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Abstract

While there has been an increase in the growth of networking technologies

to suit the current demand of applications and users, networks are still suscepti-

ble to disruption. Communication networks operating in any domain come with

inherent challenges that make end-to-end connections harder to maintain. This

argument calls for protocols that are disruption tolerant and can offer resilience.

Res-TP is a new transport protocol that directly addresses the challenges posed

by challenged networks. It offers QoS (quality of service) and varying degrees

of reliability depending on the class of data being communicated. Apart from a

reliable-connection mode which offers full end-to-end reliability using ARQ (au-

tomatic repeat request), the protocol also includes quasi-reliable mode that offers

statistical reliability by using end-to-end FEC (forward error correction) codes,

unreliable-connection mode that does not implement either ARQ or FEC but re-

lies on link-layer FEC, and unreliable datagram that transparently passes UDP

traffic. While the fully-reliable connection mode offers closed-loop error control,

the quasi-reliable mode offers open-loop error control. This leaves a gap within

the spectrum to analyze the benefits of employing both closed-loop and open-loop

error control. Hyrbid error control, with both FEC and ARQ, is a simple way

to offer high end-to-end reliability and performance during moderate error con-

ditions. In this thesis, the reliable-connection mode (ResTP-ARQ) along with

hybrid error control mechanisms (ResTP-NACK and ResTP-NACK+MACK) are

implemented. The protocols are simulated using ns–3 (network simulator-3) and

are compared against the quasi-reliable mode to examine their tradeoffs. They

are also compared against the traditional TCP and UDP protocols in an identical

network scenario.
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Chapter 1

Introduction and Motivation

The Internet has become an indispensable part of today’s society. Services

that enable gathering and sharing information, performing business transactions,

and social networking are provided by the Internet. However, when these services

are disrupted due to the network’s vulnerability to failures, the outcome can be

severe. To provide acceptable level of service even during the face of disruption,

the protocols that operate within the networks should provide a greater degree of

resilience [1].

Protocols designed to meet the demands of present day users and applications

face multiple challenges posed by the network environments they operate in. For

example, in airborne networks disruptions are caused due to challenges such as

episodic connectivity, mobility, delays, bandwidth constraints, corruption, and

interference. Maintaining end-to-end connections in such challenged environments

is often difficult and requires more robust design. At the transport layer this

means that a connection must be able to adapt quickly to the changing network

conditions. To some extent these challenges can be addressed by enabling cross-

layering such that the different layers can communicate implicitly with each other
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to gain a better idea of the network conditions [2].

End-to-end reliability is provided by using sequence numbers, error detect-

ing and correcting codes such as checksums and forward error correction (FEC)

schemes respectively, and retransmitting the data packets that were unable to

reach the destination [3]. This involves in dealing with two integral issues: imple-

menting connection management paradigms and error control procedures. Pro-

viding reliability is a challenging task as it involves an overall increase in packet

exchange overhead between the source and the destination, increased protocol pro-

cessing at both ends, and state retention [4]. With the advent of wireless networks,

transport protocols faced new challenges as most of the network characteristics

changed. Unlike the wired networks, wireless networks consist of mobile nodes

and unstable links causing episodic connectivity, packet losses due to corruption,

delays due to handoffs and rerouting of packets, and network partitioning. Pro-

viding a full range of services efficiently in such an environment means making

fundamental changes to the way protocols operated and in some cases making

fundamental changes to the way the transport layer functions [5].

A portion of research in this area has been previously done by a number of stu-

dents in the ResiliNets research group under the supervision of our advisor. Under

the iNET (Integrated Network Enhanced Telemetry) program the group has de-

veloped a suite of protocols to address the issues posed by the current telemetry

networks. The suite of protocols referred to as ANTP (Aeronautical Network and

Transport Protocols) employ cross-layered architectural framework to enable effi-

cient end-to-end communication [2,6]. The protocol suite consists of AeroTP that

is a TCP-friendly transport protocol designed to provide both reliable and unreli-

able end-to-end communication depending on the type of data being transmitted
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by the nodes in the network. AeroNP is an IP-compatible network protocol that

employs addressing and forwarding for the aeronautical environment and AeroRP

is a routing protocol that offers several alternatives in absence of location informa-

tion caused by short contact times between nodes [6–16]. The AeroTP protocol is

a domain-specific subset of ResTP (Resilient Transport Protocol) and it employs

many of the transport protocol features of ResTP such as multi-mode reliability

structure. The difference between the two protocols lies in the design specificity.

While ResTP is designed based on path diversification in a multi-path environ-

ment, the AeroTP protocol is designed for a single-path aeronautical environment.

This thesis will focus on the design and implementation of the ResTP protocol

to address the end-to-end reliability issues associated with challenged networks.

We will consider the implementation of various error control schemes and analyze

their performance. The rest of this chapter is organized as follows: Section 1.1

presents an example of a disruption-tolerant environment, Section 1.2 briefly in-

troduces the drawbacks of TCP and UDP protocols, Section 1.3 provides the

problem statement and brief motivation, Section 1.4 presents solution for the the-

sis statement, and Section 1.5 lists the contribution of this thesis.

1.1 Highly Dynamic Airborne Network

In this section, to gain a perspective on the environments that these challenges

might be present in, we give an example of a highly-dynamic airborne network as

a challenged network.

The airborne network scenario introduces highly mobile nodes with intermit-

tent connectivity and dynamic topology causing efficient end-to-end communica-

tion to be difficult. The network shown in Figure 1.1 consists of three types of
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nodes: Ground Stations (GS), Airborne Nodes (AN), and Relay Nodes (RN).

© James P.G. Sterbenz!""#
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ANs

Internet

GW
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AN airborne node
RN relay node

GS ground station
GW gateway

Figure 1.1. Test and evaluation environment
[2, 8]

The GSs have gateways (GW) that provides an interface between the airborne

network and internet applications running at the GS. ANs are airborne nodes, for

example fighter jets, that contain devices running on IP such as cameras, monitors

and other control equipment that collect data from other nodes and GSs. The

airborne nodes move with velocities as high as Mach 3.5 causing time-varying

connectivity between the nodes. The contact durations can be as short as 15

seconds at Mach 7 closing speed leading to network partitioning [8]. GSs have

large steerable antennas with higher transmission range than a AN. They are
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capable of tracking ANs; however, due to narrow beam width GSs can track only

one AN at a given time. They can also interact amongst each other during a soft

handoff of a AN. The RNs are also airborne nodes that are used to provide better

connectivity in the network, thus, they are assumed to have higher transmission

range and larger buffer space than a AN to queue data. The primary data flow

within the network is from a AN to GS, but the command and control data flows

in the reverse direction.

