 2004] for testing the policy for consistency.

The second work developed a model to check the correctness of a firewall policy by mining

the firewall log data [Abedin et al., 2010]. The effort looks to ensure that policy anomalies

are identified and corrected.

Work has also been done on an automated testing framework for ensuring policy compli-

ance [El-Atawy et al., 2007]. This work does not accomplish this effort by brute-force testing

of all possible combinations, as the time for that sort of a test is unreasonable. Instead, they

use a Backus-Naur Form (BNF) compliant language to express the policy and static analysis

to ensure that the policy complies to the intent [El-Atawy et al., 2007].

3.4.2 Reachability and Access

Fang is based on the Firmato engine and simulates a firewall based on generalized config-

urations [Mayer et al., 2000]. Therfore, it is able to build the entire model of the network

in memory and then run various “what if” scenarios through the simulated network to find

the answer to the questions. The work is similar to what is presented in our work; however,

they did not include the analysis engine that handles policy differences [Mayer et al., 2000].

In addition the methods and data structures appear to involve “brute force” testing of all

possible combinations, or holding rule information at each firewall. This issue could lend

itself to undesirable running times.

Gouda and Liu (2004) covers network reachability theory that acts as a basis for the
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algorithmic complexity to calculating routes. The work covers more than just firewalls and

instead reviews both access control lists (ACL) and physical routes in a network. In addition,

the research covers reasoning about how different network elements affect the routing. The

most important work is packet transformation through network address translation. Finally,

the work provides an algorithm for calculating reachability in a network. While the algorithm

is inefficient and at worst case is exponential, it provides a mathematical framework for

reachability calculations [Gouda and Liu, 2004].

Liu et al. (2004) also presented the first research effort for a query language of reachability

and firewall access. The primary purpose was to find a structured and consistent way to

ask questions about access. An example presented in that work is “Which computers in the

private network can receive packets from a known malicious host in the outside Internet?”

To solve this generic sort of problem they addressed two challenges: how to describe a

firewall query, and how to process a firewall query. The resulting language was similar to

Structured Query Language (SQL), a declarative language used to handle relational data.

The language was named Structured Firewall Query Language (SFQL) [Liu et al., 2004].

The work included using Firewall Decision Trees (FDT), a derivative of FDD, with the

query language. The results show that large volumes of rules can be processed using FDTs,

but the research did not address difficult issues such as policy comparison, multiple firewalls,

and network address translation [Liu et al., 2004].

3.5 Internet Protocol Version 6

Internet Protocol Version 6 (IPv6) is the latest iteration in the Internet protocol routing

stack. It is an improvement to the current protocol IPv4, with the primary difference related

to our research being the unique address space being expanded from 32 bits to 128 bits. This

increase will allow many more devices to communicate and connect on the Internet. However,

this also represents a challenge for firewalls and firewall administration teams. The growth
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of the addressable space means that these teams will need better and faster tools in which to

comprehend how the firewalls under their control are configured and what sort of changes are

happening to the security policies over time. This trend in the market space also supports

the need for structures such as FPD for allowing the comprehension of these policies. While

the experiments in this dissertation are on 32 bit addresses, expanding the FPD to use 128

bit addresses is a straightforward process and is planned for future experimentation. There

is no reason that the algorithms would not function, although the size of the search space

would become at least 2192 larger. This expansion is a result of the source and destination IP

address space growing from 232 to 2128, therefore the number of bits needing to be represented

grows 296 × 296 = 2192.

3.6 Chapter Summary

In this chapter we presented the Firewall Policy Diagram, an efficient and accurate data

structure that serves as a basis for reasoning about firewall policy behavior and change.

There are four primary contributions in this work:

• Data structures to efficiently model firewall policies that can be used to reason about

them over time and modification.

• A data structure to act as the basis for the implementation of a means in which to

query the policy.

• A set of algorithms in which to extract understandable rules from the FPD.

• Experimental evidence that these algorithms can perform the appropriate operations

in a seconds even on large firewall policy rule sets.
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Chapter 4

Firewall Policy Query Language

(FPQL) for Behavior Analysis

In the last chapter we introduced the Firewall Policy Diagram as a mechanism to represent a

firewall policy in a concise and efficient data structure. The structure facilitates the canonical

representation of a policy as well as human comprehension of the policy. This chapter builds

upon that data structure to provide a language for querying the data structure about the

space that is represented in a policy, either the accepted, denied, or remaining traffic. The

novel Firewall Policy Query Language (FPQL) is a language developed in this work, loosely

modeled after the Structured Query Language often seen related to database systems and

relational algebra. At its core FPQL provides a group of boolean-based operators for deriving

knowledge from a very large solution space. This work seeks to provide a simple, yet powerful,

query language that is useful for human comprehension of a firewall policy as represented

by an FPD.

On the surface, firewall rule sets are relatively easy to understand. In the context of

this research each rule consists of four fields and when the set contains a few rules, an

individual firewall administrator can comprehend the access level, and immediately know the

appropriate location for granting additional access for a given request. However, because the
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IP address, protocol, and port solution space can cover a very large number of permutations,

an administrator’s ability to fully understand access diminishes as a rule set grows.

4.1 Key Contributions

This chapter presents a query language for comprehension of large network access. The

language extends the FPD and provides an expressive query language that is utilized by a

team of firewall administrators to answer important questions about what is contained in a

large, and often very difficult to understand, set of firewall policies. In a syntax similar to the

familiar Structured Query Language (SQL) [Codd, 1970], the user describes what is desired

in a declarative manner, allowing the system to find and return the information. This is in

opposition to a more procedural style of telling the system how to find the information.

In addition to describing the tenets of the language, this dissertation presents the results

of experiments run against large policies (up to 20,000 rules) showing how individual results

can be returned in approximately 120 microseconds of processing time. Finally, we present

how this language is capable of formal verification of single and multiple policies in a manner

similar to FIREMAN [Yuan et al., 2006].

The remainder of the chapter is organized as follows: We begin with a description of the

Firewall Policy Query Language (FPQL) and how it may be used to generate, manipulate,

and query a firewall policy, as represented in an FPD data structure. We will then present

the results of performance-related experiments in terms of query operations on large ruleset

firewall policies. Next, formal verification of policies will be demonstrated using FPQL. In

the final two sections, related work and conclusions about FPQL will be covered.

4.2 Firewall Policy Query Language

The intent behind the design of FPQL is to provide a mechanism for firewall administra-

tors and other security professionals to take a known set of complex firewall policies, load
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them into an FPD database, and query the policies and across policies to uncover valuable

information about access.

4.2.1 Policy Database

Figure 4.1 illustrates the general architecture of our policy database, which is based on the

FPD data structure. The database interaction is managed with a FPQL processor such that

the language may be used to create and manipulate firewall policies stored within. The

important notion here is that the generation and storage of multiple policies in one system

enables comparisons and manipulations between the stored policies. Examples include stor-

ing versions of a policy over time to understand how it has changed, or storing policies from

multiple vendors to better understand the differences.
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Figure 4.1: Architecture of the FPQL processor and policy database.
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4.2.2 FPQL Grammar

In the subsequent sections of this chapter Extended Backus-Naur Form (EBNF) [Sebesta,

2009] is used to accurately describe the grammar of FPQL. The EBNF grammar of common

elements used in the more specific Insert, Query and Delete grammar is described by:

< alpha >→ a | b | c | d | e | f | g | h | i | j | k | l | m
| n | o | p | q | r | s | t | u | v | w | x | y | z
| A | B | C | D | E | F | G | H | I | J | K | L | M
| N | O | P | Q | R | S | T | U | V | W | X | Y | Z

< digit >→ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0

< id >→ (< alpha > | < digit > | ), { (< alpha > | < digit > | ) }
< field >→ S | D | Prot | Port | Pol

< var >→ < id > . < field >

< val >→ ( < digit > | . | / | −), { ( < digit > | . | / | −) }
< lparen >→ (

< rparen >→ )

< comma >→ ,

The EBNF meta-language uses abstractions for syntactic structures. The abstractions in

EBNF descriptions, or grammar, are composed of non-terminal and terminal symbols. The

non-terminal symbols are the EBNF descriptions, such as var, id and field such that they are

composed of other non-terminal or terminal symbols. Terminal symbols are the individual

characters, combination characters (strings), punctuation marks or digits; together called

the lexemes or tokens. Terminals are considered the lowest level of derivation and may be

matched with the actual input. Therefore, a collection of these grammar rules comprises a

full EBNF description. The syntax statements are read like a derivation, beginning with the

start symbol of the particular grammar, and is processed through the BNF structure.

