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Abstract 

 The goal of this study was to investigate the impact of a Qigong exercise intervention on 

symptoms related to sleep quality, fatigue, and gait function in Parkinson’s disease (PD). 

Subjects participated in a six-week Qigong exercise program, which included performance of the 

exercise routine twice daily as well as weekly group exercise sessions. Subjects were assessed in 

sleep quality and fatigue using standard clinical assessments specific to PD. Gait function was 

tested using three-dimensional motion analysis during the performance of several gait tasks. The 

performance of these tasks was assessed in three main categories: overall gait function, gait 

variability, and turning performance. Parameters used to assess overall gait function included 

stride time, stride length, double support time, and gait velocity. Gait variability was studied 

using the coefficient of variation of stride time and stride length. Turning performance was 

evaluated using the total number of steps and total time taken to complete a full turn.  

Following completion of the intervention, the Qigong exercise showed a positive impact 

on several PD symptoms. Measures of sleep quality showed improvement as a result of the 

exercise therapy. Subjects also demonstrated improvements in gait function. Overall gait 

performance showed a significant benefit from the exercise. Gait velocity was increased as a 

result of increased stride length and decreased step time. Additionally, time spent in double 

support was reduced. There was an improvement in gait variability as well, as stride time 

variability was significantly reduced in the post-intervention testing. Finally, neither turning 

performance nor fatigue appeared to benefit from the exercise, as no significant change occurred 

in either of these parameters. These results suggest that this specific Qigong exercise intervention 

may be beneficial in the management of sleep and gait related symptoms of PD. Further study is 

necessary to provide more definitive evidence of these benefits. 
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CHAPTER ONE: INTRODUCTION 

Background & Motivation 

 People suffering from Parkinson’s disease (PD) experience a broad range of symptoms. 

These include a variety of motor and non-motor features that impact the ability for patients to 

perform daily functions and can have a major impact on quality of life. Two important areas of 

concern include gait complications and sleeping disorders. 

 Motor function in PD is largely influenced by four key features of the disease: 

bradykinesia (slowness of movement), rigidity, postural instability, and tremor [1]. These factors 

combine to cause several characteristic changes to gait in PD. The most prominent change is a 

pronounced reduction in gait velocity. This typically occurs as a result of shortened stride length, 

though in some circumstances reduced cadence may contribute as well [2, 3]. In addition to 

changes in velocity, parameters related to postural instability are affected. These include double 

support time and gait variability. Several studies have shown a correlation between increased 

time spent in double support and increased levels of postural instability [4, 5]. Increased gait 

variability, assessed through variations in stride length and stride time, also has an association to 

postural instability and has been shown to correlate to a high incidence of falling in several 

populations, including PD [6]. Successful management of these issues is a major focus in the 

treatment of PD. 

 While motor complications receive a great deal of focus in PD, issues related to sleeping 

can often be overlooked. Sleeping disorders impact a large portion of patients, with 

approximately half suffering from insomnia [1]. Other issues related to sleep include increased 

sleep latency and decreased sleep time and efficiency [7]. One specific sleep disorder, rapid eye 
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movement (REM) sleep behavior disorder (RBD) impacts a substantial number of patients. This 

disorder is of particular interest as it has been found to be a possible predictor of PD 

development and may be associated with more severe motor impairment [8]. In addition to these 

sleeping difficulties, fatigue occurs in up to 2/3 of patients and may also contribute to worsening 

of motor symptoms [9]. 

  Currently, PD symptoms are managed using levodopa. This medication has been highly 

effective at controlling many of the features of PD, especially bradykinesia, rigidity, and tremor 

[10]. Despite its effectiveness with some of the more prominent symptoms of the disease, there 

are several issues that tend to resist its therapeutic effect. These include some of the more severe 

gait complications as well as many non-motor issues, including sleep [10]. As a result, there is a 

need for additional therapies that may address the limitations of levodopa treatment. Studies of 

complementary therapies, including those using meditative movements such as Qigong and Tai 

Chi, have shown some promise in these areas. Reported benefits of these exercises include 

improvements to gait and motor function as well as sleep, fatigue, and other non-motor 

symptoms [11]. 

 

Specific Aims 

 The goal of this study was to investigate the potential benefit of a Qigong exercise 

intervention on PD symptoms related to sleep, fatigue, and gait performance. Subjects 

participated in a six-week long Qigong exercise intervention, performing the exercise therapy 

twice daily on their own as well as weekly in group exercise sessions. The potential benefits of 

the intervention were assessed through changes in the parameters of interest. Sleep quality and 
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fatigue were measured using standard clinical assessments and questionnaires. The impact on 

gait performance was studied using three-dimensional motion capture. Measures of gait 

performance included overall gait function, gait variability, and turning performance. Overall 

gait function involved analysis of stride time, stride length, double support time, and gait 

velocity. Gait variability was analyzed in terms of variations in stride length and stride time. 

Turning performance was assessed by the total number of steps and total time taken to complete 

a turn.  

 The short term goal of this study was to determine the potential benefits that may result 

from implementing Qigong as a complementary therapy in PD and to determine appropriate 

measures that will allow us to track these outcomes. These results will be used to design a larger 

scale study that will enable us to measure these effects more definitively. The long term goal of 

this study is to develop a low-cost mind-body therapy that may allow patients to further manage 

their PD symptoms beyond what is currently achieved through standard medicinal therapy. 

 

Thesis Content 

This document contains four chapters and an appendix. The first chapter consists of an 

introduction to the area of study as well as the motivation and specific aims. Chapter two 

contains an extensive survey of literature relevant to the current study. The third chapter consists 

of a manuscript reporting the details of a study investigating the effects of a mild, mind-body 

exercise program (Qigong) on sleep quality and gait performance in Parkinson’s disease. Chapter 

four contains a summary of this study. 
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CHAPTER TWO: BACKGROUND 

 

Overview 

This section provides a review of relevant information and previous work related to the 

study being presented. The first portion of this section is a general overview of the topic. This 

includes a brief introduction to Parkinson’s disease and a review of the pathophysiology, 

common symptoms, and current treatment methods. The remaining portion of this section moves 

deeper into topics directly related to the current study. Those topics being discussed in greater 

detail include gait complications, sleep disturbances, and complementary exercise therapies. 

 

Parkinson’s Disease 

Parkinson’s disease (PD), first described by James Parkinson in 1817 as the “shaking 

palsy”, is a progressive neurodegenerative disorder of the basal ganglia that is expressed through 

a variety of motor and non-motor features [1]. Typical onset of the disease occurs between 50 

and 60 years of age and affects approximately 1.5% of the population over the age of 65 [1, 2]. 

There is currently no definitive test for diagnosing PD; therefore a neurologist or 

movement disorders specialist must perform an examination to confirm diagnosis. Further, there 

are no reliable methods for identifying otherwise healthy persons that have a high probability of 

developing the disease. While several risk factors do exist - including family history and 

environmental exposures - these increase the potential for developing PD from 1.5% to only 
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about 4% [2]. A certain sleeping disorder, which will be discussed in more detail in a later 

section, has shown promise as an early marker of PD, but the factors leading to this disorder are 

also not well understood. Upon diagnosis, disease symptoms can be managed relatively well 

with medical therapies; however, it is estimated that the clinical symptoms of Parkinsonism do 

not develop until 70-80% of striatal dopamine has already been depleted, corresponding to a 30-

50% loss of dopaminergic neurons [3]. 

Generally speaking, the progression of PD is relatively slow with variable levels of 

impairment. These features are tracked using two common rating scales. The Hoehn and Yahr 

(H&Y) scale is used as a measure of disease progression. It consists of five stages: 1) unilateral 

symptoms only; 2) bilateral symptoms with no impairment of balance; 3) mild to moderate 

disease with balance impairment, but still physically independent; 4) severe disability, but still 

able to walk or stand unassisted; and 5) wheelchair bound or bedridden unless assisted [4]. The 

second test – the Unified Parkinson’s Disease Rating Scale (UPDRS) – is a rating system used to 

quantify the level of impairment. It consists of three subsections, which include evaluations of 

mentation, behavior, and mood; activities of daily living (ADL); and motor function. Items in 

these sections are scored from zero (normal) to four (severe impairment). These scores are 

summed to calculate totals for each subsection as well as an overall score. Higher scores in this 

assessment indicate more severe disability [5]. The speed of progression and level of impairment 

seem to be directly related to degeneration in the basal ganglia, which leads to the onset of 

several common symptoms. 
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The Basal Ganglia 

 The basal ganglia are a group of five nuclei situated at the base of the forebrain that act 

together as an organized functional unit. There is no doubt that these structures play a significant 

role in movement, as all disorders involving the basal ganglia have motor issues as their primary 

symptom. However, the basal ganglia are involved in a number of parallel circuits, only a few of 

which deal strictly with motor function. While the motor pathway is most relevant for the present 

study and will be the primary focus here, it is important to note that other basal ganglia circuits 

involve certain aspects of memory and cognition [6, 7]. 

 The five nuclei composing the basal ganglia are the caudate nucleus, putamen, globus 

pallidus, subthalamic nucleus, and substantia nigra. Together, the caudate and putamen form the 

largest component of the basal ganglia called the striatum. The globus pallidus consists of two 

parts with connections to distinctly separate areas of the brain. There is a lateral or external 

segment (GPe) and a medial or internal segment (GPi). The substantia nigra and subthalamic 

nucleus (STN) actually sit just outside of the forebrain in the midbrain. Like the globus pallidus, 

the substantia nigra has two parts connecting to separate areas of the brain. The dorsal region is 

the pars compacts (SNc) and the ventral region is the pars reticulata (SNr). The striatum serves 

as the primary input area of the basal ganglia, while the GPi and SNr are often considered 

homologous and serve as the primary output structures [6, 7]. 

 Regulation of motor control in the basal ganglia occurs by means of direct and indirect 

pathways. The basal ganglia receive input from the cerebral cortex, particularly the frontal, 

prefrontal, and parietal regions, and send output by way of the thalamus back to the cortex, 
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specifically the supplementary motor area (SMA). This process is often considered to act as a 

sort of funnel, taking inputs from widespread cortical areas and focusing or funneling them to the 

SMA [6, 7].  

In more detail, the direct motor loop of the basal ganglia begins when the striatum 

(primarily the putamen) receives excitatory input from the cortex. From here, inhibitory signals 

are sent to the GPi and SNr, which have inhibitory connections to the thalamus, specifically the 

ventral lateral nucleus (VLo). The VLo sends excitatory signals back to the cortex to facilitate 

the discharge of movement related cells in the SMA. In summary, this loop follows the pathway 

outlined below, where empty arrows represent excitation and solid arrows show inhibition: 

Cortex  Striatum (putamen)  GPi/SNr  Thalamus (VLo)  Cortex (SMA). 

At rest, neurons in the GPi and SNr are spontaneously active, inhibiting the VLo. When the 

cortex excites the neurons of the putamen to increase its inhibitory output, the normally active 

neurons of the GPi and SNr are suppressed and their outputs are reduced. As a result of the lower 

inhibition acting on the VLo, it becomes active and subsequently sends excitation to the SMA 

[6]. 

The indirect motor loop operates in contrast with the direct loop, funneling signal from 

the motor cortex through the basal ganglia to inhibit the SMA. The loop begins in the same 

manner as the direct loop with excitation of the striatum by way of the cortex. The loops diverge 

here, however, and the striatum sends inhibitory signals to the GPe, which has inhibitory 

connections with the STN. The STN provides stimulation to the GPi and SNr, where the paths of 

the direct and indirect loops are rejoined. Again, the GPi and SNr provide inhibitory connections 

to the thalamus. The indirect motor loop appears as follows:  
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Cortex  Striatum  GPe  STN  GPi/SNr  Thalamus  SMA. 

Comparing this with the direct motor loop, the clear difference is the excitation of the GPi/SNr 

by way of the GPe and STN. This excitation further increases the activity of neurons in these 

structures, increasing inhibition to the thalamus. This leads to reduced muscular activity 

generated by the SMA. The appropriate balance of the direct and indirect pathways provides the 

ability to perform coordinated, voluntary movements [6, 7]. 