The nature of this network environment poses many challenges to the current

communication protocols. Mobility and dynamic topology are caused because of

high speed nodes. Intermittent connectivity arises due to short contact durations,

limited transmission range of ANs, interference, and jamming. Bandwidth con-

straints arise because of limited spectrum available for high volume of data that

is sent from AN to GS.

1.2 Drawbacks of TCP and UDP Protocols

Transport layer protocols such as the transmission control protocol (TCP)

and the user datagram protocol (UDP) are popularly used for communication in

the Internet. In spite of their popularity and use in wide range of applications,

they perform poorly in a wireless environment. The performance degradation is

attributed to a number of drawbacks of both the TCP and UDP protocols. These

drawbacks of TCP and UDP will be discussed in detail in Chapter 2.
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1.3 Problem Statement

Popular transport protocols such as TCP and UDP exhibit degraded perfor-

mance in challenged networks. They do not provide any adaptive measures to

address the challenges posed by these networks. TCP employs a fixed error con-

trol scheme to address losses due to congestion without considering the current

network conditions. It is also unable to discriminate corruption-based losses caus-

ing severe performance degradation in the face of challenges. UDP is unable to

detect any errors. Both do not offer any QoS (quality of service).

Thesis Statement:

To address the challenges posed by disruption-tolerant environments,

transport protocols need to be adaptive and resilient to constantly

changing network conditions. Providing various error control mech-

anisms to address end-to-end reliability issues depending on current

network error conditions is important to enhance performance.

1.4 Proposed Solution

ResTP is a new transport protocol designed to address the challenges posed

by challenged networks while being TCP-friendly to allow seamless splicing with

conventional TCP at the network edge. The transport layer needs in these environ-

ments are dynamic resource sharing, differentiated level of precedence or QoS, real-

time data service, best-effort connections, and best-effort datagrams [8]. Hence

the protocol uses a multi-mode reliability architecture to provide QoS. It also em-

ploys multiple error control schemes depending on the nature of the application

and error conditions prevailing in the network. The defined transport layer func-
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tions include connection-set up and management, transmission control, and error

control [8]. Error control is performed using mechanisms such as ARQ (automatic

repeat request) and FEC (forward error correction) at both the transport and the

link layers. The protocol also implements hybrid-ARQ, both ARQ and FEC, using

linear-block codes such as Reed-Solomon to improve performance in moderate er-

ror conditions. The hybrid-ARQ modes employ two different mechanisms: hybrid-

ARQ using only NACKs (negative acknowledgments) and hybrid-ARQ using both

NACKs and ACKs (positive acknowledgements). To support QoS, ResTP employs

different operational modes: reliable connection mode, nearly-reliable connection

mode, quasi-reliable connection mode, unreliable connection mode, and unreli-

able datagrams. The reliable connection mode performs end-to-end reliable data

transfer at the transport layer using ARQ. The nearly-reliable connection uses a

custody transfer mechanism to provide high reliability but does not fully guar-

antee delivery. The quasi-reliable connection provides statistical reliability using

open-loop error recovery mechanism such as FEC coding. The unreliable con-

nection relies on link-layer (FEC or ARQ) to preserve data integrity but does

not perform any error correction at the transport layer. The unreliable datagram

passes UDP traffic with no AeroTP connection management involved [6].

1.5 Contribution

This thesis provides and analyzes the implementation of ResTP reliable mode

and ResTP hybrid-ARQ modes in ns-3. The reliable mode, as mentioned earlier,

provides guaranteed data delivery. The mode must preserve end-to-end acknowl-

edgment semantics from source to destination in order to perform guaranteed

delivery [17]. The implementation is supported by results that show the perfor-
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mance of ResTP in terms of average goodput (PDR), average delay, total data

delivered, and cumulative overhead.

As developing this protocol involved design from our previous work some of

the implementation is performed by other members from the ResiliNets research

group. To summarize, the major contributions of this thesis are:

• modification of ResTP’s segment structure and state machine from the orig-

inal design.

• implementation of ResTP connection management scheme

• implementation of ResTP reliable mode, ResTP-ARQ, with selective repeat

ARQ mechanism in ns-3 [18]

• optimizing the selective-repeat ARQ algorithm by employing aggregated

ACKs called MACKs (pronounced em-ACK).

• understanding the effect of aggregating ACKs on the performance ResTP

• implementation of type-I hybrid-ARQ modes: ResTP-NACK and ResTP-

NACK+MACK

• examining the performance tradeoffs of a pure closed-loop end-to-end ARQ

and a pure open-loop end-to-end FEC error control schemes with hybrid

error control scheme that fills in the gap between the open-loop and closed-

loop error control

• analyzing the benefits of end-to-end ARQ (ResTP-ARQ), hybrid-ARQ (ResTP-

NACK and ResTP-NACK+MACK), end-to-end FEC (ResTP-FEC) and

comparing them against each other and with traditional TCP and UDP

protocols

8



Note:

The quasi-reliable mode, ResTP-FEC, implementation was done by

Justin P. Rohrer. He is also one of the principal contributors to the

original design of the ResTP protocol [9].

1.6 Organization of Thesis

The thesis is organized as follows: Chapter 2 provides a review on background

necessary for understanding and implementing this protocol. It discusses various

ARQ mechanisms and applications in detail. Chapter 3 presents the design of

ResTP and its transport layer functions such as connection management and its

error control schemes. Chapter 4 describes the ns-3 implementation of ResTP and

its error control schemes. Chapter 5 describes the simulations scenarios employed

and provides an analysis on the performance of ResTP modes. It also compares

their performance against TCP and UDP. Chapter 6 concludes the thesis by dis-

cussing what has been accomplished so far and future goals.

9
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Chapter 2

Background and Related Work

This chapter discusses some basic and necessary concepts related to transport

protocols while introducing some of the earlier and popular protocols. One of

the focus areas of this chapter is the concept of reliability: how it is achieved, its

advantages, and the issues it imposes on the network. Reliability impacts other

important concepts such as connection management and error control. Hence,

the types of errors and error-handling mechanisms specifically involving ARQ

algorithms such as stop-and-wait, go-back-N , fast retransmit, selective-repeat,

SACK (selective acknowledgments), and SNACK (selective negative acknowledg-

ments) are also discussed. The other focus area is understanding the protocols

that implement reliability and the behavior of these protocols in different network

environments.