To further explain the notation, we will use the following definitions:
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S = Source IP Space

D = Destination IP Space

Prot = Protocol

Port = Destination Port

Pol = Entire policy Space

alpha = Identifies a through z or A through Z

digit = Identifies 0 through 9

var = An FPD name (id) and field

val = A field value that will an address or number format,

depending on the field being manipulated

id = A user selected identifier composed of alpha, digit, or underscores

field = The known fields of an FPD, S, D, Prot, Port or Pol

lparen = A left parenthesis “(”

rparen = A right parenthesis “)”

comma = A comma “,”

Most of the common elements are straight forward in the descriptions; however, the var

definition will benefit from some additional explanation. The var element is made of two

sub elements, id and field, separated by a “dot”. Using these sub elements in-conjunction

with a “dot” notation allows the language to dereference a policy identifier with the policy

element for use in the operation. For example, in the query one might define a policy as

p1 accept and add known rules to the policy in the policy database. In subsequent queries

of the policy database, the policy elements are referenced by p1 accept.S representing the

source IP address space for the accept p1. For example:
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p1 accept.S

Another element that requires some additional discussion is val. While the grammar

allows val to be a digit, forward slash (/), period (.) or dash (-); the correct val identifier

format is dependent on the field being manipulated. For example, for S or D, then the

language would expect an IP address or CIDR form for the correct interpretation. In this

work, the validation is processed when the parse tree is traversed for interpretation. It is

at this time the FPQL Processor, identified in Figure 4.1, returns a parse error back to the

calling program if invalid identifiers are used in the FPQL statement.

4.2.3 Policy Generation and Manipulation

Before a policy can be queried or visualized, it must first be created and loaded. Using

FPQL this can be done with the Insert command and keywords. The intent behind the

insertion syntax is to linearly process a firewall ruleset and insert each rule, one at a time.

The following EBNF describes the grammar of the Insert statement:

< insert >→ insert into < id >

< insertExpr >

< insertExpr >→ < field > == < insV al >

{ < comma > < field > == < insV al > }
< insV al >→ < lparen > < val > { < comma > < val > } < rparen >

The following FPQL inserts a rule into the FPD identified by p1 accept such that the rule

source is host address 192.168.1.1, the rule destination is the network address 10.1.1.0/24,

the rule protocol is TCP (6), and the rule destination port range is 80 to 90.

insert into p1 accept S == (192.168.1.1), D == (10.1.1.0/24),

Prot == (6), Port == (80-90)

This example also demonstrates the concept of how FPQL and the underlying FPD policy

database interact to capture the action of the original security rule. In this work the action
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for a particular rule is constrained to either accept or deny, therefore to capture the different

spaces for a policy, it is strictly a policy naming standard to append the action to the policy

name. Not only does this allow for the easy identification of the space being manipulated, it

also allows other actions to be represented in extended works, such as encrypt or log, without

modifying the grammar.

A second example demonstrates inserting into a policy where the destination will not

factor into the matching decision. In this case, the destination becomes a “do not care”, i.e.,

any. The remaining fields identify the rule as being for UDP (17) and a port of 21 or 22.

insert into p2 accept S == (6.5.4.3),

Prot == (17), Port == (21,22)

4.2.4 Queries

Retrieving policy information from a populated policy database is accomplished using the

policy query grammar. In addition to identifying what sort of data are wanted from the

policy database, the grammar provides operators that can be applied across defined policies.

The FPD database can be queried and compared because each operation or grouping that

is defined in a FPQL statement results in an FPD. This means that as sub-expressions and

other nested operations are executed from the language parse tree, an FPD is constructed

and manipulated until the tree is traversed from leaf up and reaches the root. Not only

does this simplify reasoning about how the results are constructed, it also allows a common

expected result from each operation.

The grammar of a Query statement uses the same id and field definitions as the Insert

grammar, allowing consistency in use of the language. The following EBNF describes the

grammar of the Query statement:
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< query >→ (count < field > | < field >)

where < expr >

< expr >→ < comparison >

{ ( & | or ) < comparison > }
< comparison >→ < var > | < lparen > < expr > < rparen >

| < varStat >

< varStat >→ < var > < op >

< lparen > < val > {< comma > < val >} < rparen >

< op >→ :: | ! :: | ˜ | !˜ | ==

| ! == | & | or | −

One small difference from the actual implementation is the use of the or operator. In

order to make the EBNF easier to read in this work, the word or is used, however the actual

implementation uses a pipe character. The < op > operators are defined as:

::→ In (subset)

! ::→ Not In

˜→ Contains (superset)

!˜→ Not Contains

==→ Equals

! ==→ Not Equals

&→ And

or → Or

− → Difference

As an example of how the query expression grammar may be used, is the case of an

administrator who wants to know the sources allowed to access an important server at

10.2.1.100 over tcp/80 from a policy loaded into the Policy Database named policy1.

S where policy1.D == (10.2.1.100) &

policy1.Prot == (6) & policy1.Port == (80)

The second example is an administrator who would like to know all destinations that

are allowed by a source 192.168.1.1 or 14.1.20.21. This particular example has a couple of
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solutions:

D where policy1.S == (192.168.1.1) |

policy1.S == (14.1.20.21)

D where policy1.S :: (192.168.1.1, 14.1.20.21)

A more complicated way to use a policy database and FPQL interpreter is to track a

policy as it changes over time. We suppose that a policy policy september is loaded into the

database and the administrator would like to know how the policy changes over the next

month. One way for an administrator to find this information is to go back through the

potentially thousands of changes that may have occurred in the month of October (up to

16,000 [Chapple et al., 2009]). However, using FPQL, the same policy from the next month

(policy october) can be loaded into the policy database and the following FPQL will list the

differences between the two policies, thus providing the administrator with a list of human

comprehensible rules representing access changes that are different from the previous month.

Pol where policy october.Pol – policy september.Pol

Notably, the query will represent the space that is not a subset of policy september, i.e.,

the difference operation as implemented in FPQL is a relative complement. Therefore, if the

level of access between September and October was removed and policy october is a subset of

policy september, then the administrator may want to understand the symmetric difference

such that the query would become:

Pol where (policy october.Pol – policy september.Pol)

| (policy september.Pol – policy october.Pol)
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4.2.5 Delete

The final manipulation language grammar is for deleting portions of space from a policy that

has been loaded into the policy database. While not useful for direct comprehension of a

policy as it relates to the query language, it is necessary for formal verification of a particular

policy for anomalies such as those checked by FIREMAN [Yuan et al., 2006]. The following

EBNF describes the grammar of the Delete statement:

< deleteFromPol >→ delete from policy

< id > where < expr >

If one wants to remove a particular rule from an existing policy, the Delete grammar

allows selectively removing a portion of the space from a policy.

delete from policy p1 where p1.S == (192.168.1.1)

& p1.D == (10.1.1.0/24) & p1.Prot == (6)

& p1.Port = (80-90)

4.2.6 Miscellaneous Policy Operations

In addition to the more formal Insert, Query, and Delete language syntax, FPQL also pro-

vides the ability for the administrator to check what policies have been loaded into the policy

database using the list policies command and delete those policies using the delete policy

command. This work uses these commands as examples of many needed for general main-

tenance of the policy database in operational situations by firewall administrators. Other

commands such as these may be useful for the user to accomplish day to day tasks.

4.2.7 Syntax Tree Parsing

When a FPQL query is parsed, an Abstract Syntax Tree (AST) is produced such that the

leaves are processed and transformed as the language is traversed to its root. As each node
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Figure 4.2: An example AST parsed from a FPQL grammar.

is visited, an FPD is produced that will then be used as an operand in the next operator.