 In PD, degeneration of cells in the SNc occurs. This structure is responsible for producing 

the neurotransmitter dopamine. Dopamine is important in facilitating the direct motor loop by 

activating cells in the putamen. When dopamine levels are diminished, inhibitory outputs from 

the striatum are reduced. In the direct loop, this allows the cells in the GPi/SNr to remain active 

and inhibition to the thalamus remains high, preventing appropriate activation of the SMA. In the 

indirect loop, reduced inhibition of the STN further excites the GPi/SNr and again the thalamus 

is not able to adequately stimulate the SMA. It is thought that the primary role of the basal 

ganglia is to take motor plans from the cortex and provide the SMA with the correct motor set 

and appropriately timed cues to execute the motor plan completely. The ultimate result of PD 

related changes to the basal ganglia is a reduction in movement amplitude [8].  

 In addition to issues arising from the dysfunction of the basal ganglia, related external 

structures may also potentially contribute to PD symptoms. The pedunculopontine nucleus (PPN) 

interfaces directly with the basal ganglia through circuitry connecting to the substantia nigra and 

STN. It also has connections to the thalamus, which is the primary output target for the basal 

ganglia. The PPN also receives input from the basal ganglia in the form of inhibition from the 

GPi. Reduced activity of the PPN, whether through increased inhibition from the GPi or neuronal 
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loss in the PPN, has been linked to issues in cyclic motor control and sleep disturbances. 

Additionally, the PPN may play an important role in other dopamine resistant symptoms, such as 

akinesia (motor blocks), complex gait disturbances, and primary sensory symptoms. Animal 

studies have suggested that the PPN plays an important role in the initiation, acceleration, 

deceleration and termination of locomotion [9]. These factors are important considerations to 

help develop a more complete understanding of PD. 

 

Symptoms and Progression 

PD affects patients through a relatively wide range of symptoms. A significant amount of 

research has focused on the motor impairments involved in the disease. Through this research, 

four cardinal motor features have been identified as hallmark symptoms of PD: tremor, 

bradykinesia, rigidity, and postural instability. In addition to these, there are also several non-

motor symptoms that can significantly impact the patient. 

Tremor is perhaps the most easily recognizable symptom of PD. It is a regular, rapid, and 

rhythmic movement, most often occurring in the hands (often described as “pill-rolling” 

tremors), but also common in the lips, chin, jaw and legs]. The movements are generally 

unilateral, occurring while at rest and typically disappear during voluntary movements and sleep. 

The intensity of the tremor may vary in different conditions, aggravated by emotional stress, 

fatigue, and attempts to suppress it, but lessened in calm and relaxing situations [1]. Though it is 

often the primary symptom people link to PD, it does not occur in all patients. 

Bradykinesia, or slowness of movement, is the most characteristic feature of PD and 

often becomes apparent prior to any formal diagnosis. Initially, it manifests as slowness in 
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completing activities of daily living, slow movement, increased reaction times, and difficulty in 

tasks requiring fine motor control [10]. Bradykinesia is likely to progress over the course of PD 

and may represent the most accurate marker of disease progression [11]. In addition to slow 

movement, some patients experience temporary, complete motor blocks (akinesia), an especially 

troubling occurrence that is highly correlated with falls. 

Another common feature of PD is rigidity, or increased resistance to passive movement. 

This can be exhibited in several forms. “Clasp-knife” rigidity is characterized by increased 

resistance during rapid extension of an extremity. “Cogwheel” rigidity displays a catching and 

releasing motion during passive movement. Finally, “lead pipe” rigidity exhibits uniform 

resistance throughout the range of motion [1]. As the disease progresses rigidity can lead to 

postural changes, causing the trunk and head to be fixed forward along with slight flexion in the 

knees and elbows. These changes result in the stereotypical stooped posture associated with PD 

[10]. Additionally, facial rigidity is common with reduced eye blinking, leading to a masked 

appearance with limited expressions [1]. In some patients, rigidity can be associated with pain, 

especially in the shoulders. When occurring prior to PD diagnosis, this is often overlooked and 

misdiagnosed as arthritis, bursitis or rotator cuff injury [10]. 

The final cardinal motor feature of PD is postural instability. This typically surfaces later 

in the progression of the disease after the onset of other clinical features and is thought to result 

from a loss of postural reflexes [10]. Postural instability, along with akinesia, is a major cause of 

falls and contributes significantly to the risk of hip fractures and other injuries among PD 

patients. Increased reaction times and reduced speed and effectiveness of movements make falls 

especially troublesome since the ability to recover or protect from more serious injuries is 

significantly compromised.  
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Though the primary focus of PD has long been motor impairment, there are a number of 

non-motor symptoms that impact the quality of life for patients. Perhaps the most significant of 

these is cognitive impairment. It has been found that up to 50% of PD patients develop dementia, 

a six fold increase over healthy populations. An additional 84% show evidence of cognitive 

decline [10, 12]. Other neuropsychiatric issues include depression (58%), apathy (49%) and 

hallucinations (44%). These cognitive changes may play a role in the observed increases in 

obsessive compulsive and impulsive behaviors exhibited by PD patients [10]. The autonomic 

nervous system is also affected, demonstrated by increases in salivation, perspiration, and 

decreased sexual function [1]. Speech disorders may arise, characterized by monotone, quiet, and 

breathy speech with variations in rate and regular struggles in finding words. Finally, olfactory 

dysfunction and sleep disorders are also common and may present possible early markers of PD 

as these features regularly surface prior to diagnosis [10]. 

A number of studies have shown that the progression of PD begins with a pre-

symptomatic period in which neurodegeneration occurs prior to the onset of any clinically 

evident symptoms [2]. Imaging studies have estimated this period to range from 3 to as many as 

15 years. More recently, patients considered at risk of developing PD (via diagnosis of a specific 

sleep disorder) were tracked. These patients showed early evidence of abnormal UPDRS scores 

around 4.5 years prior to clinical diagnosis of PD [3]. It appears that the progression of the 

disease is non-linear, with a faster rate of deterioration in the early years (generally the first five 

years). This progression is also thought to vary depending on the primary symptoms [11]. Those 

primarily affected by akinesia, rigidity, and postural instability tend to lose motor function more 

rapidly compared to tremor predominant subtypes [13]. Symptoms also seem to progress at 

different rates by location in the body, becoming evident first in voice and facial akinesia, 
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followed by rigidity, gait abnormality, bradykinesia, and finally tremor [3]. Understanding the 

disease progression may assist in determining early markers of PD, which could allow earlier 

management of the disease in hopes of slowing the rate of progression. 

 

Current Therapies 

The central goal of medical therapy in PD has been to boost the levels of dopamine to 

offset losses due to degeneration of the basal ganglia. To achieve this, the compound L-

dihydroxyphenylalanine (L-dopa) is used. This compound is the precursor to dopamine. It is 

prescribed in the form of a medication called levodopa, which crosses the blood-brain barrier and 

boosts dopamine synthesis in the remaining cells in the substantia nigra pars compacta [6]. 

Levodopa was introduced in the late 1960s as the first highly effective treatment for PD and still 

remains the single most effective therapy for patients today [14]. As a result, the morbidity and 

mortality rate of PD patients has been significantly reduced and they now have a life expectancy 

approximating that of the normal population [15]. Levodopa has a relatively rapid onset of effect 

and significantly improves a majority of the hallmark features of PD. Unfortunately; it does not 

stop the disease’s progression. It was previously believed that treatment with levodopa may 

hasten the progression of the disease, but evidence has since suggested that this is not the case 

and that it may in fact slow it to an extent [16]. 

Levodopa is highly effective at controlling many of the primary symptoms of PD. Of the 

cardinal features, bradykinesia and rigidity usually respond well to levodopa. This results in 

dramatic improvements in motor function, especially evident through increases in walking speed. 

Tremor is more variable, but is often well controlled. On the other hand, postural instability 
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appears to be somewhat resistant to dopaminergic therapy [14]. In addition to these parameters, 

levodopa appears to results in more consistent performance as demonstrated by improvements in 

gait variability [17]. While levodopa has been successful at controlling most of fundamental 

motor symptoms, more abnormal motor features as well as many non-motor symptoms tend to 

resist the therapy. Unresponsive motor features include postural instability, speech, swallowing, 

and freezing of gait (FOG). Non-motor issues such as cognitive dysfunction, depression and 

autonomic nervous system dysfunction (orthostatic hypotension, thermoregulatory problems, 

constipation, sexual dysfunction, and urinary complications) occur in PD with variable frequency 

and severity and also tend to resist medical treatment. Finally, there are a number of sleep related 

issues in PD (sleep fragmentation, restless leg syndrome, sleep apnea, and rapid eye movement 

(REM) sleep behavior disorder (RBD)) that not only do not respond well to medication, but may 

actually be intensified by levodopa [14]. 

The overwhelming benefit of levodopa therapy is clear, as patients have benefited from 

improvements in mobility and quality of life since its introduction. However, there are several 

problematic changes that may occur as the duration of treatment increases. Dyskinesia, exhibited 

by involuntary movements, becomes more frequent as the duration of levodopa treatment 

increases. It is estimated that 30-35% of patients on levodopa for five years or more develop 

dyskinesia [14]. This may be eliminated by reducing levodopa therapy, but at the expense of 

increasing symptoms sensitive to the medication [15]. Mental changes can also occur as a result 

of long duration treatment. These changes may include confusion, paranoia, visual hallucinations 

(particularly in those with cognitive impairment), and dementia. It is suspected that new onset of 

these mental changes are often a precursor to the development of dementia. Finally, motor 

fluctuations may occur where the medication loses effectiveness or remains active for shorter 
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periods. In some cases (e.g. hallucinations) additional medications may be taken in combination 

with levodopa to control the secondary symptoms [14].  

Fortunately, those who develop difficulties with levodopa treatment may have better 

results with deep brain stimulation (DBS). DBS involves the implantation of a medical device 

that sends electric signals to specific areas of the brain. In PD, the STN is the common target. 

Appropriate candidates for DBS are not those whose symptoms do not respond to levodopa, but 

rather those with fluctuating responses or dyskinesia. Symptomatic improvement resulting from 

STN-DBS is approximately equivalent to the best levodopa response. Therefore, DBS makes it 

possible to consistently sustain this response, thus eliminating motor fluctuations. Since 

levodopa is no longer required with DBS, further issues related to the medication, such as 

dyskinesia, are halted as well. DBS typically does not improve symptoms that are not affected by 

levodopa, but tremor may be controlled more consistently with DBS [15]. 

 

Gait Complications 

 Gait complications are common in PD, probably resulting from the progressive loss of 

dopamine producing cells in the basal ganglia. The absence of dopamine ultimately results in the 

loss of gait automaticity [18]. The characteristics of PD gait result from the combined effects of 

the fundamental motor symptoms discussed previously, resulting in a gait pattern with reduced 

arm swing and trunk rotation; forward stooped posture; reduced motion at the hips, knees, and 

ankles; slowness; reduced step size; and low ground clearance [19]. Gait changes are not 

confined in a single aspect of the gait pattern, but occur from scaling down of spatial (i.e. stride 

length), kinematic (i.e. joint angles), and kinetic (i.e. joint moments) aspects [20]. As a result of 
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these complications, community ambulation is impaired by reduced endurance; negotiating 

obstacles and varied surfaces; and monitoring the dynamics of the surrounding environment. 

This is compounded by impaired balance and postural control, leading to a heightened risk of 

slips, trips, and falls [19]. 

One of the most prominent features of PD gait is a significant reduction in gait velocity. 

Morris, et al. [19] found that PD patients walked with a velocity range between 0.67 – 1.0 m/s, 

compared to a pace of 1.25 – 1.5 m/s in healthy controls. This is generally thought to be a direct 

result of significant reduction in stride length. This is a key measure in PD progression. Stride 

length appears to have a significant correlation to motor UPDRS scores, where more drastic 

reduction of stride length indicates more severe impairment [21]. Step width is commonly 

increased in PD when compared to healthy controls. The widening of the stance is likely a 

compensatory strategy used to enhance postural stability by reducing the magnitude of lateral 

body sway [22]. These changes, especially in stride length, may be explained in part by abnormal 

force regulation and kinematic changes. Flat-footed walking and reduced joint range of motion in 

the lower limbs results in diminished vertical and frontal ground reaction forces, especially 

during push-off. This results in reduced movement amplitude, which occurs across all joints of 

the lower extremity [19]. Despite differences in the above gait characteristics, the patterns of 

movements and movement adjustments are similar to those of healthy subjects. This suggests 

that the normal motor command from the motor cortex remains intact, but the dysfunctional 

basal ganglia are unable to maintain and match the required movement amplitude [20]. 