2.1 Transport Protocols

The transport layer of the network architecture is responsible for delivering

application data between end-system hosts through network switches or routers.

11



The services offered include selecting a data abstraction type such as byte streams,

messages, and packets; reliability; flow control; error control; connection-oriented

or connectionless; and congestion control services. Transport protocol designs pri-

marily depend on the applications for which they are providing the service and the

network environment in which they operate. Some of the examples of applications

are client-server applications, request-reply, peer-to-peer file sharing, and multi-

media streaming. Network environments broadly are classified into wired and

wireless. However, regardless of the application a transport protocol is designed

for or the environment in which it is going to operate, the goal is to achieve efficient

and secure communication. Efficiency in transport protocols is often measured in

terms of packet exchange overhead that affects the overall delay and throughput,

complexity of algorithms implemented, and the size of the state space. In general,

to improve the performance of transport protocols and to address issues unique

to a particular environment, improvements to the existing protocol mechanisms

are made through better implementation choices and eliminating or redistributing

existing functionality [4].

2.1.1 End-to-End Reliability in Transport Protocols

One of the features that distinguishes transport protocols from one another

is the provision of end-to-end reliability. A reliable transport protocol guaran-

tees correct delivery of data to the intended destination. Introducing this fea-

ture changes the design of transport protocols in terms of error control, resource

management, and a few other services. Reliability is achieved through messages

called acknowledgments (ACKs), a defined connection management mechanism,

and an efficient error control mechanism. ACKs are messages sent by the commu-

12



nicating pair to one another to notify that an expected packet has either arrived

indicating a successful delivery (positive ACKs) or not arrived indicating a loss

(negative ACKs). Connection management involves state retention that primarily

involves allocation, synchronization, and deallocation of state between the source-

destination pair [3, 4]. Error control involves the detection of and recovery from

lost, damaged, missequenced, and duplicated packets. Error detection involves

the use of error control identifiers such as sequence numbers to detect lost pack-

ets, while recovery involves either the use of error correcting codes (FEC codes)

or retransmissions (ARQ). Flow control is another aspect of reliability that deals

with controlling the rate at which the transport protocol sends the packets down

to the network layer.

Reliability is a expensive mechanism to implement since it involves state re-

tention, redundant information, data copying, buffer management, and packet

exchange overhead [4]. In some cases using ARQ mechanism to achieve reliabil-

ity gives rise to asymmetry, which means the channel is not fully utilized in the

reverse path. The goal when designing an efficient transport protocol is to send

as few number of packets as possible so that in extremely lossy conditions, losses

do not cause excessive overhead and eventually degrade the throughput and delay

performance of the protocol. While using any of the reliable mechanisms, con-

nection identifiers such as sequence numbers are used to ensure ordered delivery

and to make sure there is no duplication. While using sequence numbers, it is

important to make sure for every communication session the identifiers are unique

and have a bound on how long they can exist in the network.

Two of the earliest and the most commonly used protocols are TCP and UDP.

TCP and UDP with modified or added functionality became the basis for many
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protocols to offer better services and perform efficiently in challenged environ-

ments, and are used as the basis for many of the developing transport protocols.

2.1.2 Transmission Control Protocol

TCP is a full-duplex, connection-oriented, end-to-end reliable protocol between

hosts in a multi-host or multi-network environment that provides a byte-stream

service. TCP was designed to operate for a wide range of communication systems

with either hard-wired connections or packet-switched networks [19]. It offers its

services to the application protocols that belong to the upper layer and it requires

addressing, forwarding, and routing services from the lower layer Internet protocol

(IP). To provide a standard communication service between two processes in a

network, TCP was designed with multiple features. TCP’s operation offers a

reliable data service that allows the transmitted data to recover from damaged,

lost, duplicated, or out-of-order TCP segments during the segment’s transmission

through the network. It achieves reliability by using cumulative ACKs from the

receiver. It retransmits each segment if an ACK is not received in a set period

of time called a timeout. It is a connection-oriented protocol that uses a 3-way

handshake mechanism to explicitly establish a connection between two hosts and

terminate it when the transmission is completed. It takes an extra RTT to set

up the connection between the sender and the receiver after which actual data

transmission begins. It implements flow control as an end-to-end mechanism

that limits the amount of data transmitted by the sender at a given time to

avoid choking the receiver. The TCP’s congestion control mechanism prevents

the sender from injecting too much data into the network causing congestion

[20]. Congestion overloads the switches or routers in the network and causes the
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performance to degrade drastically.

2.1.3 User Datagram Protocol

UDP is a protocol with minimal end-to-end message delivery mechanism for

the application programs [21]. UDP is unreliable which means there is no guaran-

tee that the data sent will be delivered to the destination. It does not implement

flow control, congestion control, or ordered delivery.

2.1.4 Drawbacks of TCP and UDP Protocols

Although TCP and UDP are the most commonly used transport protocols

they fail to perform efficiently in a challenged wireless environment. In any net-

work packet losses are inevitable, the reasons including link outages, lossy channel

characteristics, unstable connectivity, delays, and congestion. A wireless chan-

nel is often subjected to bit-errors, interference, and channel fading, resulting in

packet loss and packet corruption. TCP assumes every packet loss is caused by

congestion in the network and invokes a congestion control algorithm. This de-

creases the congestion window by a fraction each time reducing the congestion

window’s size and thus, resulting in inefficient use of bandwidth. Schemes such

as split-TCP connections and local retransmissions were developed to circumvent

the problem caused by TCP’s assumption of congestion being the only cause for

packet loss [22].

TCP uses acknowledgment messages (ACK) to provide reliable data transmis-

sion and retransmissions. The source retransmits a TCP segment to the desti-

nation when a timeout occurs while waiting for an ACK. A connection setup is

performed through a three-way handshake between the source and the destina-
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tion pair of nodes. This takes up an extra round-trip time (RTT) that causes

significant performance degradation in networks suffering from intermittent con-

nectivity. By using a slow start algorithm, TCP may take RTTs to exit slow start

before it can fully utilize the bandwidth.

