Optimization of Particle Size for PLGA Nanoparticles Prepared by the Ouzo Effect

Erik Rytting, Tobias Lebhardt, and Thomas Kissel

Philipps-Universität Marburg
Why Nanoparticles?

- Nanoparticles can be the right tool for the job

- Advantages
 - Enhanced bioavailability and controlled release
 - Penetration across biological barriers
 - Increased drug targeting efficiency
Methods for Nanoparticle Production

Materials

- Polymers
- Metals
- Ceramics
- Biological materials
 - Liposomes
 - Peptides

- Polymeric Nanoparticles
 - Nanoparticles formed using monomers as the starting point
 - Nanoparticles prepared using preformed polymers as the starting point
Methods Employing Preformed Polymers

- Emulsion Diffusion
 - Interfacial Precipitation
- Emulsion Evaporation
 - Double Emulsion Evaporation
- Salting Out
- Solvent Displacement
 - Nanoprecipitation, Solvent Diffusion, Spontaneous Precipitation, Ouzo Effect
Solvent Displacement

- Polymer and drug are dissolved in a water-miscible organic solvent
Solvent Displacement

- Polymer and drug are dissolved in a water-miscible organic solvent
- This solution is added to an aqueous solution
Solvent Displacement

- Polymer and drug are dissolved in a water-miscible organic solvent
- This solution is added to an aqueous solution
- Rapid solvent diffusion leads to instantaneous nanoparticle formation
Solvent Displacement

- Polymer and drug are dissolved in a water-miscible organic solvent
- This solution is added to an aqueous solution
- Rapid solvent diffusion leads to instantaneous nanoparticle formation
- Solvent is removed by evaporation
Solvent Displacement

Advantages
- Relatively simple process
- Nontoxic solvents can be used
- Does not require high shear stress
- Does not require surfactants or stabilizers

Disadvantages
- Solvent evaporation can be time consuming
- Poor encapsulation of hydrophilic drugs
Nanoparticle Characterization

- Size
- Surface Characteristics
- Encapsulation efficiency
- Drug Release
- Degradation
- Biocompatibility
Nanoparticle Characterization

- Size
- Surface Characteristics
- Encapsulation efficiency
- Drug Release
- Degradation
- Biocompatibility
The Importance of Size
The Importance of Size

- Basketball

Average Player Height/40 minutes

- Air Force
- Kansas
- Florida

2005-2006 Season
The Importance of Size

<table>
<thead>
<tr>
<th>NCAA Div. I Rank</th>
<th>Air Force</th>
<th>Kansas</th>
<th>Florida</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rebound Margin</td>
<td>296/326</td>
<td>20/326</td>
<td>59/326</td>
</tr>
<tr>
<td>Blocked Shots</td>
<td>281/326</td>
<td>20/326</td>
<td>22/326</td>
</tr>
</tbody>
</table>
The Importance of Size

• Nanoparticle Size
 – Endothelial Permeability
 • Particle escape from vasculature
 – Liver sinus endothelium (up to 150 nm)
 – Tumor capillaries (up to 300 nm)
 • Blood-brain barrier
 – Splenic Filtration
 – Macrophage Clearance
 – Cellular Uptake
 – Particle Degradation and Drug Release Rates
Ouzo Effect

• Solvent displacement is also referred to as the Ouzo effect
 – Ouzo is a mixture of anethol, ethanol, and water (from anis seeds)
 – Additional water leads to micro/nanoparticle formation
 – Solution proportions fall into a thermodynamically metastable region
 • Homogeneous nucleation occurs
 • Leads to a uniform dispersion (milliseconds) followed by Ostwald ripening (seconds)
Ouzo Region

Ouzo Region for RG502H/Acetone

![Ouzo Region Graph](image-url)
Ouzo Region for RG502H/Acetone

- Weight fraction polymer
- Weight fraction acetone

- Ouzo region
- No Particles
- Stable Nanoparticles
- Unstable Particles

Graph showing the regions of stability and instability for different weight fractions of polymer and acetone.
Particle Size Distribution

![Particle Size Distribution Graph]

![Particle Size Distribution Image]
Surfactant Concentrations

![Bar chart showing nanoparticle size (nm) in relation to poloxamer concentration (%).]
Different Solvents

Particle Size (nm)

- Acetone
- Acetonitrile
- THF
Different Solvents

- Particle Size (nm)
 - Acetone
 - Acetonitrile
 - THF

- Solvent Viscosity (cP)
 - Acetone
 - Acetonitrile
 - THF
PLGAs of Increasing MW

<table>
<thead>
<tr>
<th>Polymer</th>
<th>M_n (kDa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RG502H</td>
<td>12</td>
</tr>
<tr>
<td>RG503H</td>
<td>23</td>
</tr>
<tr>
<td>RG504H</td>
<td>48</td>
</tr>
</tbody>
</table>