Shortened stride length plays a major role in the reduction of gait velocity. However, 

cadence – another major factor in determining gait velocity – appears to remain intact in PD. A 

majority of studies report cadence values in a normal range of 100 – 110 steps per minute for 
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patients [17-19, 23, 24]. Conversely, one study reported that early stages of PD (H&Y stages 1 

and 2) may exhibit reduced cadence influencing gait speed [21], while another suggested some 

patients may increase their step frequency to compensate for reduced stride length [17]. A more 

important temporal variable may be double-support time. It has been shown that PD patients off 

of medication increase the time spent in double support from the normal 20-30% of the gait cycle 

to over 35% [19]. This increase in double support time, a measure related to postural instability, 

is generally improved with dopaminergic medications [24].  

Another strong indicator of postural instability is increased stride-to-stride variability.  

This may be measured in any number of gait parameters, but is most commonly examined in 

stride length or stride time. In populations without PD, variability of gait has been shown to be a 

strong predictor of falls. This relationship was also observed in PD where a significant 

association has been shown between gait variability, fall frequency, and UPDRS scores [17]. A 

review of studies found a reported incidence of falling for 38 – 62% of PD patients over a one 

year period [19]. As already mentioned, falls are particularly dangerous in PD since patients are 

often unable to respond appropriately to recover or reduce injury potential. The reported issues 

with gait variability may indicate an impairment of the internal clock mechanism responsible for 

producing the periodic signals that drive event timing in automatic and sequential movements 

[17]. Similar to stride length, gait variability is generally controlled with dopaminergic therapy 

and performance at peak dose is comparable to that of healthy subjects [19]. 

One of the most troubling complications in PD is freezing of gait (FOG). FOG is 

generally a sudden and transient (typically lasting less than 10 seconds) inability to move and is 

another potent cause of falls in PD. It has been classified into five subtypes of behaviors that 

commonly induce freezing: gait initiation, turning, confined spaces (e.g. doorways or crowded 
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environments), reaching a destination, and walking in open spaces [10]. FOG does not occur 

universally – occurring in about half of all patients – and appears to be linked with greater 

disturbances to timing and rhythmic control of gait. This is sometimes referred to as a sequence 

effect, where the magnitude of variability and step shortening are compounded over several 

steps, ultimately leading to freezing [25]. Additionally, FOG has a strong link to those primarily 

affected by rigidity, bradykinesia, postural instability and longer disease duration. In contrast, 

those with early onset of tremor typically have a reduced risk of developing FOG [10]. 

Of the factors that contribute to FOG, turning is perhaps the most troublesome. It has 

been estimated that at least two turns are made every ten steps while performing ADL, so the 

ability to turn during walking is vital to maintaining daily functionality. Patients with PD, 

including those without FOG, take more steps to complete turns with the total number of steps 

increasing more steeply in larger turning angles [19]. In research settings, PD patients with FOG 

have shown significant deviations from those without FOG when making larger turns – in the 

range of 180 to 360 degrees – and these types of turns have been suggested for provoking FOG 

episodes in research settings [19]. In most instances, dopaminergic therapy appears to reduce the 

occurrence and/or the severity of FOG [10]. 

  Cognitive decline is another important factor related to motor function. Evidence 

suggests that cognitive impairment and dementia are associated with the severity of several 

motor symptoms. Williams, et al. [12] found that bradykinesia, rigidity, and postural instability 

show significant correlations to scoring on the Mini Mental State Examination (MMSE) and 

Dementia Rating Scale-2 (DRS-2). Going further, bradykinesia was discovered to be a 

significant predictor of cognitive function [12]. This relationship is demonstrated by the 

introduction of secondary tasks during gait. Gait performance, especially variability, may 
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deteriorate while performing a secondary task during walking. It has been proposed that there is 

a functional coupling of cognitive and motor performance, so that challenges in one domain will 

compromise performance in the other. This may suggest two points. First, while gait is a 

relatively automatic process in most, it may require more input from the cerebellum and cortical 

structures to compensate for the dysfunctional basal ganglia. Second, the overall attentional 

resources in PD patients may be diminished, limiting the ability to perform multiple tasks at once 

[26]. In addition to issues with simultaneously performing tasks, Marsden and Obeso [27] claim 

impairments in PD patients in switching from one task to another. Stated more broadly, PD 

patients may have difficulty in motor planning. Directional changes, whether triggered in a 

research lab or by an event in a home setting (e.g. ringing telephone), are time-critical tasks that 

involve rapid perception of a cue followed by rapid modification to the motor program. During 

the transition to and execution of this modified motor program, postural control and dynamic 

balance must be maintained [22]. Impaired ability to appropriately ration cognitive resources 

could result in ineffective transition of motor programs, a potential source of FOG, or worse yet, 

loss of balance and falls [28]. 

 

Sleep and Fatigue 

Sleep disturbances are believed to be an integral part of PD, as a majority of patients 

suffer from some form of sleeping issue. Insomnia, especially sleep fragmentation, occurs in 

over 50% of patients, though its occurrence is highly variable [10]. It is suggested that sleep 

quality changes throughout the course of PD. As the disease progresses, sleep latency tends to 

increase while total sleep time, deep sleep time, rapid eye movement (REM) sleep time, and 
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sleep efficiency decrease. As a result, excessive daytime sleepiness is a frequent burden of PD 

patients [11]. There is some thought that dopamine levels may be restored during sleep, 

suggesting that increased sleep quality and time should result in greater degrees of benefit to 

dopamine levels. If accurate, this should ultimately result in improvements to dopamine sensitive 

symptoms [29]. While there are a variety of sleep disturbances in PD, the strong association to 

REM sleep behavior disorder (RBD) is of particular interest. 

During normal REM sleep, muscle tone is abolished (sleep atonia). In RBD, this 

inhibition is impaired resulting in simple or complex motor behavior during REM sleep 

associated with the enactment of vivid dreams [11]. In addition to the loss of sleep atonia, an 

increase in violent dream content is common. As a result, the enactment of these dreams often 

involves grabbing, punching, kicking, jumping, and other dramatic movements. This generates 

significant injury potential to the patient as well as the bed partner [10]. Additionally, talking and 

yelling during sleep is increased in RBD as well. It is estimated that 1/3 of PD patients have 

RBD, with an additional 1/3 demonstrating loss of REM atonia but lacking other symptoms to 

warrant diagnosis of RBD [2]. Not only is RBD common in PD, but in many cases it may 

precede diagnosis of PD by as many as 13 years. Further, it is estimated that over 50% of people 

with RBD will develop neurodegenerative disorders, almost exclusively PD, multiple systems 

atrophy, or dementia with Lewy bodies [3]. De Cock, et al. [29] found that 22% of patients 

developed RBD prior to being diagnosed with PD, 23% had diagnoses at the same time, and 55% 

were diagnosed after onset of PD. In this particular study, the latency period ranged from a few 

months to four years. Those with RBD typically demonstrate the non-tremor predominant form 

of PD, higher mean dosage and duration of dopaminergic therapy, and higher occurrence of 

dyskinesia [30]. The combination of high correlations between RBD and PD and the onset of 
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RBD prior to PD diagnosis suggest RBD could be a strong predictor and potential early marker 

for identifying PD. 

Another unique feature of RBD is observed during the periods of activity in REM sleep. 

Bed partners of PD patients with RBD consistently report significant improvements in movement 

and speech quality during sleep. They have reported that the speed, strength, and coordination of 

motion as well as the volume and articulation of speech are much better than when awake. 

Further, patients with unilateral impairment were more active with the affected side during RBD 

performing more symmetrical movements. These changes are observed while patients are 

typically off of dopaminergic therapy, occurring with no presence of tremor or bradykinesia, and 

even involve patients with the most severe motor impairment. The mechanism of this unique 

condition is still unknown, but may suggest that the normal functioning of the basal ganglia is 

restored in REM sleep. Alternatively, the upper motor neurons, specifically the SMA, may no 

longer be submitted to the inhibitory influence of the dysfunctional basal ganglia. This second 

thought is supported by observation of broken, jerky, and rough movements. This might suggest 

these movements are an expression of the primary motor cortex and are relieved from the 

filtering and smoothing control in the basal ganglia [29]. 

Despite the observed improvements in motor control during sleep in those with RBD, 

studies have not been able to consistently show a significant difference in gait and postural 

control of PD patients with RBD to those without the sleep disorder. A study by Benninger, et al. 

[31] reported that gait variability was significantly greater than healthy controls in PD groups 

with and without RBD. While the RBD group had greater variability than the non-RBD group, 

this finding was not significant. The reported conclusion of this study was that PD patients with 

RBD could not be discerned from those without on the basis of gait and postural control. 
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Bugalho, et al. [32] suggest that there is a higher degree of dysfunction in PD populations with 

RBD. This occurs as a result of the specific PD motor subtype as well as executive deficits, 

visuo-spatial dysfunction, and mild cognitive impairment. In this study, the non-tremor motor 

subtype appeared to be related to RBD symptoms history rather than the presence of RBD 

clinical criteria at the time of evaluation. This finding suggests that although the RBD symptoms 

can fluctuate over time and even disappear completely in some instances, the pathophysiological 

changes that associate RBD and degree of motor disability remain. The exact relation between 

RBD and gait impairment remains unclear, but existing evidence warrants further examination of 

this association. 

Fatigue – a symptom often considered with sleep issues – is common in many chronic 

brain disorders, including PD. Up to 2/3 of PD patients report an overwhelming sense of 

tiredness, lack of energy and feeling of exhaustion. As a result, fatigue is considered by many 

patients to be the most debilitating feature of the disease [33]. Fatigue increases during disease 

progression and does not seem to be explained by the co-occurrence of other issues such as 

depression or daytime sleepiness. Rather, it is thought to be a sign of the pathological 

progression of the disease [11].  There appears to be some connection between fatigue and motor 

function. In a study by Hagell and Brundin [33], 48% of the patients were fatigued and 74% of 

those patients experienced a worsening of motor symptoms as a result. Motor fluctuations were 

experienced by 53% of the fatigued patients, and 83% of this group reported worsening of 

fatigue when off of levodopa. Motor symptoms found to be associated with fatigue were axial, 

postural and gait related while tremor, rigidity, and bradykinesia were not impacted. In addition 

to the motor symptoms, Hagell and Brundin [33] reported an association of fatigue with 

depression, anxiety, reduced motivation, and pain. It was found that anxiety tends to be a 
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stronger predictor of fatigue than depression, and that lack of motivation is also a strong 

indicator. While it seems logical to link fatigue with poor sleep, it has been demonstrated that 

fatigue cannot be explained by excessive daytime sleepiness or poor sleep. This distinction 

between the two is important, suggesting different neurobiological backgrounds that require 

different treatment strategies [33].  

 

Alternative Exercise Therapies 

The value of exercise for general health benefit is well known. This holds true for 

patients with PD and there is evidence that different forms of exercise and physiotherapy can be 

effective in some aspects of disease management [34]. Because of the chronic and debilitating 

symptoms of PD, patients often use complementary therapies [35]. It is estimated that 1/3 of 

adults in the United States use some form of alternative therapy. This proportion is higher in PD, 

where approximately 40% of patients use some form of alternative therapy for treatment of PD 

symptoms [36]. These therapies may include aerobic exercise, strength training, Tai Chi, 

Qigong, Yoga, acupuncture, and dance among others. This particular review of alternative 

therapies will focus on the practice of Qigong, including its close relationship to Tai Chi from a 

research perspective. 

Traditional Chinese Medicine (TCM) describes a broad range of wellness practices that 

have been developed over thousands of years. One area of TCM is known as meditative 

movement. This consists of three key elements – focus on regulating the body (movement and 

posture); focus on regulating the breath; and focus on regulating the mind (consciousness) – to 

achieve a meditative state [37]. According to TCM, health is believed to be a state of natural 
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balance achieved through regulation of the three elements of meditative movement, the spirit, 

and Qi (life energy) [38]. Qigong falls into this category of meditative movement. Qigong 

means, roughly, to cultivate or enhance the inherent functional (energetic) essence of the human 

being. There are many branches of Qigong that have a health and medical focus, which have 

been refined for well over 5000 years. The practice of Qigong consists of a series of orchestrated 

practices that involve body posture and movement, breath practice and meditation, all designed 

to enhance Qi function – that is, drawing upon natural forces to optimize and balance energy 

within the body through the attainment of deeply focused and relaxed states. From the 

perspective of Western thought and science, Qigong practices activate naturally occurring 

physiological and psychological mechanisms of self-repair and health recovery [37]. 