TCP does not efficiently perform flow control in a network with asymmetric

links since it requires a highly reliable ACK stream. Because of dynamic topol-

ogy, link outages are common. The congestion control algorithm is invoked during

short link outages causing an increase in number of retransmissions. The connec-

tion is terminated in case of longer link outages. This causes difficulty in restoring

links and finding alternate paths to the destination [6]. TCP also does not provide

any QoS for prioritizing the type of data being transmitted.

UDP is a simpler protocol than TCP and it does not offer any guarantee for

guaranteed data delivery, so it is unreliable. Unlike TCP, UDP does not have

a connection set-up mechanism and does not provide congestion control or flow

control or data retransmissions. UDP also does not provide differentiated levels

of precedence or QoS for the classes of data available in networks.

2.1.5 Optimizations for Mobile Wireless Networks

Researchers in the past laid much emphasis on developing algorithms for TCP

to adapt to congestion issues in a network [23–25]. As networks evolved from

simple point-to-point links to wired mesh networks to wireless and heterogenous

(both wired and wireless) networks, high link error rates, channel fading, interfer-

ence, long propagation delays, and noisy channel conditions increasingly became

the reason for packet losses. Hence, decreasing the congestion window size in

case a loss occurred in the network caused overall throughput degradation in the
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network.

Active research to find out other ways to deal with losses in a wireless net-

work led to the development of newer algorithms [26]. TCP Peach [27] and TCP

Westwood [28] are two such algorithms that were developed for wireless networks.

TCP Peach was developed as a congestion control scheme for satellite IP net-

works. Satellite networks are often characterized by long propagation delays and

high error rate channels. It was necessary that the algorithm could differentiate

when the loss occurred due to congestion and when it did not. It introduced two

new algorithms, sudden start and rapid recovery, along with traditional conges-

tion avoidance and fast retransmit algorithms. TCP Peach performed better in

terms of throughput and also provided an overall fair share of network resources

compared to traditional TCP algorithms [27]. TCP Westwood was developed to

improve TCP performance in both wired and wireless environments. TCP West-

wood made use of end-to-end bandwidth estimation to discriminate the cause of

packet loss in the network. It calculated the rate of connection continuously at the

TCP sender side and computed the congestion window threshold and slow start

threshold. It estimated the connection rate by monitoring the rate of returning

ACKs [28]. The main advantage was that the only modifications made to TCP

were at the source. Improvements in throughput and fair usage of link capacity

were other advantages.

Other techniques were proposed to improve the performance of TCP in wire-

less environments [22]. The techniques are applied at different points in the net-

work. The first technique involves a direct end-to-end protocol implementation

where the sender is responsible for error recovery. The error recovery is per-

formed using TCP SACK and explicit loss notification (ELN) mechanisms. The
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second technique provides link-layer reliability and the third technique implements

a split-connection protocol, in which the end-to-end connection breaks at the base

station. The results show providing local reliability at the link-layer that is TCP

aware improves TCP’s performance in wireless networks.

Wireless networks are characterized by asymmetric links in which conserving

bandwidth in the lower capacity link becomes important. To address the effects

of asymmetry on performance of TCP in a network, techniques such as ACK

congestion control (ACC), ACK filtering (AF) used to control the frequency of

ACKs, TCP sender adaptation (SA), ACK reconstruction (AR), and scheduling

data and ACKs were developed to minimize the number of ACKs [22].

With the rapid increase in wireless technologies, high bandwidth-×-delay prod-

uct networks are becoming increasingly common. These networks pose new chal-

lenges that worsen when the network is highly asymmetric. Asymmetry arises

when there is a difference in the power used by the communicating entities for

transmitting information. In these asymmetry can arise because of mismatched

bandwidths. The central transmission unit, such as a base station, has a higher

transmission power compared to the individual mobile units in order to reduce

power consumption. With asymmetry in which there is bi-directional traffic flow,

it becomes much more difficult to attain optimal performance.

The performance of the TCP protocol also was evaluated in a network with

high bandwidth-×-delay product and random loss [29]. TCP showed deterioration

in the throughput performance when random losses occurred and was unfair to-

wards connections with larger RTTs while multiple connections share a bottleneck

link.
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2.1.6 Space Communications Protocol Standards

Space Communications Protocol Standards (SCPS-TP) is an extension to

TCP, used particularly for satellite communications, developed to address prob-

lems posed by asymmetric links [30]. A satellite network experiences problems that

are similar to a highly-dynamic airborne network. Both share problems arising

due to limited spectrum, bandwidth constraints, resource constraints, asymmetric

links, intermittent connectivity, and higher error/loss rates. The following para-

graphs in this section describes the mechanisms used to cope with these issues.

The error control and recovery in the SCPS-TP protocol is based on TCP Ve-

gas [24]. The enhancement on the part of SCPS-TP is that it identifies the source

of loss, as opposed to TCP that automatically assumes congestion. It broadly clas-

sifies the sources of packet losses as being congestion-induced, corruption-induced,

and losses due to link outage.

In the case of congestion, the protocol at the receiver end or at the next

immediate router makes use of explicit congestion notification (ECN) bit in the

packet header to notify the sender about any congestion related loss [30]. SCPS-

TP then backs off using the congestion control algorithm. SCPS-TP also modifies

the TCP Vegas implementation of congestion avoidance by doubling the TCP

window size every other RTT as opposed to every RTT, achieving a more linear

growth of the TCP window. In the case of corruption and link outage, the protocol

sends corruption-experienced and link outage ICMP messages correspondingly to

the destination to indicate existing corruption on the link or link outage. In the

case of link outage, the sender protocol suspends the timers and does not transmit

any new data. It only sends probe packets to check the status of the link until

a link-restored ICMP message is received. Normal data transmission is resumed
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and data packets are sent from the point before which the link outage occurred.

In order to tackle the issues related to asymmetry arising from the volume

of TCP acknowledgments generated in the reverse channel, the protocol uses a

delayed ACK mechanism. The number of ACKs the receiver decides to delay is

depending on the RTT estimation [30]. The protocol employs header compression

and selective negative ACK (SNACK) option to work when the link capacity is

constrained and limited.

In spite of the similarities in the issues that SCPS-TP addresses it is not

suitable for applications in which network conditions change rapidly. This is

because it relies on channel condition information which is either pre-configured

or learnt during transition through the network [2].

