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Abstract

Structured data is accumulated rapidly in many applications, e.g. Bioinformatics,

Cheminformatics, social network analysis, natural language processing and text

mining. Designing and analyzing algorithms for handling these large collections

of structured data has received significant interests in data mining and machine

learning communities, both in the input and output domain.

However, it is nontrivial to adopt traditional machine learning algorithms, e.g.

SVM, linear regression to structured data. For one thing, the structure informa-

tion in the input domain and output domain is ignored if applying the normal

algorithms to structured data. For another, the major challenge in learning from

many high-dimensional structured data is that input/output domain can contain

tens of thousands even larger number of features and labels. With the high di-

mensional structured input space and/or structured output space, learning a low

dimensional and consistent structured predictive function is important for both

robustness and interpretability of the model.

In this dissertation, we will present a few machine learning models that learn from

the data with structured input features and structured output tasks. For learn-

ing from the data with structured input features, I have developed structured

sparse boosting for graph classification, structured joint sparse PCA for anomaly

detection and localization. Besides learning from structured input, I also inves-

tigated the interplay between structured input and output under the context of

multi-task learning. In particular, I designed a multi-task learning algorithms

that performs structured feature selection & task relationship Inference. We



will demonstrate the applications of these structured models on subgraph based

graph classification, networked data stream anomaly detection/localization, mul-

tiple cancer type prediction, neuron activity prediction and social behavior pre-

diction. Finally, through my intern work at IBM T.J. Watson Research, I will

demonstrate how to leverage structural information from mobile data (e.g. call

detail record and GPS data) to derive important places from people’s daily life

for transit optimization and urban planning.
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Chapter 1

Introduction

Structured data refers to the data that has both information contents and the organization of

contents. Such data is accumulated rapidly in many applications, e.g. Bioinformatics [106,

109], Cheminformatics [154], social network analysis [30, 140], natural language processing

[48, 167] and text mining [64]. Designing and analyzing algorithms for handling these large

collections of structured data has received significant interests in data mining and machine

learning communities over recent years, both in the input [44, 84, 106, 158] and output

domain [95, 167, 138, 141].

Structured input refers to the situation that the samples or features are organized in a

certain meaningful way, e.g. chain, tree or a graph. For instance, in microarray classifica-

tion, we often use genes as features and genes form biological networks, captured in various

biological network databases [106, 109]. In text mining where key words are features, we

have additional information about synonyms or antonyms of the features. Such information

is usually captured with a word net [48]. In sensor networks, at a given time point regarding

the state of the full sensor network, the features are the readings of the sensors, and we

usually know the topology of the network or the physical location of the sensors [84].

Besides structured input, data may have structured output. Unlike structured input,

structured output may either refer to the case that output labels have structured relationship
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or the scenario that predictive functions for generating the output are structured. For

example, in Natural Language Parsing, given a sentence we aim to derive its grammar

parse tree according to the general grammar rules [167]. In text categorization, we often

have label/class taxonomy which is organized either in a hierarchical tree [141] or a DAG

[11]. In multiple cancer prediction from microarray data, each task corresponds to a function

that predicts whether a particular cancer exists and these functions (a.k.a models) can be

organized as groups [79] or graphs [88]. In location based social network analysis, we aim to

annotate the missing place information from a set of all possible locations, and the locations

have spatial relationship or hierarchical relationship [183]. The rest examples can be found

named entity recognition [18, 138] and label sequence learning [18, 167].

For normal machine learning problems, the modeling practise is to learn a function:

f : X → Y , in which X is typically a data matrix in a vector space and Y belongs to R, N

or {−1, 1} for different learning purposes. For structured data learning problems, the target

is still learn a function mapping from input to output domain, but both domains may have

structural information and the structure can be captured by a certain data model, such as

chain, tree or graph.

However, it is nontrivial to adopt normal machine learning algorithms, e.g. SVM, linear

regression to structured data. For one thing, the structure information in the input domain

and output domain is ignored if applying the normal algorithms to structured data. For

another, the major challenge in learning from many high-dimensional structured data is

that input/output domain can contain tens of thousands even larger number of features and

labels. With the high dimensional structured input space and/or structured output space,

learning a low dimensional and consistent structured predictive function is important for

both robustness and interpretability of the model.

In this dissertation, we will present a few learning models that learn from the data with

one or more of the following aspects.

• The data has known structural relationship among input features.
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• The data has known/unkown structural relationship among output tasks.

• The data has limited training samples but high dimensional feature space.

• Features of the data are not atomic but have internal complexity.

The focus of this dissertation is on the first three cases. The fourth case happens when

dealing with more complex data sets,such as graphs, and use subgraph as features to rep-

resent the graph. In that case, the features themselves contain complex structure and have

spatial/partial overlapping relationship detailed in Chapter 3.

As we know, it is often the case that only a limited training samples can be collected, due

to such factors as time and cost. The situation becomes worse if the feature dimensionality is

high. When labeled data is limited, it becomes more important to make use of any additional

sources of information available, which can be in the form of different but related sets of

data (multiple tasks), different relationships of the data (task relationship) and information

about the relationships between features of the data. Leveraging the additional knowledge

and integrating into learning provides us some prior information so that we can maximize

the utility of data given limited training samples.

In general, the characteristics of the data along with the specific form of auxiliary infor-

mation as listed above determines the specific learning problem. For instance when analyzing

Microarray data from one particular cancer type (e.g. breast cancer), the data is typically

characterized by low sample size and high dimensionality (case 3). Moreover, the features of

the data are genes and genes have known structural relationship (case 1) that can be cap-

tured by Biological pathways (a group of genes carry a certain Biological function). It may

be desirable to make use of the additional information in learning a predictive model. One

line of my previous research with structured data is on utilizing auxiliary information in the

form of a known relationship between features of the data [42, 43, 44, 47, 84]. These works

include subgraph based graph classification [42, 43, 44], networked feature selection [47],

anomaly detection and localization [84], and they are discussed chronologically in Chapter 3
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and Chapter 4, of this dissertation, comprising preliminary study on learning from structured

input.

Another line of my work with structured data is to utilize the structural information

from features or tasks under the context of multi-task learning [4, 111, 112, 136]. Multi-task

Learning (MTL) aims to enhance the generalization performance of supervised classification

or regression by learning multiple related tasks simultaneously, in which all the tasks share

the same feature representation. Following up with the example of Microarray data analysis

but extending one step further, we considering the problem of predicting cancer status based

on several Microarray data sets, where there are different types of cancers. Each data set is

composed of multiple Microarray data from patients who have or do not have the specific

cancer. Some cancers are “similar” to each other (e.g. breast cancer vs ovary cancer) while

some are quite different (e.g. breast cancer vs prostate cancer). We aim to transfer some

knowledge from one task to a related one with the purpose of Leveraging commonality among

tasks. Towards this end, we have developed a multi-task learning algorithm in which feature

selection and task relationship learning are performed simultaneously. The algorithm has

been applied to multiple cancer type prediction, neuron activity prediction [45] and social

behavior prediction [46]. We provide details in 5 and Chapter 6.

Last but not least, my knowledge on “structured data” has been also applied spatial and

temporal data mining for urban planning, e.g. transit optimization and dynamic population

density estimation. In particular, through my intern work at IBM T.J. Watson Research, I

will demonstrate how to leverage structural information from mobile data (e.g. call detail

record and GPS data) to accurately derive important places from people’s life as well as daily

traveling profile, including origin and destination (OD) and time of day origin and destination

(TOD). All the mined information is indispensable for urban planning, especially for transit

optimization.
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1.1 Contribution

The dissertation provides a theoretic framework and efficient and effective algorithms for

structured data with structured input features and/or output tasks including unsupervised

learning, single task/multi-task learning. Collectively, the theoretic framework and the al-

gorithms will provide the research community much better tools to mine and learn even

more complex data set with structured input and structured output. More specifically, our

contributions are:

• We have investigated a broad range of learning problems from structured data cover-

ing different applications, including Cheminformatics, Bioinformatics, social network

analysis, telecommunication and computational neuroscience.

• We have designed a novel way to incorporate the prior knowledge of structured input

features into learning framework and achieved sparsity and smoothness in the feature

space.

• To our best knowledge, we are the first to study the interplay between structure fea-

ture selection and structured output tasks relationship inference under the multi-task

learning framework.

• We have formalized each learning problem into structured risk minimization under a

certain regularization and proposed efficient optimization algorithms to solve them.

The remainder of the dissertation is as follows. First in chapter 2, a background section

will cover more details about structured data, single task learning and multi-task learning.

A few motivating examples is listed. Next, preliminary study on learning from structured

input or output is given in the following three chapters. The first part, Chapter 3 is on the

work of structured sparse boosting algorithm that incorporates the structured relationship

between base learners for graph classification [42, 43, 44]; the second part, Chapter 4, is

about structured sparse PCA by adapting network topology for anomaly detection and
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localization [84], and the final part of the preliminary study, Chapter 5, is a multi-task

learning algorithm with known task relationship on utilizing latent social network structure

induced by common interests for social behavior prediction [46]. Afterwards, a more general

framework that investigates the interplay of structured input and output under multi-task

learning [45] is given in Chapter 6. In Chapter 7, my work in leveraging structure information

of mobile data is given. Finally, conclusions and future work are discussed in Chapter 8.
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Chapter 2

Background

This chapter outlines the background of unstructured data, structured data, supervised

learning, single task vs multi-task learning, regularization as well as the motivated applica-

tions. Besides, the contribution of the thesis is provided in this chapter. Bellow we give the

notations.

2.1 Notations

Throughout the proposal, all matrices are boldface uppercase letters, vectors are boldface

lowercase letters, sets are uppercase calligraphic letters and Lagrange multipliers are Greek

letters {λ, λ1, λ2...}. n is the number of samples in the training data set, d is the data

dimensionality, and k is the number of tasks. The ith sample in the training data set is

denoted as xi ∈ Rd, and its corresponding label is denoted as yi ∈ {−1, 1}k, where yi(j) = 1

if xi belongs to class j and yi(j) = −1 otherwise. X = [x1,x2, · · · ,xn]
T ∈ Rnd represents

the input data matrix and Y = [y1,y2, · · · ,yn]
T ∈ {0, 1}n×k is the output label or output

task matrix. In our discussion, we assume that each instance in the training data set is

represented by a feature vector and an associated label set. For those applications with

semi-structured data such as chemical protei interaction prediction, we assume a certain

procedure has been applied on the data to derive its feature vector, e.g. generating frequent
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subgraphs from graph data sets and representing each sample graph with a binary vector

(xij = 1 denoting that the jth subgraph occurs in ith graph).

We use ∥A∥1 =
∑p

i,j |aij| to denote the L1 norm of A, ∥A∥F to denote the Frobenius

norm, ∥a∥2 =
√∑d

i=1 a
2
i to represent the L2 norm of vector a, < A,B >= tr(ATB) to repre-

sent the inner product between two matrices where tr(.) is the trace of matrix. Furthermore,

given matrix A ∈ Rd×k, Ai,: is the ith row, A:,j is the jth column and ∥A∥1,q =
∑d

i=1 ∥Ai,:∥q

is the L1/Lq norm. Unless stated otherwise, all vectors are column vectors.

2.2 Background

In this section, we provide the details for structured data, single task/multi-task learning,

and regularization respectively.

2.2.1 Unstructured data and Structured data

There is no formal definition for unstructured data vs structured data. Unstructured data

(or unstructured information) refers to information that either does not have a pre-defined

data model and/or does not fit well into relational tables (wikipedia). Typically unstructured

data contains content only, e.g. body of an email, video and audio file.

To the contrary, structured data refers to the data that has both information contents

and the organization of contents. For example in Figure 2.1, we show four types of data. For

protein structure data, it contains both animo acids and 3D structure. For web document

data, each document has bag of words and there are hyper-links among web documents.

Similarly, for social network data and genomic data, the network topology and biological

pathways define the structure of data.
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Protein Structure (source: wikipedia) Document/Hyper Text (Source: Lampert’11)

Social Network (Source: web) Gene Rb pathway (Source: http://dna.brc.riken.jp)

Figure 2.1: Examples of structured data. Top left: Protein structure data; Top right: web
document data; Lower left: social network data; Lower right: gene Rb pathway data.

2.2.2 Supervised Learning

The general goal of machine learning is to learn a predictive function: f : X → Y , in which X

is typically a data matrix in a vector space and Y belongs to R for regression, N for ranking

or {−1, 1} for binary classification. Supervised learning seeks the predictive function f over

a set of functions F by minimizing empirical loss on a training data set consisting of a set

of data and label pairs, {xi, yi}ni=1 ∈ X × Y .

min
f∈F

n∑
i=1

ℓ(yi, f(xi)) (2.1)

where ℓ(., .) is loss function measuring fitness and it could be 0-1 loss, hinge loss, exponential

loss or negative binomial likelihood.
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For normal supervised learning problem, there is no structural information on either input

domain X or Y . For structured data learning problems, both domains may have structural

information and the structure can be captured by a certain data model, such as chain, tree

or graph. For example in Figure 2.1, the protein structure data and web documents has

structural information in the input domain. For the social network and the genomic data,

the structural information could be found in either input or output domain based on different

learning purposes. If one is interested in identifying social communities, the structure is on

the input domain. But if one tries to do behavior targeting, then the structure is on the

output domain.

2.2.3 Single Task Learning vs Multi-task Learning

Based on how many tasks are involved in the learning process, supervised learning can be

divided into single task learning and multi-task learning. For single task learning, only one

task is performed such as classifying breast cancer vs normal from Microarray data and

classifying handwritten digit “6” vs “b”. Traditional learning algorithms e.g. SVM, logistic

regression and boosting, belong to this category.

For multi-task learning, there are several tasks that are learned jointly. As shown in

Figure 2.2, there are three tasks and each task corresponds to a classification problem on a

particular type of cancer.

T3: bladder (BL)

cancer prediction 
T1: prostate (PR)

cancer prediction

T2: kidney (KI)

cancer prediction

Joint Learning

PR cancer or not KI cancer or not BL cancer or not

T3: bladder (BL)

cancer prediction 
T1: prostate (PR)

cancer prediction

T2: kidney (KI)

cancer prediction

Joint Learning

PR cancer or not KI cancer or not BL cancer or not

Figure 2.2: An MTL example from multiple cancer prediction.
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In this thesis, we focus on multi-task linear model. W.L.O.G., suppose we are given

k tasks {Ti}ki=1. For the ith task Ti, the training set Di consists of n samples (xi
j, y

i
j),

j = 1, · · · , ni, where xi
j ∈ Rp and yij ∈ {0, 1}. For simplicity, we assume all the tasks have

the same number of training samples. The goal of the modeling practice is to learn a function

fi(x) to map the sample to the output, where fi(x) = wT
i x. The learning task is to seek

W = [w1,w2, · · · ,wk] with wi corresponding to the ith task, such that:

min
W

k∑
i=1

n∑
j=1

ℓ(yij, fi(x
i
j)) (2.2)

(5.1) is minimized.

We use linear regression with least square loss function ℓ(yij, fi(x
i
j)) = 1/2(yij − fi(x

i
j))

2

to perform classification, which is equivalent to a linear discriminant analysis (LDA) for

binary classification [66]. Such a procedure is also widely used in other MTL algorithms for

classification problems [26, 111, 190].

2.2.4 Motivating Applications

Structured data has diverse applications, e.g. Bioinformatics [106, 109], Cheminformatics

[154], social network analysis [30, 140], natural language processing [48, 167] and text mining

[64]. Since single task learning is a special case of multi-task learning, we only list a few

applications of structured data learning under multi-task framework.

Text Categorization Real-world documents often involves multiple categories, for exam-

ple, a web page introducing the release of the newest android may be categorized as business

and technology. The task of text Categorization is to classify text documents under one or

more of a set of predefined categories or subjects. Typically, the problem can be cast as a

multi-task learning problem, in which each task corresponds to classifying a document to

one category. The predefined labels (or categories) in text categorization are usually not
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assumed to be mutually exclusive that can be captured by a certain structure e.g. hierarchy

[158], thus the text categorization can naturally be modeled as a multi-task learning problem

with structured output tasks.

Neuron-activity prediction An important goal in computational neuroscience is to an-

alyze the association between neuron activity and external stimulus such as viewing a pic-

tures or hearing a word of certain semantic categories, including tools, buildings and animals

[35, 111, 122]. The task of neuron-activity prediction is to predict the activity value given

stimulus, e.g. a word. Computational linguists have analyzed the statistics of very large

text corpora and have demonstrated that a word’s meaning is captured to some extent by

the distribution of words and phrases with which it commonly co-occurs [122], therefore a

natural feature representation for the stimulus word is the intermediate semantic features

extracted from trillion-word text corpus such as google-trillion words.

Since multiple related neurons tend to fire with similar stimulus [35], it is natural to

model the activity of a set of neuron jointly rather than a single one. In [111], authors

proposed a multi-task learning approach to predict the activity of several neurons. For

example, we show the scheme with 3 tasks in Figure 2.3. In this example, the structured

input information can be found from the input keyword features that can be captured by

wordnet [48] or co-occurrence statistics [145]. The output tasks are also structured, since

similar neurons are tend to be fired together given the same stimulus.

Social behavior prediction In social behavior prediction, we are interested in social

activity prediction in a social network i.e., to predict a user’s response (e.g., comment or

like) to their friends’ postings (e.g., blogs, tweets) or to click a particular advertisement link

recommended from his followers. Similar to traditional supervised learning algorithm, the

information content (sample) is rep-resented as a high dimensional feature vector and its

labels indicate the responses of users towards the information. Social behavior prediction

has diverse applications ranging from behavior targeting [178], personalized news delivery
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Neuron-activity Prediction Model

Stimulus word

“Bear” …

Intermediate

semantic features

extracted from

trillion-word text

corpus

?

?

?

Predicted

activity for

each 

neuron 

Figure 2.3: The scheme for MTL approach to neuron activity prediction: each neuron corresponds
to a task and the features is the co-occurrence rate extracted from text corpus. “?” denotes the
neuron activity value to be predicted.

[107] and enhanced search [176]. The major challenges of this problem is the sparsity and

heterogeneity, where sparsity means only a small number of actions per-user distributed

in a large number of samples and heterogeneity refers to the situation that the topic and

social linkage are heterogenous. MTL is applicable to conquer the challenges since MTL

increases effective sample size and hence boosts the generalization performance of learned

models by learning several related tasks simultaneously. As discussed before, the task space

is structured since each user corresponds to a task and there are links among them.
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Chapter 3

Preliminary Study I: Boosting with

Structural Sparsity

3.1 Introduction

Boosting is a very successful classification algorithm that produces a linear combination of

“weak” classifiers (a.k.a. base learners) to obtain high quality classification models [52, 55,

146, 147]. Recently, the boosting algorithm has been successfully extended to tasks such as

multi-class classification [108], multi-label classification [179], cost sensitive learning [118],

semi-supervised learning [194], manifold learning [115], classification with missing-value [65],

and transfer learning [33] among others.

In this paper we propose a new boosting algorithm where base learners have structure

relationships in the functional space. Our work is particularly motivated by the emerging

topic of pattern based classification for semi-structure data including graphs [85, 143, 161,

168, 180]. For example, Kudo et al. [100] recently applied boosting to graph classification

using subgraphs as base learners and showed the connection of graph boosting to support

vector machine with the R-convolution kernel. Nowozin et al. [129, 144] combined subgraph

mining and graph boosting for classifying graphs representing images.
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Figure 3.1: Three subgraph features in three graphs. Dashed edge means that the two nodes
are connected by a path with varying length ¿1.

Though graph boosting has demonstrated promising results, the limitations of the current

algorithms are that they totally ignore the structure relationships among subgraph base

learners and hence may not provide the optimal results for graph classification. We illustrate

the point with the following example:

Consider the three labeled graphs G1, G2, G3 and three subgraph features F1, F2, F3

shown in Figure 3.1. Suppose that the class labels for graphs G1, G2, G3 are Y = [1, 1,−1]T .

We may construct three base learners h1(G), h2(G) and h3(G) in the format hi(G) =

1 if Fi ⊆ G and hi(G) = −1 otherwise (i ∈ {1, 2, 3}). These decision rules are derived based

on a majority voting of subgraph coverage on positively and negatively labeled graphs.

Considering a boosting algorithm that iteratively selects base classifiers to build ensemble

models, since h1 is perfectly correlated with class labels as evaluated on the three training

samples, h1 will be selected first. h2 and h3 produce the same prediction for all the graphs

in the training data set and hence may be perceived to have the same discriminative power.

This is not true in this example. Subgraph F1 and F2 occur in every positive graph sample

and are clustered with a consistent relative spatial position. F3 occurs in every graph, but
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in contrast to F1 and F2, it has quite different spatial distribution as compared to F1 and

F2 and hence we consider F3 as a spurious pattern. Once F1 is selected, we argue that

we should select F2 rather F3 to build more stable and interpretable classification models.

However, current boosting methods are not designed to perform such model selection since

the structure relationships of base learners are not considered in any case.

The spatial relationship is special cases of possible relationships of base learners. Another

example is the partial overlapping relationship. We call the possible information regarding

to the relationships of base learners as structure relationships. Here we hypothesize that

the structure relationship of subgraph features carries important information regarding the

importance of the base learners in boosting. Towards an efficient incorporation of such

information, we design a general model where we use an undirected graph to capture the

relationship of subgraph-based base learners. We combined L1 norm and Laplacian based

L2 norm penalty with Logit loss function of Logit Boost [55]. In this approach, we enforce

model sparsity and smoothness in the functional space spanned by the basis functions. We

derive efficient optimization algorithms based on coordinate decent for the new boosting

formulation and theoretically prove that it exhibits a natural grouping effect for nearby

spatial or overlapping features. Using comprehensive experimental study and comparing

with the state-of-the-art, we have demonstrated the effectiveness of the proposed learning

method.

We believe the new formalization is applicable to a variety of boosting applications where

(i) base learners have a known structure relationship and (ii) the optimal ensemble of base

learner functions is sparse in the functional space. The proposed method can be naturally

extended to other semi-structured data such as sequences and trees where patterns such as

frequent subsequences and frequent subtrees are widely used for classification [104].
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3.1.1 Related Work

Subgraph based supervised learning on graphs has recently attracted extensive research

interest [85, 143, 161, 168, 180]. For example, Yan et. al [180] proposed Leap algorithm with

two concepts: structural leap search and frequency descending to reduce search space and

mine informative patterns faster than previous methods. However, LEAP only considers

individual pattern rather than a set of patterns [85]. Moreover, the discriminate power

of a pattern is evaluated entirely on the occurrence information of the pattern and misses

interaction among patterns. gPLS [143] applies partial least square regression to graph

mining and performs feature selection and classifier construction simultaneously, but the

model interpretability is low due to the use of latent variables [85]. In addition, the structure

relationship among features is neglected. COM [85] is a newly proposed method that mines

co-occurrence rules. COM is prone to giving high number of false positives and fails to

consider the structure information among features as well.

Recently, a significant amount of progress has been made on developing supervised learn-

ing algorithms for feature selection from data with structured features [36, 79, 94, 106,

145, 163, 187, 193]. In these models, features may be naturally partitioned into groups

[36, 79, 187] or ordered in some meaningful way, such as a chain [94, 163], a tree [193] or

a graph [106, 145]. These approaches demonstrate the importance of incorporating prior

structure information among features to build highly accurate and interpretable models.

However, all these algorithms handles vector data and hence are not applicable to graphs.

In the context of structured feature selection of boosting for other types of data, the

most related work to ours is the spatially informed boosting for fMRI data analysis [174]. In

their work, they apply L2 norm regularized Gaussian kernel matrix to guiding the boosting

algorithm to select spatially clustered image voxels or pixels. But their method did not

provide a more general approach of encoding the spatial relationship. It is possible that

Gaussian kernel matrix works for some data, but fails for others. Furthermore, they use

exponential loss function which sensitive to outliers [55].
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Though subgraph based feature selection on graph data has been studied for a long time,

none of the existing method considers the structure relationships among subgraph features

and hence may not provide the optimal results for graph classification. The objective of this

paper is to incorporate the structural information on features into learning and build a more

accurate and interpretable graph boosting model.

3.2 Background

Here we introduce notations and preliminaries for graph, graph kernel functions, and Boost-

ing.

3.2.1 Graph Theory

A labeled graph G is described by a finite set of nodes V and a finite set of edges E ⊂ V ×V .

In most applications, a graph is labeled, where labels are drawn from a label set σ. A labeling

function λ : V ∪ E → Σ assigns labels to nodes and edges. Without loss of generality, we

handle fully-labeled graphs where both nodes and edges are labeled in this paper. We do

not assume any structure of label set Σ now; it may be a field, a vector space, or simply a

set.

Following convention, we denote a graph as a quadruple G = (V,E,Σ, λ) where V,E,Σ, λ

are explained before. A graph G = (V,E,Σ, λ) is a subgraph of another graph G′ =

(V ′, E ′,Σ′, λ′), denoted by G ⊆ G′, if there exists a 1-1 mapping f : V → V ′ such that

• for all v ∈ V, λ(v) = λ′(f(v))

• for all (u, v) ∈ E, (f(u), f(v)) ∈ E ′

• for all (u, v) ∈ E, λ(u, v) = λ′(f(u), f(v))

In other words, a graph G is a subgraph G′ of another graph if there exits a 1-1 node

mapping f preserving the node labels, edge relations, and edge labels. The 1-1 mapping
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f is a subgraph isomorphism from G to G′ and the range of the mapping f , f(V ), is an

embedding of G in G′.

3.2.2 Graph Kernel Function

Kernel functions are powerful computational tools to analyze large volumes of graph data

[67]. The advantage of kernel functions is due to their capability to map a set of data to a

high dimensional Hilbert space without explicitly computing the coordinates of the structure.

This is done through a special function K. Specifically a binary function K : X ×X → R

is a positive semi-definite function if

n∑
i,j=1

cicjK(xi, xj) ≥ 0 (3.1)

for any m ∈ N , any selection of samples xi ∈ X (i = [1, n]), and any set of coefficients

ci ∈ R (i = [1, n]). In addition, a binary function is symmetric if K(x, y) = K(y, x) for all

x, y ∈ X. A symmetric, positive semi-definite function ensures the existence of a Hilbert

space H and a map Φ : X → H such that

k(x, x′) = ⟨Φ(x),Φ(x′)⟩ (3.2)

for all x, x′ ∈ X. ⟨x, y⟩ denotes an inner product between two objects x and y. The result

is known as the Mercer’s theorem and a symmetric, positive semi-definite function is also

known as a Mercer kernel function [149], or kernel function for simplicity. In this paper, we

focus on graph random walk based kernels, where we use subgraph as features and kernels

are defined on pairwise subgraph features.

19



3.3 Preliminaries

We use the following notations throughout the rest of the paper. We use lowercase letters

to represent scalar values, lower-case letters with an arrow to represent vectors (e.g. β⃗),

uppercase letters to represent matrices, {λ, λ1, λ2...} to represent Lagrange multiplier, and

uppercase calligraphic letters to represent sets. Unless state otherwise, all vectors in this

paper are column vectors.

Given training instances T = {xi, yi}ni=1 where yi ∈ {−1,+1}, xi ∈ X , we construct

a set of base learners H = {hj : X 7→ {−1,+1}, j = 1 · · · p}. In this paper, we do not

assume any type of X ; it may be a vector space, or simply a set. The objective of boosting

is to train a composite binary classifier with weight vector β⃗ taking the form of hβ⃗(xi) =

sgn(
∑p

j=1 βjhj(xi)) such that the following empirical loss function ℓ(X , y⃗; β⃗) is minimized.

L(X ,Y , β⃗) =
n∑

i=1

l(yi, hβ⃗(xi)) (3.3)

where l is a loss function.

AdaBoost [53] takes the exponential loss function:

l(yi, hβ⃗(xi) = exp(−yi
p∑

j=1

βjhj(xi))) (3.4)

and LogitBoost [55] takes the logit loss function:

l(yi, hβ⃗(xi) = log(1 + exp(−yi
p∑

j=1

βjhj(xi))) (3.5)

Duchi et. al [36] modified AdaBoost by imposing L1/L2 or L1/L∞ penalty on weight

vectors in a multi-task learning framework. However, they neglect the structure information

among base learners. We consider a simple yet effective modification to Logit Boost [55]

that incorporates a composite penalty with L1 and L2 regularization encoding the structural

information among base learners on the weight vector, which is detailed in the following
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section.

3.4 Boosting with Structure Information in the Func-

tional Space

We capture the structure relationships among base learners as an undirected graph G, whose

nodes correspond to the set of p base learners. Edges in the graph G are weighted, with wi,j

indicating the “closeness” between the two features and 0 indicating that the two features

have no relationship. We call the graph G “feature graph” and explore approaches for

building a feature graph in Section 3.5.2.