Qigong and Tai Chi share common theoretical roots, operational components, and similar 

links to wellness and health-promoting aspects of TCM. Traditionally, Tai Chi is performed as a 

highly choreographed, lengthy, and complex series of movements, whereas Qigong is typically a 

simpler, easy-to-learn, repetitive practice. While Tai Chi has become a well-known and studied 

aspect of TCM, it is important to note that in many medical applications, particularly when 

applied to research studies, the Tai Chi being implemented is a simplified version of the 

traditionally complex forms. The result is an exercise that falls more in line with forms of 

Qigong. An extensive review of health related benefits indicates that the implementation of 

Qigong and Tai Chi programs result in similar patient outcomes in a variety of measures. As a 

result of this discovery, along with the similarity in theoretical roots and implementation into 

research studies, Jahnke, et al. [37] suggest Qigong and Tai Chi may be treated as equivalent in 

terms of studying health benefits when implemented as a complementary medical therapy. 
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There has been a significant amount of research concerning the impact of Qigong and Tai 

Chi on physical performance and motor control. Perhaps the most consistent finding in 

interventions involving Qigong and Tai Chi is improved postural stability and balance. A 

majority of studies concerning balance reported significant improvements as a result of 

meditative movement interventions. Comparisons of Tai Chi with alternative forms of exercise, 

including axial mobility, walking, and stretching programs, showed significant improvements in 

balance assessments (Timed Up and Go, chair rise) and fall frequency in the Tai Chi groups. 

This was evident in elderly, sedentary, arthritic, and frail populations [37]. Resistance training, 

on the other hand, resulted in no significant difference in these measures when compared to Tai 

Chi in elderly populations [37]. When considering the outcomes of meditative movement 

specific to PD, similar trends were found. Tai Chi showed significant improvements in balance 

(Berg Balance Scale and Timed Up and Go) and fall frequency in patients with mild to moderate 

PD when compared to inactive controls [34, 39]. In addition to these observed changes, those 

participating in meditative movements, both in PD and non-PD populations, reported significant 

improvement in fall self-efficacy and reduced fear of falling [37, 40]. It is possible that this 

increase in confidence may allow the patients to participate in activities they may have 

previously withdrawn from, having positive effects on quality of life.  

In addition to postural stability, gait and mobility appear to be positively impacted by Tai 

Chi and Qigong, though these results are less consistent. Comparisons of Tai Chi with wellness 

education, stretching programs, and vestibular rehabilitation showed a significant improvement 

in gait velocity associated with the meditative movement therapy. This was observed in elderly 

and frail populations, as well as those with vestibulopathy [37]. However, other studies of similar 

populations comparing Tai Chi with stretching/calisthenics, resistance training, and no 
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interventions found no significant changes in velocity between the groups [37]. It also appears 

that meditative movement therapy may be beneficial at improving step length and stance time in 

elderly and vestibulopathic populations, with improvements similar to those seen in resistance 

training and vestibular rehabilitation [37]. The available data for changes in gait quality in PD 

populations as a result from meditative movement is limited. One study of Tai Chi in PD showed 

a significant improvement in gait velocity from baseline performance, while a second study 

failed to show a significant difference in the intervention group compared to a non-exercising 

control group [39]. In general, Tai Chi has received the most attention when considering gait 

performance, however a study involving PD groups involved in Tai Chi and Qigong showed no 

significant difference in changes to gait performance, including velocity, stride length, stance 

time and double support time [35]. As a result of the inconsistent findings in previous studies, the 

effects of meditative movement therapy on gait are still inconclusive, but there is reason to 

believe these exercises may have a positive influence and further studies are warranted to 

determine the impact.  

Tai Chi and Qigong have shown beneficial effects on several non-motor symptoms as 

well. The meditative movements appear to have a significant impact on psychological aspects of 

quality of life. Interventions led to significant improvements in anxiety, depression, and stress – 

including the perceived ability to deal with stressful or novel experiences [37, 41]. Outcomes 

related to cardiopulmonary measures showed positive responses to meditative movement as well, 

particularly in lowering blood pressure. Qigong and Tai Chi interventions showed significant 

benefit to lowering blood pressure in subjects with hypertension when compared to controls 

receiving usual care or wellness education [37]. Along with the cardiovascular effects, sleep and 

fatigue were also improved following participation in Tai Chi and Qigong interventions. While 
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actively participating in these exercise therapies, sleep quality showed significant improvement 

[37, 39]. In a study involving PD patients participating in Qigong exercise, this improvement in 

sleep quality returned to pre-intervention levels following cessation of the exercises; however, 

there was a lasting reduction of daytime sleepiness following the intervention [42]. Liu, et al. 

[41] implemented the “six healing sounds” form of Qigong in a study involving patients with 

fibromyalgia. Results from this study indicate significant improvements in level of fatigue and 

improved sleep quality when compared to a sham Qigong group, though the sleep measure fell 

short of significance (p = 0.058) due primarily to a small sample size.  

Evidence of potential changes to both motor and non-motor aspects of PD as a result of 

participating in meditative movement therapies suggests that these types of exercises can provide 

significant benefit to those suffering from the disease. The underlying mechanism responsible for 

these changes is still unclear, but there are several possible features of the exercise that may help 

understand the benefits. First, a majority of the interventions implemented in research involve 

some sort of group exercise session. Social support has been shown to play a major role in the 

ability for patients to deal with PD and its related symptoms. Activities that improve social 

networking and encourage social interactions can have a significant impact on self-efficacy – the 

sense of ability to deal with a situation. Improved self-efficacy can positively impact many 

aspects of quality of life, including depression, anxiety, stress, and confidence in physical 

performance [40, 43]. Another potential benefit may be the biochemical response that occurs as a 

result of exercise. It is claimed that physical activity may help protect dopamine-producing cells 

from degeneration, maintaining or even increasing dopamine levels in the brain [34]. Another 

study claims that exercise may induce a sense of well-being through the release of serotonin [38]. 

This is particularly interesting when considering the link between PD and RBD. One drug used 
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in the treatment of sleeping issues in RBD is thought to provide its effect through the increased 

synthesis of serotonin [30]. The observed changes in sleep quality resulting from these 

alternative therapies may provide additional support for this claim. Finally, it is thought that the 

characteristics of meditative movement generate a variety of benefits through its dynamic 

quality, body-part connectedness, and mental intention of practice. This may improve muscle 

recruitment within stabilizing muscles and slow twitch fibers of primary movers, increasing 

strength, balance, and coordination of movement [38]. 

Meditative movement therapies have demonstrated numerous potential benefits to a 

variety of populations and may be of special interest to those with PD. The potential benefits of 

complementary therapy in the management of motor and non-motor symptoms make these 

exercises a promising option for improved function and quality of life. These exercises have 

been shown to be easy to implement in a variety of groups, both healthy and chronically ill. 

Overall, those participating have indicated they are satisfied with the perceived benefits and 

enjoy participating in the therapy [37, 39, 44, 45]. Many report an intention to remain involved in 

the exercises, either by joining new groups following the completion of an intervention or by 

continuing on their own. Regardless of the measured outcomes, these exercises may prove 

beneficial to overall health by increasing the level of activity social support for those involved. 

 

Summary 

 Parkinson’s disease can have a major impact on the quality of life of those with the 

disease as well as their families, friends, and caretakers. There are a number of symptoms, both 

motor and non-motor, that lead to these difficulties. Gait impairment and reduced sleep quality 
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are highly important components of the disease and its impact on those affected by it. The loss of 

ability and confidence in gait, both in home and community settings, can lead to a loss of 

independence and a tendency to feel more isolated and alone. Poor sleep quality can lead to a 

lack of energy and stamina throughout the day, further decreasing the motivation to engage in 

activities. Current medications have been very successful in treating some of the most 

debilitating aspects of the disease, but troubles with sleep and some aspects of gait tend to resist 

standard therapies and remain unchanged. Discovering a complementary therapy that addresses 

these symptoms could be a major benefit to patients and their loved ones. 
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CHAPTER THREE: STUDY 

Abstract 

Background: Parkinson’s disease (PD) involves a variety of motor and non-motor symptoms. 

Current medical therapy has been successful at managing a majority of these features; however, 

several issues, including gait complications and sleeping disorders, may involve impairments not 

fully resolved by standard therapy. This study aimed to determine the impact of Qigong as a 

potential complementary therapy in the management of gait and sleep related symptoms in PD. 

Methods: Seven subjects (age 66.86 ± 8.13 years) with PD participated in a six-week Qigong 

exercise intervention. Pre- and post-intervention testing was performed to assess sleep quality, 

fatigue, and gait performance in these subjects. Standard clinical assessments specific to PD 

were used for the assessment of sleep quality and fatigue. Gait performance was assessed using 

three-dimensional motion capture during the completion of several tasks. Overall gait 

performance (stride time, stride length, double support time, and velocity), gait variability (stride 

time variability and stride length variability), and turning performance (number of steps and total 

time to turn) were analyzed in the gait tasks. 

Results: Following the intervention, subjects showed a general trend of improvements in sleep 

quality. Fatigue remained unchanged. Assessment of gait performance showed significant 

improvement in overall gait function and gait variability, and no apparent change in turn 

performance. Gait function was improved by a significant reduction of stride time and a slight 

increase in stride length. Together these changes resulted in significant improvements to gait 

velocity. Additionally, time spent in double support was reduced following the intervention. 
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Overall gait variability improved significantly, particularly in the reduction of stride time 

variability. 

Conclusions: These results suggest that the Qigong intervention implemented for this group may 

provide potential benefits to people with PD in regards to gait performance and sleep quality. 

Further studies are required to provide a more definitive measure of these results with increased 

statistical power. 

 

Introduction 

 Parkinson’s disease (PD) is a neurodegenerative disorder of the basal ganglia that affects 

approximately 1.5% of adults over the age of 65 [1, 2]. The disease is expressed through a 

variety of motor and non-motor symptoms. It is generally associated with four primary features 

of motor impairment. These include tremor, bradykinesia (slowness of movement), rigidity, and 

postural instability [3]. These symptoms result in a broad range of motor difficulties and are 

especially apparent in gait. Non-motor features of the disease are quite variable, but symptoms 

commonly experienced include cognitive impairment, depression, apathy, impaired speech, 

olfactory dysfunction, and sleeping disorders [1, 3, 4]. PD is a progressive disease, with the 

occurrence and severity of symptoms typically worsening with disease duration. Because of the 

slow progressive nature and gradual onset of symptoms, a significant amount of degeneration 

typically occurs prior to diagnosis of PD [2]. Because of this, early identification of the disease is 

vital in order to implement therapies to address disease symptoms and potentially slow its 

progression. 
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Gait Complications: The cardinal motor features of PD combine to create a characteristic gait 

pattern. This includes reduced arm swing, reduced trunk rotations, stooped posture, reduced 

range of motion in the lower extremity, slow gait speed, reduced step size, and low ground 

clearance [5]. This pattern is a result of changes in all aspects of gait, including spatial, 

kinematic, and kinetic parameters [6]. These changes likely occur due to diminished levels of 

dopamine in the brain caused by the degeneration of the basal ganglia. 

 The most apparent change in PD gait is reduced walking speed. Gait speed is primarily 

determined by the interaction of stride length and cadence. Previous studies suggest that the 

primary contributor to low velocity is shortened stride length. This likely occurs due to reduced 

range of motion in the lower extremities and diminished vertical and frontal ground reaction 

forces during push off [5]. Further, stride length appears to have a significant correlation with 

motor UPDRS scores, with more severe impairment showing a more drastic reduction of stride 

length [7]. The other contributor to gait speed, cadence, seems to remain relatively intact in PD. 

Most studies have found people with PD to maintain a cadence in the normal range of 100 to 110 

steps per minute [5, 8-10]. With temporal control remaining relatively normal, it is hypothesized 

that the motor command is unaffected in PD, but the dysfunctional basal ganglia cause the 

inability to match and maintain the required movement amplitude necessary to generate normal 

gait velocity [6]. 

 Postural instability is another major feature of gait in PD. One indicator of this is time 

spent in double support [10]. Typically, this falls in the range of 20% to 30% of the gait cycle, 

but may be increased to over 35% in PD patients [5]. Another parameter highly correlated to 

postural instability is stride variability. This has been associated with increased fall frequency 

and UPDRS scores in PD patients [5]. In addition to these variables, some patients experience 
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complete motor blocks, or freezing of gait (FOG). These episodes occur in about half of all 

patients [11].  Together, these three parameters lead to a high incidence of falling, ranging from 

38% to 62% of patients over a one year period [5, 12]. Falls are especially dangerous to PD 

patients due to their increased reaction times and reduced movement amplitudes, which hinder 

their ability to recover or protect themselves from serious injury. 