An example is a simple query for discovering the sources which are allowed access to the

destinations 10.1.1.1 or 10.2.1.1, over service tcp/8080-8090:

S where p1.D :: (10.1.1.1,10.2.1.1) & p1.Prot == (6)

& p1.Port == (8080-8090)

Figure 4.2 shows the abstract syntax tree that is produced as a result of processing the

EBNF grammar of the example query. As the tree is traversed from leaf to root, nodes

representing operators are acting on operands that are interpreted as portions of an existing

policy (as in the case of p1.D) or lists (as in the case of ‘10.1.1.1,10.2.1.1’). These constructs

are combined as the tree is pruned into FPD data structures where finally the results are

extracted from the final FPD at the root, based on the requested field (S,D,Prot,Port,Pol)

at the left child and the FPD produced from the right sub-tree.

4.3 FPQL and Policy Database Performance

The experiments designed for this work seek to evaluate the performance of FPQL when

dealing with policies of sizes ranging from 1,000 to 20,000 rules and focuses on processing

and executing FPQL statements against the policy database. Security reasons prevented us

from being able to gain access to industry rule sets, as the majority of companies with firewall

policies of those sizes are hesitant to allow outside parties access. Therefore, the rulesets are
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randomly generated and are generally distributed over the solution space. The FPQL and

FPD data structures and algorithms are implemented in the JavaTM 6 programming language

with the tests being run on a Mac Book Pro laptop computer. For ROBDD software the

Buddy and JavaBDD libraries were used [Lind-Neilsen, 2004; Whaley, 2007], for the FPQL

language parsing and manipulation this work uses the ANTLR tool [Parr and Quong, 1995].

Figure 4.3 charts the performance of FPQL inserting and querying operations on the

policies. The insertion operations averaged approximately 500 microseconds with no growth

as the number of rules increased. The query operation performance averaged 120 microsec-

onds, again with no growth as the number of rules increased. The constant processing time

reflects the constant time performance of the underlying ROBDD data structures in the

FPD. However, while the operations and testing appear to be constant, that is a reflection

of the queries being run against the system having a constant seven operators. Therefore,

the actual complexity is related to the number of operators present in the query and will

grow linearly with those.

This work focuses on an extension of a policy comprehension model FPD. Because com-

prehension is the end goal, it is very important to provide very fast access to ad-hoc queries

described by FPQL. The performance numbers presented here achieve this goal by allowing

the firewall administration team to very quickly and unerringly gain an understanding of

what is allowed through the security policies implemented in their organizations.

4.4 FPQL Policy Anomaly Detection

FIREMAN is a related work that analyzed intra-firewall and inter-firewall anomalies with

a framework and algorithm for identifying those inconsistencies [Yuan et al., 2006]. A good

firewall configuration is consistent with the administrator’s intention and the assertion that

FIREMAN makes is that inconsistencies in the ruleset are an indication of mistakes or

misconfigurations. FIREMAN defines four primary inconsistencies based off of related work
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Figure 4.3: FPQL performance with 1,000 to 20,000 rule policies.

[Al-Shaer and Hamed, 2004a,b] and we show a FPQL algorithm that is able to identify those

anomalies.

Number Action Predicate
1 deny tcp 15.21.10.0/25 any
2 accept tcp any 16.5.1.0/24
3 deny tcp 15.21.10.128/25 any
4 deny udp 10.10.2.0/25 172.16.0.0/16
5 accept tcp 15.21.10.0/24 any
6 deny tcp 192.168.1.0/24 16.5.0.0/16
7 accept udp 10.10.2.0/24 any
8 accept udp 10.10.2.1/32 12.168.3.0/24

Table 4.1: Sample policy with anomalies.

1. Shadowing: An inconsistency in a firewall policy such that the entire space a rule

represents and the associated action is contained in one (or a combination of) previous

rules with the opposite action. This is identified as an “error” because the intended

action will not be taken and the rule is guaranteed to never be exercised because of

the previous rules. An example of shadowing can be seen in Table 4.1 by rule number

5 being shadowed by a combination of rules 1 and 3.
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2. Generalization: A problem that identifies a case where a portion or subset of the space

represented by a rule had been previously matched by one or multiple rules with the

opposite action. An example of generalization can be seen in Table 4.1 where rule 7 is

a superset of rule 4 with an opposite action.

3. Correlation: Represents a problem where the space of the current rule intersects with

one or multiple previous rules with the opposite action. The space represented by

the current rule and previous ones intersect but are not a subset or superset of one

another. Table 4.1 demonstrates this anomaly with rule 6 being correlated to rule 2.

The intersection between the two rules is “tcp 192.168.1.0/24 16.5.1.0/24” with rule 2

determining the action of the traffic.

4. Redundant: A situation identifying that a previous rule or rules already handled the

current rule space with the same action. Therefore, this rule would never be matched

and is considered redundant. It is the case where removing the rule from the policy

will not change the behavior of the firewall. While this will not cause a security breach

by misconfiguration, it can be viewed as an inefficiency. Cleaning up redundant rules

is a method to improve the firewall processing speed by removing an unused rule that

would otherwise need to be reviewed by the firewall. Table 4.1 has rule 8 as being

redundant because rule 7 matches the traffic for rule 8 with the same action.

FIREMAN identifies shadowing as an error, but considers generalization and correlation

as potentially not being an error because administrators may be using these more broadly

defined networks as a way to keep the policy sizes smaller. However, it is warned that

use of these techniques introduces risk, and requires prior knowledge of the intention of

the administrator to ensure that the intent of the policy is understood to future change

agents [Yuan et al., 2006]. Therefore, our work will also identify the anomalies as warnings.

Redundant rules are considered an error in this situation because it reflects a rule that will

never be used. Leaving redundant rules in policy makes the policy unnecessarily larger,
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Input: Policy P to test for inconsistencies
Output: Inconsistent rules and the type of anomaly
1: procedure TestPolicy(P )
2: FPQL: insert into remain S == (0.0.0.0/0),
3: D == (0.0.0.0/0), P rot == (0− 255),
4: Port == (0− 65535)
5: for all Rule R ∈ P do
6: TestRule(R)
7: end for
8: end procedure

Figure 4.4: FPQL Intra-firewall anomaly detection.

increasing processing time of the firewall and decreasing the comprehension of the policy.

4.4.1 FPQL Intra-firewall Anomaly Detection

An algorithm may be used in conjunction with FPQL to identify if a rule is shadowing,

generalization, or correlation in an individual firewall policy. The initialization of the policy

database begins with three policies represented as FPDs: accept, deny, and remain. The ac-

cept and deny policies are initialized to ∅, with the remain policy starting off as U (meaning,

every possible rule field combination). In addition, each rule R of the test policy P contains

the known FPQL fields S, D, Prot, and Port with two new fields:

A = Action: accept or deny

R = Rule as an FPD: S + D + Prot + Port

Rule R fields are dereferenced by a dot (i.e. R.S ). Each rule R in policy P is processed

linearly from top to bottom as to model how an actual firewall processes a packet for a

matching rule. Notably, not all parts of the algorithm are FPQL. Some of the operations are

based on FPD set capabilities and are predicated on FPQL processing returning an FPD.

Figures 4.4 and 4.5 details the algorithms for computing intra-firewall anomaly detection.
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1: procedure TestRule(R)
2: accept← accept.Pol from the policy database
3: deny ← deny.Pol from the policy database
4: remain← remain.Pol from the policy database
5: if remain = ∅ then
6: if R.R ⊆ accept then
7: if R.A = “accept” then R is Redundant
8: else R is Shadowed
9: end if
10: else if R.R ⊆ deny then
11: if R.A = “deny” then R is Redundant
12: else R is Shadowed
13: end if
14: else R is Correlated
15: end if
16: else if R.R ∩ remain = ∅ then
17: if R.R ⊆ accept then
18: if R.A = “accept” then R is Redundant
19: else R is Shadowed
20: end if
21: else if R.R ⊆ deny then
22: if R.A = “deny” then R is Redundant
23: else R is Shadowed
24: end if
25: else R is Correlated
26: end if
27: else if R.R ∩ remain 6= ∅ and R.R 6⊆ remain then
28: if R.A = “accept” then
29: if R.R ∩ deny 6= ∅ and R.R 6⊆ deny then
30: R is Correlated
31: end if
32: else if R.A = “deny” then
33: if R.R ∩ accept 6= ∅ and R.R 6⊆ accept then
34: R is Correlated
35: end if
36: end if
37: end if

Figure 4.5: TestRule function.
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38: if R.A = “accept” then
39: FPQL: insert into accept S == (R.S),
40: D == (R.D), P rot == (R.Prot),
41: Port == (R.Port)
42: else
43: FPQL: insert into deny S == (R.S),
44: D == (R.D), P rot == (R.Prot),
45: Port == (R.Port)
46: end if
47: FPQL: delete from policy remain where
48: S == (R.S) &D == (R.D) &
49: Prot == (R.Prot) & Port == (R.Port)
50: end procedure

Figure 4.5: TestRule function (continued).