We incorporate the priori domain knowledge by adding a Tikhonov regularization factor

1
2

∑
i,j wi,j(βi − βj)

2 in a convex fitness function ℓ(X , y⃗; β⃗) to enforce that the feature coef-

ficients vary smoothly for neighboring features. The Tikhonov regularization factor could

be conveniently written in matrix format β⃗TLβ⃗ where L is the Laplacian of G given by:

L = D −W . W is the p by p edge weight matrix W = (wi,j)
p
i,j=1, and D is the density

matrix of W , defined as D = (di,j)
p
i,j=1 where di,j =


∑p

k=1Wi,k if i = j

0 otherwise

To avoid having any feature “dominate” the penalization function, we use the normalized

Laplacian L following [32] to normalize the weight of each feature, where the elements of L

are defined by

Li,j =


1− wi,j/di,i if i = j and di,i ̸= 0

−wi,j/
√
di,idj,j if i and j are adjacent

0 otherwise

(3.6)

Tikhonov regularization does not lead to the sparsity of the model. To obtain a sparse

solution, we add the L1 norm of β⃗ to the convex function ℓ(X , y⃗; β⃗). Specifically, we seek to

identify a vector β⃗ that minimizes the following loss function:
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g(X , y⃗; β⃗) = ℓ(X , y⃗; β⃗) + λ1||β⃗||1 +
1

2
λ2β⃗

TLβ⃗ (3.7)

where λ1 > 0, λ2 > 0, ||.||1 is L1 norm. In our implementation, we use the logitloss [55]:

ℓ(X , y⃗; β⃗) =
n∑

i=1

log(1 + exp (−yi
p∑
j

βjhj(xi))) (3.8)

The major challenge in fitting the model described in Equation (3.7,3.8) to data is to

estimate the parameter β⃗ efficiently and accurately. In the following subsection, we provide

the optimization algorithm.

3.4.1 Optimization Algorithm

We discuss the optimization algorithm for Equation (3.7) bellow. We first show that the

structurally regularized boosting with logit loss function can be interpreted as an additive

logistic regression with the same regularization in the functional space spanned by base

learners. We then provide the optimization algorithm based on coordinated decent to solve

the equivalent regularized logistic regression towards the base learners. For simplicity, let

F (x) =
∑p

j βjhj(x) be the decision function on the sample x. For a fixed training data set,

we denote all the predicted labels for the training data using functions in H as an n by p

matrix H, where n is the sample size, p is the number of base learners. Hi,j = hj(xi) is the

label given by base learner hj ∈ H on the training sample xi. We call H “object-prediction”

matrix. We use Hi to denote ith row of object-prediction matrix H (the predictions of all

the base learners on the sample xi) and H.j to represent jth column of H (the predictions

of hj on the training data).

We use the following Lemma to show that the minimizer of the expected loss function

J(F ) = E(log(1 + exp (−yF (x)))) is the symmetric logistic transform of P (y = 1|x).

Lemma 3.4.1. E(log(1 + exp (−yF (x)))) is minimized at F (x) = log( P (y=1|x)
P (y=−1|x)). Hence

P (y = 1|x) = 1
1+e−F (x) and P (y = −1|x) = 1

1+eF (x) .
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Proof. Since E imposes expectation over the joint distribution of y and x, we have E(log(1+

exp−yF (x))) = P (y = 1|x) log(1 + exp (−yF (x))) + P (y = −1|x) log(1 + exp (yF (x))).

Then it is sufficient to minimize J(F ) by computing the first derivative with respect to

F (x): ∂J(F )
∂F (x)

= −P (y=1|x)e−F (x)

1+e−F (x) + P (y=−1|x)eF (x)

1+eF (x) . The result follows by setting the derivative to

zero.

With Lemma 3.4.1, the structurally regularized boosting can be interpreted as logistic

regression with the same regularization function. Let y∗ = (y + 1)/2, taking values of 0, 1,

and parameterize the binomial probabilities by P (y = 1|x) = p(x) = 1
1+e−F (x) , it is sufficient

to derive that the logit loss function is equivalent to negative binomial log-likelihood:

lb(y
∗, p(x)) = −[y∗log(p(x)) + (1− y∗)log(1− p(x))]

= log(1 + exp (−yF (x)))
(3.9)

By plug p(x) into (3.9), we can reduce (3.9) to lb(y
∗, p(x)) = log(1 + eF (x)) − y∗F (x).

Now we rewrite (3.7) in terms of negative binomial log-likelihood with y∗:

g(X , y⃗; β⃗) =
∑n

i=1[log(1 + exp (
∑p

j βjhj(xi)))− y∗i
∑p

j βjhj(xi)] + λ1||β⃗||1 + 1
2
λ2β⃗

TLβ⃗

=
∑n

i=1[log (1 + exp (Hiβ⃗))− y∗iHiβ⃗] + λ1||β⃗||1 + 1
2
λ2β⃗

TLβ⃗
(3.10)

After transforming logit loss to negative binomial log-likelihood, we followed the general

framework of coordinated decent algorithm proposed in [56] recently proposed by Friedman

et al. for L1 norm regularized logistic regression. Their approach relies on the connection

between the Newton’s method for optimizing logistic regression and the least square formula-

tion. The Newton’s method amounts to using Taylor expansion, up to a quadratic function,

to approximate the logit function. In this way, applying Newton’s method can be viewed as

solving a series of least squares problem (also called iterative reweighted least squares fitting

[56]). Applying Taylor’s expansion at current estimate
˜⃗
β to negative log-likelihood function
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(3.9), we have the reweighted least square problem:

lQ(β⃗) = −
n∑

i=1

wi(zi −Hiβ⃗)
2 + C(

˜⃗
β) (3.11)

where zi = Hi
˜⃗
β+(y∗i − p̃(xi))/(p̃(xi)(1− p̃(x⃗i))), wi = p̃(xi)(1− p̃(xi)) and C(

˜⃗
β) is a constant.

In the remaining discussion, we show an extension of Friedman’s work to solve a reweighted

least square fitting (3.11) with Laplacian weighted L2 and L1 norm regularization. To handle

the new mixture penalty, we derive a modified coordinate descent scheme in Lemma 3.4.2

extending the work presented in [56].

Lemma 3.4.2. Suppose that the data set contains n observations and p predictors, with the

response vector Y = (y1, · · ·

, yn)
T and the data matrix X = (x⃗1, · · · , x⃗n)T . We also assume that the predictors are

standardized and the response is centered so that for all j,
∑n

i=1 xij = 0,
∑n

i=1 x
2
ij = 1 and∑n

i=1 yi = 0. The Lagrange form of the network constrained objective function (with least

squares fitness function) is:

L(λ1, λ2, β⃗) = 1
2
(Y −Xβ⃗)T (Y −Xβ⃗) + 1

2
λ2β⃗

TLβ⃗ + λ1||β⃗||1 (3.12)

The coordinate-wise update has the form (for each βj): β̂j = S(
∑n

i=1 xij(yi − ỹi
(j)) −

λ2
∑p

k ̸=j Ljkβ̂k, λ1)/(1 + λ2Ljj) where ỹi
(j) =

∑
l ̸=j xilβ̂l is the fitted response value excluding

the contribution from xij and S(z, γ) = sign(z)(|z| − γ)+ is the soft thresholding operator

where:

sign(z)(|z| − γ)+ =


z − γ if z > 0 and γ < |z|

z + γ if z < 0 and γ < |z|

0 if γ ≥ |z|

Suppose that we have estimates of β̂l for l ̸= j and we wish to partially optimize the

objective function with respect to βj. We would like to compute the gradient at βj = β̂j,
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which only exists if β̂j ̸= 0. If β̂j > 0, then the gradient for equation 3.12 is given by

∂L(λ1,λ2,β⃗)
∂βj

= −
∑n

i=1 xij(yi −
∑

k ̸=j xikβ̂k − xijβj) + λ2
∑p

k ̸=j Ljkβ̂k + λ2Ljjβj + λ1

(3.13)

Since X is standardized, by setting 3.13 to 0, we obtain βj =
∑n

i=1 xij(yi−ỹi
(j))−λ2

∑p
k ̸=j Ljkβ̂k−λ1

1+λ2Ljj
.

A similar closed form exists for β̂j < 0. Combining two cases we will get Lemma 3.4.2.

We notice that our solution is not constrained in L1 and L2 penalty, but can be ex-

tended to L∞, which recently attracted research interest [36], since L∞ norm is differentiable

everywhere except singular points (β⃗ = 0) [198].

We summarize what is discussed previously in the algorithm called LPGB. Given the

training data T = {X , y⃗}, the n by p object-prediction matrix H = {hi,j} = {hj(xi)}

constructed from base learners, regularization parameters λ1, λ2 and convergence parameter

ϵ, our algorithm iteratively solves (3.10). Here we transform y⃗ to y⃗∗ using 0/1 to represent

the outcome and p(x) = P (y = 1|x) = P (y∗ = 1|x) = 1/(1 + exp (−
∑p

j=1 βjhj(x))).

Algorithm 1 LPGB(λ1, λ2, H, y⃗∗,MaxIteration, ϵ)

1: Initialize
ˆ⃗
β(0) = 0⃗;

2: for i=1 to MaxIteration do
3: Compute the quadratic approximation for (3.9);
4: Use the coordinate descent method in lemma 3.4.2 to solve the reweighted least squares

problem with mixture penalty and obtain the updated β⃗(i);

5: if || ˆ⃗β(i) − ˆ⃗
β(i−1)||1 ≤ ϵ then

6: Break;
7: end if
8: end for

9: return
ˆ⃗
β =

ˆ⃗
β(i);

As evaluated in our experimental study in Section 3.6, the regularized LPGB algorithm

usually has better classification performance and are insensitive to outliers and class label

noises, comparing to the unregularized gBoosting [100]. We believe that these advantages

are contributed to the capability of LPGB to select clustered base learners in the functional

space. We call this phenomenon the “grouping effect” and we provide theorems to explain
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the “group effect” below. Our proof is similar to that presented in [106] where we consider a

simple case of two base learners that are linked. We show that the related L2 regularization

ensures that the difference of the estimated coefficients have an upper bound based on the

sample size and the regularization coefficients.

3.4.2 Grouping Effect

We derive an upper bound of the difference of coefficients between two neighboring features.

Motivated from a similar proof in [106] where a linear regression framework with L1 and L2

regularization, we study the special case in which only two features are connected to each

other in the feature graph.

Theorem 3.4.3. Give training data T = {xi, yi}ni=1 where xi ∈ X and fixed scalars λ1, λ2

and let
ˆ⃗
β(λ1, λ2) be the optimal solution to (3.10), we suppose that β̂i(λ1, λ2)β̂j(λ1, λ2) > 0,

and the two features Fi and Fj are only linked to each other on the feature graph. Define

Dλ1,λ2(i, j) = |β̂i(λ1, λ2) − β̂j(λ1, λ2)|, then Dλ1,λ2(i, j) ≤
√
2(1− ρ)/λ2, where ρ is the

correlation between the normalized H.i and H.j.

Proof. Since
ˆ⃗
β(λ1, λ2) is the optimal solution to (3.10),

ˆ⃗
β(λ1, λ2) satisfies

∂g(λ1,λ2,β⃗)
∂βk

|
β⃗=

ˆ⃗
β(λ1,λ2)

=

0 if β̂k(λ1, λ2) ̸= 0. More specifically, for β̂i and β̂j, we have

−HT
.i (y⃗

∗ − p⃗(X )) + λ1sgn(β̂i) + λ2β̂i − λ2
∑
u̸=i

wu,i
β̂u√
du,udi,i

= 0 (3.14)

−HT
.j (y⃗

∗ − p⃗(X )) + λ1sgn(β̂j) + λ2β̂j − λ2
∑
v ̸=j

wv,i
β̂v√
dv,vdj,j

= 0 (3.15)

where p⃗(X ) = 1/(1 + exp (−Hβ⃗)), y⃗∗ = (y⃗+ 1⃗)/2 and H is the object-prediction matrix.

Subtracting (3.14) from (3.15)and taking the absolute value with the assumption that di,i =

dj,j = wi,j and sgn(β̂i) = sgn(β̂j) gives

|β̂i − β̂j| =
|HT

.i −HT
.j ||y⃗∗ − p⃗(X )|
λ2

(3.16)
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and by the definition of Dλ1,λ2(i, j),

Dλ1,λ2(i, j) =
|β̂i − β̂j|

y⃗∗
=

|HT
.i −HT

.j ||y⃗∗ − p⃗(X )|
λ2y⃗∗

(3.17)

By Cauchy-Schwartz inequality,

|HT
.i −HT

.j ||y⃗∗ − p⃗(X )| ≤ ∥HT
.i −HT

.j∥2∥y⃗∗ − p⃗(X )∥2

Also, because
ˆ⃗
β is the optimal solution to problem (3.10), we have:

∥y⃗∗ − p⃗(X )∥2 ≤ ∥y⃗∗∥2

By the normalization of H, ∥HT
.i −HT

.j∥22 = 2−2ρ, hence we have Dλ1,λ2(i, j) ≤
√

2(1− ρ)/λ2

The upper bound of Dλ1,λ2(i, j) provides two insights of our method: 1) smoothness: the

coefficients of neighboring base learners are close to each other due to the L2 norm regularized

feature graph Laplacian penalty term. 2) Grouping effect: Once a base learner is selected, its

spatially neighboring base learners will be more likely selected. Thus our boosting algorithm

can select groups of spatially neighboring base learners.

3.5 Application to Graph Data

We show how to apply the LPGB algorithm to graph classification bellow.

3.5.1 Base Learner Construction

In our model, we use frequent subgraphs as features and construct base learners (decision

stamps) from these features. Given training data {X , y⃗} and a set of frequent subgraphs,
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the decision stamp classifier for subgraph Fi is given by:

hi(x) =

 ŷ if Fi ⊆ x

−ŷ otherwise

The prediction ŷ for Fi given training data X is found by:

ŷ = arg max
y∈{±1}

n∑
j=1

yjhi(xj)

This criteria is to perform a majority voting to obtain prediction of the decision stamp based

on the percentage of positive (or negative) graphs where the feature occurs. gBoosting [100]

uses a similar strategy to construct base learners.

3.5.2 Feature Graph Construction

One challenge of processing graph data is that there is no natural approach to define the

structure relationship of base learners. We notice a few recent studies that are moving

towards the direction of defining the relationship among features in graphs and sets. For

example in the recently defined graph Graphlet Spectrum kernel [96], the spatial relationship

of graph feature (called graphlets) are explored in an algebraic framework for measuring the

structure similarity of graph adjacency matrices. In addition, recently developed association

net uses a graph model to represent a set of association rules [133]. However, these work

could not be directly applied in our current framework since the graphlet spectrum method

models the spatial relationship of graphlet in an implicit approach and the association rule

net only explore the overlapping relationship of features.

Here we adopted our previous work [42, 43] to construct feature graphs. In [42], we

formalize a concept which we called “feature consistency map”. A feature consistency map

is a undirected graph in which each node represents a feature and each edge encodes the

spatial consistency relationship between two features. We measure the minimum distance
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between two features using the average shortest path connecting a node in one feature to a

node in the other feature. We compute the variance of the minimal distance between the

occurrences of the two subgraphs in the training data. If the variance is bellow a threshold,

we consider the two features are in a consistent spatial relationship. In our experiment study,

we adopt the feature consistency map as an approach to construct a feature graph.

In addition, we also explored the possibility of evaluating the structure-overlapping rela-

tionship of features as did in [43]. Towards that end, we compute a kernel function for the

set of features. A graph kernel function is a positive semi-definite function that maps graphs

to a Hilbert space in order to evaluate the similarity of graphs in the space. Many kernel

functions have been designed for graphs and we use the random walk based Marginalized

Graph kernel function [87] to compute the kernel function for the set of subgraph features.

We convert such kernel matrix to a feature graph where nodes are features and edges are la-

beled with the inner product (as evaluated with a graph kernel function) of the two features.

To avoid a complete connected graph, we use a threshold. If the inner product between two

features is less than a threshold, we set the weight of the edge to zero (and hence canceling

the edge). The aforementioned approach provides another way to construct a feature graph.

3.6 Experimental Study

We have performed a rigorous evaluation of our algorithm in terms of modeling accuracy

and feature selection performance using 6 Protein structure data sets, obtained from [85].

We implemented a prototype of our method in Matlab. We have compared our method with

state-of-the-art methods including Support Vector Machine Recursive Feature Elimination

(SVM-RFE) [63], gBoosting [100], graph partial least square regression (gPLS) [143], graph

classification based Pattern Co-occurrence (COM) [85]. We obtained the SVM-RFE exe-

cutable along with the spider machine learning toolbox from http://www.kyb.tuebingen.

mpg.de/bs/people/spider/. For gBoosting, we use the gboost toolbox [142]. We obtained
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gPLS and COM directly from the original authors of the methods. All the experiments were

conducted on a PC with a 2.8Ghz duo core CPU and 3GB memory.

3.6.1 Data sets

To evaluate our methods, we utilized 6 protein-structure graph data sets that were originally

studied in [85]. Each data set is a set of geometric graphs representing a set of three-

dimensional protein structures. Nodes in such graphs represent amino acids in a protein

structure and are labeled with the amino acid type. Edges represent the pairwise Euclidian

distance of amino acids (defined between Cα atoms) and are labeled with the discretized

distances.

Graphs in the data sets are labeled. Positive samples are sampled from a selected protein

family. Negative samples are randomly sampled from the Protein Data Bank. On average

a graph contains 250 nodes and 1600 edges. Protein-structure graphs are much larger than

chemical-structure graphs, which usually contain about hundreds of nodes and thousands of

edges, and contain much large number of patterns. Working with protein structure graphs

are hence more challenging for constructing sparse predictive models.

In Table 5.1, we summarize the characteristics of the 6 protein-structure graph data sets.

For each data set, we list the data set index, the related protein family ID in the SCOP

database [125], the description of the protein family, the number of positive samples and the

number of negative samples. See [85] for a comprehensive description of the data collection

process.

Table 3.1: Data set: the symbol of the data set. P : total number of positive samples, N :
total number of negative samples

Data set SCOP ID Family Name P N
P1 48623 Vertebrate phospholipase A2 29 29
P2 52592 G proteins 33 33
P3 48942 C1 set domains 38 38
P4 56437 C-type lectin domains 38 38
P5 56251 Proteasome subunits 35 35
P6 88854 Protein kinases, catalytic subunit 41 41

30



3.6.2 Experimental Protocol

We use standard cross validation to generate training and testing data sets. We apply FFSM

[71] to generating frequent subgraphs from the training data set with min sup = 0.30 and

with subgraph size between 2 and 6. Such subgraphs are used as feature for feature based

classification(e.g. SVM, SVM RFE) or as base learners for boosting based classification

including gBoosting and our methods.

For SVM RFE, we encode each graph sample as a binary feature vector, indexed by the

mined subgraphs, with values indicate the presence (1) or absence (0) of the related features.

We perform feature selection using SVM RFE and use LibSVM [24] with linear kernel to

construct the best model. We use 5-fold cross validation in the training data set to select

important parameter C for SVM.

For COM, we set tp = 0.3 and tn = 0 as proposed in [85], where tp is the minimal positive

frequency for a classification rule and tn represents the maximal negative frequency permit-

ted. For gPLS, we use min sup = 0.3 and examine the combinations of n = {2, 4, 8, 16} and

k = {2, 4, 8, 16} for optimal setting. For gBoosting, we also set min sup = 0.30 and search

the optimal parameter µ (misclassification cost) in the range of {0.04, 0.06, . . . , 0.18, 0.20}.

All the parameter selection are based on another 5-fold cross validation on the training data

only.

For our own methods, we utilize two approaches to model the spatial correlation of base

learners (i.e. subgraphs). The first approach, LPGBK, is to construct a kernel function for

the subgraphs, utilizing the the Marginalized kernel [87]. The second approach, LPGBCMP,

is to construct the feature consistency map, as investigated in [42]. We fix max var = 1 for

feature consistency map building threshold and δ = 0.25 for overlapping threshold. Empirical

study shows that there is no significant change if we change these two parameters within

a wide range. Further details of the two spatial correlation computation methods can be

found in [42, 43].

Below we summarize the model construction and model evaluation.
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Model Construction. For each data set, we partition the data set into 5-folds to

perform 5-fold cross-validation (CV) with 4 folds for training and 1 fold for testing. We use

another 5-fold CV on the training data set to select the optimal parameters for each method.

We then generate a single model from the entire training set with the selected parameters

and apply the model to the testing data set for prediction.

Model Comparison. For model comparison, we collect the sensitivity (TP/(TP+FN)),

specificity (TN/(TP+FP)) and accuracy ((TP+TN)/S) of the trained model, where TP

stands for true positive, FP stands for false positive, TN stands for true negative, FN stands

for false negative, and S stands for the total number of samples. All the values reported are

collected from the testing data set only and are averaged across 10 replicates of the 5-fold

cross validation in a total of 50 experiments.

3.6.3 Classification Performance

In this subsection, we show the performance of our methods compared with SVM-RFE,

gPLS, gBoosting and COM. The accuracy is shown in Fig 3.2. Since the standard deviation

is around 2%-5% for all these methods, we do not list it here.
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Figure 3.2: Accuracy comparison of on 6 data sets.
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Figure 3.3: Left: Sensitivity comparison. Right: Specificity comparison

In Fig 3.2, we observe that the accuracy of all these methods has the same trend with

different data sets. gBoosting and gPLS have comparable performance in the 6 data sets.

SVM RFE outputs gBoosting, gPLS, and COM in three out of six data sets and have

comparable performance for the rest. Comparing two versions of our methods, LPGBCMP

outperforms LPGBK on all data sets. In fact LPGBCMP performs best among all the

evaluated data sets though the margin may be small for 3 data sets when compared with

SVM RFE.

To better understand the accuracy differences, we plot the average sensitivity and aver-

age specificity of all methods in Fig 3.3. It is clear that COM provides the best sensitivity

among the majority of data sets. COM utilizes a rule-based classification algorithm where

it classifies a graph sample as positive if a co-occurrence pattern-rule is satisfied. This al-

gorithm is not specific enough, as compared to other methods (shown in the right panel of

Fig 3.3). Interesting enough, all boosting based methods, including gBoosting, LPGBCMP,

and LPGBK, have very high specificity comparing to the rest of the methods. Overall, the

regularized boosting methods such as LPGBCMP and LPGBK seem to have a good com-

promise between specificity and sensitivity. This observation provides experimental evidence

supporting our hypothesis that structure information among base classifier should be con-

sidered in order to build a highly accurate predictive model for semi-structure data such as

graphs.
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3.6.4 Grouping Selection Effect and Stable Spatial Distribution

To evaluate the capability of the LPGBCMP algorithm for selecting grouped base learners,

we visualize the spatial distribution of selected base learners in original graphs. By ranking

the base learners by the learned coefficients, we select the top three features for LPGBCMP

and gBoosting. We plot the embedding of the three subgraphs in two proteins: protein 1EGI

and protein 1H8U belonging to the same protein family in Fig 3.5. We rotate the protein

structures and highlight the occurrence of the features with circles for a better demonstration.

In Fig 3.5, the upper row shows the spatial distribution of the top three features for LPG-

BCMP in two proteins and the lower row shows the distribution for the top three features

from gBoosting. Each column uses the same protein for demonstration. From Fig 3.5, we

observe that F1, F2 and F3 from LPGBCMP have a consistent spatial distribution on the

two proteins. F1 and F2 are clustered and both are close to F3. In contrast, features from

gBoosting do not have a stable spatial distribution in the two proteins. The observation sup-

ports our claim that our method can select grouped features with stable spatial distribution

among the graph data.

3.6.5 Method Robustness

A common concern with boosting is that the method is usually sensitive to outliers and errors

in the training data set due to the exponential loss function. We use logit loss function

that is less sensitive to outliers. However, as claimed in [116], any convex loss function

may degenerate to random guess with a certain level of random classification noise. L2

regularization in linear regression has been shown to stabilize the learning function [66]. In

our algorithm design, we used the Laplacian based L2 regularization and this may reduce

the boosting algorithms’ sensitivity to outliers and random classification noise. To test the

robustness of our method experimentally, we singled out the P4 data set and performed 5

fold cross validation with class label errors. In particular, for each fold, we change certain

percentage of the class labels in the training data, train a model with changed training data,
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Figure 3.4: Average accuracy with different percentage of flipped training labels

and apply trained model to normal test data. In Fig 3.4, we report the average accuracy

with error rate ranging from 0% to 25% for LPGBCMP, gPLS, gBoosting, SVM RFE and

COM.

From Fig 3.4, a clear trend is that the accuracy of all methods decreases as more errors are

introduced in the training data set. There is a sharp deceasing from 0 to 5% for SVM RFE

and COM. The regularized boosting method remains the best over all the settings, even

though the performance gain is not significant. From the test, we conclude that LPGBCMP

is at least as sensitive (if not less) to noises as other classifiers including SVM and partial

least square based methods.

In addition, we evaluate the robustness of the regularized boosting algorithm by changing

different parameter values. Among the parameters that may affect the performance of the

regularized boosting algorithm, we test the parameter max var, which is used to derive

the feature consistency map. With a large value of max var, the edge number of feature

consistency map increases and with smaller value of max var, the edge number of feature

consistency map decreases.

Fig 3.6 indicates average accuracy on 5 fold cross validation for each value of threshold

max var from 0.5 to 8. From the result, we observe that the accuracy remains stable within
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Figure 3.5: Top Left: Spatial distributions of the top 3 features from LPGBCMP in protein 1EGI.
Top Right: Spatial distributions of the same 3 features from LPGBCMP in protein 1H8U. Lower
Left: Spatial distributions of the top 3 features from gBoosting in protein 1EGI. Lower Right:
Spatial distributions of the same 3 features from gBoosting in protein 1H8U.

a relatively wide range of threshold and the best accuracy can be obtained around 1 to 2.

Furthermore, the relationship between the performance and parameter mar var is revealed.

When max var is quite small, the structure information among features is ignored and our

method will degenerate to regular logit boosting with elastic net regularization [197]; when

max var is large, the feature graph will be a complete graph and our method may possibly

introduce less discriminative features hence undermine the performance.

Overall, the regularized boosting method is effective and achieves good accuracy within

a wide range parameters and a certain number of outliers.

3.7 Conclusions

In this paper, we presented a novel boosting algorithm that considered the structure rela-

tionship of base learners in the functional space. We model the structure relationship as an

undirected graph and incorporate such information by introducing a L2 norm regularized
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Figure 3.6: Average accuracy with different max var

graph Laplacian to standard boosting formalization. Though the new algorithm may be

applied to many applications, we specifically focus on constructing supervised graph learn-

ing models in this paper. Using a comprehensive experimental study with protein structure

graphs and comparing with current state-of-the-art, we demonstrate that the new algorithm

selects clustered features with stable spatial relationship, and achieves better predictive per-

formance.
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Chapter 4

Preliminary Study II: Structured

Joint Sparse Principal Component

Analysis

4.1 Introduction

Determining anomalies in data streams that are collected and transformed from various

types of networks has recently attracted significant research interest in the data mining

community [19, 77, 151, 188]. Applications of the work could be found in network traffic

data [188], sensor network streams [19], social networks [151], cloud computing [128], and

finance networks [77] among others.

The common limitation of aforementioned methods is that they are incapable of deter-

mining the sources that contribute most to the observed anomalies, or anomaly localization.

With fast-accumulating stream data, an outstanding data analysis issue is anomaly local-

ization, where we aim to discover the specific sources that contribute most to the observed

anomalies. Anomaly localization in network data streams is apparently critical to many ap-

plications, including monitoring the state of buildings [175], or locating the sites for flooding
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and forest fires [51]. In the stock market, pinpointing the change points in a set of stock

price time series is critical for making intelligent trading decisions [114]. For network se-

curity, localizing the sources of the most serious threats in computer networks helps ensure

security in networks [101].

Principal Component Analysis (PCA) is arguably the most widely applied unsupervised

anomaly detection technique for network data streams [101, 72, 102]. However, a fundamen-

tal problem of PCA, as claimed in [139], is that the current PCA based anomaly detection

methods can not be applied to anomaly localization. We believe that the major obstacle for

extending PCA techniques to anomaly localization lies in the mixed nature of the abnor-

mal space. In particular, the projection of the data streams in the abnormal subspace is a

combination of data from all the sources, which makes any localization difficult. Our key ob-

servation is that if we manage to identify a low dimensional approximation of the abnormal

subspace using a subset of sources, we “localize” the abnormal sources. The starting point

of our investigation hence is the recently studied sparse PCA framework [196] where PCA is

formalized in a sparse regression problem where each principle component (PC) is a sparse

linear combination of the original sources. However, sparse PCA does not fit directly into

our problems in that sparse PCA enforces sparsity randomly in the normal and abnormal

subspaces. In this paper, we explore two directions in improving sparse PCA for anomaly

detection and localization.

