Biorelevant media for in vitro permeability assessment of phosphate ester prodrugs: a case study with fosamprenavir

Joachim Brouwers
Laboratory for Pharmacotechnology and Biopharmacy
Katholieke Universiteit Leuven
GPEN, Kansas, October 25th 2006
Introduction

intraluminal drug & formulation behavior
Introduction

intraluminal drug & formulation behavior

Intraluminal conditions in function of time after oral drug intake?

- pH
- bile salts
- phospholipids
- drug concentration
- excipient concentration
- influence of food
...

Diagram with various labeled components (likely representing different parts of the digestive tract and the drug formulation process).
Introduction

intraluminal drug & formulation behavior

Sampling of human gastro-intestinal fluids

- healthy volunteers
- double lumen catheter(s)
- blank fluid
- after intake of oral dosage form
- fasted vs fed
Introduction

intraluminal drug & formulation behavior

Sampling of human gastro-intestinal fluids

- characterization: pH, bile salts, phospholipids, drug, excipient…
 - intraluminal conditions (after oral drug intake)
 - descriptive
 - relation to pharmacokinetics
 - working mechanisms of formulations
 - …

- integration in in vitro studies (dissolution / solubility / stability / permeability)
 - influence of real intraluminal conditions on drug absorption
 - biorelevance of model systems: aqueous buffers vs intraluminal conditions
Introduction

amprenavir / fosamprenavir

Amprenavir:
- HIV protease inhibitor
- poorly water-soluble (0.08 mM in H$_2$O, pH 7, 37 °C)
- substrate of the efflux carrier P-gp

Standard formulation (Agenerase®):
- high pill burden!
- soft gelatin capsules
- amprenavir 150 mg (single dose: 8 capsules, amprenavir 1200 mg)
- solubilizing excipient TPGS

![Chemical structure of Amprenavir and TPGS](image-url)
Introduction

amprenavir / fosamprenavir

Fosamprenavir
water-soluble

→ Telzir®:
 2 tablets (1400 mg APV)

Amprenavir
poorly water-soluble

→ Agenerase®:
 8 capsules (1200 mg APV)
Introduction

amprenavir / fosamprenavir

Prodrug with increased solubility compared to parent drug

→ enhanced intestinal absorption of parent drug!

⇒ What happens in the gastro-intestinal tract?

- in vivo study
- in vitro study
Purpose

To characterize the in vitro behavior of fosamprenavir in the Caco-2 model system using different media:

- transport medium (aqueous buffer)
- human intestinal fluids
- “biorelevant” media: FaSSIF (+ taurocholate/phospholipids)
Methods

Stability of fosamprenavir?

transport medium (MES-buffered HBSS, pH 6.5) “biorelevant” media
human intestinal fluids (HIF)

Sampling of HIF
- 3 volunteers
- duodenum
- fasted state
- in function of time
- samples pooled per volunteer
- pH / inorganic phosphate

Sampling in function of time
- (filtration)
- analysis of amprenavir and fosamprenavir
 (HPLC + fluorescence detection)
Results

Fosamprenavir in transport medium / Caco-2

Stability of fosamprenavir upon incubation in transport medium?

Transport medium: MES-buffered HBSS pH 6.5
Results

Fosamprenavir in transport medium / Caco-2

Incubation at the apical side of Caco-2 monolayers (60 min, 37°C)

⇒ Conversion to amprenavir: concentration-dependent
 pH-dependent

⇒ Ca. 8% of the amprenavir formed is transported across the cell monolayer
Results

IAP: intestinal alkaline phosphatase
Results

fosamprenavir in HIF / Caco-2

Stability of fosamprenavir upon incubation in HIF?

HIF (human intestinal fluid): 3 volunteers, fasted, duodenum
Results

fosamprenavir in HIF

Stability of fosamprenavir (10 µM) upon incubation in HIF (37°C)

![Graph showing the stability of fosamprenavir over time for Subjects A, B, and C.](image)

⇒ Phosphatase activity in HIF, depending on subject.
Results

fosamprenavir in HIF / Caco-2

Incubation at the apical side of Caco-2 monolayers
(fosamprenavir 10 µM, 60 min, 37°C)

⇒ Phosphatase activity of Caco + HIF
High dose of fosamprenavir \rightarrow amprenavir??

incubation of fosamprenavir 500 µM in HIF

Results

supersaturation in HIF
High dose of fosamprenavir \rightarrow amprenavir??

incubation of fosamprenavir 500 µM in HIF

\Rightarrow create and maintain supersaturation of amprenavir in HIF
Results

supersaturation and flux

Supersaturation $\Rightarrow C_0 \uparrow \Rightarrow$ flux?

incubation of amprenavir/fosamprenavir in HIF at Caco-2 monolayers

\rightarrow transport of amprenavir in function of time?