4.4.2 FPQL Inter-firewall Anomaly Detection

FIREMAN identifies the reality of many firewalls existing in a network and the potential for

data to flow through those multiple policies [Yuan et al., 2006]. A computer network is a

graph of nodes (firewalls, routers, switches, hosts, etc.) and edges (traffic flow connections).

A well designed network includes multiple paths from one node to another. By modeling the

network as a graph, and using DFS or BFS algorithms, a network can be converted into a

spanning tree.

Figure 4.6 shows a spanning tree of a network providing all known directed paths from

a starting node to a resulting ending node. This spanning tree can subsequently be used to

find anomalies in the network filtering rules. For large and dense graphs, a large number of

paths might result in the subsequent spanning tree. These paths may go through routers

and other non-filtering devices used primarily for traffic management. However, because we

are only concerned with the filtering devices in the network, i.e., firewalls, the size of the

resulting spanning tree can be greatly reduced by only including firewall nodes [Yuan et al.,

2006]. Figure 4.6 is a reformulation of the solution presented in [Yuan et al., 2006] to identify

the starting node once and build the spanning tree out from that location to multiple ending

nodes. This simplifies the algorithm [Yuan et al., 2006] presented such that the processing
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Figure 4.6: Network spanning tree.

at each node is just the inbound solution space I having been potentially manipulated by

its parents. The FPQL reformulation is presented in Figure 4.7 and traverses a depth first

search from the root node starting to the leaf nodes ending, identifying anomalies as the

graph is traversed.

An additional classification used when processing Inter-firewalls for anomalies is the iden-

tification of a raised security level. This classification primarily identifies those packets that

were accepted by a previous firewall, but denied downstream. A situation where this may

not be considered an anomaly, but because traffic was allowed through one firewall and de-

nied by the next, should be reviewed by firewall administrators to ensure that this does not

indicate unintended access in a previous firewall.

4.4.3 FPQL Policy Anomaly Detection Performance

The purpose of the intra-firewall and inter-firewall formal verification model presented in this

section is to demonstrate the formal verification capabilities of the FPQL language. This
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Input: Root Node P of Spanning Tree
Output: Inconsistent rules and the type of anomaly
1: procedure TestInterFirewall(P )
2: FPQL: insert into I S == (0.0.0.0/0),
3: D == (0.0.0.0/0), P rot == (0− 255),
4: Port == (0− 65535)
5: for all Node C ∈ Children(P ) do
6: ProcessNode(C, I)
7: end for
8: end procedure
9: procedure ProcessNode(P, I)
10: if P ∈ ending then return
11: end if
12: I ′ ← I ∩ U
13: for all Rule R ∈ P.Policy do
14: if R.R ⊆ I then
15: if R.A = “deny” then R raised security level
16: end if
17: else if R.R ⊆ ¬I ′ then
18: if R.A = “accept” then R is Shadowed
19: else if R.A = “deny” then R is Redundant
20: end if
21: end if
22: FPQL: delete from policy I ′ where
23: S == (R.S) &D == (R.D) &
24: Prot == (R.Prot) & Port == (R.Port)
25: end for
26: for all Node C ∈ Children(P ) do
27: ProcessNode(C, I ′)
28: end for
29: end procedure

Figure 4.7: FPQL Inter-firewall anomaly detection.
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section has shown that FPQL and the Policy Database architecture is capable of formally

modeling policies in both an individual and networked environment. In general, the perfor-

mance of the presented algorithms have a computational complexity similar to the original

FIREMAN system. The complexity is bound by the number of rules being verified and will

grow in relation to that number. Therefore the algorithms presented were a reformulation

of those presented in other works with the exception of one algorithm. The computation of

the network spanning tree for inter-firewall verification included an improvement based on

only having to process a single input FPD space I.

4.5 Related Work

Over the past decade there have been many research efforts that involved analyzing and

understanding firewall policies, both from a single and multiple policy level. Fewer involve

allowing ad-hoc querying of a policy and allow comprehension of large policies.

One of the earliest works, and the most closely related to ours, built a query engine on

top of a formal verification system called Voss [Hazelhurst et al., 2000]. They implemented

a simple functional language that is capable of many set operations and selection of specific

fields in which to return from the query. The query language is somewhat difficult to use, but

is expressive. While the underlying Voss hardware verification system used ordered binary

decision diagrams to model a rule set, the method in which the results were extracted from

the canonical BDD form is unclear. It appears that a brute force method was implemented

to parse through the entire solution space resulting from a query. The algorithm complexity

was cited to be linear with respect to the number of rules for creation of the policy and

constant time with respect to the number of variables in the BDD for queries of the policy

[Hazelhurst et al., 2000]. This is consistent with our work on processing FPQL. However, the

analysis in [Hazelhurst et al., 2000] does not take into account the processing time related

to extracting human comprehensible data from a binary decision diagram. This is a large
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segment of processing and could involve millions of individual BDD solutions. Our analysis

shows that the complexity should have been a function of the resulting ROBDD and the

number of distinct solutions, a potentially much larger complexity that is not correlated to

the number of rules, rather the space those rules represent. Chapter 3 discussed our work

with the FPD, a core element of the FPQL system, allowing the human comprehension of

the results from a FPQL query.

Liu et al. (2005) propose a query language called Structured Firewall Query Language

that is executed on a data structure called a Firewall Policy Tree. While similar to this

work, the effort differs in the method in which the policy is modeled and how the query is

processed. They cite “rule-based processing” and linearly process each rule on the query

[Liu et al., 2005]. Their later efforts implemented the same language on a different policy

data model called a Firewall Decision Diagram [Liu and Gouda, 2009]. This improved the

running time of the query language from O(n) to O(logn) where n is the number of rules in

a policy. A key differentiator to our work is that the FPQL processing time is based on the

number of operators in the query and does not change with the size of the input policy.

Mayer et al. (2000) present a three field query interface is presented to interrogate a

software modeled network and ACL graph. The performance of the system is not clearly

stated, nor are the algorithms for efficiently handling the very large solution space discussed.

It appears that once a query is issued, a brute force analysis of all possible packets traverse

the simulated network [Mayer et al., 2000]. While this may work for a single packet, the

computation time would quickly become unreasonably large for anything but the most trivial

networks and firewall policies.

In addition to static model checking, such as FPQL describes, tools such as Nessus employ

active probing [Deraison, 2005]. What is ascertained from active vulnerability testing could

be valuable for understanding real threats to a network. However, the act of running these

tests involve a brute force method of trying all possibilities, a very time consuming and

potentially disruptive process to an active network.
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Other associated efforts that do not include a query language have been done by modeling

firewall policies; however, most of the models reflect their intended use and not all are capable

of the sort of operations described in this work. Much of the research has focused on rule

processing and validation of those rules where the goal is to identify hidden, shadowed,

and inconsistent rules [Al-Shaer and Hamed, 2002, 2004a,b; Bartal et al., 1999; Chao, 2011;

Gouda and Liu, 2004; Liu and Gouda, 2005; Yuan et al., 2006]. In general the focus is on

algorithms for finding policy anomalies both from a single policy model to a multi-policy

model. A portion of the related research introduced the use of BDDs for the models and

became the foundation for some of the algorithms in our work [Bryant, 1986, 1992; Hazelhurst

et al., 2000; Shannon, 1938; Yuan et al., 2006]. Horowitz and Lamb (2009) present a rule

de-correlation algorithm with efforts to extract rules from existing firewall policies. The

methods appear to be strictly for de-correlating rules with an exponential running time

correlated to the size of the original policy and no overall policy comprehension [Horowitz

and Lamb, 2009]. In addition, some works propose design methods for firewalls, where

this work discusses analyzing rules already designed [Guttman, 1997; Guttman and Herzog,

2005].