First, we develop a new regularization scheme to simultaneously calculate the normal

subspace and the sparse abnormal subspace. In the normal subspace, we do not add any

regularization but use the same normal subspace as ordinary PCA for anomaly detection. In

the abnormal subspace, we enforce that different PCs share the same sparse structure hence

it is able to do anomaly localization. We call this method joint space PCA (JSPCA).

Second, we observe that abnormal streams are usually correlated to each other. For

example in stock market, index changes in different countries are often correlated. For

incorporating stream correlation in anomaly localization we design a graph guided sparse
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Figure 4.1: Illustration of time-evolving stock indices data. Index 2,3,7 in solid lines are abnormal.

PCA (GJSPCA) technique. Our experimental studies demonstrate the effectiveness of the

proposed approaches on three real-world data sets from financial markets, wireless sensor

networks, and machinery operating condition studies.

A major drawback of PCA based anomaly detection methods is that the performance of

the methods is very sensitive to the number of PCs representing the normal subspace. In or-

der to overcome this problem, we introduce a multi-dimensional Karhunen Loève Expansion

(KLE) as an extension of PCA (one dimensional KLE) to consider the spatial correlation

among different sources and the temporal correlation among different time stamps [17]. The

corresponding methods are named joint space KLE (JSKLE) and graph guided sparse KLE

(GJSKLE) respectively. The experimental results demonstrate that the JSKLE and GJSKLE

effectively stabilize localization performance when changing the number of PCs representing

the normal subspace.

As an example of anomaly detection and anomaly localization in network data streams,

we show the normalized stock index streams of eight countries over a period of three months

in Figure 4.1. We notice an anomaly in the marked window between time stamps 25 and 42.

In that window sources 1, 4, 5, 6, 8 (denoted by dotted lines) are normal sources. Sources 2,

3, 7 (denoted by solid lines) are abnormal ones since they have a different trend from that

40



of the other sources. In the marked window, the three abnormal sources clearly share the

same increasing trend while the rest share a decreasing trend.

4.2 Related Work

Existing work on anomaly localization from network data streams could be roughly divided

into two categories: those at the source level and those at the network level. The source level

anomaly localization approaches embed detection algorithm at each stream source, resulting

in a fully distributed anomaly detection system [128, 62, 103]. The major problem of these

approaches is that source level anomalies may not be indicative of network level anomalies

due to the ignorance of the rest of the network [72].

To improve source level anomaly localization methods, several algorithms have been re-

cently proposed to localize anomaly at the network level. Brauckhoff [16] applied association

rule mining to network traffic data to extract abnormal flows from the large set of candidate

flows. Their work is based on the assumption that anomalies often result in many flows

with similar characteristics. Such an assumption holds in network traffic data streams but

may not be true in other data streams such as finance data. Keogh et al.[92] proposed a

nearest neighbor based approach to identify abnormal subsequences within univariate time

series data by sliding windows. They extracted all possible subsequences and located the one

with the largest Euclidean distance from its closest non-overlapping subsequences. However,

the method only works for univariate time series generated from a single source. In addi-

tion, if the data is distributed on a non-Euclidean manifold, two subsequences may appear

deceptively close as measured by their Euclidean distance [160]. L. Fong et al.developed a

nonparametric change-point test based on U-statistics to detect and localize change-points in

high-dimensional network traffic data [119]. The limitation is that the method is specifically

designed for the Denial of Service (DOS) attack in communication networks and cannot be

generalized to other types of network data streams easily.
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Closely related to our work, Ide et al.[75, 76] measured the change of neighborhood graph

for each source to perform anomaly localization and developed a method called Stochastic

Nearest Neighbor (SNN). Hirose et al.[69] designed an algorithm named Eigen Equation

Compression (EEC) to localize anomalies by measuring the deviation of covariance matrix

of neighborhood sources. In these two studies, we have to build a neighborhood graph for

each source for each time interval, which is unlikely to scale to a large number of sources.

Another closely related work to ours is the Stream Projected Outlier Detector (SPOT)

[189], in which a subspace is learned with genetic algorithm from a potential huge number of

subsets of sources and the outliers in temporal domain are detected in the reduced subspace.

The limitation of their work is that they used a genetic algorithm to select a subset of

sources. The computational complexity to find the optimum set grows exponentially with

the number of features and there is no guarantee that we will reach the optimal subset of

sources. Our work formalizes anomaly localization via a sparse regularization framework and

solved it efficiently with convex optimization technique. Furthermore, the anomalies may

not be observable in the original space. Instead of coping with original space, we localize

anomalies in abnormal subspace in which the anomalous behaviors of data are significant.

Compared with [189], Yang et al.[182] learned the subspace with locally linear embedding

and PCA and then detect outliers in the reduced space. However, there is no mapping

between the newly learned space and original data space therefore it is not applicable for

anomaly localization. Cao et al.[21] partitioned data streams within a window into clusters

based on their similarity and outliers were detected on each individual cluster. A stream is a

outlier if the number of streams lies within a predefined distance is smaller than k. However,

if normal instances do not have enough close neighbors or if the abnormal instances that

have enough close neighbors, the technique may have high level of false positive and false

negative.

We have investigated the anomaly localization problem in our previous publications [83,

84]. In [83], we proposed a two step approach where we first compute normal subspace from
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ordinary PCA and then derive a sparse abnormal subspace on the residual data subtracted

from the original data. The critical limitation of the two stage method is that after removing

the abnormal subspace, the resulting data is a linear combination of all the sources. It is

very difficult to identify which sources contributes most to the observed anomaly. In [84], we

designed a single step approach to jointly learn normal subspace for anomaly detection and

sparse abnormal subspace for anomaly localization. In this paper, we substantially extended

[84] by generalizing our proposed joint sparse PCA framework to Karhunen-Loeve Expansion

(KLE). KLE considers both temporal and spatial correlation of data and it has been shown

to reduce the sensitivity from the choice of number of PCs [17]. We also extended the

experiment study by adding one more data set. Our experimental studies demonstrate the

effectiveness of the proposed method over the state-of-the-art.

Principal Component Analysis (PCA) is extensively applied to network data streams

anomaly detection [101, 72, 102]. For example, Lakhina et al. applied PCA to detect

network traffic anomalies. Huang [72] developed a distributed PCA anomaly detector by

equipping a local filter in each source. Brauckhof [17] considers both the temporal and spatial

correlation of streamed data by extending PCA to Karhunen-Loeve Expansion (KLE) and

solve the sensitivity problem of PCA proposed by Ringberg [139]. The major limitation

of these works, as pointed out in in [139], is that PCA can not be applied to anomaly

localization.

4.3 Preliminaries

We introduce the notations used in this paper and background information regarding PCA

and sparse PCA.
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Table 4.1: Notations in the paper.

Symbol Notation
S a set
X a matrix
xij the entry of the ith row and the jth column of matrix X
x a column vector x
xi the ith entry of the vector x
xi the ith column of the matrix X

4.3.1 Notation

We use bold uppercase letters such as X to denote a matrix and bold lowercase letters such

as x to denote a vector. Greek letters such as λ1, λ2 are Lagrangian multipliers. ⟨A,B⟩

represents the matrix inner product defined as ⟨A,B⟩=tr(ATB) where tr represents the

matrix trace. Given a matrix X we use xij to denote the entry of X at the ith row and

jth column. We use xi to represent the ith entry of a vector x. ||x||p = (
∑n

i=1 |xi|p)
1
p

denotes the lp norm of the vector x ∈ Rn. Given a matrix X = [x1, . . . ,xn]
T ∈ Rn×p,

∥X∥1,q =
∑n

i=1 ∥xi∥q is the l1/lq norm of the matrix X, where x̃i is the ith row of X in

column vector form. Unless stated otherwise, all vectors are column vectors. In Table 4.1,

we summarize the notations in our paper.

4.3.2 Network Data Streams

Our work focuses on data streams that are collected from multiple sources. We call the set

of data stream sources together as a network since we often have information regarding the

structure of the sources.

Following [34], Network Data Streams are multi-variate time series S from p sources

where S = {Si(t)} and i ∈ [1, p]. p is the dimensionality of the network data streams. Each

function Si : R → R is a source. A source is also called a “node” in the communication

network community and a “feature” in the data mining and machine learning community.

Typically we focus on time series sampled at (synchronized) discrete time stamps {t1, t2, . . . , tn}.
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In such cases, the network data streams are represented as a matrix X = (xi,j) where

i ∈ [1, n], j ∈ [1, p] and xi,j is the reading of the stream source j at the time sample ti.

4.3.3 Applying PCA for Anomaly Localization

Our goal is to explore a Principal Component Analysis (PCA) based method for performing

anomaly detection and localization simultaneously. PCA based anomaly detection technique

has been widely investigated in [101, 72, 102]. In applying PCA to anomaly detection, one

first constructs the normal subspace V1 by the top k PCs and the abnormal subspace V2

by the remaining PCs, then projects the original data on V(1) and V(2) as:

X = XV(1)V(1)T +XV(2)V(2)T = Xn +Xa, (4.1)

where X ∈ Rn×p is the data matrix with n time stamps from p data sources, Xn and Xa are

the projections ofX on normal subspace and abnormal subspace respectively. The underlying

assumption of PCA based anomaly detection is thatXn corresponds to the regular trends and

Xa captures the abnormal behaviors in the data streams. By performing statistical testing

on the squared prediction error SPE = tr(XT
aXa), one determines whether an anomaly

happens [101, 72]. The larger SPE is, the more likely an anomaly exists.

Although PCA has been widely studied for anomaly detection, it is not applicable for

anomaly localization. The fundamental problem, as claimed in [139], lies in the fact that

there is no direct mapping between two matricesV(1), V(2) and the data sources. Specifically,

let V(2) be the last p − k PCs that spans the abnormal subspace, Xa is essentially an

aggregated operation that performs linear combination of all the data sources, as follows:

Xa = XV(2)V(2)T =

{
p∑

j=1

xjṽ
T
j ṽi

}
i=1,··· ,p

(4.2)

where xj is the data from the jth source and ṽj is the transpose of the jth row of V(2).
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Considering the ith column of Xa:
∑p

j=1 xjṽjṽ
T
i , there is no correspondence between the

original ith column of X and ith column of Xa. Such an aggregation makes PCA difficult

to identify the particular sources that are responsible for the observed anomalies.

Although all the previous works claim PCA based anomaly detection methods cannot

do localization, we solve the problem of anomaly localization in a reverse way. Instead of

locating the anomalies directly, we filter normal sources to identify anomalies by employing

the fact that normal subspace captures the general trend of data and normal sources have

little or no projection on abnormal subspace. The following provides a sufficient condition

for data sources to have no projection on abnormal subspace.

Suppose I = {i|ṽi = 0} is the set that contains all the indices for the zero rows of V(2),

then ∀i ∈ S, xi has no projection on the abnormal subspace. In other words, these sources

have no contribution to the abnormal behavior. Let V(2) = [ṽ1, ṽ2, · · · , ṽp]
T and consider

the squared prediction error SPE = tr(XT
aXa) and plug equation (4.2) in:

tr(XT
aXa) = tr(XaX

T
a )

= tr(VT
2X

TXV2)

= tr((
∑p

j=1 xjṽ
T
j )

T (
∑p

j=1 xjṽ
T
j ))

(4.3)

From equation (4.3), it is clear that ∀i ∈ I, the data xi from the source i has no projection

on the abnormal subspace and hence could be excluded from the statistics used for anomaly

detection. We call such a pattern with an entire row of zeros “joint sparsity”.

Unfortunately ordinary PCA does not afford sparsity in PCs. Sparse PCA is a recently

developed algorithms where each PC is a sparse linear combination of the original sources

[196]. However existing sparse PCA method has no guarantee that different PCs share the

same sparse representation and hence has no guarantee for the joint sparsity. To illustrate

the point, we plotted the entries of each PC for ordinary PCA (left plot of Figure 4.2) and

for sparse PCA (right plot of Figure 4.2) for the stock data set shown in figure 4.1. White

blocks indicate zero entries and the darker color indicates a larger absolute loading. Sparse
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PCA produces sparse entries but that alone does not indicate sources that contribute most

to the observed anomaly.

Below we present our extensions of PCA that enable us to reduce dimensionality in the

abnormal subspace.
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Figure 4.2: Comparing PCA and Sparse PCA. Left: PCA. Right: SPCA.

4.4 Methodology

In this section, we propose a novel regularization framework called joint sparse PCA (JSPCA)

to enforce joint sparsity in PCs in the abnormal space while preserving the PCs in the normal

subspace so that we can perform simultaneous anomaly detection and anomaly localization.

Starting from JSPCA, we proposed two extensions. In the first extension, we consider

the network topology in the original data and incorporate such topology into JSPCA and

develop an approach called Graph JSPCA (GJSPCA). In the second, we extend JSPCA and

GJSPCA to JSKLE and GJSKLE, which taking the temporal correlation into account as

well as spatial correlation considered in JSPCA and GJSPCA.

Before formally providing the detailed methods, we give an overall work flow of our

method as shown in Figure 4.3 for JSPCA. Note that the rest methods share the same flow

and we only show JSCPA for simplicity.
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Figure 4.3: Demonstration of the the system architecture of JSPCA on three network data
streams with one anomaly (solid line) and two normal streams (dot lines).

Given several data streams, the first step is to calculate a set of principal components

with an ordinary normal subspace and abnormal subspace with joint sparsity. Our example

is a network with 3 sources, then a 3 × 3 principal component matrix is calculated by

JSPCA. The first principal component with non-zero entries represents the normal subspace.

The subtraction between original data and the projection on normal subspace is used for

anomaly detection. The remaining two principal components represent abnormal subspace,

with the first two rows being zero but the last row being non-zero. Based on the abnormal

subspace, the second step is to calculate the abnormal scores. A larger score indicates larger

possibility of the corresponding source is abnormal. Therefore, we complete the task of

anomaly detection and localization simultaneously.

4.4.1 Joint Sparse PCA

Our objective here is to derive a set of PCs V = [V(1),V(3)] such that V(1) is the normal

subspace andV(3) is a sparse approximation of the abnormal subspace with the joint sparsity.
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The following regularization framework guarantees the two properties simultaneously:

min
V(1),V(3)

1

2
||X−XV(1)V(1)T −XV(3)V(3)T ||2F + λ||V(3)||1,2

s.t. VTV = Ip×p.

(4.4)

Using one variable V, we simplify equation (4.4) as:

min
V

1

2
||X−XVVT ||2F + λ||W ◦V||1,2

s.t. VTV = Ip×p.
(4.5)

Here ◦ is the Hadamard product operator (entry-wise product), λ is a scalar controlling the

balance between sparse and fitness, W = [w̃1, · · · , w̃p]
T with w̃j is defined below:

w̃j = [0, · · · , 0︸ ︷︷ ︸
k

, 1, · · · , 1︸ ︷︷ ︸
p−k

]T , j = 1, · · · , p. (4.6)

The regularization term ∥W ◦V∥1,2 is called group lasso penalty [187], in which L2 norm is

used to aggregate the coefficients within a group and L1 norm is applied to achieve sparsity

among groups. In our framework, each group is corresponding to a row of the abnormal

subspace matrix V(3) and L1/L2 penalty enforces joint sparsity for each source across the

abnormal subspace.

The major disadvantage of equation (4.5) is that it poses a difficult optimization problem

since the first term (the trace norm) is concave and the second term (the L1/L2 norm)

is convex. The similar situation was first investigated in sparse PCA [196] with elastic

net penalty [197], in which two variables and an alternative optimization algorithm were

introduced. Here we share the first least square loss term but adopt a different regularization

term. Motivated by [196], we consider a relaxed version:

min
A,B

1

2
||X−XBAT ||2F + λ||W ◦B||1,2

s.t. ATA = Ip×p,

(4.7)
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where A,B ∈ Rp×p. The advantage of the new formalization is two folds: first, equation

(4.7) is convex to each subproblem when fixing one variable and optimizing the other. As

asserted in [196] disregarding the Lasso penalty, the solution of equation (4.7) corresponds

to exact PCA; second, we only impose penalty on the remaining p− k PCs and preserve the

top k PCs representing the normal subspace from ordinary PCA. Such a formalization will

guarantee that we have the ordinary normal subspace for anomaly detection and the sparse

abnormal subspace for anomaly localization. Note that Jenatton et al.recently proposed a

structured sparse PCA [81], which is similar to our formalization. But their structure is

defined on groups and cannot be directly applied for anomaly localization.

Figure 4.4 (left) demonstrates the principal components generated from JSPCA for the

stock market data shown in figure 4.1. Joint sparsity across the PCs in abnormal subspace

pinpoints the abnormal sources 2,3,7 by filtering out normal sources 1, 4, 5, 6, 8. Such result

matches the truth in figure 4.1.
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Figure 4.4: Comparing joint sparse PCA (JSPCA) and graph joint sparse PCA (GJSPCA).
Left: JSPCA; Right: GJSPCA.

4.4.2 Anomaly Scoring

To quantitatively measure the degree of anomalies for each source, we define anomaly score

and normalized anomaly score as following.
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Figure 4.5: Comparing different anomaly localization methods. From left to right: PCA, sparse
PCA, JSPCA, and GJSPCA.

Definition 4.4.1. Given p sources and the abnormal subspace V(3) = [vk+1, · · · ,vp] from

JSPCA, the anomaly score for source i, i = 1 · · · p is defined on the L1 norm of the ith row

of V(3), divided by the size of the row:

ζi =

p∑
j=k+1

|ṽij|

p− k
, (4.8)

where ṽij is the ith entry of vj.

For each input data matrix X, (4.8) results in a vector ζ = [ζ1, · · · , ζp]T of anomaly

scores. The normalized score for source i is defined as ζ̃i = ζi/max{ζi, i = 1, · · · p}.

A higher score indicates a higher probability that a source is abnormal. We show the

anomaly scores obtained from PCA, SPCA, JSPCA, for the stock data in Figure 4.5. JSPCA

succeeds to localize three anomalies by assigning nonzero scores to anomalous sources and

zero to normal ones, while PCA and SPCA both fail. With abnormal scores, we can rank

abnormality or generate ROC curve to evaluate localization performance. Bellow, we give a

skeleton of algorithm for computing abnormal score and the detailed optimization algorithm

is introduced later.

Algorithm 2 Anomaly Localization with JSPCA

1: Input: X, k and λ1.
2: Output: anomaly scores.
3: Calculate a set of PCs V = [V(1),V(3)] (matrix B in equation (4.7)), V(1) is normal

subspace, V(3) is abnormal subspace with joint sparsity;
4: Compute abnormal score for each source by the definition (4.4.1);
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4.4.3 Graph Guided Joint Sparse PCA

In many real-world applications, the sources generating the data streams may have structure,

which may or may not change with time. As the example mentioned in figure 4.1, stock

indices from source 2, 3 and 7 are closely correlated over a long time interval. If source 2

and 3 are anomalies as demonstrated in left Figure 4.4, it is very likely that source 7 is an

anomaly as well. This observation motivates us to develop a regularization framework that

enforce smoothness across features. In particular, we model the structure among sources

with an undirected graph, where each node represents a source and each edge encodes a

possible structure relationship. We hypothesize that incorporating structure information

of sources we can build a more accurate and reliable anomaly localization model. Below,

we introduce the graph guided joint sparse PCA, which effectively encodes the structure

information in the anomaly localization framework.

To achieve the goal of smoothness of features, we add an extended l2 (Tikhonov) regu-

larization factor on the graph laplacian regularized matrix norm of the p−k PCs. This is an

extension of the l2 norm regularized Laplacian on a single vector in [44]. With this addition,

we obtain the following optimization problem:

min
A,B

1

2
||X−XBAT ||2F + λ1∥W ◦B∥1,2+

1
2
λ2tr((W ◦B)TL(W ◦B))

s.t. ATA = Ip×p,

(4.9)

where L is the Laplacian of a graph that captures the correlation structure of sources

[44].

In Figure 4.4 we show the comparison of applying JSPCA and GJSPCA on the data

shown in figure 4.1. Both JSPCA and GJSPCA correctly localize the abnormal sources

2,3,7. Comparing JSPCA and GJSPCA, we observe that in GJSPCA the entry values

corresponding to the three abnormal sources 2,3,7 are closer (a.k.a. smoothness in the
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Figure 4.6: From left to right: PC space for JSKLE and GJSKLE, abnormal score for JSKLE,
and GJSKLE.

feature space). In the raw data, we observe that sources 2,3,7 share an increasing trend.

The smoothness is the reflection of the shared trend and helps highlight the abnormal source

7. As evaluated in our experimental study, GJSPCA outperforms JSPCA. We believe that

the additional structure information utilized in GJSPCA helps.

The same observation is also shown in Figure 4.5. Comparing JSPCA and GJSPCA

we find that JSPCA assigns higher anomaly scores to source 2 and 3 but a lower score to

source 7, and GJSPCA has smooth effect on the abnormal scores. It assigns similar scores

for the three sources. The similar scores demonstrate the effect of smooth regularization

term induced by the graph Laplacian. The smoothness also sheds light on the reason why

GJSPCA outperforms JSPCA a little in anomaly localization in our detailed experimental

evaluation.

4.4.4 Extension with Karhunen Loève Expansion

A limitation of PCA is it only considers the spatial correlation but ignores the temporal

correlation. As an extension of PCA, Karhunen Loève Expansion Karhunen Loève Expansion

(KLE) was introduced in to solved this problem in [17] by taking both spatial and temporal

correlation into consideration. In [17], Brauckhoff et al. claimed that by extending PCA

to KLE, they stabilized the anomaly detection performance and reduced the sensitivity of

PCA when changing the number of principal components representing the normal subspace

[139]. Since JSPCA and GJSPCA are based on PCA, they both involve the same problem

proposed in [139].
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In this section, we extend our regularization framework to KLE, called JSKLE and

GJSKLE respectively. Our contributions is to formalize a regularized joint sparse PCA

with KLE for localization and design efficient optimization algorithms to solve the objec-

tive with KLE. Our goal is to stabilize localization performance and reduce the localization

performance sensitivity. Such advantage will be illustrated in our experimental studies.

KLE was first considered as a representation of a stochastic process on an infinite linear

combination of orthogonal functions [57], and usually named as continuous KLE. Later

on, discrete KLE was then given [98] and the its one dimensional version (PCA) has been

successfully applied to a broad domain of applications [101, 38]. Generalize PCA to KLE

amounts for expanding the original data matrix X ∈ Rn×p to X ′ ∈ R(n−N+1)×pN in both

spatial and temporal domain as follows:

X′T =



x1(1) · · · x1(t) · · · x1(n−N + 1)

.

..
. . .

.

..
. . .

.

..

x1(N) · · · x1(t+N − 1) · · · x1(n)

..

.
. . .

..

.
. . .

..

.

xp(1) · · · xp(t) · · · xp(n−N + 1)

.

..
. . .

.

..
. . .

.

..

xp(N) · · · xp(t+N − 1) · · · xp(n)



(4.10)

where N is the offset moving forward in temporal domain.

Our staring point is a one dimensional stochastic process x(t) with zero mean over time

interval t ∈ [a, b]. By the definition of KLE, x(t) admits a decomposition [148]:

x(t) =
∞∑
i=1

αiψi(t) (4.11)

where αi are pairwise uncorrelated random variables and the function ψi(t) are continuous
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orthogonal deterministic functions such that

ˆ
D

ψi(t)ψj(t)dt = δij

δij =

 0 if i ̸= j

1 if i = j
(4.12)

Suppose Kx(t, s) is the continuous covariance function of x(t), s.t.: Kx(t, s) = E[X(t)X(s)),

ψi are eigenfunctions of Kx(., .) and derived by solving the Fredholm integral equation:

ˆ b

a

Kx(t, s)ψj(s)ds = λiψi(t) (4.13)

The uncorrelated random coefficients αi are calculated as αi =
´ b

a
x(t)ψi(t)dt.

In real world applications, we can only access to discrete and finite processes. When

applying to a discrete and finite process, KLE discretizes the parameter t to obtain the

discrete version on temporal domain. Suppose a continuous stochastic process x(t) is sampled

at an equal interval △t and a n dimension vector x is

x = [x(1), x(2) . . . x(n)]T (4.14)

where n = b−a
△t

. In discrete version, covariance function Kx(t, s) turns into covariance matrix:

Γxx = E(xxT ) (4.15)

To estimate the covariance matrix Γxx, we use sliding window averaging algorithm as the co-

variance estimator [120]. In this algorithm, computation of the estimated covariance matrix

essentially involves the averaging of outer products of a sliding window over x. More specif-

ically, a window of fixed size N moves forward in x. Each time it forms a N -dimensional

vector and the outer product is calculated. Averaging those outer products over all the
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vectors yields the estimated covariance matrix.

Definition 4.4.2. Given a scaler time series x, the estimate of covariance matrix Γxx using

a sliding window approach is defined as:

Γxx =
n−N+1∑

i=1

xixi
T (4.16)

where xi = [xi, xi+1, . . . , xi+N−1]
T is the subvector of vector x with length N . A normalization

factor is ignored, since it is irrelevant for the eigenvectors of Γxx.

The summation function in (4.16) can be given in matrix format Γxx = XTX, with the

following expanded data matrix X from a single vector x in (4.14):

XT =



x(1) x(2) . . . x(n−N + 1)

x(2) x(3) . . . x(n−N + 2)

...
...

. . .
...

x(N) x(N + 1) . . . x(n)


(4.17)

The integral equation (4.13) becomes a matrix eigenvector problem to solve the KLE

vector (or principal component) associated with X: Γxxψi = λiψi

The eigenvectors ψi capture the temporal correlation of one discrete stochastic process

(one stream) while the ordinary PCA we refereed previously, considers the spatial correlation

among different streams. In order to take both temporal and spatial correlation into account,

we extended KLE from one dimension to multi-dimensions to deal with multiple stochastic

processes.

From [148], a p-dimensional stochastic process from p sources is defined: X = [xT
1 ,x

T
2 , · · ·xT

p ]
T .

The ith component xi from the ith source takes the form in (4.14). Followed the equation

(4.15), covariance matrix is defined as:

ΓXX = E(XXT ) (4.18)
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with the following covariance structure:

ΓXX =


Γx1x1 · · · Γx1xp

...
. . .

...

Γxpx1 · · · Γxpxp


Consider the covariance matrix estimator for one dimension KLE in equation (4.17) and its

corresponding data matrix format in (4.17), we have the data matrixX ′ for multi-dimensional

KLE defined in (4.10). The corresponding eigen vectors, which can be found by solving

ΓXXψi = λiψi considering both the temporal and spatial correlation.

However, it is nontrivial to adopt the regularization framework proposed in (4.7) and (4.9)

to expanded data matrix X′ because the data stream from each source has been extended

from a vector to a matrix. The model parameters corresponding to each source also become a

matrix, namely B = [BT
1 ,B

T
2 , · · · ,BT

p ]
T where Bi is a N by pN matrix. The top k PCs of B

representing the normal subspace in regular PCA will become kN PCs after KLE extension.

Similarly, abnormal subspace is the rest (p− k)N PCs of B. More specifically, we consider

the following optimization problem similar to the objective of JSKLE:

min
A,B

1

2
||X′ −X′BAT ||2F + λ1

p∑
j=1

||Wj ◦Bj||F

s.t. ATA = IpN×pN ,

(4.19)

where Wj ∈ {0, 1}N×pN is the jth matrix block of WT = [W1,W2, · · · ,Wp] similar to (4.6)

with first kN columns being 0s and the rest being 1s:

Wj =


0 · · · 0 1 · · · 1

...
. . .

...
...

. . .
...

0 · · · 0 1 · · · 1


For GJSKLE, we have to adjust the structured trace regularization component for ex-
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tended data. Since each source has been extended to multiple streams, we take average

values across the N extended streams and make the average values smooth according to the

network topology. More formally, considering the following objective:

min
A,B

1

2
||X′ −X′BAT ||2F + λ1

p∑
j=1

||Wj ◦Bj||F

1
2N
λ2tr((W ◦B)TP TLP (W ◦B))

s.t. ATA = IpN×pN ,

(4.20)

where P ∈ {0, 1}p×pN is used to summing each block of B and defined as:

P =



1 · · · 1 0 · · · 0 · · · 0 · · · 0

0 · · · 0 1 · · · 1 · · · 0 · · · 0

...
. . .

...
...

. . .
...

. . .
...

. . .
...

0 · · · 0 0 · · · 0 · · · 1 · · · 1


In Figure 4.6, we show the PC space computed from JSKLE and GJSKLE. There are

two principal components representing the normal subspace and the rests presenting the ab-

normal subspace. Both JSKLE and GJSKLE highlight the abnormal sources while GJSKLE

shows a smooth effect on 3 abnormal sources 2, 3, 7.