2.2 Error Handling and Automatic Repeat Request

Early work on designing general-purpose protocols to provide end-to-end trans-

port services was based on assumptions that no loss or corruption of packets would

occur during an end-to-end transmission between hosts, and no missequenced

packets or duplicate packets would arrive at the destination [4, 31]. However, in

wireless networks these set of assumptions result in improper behavior. These

networks are frequently prone to losses caused by channel characteristics, network

topology, and traffic conditions.

Error control involves two phases: error detection and error recovery. Error

detection involves identifying errors caused by corruption, loss, duplication, and

missequencing of information. This is achieved through the use of checksums,

FEC codes, and acknowledgements. Error recovery involves using retransmis-

sions, FEC codes, or both to recover from the error. These mechanisms often
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come with drawbacks that affect the performance of the protocol. For example,

while ARQ provides high reliability it results in low throughput in high BER (bit

error rate) conditions. Moreover, while recovering losses using acknowledgments

and retransmissions, it is important to consider the overall delay caused due to

retransmissions. Using a purely-ARQ based error control scheme results in higher

delay in high BER conditions. An alternative to using ARQ is using FEC codes

to correct transmission errors. FEC codes involve adding extra bits to each data

segment that are then used to correct errors at the receiver. Although FEC does

not significantly increase overall delay and maintains a fairly high throughput

compared to ARQ in high BER conditions, adding additional bits to every data

segment increases the packet overhead [32–34]. Furthermore, using FEC codes

alone provides only statistical reliability since it does not recover beyond the ca-

pability of the code, nor recover from losses or missing data segments. When

errors go undetected the data segment is still delivered to the application and this

makes employing a good FEC code expensive as it increases the complexity of

the decoding system. Taking into account the drawbacks of using an error control

based purely on ARQ or FEC, hybrid error control combines both ARQ and FEC

to obtain better performance in moderate error conditions [35–37].

2.2.1 ARQ Algorithms

Ideally, reliable data transfer transmits data end-to-end with no delay and with

no errors or losses. However, transmission in a network is often prone to delay,

limited bandwidth and multiple errors along the path towards the destination. Bit

errors are the most common in wireless channels because of the channel’s vulner-

ability to noise and interference. Packet errors are caused because of congestion,
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switching between multiple paths within the network, and packet-drops during

the occurrence of bit errors in the packet. To avoid the errors caused by con-

gestion, congestion control and avoidance algorithms are used. They reduce the

TCP window size by a fraction each time congestion is detected. Packet drops at

the receiver may be caused because of corrupted packets. Error recovery schemes

are often a solution to correct the errors in the received data packet. ARQ uses

ACKs and retransmissions to ensure all the lost packets are successfully delivered

to the destinations.

ARQ algorithms improved over time achieving better performance in terms of

bandwidth utilization, delay, and reliability [38–40]. The basic approach in achiev-

ing reliability is through the stop-and-wait algorithm. The algorithm employs a

feedback mechanism where the sender is notified of the delivery of the packet. In

this approach, the sender transmits a packet to the receiver and waits for an ACK.

In case the sender does not receive an ACK for a packet, which might be because

of lossy link characteristics or packet-drops, the sender waits for a timer to expire,

after which it retransmits the un-ACKed packet. This causes the link to be idle

for the entire time the sender is waiting for an ACK causing inefficient utilization

of available bandwidth and a delay of one RTT per packet. An alternative is

the go-back-N algorithm. Multiple packets are sent simultaneously to the desti-

nation and the sender waits for all the ACKs. Once the sender misses an ACK

for a single packet, retransmission of all the packets since the lost packet occurs.

Although this eliminates the delay caused by waiting for an ACK, it introduces

the delay caused by retransmitting packets since the loss. Fast retransmit is an

algorithm in which the sender retransmits packets even before the timer expires.

Retransmission occurs when the sender receives more than a certain number of
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duplicate ACKs [41].

2.2.2 Selective-repeat ARQ

An alternative to the fast retransmit algorithm is the Selective Repeat ARQ.

In this algorithm, retransmission of only those packets for which the sender did

not receive an ACK takes place. When the packets are retransmitted they arrive

out of sequence. Hence, the receiver maintains a buffer to store the packets to

rearrange them at the end of the entire session. The algorithm’s complexity

increases since both the sender and the receiver have to maintain a consistent

state throughout the session and the receiver must have an increased buffer size.

It also fails in the case multiple packet losses occur during transmission. Another

version of Selective Repeat ARQ sends ACKs for a group of packets instead of

a single packet each time. This reduces the overall complexity at the receiver

buffer space and corrects the behavior of the protocol during multiple packet

losses. SNACK (selective negative acknowledgment) is an alternative to SACK

in which the receiver sends negative ACKs requesting a damaged or lost packet.

The receiver explicitly notifies the sender which packets were lost or corrupted and

thus may need to be retransmitted. TCP SNACK was originally implemented in

satellite communications in which the end-to-end delay was long [30]. SNACK

provides the sender with a complete view of receiver’s buffer when the sender

receives an ACK specifying damaged or lost packets. The sender aggressively

sends packets that are lost without waiting for a timeout. In this case TCP’s

congestion control is not invoked and utilization of bandwidth is improved.
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2.3 Estimating Retransmission Timeout

In the previous section we discussed how retransmissions can be used to re-

cover lost or corrupted TPDUs (transport protocol data unit). Retransmissions

are triggered by either detecting a missing ACK or by relying only on timeouts.

It is understood that the timeout must be set larger than the RTT to prevent

unnecessary retransmissions. However, determining how long the timeout should

accurately be is important [20, 42]. Since, networks can be prone to various de-

lays, RTT is seldom constant. Hence, updating the RTT information can help

determine what the RTO (retransmission timeout) must be set to. In this thesis

we follow RFC 2988 specifications in estimating RTO. For estimating RTT it is

important to collect a sample RTT for every ACK received. Hence, RTT sam-

ples, sampleRTT, are recorded when an ACK arrives carrying a sequence number

for a corresponding TPDU. The sampleRTT varies for every TPDU and hence

an average of these samples are taken, denoted as estRTT calculated using the

following:

estRTT = (1− α)× estRTT + α× sampleRTT

The deviation in RTT is also necessary to estimate the RTO and it is denoted as

devRTT, calculated as:

devRTT = (1− β)× devRTT + β × |sampleRTT− estRTT|

In the above equations recommended α = 0.125 and β = 0.25 [42]. From the

above equations the timeout is calculated as:
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RTO = estRTT + 4× devRTT

It is important to note that RTT is estimated only for outstanding data seg-

ments (TPDUs have not been retransmitted) unless the protocol header provides

an option to record a timestamp for every transmitted TPDU [42].