4.6 Extended Fields

It is important to note that while this work focuses on four tuples of a firewall rule, there

are potentially more tuples to include. In addition, next generation firewalls have begun to

expand their application layer filtering to include fields at layers higher in the protocol stack.

Both FPQL and the underlying policy database with FPDs are capable of being extended

to include fields in future work. The processing time complexity becomes larger; however, it

is still bound by the depth of the ROBDD in the case of queries.
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4.7 Chapter Summary

In this chapter we presented FPQL (Firewall Policy Query Language), an efficient and

powerful language built on top of a policy database and the Firewall Policy Diagram data

structure. There are three primary contributions in this work:

• Provided an expressive language for a firewall administrator to understand access

through a policy or set or policies.

• Demonstrated that FPQL can run in microseconds of time, even against very large

rulesets. This speed encourages comprehension of policies through ad-hoc queries,

further supporting the overall goal of understanding network access.

• Demonstrated how FPQL could be used in formal verification of both intra and inter

firewall policies.
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Chapter 5

Modeling Firewalls for Behavior

Analysis

Historically, attempts to model firewall behavior have focused on the security rules contained

in a single access control list. However, modern firewalls and filtering routers involve more

than simply deciding if a packet should pass through a security policy. Routing decisions

through multiple network interfaces involving vendor specific constructs such as zones, do-

mains, virtual routing tables, and multiple security policies have become the more common

type of device found in the industry today. In the past, network devices were separated by

functional area (ACL, router, switch, etc.). The more recent trend has been for these capa-

bilities to converge and blend, creating a device that goes far beyond the straight-forward

single access control list.

This chapter presents a behavioral model of the capabilities found in firewall type de-

vices and a process for taking vendor specific nuances to a common implementation. This

includes understanding interfaces, routes, rules, translations, and policies; modeling them in

a consistent manner such that the many different vendor implementations may be compared

to each other. In addition, a process is presented for allowing the comprehension of two

vendor device configurations with the means to precisely compare configurations from one
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device to another. This chapter builds on the foundation of the FPD such that it is used to

test the entire potential solution space in milliseconds of time.

5.1 Key Contributions

This chapter presents a framework in which to model individual firewalls such that software

based analysis and other formal analysis methods may be used with the model. Some

examples of industry uses for modeling a network and firewalls in software include:

• Network trace analysis for understanding how a packet will traverse the device without

physically sending the packet. In addition to an individual packet, a packet space in

the form of an FPD may traverse the network to understand what will make it from

point A to point B.

• Logical comparisons of firewall vendor implementations. If two firewalls are configured

to behave the exact same way but are from two different implementations, modeling

the behavior of each vendor in software allows for the formal verification that each

ingress and egress FPD are identical. Subsequently, if they are not identical, the FPD

used to traverse the spanning graph can show what is different from what is potentially

a large solution space.

• Behavior Abstraction Modeling of specific firewall vendors serves as the basis for au-

tomated translation from one vendor configurations to another with certainty of how

the device will behave.

• Participate in a larger software modeled network for more comprehensive simulations.
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5.2 Modeling Firewall Behavior

In a broad description, a firewall is a network device that is used to isolate an organization’s

internal network from outside networks, allowing some packets to pass and blocking others.

Firewalls allow two entities to connect their networks together through existing infrastructure

and protocols, while securing the private networks behind them [Liu and Gouda, 2005]. The

typical placement of a firewall is at the entry point into a network so that all traffic must

pass through the firewall to enter the network. The traffic that passes through the firewall

is typically based on existing packet-based protocols, and a packet can be thought of as

a tuple with a set number of fields [Liu and Gouda, 2005]. Examples of these fields are

the source/destination IP address, port number, and the protocol field. The firewall is a

combination of hardware and software such that the hardware will typically be the physical

connection to the networks and the software will implement the filtering, routing, and NAT

capabilities [Kurose and Ross, 2007]. The portions that are implemented in hardware or

software vary by vendor and product design. In general, a firewall has three goals [Kurose

and Ross, 2007]:

• All traffic from one network to another that must be filtered passes through the firewall

and the internal mechanisms of the firewall. So, the traffic will enter on the ingress

interface. Once inside the firewall, it will pass through the internal routing, filtering,

and NAT mechanisms. Finally, the traffic will exit the egress interface.

• When the traffic is being processed inside the firewall, only authorized traffic as defined

by the local security policy will be allowed to pass.

• The firewall itself is assumed to be immune to penetration. While this is not always

reality, the goal of firewall behavior abstraction is not to find flaws in the firewall itself,

but to verify and simulate the configuration of the firewall.
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5.2.1 Behavioral Components of Modern Firewalls

Traditional firewall capabilities were strictly focused on filtering traffic and applying the

local security policy of an organization. Some firewalls were more sophisticated than others,

but in general the filtering focused on an individual packet (packet filters), stateful packet

flow (stateful filters), or application related traffic (application gateways) [Kurose and Ross,

2007]. All of these capabilities are built on top of the known TCP/IP stack and the only

goal is to accurately allow only the communication channels defined in the local policy.

However, firewall vendors have continued to increase the scope of what defines a firewall.

Looking at any modern firewall product today, one will typically find a combination of

router, network address translation, and filtering capabilities. In addition, each of these

sub-components may be broken down further into other elements such as virtual routers,

embedded NAT inside of rules, and multiple filtering policies applied at different places.

Therefore, for any abstraction of a firewall there must exist a mechanism to represent these

capabilities so that accurate results may be computed.

5.2.1.1 Interfaces

An interface on a firewall is the physical network connection to the wire (or radio) that

will transmit the traffic to and from the parties communicating [Kurose and Ross, 2007].

In the strictest definition of the firewall and packet filtering device, two network interfaces

exist. This represents a physical separation between one network and another, requiring the

traffic to flow through the firewall from one interface to the other and vice versa. However,

as discussed in [Chapple et al., 2009], the firewall will typically have many more than two

interfaces, which means that a firewall is no longer just a filtering device, but must also

decide the appropriate egress interface for traffic.
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5.2.1.2 Security Policies

A firewall will have single or multiple security policies to be applied to incoming or outgoing

traffic. These policies are typically an ordered sequence of rules that follow the general form:

〈predicate〉 → 〈decision〉

The predicate defines a boolean expression over the fields in a packet tuple that are

evaluated and the physical network interface from which the packet arrives. For example,

source IP is 10.2.0.1 and destination IP address is 192.168.1.1 on eth0 (a common label for a

linux interface). Then the decision portion of a rule is what happens if the predicate matches

to a true evaluation. A decision is typically accept or deny with the possibility of additional

actions, such as an instruction to log the action [Liu and Gouda, 2005].

A firewall policy is made up of an ordered list of these rules such that as a packet is

processed by the firewall, it attempts to match the packet to the predicate one rule at a

time, in order. Matching the packet means that the firewall evaluates a packet based on

the fields in the rule tuple, a packet matches the rule if it matches all the fields identified in

the predicate of the rule [Kurose and Ross, 2007]. The predicate does not necessarily need

to contain a value for all possible fields and can sometimes contain the “any” variable in

a field to indicate to the rule processing software that this is a “do not care” condition of

the predicate and any value for that variable will match. It must completely match all the

fields for the firewall to take the appropriate action. These rules are processed in order until

the firewall finds a match, at that time it will take the appropriate action identified by the

decision [Kurose and Ross, 2007].

5.2.1.3 Routes

For this work, a route can be defined as a simple one tuple rule with a decision being the

egress interface. The one tuple of the traffic being processed is the destination. For a

particular routing rule, the destination can be identified as an IP Address, address range, or

Classless Inter-Domain Routing (CIDR) format. Therefore, in a similar manner as security
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rules, the solution space can be split as the traffic is processed. Traffic is attempted to be

matched from top to bottom in the routing table. For example, a routing table may look

like:

〈Destination〉 → 〈Interface〉

192.168.2.0/24→ eth0

10.20.0.0− 10.20.255.255→ eth1

0.0.0.0/0→ eth2

For instance, if traffic from 10.20.5.5 is being processed through the routing table, then

route 2 would match and send the traffic out of eth1.