For JSKLE and GJSKLE, the definition of abnormal score is a little different from that of

JSPCA and GJSPCA. Suppose the abnormal subspace is given byV(3)T = [V(3)
1,V

(3)
2, · · · ,V(3)

p]

(the rest (p − k)N columns of B from (4.19) or (4.20)), the anomaly score for source

i, i = 1 · · · p is

ζi =
||V(3)

i ||1
(p− k)N

(4.21)

where V
(3)
i is the ith matrix block of V(3).

Abnormal scores computed by JSKLE and GJSKLE are shown in Figure 4.6. JSKLE

and GJSKLE performs similarly to JSPCA and GJSPCA but they are insensitive to the

number of PCs representing the normal subspace, which will be studied in our experimental
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studies.

4.4.5 Optimization Algorithms

We present our optimization technique to solve equations (4.7), (4.9), (4.19) and (4.20) based

on accelerated gradient descent [126] and projected gradient scheme [15]. Since (4.19) and

(4.20) are similar to (4.7) and (4.9), our following discussion will focus on (4.7) and (4.9).

The solutions for (4.19) and (4.20) can be obtained by the same procedure with only minor

changes on calculating gradient and gradient projection.

Although equations (4.7) and (4.9) are not joint convex for A and B, they are convex for

A and B individually. The algorithm solves A, B iteratively and achieves a local optimum.

Due to the space constrain, we provide our optimization algorithm in appendix.

A given B: If B is fixed, we obtain the optimal A analytically. Ignoring the regulariza-

tion part, equation (4.7) and equation (4.9) degenerate to

min
A

1
2
||X−XBAT ||2F

s.t. ATA = Ip×p.
(4.22)

The solution is obtained by a reduced rank form of the Procrustes Rotation. We compute

the SVD of GB to obtain the solution where G = XTX is the gram matrix:

GB = UDVT

Â = UVT .
(4.23)

Solution in the form of Procrustes Rotation is widely discussed, see [196] for example for a

detailed discussion.

B given A: If A is fixed, we consider equation (4.9) only since equation (4.7) is a special
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case of equation (4.9) when λ2 = 0. Now the optimization problem becomes:

min
A,B

1

2
||X−XBAT ||2F + λ1∥W ◦B∥1,2+

1
2
λ2tr((W ◦B)TL(W ◦B)).

z (4.24)

Equation (4.24) can be rewritten as min
B

F (B)
def
= f(B) + R(B) , where f(B) takes the

smooth part of equation(4.24)

f(B) =
1

2
||X′ −X′BAT ||2F +

1

2
λ2tr((W ◦B)TL(W ◦B)) (4.25)

and R(B) takes the nonsmooth part, R(B) = λ1||W ◦B||1,2. It is easy to verify that (4.25)

is a convex and smooth function over B and the gradient of f is: ∇f(B) = G(B − A) +

λ2L(W ◦B).

Considering the minimization problem of the smooth function f(B) using the first order

gradient descent method, it is well known that the gradient step has the following update at

step i+ 1 with step size 1/Li:

Bi+1 = Bi −
1

Li

∇f(Bi). (4.26)

In [10, 126], it has shown that the gradient step equation (4.26) can be reformulated as a

linear approximation of the function f at point Bi regularized by a quadratic proximal term

as Bi = argmin
B

fLi
(B,Bi), where

fLi
(B,Bi) = f(Bi) + ⟨B−Bi,∇f(Bi)⟩+

Li

2
∥B−Bi∥2F (4.27)

Based on the relationship, we combine equations (6.12) and R(B) together to formalize the
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generalized gradient update step:

QLi
(B,Bi) = fLi

(B,Bi) + λ1||W ◦B||1,2

qLi
(Bi) = argmin

B
QLi

(B,Bi).
(4.28)

The insight of such a formalization is that by exploring the structure of regularization R(.)

we can easily solve the optimization in equation (6.13), then the convergence rate is the same

as that of gradient decent method. In this paper, we use accelerated gradient descent [126]

to handle the smooth part and projected gradient scheme [15] to tackle nonsmooth part.

Our goal is to find B at current Bi to minimize QLi
(B,Bi) composed of smooth and

nonsmooth components. Rewriting the optimization problem in equation(6.13) and ignoring

terms that do not depend on B, the objective can be expressed as:

qLi
(Bi) = argmin

B∈M
(
1

2
∥B− (Bi −

1

Li

∇f(Bi))∥2F +

λ1
Li

||W ◦B||1,2). (4.29)

With ordinary first order gradient method for smooth problems, the convergence rate is

O(1/
√
ϵ) [126] where ϵ is the desired accuracy. In order to have a better convergence rate, we

apply the Nestrerov accelerated gradient descent method [126] with O(1/
√
ϵ) convergence

rate, and solve the generalized gradient update step in equation (6.13) for each gradient

update step. Such a procedure has demonstrated scalability and fast convergence in solving

various sparse learning formulations [29, 82, 112]. Below we present the accelerated projected

gradient algorithm. The stopping criterion is that the change of the objective values in two

successive steps is less than a predefined threshold (e.g. 10−4).

Now we focus on how to solve the generalized gradient update in equation (6.14). Let
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Algorithm 3 Accelerated Projected Gradient Descent

1: Input: B0,W ∈ Rp×p, L1 > 0, F (.), QL(., .) and max-iter.
2: Output: B.
3: Initialize B1 := B0, t−1 := 0, t0 := 1;
4: for i = 1 to max-iter do
5: αi := (ti−2 − 1)/ti−1;
6: S := Bi + αi(Bi −Bi−1);
7: while (true) do
8: Compute qLi

(S) in Eq. (6.14);
9: if F (qLi

(S)) > QLi
(qLi

(S), S) then
10: Li := 2× Li;
11: else
12: break;
13: end if
14: end while
15: Bi+1 := qLi

(S), Li+1 := Li;
16: ti :=

1
2
(1 +

√
1 + 4t2i−1);

17: if (Convergence) then
18: B := Bi+1, break;
19: end if
20: end for
21: return B;
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C = Bi − 1
Li
∇f(Bi) and λ̄ = λ1/Li, equation (6.14) can be represented as:

qLi
(Bi) = argmin

B
(1
2
||B−C||2F + λ̄||W ◦B||1,2)

= argmin
b̃1,··· ,b̃p

∑p
j=1(

1
2
||b̃j − c̃j||22 + λ̄||w̃j ◦ b̃j||2)

(4.30)

where b̃T
j , c̃

T
j and w̃T

j ∈ Rp are row vectors denoting the jth row of matrices B, C and W.

By the additivity of equation (6.15), we decompose equation (6.15) into p subproblems. For

each subproblem, we ignore the row index j:

min
b

1

2
||b− c||22 + λ̄||w ◦ b||2. (4.31)

The following theorem provides the analytical solution of equation (6.16).

Theorem 4.4.1. Given λ̄,w = [01×k,11×(p−k)]
T and c = [cT1 , c

T
2 ]

T where c1 = [c1, · · · , ck]T ,

c2 = [ck+1, · · · , cp]T and k is the number of PCs representing the normal subspace, the optimal

solution for (6.16) b∗ = [b∗
1
T ,b∗

2
T ]T is given by:

b∗
1 = c1

and

b∗
2 =

 (1− λ̄
||c2||2 )c2 ||c2||2 > λ̄

0 otherwise.
(4.32)

Proof. By the definition of the l2 norm, the equation (6.16) can be rewritten as:

min
b1,b2

1

2
||b1 − c1||22 +

1

2
||b2 − c2||22 + λ̄||b2||2 (4.33)

where b = [bT
1 ,b

T
2 ]

T . The solution can be found by decomposing (4.33) into two subprob-

lems and solving one ordinary least square problem and one least square problem with l2

norm regularization. Since there is no regularization on b1 and the two subproblems are

63



independent, the optimal solution of the ordinary least square problem is b∗
1 = c1. With

optimal b∗
1, (4.33) degenerates to

min
b2

1

2
||b2 − c2||22 + λ̄||b2||2. (4.34)

The analytical solution of equation (4.34) is given in equation (6.17) and can be found by

forming Lagrangian dual. A detailed proof can be found in [112].

For JSKLE and GJSKLE, we perform the similar procedure but on a set of matrices

Bi ∈ RN×(p−k)N due to the KL expansion. Then the solution B∗ = [B∗
1, · · · ,B∗

p]
T given A

is obtained:

B∗
i =


(1− λ̄√

tr(CiCT
i )
)Ci

√
tr(CiCT

i ) > λ̄

0 otherwise

(4.35)

where Ci is the ith matrix block of C = [C1,C2, · · · ,Cp]
T = B − 1

L
∇f(B), and B is

computed from (6.13), (6.15) in an extended data matrix and principal components.

We summarize what is briefly discussed previously for GJSPCA in Algorithm XX. Note

that JSPCA is a special case of GJSPCA, we obtain the algorithm for JSPCA by setting

λ2 = 0. For JSKLE and GJSKLE, the only changes are the gradient of smooth parts in

the objective (4.19), (4.20) and projected gradient. Given data matrix X ∈ Rn×p and

the number of PCs representing normal subspace k and regularization parameters λ1, λ2,

GJSPCA optimizes two matrix variables alternatively and returns the matrix B composed of

ordinary PCs representing normal subspace and joint sparse PCs representing the abnormal

subspace.

4.5 Experimental Studies

We have conducted extensive experiments with three real-world data sets to evaluate the

performance of JSPCA and GJSPCA on anomaly localization. We implemented our version
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Algorithm 4 Graph Joint Sparse PCA (GJSPCA)

1: Input: X, k, λ1, λ2 and max iter.
2: Output: B.
3: A := Ip×p,G := XTX;
4: for iter = 1 to max iter do
5: Compute B given A using the accelerated gradient descent and gradient projection as

shown in the appendix;
6: Compute A given B via (4.23);
7: if (Converge) then
8: break;
9: end if
10: end for
11: return B;

of two state-of-the-art anomaly localization methods at the network level: stochastic nearest

neighbor (SNN) [76] and eigen equation compression (EEC) [69] since no executables were

provided by the original authors. We implemented all four methods with Matlab and per-

formed all experiments on a desktop machine with 6 GB memory and a Intel core i7 2.66

GHz CPU.

4.5.1 Data Sets

We used four real-world data sets from different application domains. For each data set, we

singled out several intervals with anomalies. The anomalies are either labeled by the original

data provided or manually labeled by ourselves when no labeling is provided. Note that we

are only interested in the intervals where anomalies really exist since we focus on localizing

anomalies. We used a sliding window with fixed size L and offset L/2 to create multiple

data windows from the given intervals. The sliding window moves forward with the offset

L/2 until it reaches the end of the intervals. We run all four methods on each data window

to evaluate and compare their performances.

To run GJSPCA we calculated the pair-wise correlation between any two sources within

the window. We produced a correlation graph for the data streams with a correlation

threshold δ in that if the correlation between two sources is greater than δ, we connect the
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two sources with an edge. This construction is meaningful because for highly correlated data,

streams influence each other and such influence has been shown critical for better anomaly

localization, as evaluated in our experimental studies.

Below we briefly discuss the data collection and data preprocessing procedures for the

three data sets. In Table 4.2, we list the intervals that we selected, the dimensionality of the

network data streams, the sliding window size L, and the total number of data windows W

for each data set. For KDD99 intrusion data set, T is the number of connections and p is

the number of features.

Table 4.2: Characteristics of Data Sets. D: Data sets. D1: Stock Indices, D2: Sensor, D3:
MotorCurrent, D4: Network Traffic. T : total number of time stamps, p: dimensionality of the
network data streams, I: total number of intervals, Indices: starting point and ending point of the
abnormal intervals, W : total number of data windows, L: sliding window size, -: not applicable.

D T p I Indices W L
D1 2396 8 4 [261-300], [361- 400] 12 20

[761-800], [1631-1670]
D2 11000 7 4 [2371-2530],[3346-3550] 37 20

[7191-7215], [8841-8870]
D3 1500 20 1 [1-1500] 29 50
D4

(DOS) 391458 41 1 [1-391458] - -
(Probe) 4107 41 1 [1-4107] - -
(U2R) 52 41 1 [1-52] - -
(R21) 1126 41 1 [1-1126] - -

The Stock Indices Data Set: The stock indices data set includes 8 stock market

index streams from 8 countries: Brazil (Brazil Bovespa), Mexico (Bolsa IPC), Argentina

(MERVAL), USA (S&P 500 Composite), Canada (S&P TSX Composite), HK (Heng Seng),

China (SSE Composite), and Japan (NIKKEI 225). Each stock market index stream contains

2396 stamps recording the daily stock price indices from January 1st 2001 to March 5th 2010.

Since this data set has no ground truth, we manually labeled all the daily indices for the

selected intervals. In our labeling we followed the criteria list in [23] where small turbulence

and co-movements of most markets are considered as normal, dramatic price changes or
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Figure 4.7: ROC curves and AUC for different methods on three data sets. From left to right:
ROC for the stock indices data, ROC for the sensor data, ROC curve for MotorCurrent data, AUC
for the three ROC plots

significance deviation from the co-movement trend (e.g. one index goes up while the others

in the market drop down) are considered as abnormal.

The Sun Spot Sensor Data Set: We collected a sensor data set in a car trial for

transport chain security validation using seven wireless Sun Small Programmable Object

Technologies (SPOTs). Each SPOT contains a 3-axis accelerometer sensor. In our data

collection, seven Sun SPOTs were fixed in separated boxes and were loaded on the back seat

of a car. Each Sun SPOTs recorded the magnitude of accelerations along x, y, z axis with

a sample rate of 390ms. We simulated a few abnormal events including box removal and

replacement, rotation and flipping. The overall acceleration
√
(x2 + y2 + z2) was used to

detect the designed anomalous events.

The Motor Current Data Set: The Motor Current Data is the current observation

generated by the state space simulations available at UCR Time Series Archive [91]. The

anomalies are the simulated machinery failure in different components of a machine. The cur-

rent value was observed from 21 different motor operating conditions, including one healthy

operating mode and 20 faulty modes. For each motor operating condition, 20 time series

were recorded with a length of 1,500 samples. Therefore, there are 20 normal time series

and 400 abnormal time series altogether.

In our evaluation, we randomly extracted 20 time series out of 420 with the length 1500.

10 time series are from normal series and the rest are from abnormal series.

KDDCup 99 Intrusion Detection Data Set: The KDDCup99 intrusion detection

data set is obtained from UCI Repository [50]. The 10% training data set consisting of
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Table 4.3: Features Indexes in KDD 99 Intrusion Detection Data set

List of Features
Basic Features 1. duration, 2. protocol type, 3. service, 4. flag, 5. source

bytes, 6. destination bytes
Content Features 7. land, 8. wrong fragment, 9. urgent, 10. hot, 11. failed

logins, 12. logged in, 13. # compromised, 14. root shell, 15.
su attempted, 16. # root 17. # file creations, 18. # shells,
19. # access files, 20. # outbound cmds, 21. is host login,
22. is guest login

Traffic Features 23. count, 24. srv count 25. serror rate 26. srv serror rate,
27. rerror rate, 28. srv rerror rate, 29. same srv rate, 30. diff
srv rate, 31. srv diff host rate

Host-based Traffic
Features

32. dst host count, 33. dst host srv count, 34. dst host same
srv rate, 35. same srv rate, 36. dst host same src port rate,
37. dst host srv diff host rate, 38. dst host serror rate, 39.
dst host srv serror rate, 40. dst host rerror rate, 41. dst host
srv rerror rate

494,021 connection records is used. Each connection can be classified as normal traffic or

one of 22 different classes of attacks. All attacks fall into four main categories: Denial-

of-service (DOS), Remote-to-local (R2L), User-to-root (U2R), and Probing (Probe). For

each connection, 41 features are recorded, including 7 discrete features and 34 continuous

features. Since our algorithm is calculated for continuous features, the discrete features

such as protocol (TCP/UDP/ICMP), service type (http/ftp/telnet/...) and TCP status flag

(SF/REJ/...) are mapped into distinct positive integers from 0 to W − 1 (W is the number

of states for a specific discrete feature). For three features spanning over a very large range,

namely “duration”, “src bytes” and “dst bytes”, logarithmic scale is applied to reduce the

ranges. Finally all the 41 features are linearly scaled to the range [0,1]. The task of anomaly

localization on the intrusion detection data set is to identify the set of features most relevant

to a specific anomaly, which is similar to feature selection.
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4.5.2 Model Evaluation

For evaluation, since our focus is anomaly localization, we did not evaluate anomaly detection

although our method is able to do both. We used the standard ROC curves and area under

ROC curve (AUC) to evaluate the anomaly localization performance. There is no training

phase because our framework is unsupervised. PCA is a Below we introduce the details

regarding the construction of ROC curves.

As defined in equation 4.8, a higher abnormal score indicates a higher probability the

source is abnormal, which is the same as that of the baseline methods [69, 76] for comparison.

To have a fair comparison, we compared the normalized abnormal score among each method.

The reason for normalization is that the anomaly scores generated by the baseline methods

have different orders of magnitude. We used the term “anomaly score” to refer to the

normalized abnormal score in the following analysis.

For each data window, the abnormal score vector ζ̃ = [ζ̃1, · · · , ζ̃p]T was generated and

compared with a a cut-off threshold between [0, 1] to separate abnormal sources and innocent

sources. We performed the same procedure for all the data windows and finally we obtained

a prediction matrix with size w by p, such that w is the number of data window and p is

the number of sources. Each entry in the prediction matrix is 0 or 1 to indicate whether

the source is normal or abnormal. Comparing the prediction matrix with the ground truth

resulted in a pair of true positive rate (TPR) and false positive rate (FPR), where TPR

is the total number of true detected abnormal sources over the total number of abnormal

sources, and FPR is the total number of incorrect detected abnormal sources over the total

number of normal sources in W windows. By changing the threshold, we obtained the ROC

curve and the AUC value.

For network traffic data set, we evaluated our method in a qualitative because there is no

ground truth about which features contribute to the observed anomaly, also there is no way

to do manually label. For each kind of anomaly, we show the abnormal score of each feature

and analyze with some prior knowledge such as what is the cause of a specific attack, and
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how this attack effects the 41 features. To better demonstrate the effectiveness of JSPCA

and GJSPCA, we also compare our results with those obtained from other feature selection

methods such as information gain [89] and SVM [123] on KDDCUP 99 data set.
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Figure 4.8: ROC curve for KLE extension methods on three data sets. From left to right:
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0 10 20 30 40
0

0.5

1

S
co

re

Feature Index
0 10 20 30 40

0

0.2

0.4

0.6

0.8

1

S
co

re

Feature Index
0 10 20 30 40 50

0

0.5

1

S
co

re
Feature Index

Figure 4.9: Anomaly Localization Comparison of Stochastic Nearest Neighborhood, Eigen-
Equation Compression, GJSPCA on Network Intrusion Data Set(DoS Attack)

4.5.3 Anomaly Localization Performance

We have two parameters to tune in JSPCA: λ1: controlling the sparsity, and k: the dimension

of normal subspace. GJSPCA has two more parameters: λ2: controlling the smoothness, and

δ, the correlation threshold to construct the correlation graph. For the other two methods,

we need to select the number of neighbors k for SSN and the number of clusters c for EEC.

We first performed a grid search for each method to identify the optimal parameters and then

compared the performance. The performances of different methods depend on the parameter

selection. We evaluated the sensitivity of our results in the next selection.

For each data set, we tuned λ1, λ2 within {2−8, 2−7, · · · , 28} and δ from 0.1 to 0.9. k

was tuned from 1 to 4 for the stock market and sensor data, and from 2 to 7 for the motor
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current data. All the ranges were set by empirical knowledge. Our empirical study showed

that the performance did not change significantly as the parameters vary in a wide range,

which reduced the parameter search space significantly.

Table 4.6 lists the best parameter combination for JSPCA and GJSPCA. For SNN, we

tuned the number of neighbors k in the range 2 ∼ 6 (for stock index data set and sensor

data) and in the range 2 ∼ 10 (for motorcurrent data) respectively. For EEC method, the

number of clusters c was tuned between 2 ∼ 4.

In Figure 4.7, we show the performances for the four methods on three different data

sets. JSPCA and GJSPCA clearly outperform the other two methods. The AUC value of

JSPCA and GJSPCA are both above 0.85 on three data sets, while that of EEC and SNN are

around [0.5 ∼ 0.6]. Compared with JSPCA, GJSPCA is slightly better, which supports our

hypothesis on the importance of incorporating the structure information of network data

streams into anomaly localization. SNN clearly outperforms EEC on Sensor data, and is

comparable with EEC for the other two data sets.

We did a case study in which PCA, SPCA, JSPCA and GJSPCA are compared on a

selected time interval. As shown in Figure 4.5, PCA is not able to identify the abnormal

sources. SPCA fails to localize source 7 and introduces many false positives when threshold

is wrongly selected. To further support the argument that PCA and SPCA are inadequate

for anomaly localization, we did experiment on stock indices data and calculated AUC. We

found the AUC value of PCA and SPCA are 0.667 and 0.6703 respectively, which are much

lower compared to that of JSPCA. We do not extend our experiments to the other data sets

since the two methods are clearly not competitive.

We also test the KLE extension of localization methods. In Figure 4.8, we show the

performance of JSKLE and GJSKLE in comparison with JSPCA and GJSPCA with N = 2.

From the Figure, we observe that KLE extension does not outperform JSPCA and GJSPCA

on anomaly localization with the expense of introducing more computational complexity due

to the data matrix expansion. However, KLE extension stabilizes localization performance
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Table 4.4: Most relevant features for different attacks (JSPCA)

Attack Feature Index
DOS 3,5,6,23,24,32,33
Probe 5
U2R 1,5,6,32,33
R21 1,3,5,6,32,33
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Figure 4.10: Sensitivity analysis of GJSPCA on stock indices data set. From left to right: δ, the
dimension of the normal subspace, λ1 and λ2.

as shown in the section of parameter selection.

4.5.4 Feature Selection Performance

As mentioned earlier, anomaly localization on the KDDCUP 99 intrusion detection data

set performs as a feature relevant analysis. Localizing abnormal data streams amounts to

identify features most related to a specific anomaly. More specifically, our algorithm aims

to identify a set of relevant features among all the 41 features for each type of attacks. The

features are indexed and given in Table 4.3.

In Figure 4.9, we show the abnormal scores for the 41 features under the attack of Denial

of Service (DOS) computed by SNN, EEC and GJSPCA respectively. Since four joint sparse

methods provide similar abnormal scores, we just show the result of GJSPCA in the rightmost

of Figure 4.9. Feature 5, 6, 23, 24, 32, 33 are the most relevant for DOS attack, which is

reasonable since the nature of DOS attacks involves many connections to some host(s) in a

very short period of time. In Table 4.4, we summarize the most relevant features for each

attack from our method GJSPCA. Our result is consistent with the relevant features found

in Mukkamala et al. using SVM [124].
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dimension of the normal subspace, λ1 and λ2.

Table 4.5: Optimal parameters combinations on three data sets. J:JSPCA, GJ: GJSPCA.

λ1 k λ2 δ
Data set J GJ J GJ GJ GJ
Stock 2−3 2−4 1 1 2−4 0.6
Sensor 2−7 2−5 1 1 2−6 0.6
Motor 2−2 2−2 5 5 2−8 0.5

4.5.5 Parameter Selection

In this section, we evaluated the sensitivity of our methods to different modeling parameters.

In order to do so, we selected one parameter at a time, systematically changed its value while

fixing the others at their optimal values. Although our approaches have more parameters

than the other two methods, the sensitivity analysis shows that performances of our methods

are remarkably stable over a wide range of parameters. Next we show the sensitivity study

on the stock indices data set for the parameters λ1 and λ2, δ, k. Similar results are observed

on the other two data sets.

In Figure 4.10, we show the stability by changing λ1 in GJSPCA. We observe that AUC

is quite stable over a wide range of λ1. A similar phenomenon is also observed when changing

λ2. On the middle part of Figure 4.10, we performed sensitivity analysis on parameter δ. We

observe that AUC remains stable for δ ∈ [0.15, 0.6]. When δ = 0, the graph is a complete

graph and the smoothness regularization will penalize the loadings of each source across the

PCs to be similar each other. Hence very low δ leads to a worse performance. On the other

hand, when δ = 1, the graph is just a set of isolated sources. The structure information is

missing, therefore the performance is not optimal.

An important parameter in PCA based anomaly detection methods is k, the number
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Table 4.6: Optimal parameters combinations on three data sets. JK:JSKLE, GJK: GJSKLE.

λ1 k λ2 δ N

Data set JK GJK JK GJK GJK GJK (G)JK
Stock 2−3 2−4 2 2 2−4 0.5 2
Sensor 2−6 2−5 2 2 2−6 0.7 2
Motor 2−2 2−2 7 8 2−8 0.6 2

of PCs spanning the normal subspace. In [139], Ringberg et al.claimed that the anomaly

detection performance was sensitive to k. Such a claim is confirmed in the 4th subfigure of

Figure 4.10, where the overall AUC gradually decreases from 0.96 to 0.72 as k changes from

1 to 3 and then increases to 0.77 at k = 4. Compared with GJSPCA, GJSKLE significantly

stabilize the localization performance when δ (the threshold for deriving network topology)

and k (dimension of normal space) change. As shown in Figure 4.11, when δ changes from

0 to 1 with step size 0.1, AUC increases to its optimum 0.94 at δ = 0.5, and then decreases

3% to its minimum 0.91 at δ = 1. Furthermore, AUC remains above 0.9 for k ∈ [1, 4].

JSKLE and GJSKLE involves one more parameter: the temporal offset N . To test the

sensitivity of N , we repeated the experiments of KLE with different Ns from 1 to 5 on the

finance data set. Note that (G)JSPCA is a special case of (G)JSKLE when N = 1. The

result is shown in Figure 4.12. With the change of N , AUC performance is very stable. The

difference between the optimal case (N = 1) and the worse case (N = 5) is just 0.07. It may

be apparent that N = 1 (degenerated to (G)JSPCA) is better than other cases. However by

selecting N = 2, AUC of GJSKLE is stabilized when changing δ and k as shown in Figure
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4.11 compared with GSPCA in Figure 4.10.

4.6 Conclusions and Future Work

Previous work on PCA based anomaly detection claimed that PCA cannot be used for

anomaly localization. We proposed two novel approaches, joint sparse PCA (JSPCA) and

graph joint sparse PCA (GJSPCA), for anomaly detection and localization in network data

streams. By enforcing joint sparseness on PCs and incorporating the structure informa-

tion of network via regularization, we significantly extended the applicability of PCA based

technique for localization. Moreover, we developed JSKLE and GJSKLE based on multi-

dimensional Karhunen Loève Expansion (KLE) that considers both spatial and temporal

domains of data streams to stabilize localization performance. Our experimental studies on

three real world data sets demonstrates the effectiveness of our approach. Our future works

will focus on two directions: (a) how to efficiently and effectively select model parameters;

and (b) how to extend our approach to kernel PCA.
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Chapter 5

Preliminary Study III: Multi-task

Learning with Structured Output

Tasks for Social Behavior Prediction

5.1 Introduction

Online social networking sites are becoming extremely popular among Internet users, es-

pecially in the younger generation. The massive adoption of online social networks has

introduced significant impacts to users’ information sharing and socialization behaviors.

Numerous efforts have been devoted to social networking research. In particular, the study

of social information flow is to analyze the principles and mechanisms of social informa-

tion distribution, which is one of the fundamental problems in social networking research

[73, 164]. Full understanding and control of information flow in social networks is essential

for a number of tasks. For instance, to effectively deliver personalized advertising or recom-

mendation, we need to identify messages that are most interesting to the user. Meanwhile,

to efficiently distribute emergency notifications in online social networks (e.g. [173]), it is

important to discover the most influential nodes to inject the message. On the contrary, to
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stop rumor dissemination, we need to identify key hubs to enforce countermeasures.

Most of the existing approaches study network information flow based on the social net-

work graph topology, e.g. [90, 155]. For instance, maximum flow and betweenness centrality

are the basic measurements employed to assess overall information flow and nodes’ specific

contributions to it [171]. However, topology itself can not accurately reflect the user interests

or activities. It has been widely observed that it is more likely for a message to propagate

between users that are mutually interested in the message.

Example 5.1.1. In Figure 5.1, we present a subgraph of three users collected from a social

networking site digg.com. In the network, S is an active user and F1, F2 are the followers

of S and are also very active. In the subgraph S are connected to F1 and F2 with the

following relationship. In addition, F1 and F2 are connected since they follow each other

as well (mutual following is allowed in digg). From the perspectives of graph topology and

social activity, F1 and F2 are highly symmetric. However, they have demonstrated different

behaviors in response to S’s posts of technology articles. As we have observed, F2 responses

to most of such posts, while F1 only shows moderate interests in technology-related topics.