 Finally, cognitive function plays a significant role in motor control. Many motor features, 

including bradykinesia, rigidity, and postural instability show a strong correlation to cognitive 

decline [4]. This becomes increasingly evident during cognitively challenging situations, such as 

dual task performance or switching from one task to another (set-shifting) [13, 14]. There 

appears to be a functional coupling of cognitive and motor performance, and in PD where these 

domains are already impaired, challenges in one area can further compromise performance in the 

other [14].  

 

Sleep Complications: Sleeping disorders impact a large number of PD patients. It is estimated 

that over 50% of patients have insomnia, usually presenting as sleep fragmentation [3]. 

Additionally, there is a general trend towards increased sleep latency and reduced total sleep 

time, deep sleep time, rapid eye movement (REM) sleep time, and sleep efficiency as the 

duration of disease increases [12]. There is some belief that sleep helps to restore dopamine 

levels in the brain, suggesting that improved quality of sleep and total sleep time may help 

alleviate some dopamine sensitive symptoms [15].  

 One specific disorder that is of particular interest in PD is REM sleep behavior disorder 

(RBD). People with RBD experience a loss of muscle tone inhibition (atonia) during REM sleep. 
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This leads to the occurrence of simple or complex movements associated with the enactment of 

vivid, and often violent dreams during REM sleep [3, 12]. It is estimated that 1/3 of PD patients 

have RBD, while another 1/3 experience some loss of REM atonia [2]. RBD may also be an 

important early indicator of PD. Studies have estimated that over 50% of people with RBD will 

develop some form of neurodegenerative disorder, a large portion of them PD. This may precede 

diagnosis of PD by as many as 13 years [16]. Additionally, there are conflicting claims that RBD 

may be associated with more severe motor symptoms in PD [17, 18]. Though this particular 

association remains unclear, the apparent relationship of RBD and PD make this an interesting 

topic for continued study. 

 

Fatigue: Fatigue is considered by many patients to be one of the most debilitating features of PD. 

Previous work suggests as many as 2/3 of patients experience an overwhelming sense of 

tiredness, lack of energy, and feeling of exhaustion as a result of the disease [19]. There has been 

some association between fatigue and motor impairment. Of patients that were fatigued, 74% 

reported worsening of motor symptoms as a result. This is primarily linked to axial, postural, and 

gait related symptoms while tremor, rigidity, and bradykinesia seem to be less affected [19]. 

Fatigue does not appear to be linked to other symptoms such as depression, excessive daytime 

sleepiness, or poor sleep quality, but rather appears to be a sign of the pathological progression 

of the disease [12, 19]. 

 

Complementary Therapies: The current standard in the treatment of PD, levodopa, was 

introduced in the late 1960s. Since that time, it has been highly effective at controlling many 



 37 

symptoms of PD, especially those related to bradykinesia, rigidity, and tremor [20]. Despite the 

overwhelming benefit of the medication, it still has several limitations. Postural instability, FOG, 

and many non-motor symptoms tend to be unaffected by the medication. Some, particularly 

sleeping related issues, may even be intensified by it [20]. Further, long duration and high 

dosages of levodopa may lead to additional complications, including dyskinesia, mental changes, 

and motor fluctuations [21]. These limitations highlight the need for complementary therapies 

that may better address these aspects of the disease. 

 It is estimated that 1/3 of adults in the U.S. use some form of alternative therapy, with an 

even greater ratio of 40% in PD patients [22]. Existing evidence suggests that different forms of 

exercise and physiotherapy can be effective in the management of some aspects of PD [23]. This 

includes therapies that fall under the umbrella of Traditional Chinese Medicine (TCM), which 

consists of a broad range of wellness practices that have been developed for thousands of years. 

One branch of TCM is meditative movement. Meditative movement therapies, which include 

exercises such as Tai Chi and Qigong, incorporate three key elements – focus on regulating the 

body (movement and posture), focus on regulating the breath, and focus on regulating the mind 

(consciousness) [24]. Following an extensive review of literature, Jahnke, et al. [24] have 

suggested that due to common theoretical roots, operational components, and patient outcomes 

of Tai Chi and Qigong, these two therapies may be considered equivalent from a research 

standpoint. 

 The practice of Qigong uses the fundamental elements of meditative movement to 

activate natural physiological and psychological mechanisms of repair and recovery through the 

attainment of deeply focused and relaxed states [24]. Implementation of meditative movements 

has shown improvements in several motor and non-motor symptoms common in PD. The most 
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consistent finding was improvements in postural stability and balance [23-27]. In most cases, 

these results were similar to those seen in conventional exercise. Improvements in gait function 

were also seen, though these findings were not as consistent as several studies found no 

significant changes in gait following meditative movement therapy [23-25, 28]. Non-motor 

issues improved by meditative movement therapies included psychological (depression, anxiety, 

and stress), cardiopulmonary (most commonly blood pressure), sleep and fatigue [24, 25, 29]. 

Liu, et al. [29] implemented the “six healing sounds” form of Qigong – the specific intervention 

being used in the current study – for a group of fibromyalgia patients. This study showed 

significant improvements in fatigue and sleep quality (p < .0125) following a six week 

intervention. In addition to these benefits, meditative movement therapies have been shown to be 

easy to implement and are well accepted and enjoyed by those participating [24, 25, 28, 30]. 

These results show promise for Qigong and related therapies to provide significant benefit to 

patients suffering from PD. 

 

Study Aims and Hypothesis: This study aimed to explore the impact of implementing Qigong as a 

complementary therapy for patients with PD. Specifically; parameters relating to gait 

performance, sleep quality, and fatigue were investigated in depth. It was hypothesized that 

following completion of a six week intervention, patients would show improvements in gait 

performance as measured by three-dimensional gait analysis and sleep and fatigue as measured 

by questionnaires specific to these parameters in PD. This served as an exploratory study to 

determine the efficacy of a larger scale study that would be designed to provide more powerful 

statistical evaluation. 
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Methods 

Subjects: Twelve subjects with mild to moderate PD were recruited from the Parkinson’s Disease 

and Movement Disorder Center at the University of Kansas Medical Center (KUMC), Kansas 

City, and completed baseline testing for the study. Five subjects were unable to complete the 

study in its entirety (two due to loss of contact, two due to transportation issues preventing 

attendance at weekly group exercise sessions, and one due to a death in the family), and therefore 

analysis was performed for the seven remaining subjects (Table 1). Consistent with previous 

studies of meditative movement, subjects with mild to moderate PD were chosen as they are still 

able to perform most daily activities independently, although often slowly [23, 25, 27, 28, 31]. 

This includes the ability to independently perform the prescribed exercise program. 

All subjects provided informed consent to participate in the study as approved by the 

Institutional Review Board at KUMC. Subjects were screened using a phone interview and 

assessments performed during their initial visit. They were included if they met the following 

criteria: a) diagnosis of idiopathic PD; b) men and women between the ages of 40-89 years; c) 

Hoehn & Yahr (H&Y) stage I – III [32]; d) ability to walk unassisted for the required gait tasks; 

e) on a stable dose of anti-parkinsonism medication for at least two weeks prior to beginning the 

study; and f) no known intention of changing anti-parkinsonism medications and/or dosages 

during the course of the study. Exclusion criteria included: a) score of less than 23 on the Mini 

Mental State Examination (MMSE) [13, 33]; b) other neurological, orthopedic, or medical 

conditions that interfere with gait; c) treatment using deep brain stimulation; and d) occurrence 

of FOG only during the “on” state of medication. 
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Testing Procedure: All testing was performed at the Human Performance Laboratory at 

KUMC’s Landon Center on Aging. All testing was performed after the subjects had withdrawn 

from their anti-parkinsonism medication for a minimum of 12 hours. This results in a 

“practically defined off” state that allows for the assessment of the severity of the underlying 

unmedicated condition [10, 34]. 

 

Clinical Assessments: Clinical assessments were used to assess level of disease impairment as 

well as sleep quality and fatigue. The Unified Parkinson’s Disease Rating Scale (UPDRS) was 

performed by an experienced and qualified member of the neurology team at KUMC to assess 

the level of impairment due to PD [35]. Sleep quality was assessed using the revised Parkinson’s 

Disease Sleep Scale (PDSS-2). This 15 item questionnaire surveys sleep issues related to motor 

symptoms at night, PD symptoms at night, and disturbed sleep [36]. Fatigue was assessed with 

the 16-item Parkinson Fatigue Scale (PFS-16) [37]. 

Because this study served to explore the potential impact of the exercise intervention on PD 

symptoms, additional measures were taken to assess quality of life, non-motor symptoms, and 

cognitive function. Assessment of quality of life was done using the 39-item Parkinson’s Disease 

Questionnaire (PDQ-39) [38]. The impact of non-motor symptoms was assessed using the Non-

Motor Symptoms Questionnaire (NMSQuest) [39]. Finally, cognitive function was assessed 

using several methods. The MMSE was used to assess overall cognitive impairment [33]. The 

Frontal Assessment Battery (FAB) was used for the assessment of executive dysfunction [40]. 

The Trial Making Test, parts A and B (TMTA and TMTB) were used as assessments of 

executive function and task-switching abilities [41]. 
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Gait Testing: Gait testing was performed using a six-camera Vicon 512 motion capture system 

(Vicon Peak, Lake Forest, CA). A total of 16 retro-reflective markers were placed on the lower 

body of the subject. Markers were placed on the sacrum, and bilaterally on the anterior superior 

iliac spine, thigh, knee, tibia, ankle, heel and second metatarsal head. Motion data was collected 

at 120 Hz. 

To assess gait performance, subjects performed several activities on a walking course. The 

course consisted of a pathway approximately 10m long. A standard sized open doorframe (0.91m 

wide by 2.03m tall) stood at the far end of the walkway relative to the starting position. A 

temporary wall was placed 1.5m behind the doorframe and held lighted cues used to provide 

instruction to the subject. Photo-sensors were placed at two locations along the edge of the 

walkway, one at 4 m in front of the doorframe and the other at 1.5 m in front of the doorframe. 

These were used as triggers to determine when a subject passed by each sensor by detecting a 

break in a light beam that was directed at each sensor. These triggers were used to activate the 

light cues mounted behind the doorframe. 

 The subjects performed two different tasks, each under two different conditions. The first 

task required the subjects to walk straight through the doorway without stopping (straight task). 

The second task required the subject to proceed to the area directly in front of the doorframe, 

make a 360 degree turn, and then continue walking through the doorframe (turn task). This 

specific task was chosen due to its reported ability to highlight more severe issues with gait 

impairment [5]. The task to be performed in each trial was determined by lighted cues mounted 

on the opposite side of the doorframe. These cues were given under two different timing 
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conditions. The first was given when the subject passed by the first light sensor, 4 m from the 

doorframe (early cue condition). The second was given when the subject passed the second light 

sensor, 1.5 m from the doorframe (late cue condition). The timing of cues was implemented due 

to the reported difficulty in set-shifting for people with PD. A previous study used a short timing 

cue equivalent to one stride length, which was conservatively approximated here by the 1.5 m 

distance [13]. Each task (straight and turn) was repeated three times for each condition (early cue 

and late cue) for a total of 12 trials. The order of task and condition was randomized prior to 

testing. Before beginning testing, subjects were instructed to walk naturally, at a self-selected 

pace and respond appropriately to the cue presented. 

 

Data Measurements and Analysis: Three dimensional trajectory data and video recordings were 

collected for the gait trails. The trajectory data was processed using Matlab (Mathworks, Natick, 

MA) to calculate spatiotemporal parameters for the gait trials. The trajectory data was filtered 

using a zero-phase 4th order Butterworth filter with a cutoff frequency of 7 Hz. Using the foot-

velocity algorithm (FVA) method described by O’Connor, et al.[42], heel strike and toe off 

events were determined. The FVA uses existing markers to create a foot center point and the 

vertical velocity of this point is calculated. Foot events are found using appropriate peaks in the 

vertical velocity of the foot. These events were used for the calculation of spatial and temporal 

parameters of gait. For the straight task, stride time, stride length, double support time, and gait 

velocity were measured. Additionally, gait variability was assessed using the coefficient of 

variation (CV = (SD/mean)*100) of stride time and stride length [43]. Analysis of the turn task 

included the total number of steps and total time taken to complete the turn. 
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Timeline of Events: The testing and intervention period for each group of subjects lasted a total 

of nine weeks. The first week consisted of pre-intervention testing, including all clinical 

assessments and gait analysis. In the following week, subjects were taught the qigong exercise 

over the course of two training sessions. Following training, the six-week intervention period 

began. During this time the subjects met weekly for group sessions while performing the 

exercise twice daily at home. In the week following completion of the intervention, the clinical 

assessments and gait testing performed in week one were repeated. 