5.2.1.4 Network Address Translation

Network address translation (NAT) is a feature often offered by firewall and router vendors to

solve a few problems. The first is to allow private and public IP addresses to communicate. In

the current IPv4 address space there exists several realms of addresses that are not routable

on the public internet. RFC 1918 non-routable address space include 10.0.0/8, 172.16.0.0/12,

and 192.168.0.0/16. The reasoning is to allow private networks that do not communicate

directly with other private networks to share these address spaces without fear of collision.

Therefore NAT provides the means for two private networks with colliding address space to

communicate through a border device, like a firewall [Kurose and Ross, 2007].

The second reason is that public Internet service providers typically charge for each public

address and have a finite number of them. Therefore, for flexibility and cost savings it is

often advantageous to use the one to many relationship from external to internal or only

allowing outbound traffic. This sort of configuration allows the internal network to appear

as one device, when in reality the border device is hiding many private hosts.

Another reason NAT can be used is to provide a layer of security to the devices in the

private network. By disguising the true location of secure resources an organization provides
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one more level of security to its assets [Kurose and Ross, 2007].

In addition to these three reasons, there are various other reasons an organization would

want to hide private address locations behind a border device and as a result NAT is a very

important and very useful network tool [Kurose and Ross, 2007].

NAT implementation will typically function as a translation table such that the inbound

traffic will match an entry (either source or destination address) which is translated to

another address on the egress side. The firewall device is then required to keep track of

that conversation in order for response packets to have the reverse translation applied and

arrive at the appropriate destination. There are typically three types of NAT: source address

translation (SNAT), destination address translation (DNAT), and port translation (PAT).

Each of these are roughly the same idea, and each will require a translation table, yet they

will operate on different fields of the packet [Kurose and Ross, 2007]. For example, a DNAT

table will typically look like the following:

〈Destination Address〉 → 〈Translated Address〉

192.168.2.1→ 74.125.228.39

10.1.1.10→ 157.56.237.251

...→ ...

Then, when a packet arrives on an interface, it will look at where the packet is going and

replace the destination of the packet with the appropriate translated address.

In general, this sort of translation may take place immediately on the packet being

processed through the firewall. However, there are certain situations where the replacement

is delayed until the egress interface is known. This is an example of a hide translation

where the outgoing packet source address will assume the address of the egress interface,

making the packet appear to have originated from the firewall, and subsequently hiding the

true origination. Furthermore, when the response is seen by the firewall, it will reverse the

translation and send the traffic to the originating host, i.e., the intended recipient.
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Figure 5.1: Linking a firewall to the network.

5.3 Firewall Behavior Chains and Spanning Graphs

When dealing with a firewall or network device, the entire goal of the broader network is

to provide a path from point A to point B. From a physical perspective this is a cable or

radio providing a path from one device interface to another, hopping along until the data

reach the final destination. Because the firewall is responsible for taking traffic in from one

interface and sending it out another, there are internal paths that take the data through the

various control and routing structures, as defined in the previous section. These paths and

structures can be abstracted into behavior rules, behavior chains, and a spanning graph, the

links between the behavior chains.

5.3.1 Behavior Rules

As a first step when considering how a particular firewall might process data, one typically

thinks about the physical interfaces. Figure 5.1 shows how the interfaces might appear as

spokes off of a firewall allowing it to participate in a larger network. To model the internals,

one must consider the elements we have defined: routes, security rules, and NAT. Essentially

all three items may be thought of as predicates and actions. The predicate of all three types

are over the known tuples or fields of a Internet Protocol and potentially TCP and UDP port,

i.e., the source address, destination address, source port and destination port. The actions

that may be defined when the predicate matches are accept, deny, or next action; with
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two additional state transition operators: translate and egress interface. When a predicate

matches, only one action may be applied (accept, deny, or next), however, any (or all) of

the state transition operators may be applied. Using these elements and the initial link

from the ingress interface, an internal spanning graph may be constructed generating a data

path through the device and out the egress interface that may then be linked to the overall

network spanning graph. These 〈predicate〉 → 〈action〉 constructs are identified as Behavior

Rules.

5.3.2 Behavior Chain

A behavior chain is defined as a set of behavior rules such that they are processed top-down

and the first matching predicate for a particular individual packet performs the associated

action. The common use for a behavior chain is the encapsulation of the larger ideas of a

firewall. For example, it is common when modeling a particular vendor firewall to identify a

routing behavior chain or a security policy behavior chain such that all corresponding routes

or security rules are in that chain, and may potentially be processed as one entity.

In addition to providing a grouping mechanism for behavior rules, each behavior chain

possesses three overall actions: accept, deny, and default. These actions may be linked to

the next chain in the spanning graph, or potentially to the egress interface. The behavior

chain accept action will be applied to a traversing packet when the packet has matched a

behavior rule predicate and the action is accept. In a similar manner, the behavior chain

deny action will follow the same logic but takes the deny path. Finally, the behavior chain

default action will be applied if no behavior rule predicate matches the packet.

5.3.3 Interface Multiplexer

An important concept we present to reduce the number of paths that must be represented

in a spanning graph is the use of an ingress interface, an egress interface action, and an

interface multiplexer. Multiplexers may be placed in the behavior chain model to act upon
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two elements. The first is the inbound interface the traffic passes. The second is a matching

state transition behavior rule that identifies the egress interface at some point in the spanning

graph. The reason for providing this capability is that different firewall vendors make egress

interface decisions at different times throughout the control flow. The egress interface some-

times will not impact the internal behavior chains traversed until the final step. Without

having the means to act later on a state that was set early in the path, many duplicate paths

and chains would be needed. Figure 5.2 demonstrates a spanning graph without and with

an interface multiplexer such that without an interface multiplexer, the security policy chain

is duplicated. By using the multiplexer in Figure 5.2(b), the potentially large security policy

chain will only need to be modeled once. Figure 5.2(b) also demonstrates how the egress

interface is selected in the routing chain and then acted upon at the interface multiplexer.

Another reason that interface multiplexers are useful is for firewalls that employ zone

definitions. A zone in firewall parlance is typically the grouping of a number of interfaces

into a logical area of the network. For example, eth0 and eth1 are considered an internal zone

with eth2 and eth3 in the unsafe zone. A vendor may then identify a security policy when

the traffic is passing from zone-to-zone and is specific to that zone-to-zone transition. In this

example, there may exist a security policy that will need to be applied if the traffic arrives

in the internal zone and is destined for the unsafe zone. Without an interface multiplexer

there would need to be a path for every interface to interface combination. This is regardless

if those interfaces shared the same zones, with the result being duplicated behavior chains

and paths.

5.3.4 Spanning Graph

All of the elements described form a directed acyclic graph rooted at the ingress interfaces

with the leaves identified as the egress interfaces. This allows simulation of the traffic to be

based on interface origination. This is also a mechanism to compare two firewall types that

process traffic differently, but expect the same external results. Figure 5.3 is an example of
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Figure 5.2: Behavior spanning graph (a) without and (b) with a multiplexer.

the behavior elements coming together to form a behavior spanning graph. In subsequent

sections, traversing this spanning graph with the correct data structure will allow for a better

understanding of the traffic that may pass the firewall.

5.3.5 Modeling Sub Elements

Until this point we have covered the general elements of the behavior abstraction model

such that there was a single routing chain, security policy chain, or destination NAT chain.

However, the reality of modern firewalls is that they are often constructed of smaller elements

that may be linked and reused. Constructs such as virtual routers and zone policies may

easily be represented as their own behavior chains that are linked. For example, a virtual

router is typically a routing table with an action of “next”, taking the processing to another

chain until finally an egress interface decision is made. Figure 5.4 diagrams this behavior
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Figure 5.3: Example behavior spanning graph with FPD.

chain configuration such that the first routing chain uses next action that matches the packet

predicate in order to direct the processing path to the virtual router chain. Once in the virtual

router chain, the egress interface is selected and processing continues to the next chain.