As we observe from the example, in modeling and predicting socialization behaviors, it

is important that we take both information content and user interests into consideration.

Recently [140] performs a large scale trace on information diffusion in Twitter, and discovers

that there are fundamental differences of diffusion behaviors across different topics. The

phenomena discovered in [140] further confirms that information content should play a ma-

jor role in modeling social information flow. However, [140] did not provide a solution of

how to quantitatively model or predict social information diffusion process with regard to

information content.

In this paper, we adopt a “microeconomics” approach to study social information diffusion

and aim to answer the question that how social information flow and socialization behaviors

are related to content similarity and user interests. In particular, we study content-based

activity prediction, i.e., to predict a user’s response (e.g., comment or like) to their friends’
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F1
F2

S

# action

1 none

2 digg

3 none

4 reply

5 none

6   ?

# Content

1 Tech. : Google maps, Android …

2 Tech. : Apple TV, iOS…

3 Tech. : Samsung galaxy …

4 Tech. : iPhone, SIM card…

5 Tech. : Verizon, iPhone 4 …

Tech. : apple iOS 5.0 …

…

# action

1 none

2 reply

3 digg

4 reply

5 digg

6 ?

Figure 5.1: A tiny snapshot of online social network digg.com with three users. The table besides
S is his/her recent posts and the rest two tables record his follower’s action.

postings (e.g., blogs, tweets) w.r.t. message content. Accurate social behavior prediction is a

critical and indispensable step of social network information diffusion modeling and analysis,

with a wide range of applications. For instance, social highlights (selected recent activities

from friends) are provided to users when they login to social network sites, such as Facebook.

With accurate predictions on user responses, we can provide highlights that better fit the

interests of the users. In addition, in targeted advertisement (e.g. [156]), companies can

recommend new products to users who are most likely to purchase the product, based on

the previous actions of users.

In our solution, we cast the social behavior prediction problem as a multi-task learning

problem, in which each task corresponds to a user. Similar to traditional supervised learning

algorithm, the information content (sample) is represented as a high dimensional feature

vector and its labels indicate the responses of users towards the information. We choose

multi-task learning as the starting point of our investigation since MTL increases effective

sample size and hence boosts the generalization performance of learned models by learning
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several related tasks simultaneously [6, 40, 88, 150].

Our contributions in this paper are multifaced. At the conceptual level, we take the first

step to model social network information flow w.r.t. information content in social networks.

For modeling algorithms, we formalize the related modeling problem as a multi-task learning

problem and provide a novel algorithm specifically designed for learning with information

flow in social networks. To our best knowledge, we present the first case of developing and

applying multi-task learning to the social behavior prediction. Finally we have derived a

practical solution based on an advanced optimization technique. Experiment results show

that our approach significantly improves prediction accuracy using real world data sets.

5.2 Related Work

Recently, social network has become a popular research area in WWW, information retrieval

and knowledge discovery communities, e.g., information extraction and knowledge discov-

ery from social networks [58], community evolution [59, 49], socialization behaviors [153],

improving user experience [170], security and privacy protection [61, 99], etc. Among these

topics, information diffusion (also referred to as information propagation or adoption) stud-

ies how information is distributed in social networks through user socialization activities

[1, 2, 90, 110, 155, 181]. In particular, [90] provides an algorithm to select a subset of nodes

whose information adoption activities can trigger a large cascade of information flow. [110]

studies Internet chain-letter data, and finds that the letters spread in a “narrow but very

deep tree-like pattern”, instead of spreading widely. [155] models social information flow

with a diffusion-rate based model and continuous-time Markov chain. While most existing

approaches model information diffusion using graph topology (i.e. information follows the

links to propagate from nodes to neighbors), [181] takes a different route that models infor-

mation flow based on observed infection history. Last but not least, from the social science

perspective, different types of social relationships (e.g. strong ties vs. weak ties) [54, 68]
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have been used to study information flow.

On the other hand, multi-task learning (MTL) has been widely investigated from different

researchers and domains, hence it is impossible to cover all the related works in depth. We

roughly summarize current MTL methods into two categories based on how they utilize the

task relationship: MTL feature learning and MTL with known task relationships. Multi-task

feature learning [4, 111, 112, 136] assume all the tasks are uniformly related, and aim to learn

a common low dimensional representation without actually learning the task relationships.

The common features are learned by block regularization such as l1/l2 [4, 112, 36], l1/l∞

[29, 111, 136]. MTL with known task relationships [6, 40, 88, 150] utilizes the prior knowledge

on task relationships via trace norm regularization to learn model parameters so that similar

tasks share similar parameters. They use all the features to build MTL model, hence they

are not suitable for high dimensional data. Besides, the task relationship is homogenous.

Though information flow analysis and MTL have been studied for a long time, none of

the existing method considers formalizing the content based information flow analysis as

MTL problem while considering the heterogenous social relationships. The objective of this

paper is to incorporate the heterogenous relationships on tasks into MTL and build a more

accurate and interpretable prediction model.

5.3 Methodology

We formalize the user behavior prediction problem with the following approach. Considering

a social network with millions of users, we focus on one user, the “seed” user. We represent

each article published by the seed user with a bag-of-words model, where features are terms

extracted from all the articles the seed published and the value of a feature is the TF-IDF

(term frequency times inverse document frequency of the term), as widely used in IR and

text mining. There are a group of users actively receiving articles published by the seed

(the “followers”). We treat each follower as a learning task. If the follower performed an
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action on an article (e.g. writing comments about the article), we record the user response

as positive (1). Otherwise, the user response is negative (-1). Figure 5.2 illustrate this data

representation approach.

5.3.1 Learning Challenges

Developing and applying machine learning techniques to perform social behavior prediction

is challenging. First the data set size is large. Typically an active seed may publish hundreds

of articles and with hundreds of followers. Second the data set is often imbalanced. It is

quite often that a follower only responds to a small fraction of the articles published by the

seed. Third the data set could be quite heterogenous. A follower could be very active in

technology while quite inactive for articles published in other categories.

The starting point of our investigation for designing better machine learning techniques

for social behavior prediction is multi-task learning. In multi-task learning, we group tasks

with similar characteristics in order to increase the effective sample sizes and hence achieve

better prediction results for imbalanced and heterogenous data sets. Adopting existing

MTL to social behavior prediction is not straightforward. For example current multi-task

feature learning methods [4, 111, 112, 136] assume all tasks are uniformly related, which

may not be true in social networks. In addition feature selection in MTL with given task

relationship [6, 40, 88, 150] has been barely touched. Moreover, although current MTL

methods can incorporate the topology information of social networks, they failed to consider

the heterogeneity of tasks in social networks. We illustrate these points with the previous

example in Figure 5.1.

The core problem in adopting MTL for social behavior prediction, as briefly discussed in

the previous paragraph, is how we may group tasks with similar characteristics. Below we

lay out three possible strategies:

• Group all tasks in a single group and totally ignore the possible difference of tasks

[29, 36, 111, 136].
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• Use social network topology to model tasks relationships.

• Use previous history of tasks to estimate the possible structure of tasks.

In our experimental study, we have implemented all three strategies and done a case

study as shown in Table 5.2. Our result shows that the third strategy is the best over all.

The result is not surprising. For example, in Figure 5.2, we show three users. Clearly F1 and

F2 are somehow related since they are follower of each other. After careful investigation, we

conclude that F1 and F2 are following each other is due to the fact that both of the users

are active in readying and posting entertainment related articles. Following this observation

in our multitask learning practice, if our objective is to model the information flow for

entertainment related articles, F1 and F2 should be group together due to the common

interest. However, if our objective is to model the information flow for technology related

articles, F1 and F2 have quite different interest. Learning F1 and F2 together will confuse

any learning algorithm.

In summary, we observe that the relationship between tasks in social networks is multilay-

ered in the sense that the relationship may change based on the content of the information.

Based on the observation, we have designed a multigraph representation of task relationship.

With the multigraph representation, we have modified an existing MTL algorithm by incor-

porating additional constraint based on the multigraph representation of tasks relationships

and investigated the related optimization techniques. In the following subsections we elabo-

rate the description by focusing on four important problems: (i) content based task similarity

definition, (ii) multigraph representation of task similarity, (iii) MTL with multigraph con-

straints, and (iv) efficient optimization. Using comprehensive experimental study, we have

demonstrated the effectiveness of the proposed learning method compared with single task

learning algorithm SVM [169] and MTL feature learning algorithm without considering the

heterogenous relationships [112].

Before we present our mathematical model, we list notations in this paper. We use

lowercase letters to represent scalar values, lower-case bold letters to represent vectors (e.g.
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Figure 5.2: Data Representation of Content Based Social Behavior Prediction. Five articles with
actions of three followers and two words with tf-idf are shown for demonstration only. X is the
object-feature matrix with each row representing an article and each column representing a feature.
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Figure 5.3: Heterogenous social relationships between F1, F2 and F3 for category T: technology
and E: entertainment. Dashed line represents the technology connection and solid line represents
the entertainment connection. The number for each connection represents the similarity of two
users detailed in Equation 5.2.
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a), uppercase bold letters to represent matrices (e.g. A), Greek letters {λ, λ1, λ2...} to

represent Lagrange multipliers, and uppercase calligraphic letters to represent sets. Unless

state otherwise, all vectors in this paper are column vectors. We use ∥A∥1 =
∑p

i,j |aij| to

denote the l1 norm of A, ∥A∥F to denote the Frobenius norm, ∥a∥2 =
√∑p

i=1 a
2
i to represent

the l2 norm of vector a, < A,B >= tr(ATB) to represent the inner product between

two matrices where tr(.) is the trace of matrix. Furthermore, given matrix A ∈ Rp×k,

∥A∥1,q =
∑p

i=1 ∥Ai,:∥q is the l1/lq norm, Ai,: is the ith row and A:,j is the jth column.

Unless state otherwise, all vectors in this paper are column vectors.

5.3.2 Problem Statement

Formally, suppose we are given k users (tasks) {Ti}ki=1. For the ith user Ti, the training

set Di consists of n articles (samples) (xi
j, y

i
j), j = 1, · · · , ni, where xi

j ∈ Rp. We collect

yij ∈ {−1, 1} for the response of the user Ti on article xi
j. For simplicity, we assume all

the tasks have the same number of training samples. The goal of the modeling practice

is to learn a function fi(x) to map the content of the article to the user response, where

fi(x) = wT
i x. The learning task is to seek W = [w1,w2, · · · ,wk] with wi corresponding to

the ith user, such that:

min
W

k∑
i=1

n∑
j=1

ℓ(yij, fi(x
i
j)) (5.1)

(5.1) is minimized.

In this paper, we use linear regression with least square loss function ℓ(yij, fi(x
i
j)) =

1/2(yij−fi(xi
j))

2 to perform classification, which is equivalent to a linear discriminant analysis

(LDA) for binary classification [66]. Such a procedure is also widely used in other MTL

algorithms for classification problems [26, 111, 190].

Equation (5.1) is ill-posed for high dimension low sample size problems. To remedy

the problem, we add l1 regularization [162] on W to stabilize (5.1) and to obtain a sparse

solution. However, the resulting model neglects the heterogenous structural relationship
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among tasks. We addressed task heterogeneities in the following sections.

5.3.3 Content Based User Similarity

With the heterogeneity of social networks, we cannot rely on network topology as we dis-

cussed in the introduction section, but have to consider the information content. Addi-

tionally, in order to build a more interpretable model, we expect the users that share the

same interest will have similar prediction models when seeing the articles from their favorite

information categories.

We collect the follower response to quantify the similarity between two users. More

specifically, for each follower, we build an activity profile for each content category and

calculate pair-wise user similarity as:

Definition 5.3.1. Suppose that the data set contains k users and covers t categories with

q possible actions in the social network (excluding no action), the user profile P(l) for the

lth user is a q× t matrix with entries p
(l)
ij representing the number of action i on category j,

where 1 ≤ k ≤ n, 1 ≤ i ≤ q and 1 ≤ j ≤ t. Furthermore, the similarity a
(l)
ij between user i

and j for the lth category is the cosine value between vector P
(i)
:,l and P

(j)
:,l :

a
(l)
ij =

< P
(i)
:,l ,P

(j)
:,l >

∥P(i)
:,l ∥∥P

(j)
:,l ∥

(5.2)

where < ., . > denotes the inner product, ∥.∥ represents the vector norm and P
(i)
:,l is the lth

column of profile matrix of user i.

Let A(l) = {a(l)ij }ni,j=1, we can view A(l) as an adjacency matrix for a weighted graph G(l)

capturing the structure of users for category l. Since the categories are often diverse in social

network, the relationship among users is heterogenous. In the following section, we detail

how to incorporate the heterogenous relationship into learning framework.
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5.3.4 Heterogenous Task Relationship Incorporation

We capture the structure relationships among tasks for t categories as an undirected multi-

graph G = {G(l)}tl=1, whose nodes correspond to the set of k tasks. Edges in the graph

G are multi-edges and weighted, with aij ∈ Rt defined in Equation (5.2) representing the

similarity vector between user i and j. In Figure 5.3, we have shown a multi-graph with two

categories on three users.

Given n posts (training samples) and the multi-graph collected from the whole social

network for k users, we further assume all the tasks share the same training data since our

goal is to predict the user activities towards these n samples. We incorporate the heteroge-

nous structure information by adding a Tikhonov regularization factor
∑n

l=1

∑k
i,j=1 I

T
:,l

aij∥wi−wj∥22 to enforce that the task parameters vary smoothly for neighboring users, where

It×n is the indicator matrix with Ijk = 1 if the kth article belongs to the jth category and 0

otherwise.

The Tikhonov regularization factor can be conveniently written in matrix format in terms

of graph Laplacian matrix for individual graph G(l), (1 ≤ l ≤ t) defined on each category

of information content
∑t

i=1 ritr(WLiW
T ), where ri =

∑
j Iij, (1 ≤ i ≤ t) is the sum of

the ith row in matrix I to summarize the number of posts belonging to the ith category.

Note that we also allow category overlapping, which means that each column of I may have

multiple 1s.

Combining with l1 penalty, the composite regularization function is:

R(W) = λ1∥W∥1 +
λ2
2

t∑
i=1

ritr(WL(i)WT ) (5.3)

where λ1 > 0, λ2 > 0 are the regularization parameters, L(i) is the Laplacian matrix of G(i)

given by L(i) = D(i)−A(i). A(i) is the k by k adjacency matrix for category i and D(i) is the

density matrix of A(i), defined as D(i) = (d
(i)
j,l )

k
j,l=1 where d

(i)
j,l =


∑k

p=1A
(i)
j,p if j = l

0 otherwise
. To
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avoid any user (task) or category dominate (5.3), we use normalized graph laplacian defined

in [32] and normalized category vector r = [r1, · · · , rt]T by dividing max{ri|1 ≤ i ≤ t}.

Without state otherwise, r and graph Laplacian {L(i)}ti=1 are all normalized.

The interpretation of regularization function (5.3) is two folds: (1) we penalize each task

individually via l1 norm rather than block regularization such as l1/l2 to select features due

to the nonuniformity diverse interests of users; (2) we encourage the followers that show

interests on the same categories occurred in training data to have similar solutions.

5.3.5 MTL with Heterogenous Task Relationships

By plugging (5.3) into (5.1), we have the following objective function:

min
W

k∑
i=1

n∑
j=1

ℓ(yij, fi(xj)) +R(W) (5.4)

Since all tasks share the same design matrix, (5.4) can be further simplified as:

min
W

1

2
∥Y −XW∥2F +R(W) (5.5)

where Yn×k = [y1, · · · ,yk] is the response matrix with ith column yi ∈ Rn, Xn×p =

[x̃1, · · · , x̃n]
T is the data matrix with the ith row x̃i ∈ Rp.

Equation (5.5) treats all samples equally, which is only suitable for balanced data sets.

Due to the unbalanced sample ratio (a user only responses to a limited number of messages),

we introduce a weighting scheme based on positive and negative sample ratio for each task

to guarantee that the misclassification cost is more on rare samples. Consider the following

optimization problem:

min
W

1

2
∥B⊗ (Y −XW)∥2F + λ1∥W∥1 +

λ2
2

t∑
i=1

ritr(WL(i)WT ) (5.6)

where ⊗ is the element-wise product and Bn×k is the weight matrix. For the ith task, let
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P = {j|yij = 1} denotes the indices of positive samples, then the weights for positive samples

in ith task are given by BP,i = 1− |P|/n and negative sample weights are B[1,k]\P,i = |P|/n,

where |P| is the cardinality of set P .

The major challenge in fitting the model described in Equation (5.6) to data is to estimate

the parameters W efficiently and accurately. In the following subsection, we provide the

optimization algorithm.

5.3.6 Optimization Algorithms

We propose an efficient algorithm to solve (5.6) based on accelerated gradient decent [126]

and projected gradient [15]. The convergence rate of ordinary first order gradient method

is O(1/ϵ) [126] for smooth problems, where ϵ is the desired accuracy. To have a better

convergence rate, we use Nestrerov accelerated gradient descent method [127] with O(1/
√
ϵ)

convergence rate, and solve the generalized gradient update step for each gradient update

step. Such a procedure has demonstrated good scalability and fast convergence in solving

various MTL formulations [26, 112].

First, it is straightforward to verify that Equation (5.6) is convex w.r.t. W, hence we can

guarantee a global optimal solution. This is because the first two terms are convex, and the

sum of trace norm in the third term is also convex due to the positive semi-definite property

of graph laplacian and nonnegativity of the normalized category summarization.

Second, Equation (5.6) can be decomposed into two parts: smooth parts and nonsmooth

parts. Let F (W) = f(W) + λ1||W||1 with f(W) taking the smooth part:

f(W) =
1

2
∥B⊗ (Y −XW)∥2F +

λ2
2

t∑
i=1

ritr(WL(i)WT ) (5.7)

For simplicity, let M = Rp×k. It is easy to verify that (6.9) is a convex and smooth function

88



over W with Lipschitz continuous gradient satisfying:

∥∇f(Wx)−∇f(Wy)∥F ≤ Lf∥Wx −Wy∥F , ∀Wx,Wy ∈ M (5.8)

where Lf is the Lipschitz constant.

Considering the minimization problem of the smooth function f(W) without l1 regular-

ization using first order gradient descent method, it is well known that the gradient step has

the following update at step i+ 1 with step size 1/Li:

Wi+1 = Wi −
1

Li

∇f(Wi) (5.9)

In [126], it has shown that the gradient step (6.11) can be reformulated as a linear ap-

proximation of the function f at point Wi regularized by a quadratic proximal term as

Wi = argmin
W

fLi
(W,Wi), where

fLi
(W,Wi) = f(Wi) + ⟨W −Wi,∇f(Wi)⟩+

Li

2
∥W −Wi∥2F (5.10)

Based on the relationship, we combine (6.12) and nonsmooth part together to formalize the

generalized gradient update step:

QLi
(W,Wi) = fLi

(W,Wi) + λ1||W||1

qLi
(Wi) = argmin

W
QLi

(W,Wi)
(5.11)

The insight of such a formalization is that by exploring the structure of l1 regularization, we

can easily solve the optimization in (6.13), then the convergence rate is the same as that of

gradient decent method. Rewriting the optimization problem in (6.13) and ignoring terms

that do not depend on W , the objective can be expressed as:

qLi
(Wi) = argmin

W∈M
(
1

2
∥W − (Wi −

1

Li

∇f(Wi))∥2F +
λ1
Li

||W||1) (5.12)
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(6.14) can also be interpreted as gradient projection [15] on a convex set specified by the

mixture norm R(W ). In this paper, we only consider the equivalent Lagrange form.

As mentioned previously, we employ Nesterov’s method to obtain a better convergence

rate. Nesterov’s method amounts for using two sequences {Wi} and {Si} in which {Wi} is

the sequence of feasible solutions and {Si} is the sequence of search points. At each step,

Si = Wi + αi(Wi −Wi−1), where αi is the combination coefficient specified in algorithm 1.

Bellow we present the accelerated projected gradient algorithm and the stopping criteria is

the change of objective values in two successive steps is less than some predefined threshold

(eg. in this paper 10−6).

Algorithm 5 Accelerated Projected Gradient Descent Algorithm

1: Input: W0 ∈ Rp×k, L1 > 0, F (.), QL(., .) and max-iter.
2: Output: W.
3: Initialize W1 := W0, t−1 := 0, t0 := 1;
4: for i = 1 to max-iter do
5: αi := (ti−2 − 1)/ti−1;
6: S := Wi + αi(Wi −Wi−1);
7: while (true) do
8: Compute qLi

(S) in generalized gradient update in (6.14);
9: if F (qLi

(S)) > QLi
(qLi

(S),S) then
10: Li := 2× Li;
11: else
12: break;
13: end if
14: end while
15: Si+1 := qLi

(S), Li+1 := Li;
16: ti :=

1
2
(1 +

√
1 + 4t2i−1);

17: if (Convergence) then
18: W := Wi+1, break;
19: end if
20: end for
21: return W;

Now we focus on how to solve the generalized gradient update in (6.14). Let C =
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Wi − 1
Li
∇f(Wi) and λ̃ = λ1/Li, (6.14) can be represented as:

qLi
(Wi) = argmin

W
(1
2
||W −C||2F + λ̃||W||1)

= argmin
wij

∑p
i=1

∑k
j=1(

1
2
(wij − cij)

2 + λ̃|wij|)
(5.13)

where wij is the ijth element of W. By the additivity of (6.15), we decompose (6.15) into

p× k subproblems. For each subproblem, we ignore the index i, j:

min
w

1

2
(w − c)2 + λ̃|w| (5.14)

For simplicity, c and w are scalars. Problem (6.16) is a one dimensional optimization and

the analytical solution can be easily found. The optimal solution for (6.16) is given by:

w∗ =

 (1− λ̃
|w|)w |c| > λ̃

0 otherwise
(5.15)

With Eq. (6.15) and (6.17), the problem of generalized gradient update (6.14) can be solved

efficiently in a linear time complexity.

5.4 Experiment

We have conducted experiments with four real world data sets crawled from digg.com. To

evaluate the performance of our MTL algorithm (MTLTLap), we compared our method

with: (1) single task learning algorithm linear kernel SVM [169] with feature selection method

SVMRFE [63]; (2) Multi-task feature learning with l1/l2 regularization (MTLF) [112] without

considering task relationship; and (3) MTL with homogenous networked task relationship

(MTLALap) [88]. We have carefully implemented our method MTLTLap, MTLALap and

used LIBSVM [24] integrated with spider toolbox [172] for SVM and SLEP package [113] for

MTLF.
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5.4.1 Data sets

We have crawled four data sets from digg.com, in which there are 10 categories of articles.

Due to the tremendous number of users in digg.com, it is impossible to perform analysis for

every user. Instead we randomly select four users as “seeds” and collect their article contents

as well as their followers’ activities towards these articles. The activities are comment, digg,

comment & digg and no action. For a seed user, we treat each article as a sample with

bag-of-words representation, where the words (features) are extracted from all the articles

the seed user submitted. We remove stop words, normalize words and calculate their TF-

IDF values with porter stemmer available at http://sourceforge.net/projects/wvtool/.

Each follower corresponds to a task, where the action of comment or digg are treated as 1 and

no action as -1. We eliminate these followers whose total number of comments and diggs on

the seed is less than 5. To build the multigraph for capturing the heterogenous relationships

Table 5.1: Data set: the symbol of the data set. #T : total number of tasks (followers), #S: total
number of samples (stories), #F : total number of features, #C: total number of categories

Seed username #T #S #F #C
S1 nichewp 11 71 942 3
S2 buhlerchelsey 15 61 3217 5
S3 GIVINGAWAY 12 57 1167 2
S4 arjunchauhan24 10 41 1416 5

among the followers, we also collect the number of submissions, diggs and comments of these

followers on each category. Each follower has a 3 by 10 user profile matrix. In Table 5.1, we

summarize the characteristics of the five data sets.

5.4.2 Evaluation Criteria

Model Construction: We partition each data set into 5 folds to perform 5-fold cross-

validation (CV). For MTL methods, we use another 5-fold CV on the training data set to

select the regularization parameters λ1 and/or λ2 with a simple grid search in the range

of [210, 29, · · · , 2−10]. For SVM, we first use 5-fold CV to select the number features in the
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rage of {25, 50, 75, · · · , 300}, then another 5-fold CV to select parameter C in the range of

[210, 29, · · · , 2−10].

Model Evaluation: We collect the following metrics:

precision = TP/(TP + FP )

recall = TP/(TP + FN)

F1 = 2 ∗ precision ∗ recall/(precision+ recall)

where TP stands for true positive, FP stands for false positive, TN stands for true negative,

FN stands for false negative. All the values reported are collected from the testing data set

only and are averaged across 5-fold CV with 6 replicates. Note that since thee is even no

positive samples available in testing data during cross validation due to the imbalanced class

ratio, we skip such folds when averaging the final F1 score.

5.4.3 Experiment Performance

We compare our method with SVM, MTLF and MTLALap in terms of the average F1 score

for four different data sets in Figure 5.4. The standard deviation for each task is around

8%-15% for all the methods and we do not report them for simplicity. From Figure 5.4,

we observe that the performance of single task SVM is very unstable compared with MTL

approaches. For example, the average F1 score is 0 for the 5th task of nichewp (S1) because

SVM predicts all the samples as negative (no comment or digg action) when the class ratio is

unbalanced. However for the 2nd task, the performance is comparable to MTLF because the

class ratio is balanced. Such an observation demonstrates the advantages of MTL vs STL

for improving the generalization performance especially when training samples are limited

and imbalanced.

Among the MTL methods, MTLALap and our method MTLTLap outperform MTLF

for most tasks for four data sets, which confirms that considering the relationship among

tasks will boost the learning performance. Finally, compared with MTLALap without dif-
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Figure 5.4: Average F1 score for 4 seed users. Each figure’s title corresponds to a username.

Table 5.2: Average F1 score, Precision and Recall of three MTL methods on 3 tasks of seed S2.
black fonts denote the highest values among all competing methods for a task.

T2 T4 T10
Method F1 Precision Recall F1 Precision Recall F1 Precision Recall

MTLTLap 0.519 0.402 0.733 0.590 0.485 0.751 0.585 0.446 0.850
MTLALap 0.470 0.363 0.667 0.561 0.461 0.714 0.542 0.413 0.789
MTLF 0.577 0.573 0.581 0.525 0.517 0.533 0.485 0.419 0.576

ferentiating the heterogenous social connections, our approach MTLTLap performs better,

although the difference is subtle for some tasks. The reason is that when the training samples

are dominated by only one or two categories (i.e. S2), our method may not perform very

well compared with MTLALap especially when the true topology actually reflects the user

interests.

To further explore why our approach provides a reasonable performance compared with

the other methods, we select three followers 2, 4 and 10 from S2, which corresponds to
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the example shown in Figure 5.2. The data set of S2 covers 5 categories dominated by

technology and game and the result is shown in Table 5.2. We see that MTLTLap and

MTLALap outperforms MTLF for two out of three tasks, which confirms the importance

of task relationship incorporation. Meanwhile, the F1 score and recall of the third strategy

MTLTLap is consistently better than MTLALap, which demonstrates that our approach can

more effectively identify positive samples in an unbalanced classification task.

To explain this phenomenon, we recall the similarities of the three followers as shown

in Figure 5.3: F1, F2 and F3 all like technology but with different levels; Meanwhile, F1

and F2 share interests in entertainment. Disregarding the information content category in

the training data, the heterogenous relationship among followers will be either mixed (i.e.

MTLALap) or ignored (i.e. MTLF). However in our approach, by introducing heterogenous

task relationship induced by different categories and the weight of each category in the

training data, we enforce similar tasks to have similar parameters based on the categories

specified in the training data. Hence our prediction result is more stable and the resulting

model is more interpretable.

5.5 Conclusions

In this paper, we tackle the problem of predicting user behavior to friends’ postings in so-

cial networks. We argue that social information flow and socialization behaviors are not

only related to social relationships (i.e. graph topology), but also information contents

and user interests. Therefore, we should integrate all these factors to construct a better

model. Towards that end, we presented a multi-task learning algorithm with heterogenous

task relationships, in which we capture the heterogenous relationships induced by differ-

ent information categories among users as an undirected multigraph and incorporate such

information by introducing a trace norm regularized graph Laplacian to standard MTL for-

malization. Using a comprehensive experimental study with social network data collected
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from digg.com and comparing with current state-of-the-art, we demonstrate that the new

algorithm achieves better prediction performance.
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Chapter 6

Multi-task Learning with Structured

Input and Output

In Chapter 3 and 4, we have discussed one line of my research on learning from the data

with structured input. In particular, the input features have structural information and the

structural relationship is given as a prior. In Chapter 5, we have demonstrated the utility of

multi-task learning with structured output tasks in the application of social network analysis.