![Graph showing Amprenavir transport over time]

APV “1 mM” = suspension
(in solution: 150 µM)
Results

supersaturation and flux

Supersaturation $\Rightarrow C_0 \uparrow \Rightarrow$ flux?

incubation of amprenavir/fosamprenavir in HIF at Caco-2 monolayers

\rightarrow transport of amprenavir in function of time?

![Graph showing Amprenavir transport over time.]

FPV 1 mM = solution

APV “1 mM” = suspension
(in solution: 150 µM)
Results

supersaturation and flux

Supersaturation $\Rightarrow C_0 \uparrow \Rightarrow$ flux?

incubation of amprenavir/fosamprenavir in HIF at Caco-2 monolayers

\rightarrow transport of amprenavir in function of time?

APV supersaturated solution

FPV 1 mM = solution

APV “1 mM” = suspension
(in solution: 150 µM)
Results

fosamprenavir in FaSSIF / Caco-2

Stability of fosamprenavir upon incubation in FaSSIF?

FaSSIF (Fasted State Simulated Intestinal Fluid): phosphate buffer pH 6.5

- taurocholate 3 mM
- lecithin 0.75 mM

FaSSIF

poorly water-soluble drugs

![Diagram of FaSSIF setup]
Results

fosamprenavir in FaSSIF / Caco-2

Incubation at the apical side of Caco-2 monolayers
(fosamprenavir 10 µM, 60 min, 37°C)

⇒ Almost no dephosphorylation of fosamprenavir using FaSSIF as medium!
→ not biorelevant!
Results

diinorganic phosphate

Incubation at the apical side of Caco-2 monolayers

(fosamprenavir 10 µM, 60 min, 37°C)

TM with different concentrations of inorganic phosphate (P_i)

⇒ inhibition of intestinal alkaline phosphatase by inorganic phosphate
Results

Inorganic phosphate

Intraluminal phosphate concentrations?

<table>
<thead>
<tr>
<th></th>
<th>Subject A</th>
<th>Subject B</th>
<th>Subject C</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_i (mM)</td>
<td>0.0</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>2.0</td>
<td>2.5</td>
</tr>
</tbody>
</table>

FaSSIF (28.7 mM) TM (0.8 mM)
Results

inorganic phosphate

Intraluminal phosphate concentrations?

$$P_i \text{ (mM)}$$

- Subject A
- Subject B
- Subject C

28.7 mM (FaSSIF)

⇒ Phosphate-buffered FaSSIF is not compatible with phosphate ester prodrugs.
Results

inorganic phosphate

Intraluminal phosphate concentrations?

⇒ Phosphate-buffered FaSSIF is not compatible with phosphate ester prodrugs.
Results

alternative for FaSSIF

Incubation at the apical side of Caco-2 monolayers
(fosamprenavir 10 µM, 60 min, 37°C)

TM (MES-buffered HBSS)
+ taurocholate (TC) 3 mM
+ phospholipids (PL) 0.75 mM

![Bar chart](image-url)

- **Amprenavir in acceptor**
- **Amprenavir in donor**
Conclusion

- Illustration of intraluminal supersaturation of a poorly water-soluble drug from its soluble prodrug in real intestinal media.
- Dephosphorylation of fosamprenavir is inhibited by inorganic phosphate → biorelevant media!
- Ongoing: in vivo intraluminal behavior of fosamprenavir fasted vs fed
Acknowledgements

• Onderzoeksfonds K.U.Leuven

• FWO-Vlaanderen

• Center for Gastro-enterologic Research, UZ Leuven
 Rita Vos
 Jan Tack

• Laboratory for Pharmacotechnology and Biopharmacy, K.U.Leuven
 Patrick Augustijns