Estimating Migration Resistance:
a Case Study of Greenlandic Arctic Terns

Chris Hensz

University of Kansas
Department of Ecology and Evolutionary Biology
Biodiversity Institute
The Problem

1: How do migratory animals choose their travel routes?

2: What variables are responsible for navigation choices?

3: How can we incorporate high-quality tracking data?
Data

(Egevang 2010)
Methods

- Compare actual travel path with shortest distance path
- Measure differences in environments along both paths
Data

- Remote sensing:
 - CCMP ocean winds
 - AVHRR temperature
 - AVHRR sea ice
 - NPP layer 4 product

- Models:
 - Linear exploration
 - Circular-linear regression
 - Non-linear regression
Models

- Implemented in R

- Models:
 - Linear exploration

Southern Migration, 9 birds, n=929

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std Error</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind Actual</td>
<td>-0.04</td>
<td>0.005</td>
<td>-8.09</td>
<td><0.0001</td>
</tr>
<tr>
<td>Wind Optimal</td>
<td>0.017</td>
<td>0.007</td>
<td>2.39</td>
<td>0.017</td>
</tr>
<tr>
<td>SST Actual</td>
<td>-0.161</td>
<td>0.02</td>
<td>-8.15</td>
<td><0.0001</td>
</tr>
<tr>
<td>SST Optimal</td>
<td>0.152</td>
<td>0.02</td>
<td>7.72</td>
<td><0.0001</td>
</tr>
<tr>
<td>NPP Actual</td>
<td>-0.261</td>
<td>0.087</td>
<td>-3.01</td>
<td>0.003</td>
</tr>
<tr>
<td>NPP Optimal</td>
<td>0.234</td>
<td>0.089</td>
<td>2.64</td>
<td>0.009</td>
</tr>
</tbody>
</table>

Northern Migration, 9 birds, n=629

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std Error</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind Actual</td>
<td>0.047</td>
<td>0.008</td>
<td>6.15</td>
<td><0.0001</td>
</tr>
<tr>
<td>Wind Optimal</td>
<td>0.003</td>
<td>0.008</td>
<td>0.37</td>
<td>0.711</td>
</tr>
<tr>
<td>SST Actual</td>
<td>0.058</td>
<td>0.02</td>
<td>2.91</td>
<td>0.004</td>
</tr>
<tr>
<td>SST Optimal</td>
<td>-0.061</td>
<td>0.02</td>
<td>-2.99</td>
<td>0.003</td>
</tr>
<tr>
<td>NPP Actual</td>
<td>-0.03</td>
<td>0.106</td>
<td>-0.29</td>
<td>0.774</td>
</tr>
<tr>
<td>NPP Optimal</td>
<td>-0.022</td>
<td>0.113</td>
<td>-0.20</td>
<td>0.846</td>
</tr>
</tbody>
</table>
Future Directions

1: Finish non-linear model

2: Generalize procedure and include additional species

3: Project resistances into future climates and land-use scenarios
Acknowledgements

Mentorship:
Jorge Soberón, Town Peterson, Xingong Li, John Kelly

Funding and Support:
The Biodiversity Institute
The Department of Ecology and Evolutionary Biology
C-CHANGE IGERT: Climate Change, Humans and Nature in the Global Environment
NSF