![Graph showing the relationship between polymer concentration and kinematic viscosity.](image)
Relative Viscosity

$$RV = \frac{\text{Viscosity of 10 mg/mL polymer}}{\text{Viscosity of acetone alone}}$$
4.0 mg/mL RG 502 H in acetone added to 0.1% Poloxamer.
Surfactants – Fast Injection

![Graph showing nanoparticle size vs poloxamer concentration.](image-url)
Surfactants – Slow Injection

The graph shows the relationship between Poloxamer Concentration (%) and Nanoparticle Size (nm). As the Poloxamer Concentration increases from 0 to 0.3%, the Nanoparticle Size increases from approximately 100 nm to 140 nm.
Relative Viscosity

$$RV = \frac{\text{Viscosity of 10 mg/mL polymer}}{\text{Viscosity of acetone alone}}$$
Viscosity – Slow Injection

[Graph showing the relationship between Particle Size (nm) and [Polymer in Acetone] (mg/mL) for RG502H and RG504H.]
Importance of Size

<table>
<thead>
<tr>
<th>Win-Loss Record</th>
<th>Air Force</th>
<th>Kansas</th>
<th>Florida</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24-7</td>
<td>25-8</td>
<td>33-6</td>
</tr>
</tbody>
</table>
Importance of Size

<table>
<thead>
<tr>
<th></th>
<th>Air Force</th>
<th>Kansas</th>
<th>Florida</th>
</tr>
</thead>
<tbody>
<tr>
<td>Win-Loss Record</td>
<td>24-7</td>
<td>25-8</td>
<td>33-6</td>
</tr>
<tr>
<td>Scoring Defense</td>
<td>1/326</td>
<td>33/326</td>
<td>50/326</td>
</tr>
<tr>
<td>Field Goal % Defense</td>
<td>132/326</td>
<td>1/326</td>
<td>21/326</td>
</tr>
<tr>
<td>Scoring Offense</td>
<td>267/326</td>
<td>42/326</td>
<td>22/326</td>
</tr>
</tbody>
</table>
Importance of Size

<table>
<thead>
<tr>
<th></th>
<th>Air Force</th>
<th>Kansas</th>
<th>Florida</th>
</tr>
</thead>
<tbody>
<tr>
<td>Win-Loss Record</td>
<td>24-7</td>
<td>25-8</td>
<td>33-6</td>
</tr>
<tr>
<td>Scoring Defense</td>
<td>1/326</td>
<td>33/326</td>
<td>50/326</td>
</tr>
<tr>
<td>Field Goal % Defense</td>
<td>132/326</td>
<td>1/326</td>
<td>21/326</td>
</tr>
<tr>
<td>Scoring Offense</td>
<td>267/326</td>
<td>42/326</td>
<td>22/326</td>
</tr>
<tr>
<td>Personal Fouls/Game</td>
<td>13/326</td>
<td>140/326</td>
<td>29/326</td>
</tr>
<tr>
<td>3-Pointers Made/Game</td>
<td>12/326</td>
<td>173/326</td>
<td>70/326</td>
</tr>
<tr>
<td>3-Point Shooting %</td>
<td>4/326</td>
<td>44/326</td>
<td>15/326</td>
</tr>
<tr>
<td>Free Throw Shooting %</td>
<td>29/326</td>
<td>226/326</td>
<td>34/326</td>
</tr>
</tbody>
</table>
Improved Drug Delivery

• Nanoparticle Size
Improved Drug Delivery

- Nanoparticle Size
- Precision/Accuracy
Improved Drug Delivery

- Nanoparticle Size
- Precision/Accuracy/Targeting
Improved Drug Delivery

- Nanoparticle Size
- Precision/Accuracy/Targeting
- Other Strategies
How can one control Basketball player size?

- Nutrition
- Exercise
- Genetics
Summary

• How can one control Nanoparticle size?
 – Solvent viscosity
 – Injection speed
 – Polymer concentration
Acknowledgments

• Co-authors: Tobias Lebhardt & Thomas Kissel
• Others
 – Claudia Packhäuser
 – Theresa Haas
 – Ulrike Nierste
References

- Bala et al., *Critical Rev Ther Drug Carrier Sys*, 2004, 21, 387-422.
Poloxamer 188 NF (Pluronic F68)

Surface Charge

![Graph showing nanoparticle size and zeta potential as a function of Poloxamer concentration.](image-url)
Fluorescent Nanoparticles

Nanoparticles prepared with 10 µg Coumarin-6 per 10 mg RG502H in 1 mL acetone, $Z_{\text{ave}} = 117 \pm 3$ nm. Fluorescence Microscopy settings: $\lambda_{\text{ex}} = 488$ nm, $\lambda_{\text{em}} = 515$ nm. Suspension of particles in water after washing in a Sephadex G-50 column.