 

Qigong Exercise Intervention: The “six healing sound” Qigong exercise was used in this study. 

This specific form was chosen because it is easy to learn and practice and requires minimal 

physical capacity. The exercise was taught by an experienced and well trained instructor. 

Subjects learned to perform the Qigong exercise in standing, seated, and lying body positions. 

Subjects were encouraged to practice in the standing position, but were free to choose the 

position used, especially when they had difficulty standing or sitting. In any position, the subject 

should feel relaxed and comfortable with the body having a general sense of ease. The subjects 

were trained to control deep breathing through a diaphragmatic breathing technique. During 

exhalation, subjects were instructed to quietly pronounce each of the six healing sounds. 

Additionally, the subjects were taught smooth body movements associated with each of the six 

healing sounds. Throughout the training sessions subjects learned to breathe slowly and to 

synchronize their breathing and movements while trying to clear their minds by concentrating on 

the feeling of diaphragmatic contraction and expansion. 



 44 

 After the training sessions, the subjects were instructed to continue the Qigong exercise at 

home twice per day – once in the morning immediately after getting up and again in the evening 

right before going to bed. Each session took about 15 to 20 minutes to complete. During the six-

week intervention period, the subjects met in small groups once per week with the instructor for 

group exercise sessions. During these sessions, the instructor evaluated and corrected 

performance of each subject. In addition to the leading the exercise, the instructor answered 

specific questions and encouraged group discussion of relevant issues. Each weekly session 

lasted 45 to 60 minutes. Subjects maintained an exercise diary during the intervention period to 

monitor compliance to the exercise program. These diaries were turned in weekly at the group 

sessions. 

 

Statistical Analysis: Statistical analysis was performed using Matlab. Group differences in pre 

and post-test scores on clinical assessments and subscales were evaluated using paired t-tests 

with an alpha level at 0.05. Multivariate analysis of variance (MANOVA) was used to determine 

whether significant differences existed between pre- and post-test measures for gait tasks. 

Overall gait performance (stride time, stride length, double support time, and velocity), gait 

variability (stride time variability and stride length variability), and turn performance (total steps 

and total time to complete turn) were considered separately. If a significant difference was 

shown within a group, a paired t-test with a Bonferroni adjustment (0.05/4 = 0.0125 for gait 

performance; 0.05/2 = 0.025 for variability and turning) was used for post-hoc analysis to 

determine which variables had significant differences. Similar evaluations were performed to 

determine if there were significant differences between cueing conditions on the gait tasks. 
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Results 

Clinical Assessments: Clinical assessments relating to level of disease impairment, cognitive 

function, quality of life, non-motor symptoms, sleep and fatigue were assessed through pre- and 

post-intervention testing. There was no significant change in impairment measured by the total 

UPDRS score (p = 0.7746), or any of the subscales, including motor function (p = 0.7807). 

Cognitive function also remained unaffected as measured by the MMSE, FAB, TMTA and 

TMTB (p = 0.2308; p = 0.8291; p = 0.8333; and p = 0.3657 respectively). There was no 

significant effect on the total score for the PDQ-39 (p = 0.9437) or any of the subscales. The total 

score for the NMSQuest was also unchanged (p = 0.8575) as were the subscales, including one 

for sleep and fatigue (p = 0.9725). Complete data for quality of life and non-motor symptoms 

measures are presented in Table 3 and Table 4, respectively.  An increase in the PFS-16 total 

score (from 47.14 to 54.14) would suggest worsening of fatigue symptoms, but this change was 

not significant (p = 0.3006). Overall sleep quality showed improvement that neared significance, 

dropping from 29.29 to 16.29 (p = 0.0733). Evaluation of the subscales showed a significant 

improvement in motor symptoms at night (p = 0.0494) and an improvement nearing significance 

in disturbed sleep (p = 0.0634). Complete results for the fatigue and sleep scales can be seen in 

Table 5. 

 

Gait Performance: Evaluation of performance in the gait tasks showed no significant difference 

between the two cueing conditions. Therefore, for further evaluation of gait performance, trials 

for the early and late cueing conditions were combined and analyzed together. Data for 
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comparison of the cueing conditions as well as data for individual subjects may be found in 

Appendix B.  

Overall gait performance was assessed in the straight walking tasks using the measured 

parameters of stride time, stride length, double support time, and gait velocity. A MANOVA 

comparing these variables found significant changes in the pre- and post-intervention measures 

(p = 0.0001). Post-hoc analysis was used to evaluate changes in gait variables following the 

intervention. This analysis showed a reduction in stride time (-5.27%, p = 0.0001), increase in 

stride length (4.15%, p = 0.0598), shortening of double support time (-9.01%, p = 0.0815), and 

increase in velocity (8.73%, p = 0.0104). Complete results for these parameters are shown in 

Table 6 and Figure 1.  

 

Gait Variability: Gait variability was assessed in the straight walking tasks using the coefficient 

of variation of stride time and stride length. A MANOVA evaluating these parameters indicated 

a significant change in gait variability from baseline to end intervention testing (p = 0.0383). 

Post-hoc analysis showed a significant reduction of stride time variability (-36.17%, p = 0.0058). 

Stride length variability also appeared to decrease, though this change was not significant  

(-17.54%, p = 0.1311). Complete results for gait variability are shown in Table 7 and Figure 2. 

 

Turn Performance: Performance during the turning tasks was assessed by measuring the total 

number of steps and total time taken to complete the turn. A MANOVA evaluating these 

variables showed no significant difference from baseline to post-intervention testing  

(p = 0.9783). Complete results for turn performance are shown in Table 8 and Figure 3. 
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Discussion 

 This was an exploratory study designed to determine the efficacy of implementing 

Qigong as a complementary therapy in PD with the goal of improving sleep quality, fatigue, and 

motor performance in patients. Analysis of measured outcome variables indicates that this 

specific therapy may be beneficial in improving sleep quality and gait performance, but not 

fatigue. This apparent relationship between sleep and gait performance was also demonstrated in 

a study of elderly individuals complaining of sleeping issues. In this population, when compared 

to a low-impact exercise program Tai Chi showed greater improvement in overall sleep quality, 

including sleep duration, efficiency, and latency, as well as in gait velocity (50-ft walk) and 

postural stability (one-leg stance and chair rise) [44]. These initial findings will require further 

study with greater statistical power to confirm the effects of the intervention. In addition to this 

primary focus, additional measures were explored to determine other potential benefits that may 

be related to the exercise. 

 

Quality of Life and Non-Motor Symptoms: In this study, the exercise intervention did not appear 

to result in benefits to any of the outcome measures relating to quality of life and general non-

motor symptoms. Evaluation of these outcome measures shows extremely high variability, which 

makes it difficult to definitively rule out any benefits. Previous studies involving meditative 

movement therapies have reported improvements to health related quality of life measures 

following completion of the intervention, suggesting that these outcomes may be impacted and 

should still be considered in future studies [24, 31]. Despite the lack of measured benefits, one 
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subject reported a considerable perceived improvement in blood pressure while participating in 

the study. Though this particular outcome was not directly measured, this occurrence is 

consistent with previously reported findings [23, 30, 45].    

 

Sleep and Fatigue: A major benefit linked to studies involving meditative movement has been 

the observed improvement in sleep, including overall sleep quality and excessive daytime 

sleepiness [24, 26, 27, 29]. The current study shows some evidence to further support these 

findings. Though changes to the overall sleep score and sleep disturbance subscale fell short of 

significance, the power and significance of these results might be improved with a larger sample 

size. Regardless, this overall trend could demonstrate that the specific form of Qigong 

implemented in this study may be beneficial to people with PD suffering from sleep related 

issues. It has been suggested previously that quality sleep may help to restore dopamine levels in 

the brain, an occurrence referred to as sleep benefit [15]. If this claim is true, it would suggest 

that PD symptoms that are sensitive to dopamine levels may be improved as the quality and 

duration of sleep is increased. 

Despite the apparent improvement in sleep discovered in this study, fatigue remained 

unaffected by the intervention. This contradicts the findings of a previous study implementing 

this specific form of Qigong on patients with fibromyalgia [29]. This difference could be a 

product of the specific tools used to assess fatigue in the two populations or simply a difference 

in disease characteristics and their response to the therapy. Despite this difference, these results 

are in line with previous studies in PD that show that fatigue and sleep do not appear to be 

directly related [12, 19].  
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Gait Performance: The specific gait parameters evaluated in this study were selected due to their 

strong representation of the changes that occur in PD gait compared to healthy populations, as 

demonstrated in a number of previous studies [7-9, 14, 43]. Reduced gait velocity is often 

considered the primary characteristic of gait in PD and is typically improved by levodopa. A 

previous study found patients off of levodopa medication walked at a speed of 0.902 m/s 

compared to 0.935 m/s while on medication, a 3.65% increase [46]. In the current study, post-

intervention velocity increased from 0.8988 m/s to 0.9772 m/s, a change of 8.73%. This 

improvement, which was measured while patients were off of levodopa therapy, shows a greater 

magnitude of change than demonstrated in the study on levodopa. This finding could provide 

some support for the idea of sleep benefit discussed previously. In comparison to other studies of 

meditative movement, a study of Tai Chi in PD showed a 14% increase in baseline gait speed as 

measured by the 50-ft walk test [28]. However, one study comparing Tai Chi to an inactive 

control group was less convincing, finding a 6.2% increase in velocity for the Tai Chi group 

compared to a 5.4% increase in controls [25]. These findings suggest that, while there appears to 

be a benefit in gait velocity from the Qigong intervention, further studies comparing these 

outcomes to a control group are necessary. 

In this study, the increase in velocity appears to result primarily from an improvement in 

stride time, which improved 5.27% from baseline. This result was somewhat surprising, as most 

previous reports indicate stride time and cadence tend to be relatively unaffected by PD and 

therefore we did not expect significant changes to this value following the intervention [5, 9, 10, 

46]. This observation was similar to results from a study using gait training in PD. In this 

particular study, an increase in cadence of 6.65% was seen in the intervention group, while 



 50 

inactive controls also showed an increase of 5.61%. However, in this same study of gait training, 

velocity was increased 13.28% compared to 0.79% in controls as a result of significant changes 

to stride length [47]. Another study of a motor rehabilitation program in PD showed a significant 

increase in gait velocity (18.68%) as a result of significant improvements in both cadence 

(6.12%) and stride length (12.65%) [48]. In the current study, stride length was increased 4.15%. 

This change was not significant, possibly because of the small sample size. These observations 

highlight the need for further study with a larger sample size and a control group for comparison 

of the outcome measures. 

Double support time – a parameter that has been linked to postural instability [5, 10] – 

also showed a significant improvement following the Qigong intervention. The group decreased 

from 28.52% to 25.95% of the gait cycle in double support, a change of 9.01% from baseline 

values. This parameter has not been reported in meditative movement studies, but a study of a 

motor rehabilitation program in PD showed a non-significant decrease of 6.05% in double 

support time following that intervention [48]. Previously, other measures of postural instability 

have been shown to improve as a result of meditative movement. This includes a 13% 

improvement in the functional reach test following a Tai Chi intervention for people with PD [7], 

as well as improvements in balance, chair rise, and one-leg stance in balance impaired, 

sedentary, and arthritic populations following therapy with Tai Chi [24]. The outcomes 

demonstrated in the current study may lend further support to these claims of improved balance 

in stability following participation in meditative movement therapies.  
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Gait Variability: Variability in stride length and stride time has been associated with PD gait in 

several studies [7, 43, 46]. In the current study, variability also showed a significant 

improvement following the intervention. Upon closer analysis of these individual features, a 

significant improvement was found in stride time variability. This study also appears to be the 

first study of meditative movement to measure changes in gait variability. In this study, the 

coefficient of variation in stride time measures decreased 36.17% from a baseline value of 4.52 

to a post-intervention value of 2.88. Several previous studies compared variability for PD 

patients when on and off medication as well as those with and without FOG. In the study 

observing variability and medication status, patients improved 39.34% from 6.1 while off of 

medication to 3.7 on medication [9]. Comparison of patients with and without FOG while off of 

medication showed a coefficient of variability of 6.1 for those with FOG to 3.3 for those without, 

a difference of 45.90%. These two groups showed a smaller improvement with medication, 

improving variability 26.23% and 21.21% in FOG and non-FOG patients, respectively [11]. 