2.4 Hybrid Error Control

Hybrid error control schemes, commonly referred as hybrid-ARQ, involve FEC

within an ARQ scheme. The idea is to use FEC error recovery capability to re-

duce the number of retransmissions. This addresses the performance drawback

of ARQ in high BER conditions. In the case that the FEC is unable to recover

any errors, the receiver requests retransmission using negative acknowledgments

instead of delivering the corrupted data segment to the receiver. This improves

the reliability of the scheme compared to using only using FEC codes [33]. There

are two types of hybrid ARQ schemes: type-I and type-II [32, 35, 43, 44]. Type-I

hybrid-ARQ scheme is an approach that is designed for simultaneous error de-

tection and correction. When a received data segment is detected with errors,

the redundant information within that segment attempts to correct them. Upon

successfully correcting the errors the segment is delivered to the application. In

case the correcting code is unable to correct the errors, the receiver discards the

segment and requests a retransmission. The received retransmitted segment un-

dergoes the same error check and decoding process. When unsuccessful, retrans-

mission is requested and this repeats until the destination receives a segment that

can be successfully decoded. Type-I schemes are suited for channels with a rela-
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tively constant error rate. When an efficient error correcting code is chosen, this

approach can reduce the number of retransmissions significantly and improve the

overall delay and performance. This scheme comes with drawbacks, especially at

the extremes of channel error conditions. During fairly low error rate the addition

of extra bits increases the overhead, while during high error conditions the error

code word used may not be sufficient to correct all the errors, thereby increasing

the numbers of retransmissions and reducing the throughput [32]. Type-II hybrid-

ARQ schemes are suited for channels with varying error rates [36]. These schemes

often use adaptive hybrid-ARQ approach in which the extra bits are added de-

pending on the channel conditions. The retransmission strategy involved in using

this approach has varied from only retransmitting the extra bits to correct the

corrupted original segment to retransmitting the entire segment [45]. In this thesis

we explore type-I hybrid-ARQ schemes using a Reed-Solomon linear block code.

2.5 Summary

This chapter presented the general transport layer functions and end-to-end

reliability concepts. It also described the challenges employing reliability mecha-

nisms pose to the network. The popular transport protocols TCP and UDP were

reviewed along with their drawbacks that contributes to degraded performance.

This chapter then presented some of the TCP optimizations developed for general

wireless ad hoc networks and more specifically in satellite communications using

SCPS-TP. This chapter also discussed how error control can be achieved and the

types of error control mechanisms used. In the next chapter we will talk about

the design of ResTP and the transport layer functions it supports.
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Chapter 3

Design of ResTP

This chapter presents the design of the ResTP protocol and discusses its op-

eration in the reliable mode and hybrid-ARQ modes. The design aspects of the

ResTP protocol include the header formats, connection management paradigms,

and the error control strategies. Following the design features of the protocol in

the reliable-mode and hybrid-ARQ modes, we consider the differences between

the error control schemes. The chapter is organized as follows: Section 3.1 dis-

cusses briefly the overview of ResTP protocol and its five operational modes, Sec-

tion 3.2 introduces the header formats for both ResTP data TPDU and MACK

TPDU, Section 3.3 explains the connection management phases of ResTP pro-

tocol along with the state machine employed. Finally we consider various error

control schemes used in this protocol and their differences in Section 3.4.

3.1 ResTP Overview

ResTP is a resilient transport protocol designed to address the challenges posed

by a disruption-tolerant network. The AeroTP protocol previously developed as
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a domain-specific subset of ResTP, is a part of the ANTP suite of protocols that

were developed specifically to address the issues posed by highly-dynamic airborne

networks [6]. ResTP offers differentiated levels of precedence or QoS depending

on the type of data being communicated, thus involves several operational modes.

Transport layer functions that must be performed by the protocol include con-

nection management, transmission control, and error control. The connection

management involves setting up connections, and terminating them by synchro-

nizing the sender and receiver using a defined state machine. The protocol uses

ARQ and FEC for error control and it is fully decoupled from rate control [2].

ASYN 

data segment 
AACK 

AACK 

Figure 3.1. ResTP reliable connection mode

There are four operational modes: reliable connection, quasi-reliable connec-

tion, unreliable connection, and unreliable datagram [6,8].

• Reliable connection mode uses end-to-end acknowledgment semantics

from source to destination to guarantee correct data delivery as shown in

Figure 3.1. Hybrid-ARQ enhances reliable connection mode to reduce the
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number of retransmissions needed.

• Quasi-reliable connection mode completely eliminates ACKs and ARQ.

It uses open-loop error recovery mechanisms such as FEC and erasure coding

to achieve statistical reliability.

• Unreliable connection mode uses no error correction mechanism at the

transport layer. It relies exclusively on the FEC of the link layer to preserve

data correctness.

• Unreliable datagram mode is a stateless mode which provides no assur-

ance of reliable delivery.

3.2 ResTP Segment Structure

A ResTP segment (shown in Figure 3.2 and Figure 3.3) is capable of converting

to the TCP/UDP format at the realm boundaries in the cases of interworking

with TCP/IP. The ResTP protocol maintains two different segment structures

depending on whether the segment is a TPDU or an ACK or a MACK. The

MACK segment structure is very similar to the data segment structure except in

the place of payload there is a variable 32-bit field that carries the ACK number.

Both the segment structures are in conjunction with the formats specified in our

previous work [2].

• Source Port Number : 16 bits

The source port number (unsigned int) of the ResTP header is used by the

receiver to identify the correct flow to which the ResTP segment belongs.