It is worthwhile to investigate the problem of multi-task learning with both structured input

and output.

Multi-task Learning (MTL) aims to enhance the generalization performance of supervised

regression or classification by learning multiple related tasks simultaneously. In this chapter,

we aim to extend the current MTL techniques to high dimensional data sets with structured

input and structured output (SISO), where the SI means the input features are structured

and the SO means the tasks are structured. We investigate a completely ignored problem

in MTL with SISO data: the interplay of structured feature selection and task relationship

modeling. We hypothesize that combining the structure information of features and task

relationship inference enables us to build more accurate MTL models. Based on the hypoth-

esis, we have designed an efficient learning algorithm, in which we utilize a task covariance
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matrix related to the model parameters to capture the task relationship. In addition, we

design a regularization formulation for incorporating the structured input features in MTL.

We have developed an efficient iterative optimization algorithm to solve the correspond-

ing optimization problem. Our algorithm is based on the accelerated first order gradient

method in conjunction with the projected gradient scheme. Using two real-world data sets,

we demonstrate the utility of the proposed learning methods.

6.1 Introduction

Multi-task learning (MTL) has recently attracted extensive research interest in the data

mining and machine learning community [25, 26, 29, 41, 111, 112]. It has been observed

that learning multiple related tasks simultaneously often improves modeling accuracy and

leads to better feature selection, especially in cases where each task has very limited number

of training samples. MTL has been applied to a wide range of application areas including

information retrieval [25], computational neuroscience [111], genetic analysis [191], disease

progression prediction [195], image classification [26] and collaborative filtering [186].

We aim to extend the current MTL techniques to high dimensional data sets with struc-

tured input and structured output (SISO) [111, 88, 189, 191]. SISO data types could be

found in a diverse set of application domains including health care [130, 152, 157], infor-

mation flow analysis in social networks [140], computational neuroscience [111, 122] and

information retrieval [25]. For example in information flow analysis of social networks [140],

we model a user’s behavior regarding the social information (e.g. whether they recommend

a video to a user group in YouTube or whether they participate in a discussion) to quan-

tify the user interest in the information content [28, 181]. Such modeling usually involves

multiple users that can be divided into different communities with different interests and

background (SO). The social information content is usually represented as a bag of words

with a high dimensionality where words have relationships (SI) such as being synonymous

98



or antonymous [48].

Recognizing the fact that not all tasks are uniformly related, there is substantial research

interest in modeling task relationships in the state-of-the-art MTL methods [5, 13, 79, 177,

189]. For example, several recent MTL algorithms modeled task relationship as a covari-

ance matrix [13, 79, 189] or positive definite matrices linked to the task parameters [5] and

learned such matrices from data. The common concern of these methods is that there is

no feature selection in the modeling process and that makes those models less attractive for

high dimensional data.

In this paper, we investigate a completely ignored problem in MTL with SISO data: the

interaction of structured feature selection and task relationship modeling. Although feature

selection has been widely utilized in MTL to improve modeling accuracy [4, 111, 112, 136,

191], the core limitation of these feature selection methods in MTL, when applied to complex

real-world data sets, is the ignorance of the potential interplay between the structured input

and the task relationship. We illustrate the limitation with the following example.

Considering a problem of predicting cancer status based on Microarray data sets, where

there are multiple different data sets for different types of cancers. Each data set is composed

of multiple Microarray data from patients who have or do not have the specific cancer. Some

cancers are “similar” to each other (e.g. breast cancer vs ovary cancer) while some are quite

different (e.g. breast cancer vs prostate cancer). For similar cancer types (tasks), learning

models built for those similar cancer types (tasks) are expected to share similar features; for

dissimilar ones, learning models are expected to select different features. However, current

feature selection methods for MTL [4, 111, 112, 136, 191] select a common subset of features

across all the tasks. Moreover, features in the case study are genes and they have structured

input since genes are typically organized as pathways. Such pathway information is known

important for predictive model construction in multiple studies [47, 106]. In this example,

the gene pathway information provides the possible structure information of features (genes)

and the cancer type similarity provides possible structure information regarding learning
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tasks (predicting whether a patient has a specific cancer type). The challenges of designing

learning algorithms is how to (i) incorporating such information for efficient MTL and (ii)

inferring such structure information, if necessary, to gain insights of the data. Further details

of the case study could be found in the section of our experimental studies.

We hypothesize that combining structured feature selection and task relationship in-

ference enables us to build more accurate MTL models for SISO data. Our hypothesis is

based on the following insights: (1) discriminative and informative features will guide more

accurate task relationship inference; and (2) accurate task relationship will benefit feature

selection.

Towards an efficient incorporation of structured input and task relationship inference, we

have designed a regularized MTL model where we use an undirected graph defined on features

(feature graph) to capture the structured input and learn a task covariance matrix related to

the task parameters to measure the task relationship. To enable that dissimilar tasks select

different subsets of features, we use l1 regularization to penalize each task individually, and

use trace regularization on the task covariance matrix to encourage similar tasks to share a

similar subset of features. We have derived efficient optimization algorithms based on the

Nestrerov’s accelerated gradient descent algorithm [127] and the projected gradient scheme

[15] to solve the corresponding optimization problem.

Though our methodology is generic, our paper is particularly motivated by two real-world

problems from the health care domain, that of micoraray based cancer prediction and that

of neuron response prediction. Our experimental studies demonstrate the effectiveness of

the proposed MTL method as compared to the state-of-the-art MTL algorithms on the two

real-world applications.
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6.2 Related Work

In this section, we summarize the related work. Since we propose a feature selection method

for multi-task learning, we first briefly introduce feature selection and then discuss Multi-task

Learning.

Current methods for feature selection can be roughly divided into two categories: feature

extraction and feature selection. Feature extraction methods [60, 184], such as Principle

Component Analysis (PCA) and Linear Discriminative Analysis LDA [184], project data

to a lower dimensional space and hence obtain a small number of latent features. Feature

selection methods (filtering and wrapper methods) select individual/subset of informative

features that are relevant to class labels. For example, Kong et al. [97] proposed a branch-

and-bound feature selection algorithm for multi-label graph classification; Nizar Bouguila et

al. [14] adopted feature selection in mixture model for text and image categorization; Zhang

et al. [192] developed a feature selection method via supervised dimensionality reduction

while preserving the locality of data points. In [12], a comprehensive study of feature selection

methods is evaluated on synthetic data.

In parallel, MTL has been widely investigated in data mining and machine learning

communities. The state-of-the-art multi-task learning algorithms may be roughly divided

into three categories based on how they utilize the task relationship. Multi-task feature

learning [4, 111, 112, 136] assumed all the tasks were homogenous and learned a common low

dimensional representation without considering the task relationship. The common features

were learned by block regularization such as l1/l2 [4, 112] and l1/l∞ [29, 111, 136]. MTL

with known task relationship [6, 40, 88, 150] utilized the prior knowledge on task relationship

via trace norm regularization to learn model parameters so that similar tasks share similar

parameters. However, such methods used all the features to build MTL model and were

not suitable for high dimensional data. Besides, the task relationship is not always available

beforehand. MTL with task relationship inference [5, 13, 79, 189] learned a task covariance

matrix [13, 189], a spectral function linked to the task covariance matrix [5] or a general
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positive semi-definite matrix [79] describing clustered tasks from data. Nevertheless, such

methods used all the features and hence afford no sparsity in their solutions. As pointed

in [117], taking advantage of sparsity in multi-task learning is very important for improving

the generalization performance, especially for tasks with high dimensional feature space and

low sample size.

To alleviate the problem of existing methods, Zhang et al. [191] recently extended

their previous work in [189] to perform feature selection and task relationship inference

simultaneously by employing a block-regularization with the l1/lq norm regularization where

1 < q < ∞. The limitations of the work are that (i) the method ignores the possible struc-

tured input information among features; and (ii) the method selects a subset of features for

all tasks regardless the relatedness the tasks.

Recently, there is growing interest to detect irrelevant (outlier) tasks in the development

of the multi-task learning algorithms [27, 185]. For example, Chen et al. captured the

relationship of multiple related tasks using a low-rank structure and meanwhile identified

the outlier tasks using a group-sparse structure. However, these works only detect task

outliers without indicating how relevant the remaining tasks are. Furthermore, the potential

structured input information is not utilized.

We summarize the most recent related work in Table 6.1. x means the method has the

corresponding property. For each category, we select one representative method. The symbol

of the table is as following: SF, Sparse Feature; TRF, Fixed Task Relationship; TRI, task

relationship inference; SI, Structured Input; MTLasso, Multi-task feature learning [111];

MTLFTR, MTL with fixed task relationship [88]; MTLTR, MTL with task relationship

inference [189]; MTLPTR: MTL with feature learning and task relationship inference [191].

Though MTL has been studied for a long time, none of the existing methods considers

the interaction of structured input information among features and heterogeneous task re-

lationship inference simultaneously. The objective of this paper is to incorporate structured

feature selection and heterogenous task relationship inference into MTL to build a more
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Table 6.1: Summarization of related work.

SF TRF TRI SI
MTLasso x
MTLKTR x
MTLTR x
MTLPTR x x

accurate and interpretable model.

6.3 Methodology

In this section, we describe the proposed MTL framework. Our framework is an extension

to [4, 111, 112], i.e., task parameters lie in a linear manifold and share a common linear

subspace. As mentioned earlier, due to the existence of heterogenous tasks, it is impractical

that all the tasks share a common linear subspace (subset of features).

In our approach, we adopt the technique in [189] that utilized a task covariance matrix

to model the task relationship. Moreover, rather than jointly selecting features across all the

tasks via block regularization as the previous work [4, 111, 112], we allow each task to select

its own subset of features and similar tasks to share similar model parameters as well as

common features. In addition, we incorporate the structured input information of features

into MTL so that the selected features are clustered or tended to be connected on the graph

for better model interpretation.

6.3.1 MTL with Sparse Features and Task Relationship Inference

We first consider the problem of MTL with heterogenous tasks and our aim is to derive

model parameters and task relationship simultaneously. The same problem was investigated

in [191], in which the problem was cast in a probabilistic framework and the task relationship

was measured by a task covariance matrix specific to the columns of model parameters. To

achieve a sparse solution, the authors assumed that task parameters share a common a subset
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of features and employed l1/lq (1 < q <∞) block regularization to model parameters.

As what we mentioned above, each task in our framework selects its own subset of features

and the feature sets of two closely related tasks have common features. Adopted the task

relationship regularization component in [189], we penalize each task individually and solve

the following optimization problem:

min
W,Ω

k∑
i=1

ni∑
j=1

ℓ(yij, fi(x
i
j)) + λ1||W ||1 +

λ2
2
tr(WΩ−1W T )

s.t. Ω ≽ 0 tr(Ω) = k

(6.1)

where W is the model parameters with each column corresponding to a task, Ω is the task

covariance matrix and λ1, λ2 > 0 are regularization parameters that controls the model

sparsity and smoothness across tasks. The l1 regularization penalizes each task individually

and the trace regularization term enforces task parameters to be similar according to the

similarity encoded in the covariance matrix inverse, also known as precision matrix, whose

elements have an interpretation in terms of partial correlations.

6.3.2 Structured Input Incorporation

We capture the structured input information among features as an undirected graph G whose

nodes represent the features. Edges represent a particular relationship between pairwise

features and are weighted with aij denoting the weight between feature i and feature j. We

call such a graph defined on features feature graph. For example, if features are genes or

bag-of-words, the feature graph can be constructed either from domain knowledge (e.g. gene

pathways, wordnet [48]) or derived from data [145]. We will detail how to build the feature

graph for the two real world data sets in our experimental studies.

We incorporate the structure information of features by adding a Tikhonov regularization

factor
∑p

i,j=1 aij∥w̃i−w̃j∥22 to enforce that the parameters vary smoothly for neighboring fea-

tures, where w̃i is the ith row of W . The Tikhonov regularization factor can be conveniently
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Figure 6.1: A demo for the Multi-task linear model with structured input (SI) and task relationship
inference (SO) with 5 features and 3 tasks. Solid line square represents input and dashed line square
represents output.

written in matrix format in terms of graph Laplacian matrix L as tr(W TLW ), where L is

the Laplacian of G given by: L = D−A. A is the p by p adjacency matrix A = (ai,j)
p
i,j=1. D

is the density matrix of A, defined as D = (di,j)
p
i,j=1 where di,j =


∑p

k=1 ai,k if i = j

0 otherwise
.

To avoid having any feature “dominate” the penalization function, we use the normalized

Laplacian D− 1
2LD− 1

2 to normalize the weight of each feature.

A similar formalization was proposed in [44] for single task learning in the boosting, but

it is a special case of our MTL framework when there is only one task. Combining the sparse

regularization and task relationship modeling, we consider the following objective function:

min
W,Ω

k∑
i=1

ni∑
j=1

ℓ(yij, fi(x
i
j)) + λ1||W ||1+

λ2

2
tr(W TLW ) + λ3

2
tr(WΩ−1W T )

s.t. Ω ≽ 0 tr(Ω) = k

(6.2)

The trace regularization term tr(W TLW ) in (6.2) imposes smoothness across features,

in other words, the selected features tend to be connected in the feature graph.

In Figure 6.1, we show our scheme for a data set with p = 5 features and k = 3 tasks.
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The structured input in this example is the graph defined on 5 features and the output are

the model parameters W and task covariance matrix Ω.

6.3.3 Relationship with existing MTL algorithms

As we discussed before, some existing MTL algorithms [4, 111, 112] assume a uniform task

relationship to jointly select features, while others [88, 79, 189, 191] treat tasks non-uniformly

and either assume the task relationship is given as a prior or learn the relationship from data.

In this section, we discuss the relationship our method with these existing regularized MTL

algorithms.

The objective function for multi-task feature learning [4, 111, 112] can be summarized in

the following form:

min
W

k∑
i=1

ni∑
j=1

ℓ(yij, fi(x
i
j)) + λR(W ) (6.3)

where R(W ) is the regularization function on model parameters and it could be l1/l2 or l1/l∞.

In our framework, we use l1/l1 to enforce sparsity and feature laplacian L2 regularization to

add smoothness on feature selection.

The methods in [40, 88] assume the task relationship is given and they incorporate it into

learning via R(W ) = tr(WLW T ), where L is the task relationship graph laplacian. In our

framework, Ω−1 = L. Obviously, a limitation of these methods is that only feature selection

is ignored.

The most related work to ours are the MTL task relationship learning (MTLTR) [189]

and MTL feature selection and task relationship learning (MTLPTR) [191]. In MTLTR, the

objective function takes the following form:

min
W,Ω

k∑
i=1

ni∑
j=1

ℓ(yij, fi(x
i
j)) + λ1tr(WW T ) + λ2tr(WΩ−1W T ) (6.4)

where Ω is the task covariance matrix and the second term is used to stabilize the solution.
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Compared with MTLTR. our formulation (6.2) considers feature selection and it shows a

superior performance for high dimensional data. For MTLPTR [191], they extended their

work in [189] to perform feature selection via l1/lq where 1 < q < ∞. Though considering

feature selection, the method neglects the structured input information. Furthermore, the

block regularization selects features regardless of task relevance since once one feature is

selected by a few tasks, the same feature has to be chosen by other tasks as well. We will

detail the issue in our experimental study.

In summary, compared with existing methods, our method is very appealing in that it

can not only learn task relationships, but use the task relationship and structured input

information on features to guide feature selection. This makes it easy to identify the tasks

and relevant features that are useful for multi-task learning.

6.3.4 Optimization

We propose an efficient algorithm to solve (6.2) based on the accelerated gradient decent

method [126] and the projected gradient scheme [15]. The convergence rate of ordinary first

order gradient method is O(1/ϵ) [126] for smooth problems, where ϵ is the desired accuracy.

To have a better convergence rate, we use the Nestrerov accelerated gradient descent method

[127] with O(1/
√
ϵ) convergence rate, and solve the generalized gradient update step for

each gradient update step. Such a procedure has demonstrated good scalability and fast

convergence in solving various sparse learning formulations [26, 82, 112].

First, we characterize the convexity of (6.2) in the following theorem.

Theorem 6.3.1. The problem (6.2) is jointly convex for W and Ω.

Proof. It is obvious that the first two terms are convex w.r.t. W . For the third term, the

trace regularization term regularization tr(W TLW ) =
∑k

i=1w
T
i Lwi is also convex since L

is the graph Laplacian and hence positive semi-definite. The last term tr(WΩ−1W T ) =∑p
i=1 w̃iΩ

−1w̃T
i is also convex w.r.t. W and Ω under the constrain Ω ≽ 0 [15, 189], where
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w̃i is the ith row of W . Hence the objective function (6.2) and the constraints are convex

with respect to all variables and hence problem (6.2) is jointly convex.

Since (6.2) is jointly convex for W and Ω, a global optimal solution is guaranteed. How-

ever, it is difficult to optimize two variables simultaneously. Below, we present an algorithm

to solve (6.2), which optimizes W , Ω iteratively and alternatively.

Ω given W : If W is fixed, we can ignore the regularization part independent of Ω. Now

(6.2) degenerate to

min
Ω

tr(WΩ−1W T )

s.t. Ω ≽ 0 tr(Ω) = k
(6.5)

The solution is given by:

Ω =
kA

1
2

tr(A
1
2 )

(6.6)

where A = W TW is the gram matrix. We can obtain the solution (6.6) using Cauchy-Schwarz

inequality on equation (6.5). Refer to [189] therein for the proof.

W given Ω: On the other hand, if Ω is fixed, the optimization becomes:

min
W

K∑
i=1

ni∑
j=1

ℓ(yij, fi(x
i
j)) + λ1||W ||1+

λ2

2
tr(W TLW ) + λ3

2
tr(WΩ−1W T )

(6.7)

Now (6.7) can be rewritten as:

min
W

F (W )
def
= f(W ) +R(W ) (6.8)

where f(W ) takes the smooth parts of (6.7)

f(W ) =
k∑

i=1

ni∑
j=1

ℓ(yij, fi(x
i
j)) +

1

2
λ2tr(W

TLW ))

+λ3

2
tr(WΩ−1W T )

(6.9)
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and R(W ) takes the nonsmooth part,

R(W ) = λ1∥W∥1 (6.10)

Considering the minimization problem of the smooth function f(W ) without regulariza-

tion R(W ) using first order gradient descent method, it is well known that the gradient step

has the following update at step i+ 1 with step size 1/Li:

Wi+1 = Wi −
1

Li

∇f(Wi) (6.11)

In [126], it has shown that the gradient step (6.11) can be reformulated as a linear ap-

proximation of the function f at point Wi regularized by a quadratic proximal term as

Wi = argmin
W

fLi
(W,Wi), where

fLi
(W,Wi) = f(Wi) + ⟨W −Wi,∇f(Wi)⟩+

Li

2
∥W −Wi∥2F (6.12)

Based on the relationship, we combine (6.12) and (6.10) together to formalize the generalized

gradient update step:

QLi
(W,Wi) = fLi

(W,Wi) + λ1||W ||1

qLi
(Wi) = argmin

W
QLi

(W,Wi)
(6.13)

The insight of such a formalization is that by exploring the structure of regularization R(.),

we can easily solve the optimization in (6.13), then the convergence rate is the same as that

of gradient decent method. Rewriting the optimization problem in (6.13) and ignoring terms

that do not depend on W , the objective can be expressed as:

qLi
(Wi) = argmin

W∈M
(
1

2
∥W − (Wi −

1

Li

∇f(Wi))∥2F +
λ1
Li

||W ||1) (6.14)
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(6.14) can also be interpreted as gradient projection [15] on a convex set specified by R(W ).

In this paper, we only consider the equivalent Lagrange form.

As mentioned previously, we employ Nesterov’s method to obtain a better convergence

rate. Nesterov’s method amounts for using two sequences {Wi} and {Si} in which {Wi} is

the sequence of feasible solutions and {Si} is the sequence of search points. At each step,

Si = Wi + αi(Wi −Wi−1), where αi is the combination coefficient specified in algorithm 1.

Bellow we present the accelerated projected gradient algorithm. The stopping criteria is that

the change of objective values in two successive steps is less than a predefined threshold (e.g.

10−4).

Algorithm 6 Accelerated Projected Gradient Descent Algorithm

1: Input: W0 ∈ Rp×k, Ω ∈ Rk×k, L1 > 0, F (.), QL(., .) and max-iter.
2: Output: W .
3: Initialize W1 := W0, t−1 := 0, t0 := 1;
4: for i = 1 to max-iter do
5: αi := (ti−2 − 1)/ti−1;
6: S := Wi + αi(Wi −Wi−1);
7: while (true) do
8: Compute qLi

(S) in generalized gradient update;
9: if F (qLi

(S)) > QLi
(qLi

(S), S) then
10: Li := 2× Li;
11: else
12: break;
13: end if
14: end while
15: Wi+1 := qLi

(S), Li+1 := Li;
16: ti :=

1
2
(1 +

√
1 + 4t2i−1);

17: if (Convergence) then
18: W := Wi+1, break;
19: end if
20: end for
21: return W ;

Now we focus on how to solve the generalized gradient update in (6.14). Let C =
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Wi − 1
Li
∇f(Wi) and λ̃ = λ1/Li, (6.14) can be represented as:

qLi
(Wi) = argmin

W
(1
2
||W − C||2F + λ̃||W ||1)

= argmin
wij

∑p
i=1

∑k
j=1(

1
2
(wij − cij)

2 + λ̃|wij|)
(6.15)

where wij is the ijth element of W . By the additivity of (6.15), we decompose (6.15) into

p× k subproblems. For each subproblem, we ignore the index i, j:

min
w

1

2
(w − c)2 + λ̃|w| (6.16)

For simplicity, c and w are scalars here. Problem (6.16) is a one dimensional optimization

problem and the analytical solution can be easily found. The optimal solution for (6.16) is

given by:

w∗ =

 (1− λ̃
|w|)w |c| > λ̃

0 otherwise
(6.17)

With Eq. (6.15) and (6.17), the problem of generalized gradient update (6.14) can be

solved efficiently with the time complexity of O(pk).

We summarize what is briefly discussed previously in the algorithm (MTLapTR) bellow.

Given training data {Xi ∈ Rni×p}ki=1, {yi ∈ Rni}ki=1 and regularization parameters λ1, λ2, λ3,

we optimize two matrix variables alternatively and return the coefficient matrix W and

covariance matrix Ω.

6.4 Experimental Studies

We have performed a comprehensive evaluation of our algorithm (MTLapTR) on modeling

accuracy, task relationship inference and feature selection performance using two real-world

data sets. We have compared with the state-of-the-art methods including Multi-task Lasso

(MTLasso) [111], MTL with task relationship inference (MTLTR) [189] and MTL with fea-

111



Algorithm 7 Main Algorithm (MTLapTR)

1: Input: {Xi ∈ Rni×p}ki=1, {yi ∈ Rni}ki=1, λ1, λ2, λ3 and max iter.
2: Output: W,Ω.
3: Ω := Ik×k;
4: for iter = 1 to max iter do
5: Compute W given Ω using Algorithm 1;
6: Compute Ω given W via 6.6;
7: if (Converge) then
8: break;
9: end if
10: end for
11: return W,Ω;

ture learning and task relationship inference (MTLPTR) [191]. We obtained the source code

for MTLasso from the authors and implemented the other two methods since their executa-

bles are not available. To validate our hypothesis on the importance of incorporation of

structured input and task relationship inference, we have implemented two special cases of

our method: MTLapTR without Laplacian regularization (MTL1TR) and MTLapTR with-

out task relationship inference (MTLap). To demonstrate the utility of multi-task learning,

we also compared multi-task algorithms with single task learning algorithms: support vector

machine (SVM) and support vector regression (SVR) [169].

6.4.1 Data Sets

We utilized two real world data sets: fMRI data [111, 122] from computational Neuroscience

and Microarray data sets [130, 152, 157] for cancer diagnostics. The following details the

collection and preprocessing of the two data sets.

Microarray: The data set was composed of multi-category cancer tumors for human

collected from [130, 152, 157]. All the studied data sets were collected from Affymetrix

arrays HG-U95 or Hu6800, and expression values (average difference units) were computed

using the Affymetrix GENECHIP analysis software. In our experiment, we studied 8 binary

classification tasks, where 5 were from [157], 2 were from [130] and 1 was from [152]. From
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[157], we singled out 5 types of tumors of 11 in total: breast (BR), ovary (OV), kidney

(KI), liver (LI) and bladder (BL) as positive samples and perform random sampling from

the collection of the rest 6 categories as negative samples, resulting in 5 tasks. In [130], four

types brain tumors were investigated and we selected two challenging pairs: Brain Classific

GBM (BCG) VS Brain Non-classic GBM (BNG) and Brain Classic AO (BCO) VS Brain

Nonclassic AO (BNO) 1. In [152], we used the data of Prostate tumor (PR) VS normal tumor

for the 8th task. From the original probe sets, we first removed those genes with the variance

of < 0.3, then filtered out those without a valid mapping to a KEGG gene name. In our

final data set, we had 8925 common genes shared for the three Microarray data sets. From

Table 6.2: Microarray data sets for 8 tasks. 8925 features are shared for these tasks. #S:
total number of samples; #P: number of positive samples; #N: number of negative samples.

T1 T2 T3 T4 T5 T6 T7 T8
Data BR KI OV LI BL BCG BCO PR
#S 54 22 54 14 16 21 29 102
#P 27 11 27 7 8 14 14 50
#N 27 11 27 7 8 7 15 52

the KEGG database [86], we collected 212 human pathways, then merged those pathways

to generate a giant network and extracted the subnetwork incident on the 8925 genes as the

feature graph. In Table 6.2, we summarize the 8 tasks and their corresponding data sets.

fMRI: The fMRI data set was collected using the functional magnetic resonance imaging

technique (fMRI) at CMU [122]. Nine subjects were presented with 60 different words and

were asked to think about each word for several seconds while their neuron activities were

recorded. For each subject, there were 360 (60×6) fMRI images taken for the 60 words with

6 replications. Each voxel (volume-element) in an image recorded a neuron’s activity in the

brain. There were over 20,000 different voxels in a typical fMRI image. Following the same

procedure in [111], we averaged the fMRI images for each word and hence had 60 images for

the 60 words.

1GBM, glioblastoma; AO, Anaplastic Oligodendroglioma
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Each word in the data set is encoded as a feature vector with co-occurrence statistics from

the Google Trillion words. We used 5,000 features (p = 5000) for each word and constructed

the feature graph from the co-occurrence statistics [145] with the threshold 0.25.

6.4.2 Experiment Protocol

Below we present our approaches for model construction and model evaluation.

Model Construction. For the Microarray data, we created training and testing data

using the standard 5-fold cross-validation (CV). We performed another 5-fold CV on the

training data set to select the regularization parameters. Once those parameters were se-

lected, we generated a model from the entire training set with the selected parameters and

applied the model to the testing data set for prediction. All the regularization parameters

are tuned using grid search in the range of 28 to 2−8 with the power decreased by −1.

For the fMRI data set, we used the exact experimental protocols described in [111] for

generating training and testing samples. The only difference was that we performed feature

selection and model construction simultaneously rather than selecting features first then

building a regression model with the selected features via the ridge regression. Specifically,

the leave-two-out-cross-validation was performed. For the training set with 58 words, we ran-

domly divided them into two subsets with 80% and 20% and tuned regularization parameters

on the two subsets. We also selected top 500 stable voxels or top 250 stable plus 250 unstable

voxels based on the stability score2 defined in [122] to verify the importance of incorporation

of structured input and task relationship. Similarly, the regularization parameters are tuned

in the range of 28 to 2−8 for regularized MTL algorithms.

In applying single task learning algorithm to the two multi-task data sets, we separately

apply SVM to each Microarray cancer classification task (8 SVM models in total) and ϵ-SVR

to each voxel activity prediction task of fMRI data (500 models in total). We use libsvm [24]

with linear kernel for both SVM and SVR and tune C from 28 to 2−8 and ϵ from 21 to 2−6.

2Stability score measure the variation of voxel activity across the 58 training stimuli.
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Table 6.3: Average accuracy for 8 tasks. Bold text denotes the best performance and ∗
means the method statistically better than the rest.