Previous studies claim that PD might impair the internal clock mechanism responsible for the 

internal cueing needed to generate and maintain movements in automatic motor functions, such 

as gait [9]. If true, this would likely be most clearly represented by increased variability in gait 

timing. Comparison of results from the current study with those previously reported shows 

meditative movement therapy may provide significant benefits for this particular aspect of the 

disease. 

 

Limitations: This study had several limitations. First, the sample size used in this study was 

small. Although several significant changes were observed as a result of this intervention, these 

results should be considered with caution due to the limited number of subjects tested. Further 
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testing of this particular intervention is suggested in order to determine its effects with a greater 

degree of confidence. Second, the use of the pre-test post-test design without a control group 

requires caution when evaluating results. Although the observed changes could be caused by the 

intervention, this design makes it difficult to test for other variables that could influence results, 

such as testing effect. Though the gait tasks were designed in a manner to attempt to reduce this 

effect, familiarity with the tasks being tested as well as the testing environment could contribute 

to changes in performance. In furtherance of this idea, it also may be difficult to determine what 

specific aspect of the intervention could have contributed to the observed changes. It could be 

possible that a single aspect, such as the social interaction, movement, or breathing focus, may 

be largely responsible for the results. Finally, selection bias may impact results. The subjects 

involved in this study consisted of those volunteering to participate in the exercise program. As a 

result, they may have high expectations of the therapy, potentially creating a placebo effect. 

Additionally, the sample recruited in this manner may not accurately represent the PD population 

in general. 

 

Conclusions: A number of important changes were found as a result of a six-week Qigong 

exercise intervention. This study demonstrated a trend toward improvements in sleep quality as 

well as a number of improvements in gait and motor function. These results suggest that the 

specific form of Qigong exercise that was implemented may provide potential benefits to people 

with PD. In addition to these benefits, this exercise was shown to be easy to learn, requires 

minimal physical capacity, uses short duration sessions, and can be performed in a variety of 

postures. Early outcomes of this intervention are promising for potentially providing additional 

benefits in the treatment of PD. Further research will be required in order to more clearly 
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determine the impact of this exercise with greater statistical power. Because there was no 

apparent effect of cue timing and turning conditions, future studies may consider a simplified, 

more direct approach to studying gait performance. Additionally, different approaches to 

assessing outcomes such as quality of life, fatigue, and non-motor symptoms may be explored in 

order to determine further benefits related to the exercise.   
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Figure 1 (a): Gait performance. Average values with standard deviations of pre- and 

post-intervention measures of velocity (m/s), stride length (m), and stride time (s) are 

given. Significant differences in outcome measures as determined by post-hoc t-tests 

are indicated by an asterisk (p < 0.0125). 

 

  



 58 

 

Figure 1 (b): Gait Performance. Average values with standard deviations of pre- 

and post-intervention measures of double support time (as percent gait cycle) are 

given. Significant difference in outcome measures as determined by post-hoc t-

testing is indicated by an asterisk (p < 0.0125). 
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Figure 2: Gait Variability. Average values with standard deviations of pre- and post-

intervention coefficient of variation for stride time and stride length are given. A significant 

difference in outcome measures as determined by post-hoc t-testing is indicated by an 

asterisk (p < 0.0250). 
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Figure 3: Turn Performance. Average values with standard deviations of pre- and post-

intervention measures of turn performance are given. The total number of steps and total 

time to complete the turning task was measured.   
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Subject 

# 
Age (yrs) Gender 

PD Duration  

(yrs) 
H&Y MMSE Medication 

Dosage  

(mg/day) 

1 65 F 9 3 28 Carbidopa/Levodopa 50/200 

  

     

Rasagiline 0.5 

2* 55 F 3 2 27 Carbidopa/Levodopa 125/500 

  

     

Rasagiline 1 

3 77 F 1 1 30 Carbidopa/Levodopa 75/300 

4 76 M 3 2.5 23 Carbidopa/Levodopa/Entacapone 125/500/800 

5 67 F 4 3 30 --- --- 

6 59 M 1.5 2 30 Pramiprexole 1.5 

  

     

Rasagiline 1 

7 69 M 3 3 27 Carbidopa/Levodopa 150/600 

            Ropinirole 4 

  66.86 ± 8.13 --- 3.5 ± 2.6 2.4 ± 0.8 27.9 ± 2.5     

Table 1: Characteristics of subjects. Summary data on bottom row represents mean (standard deviation). 

*Subject 2 reduced Carbidopa/Levodopa medication from 125/500 mg/day to 75/300 mg/day during the 

course of the intervention. 
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  Qigong Exercise Other Exercise 

Subject 

# 

Morning 

(% completed) 

Evening 

(% completed) 

Total 

(% completed) 

Pre-Intervention 

(days/week) 

Intervention 

(days/week) 

1 69.05% 54.76% 61.90% 2.00 3.00 

2 97.62% 97.62% 97.62% 4.00 2.33 

3 94.29% 94.29% 94.29% 2.00 0.00 

4 69.70% 66.67% 68.18% 3.00 0.60 

5 95.24% 83.33% 89.29% 0.00 0.00 

6 100.00% 100.00% 100.00% 7.00 7.00 

7 74.36% 79.49% 76.92% 7.00 3.67 

  85.75% ± 13.98% 82.31% ± 16.85% 84.03% ± 15.08% 3.57 ± 2.64 2.37 ± 2.51 

Table 2: Exercise Compliance. Exercise compliance given as percentage of total sessions completed for 

morning, evening, and total sessions. Involvement in additional exercise is given with comparison to 

reported activity levels prior to intervention. 
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Pre Post p-value 

PDQ-39 Total 35.86 ± 35.85 35.57 ± 31.19 0.9437 

Mobility 9.29 ± 10.89 10.86 ± 11.74 0.3186 

ADL 5.29 ± 4.11 4.71 ± 4.27 0.6314 

Emotional Well Being 6.00 ± 6.27 6.57 ± 6.13 0.4362 

Stigma 3.14 ± 4.78 1.86 ± 3.49 0.3802 

Social Support 0.86 ± 2.27 1.57 ± 3.36 0.1824 

Cognitions 4.29 ± 3.20 4.14 ± 2.73 0.8291 

Communications 3.00 ± 4.24 2.29 ± 3.30 0.5265 

Bodily Discomfort 4.00 ± 3.51 3.57 ± 2.70 0.6286 

 

Table 3: Parkinson’s Disease Questionnaire (PDQ-39). Mean ± standard deviation 

for pre- and post-intervention testing are given, where higher scores indicate more 

severe complications. P-value is given from t-test with significance level at  

p < 0.05. 
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Pre Post p-value 

NMS-Quest Total 48.43 ± 36.90 49.57 ± 41.48 0.8575 

Cardiovascular and Falls 1.86 ± 2.54 1.43 ± 2.15 0.4072 

Sleep and Fatigue 11.14 ± 12.16 11.00 ± 10.28 0.9725 

Mood and Cognition 9.71 ± 12.20 13.00 ± 19.14 0.4809 

Perceptual Problems 0.57 ± 0.79 0.14 ± 0.38 0.1996 

Attention and Memory 5.43 ± 9.74 6.86 ± 7.86 0.6231 

GI Tract 2.14 ± 1.86 2.86 ± 3.48 0.4888 

Urinary 9.71 ± 13.07 6.00 ± 7.57 0.1842 

Sexual Function 8.57 ± 10.18 2.43 ± 4.47 0.1243 

Miscellaneous 2.71 ± 4.42 5.86 ± 6.12 0.2286 

 

Table 4: Non-Motor Symptoms Questionnaire (NMSQuest). Mean ± standard 

deviation for pre- and post-intervention testing are given, where higher scores indicate 

more severe complications. P-value is given from t-test with significance level at  

p < 0.05. 
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  Pre Post p-value 

PDSS-2 Total 29.29 ± 15.74 16.29 ± 9.18 0.0733 

Motor Symptoms at Night 9.43 ± 6.63 3.71 ± 2.56 0.0494 

PD Symptoms at Night 7.14 ± 6.82 3.86 ± 4.60 0.2865 

Disturbed Sleep 12.71 ± 4.31 8.71 ± 3.55 0.0634 

  

 

    

PFS-16 Total 47.14 ± 17.12 54.14 ± 16.72 0.3006 

 

Table 5: Revised Parkinson’s Disease Sleep Scale (PDSS-2) and Parkinson’s 

Fatigue Scale (PFS-16). Mean ± standard deviation for pre- and post-

intervention testing are given, where higher scores indicate more severe 

complications. Bold entries indicate significant difference (p < 0.05) in t-test. 
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  Pre Post p-value 

Velocity (m/s) 0.899 ± 0.258 0.977 ± 0.220 0.0104 

Stride Length (m) 1.083 ± 0.209 1.128 ± 0.163 0.0598 

Stride Time (s) 1.241 ± 0.152 1.175 ± 0.112 0.0001 

Double Support (% GC) 28.52 ± 6.54 25.95 ± 4.87 0.0005 

 

Table 6: Gait Performance: Mean ± standard deviation is given for gait 

velocity, stride length, stride time, and double support time.  Bold entries 

indicate significant changes from pre- to post-test when evaluated with post-

hoc t-test (p < 0.0125).   
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  Pre Post p-value 

CV Stride Length 5.141 ± 1.596 4.240 ± 1.768 0.1311 

CV Stride Time 4.520 ± 2.022 2.885 ± 1.060 0.0058 

 

Table 7: Gait Variability: Mean ± standard deviation is given 

for the coefficient of variation for stride length and stride time.  

Bold entries indicate significant changes from pre- to post-test 

when evaluated with post-hoc t-test (p < 0.0250).   
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  Pre Post p-value 

Turn Steps (# 

steps) 6.93 ± 2.04 6.90 ± 2.01 0.8809 

Turn Time (s) 4.26 ± 1.48 4.29 ± 1.65 0.7748 

 

Table 8: Turn Performance: Mean ± standard deviation is given 

for the number of steps and total time taken to complete the 

turning task.  No significant changes from pre- to post-test were 

seen when evaluated with post-hoc t-test (p < 0.0250).   
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CHAPTER FOUR: SUMMARY 

 

Summary of Study 

The goal of this study was to investigate the impact of a Qigong exercise intervention on 

symptoms related to sleep quality, fatigue, and gait function in Parkinson’s disease (PD). 

Subjects diagnosed with PD participated in a six-week Qigong exercise program. This included 

performance of the exercise routine twice daily over the course of the intervention, as well as 

weekly group exercise sessions. Subjects were assessed in sleep quality and fatigue using 

standard clinical assessments specific to PD. Gait function was tested using three-dimensional 

motion analysis during the performance of several gait tasks. The performance of these tasks was 

assessed in three main categories: overall gait function, gait variability, and turning. Parameters 

related to overall gait function included stride time, stride length, double support time, and gait 

velocity. Gait variability was assessed using the coefficient of variation of stride time and stride 

length. Turning performance was assessed by the total number of steps and total time taken to 

complete a full turn. 

Following the six-week intervention, the Qigong exercise showed a positive impact on 

several PD symptoms. First, sleep quality appeared to be improved as a result of the exercise 

therapy. Subjects also displayed improvements in several aspects of gait. Overall gait 

performance showed a large benefit from the exercise. All outcome measures within this 

category showed improvement following the intervention. Stride length was increased and stride 

time was decreased to result in an increase in gait velocity. Additionally, time spent in double 

support was reduced. Gait variability showed significant improvement as well. Stride time 
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variability was the most significantly impacted, showing reduced variability in the post-

intervention testing. Finally, neither turning performance nor fatigue appeared to benefit from the 

exercise as no significant change occurred in either of these parameters. 

 

Conclusions and Recommendations 

  This study found improvements in several PD features as a result of a six-week Qigong 

exercise intervention. This specific exercise therapy appears to have a positive influence on sleep 

quality and several aspects of gait in people with PD. Specifically, gait velocity, stride time, 

stride time variability, and double support time were all significantly improved following 

completion of the intervention. Stride length also appeared to improve, though not significantly. 