29



0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Source Port Number | Destination Port Number |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Sequence Number |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Timestamp |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|resv | Mode |ECN| Flags | Payload Length |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| MACK Length | Optional fields /

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

/ Optional fields for FEC, Erasure Coding, ... / TP HEC CRC-16 /

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

\ \

/ Payload /

\ \

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

/ Payload FEC Parity Trailer (Optional) /

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Payload CRC-32 (Optional) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 3.2. ResTP data segment structure

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Source Port Number | Destination Port Number |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Sequence (ACK) Number 0 |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Timestamp |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|resv | Mode |ECN| Flags | Payload Length |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| MACK Length | Optional fields /

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

/ Optional fields for FEC, Erasure Coding, ... / TP HEC CRC-16 /

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| ACK Number 1 |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| ACK Number ... |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| ACK Number N |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

/ Payload FEC Parity Trailer (Optional) /

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Payload CRC-32 (Optional) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 3.3. ResTP MACK segment structure

• Destination Port Number : 16 bits

The destination port number (unsigned int) of the ResTP header is used by
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the sender to identify the correct flow to which the ResTP segment needs

to be delivered.

• Sequence Number : 32 bits

The sequence number (unsigned int) uniquely identifies ResTP segments for

reordering them at the receiving edge and for error-control purposes.

• Timestamp: 32 bits

The timestamp (unsigned int) records the time of the latest ResTP segment

transmitted.

• Reserved : 3 bits

These bits are reserved for future use.

• Mode : 5 bits

The mode bits indicate the ResTP reliability mode currently in use. The

modes are: Reliable, Quasi-Reliable, Unreliable Connection, and Unreliable

Datagram modes.

• Flags : 8 bits

The flag bit (unsigned int) indicates the type of ResTP segment transmitted.

Some of the bits are the same as the TCP flag bits to enable translation of

TCP segments. The flag bit used in the ResTP protocol are:

– ASYN: indicates the ResTP connection setup request

– ACK: indicates a single ACK for an ResTP segment

– NACK: indicates a single NACK for an ResTP segment

– MACK: indicates multiple ACKs for multiple ResTP segments
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– PSH: used to pass TCP PSH flag transparently

– RST: used in ResTP for future use

– URG: used to pass TCP URG flag transparently

– AFIN: indicates the ResTP connection termination request

• Payload Length : 16 bits

The payload length (unsigned int) indicates the length of each payload unit

or data that is sent by the application.

• MACK Length : 16 bits

The MACK length (unsigned int) indicates the number of ResTP ACKs

contained in the ResTP MACK header.

• Optional Fields : variable length

The optional field is associated with the mode that the ResTP protocol

operates in. For example, in a quasi-reliable mode which uses FEC bits

for error recovery the optional field indicates the FEC strength used (FEC

strength field). Hence, in case the payload gets corrupted, ResTP performs

FEC on the payload. The HEC (header error check) field performs a strong

CRC on the header to detect bit errors caused by wireless channel, thus

making sure the packet is correctly transmitted to the destination.

• Payload : Variable length

The payload carries the application data.

• ACK Number : Variable length

The ACK number (unsigned int) represents the sequence number of a cor-

rectly received data segment.
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• Payload CRC-32 : 32 bits

The payload CRC (unsigned int) for error correction depending on the trans-

fer mode used.

3.3 ResTP Connection Management

For a reliable-transport protocol, it is essential to define and maintain con-

sistent states at the sender and the receiver to establish a connection for data

transfer. The states either remain the same or evolve to another depending on

the events and actions that happen within the protocol during a communication

session [46]. Figure 3.4 shows the ResTP reliable mode packet flow-diagram, in

which S is the source, D is the destination. The diagram depicts the basic opera-

tion of the reliable mode. A more detailed end-to-end connection setup phase can

be seen in Figure 3.5.

The ResTP protocol is connection-oriented in all the operational modes except

for the unreliable datagram mode. The ResTP connection management scheme

consists of a connection setup or connection establishment phase and a connection

termination phase. The protocol uses control messages such as ASYN, AFIN,

ASYN ACK, and AFIN ACK to setup and terminate connections. To maintain

uniformity and reduce complexity, all the modes that are connection-oriented use

an identical state machine. Figure 3.6 shows the ResTP state transition diagram

and Table 3.1 contains description for various states and events in the ResTP

protocol.
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Figure 3.4. ResTP connection management
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Figure 3.5. ResTP connection setup

3.3.1 Connection Establishment

As shown in Figure 3.5, the connection establishment phase in the ResTP pro-

tocol is similar to that of TCP’s connection establishment. ResTP uses an oppor-

tunistic connection-establishment mechanism in which data and control overlap.
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Figure 3.6. ResTP state transition diagram

This differs from the TCP three-way handshake, which requires an extra RTT. An

ResTP connection is initiated by the sender upon receiving an APP CONNECT

message from the application while in the CLOSED state. The sender initiates

connection by sending an ASYN message. This involves setting the ASYN bit in

the ResTP header. The setup message is then transmitted with or without data

depending on the data being available in the send buffer. The sender moves to

the ASYN SENT state. The receiver moves to the LISTEN state upon receiving an

APP LISTEN message from the application. Upon receiving the connection setup

message the receiver sends an ACK for the ASYN by setting both the ASYN and

the ACK bits in the ResTP header. The receiver moves to the ESTABLISHED

state. In a wireless network with multiple paths to a destination a segment can

easily arrive out of order. Hence, the sender considers a successful connection

establishment upon receiving an ACK to any ResTP TPDU instead of only wait-

ing for an ASYN ACK. However, the application can also chose to wait for an
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Table 3.1. State transition definitions
State Description

CLOSED No connection exists and no TPDU is transferred
LISTEN Destination is ready to listen to any incoming TPDU
ASYN SENT ASYN sent by the host initiating connection
ESTABLISHED Steady state in which data transfer takes places
AFIN SENT AFIN sent indicating all outstanding TPDU have been sent
AFIN RECEIVED AFIN received; AFINACK sent acknowledging AFIN

Event Description

APP CONN Request issued to the sender to initiate connection
APP LISTEN Request issued to the destination to LISTEN to incoming data
APP CLOSE Request to intiate closing a connection by sending AFIN
ASYN RX ASYN received, indicating a connection is requested
ASYNACK RX ASYNACK received, indicating connection request is granted
ACK RX Single ACK received
MACK RX Multiple ACKs received
NACK RX NACK received, indicating corrupted TPDU; requesting retx.
AFIN RX AFIN received; connection termination is initiated
AFINACK RX AFINACK received; connection termination has been notified
CLOSE TO Timer ensuring all data is transmitted before going to CLOSED
LISTEN TO Timer ensuring all data is received before going to CLOSED

ASYN ACK to ensure a successful connection establishment. The sender moves

to the ESTABLISHED state. In this state both sender and the receiver exchange

TPDUs and ACKs.