Furthermore, zone-to-zone policies may be represented by using an interface multiplexer

before selecting the security policy to be processed. Figure 5.5 demonstrates an example

configuration where the interface multiplexer is used once to select the zone policy, and then

again to select the egress interface. In addition, Figure 5.5 illustrates the expressiveness of

the behavior chain model such that zone and global security policies may be represented as

stand alone chains that are linked together. This is in contrast to a more naive abstraction

that requires constructing the security rules that will be applied for all possible interface to

interface combinations.

5.3.6 Behavior Translation

It is important to note that understanding and modeling a particular vendor’s firewall as

accurately as possible will lead to the best results. This means using the vendor provided

documentation and tools to know when certain elements of the processing stack are applied.

For example, Cisco Systems “packet tracer” gives a good understanding of what operations
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happen in order, providing the means to replicate that process in common behavior chains

[Cisco, 2013]. Therefore, each vendor product will most likely require its own translator from

the raw configurations of security rules, routes, and NATs into a cogent approximation of

behavior chains.

Default

Default

Routing Chain

10.8.1.0/24 -> vr1
192.168.10.0/24 -> vr2

... -> ...

Virtual Router 1 Chain

10.8.1.0/25 -> eth0
10.8.1.128/25 -> eth1

... -> ...

Virtual Router 2 Chain

192.168.10.0/25 -> eth2
192.168.10.128/25 -> eth3

... -> ...

Figure 5.4: Example virtual router configuration.

5.4 Modeling Traffic Solution Space

In the previous sections we have gone through a detailed explanation of how individual

elements of a firewall may be abstracted into a directed acyclic graph that may be traversed

from inbound interface to outbound interface. This is useful for individual packet trace,

however, the more important capabilities come when used with a data structure capable of

representing the entire solution space that a packet may represent, i.e., the Firewall Policy

Diagram (FPD).

5.4.1 Walking the Spanning Graph

When considering how data will pass through a firewall device, they must first be accurately

modeled using behavior chains. The next step to fully understand what will pass through
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a firewall configuration is to construct an FPD representing the entire solutions space, U,

at each interface root. Then the spanning graph is traversed from root to depth with the

FPD splitting and mutating as each behavior chain is processed until it reaches the egress

interface leaf. Each leaf FPD result is or’d together to produce the final FPD at that leaf,

representing an accurate space of what traffic can pass through the firewall and out of that

interface. The process tests all possible scenarios through all inbound interfaces. It is this

sort of formal verification that allows a firewall configuration team to be confident that they

are not allowing any more access than the business requires and managing risk appropriately.

Figure 5.3 demonstrates this operation visually by starting with an FPD at the root of the

spanning graph, eth0 and eth1. As the FPD traverses the behavior chains a portion of the

space ends up at the leaf interfaces, eth1 and eth0. The resulting FPDs at each interface

are then combined with an or operation that results in FPD’ at eth1 and FPD” at eth0,

representing the traffic space that has passed through the device and out those individual

interfaces.

5.4.2 Performance: Avoiding the Linear Case

When taking the behavior chains and behavior rules that make up each of the individual

firewall entities, the initial ideas of how traffic may be processed is linear. Meaning, treating

traffic as a true firewall does, attempting a match in a linear method, one behavior rule at a

time to one packet at a time. While this is straightforward, it is also performance prohibitive

as the full testing of a firewall configuration requires 288 × br. Where br is the number of

behavior rules that exist in the device and the 288 is the solution space represented by an

IPv4 packet. It becomes exponentially worse when dealing with IPv6.

With a reformulation of each behavior chain, the processing time may be bound to the

number of decisions that must be made, as opposed to the number of behavior rules. This will

be substantially smaller than the number of rules and in most cases be considered constant

time. For instance, a behavior chain is formed from a single security policy of a firewall
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Figure 5.5: Example security zone configuration.

containing 1,000 security rules. Each security has one of two decisions, accept or deny. The

linear time processing would put the cost at 288 × 1, 000. However, if we instead model

the behavior chain as two FPDs, one for the accept traffic and one for the deny traffic, the

results are 288 × 2. Furthermore, we can make the entire operation constant by modeling

the solution space as an FPD as well, replacing 288 with a constant 88 thus making it a

constant time operation to know what is an accept and what is a deny and follow the paths

appropriately.

This same model may then be replayed for behavior chains that represent routing tables

and NAT tables. The formulation of the problem is different, but is still a factor of the

number of decisions that must be made. In a review of the routing behavior chain, the

decision to be made is what egress interface matches the traffic. Therefore, there an FPD
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is produced for each egress interface and the processing time is a factor of that number.

Because most firewalls have a fixed number of interfaces, typically less than 15 [Wool, 2004],

the processing time will almost always be better than the number of routes. In a similar

manner, NAT behavior rules may be grouped and stored based on the field being translated

to and the value of that field. An example is grouping an FPD based on the Destination

fields with the same value.

Notably, what was presented in this section still requires linearly processing the behavior

rules once in order to build the FPD data structures in memory. In addition, the behavior

chain FPDs may be cached to avoid a reprocessing cost. However, by using the FPD linearly

processing all possible traffic may be avoided and reduced to a constant operation, by far

the largest percentage of time.

5.4.3 Understanding Traffic Flow

The performance improvements in the previous section are very important for understanding

access using the entire solution space. However, it will most likely only act as an initial pass

of the data in the steps to fully understand why traffic flowed the way it did. The second

step involves taking a subset of the traffic that was an anomaly or require further attention

and sending it back through the device configuration purposely processing each behavior

rule and creating a spanning tree where the nodes are the steps taken through the device.

This sort of in depth analysis allows the understanding of why the traffic flowed the way it

did, what rules it matched, etc.

5.5 Experiments

An experiment to test the performance of a common filtering and routing firewall was de-

signed containing 10,000 routes and 10,000 security rules with two interfaces, eth0 and eth1.

Figure 5.6 is a graphical depiction of the behavior chains and where the two FPDs represent-
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Figure 5.6: Experimental setup.

ing all possible traffic, U, are sent through from each ingress interface. In the experiment,

the cost of loading each behavior chain FPD was measured in addition to the time taken for

the simulated traffic to flow through the device and collect in the egress interfaces.

The results show that preloading the behavior chain data structures took 4.7 seconds

with the majority of the time being the linear scan of the 20,000 behavior rules (10,000

security rules and 10,000 routes). The time taken to test all possible packets through the

simulated device was 210 milliseconds. This number is many orders of magnitude better than

the brute-force testing methods found in industry today. The results support the use of this

behavior abstraction model and simulation in industry firewall configuration simulations. A

sub-second simulation number is important because it will support further expansion of the
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behavior abstraction model such that it may participate in the larger network topology, both

helping to verify and secure the organization.

5.6 Related Work

ACL modeling is a widespread area of study in computer networking; however, very few works

attempt to model all the nuances of a modern firewall and fewer still include NAT modeling.

It is very useful to include the ability of accurately representing a system of interconnected

devices within software with the intent of validation and verification checking. Not only is

it less expensive than the more common task of testing connectivity, but the correct data

structures allow the formal testing of all possible paths without the cost of actually testing

paths individually, as presented in this chapter. Until this point, brute force testing of all

possible paths through a real network has been the method which related works have verified

device configuration behavior.

One of the earliest attempts to model a firewall is based on the capability of generating

individual packet test cases for testing a real firewall [Jürjens and Wimmel, 2001]. They use

a general CASE (computer aided software engineering) tool in which they derive test cases to

check for firewall vulnerabilities. The method is useful for verification of the firewall software

function; however, it is different from what we present, as their goal was to verify firewall

function rather than configuration. In addition, the model checking neglects to address

other functions of a modern firewalls, namely, routes, NAT, and multiple internal policies.

However, this is one of the first attempts to model a network with ACLs and other actors

as a state transition diagram.

Brucker et al. (2008) presents a simple network modeling formalization with the common

packet tuples found in many other works [Al-Shaer and Hamed, 2002, 2004a,b; Bartal et al.,

1999; Brucker et al., 2008; Chao, 2011; Gouda and Liu, 2004; Liu and Gouda, 2005; Yuan

et al., 2006]. Brucker et al. (2008) uses a model based testing tool in conjunction with a
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testing framework that analyzes a single policy rule set and generates a list of test cases to

be run against the actual firewall with an expected result [Brucker et al., 2008]. The work

is not capable of modeling or measuring output from multiple interfaces, routing tables, or

network address translation rules. It appears to be strictly focused on what a single policy

allows. In addition, the work does not appear capable of handling the size of the solution

space of the industry, where experimentation of policies with seven rules were used. Industry

firewalls will average more than a hundred times that number, thus it is difficult to say if

the method is applicable.