These findings suggest that this specific therapy may provide additional benefit to PD patients 

beyond those experienced with standard medical treatment. This exercise was shown to be easy 

to learn and generally well accepted by those participating. It requires no additional equipment 

and is relatively short in duration, lasting only 15 to 20 minutes per session. These features along 

with the potential benefits make this a viable option to further improving the management of PD 

and its related symptoms. Further study is required to provide more statistical power to support 

these observations as well as more clearly define the extent of the benefits related to this 

exercise. Future studies may consider alternative options for assessing features of PD related to 

quality of life and non-motor symptoms. Additionally, it may be possible to take a more 

simplified and direct approach to evaluating gait performance in future work. 
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Limitations 

 This study has several limitations. First, a small sample size was used to evaluate the 

measured variables in this study. Although several significant changes were found following the 

intervention, these should be looked at with caution due to the limited number of subjects tested. 

Second, this study used a pre-test post-test design without a control group. Although the 

observed changes may be a result of the intervention, this design makes it difficult to test for 

other variables that could influence results. One example is a testing effect. Though the gait tasks 

were designed with the intentions of reducing this effect, familiarity with the tasks being 

performed as well as the testing environment could contribute to some changes in performance. 

Further, it is difficult to determine what specific aspect of the intervention may have contributed 

to the observed changes. It could be possible that a single aspect, such as the social interaction, 

movement, or breathing focus, may be largely responsible for the results. Finally, selection bias 

could be an issue. The subjects participating in this study had a high interest in being involved in 

a structured exercise program. Because of this, there may be a placebo effect resulting from high 

expectations of the therapy and related outcomes. Alternatively, this particular subject group may 

not be representative of the PD population in general. 

 

Further Study 

The purpose of this study was to explore the potential impact of Qigong on PD symptoms 

relating to sleep, fatigue, and gait. Important changes were discovered in several aspects of sleep 

quality and gait performance. Further study is needed to confirm the observations from this small 

sample of patients. Additionally, future studies may be able to incorporate a simplified and more 
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focused approach to gait analysis. Evaluation of the current results suggests that it should be 

possible to adequately assess gait performance though simple gait testing while off of 

medication. Additional considerations may be to complete testing while the patients are on and 

off of their medications. This may provide a more complete picture of the extent of benefits 

gained from this exercise therapy. 
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APPENDIX A: STUDY PROTOCOL 
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APPENDIX B: ADDITIONAL DATA 
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Early Cue 

  Pre  Post p-value 

Stride Time (s) 1.24 ± 0.15 1.18 ± 0.12 0.0000 

Stride Length (m) 1.07 ± 0.24 1.14 ± 0.19 0.0033 

Double Support (%) 28.84 ± 7.04 25.64 ± 5.23 0.0000 

Velocity (m/s) 0.89 ± 0.27 0.99 ± 0.24 0.0004 

(a) 

   

    Late Cue 

  Pre Post p-value 

Stride Time (s) 1.23 ± 0.15 1.18 ± 0.11 0.0000 

Stride Length (m) 1.05 ± 0.25 1.10 ± 0.19 0.0316 

Double Support (%) 29.58 ± 8.41 26.79 ± 5.34 0.0008 

Velocity (m/s) 0.88 ± 0.28 0.95 ± 0.23 0.0027 

(b) 

   

Table B1: Gait performance in cueing conditions. Mean ± 

standard deviation is given for pre- and post-intervention testing in 

early (a) and late (b) cue conditions. P-values from post-hoc t-tests 

are given. Bold entries indicate significant difference (p < 0.0125). 
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Early Cue 

  Pre Post p-value 

CV Stride Time 5.46 ± 1.90 2.95 ± 1.44 0.0213 

CV Stride Length 10.04 ± 7.27 5.95 ± 7.30 0.0726 

(a) 

   

    Early Cue 

  Pre Post p-value 

CV Stride Time 4.55 ± 2.66 3.21 ± 1.47 0.1023 

CV Stride Length 9.43 ± 9.58 6.54 ± 6.15 0.1306 

(b) 

   

Table B2: Gait variability in cueing conditions. Mean ± 

standard deviation is given for pre- and post-intervention 

testing in early (a) and late (b) cue conditions. P-values from 

post-hoc t-tests are given. Bold entries indicate significant 

difference (p < 0.0250). 
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Early Cue 

 

Pre Post p-value 

Turn Steps (#) 6.90 ± 2.14 6.95 ± 1.99 0.9048 

Turn Time (s) 4.25 ± 1.41 4.27 ± 1.58 0.9434 

(a) 

   Late Cue 

 

Pre Post p-value 

Turn Steps (#) 7.05 ± 2.18 6.76 ± 1.87 0.5209 

Turn Time (s) 4.44 ± 1.57 4.15 ± 1.75 0.4492 

(b) 

   

Table B3: Turn performance in cueing conditions. Mean ± 

standard deviation is given for pre- and post-intervention 

testing in early (a) and late (b) cue conditions. P-values from 

post-hoc t-tests are given. Bold entries indicate significant 

difference (p < 0.0250). 
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  Subj 1 Subj 2* Subj 3 Subj 4 Subj 5 Subj 6 Subj 7 

  Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post 

Mobility 10 7 3 10 2 2 0 3 25 31 1 0 24 23 

ADL 4 4 7 12 1 0 2 2 7 6 3 1 13 8 

Emotional  

well being 
11 8 3 5 2 3 0 2 8 8 1 1 17 19 

Stigma 0 0 2 4 0 0 0 0 9 0 0 0 11 9 

Social Support 0 2 0 0 0 0 0 0 0 0 0 0 6 9 

Cognitions 6 7 2 3 3 3 0 2 5 2 4 3 10 9 

Communication 3 4 0 0 0 1 0 0 9 2 0 0 9 9 

Bodily  

Discomfort 
5 4 4 3 3 0 0 1 10 7 0 3 6 7 

Total 39 36 21 37 11 9 2 10 73 56 9 8 96 93 

Table B4: Individual Responses to Parkinson’s Disease Questionnaire (PDQ-39). Scores for each 

subsection aare given with higher scores indicating more severe complications. *Subject 2 reduced 

Carbidopa/Levodopa medication from 125/500 mg/day to 75/300 mg/day during the course of the 

intervention. 

 

  



 114 

  Subj 1 Subj 2* Subj 3 Subj 4 Subj 5 Subj 6 Subj 7 

  Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post 

Cardiovascular 1 1 5 2 0 0 1 0 0 0 0 1 6 6 

Sleep/Fatigue 10 15 6 9 2 1 0 3 36 16 8 3 16 30 

Mood/Cognition 32 40 0 2 4 1 0 2 15 2 0 2 17 42 

Perceptual Problems/ 

Hallucinations 
2 0 0 0 1 0 0 0 0 0 0 0 1 1 

Attention/Memory 27 16 0 3 1 1 1 3 0 0 3 5 6 20 

GI Tract 2 3 2 2 2 0 0 0 5 4 0 1 4 10 

Urinary 0 0 2 2 18 16 1 2 36 18 6 2 5 2 

Sexual Function 0 0 0 0 0 0 12 1 20 12 4 4 24 0 

Miscellaneous 3 5 12 12 0 0 0 0 4 2 0 6 0 16 

Total 77 80 27 32 28 19 15 11 116 54 21 24 79 127 

Table B5: Individual Responses to Non-Motor Symptoms Questionnaire (NMS Quest). Scores for each 

subsection and the total are included with higher scores indicating more severe complications. *Subject 2 

reduced Carbidopa/Levodopa medication from 125/500 mg/day to 75/300 mg/day during the course of the 

intervention. 
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  Subj 1 Subj 2* Subj 3 Subj 4 Subj 5 Subj 6 Subj 7 

  Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post 

Motor Symptoms 

 at Night 
7 3 14 4 6 1 20 3 13 8 0 1 6 6 

PD Symptoms 

at Night 
3 3 4 1 3 1 20 1 11 7 0 1 9 13 

Disturbed 

 Sleep 
8 6 15 5 6 6 16 11 18 8 13 10 13 15 

Total 18 12 33 10 15 8 56 15 42 23 13 12 28 34 

Table B6: Individual Responses to Revised Parkinson’s Disease Sleep Scale (PDSS-2). Scores for each 

subsection and the total are included with higher scores indicating more severe complications. *Subject 2 

reduced Carbidopa/Levodopa medication from 125/500 mg/day to 75/300 mg/day during the course of the 

intervention. 
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  Subj 1 Subj 2* Subj 3 Subj 4 Subj 5 Subj 6 Subj 7 

  Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post 

PFS Total 55 63 46 63 31 20 19 57 66 64 49 45 64 67 

Table B7: Individual Responses to Parkinson’s Fatigue Scale (PFS). Scores for each subsection and 

the total are included with higher scores indicating more severe complications. *Subject 2 reduced 

Carbidopa/Levodopa medication from 125/500 mg/day to 75/300 mg/day during the course of the 

intervention. 
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  Gait Velocity (m/s) Stride Length (m) 

Subj # Pre Post Pre Post 

1 1.121 ± 0.064 1.131 ± 0.067 1.187 ± 0.050 1.193 ± 0.040 

2* 0.703 ± 0.068 0.794 ± 0.047 0.991 ± 0.047 1.021 ± 0.040 

3 0.803 ± 0.090 0.891 ± 0.059 1.082 ± 0.067 1.136 ± 0.044 

4 0.905 ± 0.093 0.778 ± 0.076 1.114 ± 0.070 1.003 ± 0.077 

5 0.602 ± 0.023 0.860 ± 0.058 0.801 ± 0.039 0.996 ± 0.061 

6 1.435 ± 0.136 1.460 ± 0.078 1.573 ± 0.074 1.525 ± 0.051 

7 1.034 ± 0.104 1.121 ± 0.071 1.097 ± 0.079 1.189 ± 0.050 

(a-b) 

    
 

      Stride Time (s) Double Support (% gait cycle) 

Subj # Pre Post Pre Post 

1 1.060 ± 0.024 1.056 ± 0.032 21.908 ± 1.528 22.293 ± 1.463 

2* 1.417 ± 0.080 1.288 ± 0.041 32.390 ± 2.134 27.809 ± 1.321 

3 1.356 ± 0.079 1.277 ± 0.050 34.213 ± 2.337 30.360 ± 3.051 

4 1.238 ± 0.090 1.293 ± 0.052 30.219 ± 4.710 33.156 ± 2.330 

5 1.332 ± 0.046 1.158 ± 0.019 34.644 ± 2.183 24.656 ± 1.615 

6 1.101 ± 0.059 1.046 ± 0.024 20.691 ± 1.589 21.562 ± 1.100 

7 1.065 ± 0.038 1.062 ± 0.026 19.965 ± 1.692 20.114 ± 1.186 

(c-d) 

    

 

Table B8: Individual Gait Performance: Mean ± standard deviation is given for (a) 

gait velocity, (b) stride length, (c) stride time, and (d) double support time. *Subject 

2 reduced Carbidopa/Levodopa medication from 125/500 mg/day to 75/300 mg/day 

during the course of the intervention. 
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 CV Stride Time CV Stride Length 

Subj # Pre Post Pre Post 

1 2.263 2.999 4.248 3.365 

2* 5.666 3.173 4.700 3.936 

3 5.853 3.885 6.182 3.876 

4 7.261 3.986 6.300 7.649 

5 3.443 1.641 4.909 6.149 

6 5.329 2.317 4.686 3.312 

7 3.557 2.436 7.229 4.240 

Table B9: Individual Gait Variability: Coefficient of variation is 

given for stride time and stride length (CV = 100*(standard 

deviation / mean)). *Subject 2 reduced Carbidopa/Levodopa 

medication from 125/500 mg/day to 75/300 mg/day during the 

course of the intervention. 
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 Turn Steps (# steps) Turn Time (s) 

Subj # Pre Post Pre Post 

1 5.167 ± 0.408 5.167 ± 0.408 2.947 ± 0.169 2.949 ± 0.238 

2* 6.500 ± 0.837 6.667 ± 0.816 4.879 ± 0.478 4.988 ± 0.392 

3 4.667 ± 0.516 5.167 ± 1.472 3.358 ± 0.279 3.976 ± 1.532 

4 8.667 ± 1.211 8.667 ± 1.211 6.193 ± 1.175 6.246 ± 1.521 

5 8.667 ± 1.966 9.167 ± 2.041 5.950 ± 1.053 5.890 ± 1.387 

6 5.500 ± 0.548 5.333 ± 0.816 2.763 ± 0.537 2.632 ± 0.484 

7 9.333 ± 0.816 8.167 ± 1.329 3.746 ± 0.660 3.382 ± 0.590 

Table B10: Individual Turn Performance: Mean ± standard deviation is given for total 

number of steps and total time taken to complete turning task. *Subject 2 reduced 

Carbidopa/Levodopa medication from 125/500 mg/day to 75/300 mg/day during the 

course of the intervention. 

 

 