T1 T2 T3 T4 T5 T6 T7 T8

SVM 0.91 ±0.05 0.90±0.11 0.98±0.02 0.93±0.12 0.67±0.20 0.76±0.21 0.72±0.04 0.90±0.05

MTLasso 0.94±0.08 0.93±0.09 0.99±0.03 0.98±0.07 0.83±0.09 0.57±0.18 0.79±0.04 0.83±0.07
MTLap 0.96±0.05 0.94±0.10 0.99±0.02 0.99±0.07 0.85±0.11 0.61±0.19 0.80±0.07 0.84±0.06

MTLapTR 0.98±0.05 0.95±0.11 1.00±0.00 0.99±0.05 0.90±0.10 0.78±0.19 0.88±0.06 0.91±0.09
MTL1TR 0.95±0.08 0.94±0.11 1.00±0.00 0.99±0.05 0.87±0.11 0.66±0.19 0.80±0.06 0.87±0.09
MTLPTR 0.93±0.09 0.93±0.12 0.98±0.04 1.00±0.00 0.85±0.08 0.64±0.17 0.81±0.07 0.86±0.10

MTLTR 0.92±0.06 0.92±0.10 0.99±0.03 0.97±0.09 0.82±0.16 0.62±0.18 0.76±0.17 0.82±0.10

Model Evaluation. For the Microarray data, we obtained binary prediction based on

the sign of the outcome from the test data. We collected accuracy ((TP+TN)/S) of the

trained model, where TP stands for true positive, TN stands for true negative, and S stands

for the total number of samples. All the accuracy reported was collected from the testing

data set only and were averaged across 5-fold CV with 10 replicates.

For the fMRI data set, we followed the same procedure in [111, 122] to derive accuracy

for each test set: (1) Predict the neuron response of the 500 selected voxels for the two

testing words; (2) Compute the cosine similarity of each prediction with each of the held out

images; (3) Based on the combined similarity scores, choose which prediction goes with each

held out image; (4) Test if the joint labeling was correct, which leads to an output of 0 or

1; (5) repeat the process several times and compute the ratio of correlated labeling over the

number of all trials. We repeated these above steps 400 times.

6.4.3 Experiment Results

In this section, we report the experiment results in term of accuracy. Bellow, we first report

the average classification accuracy with standard deviation for Microarray data set.

6.4.3.1 Microarray Results

In Table 6.3, we provide the average classification accuracy of the multi-task learning algo-

rithms and single task SVM for the 8 cancer types. We compared MTL algorithms with
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single task learning algorithm SVM. As shown in Table 6.3, MTL algorithms outperform

SVM in 6 out of 8 tasks, which proves the power of Multi-task learning v.s. single task

learning, especially when each task has limited training samples.

Among these MTL algorithms, we also observe that the method MTLTR without fea-

ture selection performs worse than the rest 5 MTL methods with feature selection, which

demonstrates the importance of feature selection in MTL for high dimensional data sets.

Second, we find that the three methods (MTLapTR, MTL1TR and MTLPTR) with task

relationship modeling performs slightly better than those without (MTLasso and MTLap).

Finally, among the three methods with task relationship modeling, our approach MTLapTR

with structured input incorporation performs better than the other two methods in 7 out of

the 8 tasks though the difference of performance may not be large. Among these 7 tasks,

there are 5 tasks with statistical significance (α = 5%).

Task Relationship Study In this section, we evaluate the task relationship modeling

performance compared with MTLTR [189] and MTLPTR [191]. We averaged the learned

task relationship covariance matrix Ω from 50 experiments for each method and created

a 3D embedding of Ω via the Ndaona package [105]. In Figure 6.2, we show the 3D plot

for each method. From the figure, we observe that there are approximate 4 groups for our

method MTLapTR in total: (I) T1 and T3; (II) T6 and T7; (III) T2, T5 and T8; (IV) T4. The

embedding is consistent with our knowledge, for example: T1 is Breast cancer prediction and

T3 is ovary cancer prediction. T1 and T3 are close to each other. Similarly, T2, T5 and T8 are

close to each other since they are related with uropoietic system.

To the contrary, MTLPTR (joint feature selection and task relationship learning) groups

T1, T2, T3 and T5 together but T8 is far away from T2 and T5, which does not make sense

since prostate cancer is closely related with kidney and bladder. MTLTR (task relationship

learning) only groups T1, T3 and T2, T5 together, but leaving T6, T7 separated. The low

dimensional embedding of task relationship demonstrates the effectiveness of our approach
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Figure 6.2: Task Relationship embedding for 3 methods in 3D space from Ndaona. Left: Our
method MTLapTR; Middle: MTLPTR; Right: MTLTR

in terms of task relationship modeling.

We want to mention that the task (cancer) relationship is empirically learnt from data

hence the relationship may not be all correct. For example according to the “factsheet” of

NIH [131], breast cancer can easily be spread to liver site resulting in Metastatic Cancer.

However, none of the three methods capture the relationship. The possible reason is that

we do not have any patients with Metastatic cancer that spread from breast to liver.

Feature Selection Performance One important aspect for measuring the quality of MTL

models is the sparsity of the learned models. To evaluate the feature selection performance

of our MTL approach, we singled out the selected features for each task in 50 experiments

(5 fold CV with 10 replications) with frequency at least 20 times. We also collected the

number of pathways for each task, in which these selected features occur. In Table 6.4, we

summarize the number of features and pathways for each task.

Table 6.4: Number of selected features and pathways per task. #F: number of features; #P:
number of pathways.

T1 T2 T3 T4 T5 T6 T7 T8
#F 2305 1207 2134 1056 887 959 1084 1624
#P 153 148 152 146 118 132 140 138

For comparison, we also collect all the features that appear at least 20 times in MTLPTR
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models in the 50 trials. We obtain 4301 features that belong to 196 pathways 3. Clearly our

approach builds much sparser models. We believe that the the block regularization utilized

in MTLPTR is the root cause for leading MTLPTR to select more features and pathways.

Using a block regularization, once a feature is selected by one task, the block regularization

enforces all the other tasks to select the same feature. With heterogeneous tasks, different

tasks favor different features and hence there are a large number of selected features.

As discussed before, our approach enables each task to select features that are specific to

the task. Different tasks are encouraged to select the same set of features if they are similar

to each other with the trace regularization term on the feature graph. To demonstrate the

power of the trace regularization term, we calculate the common features among selected

features for each task. We find that similar tasks share a large portion of features, but

dissimilar tasks may have different choices. For example, T1 and T3 are closely related. They

share 563 features. T1 and T4 are quite different and they only share 152 features.

Structured Input Inference One possible extension of our method is to infer the struc-

tured input given the task relationship. For that purpose, we calculated the average task

covariance matrix over 50 trials from the Microarray data and use that matrix to learn the

graph Laplacian L for the input data. We calculated the average L over 5 fold CV, dropped

positive off-diagonal entries, and enforced the negative entries with absolute value bellow

10−6 to 0. From the learned Laplacian, we extract the recovered graph on features. Since it

is difficult to visualize a giant graph, we show our result on a subgraph with 13 nodes 4 from

pathway hsa04070 (Phosphatidylinositol signaling system). We chose this pathway since it

is highly cancer related [74] and is relative small comparing with common pathways such as

p53. The learned pathway topology as well as that from KEGG is shown in figure 6.3.

We observe that our approach recovered 21 out of total 25 edges, and produced 8 addi-

tional edges. Our pathway topology is more balanced while the KEGG pathway has more

3MTLPTR selects the same feature set for all tasks due to the block regularization, hence a single number
is reported.

4The 13 genes’ KEGG IDs: 534, 535, 536, 1067, 1068, 2211, 2224, 2229, 2284, 3262, 4978, 5068, 7190.
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edges among the top 6 nodes (node 1-3, 11-13) than the bottom ones. This observation

may be an artifact due to the trace regularization that we used (which encourage a bal-

anced topology) or the additional 8 edges have biological meaning. Investigating the domain

relevance of the input structure inference is one of our future research directions.
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Figure 6.3: Comparing KEGG pathway (left) and learned pathway (right) for the Phos-
phatidylinositol signaling pathway. Solid lines represent edges from KEGG and dashed lines
represents additional edges learned from our algorithm.

6.4.3.2 fMRI Results

In the experiment study on Microarray data, we have demonstrated the importance of in-

corporating structured input and task relationship inference in MTL. Here we report the

experimental study of the same methodology to a totally different application domain: that

of fMRI data analysis.

In Table 6.5, we report the prediction accuracy on 9 subjects with 500 homogenous tasks,

in which the top 500 stable voxels extracted from training data for each trial were used. In

the table, we first observe that the performance of MTLTR is worse than the other 5 methods

even comparable with single task SVR, which confirms that feature selection is important

to boost the MTL performance for high dimension data. Among the methods with feature

selection, MTLap and MTLapTR work slightly better than the other 3 methods, which

119



Table 6.5: Prediction accuracy for 9 FMRI Participants with 500 homogenous tasks.

S1 S2 S3 S4 S5 S6 S7 S8 S9

SVR 0.760 0.720 0.728 0.723 0.627 0.497 0.576 0.510 0.700

MTLasso 0.790 0.733 0.717 0.797 0.657 0.493 0.603 0.527 0.723
MTLap 0.818 0.757 0.760 0.817 0.720 0.502 0.590 0.447 0.743

MTLapTR 0.830 0.753 0.767 0.820 0.680 0.577 0.606 0.460 0.763
MTLL1TR 0.820 0.719 0.695 0.807 0.677 0.447 0.560 0.353 0.743
MTLPTR 0.815 0.740 0.719 0.813 0.594 0.238 0.538 0.297 0.667

MTLTR 0.745 0.667 0.677 0.750 0.659 0.518 0.529 0.494 0.700

Table 6.6: Prediction accuracy for 9 FMRI Participants with 250 homogenous tasks and 250
heterogenous tasks.

S1 S2 S3 S4 S5 S6 S7 S8 S9

SVR 0.740 0.720 0.682 0.703 0.610 0.477 0.591 0.526 0.707

MTLasso 0.613 0.660 0.627 0.703 0.600 0.443 0.517 0.447 0.510
MTLap 0.790 0.670 0.677 0.803 0.660 0.473 0.656 0.287 0.660

MTLapTR 0.803 0.762 0.733 0.843 0.703 0.527 0.672 0.417 0.757
MTL1TR 0.803 0.723 0.719 0.813 0.687 0.527 0.640 0.420 0.723
MTLPTR 0.780 0.700 0.643 0.797 0.620 0.223 0.609 0.248 0.610

MTLTR 0.723 0.700 0.646 0.781 0.688 0.506 0.567 0.498 0.653

demonstrates the power of incorporation of structured input. Finally, we do not observe an

obvious advantage of task relationship inference in this study since the tasks are homogenous.

We then designed a new experiments where we introduced some heterogeneous tasks. In

the new experiment, we mixed 250 stable voxels with 250 unstable voxels. The importance

of task relationship modeling in this study becomes clearer. From Table 6.6, we first observe

that the accuracy of MTLasso and MTLap is decreased by around 5%-10% , but for the

other methods that employ task relationship modeling, the accuracy remains pretty stable.

In addition, MTLTR performs better than MTLasso and MTLap, which have no task re-

lationship modeling. These observations confirm our hypothsis regarding the importance

of task relationship modeling for heterogenous MTL. Among the three methods with task

relationship modeling and feature selection, our approach MTLapTR with structured input

incorporation performs better than the other two methods in 8 out of the 9 tasks though
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the difference may not be large (as observed in the Microarray data set).

Another information we obtain from Table 6.6 is that when tasks are not uniformly

related or there are outlier tasks, uniform task relationship assumption can lead to even

worse results than single task learning. We can compare SVR with MTLasso, MTLap and

MTLTR to draw the conclusion.

6.4.4 Discussion

An interesting question in MTL is how to choose appropriate regularization (sparse l1, block

sparse l1/lq and et al.) to fit the underlying structure of data without prior knowledge.

Recent research has focused on the use of l1/lq norm block-regularization with q > 1 for

block-sparse structured problems. However, due to the existence of non-uniformly related

tasks, it is impractical that all the MTL problems share the same block sparsity.

Recently, Jalali et al. proposed a method so called “dirty MTL model”, which employed

l1 regularization and l1/l∞ block regularization on task parameters [80] to fit the “dirty

data”, which may not fall into a single structural bracket (all block-sparse, or all low-rank

and so on). The block regularization selects a subset of features across all the tasks, and then

l1 penalty enforces a few entries to be 0. Although appealing, this approach actually did not

reveal how tasks related and how similar the solutions are for similar tasks. In order to build

a more accurate and interpretable MTL model, it is necessary to model task relationship

and use task relationship to guide feature selection.

In our model, we use l1 regularization to penalize each task individually but employ

structured input and task relationship regularization to guide feature selection. On the

task level, each task selects features specific to itself and ones common to similar tasks; on

the feature level, by incorporating the structured input information into MTL, the selected

features are tended to be connected on the feature graph and exhibit a grouping effect, which

has been demonstrated in our previous work [44] and the experimental study on Microarray

data.
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6.5 Conclusions

Multi-task Learning (MTL) aims to enhance the generalization performance of supervised

classification or regression models by learning multiple related tasks simultaneously. A key

factor to ensure the success of MTL in the presence of high dimensional data with heteroge-

neous tasks is an efficient feature selection procedure.

In this paper, we present a linear multi-task learning formalization for learning sparse

features and task relationship from multiple heterogenous tasks. In our algorithm, we utilize

a task covariance matrix related to task parameters to model the task relationship and

learn the matrix from data. Meanwhile, motivated from the data with structured input

such as Microarray where genes are features and genes form biological pathways, we propose

a regularization formulation for incorporating the structured input on features into MTL.

We have designed an efficient iterative optimization algorithm to solve task parameters and

task relationship matrix based on accelerated first order gradient method in conjunction

with projected gradient scheme. We have evaluated our approach from two real-world data

sets and the experimental results demonstrate the effectiveness of the proposed learning

methods.
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Chapter 7

Leveraging Structural Information

from Mobile Device Data for

Meaningful Location Detection

We have discussed a few models in learning from the data with structured input and output

from Chapter 3 to Chapter 6. In particular, we have demonstrated how to utilize the

structure information from data to build more accurate and interpretable models. The data

sets we have focused on are typically “wide” data, a.k.a. high dimensionality and low sample

size from single source and multiple sources. In this Chapter, we will taste the flavor of

“tall” data with high sample size but low feature dimensionality. More specifically, the data

analyzed in this chapter is from telecommunication, e.g. call detail record data, GPS data

from smart phone. There are potentially millions of mobile subscribers and the only available

features are geographical location coordinates (latitude, longitude). We will demonstrate

that utilizing the “structural” information (spatial relationship) of the data sets enables us

to find more accurate meaningful locations and origin-destination information from people’s

daily life.
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7.1 Introduction

With the highly advanced telecommunication technology, mobile devices such as GPS and

mobile phones have been adopted faster than any other technology [7]. The number mobile

phone subscribers has climbed from a few million worldwide in 1999 to more than 6 billion

today 1. Recently, there is growing interest of utilizing Call Detailed Records (CDR) to

sense the locations of large populations and model the city dynamics among networking and

urban computing communities [7, 8, 78, 134, 166]. In particular, the study of identifying

“meaningful locations”, a.k.a. a few key places where people spend a significant amount of

time, is one of the most fundamental problems. The knowledge of meaningful locations from

people’s lives is essential for a number of tasks. For instance, to understand the traffic flow,

it is important to discover the meaningful locations of individual people first and then to

summarize how many people stay at each zone and how many people travel from one zone to

the other [20]. Other applications of meaningful location discovery can be found in mobile

advertising [137], social security [165] and social event detection [166].

Traditional ways to collect the meaningful location information are usually through cen-

sus, GPS summarization, or the combination of these two. But census and GPS summariza-

tion have very limited coverage. Moreover, urbanization is fast in Modern cities, e.g. Beijing

or New York, in which people move in and out frequently. It is impossible to perform census

every Quarter of each year due to the high cost of time and endeavor.

To automatically identify meaningful locations, several computational methods on CDR

and GPS data have been proposed. Since the technology for GPS data is more mature, we

list a few important works for CDR data and cover the algorithms for GPS data in related

work. For CDR data, there are both unsupervised and supervised algorithms developed.,

though there are less supervised methods compared with unsupervised ones. In supervised

case, Isaacman et al. [78] recently proposed a method that combines clustering and logistic

regression. Through volunteer’s data, a clustering procedure is performed on spatial locations

1http://www.cnn.com/2012/05/09/opinion/sachs-global-childrens-health/index.html
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of cell towers and a set of features, such as number of days, call frequency and night time call

v.s. day time call frequency ratio are extracted from each cluster. Then a logistic regression

model is trained on the clusters and applied to the clusters from testing data to predict

whether a cluster is important or not.

In unsupervised case, Phithakkitnukoon et al. [135] divided the local region into 500

meter by 500 meter square grid cells (zones), then counted the frequency the subject occupy

at each zone. Those zones with a certain days above a certain threshold are determined

as meaningful locations, i.e. home and work locations are estimated as the zones in which

the subjects occupy most frequently during the night and day hours. Calabrese et al. [20]

first aggregated trajectory points into several small areas with a certain radius within which

the subject stays, then segmented CDR trajectories into several trips based on the temporal

domain information, i.e. the time interval between two successive points is more than a

certain threshold e.g. 10 minutes. The resulting trips contain a set of origin and destination

points, which are the meaningful locations. Furthermore, a home/work detection is also

proposed in [20] by tower clustering and number of call days counting.

However, there are a few limitations of existing works in detecting meaningful locations

from CDR data: 1) current unsupervised studies [20, 135] are typically based on frequency

counting and largely focus on long term data, i.e. people have several months’ record. When

only short term data is available (i.e. one week), it is unreliable to claim a place as a

meaningful location by frequency. 2) CDR data is normally unlabeled, namely no ground

truth about where people are and whether the places are important. The supervised method

proposed in [78] used 17 volunteers’data to train a model and apply to millions of people.

Since the traveling pattern is diverse from people and regions, it is hard to generalize a

model from those people in a small town to the people in metropolitan area, e.g. Lawrence,

KS vs NYC. 3) For CDR data, a major problem existing in cellular network connectivity is

that a cell phone may hop between multiple towers even when the subscriber is not moving.

When applying the methods in [20, 135] to short term data, tower hopping may incur large
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detection errors. 4) possible data record type information is ignored. For example, when

mobile subscribers commute from one LAC zone to another zone, a location update (LU)

event type is triggered at the boundary. Such additional information reflects whether people

are moving and should be incorporated into learning, especially for short term CDR data.

In this paper, we propose a unsupervised learning algorithm for meaningful location iden-

tification for CDR and GPS data within a short period. In particular, we the contributions

of this paper are as follows:

• We design and implement a framework for discovering meaningful locations from CDR

data and GPS data with low sample rate. Our method addresses the tower hopping

problem by a spatial clustering procedure on geo-locations of cell towers. We found

tower hopping always happen among spatially adjacent towers. Hence we can eliminate

tower hopping by leveraging structural information of CDR data in spatial domain.

• Instead of using call frequency to measure the importance of a cluster of towers or a

zone, we utilize the criteria of “Duration of Stay” (DoS), which denotes how long a user

dwells in a cluster/zone in temporal domain. We propose an algorithm to calculate

DoS for each cluster under two scenarios: 1) record data type is unavailable; 2) record

data type is available. When the data type is unavailable, we provide an approximate

estimation. When the type is available, we leverage different data types, including

RTT, SMS, heartbeat (HB), location update (LU) and handover (HO) to obtain more

closed estimation.

• We derive origin and destination matrices among meaningful locations, which accounts

for the meaningful trips. From the public agencies’ point of view, reporting origin-

destination matrix (OD) among zones is critical for planning public transit and urban

development. More specifically categorized OD based on purposes of trips can give

rich information for designing/providing transportation services to different groups of

residents.
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• We have validated our framework by three real-world data sets, including two CDR

data and one GPS data with low sample rate. We identified home and work locations,

all other meaningful locations for each data set and home/work OD commute distance.

By comparing with [20, 135], we have demonstrated the utility of our framework.

7.2 Related Work

There are two families of methods closely related to ours. One line is a body of work that

determines meaningful locations based on GPS or wifi beacon trace. The other line is based

on CDR data.

For GPS/wifi data, Kim et al. [93] developed a method called “PlaceSense” to detect

semantically meaningful places from Pervasive RF-Beacons by detecting place entrance and

departure. Cao et al. [22] designed a location ranking scheme via random walk over the

graph that captures the relationship among locations and user-locations. Zheng [194] et al.

combined clustering and user’s travel experience to derive meaningful locations. Although

accurate, these words require much finer granularity and a longer time period (e.g. several

months) than CDR data. Moreover, the GPS data investigated in the works [22, 93, 194]

has limited coverage within 100 users. In contrast, we focus on CDR data with vast coverage

and coarser granularity on millions of users collected within a short time period.

For CDR data, Phithakkitnukoon et al. [135] identified meaningful locations by dividing

map into regions and counting record frequencies. Calabrese et al. [20] discovered meaningful

locations by trip segmentation and “number of call days” counting. But these methods also

depend on long term data since Issacman et al. [78] developed a supervised method by

combing cell tower clustering and logistic regression to predict whether a cluster is important

or not. But in real world CDR data, the data is typically unlabeled and it is hard to generalize

the model trained from a small town to big cities.

Besides meaningful location detection, there are a few works attempting to discover
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human mobility pattern. For example, Becker et al. [9] studied individual mobility patterns

and aggregate them into a summary of city dynamics for a city in NJ. Bayir et al. [7]

extracted most popular trips from MIT Reality Mining data set [37]. Since our focus is on

meaningful location detection and origin-destination analysis, we do not cover all related

work on mobility pattern mining.

Though there are a few works proposed for discovering meaningful location from CDR

data, ours is the first to focus on short term CDR data and utilize different event data types

if they are possible. Besides, we proposed more elegant duration of stay estimation scheme

to measure the dwelling time at a certain region.

7.3 Background

In this section, we cover background knowledge in the telecommunication domain.

7.3.1 Call Detail Record

The Call detail record (CDR) data analyzed in this paper consists of anonymous location

measurements generated each time a device connects to the cellular network, including call

placing/receiving, message placing receiving and internet 2G/3G connection. Unlike previous

studies [7, 78, 134, 166], the data was collected from cell tower rather than end user. All cell

phone numbers were anonymized and hashed to a unique ID, which was kept for at most one

week or 10 days. In other words, the CDR record for each user can have at most 10 days’

data. We collect data from all towers’s data in a certain area, extract each user’s records

and sort them by timestamp.

More formally, we provide definition of Call Detail Record (CDR) and CDR trajectory

bellow.

Definition 7.3.1. Call Detail Record (CDR): A CDR CD is a four-tuple < uid, time, lat, lon >,

where uid is the user id, time is the time stamp, lat, lon are the latitude and longitude of the
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cell tower that serves this call.

Definition 7.3.2. CDR trajectory: A CDR trajectory T R of a user is a series of CDR CD

for the user that are ordered by the time stamp of the records as T R = CD1 → · · · CDi →

· · · CDn.

7.3.2 Record Data Type

On a few occasions, we might have more information about the CDR data, such as the data

types, which are typically obtainted from carriers. In this paper, we have the following data

types available from one data set:

• RTT: placing or receiving a call

• SMS: sending or receiving a message

• Handover/handoff (HO): transferring an ongoing call or data session from one cell

tower to another tower. HO typically happens when the user is moving from one

tower’s coverage to that of another one and holding an ongoing call.

• Location Update (LU): moving from one location area to another area, where a “loca-

tion area” is group of cell towers that serve for a particular area. LU typically happens

when the user is moving from one location area to another one.

• SGSN: 2G/3G internet connection

Among these event types, HO and LU are indicating the user is moving and we call them

“moving data type”. For the rest types, it is difficult to judge.

7.3.3 Tower Hopping

Tower hopping is referred to the phenomenon that a user may be assigned to a number of

spatially nearby cell towers even when the user is not moving. It is commonly seen in cellular
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network due to the load balancing factor. To illustrate what is tower hopping, we show an

example: In Figure 7.1, the user has two events on two towers simultaneously at 11:04, then

Figure 7.1: Demonstration of tower hopping from a user’s CDR trace in Singapore. Each
pinpoint is a cell tower with a set of events that happened. Yellow circles highlight tower
hopping among three towers.

has another event on a third tower at 11:05. It is impossible for a human to make such

transitions in one minute, hence the user is assigned to other towers when he/she is static.

7.3.4 Duration of Stay

Duration of stay (DoS) is the length of stay at a particular area, which could be represented

as a rectangular zone or the location that a set of cell towers cover. DoS could be aggregated

at daily/weekly basis or a short time within which the user continuously stayed in the same

region.

7.4 Methodology

Given call detail record of mobile subscribers within a short period (i.e. one week), our goal

is to identify their meaningful locations, such as home and work. Our assumption is that the
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locations where people spend a significant of time are meaningful locations. The proposed

method is a unsupervised approach based on spatial clustering on locations of cell towers

and duration of stay (DoS) estimation on CDR events in temporal domain. If record types

are available, we further improve the reliability of DoS estimation by utilizing the properties

of different data types. Our current analysis is per-user based and we have not considered

the relationship among different users. Without statement otherwise, the terms e.g. “cell

towers”, “CDR Trajectory” are collected from a particular user.

Our method (clusterDos) derives meaningful locations from CDR data based on 4 major

steps: 1) spatial clustering, 2) duration of stay calculation, 3) cluster-zone map generation

and 4) meaningful location generation.

7.4.1 Spatial Clustering on Cell Tower Locations

As discussed previously, tower hopping always exists in cellular networks. We observed

from real-world data that tower hopping always happens among spatially nearby cell towers,

hence we can leverage the spatially structural information to eliminate tower hopping. In

particular, we utilize a spatial clustering procedure to group spatially nearby towers together.

Typical spatial clustering algorithms that can be used here are Density Spatial Clustering

(DBSCAN) [39] or Ordering Points To Identify the Clustering Structure (OPTICS) [3].

In this paper, we use DBSCAN to cluster cell towers at a daily basis, which consists of

the unique cell towers associated with one day’s CDR trajectory. DBSCAN finds a number

of clusters starting from the density of corresponding points hence does not require one

to specify the number of clusters, as opposed to k-means. DBSCAN has two parameters:

neighborhood radius ϵ and minimum number of points required to form a cluster minPts.

The basic procedures of DBSCAN are cluster generation and expansion. It starts with

an arbitrary starting point that has not been visited. The point’s ϵ-neighborhood is queried.

If the number of points it contains is larger or equal than minPts, a cluster is created

and the point is labeled as the core point. Otherwise, the point is labeled as noise. For
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each point within the cluster, its ϵ-neighborhood is retrieved and added to the cluster. If

the neighborhood point contains sufficient points (>= minPts), the neighborhood point’s

neighbors are added to cluster as well. This process is repeated until the density-connected

cluster is completely found. Then, a new unvisited point is retrieved and processed, leading

to the discovery of a further cluster or noise.

However, it is nontrivial to adopt DBSCAN to CDR data. On one hand, DBSCAN singles

out noise points, which are isolated points that do not belong to any dense part of existing

cluster points. In cellular network, it is possible to have isolated cell towers in remote area,

hence they shouldn’t be excluded. On the other hand, it is tricky to choose the parameter

minPts for CDR data. If minPts >= 2, then the point with only one neighbor within ϵ is

denoted as noise. If minPts = 1, it is possible that all the points along a line with adjacent

distance less than ϵ are clustered in one cluster.

In our implementation, we modified the basic DBSCAN algorithm to resolve the two

problems. First, each “noise” point is output as a cluster with only one point. Second, we

set minPts = 1 and allow DBSCAN to expand the cluster up to two hops away from the

core point. Finally, we sort the cell towers in descending order based on number of days that

the tower is used and the core points are selected from the list rather than randomly picking

up any points. Such a procedure is proved to be helpful in [78].

Note that we consider two scenarios: data types are available or unavailable. If record

data types are available, we cluster the cell towers having other types excluding LU, HO

since it is unlikely for the locations of “moving data type” to be home, work or shopping

centers. If no data type information available, we simply cluster on all cell towers the user

has connected.

7.4.2 Duration of Stay Calculation

After spatially clustering, the user’s trace can be summarized on a few clusters, in which

each cluster contains a subset of towers associated several pieces of CDR trajectories. In
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duration of stay (DoS) calculation, we calculate how long people stay at each cluster. Note

that a user may stay at a location several times a day, e.g. early morning and late night at

home, we calculate DoS piece by piece and aggregate them into daily DoS. Bellow we first

consider the case when no data type information is available. Under this circumstance, all

cell towers the user connects are clustered.

Suppose < tf , Ci >,< tf+1, Ci >, · · · , < tl, Ci >,< tl+1, Ci+1 > is a subset of user’s trace

on cluster level, where < tf , Ci >,< tl, Ci > represents the 1st and last record with time

stamp tf , tl in the cluster Ci, and < tl+1, Ci+1 > is the 1st record in cluster Ci+1. We aim to

know how long the user spent in cluster Ci from tf to tl+1. A natural estimation of DoS [7] is

the difference between the last event’s time stamp and the first event’s time stamp observed

in the cluster Ci: DoSi = tl − tf . But such calculation may underestimate the real duration

of stay. There might be a long time between tl+1 and tl resulting in an underestimate.