In a similar manner to our work, [Jeffrey and Samak, 2009] presents a firewall modeling

framework based on Netfilter [Russell, 2011] and the chaining mechanism. However, Jeffrey

et al. (2009) make the argument against using BDDs for processing through the chains, and

instead builds a decision graph representing all possible ways through an individual policy

and then broadened out to a network. The work also uses a portion of what a BDD is

capable of representing, a SAT solver. This work considers routing topologies and presents

a method to condense a multi-policy and multi-device topology into a single policy with the

representation of interfaces in the tuples of the model. While the work shows comparable

performance numbers with the FPD, it does not include modeling a very important portion

of modern networks, namely, source and destination network address translation. The per-

formance comparisons of a SAT model to a BDD SAT model also overlook the performance

benefits of a BDD with a security policy. Since the policy can be distilled into an accept

and deny decision BDD, the matching of traffic can be done in constant time and does not

grow with the size of the policy. Finally, it not clear from the work if the entire space repre-

sented by a packet can be quantified and subsequently fully understand what is considered

reachable through a network.

Turley and White (2009) discuss a broad idea that firewalls have common elements such

as an ingress and egress point; and within the firewalls the packet is manipulated and sub-

sequently forwarded or dropped [Turley and White, 2009]. This is defined as behavior, and
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while a general concept of a filtering network device is presented, specifics on how that is

modeled and accomplished are not discussed.

El-Atawy et al. presents a framework to generate test data for testing an actual firewall

device. The work focuses on the ACL and does not cover the many other capabilities of

modern firewalls (routes, NAT, etc.). While they focus on generating the smallest number

of test cases based on network segmentation, there is also a behavioral modeling component

to the effort. They use BDDs to check the rules for the appropriate network segments to

include in the test, although it is not clear how the data are extracted from the underlying

model [El-Atawy et al., 2005].

[El-Atawy et al., 2007; Tuglular et al., 2009] present a framework that is capable of

generating validation traffic for a particular firewall. In a similar manner to other topology

mapping programs [Govindan and Tangmunarunkit, 2000; Xie et al., 2005], the work sends

actual traffic through the system, introducing the potential for disruption. The intent of the

work is to generate a list of test cases that will then be able to exercise a firewall’s internal

filtering to ensure consistency. It is not intended to abstract behavior for formal verification

of the security policy. It also does not cover any other behaviors common to a modern

firewall, routing and network address translation.

[Zaliva, 2008] presents a survey of firewall modeling. This work demonstrates that the

focus is typically on the individual firewall policy and some efforts on modeling the security

posture as a broader inter-connected network. [Bartal et al., 1999; Mayer et al., 2000; Wool,

2001] discuss analysis engines; and while they all advance the state of behavior modeling of

firewalls, they neglect certain portions of actual firewalls. [Bartal et al., 1999] is unable to

accurately model NAT and [Mayer et al., 2000] does not model routing decisions, which are

both important elements in attempting to understand the accuracy of traffic through ingress

to egress interfaces. [Wool, 2001] strictly models single device, single policy ACLs.

FIREMAN focuses on finding configuration anomalies in firewall policies. The primary

similarity with our work is the extension of a chain model that is also extended from Linux
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Netfilter [Russell, 2011]. The work advocates converting individual and networked policies

into a linear chain of processing that includes rules and links between firewalls [Yuan et al.,

2006]. Our work extends some of the concepts presented to cover NAT, interfaces, and

routing tables. In addition, instead of enumerating all possible linear activities which might

occur in a complex network, our work focuses on sharing paths through a spanning directed

acyclic graph structure.

The work most closely related to ours involves modeling attack graphs for exploitation

of individual hosts in a network [Ingols et al., 2009]. The effort uses the chains concept

[Russell, 2011] in portions of the work to reflect how a virtualized space might flow through

the network. In addition to ACLs, the work is able to model NAT and routes. However,

the primary difference from our work is the use of the data structure that is processed and

the enhancements in our work to the chains concept that allows selection and identification

of policies based on ingress and egress interfaces. This is something required for modeling

modern firewalls. In addition, the spanning graph that is produced in our work differs

from the reduced attack graph represented in [Ingols et al., 2009], both in the goal of the

intermediate representation of the network, and its purpose.

5.7 Chapter Summary

In this effort we have presented a framework for modeling the known capabilities of modern

firewalls such that the devices may be abstracted from the manufacturer specific implemen-

tation details. This abstraction allows a firewall to be modeled in a common manner in

software, such that functional and configuration oriented testing may be achieved with more

sophisticated plans than using a brute force, test all possibilities, approach that is seen today.

In addition, this framework may be extended to assist in translation and migration from one

vendor specific implementation to another, thus allowing the verification of the translation

of complicated firewalls with certainty.
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Chapter 6

Conclusions

In this dissertation many elements of firewalls and networks were covered with the goal of

providing a framework for simulating and comprehending the large solution space represented

by the addressable network space. Chapter 3 began by defining the foundations of data

structures and algorithms necessary for human comprehension of the large solution space,

the Firewall Policy Diagram. Chapter 4 built on that foundation by providing a formal

language for querying the solution space and a mechanism to manipulate the space in a

policy database. Chapter 5 discussed how a modern firewall may be abstracted into a set

of common elements, such that those elements may be linked together and tested using the

entire solution space represented by the FPD.

The following contributions were researched and discussed:

• Presented a set of data structures and algorithms for human comprehension of the

addressable network space.

• Discussed firewall rule de-correlation as it relates to the policy gaining a holistic view

of access. We demonstrated how the FPD removes any overlapping rules such that it

models the actual accept and deny space.

• Demonstrated FPD capabilities to perform the basic set operations and, or, and not.

Using these basic operations on the data structure allows reasoning about firewall
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policy changes over time. In addition, they provide the foundation for FPQL and

Behavior Abstraction Models.

• Presented an algorithm to reconstitute a set of human comprehensible rules from de-

composed hierarchical data set representing the solution space.

• Designed and implemented an expressive query language that a team of firewall admin-

istrators would be able to use to answer important questions about what is contained

in a large, and often very difficult to understand, set of firewall policies.

• Provided a syntax similar to Structured Query Language (SQL) such that the users

describe what they desire in a declarative manner, allowing the system to find and

return the information. This is in contrast to a more procedural style of telling the

system how to find the information.

• Demonstrated experimentally that FPQL and the policy database are capable of han-

dling industry caliber data sets, presenting the results of experiments run against large

policies (up to 20,000 rules) showing how individual results can be returned in mi-

croseconds of processing time.

• Demonstrated the benefits of FPQL for formal verification efforts with single and

multiple firewalls.

• Designed and implemented a Behavior Abstraction Model for the modern firewall de-

vice. This model allows implementations of vendor specific nuances in software, as well

as functional testing of those capabilities in software.

• Described uses of the Behavior Abstraction Model such as network trace analysis for

understanding how a packet will traverse the device without physically sending the

packet. In addition to an individual packet, a packet space in the form of an FPD may

traverse the network to understand what will make it from point A to point B.
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• Provided experimental evidence that the linear case of testing all possible combinations

through the model can be avoided by using the FPD. The canonical data structure and

behavior abstraction models are capable of modeling very large firewalls for analysis

in milliseconds of time, allowing fast verification of changes to the firewall and testing

those changes completely in software.

• Finally, we discussed how the behavior abstraction models may participate in a larger

software modeled network for more comprehensive simulations without requiring the

physical cables and radios.

Future work will focus on modeling the disparate networking systems seen today as a

software model. The intent is to include all decision making and control elements found in

a network at various levels in the IP stack. The importance of the endeavor is evidenced by

the large increase in the number of networked devices and the inadequate tools possessed

by the industry today in understanding what is communicating. In addition, the emergence

of Software Defined Networking holds the potential to further increase the control devices,

making data structures and algorithms helping humans comprehend the addressable space

an ongoing and interesting challenge.
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