To overcome the drawback, we make compensation for the temporally adjacent clusters

if there is a large gap in temporal domain. More specifically, we assign the DoS to cluster

Ci and meanwhile update the start time for cluster Ci+1 for future calculation DoSi+1:

DoSi = tl − tf +
[
tl+1−tl−∆l,l+1

2

]
+

tl+1 = tl+1 −
[
tl+1−tl−∆l,l+1

2

]
+

(7.1)

where [x]+ =

 x if x ≥ 0

0 otherwise
and ∆l,l+1 is the approximated commute time from the

centroid cluster Ci to that of Ci+1. We assume the user travels in a straight line in a

constant speed e.g. v = 30m/h. The demonstration of this case is shown in the right of

Figure 7.2.

Although we make an effort to compensate possible gaps between cluster Ci and Ci+1,

we are still unclear when the user leaves from cluster Ci to Ci+1. It is unreliable to simply

exclude commute time and divide the remains equally. Next, we show that if data type

information is available, we can estimate DoS more accurately.
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Recall that LU and HO data types can indicate movement of users, such information

can be utilized. In this case, we only cluster the cell towers associated with the data types

excluding LU/HO. If the user triggers a LU/HO event at tl+1 after the last event in cluster

Ci and the LU/HO’s cell tower does not belong to Ci, we can safely assign tl+1 − tf to Ci

since the user is just leaving Ci. Bellow we give a similar DoS calculation rule for the left

scenario in Figure 7.2:

DoSi = tl+1 − tf

tl+2 = tl+2 −
[
t2+1−tl+1−∆l+1,l+2

2

]
+

(7.2)

where ∆l+1,l+2 is the approximated commute time from LU/HO event tower to the centroid

of Ci+1.

tf, tf+1,…tl

Cluster i

tl+2,…

Cluster i+1LAC 

boundary

LU/HO event

at tl+1

1i l fDoS t t+= −

tf, tf+1,…tl

Cluster i

tl+1,…

Cluster i+1

1 , 1

2

l l l

li

l

f

t t t
DOS t t

+ +

+

− −∇ 
= − +  

 

, 1l lt +∇
Approx. commute 

time 
Approx. commute 

time 
1, 2l lt + +∇

1

1 1

1

,

2

l l l

l

l

l

t t t
t t+

+ +

+

+

− −∇ 
= −  

 

2 1

22

1, 2

2

l l l l

l l

t t t
t t

+ + + +

+ +

+

− −∇ 
= −  

 

Figure 7.2: DoS calculation. Left: LU/HO record happens between two clusters. Right: No
movement record.

After calculating several pieces of DoSi, i = 1, ..., k for one cluster in a day where k is the

number of times the user shows up in the cluster, we can aggregate them into daily DoS.

7.4.3 Cluster-Zone map generation

The purpose of cluster-zone map generation is to make connections among different clusters

that represent the same place. For example in Figure 7.3, we obtain two clusters around
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“home” for two different days. The location of two centroids are different, but they represent

the same home location, hence there is a demand to summarize spatially nearby clusters

as one area. Towards that end, we divide the overall area into a set of zones, either in

Home

Figure 7.3: Rectangular zone example. Meaningful location is home as labeled. C1, C2 are
cluster centroids from two days.

rectangular zones (e.g. 500m X 500m) or predefined irregular polygons. A zone is annotated

with a unique ID and its coordinates are recorded as boundaries. For each cluster, we map

its centroid to a zone. After this step, each zone is associated with duration of stay for one

day.

7.4.4 Meaningful Location Generation

The we output these zones with duration of stay more than a certain threshold (e.g. 1

hour) at any day as meaningful locations. To further annotate these locations with semantic

meaning, such as home, work and shopping center, we can combine common knowledge about

home and work (maximum DoS in night time and day time in week days and repeating several
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days) and points of interests within the area.

7.4.5 Home/work Detection

Among meaningful locations, home/work are the most important places of daily life. We

proposed a home and work detection methods that identifies where people live and work

respectively. The algorithms are similar to meaningful location detection but are independent

and may select the same zone as both home and work.

We define home time from 9:00pm to 8:00am and work time as 10:00am to 6:00pm.

Unlike the general meaningful location algorithm, we separately cluster the cell towers of

home time and work time events. The purpose is to reduce the effect of day time events

when analyzing home time data since it is normal to have more day time events than night

time events. Once clustering is done, we derive the home/work zone having the following

properties:

• the largest duration of stay at home time and work time on week days

• at least 2 days’ call record with more than 1 hour DoS

7.5 Experiment

In this section, we evaluate our proposed method using four real-world data sets, including

two call detail record data and two GPS data collected from smart phones. The two CDR

data sets are collected from Istanbul, Turkey and Singapore respectively. For the Turkey

data, we have data type information available. To demonstrate the utility of our method,

we implemented and compared with home/work algorithm “zoneCount” [135] and “cluster-

Count” [20]. All the algorithms are implemented in Java.
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7.5.1 Data sets

Unlabeled Smart phone/GPS data: The data is collected from Dubuque, Iowa in the

period of October 2011-June 2012. There are 555 users carrying a smart phone equipped

with GPS. Since people do not stay on the program for various reasons, we assemble one

week’s data by grouping daily events and selecting 7 days with maximum number of data

points. The total number of events is 256,185 with 461 per person on average, therefore the

average number of events is 65 for one day.

Labeled Smart phone/GPS data: The data is also collected from Dubuque, IA.

There are additional 7 volunteers who are willing to share their daily trace between 05/10/12-

05/19/12 and disclose their home and work locations. They also kept a diary of their stayed

locations with departure and arrival time. These ground data enables us to quantify our

algorithm’s performance.

Turkey Cellular network data: The data is collected in Istanbul, Turkey from

02/12/2012 to 02/19/2012. There are 3353 cell towers and 46353 users with 24,732,562

events in total. For this data set, we have data type information available, including RTT,

SMS, SGSN, LU and HO. The data is unlabeled since no users provide their real home/work

location.

Singapore Cellular network data: This data is collected from 376 users in Singapore

within 03/19/12-03/27/12, but not all users have complete record during the period. There

are 75 people with only 1 day’s record available. There are 2534 cell towers and 376 users

with 152,844 events in total.

In Table 7.1, we summarize the characteristics of the four data sets.

7.5.2 Evaluation Criteria

Since three data sets have no ground truth, we focus on the evaluation on GPSLabel data

from volunteers. For the rest three data sets, we show our detection results in plots and

match them with domain knowledge, e.g. census map.
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Table 7.1: Characteristics of the data set. #U : total number of users, #T : total number
of cell, #E: total number of events (records), Avg #E: average number of events per user,
Avg #T : average number of towers per user used, Label: labeled or unlabeled, Data type:
having data type information (Yes) or not (No)

Data # U # T # E Avg # E Avg # T Label Data type
GPSNoLabel 555 NA 256,185 461 NA Unlabeled No
GPSLabel 7 NA 5365 766 NA Labeled No
TurkeyCDR 46353 3335 24,732,562 533 27 Unlabeled Yes
SIGCDR 376 2534 152,844 406 31 Unlabeled No

Model Construction Recall that we utilize the DBSCAN algorithm to cluster spatially

nearby cell towers. At this step, we set the minPts = 1 and ϵ = 1 mile for CDR data and

ϵ = 0.5 for GPS data. Emperical studies show that this configuration works well in practise.

In our zone map generation step, we set the rectangular range as 1 mile × 1 mile for CDR

data and 300 meter × 300 meter for GPS data. In meaningful location generation, we set

the time threshold that determines the meaningful location to 30 minutes.

For the comparison method, we use the same parameter to determine zone size (1 mile

for CDR, 300m for GPS), home time (9:00pm to 7am) and work time (10:00pm to 6:00pm)

for home/work detection.

Model Evaluation We evaluated our home/work detection and meaningful location dis-

covery algorithm by detection error for GPSLabel data. Given the ground meaningful loca-

tion (e.g. home or work) coordinates < x, y > and predicted location coordinates < x̂, ŷ >,

We define the detection error for one user’s one location as:

err = dist(< x, y >,< x̂, ŷ >) (7.3)

where dist(., .) is the distance function that calculates Euclidean distance between two geo-

graphic coordinates based on 2.

In evaluation of home work algorithm, we only focus the location prediction error 7.4 in

2http://www.movable-type.co.uk/scripts/latlong.html
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spatial domain. However, for meaningful location evaluation, we also consider duplication

of meaningful locations in temporal domain, e.g. home and work, that appeared multiple

times in a day. Our rule to generate meaningful location is based on duration of stay in

a cluster. If the user has two series of stay record in a cluster with duration more than a

certain threshold, we claim we find two meaningful locations in spatial and temporal domain,

though they have the same geographical locations. For each user, we measure the following

two metrics: detection rate (DR) and average detection error (avgErr) defined as:

DR = #{detected meaningful locations}/n

aveErr =
∑

i erri/n
(7.4)

where n is the total number of meaningful locations and erri is the location error for ith

meaningful location detection.

7.5.3 Home Work Detection Results

GPSLabel data results Since this data set is relatively small, we focus on quantifying

how our home work detection works. For other type of analysis, such as home to work

commute distance, we study them on the rest 3 data sets.

In Figure 7.4, we show the home/work prediction result for one volunteer. The blue

pinpoint represents the predicted home location and the red one represents the work location.

The yellow points represent the ground truth reported by the volunteer. There is one line

connecting home and work locations representing the OD line. From Figure 7.4, we observe

the predicted location is very close to the ground truth. To have a clearer idea how close they

are, we show a zoom-in plot on the right panel. As shown in the Figure, the predictions are

almost exactly in the same area. By measuring the geodesic distance between the prediction

and truth as the prediction error, we find the prediction error is 0.08 miles for home and

0.06 for work.

For all the 7 volunteers, we show the comparison in Table 7.2. Our method achieved better

139



Figure 7.4: Home/work detection for volunteer 1. Left: overall plot for true home/work
location and predicted location. The yellow pinpoints represent the ground truth. The blue
and red represents the prediction. Right: zoomed in prediction vs ground truth.

performance for 5 out of 7 volunteers for home/work detection. The average home prediction

error is 0.08 miles and work prediction error is 0.26 miles for our method clusterDos. For

the competing baselines, zoneCount [135] has 3.2 miles error for home, 1.66 miles for work

while clusterCount [20] has 1.16 for home, 6.27 for work.

Table 7.2: Home/work detection comparison. Error is in miles and the least error is high-
lighted in bold font for home and work separately. VID: volunteer ID, HError: Home
Prediction Error, WError: Work Prediction Error.

clusterDos zoneCount clusterCount
VID HError WError HError WError HError WError
1 0.08 0.06 0.11 4.83 0.11 11.18
2 0.03 0.54 0.06 1.23 0.03 23.72
3 0.09 0.07 7.32 0.09 7.32 7.21
4 0.03 0.53 0.24 2.81 0.46 0.06
5 0.01 0.48 0.01 0.35 0.01 1.45
6 0.1 0.07 14.56 2.23 0.04 0.07
7 0.2 0.07 0.06 0.08 0.16 0.21

Home to work commute distance study Since the rest three data sets are unlabeled,

it is impossible to compare our method with other two baselines. Instead, we run our

home/work algorithm to detect home/work locations and study the home to work commute
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distance since it is interest to urban planner and transportation research.

From the GPSNoLabel data set, our method clusterDos identified both home and work

locations from 500 out of 550 people with the average commute distance 7.8 miles. The

result is pretty close to the ground value of 7.1 miles for the GPSLabel data set from the

same city, although 7 users cannot represent the whole population.

Beyond the 7 volunteers’s ground data, we try to match our result with census/survey in

US. According to the census of US Department of Transportation in 2003 [132], the average

one way commute distance from home to work 15 miles all over the USA. Compared with

census, our estimate is smaller but we argue that the result is reasonable. For one thing, our

distance is given in Euclidean distance between origin and destination. In real life, people

cannot travel in straight line hence the real travel distance should be greater than 7.8 miles.

Actually there are 51% population in the survey with commute distance less than 10 miles,

which is consistent with our findings. For another, the census was taken in both metropolitan

and rural area hence the outcome is biased towards big cities due to the large population. It

is hard to imagine the people of Dubuque, IA (a small town) travel 15 miles to work every

day.

We performed similar analysis on the SIGCDR data. From the Singapore data, we

detected both home and work locations from 274 out of 365 users. There are 75 users that

are both “home less” and “workless” since they only have less than one day’s record and

fail to pass our 2 days’ filter. The average commute distance for the 274 users is 4.03 miles,

which is consistent with the claim (4.3 miles - 6.8 miles) in one Singapore resident’s blog 3.

For the TurkeyCDR data, we identified both home and work locations from 33196 out

of 46353 users with average home to work distance 4.12 miles (6.63km). Such an estimate

is close to the finding in [121] that the distance of 5-6 km between home and work ranks

highest in the Istanbul metropolitan.

3http://www.mrbrown.com/blog/2008/07/mrbrowns-quick.html
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7.5.4 Meaningful Location Detection Result

In this section, we evaluate our algorithm for all meaningful locations include home and

work. Likewise, we focus on the labeled data set GPSLabel and then summarize other

characteristics about the meaningful locations on the other 3 data sets.

GPSLabel data results For GPSLabel data, we first check the user’s diary to single out

all locations with more than 30 minutes duration, then run our method to detect meaningful

locations. From Table 7.3, we first observe that there is no big difference between the average

Table 7.3: Meaningful Location Detection Result. The best result of each method is high-
lighted by bold font. Notations: DR, detection rate; aveErr: average error among detected
meaningful locations

clusterDos zoneCount clusterCount
VID DR aveErr DR aveErr DR aveErr
1 0.88 0.25 0.44 0.20 0.65 0.50
2 0.69 0.22 0.53 0.25 0.81 0.49
3 0.85 0.43 0.31 0.26 0.81 0.47
4 1.00 0.35 0.92 0.42 0.69 0.40
5 1.00 0.10 0.62 0.26 0.62 0.14
6 0.92 0.26 0.70 0.28 0.25 0.48
7 1.00 0.20 0.93 0.19 0.93 0.10

detection error. The reason is that if distance between the closed point from prediction and

a ground truth location is greater than 1 mile, we claim a mismatch for the meaningful

location. Among these detected locations, our method outperforms two baselines in 4 out

of 7 users, though the difference is subtle. But for detection rate, our method is always

better than zoneCount and clusterCount. The reason is that call frequency cannot tell the

importance of a certain zone/cluster, especially for short term data.

Number of Meaningful Locations Study As mentioned before, without user-provided

ground data for the rest three data sets, we do not know how many and where their mean-

ingful locations are. Instead, we apply our algorithm to study the number of meaningful

142



0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

Number of Meaningful Locations

P
er

ce
nt

ag
e

Singapore Data

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

Number of Meaningful Locations

P
er

ce
nt

ag
e

Dubuque Data

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

Number of Meaningful Locations

P
er

ce
nt

ag
e

Turkey Data

Figure 7.5: Bar chart of the number of meaningful locations vs population for three cities.
Left: Singapore; Middle: Dubuque, IA; Right: Istanbul, Turkey.

locations for the residents of Istanbul, Turkey, Singapore and Dubuque, Iowa. Such an

analysis allows us to study the mobility pattern across different countries.

In Figure 7.5, we plot the bar chart of the number of meaningful locations v.s. percentage

of population. We have a few observations. First, around 50% people in Dubuque, IA and

Singapore have between 3 to 8 meaningful locations and more than 50% people in Istanbul

have between 2 to 6 meaningful locations. Our result from Dubuque data is consistent

with the work in [78], in which they found majority of people in NYC and LA had 3 to 7

meaningful locations. Second, we have a heavy tail in the bar chart compared with the study

in [78]. For example, around 1% users have more than 20 meaningful locations. we believe

the reason is that our definition of “meaningful” is empirically determined by duration of

stay without considering the semantical meaning. It is highly likely people get stuck in a

traffic jam or whatever reasons stay at a certain place, which is not meaningful for them but

identified by our algorithm. Finally, the mobility pattern of Turkish seems different from

Americans since the peak points are at 2 to 4 for Turkish while 5-7 for Americans. A future

study will be conducting survey about the users, e.g. percentage of housewife.

7.6 Conclusion

In this paper, we proposed meaningful location detection framework in which important

places, e.g. home and work are identified from call detail record/GPS from mobile phones.
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In our model, motivated by the fact that tower hopping happens among spatially nearby

towers, we leveraged the spatial structure information of cell towers and designed a clustering

method based on DBSCAN algorithm. We measured cluster’s importance based on DoS (how

long a user dwell in a cluster) and devised a method to calculate DoS. Based on experimental

studies, we have demonstrated its utility on four real-world data sets.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

In this dissertation, we tackle the problem of learning from structured data with high di-

mensional structured input features and output tasks. With the high dimensional structured

input space and/or structured output space, learning a low dimensional and consistent struc-

tured predictive function is important for both robustness and interpretability of the model.

We first presented a few machine learning models that learn from the data with structured

input features and structured output tasks. For learning from the data with structured input

features, we have developed structured sparse boosting for graph classification, structured

joint sparse PCA for anomaly detection and localization. For learning from structured input,

we investigated the interplay between structured input and output under the context of

multi-task learning. In particular, we designed a multi-task learning algorithms that performs

structured feature selection & task relationship Inference. We demonstrated the applications

of these structured models on subgraph based graph classification, networked data stream

anomaly detection/localization, multiple cancer type prediction, neuron activity prediction

and social behavior prediction. Through extensive experimental studies, we demonstrated

utility of our models across several application domains.
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Besides the work on benchmarks, we also demonstrated how the “structure” information

help solving industrial problems through my intern work at IBM Research. In particular,

we proposed meaningful location detection framework in which important places, e.g. home

and work are identified from call detail record/GPS from mobile phones. In our model, mo-

tivated by the fact that tower hopping happens among spatially nearby towers, we leveraged

the spatial structure information of cell towers and designed a clustering method based on

DBSCAN algorithm. We measured cluster’s importance based on DoS (how long a user

dwell in a cluster) and devised a method to calculate DoS. Based on experimental studies,

we have demonstrated its utility on four real-world data sets.

8.2 Future Work

Overall this dissertation has only touched a small portion of structured data learning with

structured input and output, and more generally learning with structured input features and

output tasks. Below are some key directions of future work.

One key future direction is to investigate both high dimensional structured feature space

and high dimensional structured output space. Our current work only handles a few hundred

tasks with known/unknown task structures. However, in real-world applications, e.g. text

categorization [64], gene function annotation [11] and location annotation in social network

[183], the number of learning tasks could be very huge.

Recently, motivated by the potential high dimensional label/task space, researchers in

started to investigate dimensionality reduction on label space [11, 70, 159] for multi-label

learning. The major advantage of label space transformation is to reduce the problem size,

i.e. transform k classification problems into m regression problems in the reduced label

subspace [70, 159] where k ≫ m. The common limitation of [70, 159] is that the label

structure information is missing during encoding (label space reduction) and decoding (label

prediction). Additionally, the regression analysis in the reduced label space still suffers from
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the curse of dimensionality of potentially high dimensional feature space. The state-of-

the-art algorithm for multi-label classification that utilizes label structure information and

performs label space reduction is CSSA [11], which is again suffering from high dimensional

feature space. Hence exploring a approach to cope with high dimensional structured feature

and task/label space is beneficial.

Another key area of future work that is to accelerate our current optimization algorithms

[44, 47, 45, 84], although most of them have achieved optimal convergence rate either globally

or partially under single thread and single core platform. The bottleneck of our algorithm is

objective function evaluation and gradient calculation at each step. However, both function

evaluation and gradient calculation can be written in a certain “summation form”, which

allows them to be easily parallelized on multicore computers. As studied in [31], PCA and

logistic regression could be significantly accelerated with the help of parallel computing.

Therefore, how to adopt their insights into our structured PCA or multi-task logistic models

is worthwhile to investigate.

Last but not the least, there is much future work possible for the case of mobile data

(CDR) mining. Our current meaningful location detection scheme is purely based on du-

ration of stay. It is highly likely that people get stuck in a traffic jam or whatever reasons

stay at a certain place, which is not “meaningful” for users but identified by our algorithm.

Hence one direction is to combine our algorithm with GIS information, e.g. the bus stop

and shopping center distribution, to reduce false positives. Another direction is to infer trip

purpose, e.g. home based work, home based shopping et al. More specifically categorized

purposes of trips can give rich information for designing/providing transportation services

to different groups of residents.

147



References

[1] E. Adar and L. A. Adamic. Tracking information epidemics in blogspace. In Web

Intelligence, pages 207–214, 2005.

[2] M. A. Ahmad and A. Teredesai. Modeling spread of ideas in online social networks. In

Proceedings of the fifth Australasian conference on Data mining and analystics - Volume

61, AusDM ’06, pages 185–190, Darlinghurst, Australia, Australia, 2006. Australian

Computer Society, Inc.

[3] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander. Optics: Ordering points to

identify the clustering structure. In A. Delis, C. Faloutsos, and S. Ghandeharizadeh,

editors, SIGMOD 1999, Proceedings ACM SIGMOD International Conference on Man-

agement of Data, June 1-3, 1999, Philadelphia, Pennsylvania, USA, pages 49–60. ACM

Press, 1999.

[4] A. Argyriou, T. Evgeniou, and M. Pontil. Multi-task feature learning. In NIPS, 2006.

[5] A. Argyriou, A. Micchelli, M. Pontil, and Y. Ying. A spectral regularization framework

for multi-task structure learning. In NIPS, 2007.

[6] B. Bakker and T. Heskes. Task clustering and gating for bayesian multitask learning.

Journal of Machine Learning Research, 4:2003, 2003.

[7] M. A. Bayir, M. Demirbas, and N. Eagle. Discovering spatiotemporal mobility profiles

of cellphone users. In WOWMOM, pages 1–9, 2009.

148
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principal subspace tracking. In SAC ’10: Proceedings of the 2010 ACM Symposium on

Applied Computing, pages 1609–1616, New York, NY, USA, 2010. ACM.

[35] N. U. F. Dosenbach, B. Nardos, A. L. Cohen, D. A. Fair, J. D. Power, J. A. Church,

S. M. Nelson, G. S. Wig, A. C. Vogel, C. N. Lessov-Schlaggar, K. A. Barnes, J. W.

Dubis, E. Feczko, R. S. Coalson, J. R. Pruett, D. M. Barch, S. E. Petersen, and B. L.

Schlaggar. Prediction of individual brain maturity using fmri. Science, 329(5997):1358–

1361, 2010.

[36] J. Duchi and Y. Singer. Boosting with structural sparsity. In ICML ’09: Proceedings of

the 26th Annual International Conference on Machine Learning, pages 297–304, 2009.

151



[37] N. Eagle, A. S. Pentland, and D. Lazer. Inferring social network structure using mobile

phone data. PNAS, 109(21), 2009.

[38] M. Eiermann, O. G. Ernst, and E. Ullmann. Computational aspects of the stochastic

finite element method. Comput. Vis. Sci., 10:3–15, February 2007.

[39] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discov-

ering clusters in large spatial databases with noise. In KDD, pages 226–231, 1996.

[40] T. Evgeniou, C. A. Micchelli, and M. Pontil. Learning multiple tasks with kernel

methods. Journal of Machine Learning Research, 2005.

[41] T. Evgeniou and M. Pontil. Regularized multi–task learning. In KDD, pages 109–117,

2004.

[42] H. Fei and J. Huan. Structure feature selection for graph classification. In Proc. ACM

17th Conference on Information and Knowledge Management, 2008.

[43] H. Fei and J. Huan. L2 norm regularized feature kernel regression for graph data.

In CIKM ’09: Proceeding of the 18th ACM conference on Information and knowledge

management, pages 593–600, 2009.

[44] H. Fei and J. Huan. Boosting with structure information in the functional space: an

application to graph classification. In Proceedings of the ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (SIGKDD), 2010.

[45] H. Fei and J. Huan. Structured feature selection and task relationship inference for

multi-task learning. In Proceedings of the IEEE International Conference on Data

Mining (ICDM’11), 2011.

[46] H. Fei, R. Jiang, Y. Yang, B. Luo, and J. Huan. Content based social behavior pre-

diction: A multi-task learning approach. In Proceedings of the 20th ACM Conference

on Information and Knowledge Management (CIKM’11), 2011.

152



[47] H. Fei, B. Quanz, and J. Huan. Regularization and feature selection for networked

features. In Proceedings of the 19th ACM Conference on Information and Knowledge

Management (CIKM’10), 2010.

[48] C. Fellbaum. WordNet: an electronic lexical database. the MIT Press, 1998.

[49] G. W. Flake, S. Lawrence, and C. L. Giles. Efficient identification of web communi-

ties. In KDD ’00: Proceedings of the sixth ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 150–160, 2000.

[50] A. Frank and A. Asuncion. UCI machine learning repository, 2010.

[51] C. Franke and M. Gertz. Orden: outlier region detection and exploration in sensor

networks. In SIGMOD Conference, pages 1075–1078, 2009.

[52] Y. Freund. Boosting a weak learning algorithm by majority. Information and Compu-

tation, 121:256–285, 1995.

[53] Y. Freund and R. Shapire. A decision-theoretic generalization of on-line learning and

an application to boosting. In Proceedings of the Second European Conference on

Computational Learning Theory, 1995.

[54] N. Friedkin. Information flow through strong and weak ties in intraorganizational

social networks. Social Networks, 3:273–285, 1982.

[55] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical

view of boosting. Annals of Statistics, 28(2):337–407, 2000.

[56] J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear

models via coordinate descent. The Annals of Applied Statistics, page to be appeared,

2009.

[57] K. Fukunaga. Introduction to statistical pattern recognition (2nd ed.). Academic Press

Professional, Inc., San Diego, CA, USA, 1990.

153



[58] D. Gale and S. Kariv. Bayesian learning in social networks. Games and Economic

Behavior, 45(2):329–346, 2003.

[59] D. Gibson, J. Kleinberg, and P. Raghavan. Inferring web communities from link topol-

ogy. In HYPERTEXT ’98: Proceedings of the ninth ACM conference on Hypertext and

hypermedia : links, objects, time and space—structure in hypermedia systems, pages

225–234, New York, NY, USA, 1998. ACM.

[60] J.-C. Gomez, E. Boiy, and M.-F. Moens. Highly discriminative statistical features for

email classification. Knowl. Inf. Syst., 31(1):23–53, 2012.

[61] R. Gross and A. Acquisti. Information revelation and privacy in online social networks.

In Proceedings of the 2005 ACM workshop on Privacy in the electronic society, WPES

’05, pages 71–80, New York, NY, USA, 2005. ACM.

[62] X. Gu and H. Wang. Online anomaly prediction for robust cluster systems. In ICDE,

pages 1000–1011, 2009.

[63] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification

using support vector machines. Machine Learning, 46:389–422, 2002 January.

[64] V. Ha-Thuc and J.-M. Renders. Large-scale hierarchical text classification without

labelled data. In WSDM, pages 685–694, 2011.

[65] G. Haffari, Y. Wang, S. Wang, G. Mori, and F. Jiao. Boosting with incomplete

information. In International Conference on Machine Learning, 2008.

[66] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning.

Springer-Verlag, 2009.

[67] D. Haussler. Convolution kernels on discrete structures. Technical Report UCSC-

CRL099-10, Computer Science Department, UC Santa Cruz, 1999.

154



[68] C. Haythornthwaite. Social network analysis: An approach and technique for the study

of information exchange. Library and Information Science Research, 18:323–342, 1996.

[69] S. Hirose, K. Yamanishi, T. Nakata, and R. Fujimaki. Network anomaly detection

based on eigen equation compression. In KDD ’09: Proceedings of the 15th ACM

SIGKDD international conference on Knowledge discovery and data mining, pages

1185–1194, New York, NY, USA, 2009. ACM.

[70] D. Hsu, S. M. Kakade, J. Langford, and T. Zhang. Multi-label prediction via com-

pressed sensing. In NIPS, 2009.

[71] J. Huan, W. Wang, and J. Prins. Efficient mining of frequent subgraph in the presence

of isomorphism. In Proceedings of the 3rd IEEE International Conference on Data

Mining (ICDM), pages 549–552, 2003.

[72] L. Huang, M. I. Jordan, A. Joseph, M. Garofalakis, and N. Taft. In-network pca and

anomaly detection. In In NIPS, pages 617–624, 2006.

[73] R. Huckfeldt and J. Sprangue. Networks in context: The social flow of political infor-

mation. The Academy of Management Review, 81(4):1179–1216, 1979.

[74] V. I and S. CL. The phosphatidylinositol 3-kinase akt pathway in human cancer. Nat

Rev Cancer., 2(7):489–501, 2002.
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