3.3.2 Connection Termination

The ResTP protocol makes use of explicit messages, AFIN and AFIN ACK, to

ensure a successful termination. When all outstanding data has been transmitted

the application issues an APP CLOSE message. The sender then sets an AFIN bit

in the ResTP header and transmits an AFIN message without any payload. The

sender then moves to the AFIN SENT state and starts a timer, CLOSE TO, to

move the CLOSED state. The timer ensures that all data has been acknowledged
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before closing the connection. On the other end, upon receiving the AFIN message,

the receiver sends an AFIN ACK by setting AFIN and ACK bits. The receiver also

starts a timer, LISTEN TO, to move to the LISTEN state once all data has been

acknowledged [31,46,47].

3.4 ResTP Error Control Schemes

In this section we discuss the various end-to-end error control schemes of the

ResTP protocol implemented in ns-3. The ResTP protocol in the connection

oriented mode uses a pure ARQ based error control scheme, a pure FEC based

error control scheme, and two type-I hybrid ARQ error control schemes that use

both ARQ and FEC to provide reliability. The differences between these schemes

are briefly mentioned below.

• ResTP-ARQ : A pure ARQ based mode using selective-repeat ARQ to pro-

vide complete reliability. There are two retransmission strategies employed

in this mode, one that uses only RTOs (retransmission timeouts) to trigger

retransmission and the other that uses a fast recovery technique based on

missing ACKs. The protocol in this mode also features aggregating ACKs

in which multiple ACKs are aggregated to conserve bandwidth in the re-

verse channel. The protocol also enables the user to control the number of

retransmission per packet.

• ResTP-FEC : A pure FEC based mode that uses Reed-Solomon error cor-

recting code to provide statistical reliability.

NOTE: This mode was originally developed and implemented by Justin

P. Rohrer, a former PhD student of the ResiliNets research group. It is
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a part of our previous work involving design and simulation of AeroTP

protocol [6,8,10,11]. It is used in this thesis to integrate with the ARQ code

to implement hybrid-ARQ modes.

• ResTP-NACK : A hyrbid-ARQ mode that uses only NACKs to indicate

the receipt of a corrupt packet and to request retransmissions.

• ResTP-NACK+MACK : A hyrbid-ARQ mode that uses both ACKs and

NACKs to indicate the receipt of successfully received packets, the receipt

of corrupted packets, and to request retransmissions.

Depending on the error control scheme chosen, the protocol offers various

embedded features. For example, a default case in the ResTP-ARQ mode in-

volves acknowledging each data segment, which means sending an ACK for each

data packet. To decrease the amount of packet exchange overhead and in order

to conserve bandwidth in the reverse channel, the protocol aggregates multiple

ACKs [48, 49]. The protocol is able to determine that an incoming acknowledg-

ment is a single ACK or a multiple ACK depending on the flag that is set in the

ResTP header. The mode also offers two retransmission strategies; one based on

only retransmission timeout and the other based on fast recovery. We consider

this difference further in this section.

To better understand the behavior of these mechanisms, we make use of packet

flow diagrams. The following cases show the behavior of each of the above dis-

cussed schemes when a TPDU is either lost, corrupted, or both. In this thesis,

a corrupted TPDU is referred as a TPDU that has been delivered but detected

with errors that are beyond correction and a lost TPDU is referred to as a TPDU

that has been lost during transmission never arriving at the receiver.
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3.4.1 Comparison of Pure-ARQ vs. Hybrid-ARQ Modes
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Figure 3.7. Difference between ResTP modes

In this case we compare the behavior of three schemes in the event of a cor-

rupted and a lost ResTP TPDU. This case provides a base to understand the

primary difference between these three schemes. We consider specific cases in

each error control scheme to better understand the modularity of the design. Fig-

ure 3.7 shows a pure selective-repeat ARQ based ResTP-ARQ mode with the

single ACK acknowledgment strategy, a hybrid-ARQ mode with only NACKs,

and a hybrid-ARQ mode with both ACKs and NACKs. The receiver in a pure-

ARQ mode sends an ACK for every successfully delivered TPDU. This implies

that ACKs are not sent in the case of lost or corrupted TPDUs. Recovery in this

case is done by retransmitting the affected TPDU. In the hyrbid-ARQ modes,

an FEC check is performed on every TPDU that arrives at the receiver. If the
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TPDU is corrupted beyond the FEC’s capability to correct as determined by the

CRC, the TPDU is discarded and a NACK is sent requesting retransmission of

the affected TPDU. This strategy applies for both the hybrid-ARQ modes. The

difference is that lost TPDUs cannot be recovered using only NACKs as seen in

the case of a lost TPDU, for example TPDU 5 in Figure 3.7. In hyrbid-ARQ mode

that uses both NACKs and ACKs the lost TPDU is recovered in a way similar to

that of a pure ARQ based mode.

NOTE: The packet flow diagrams used in this thesis are based on EECS 780

lecture notes [50].

3.4.2 ResTP-ARQ Mode
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Figure 3.8. ResTP-ARQ using timeouts

Figure 3.8 shows the operation of ResTP-ARQ mode using only timeout to

retransmit packets. Here the corrupted or lost TPDUs are only retransmitted
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when an RTO expires. Every transmitted TPDU is scheduled for a retransmission

after time tack. This timer is canceled in case an ACK, for example A0, arrives

indicating that the TPDU 0 has been correctly delivered. TPDU 2 and 5 do not

receive ACKs indicating that they have not been delivered correctly. Hence, they

are retransmitted after time tack and the timer is reset. This does not affect the

flow of the other TPDUs. On the receiver end, TPDUs that arrive out of order

are buffered until the next expected TPDU arrives. In the pure-ARQ with MACK

case, the receiver waits to aggregate certain number of ACKs before sending it.

The number of ACKs to aggregate is a user-defined parameter. If any TPDU

is lost or corrupted, the receiver continues to wait for the next TPDU to arrive

until a MACK is transmitted, for example A013 indicates an MACK carrying

ACKs for TPDUs 0,1,3. The sender scans the sequence numbers to note which

TPDUs have been ACKed and cancels the timer on the corresponding TPDUs.

The sender waits for TPDU 2 to be ACKed and after tack the sender retransmits

the TPDU.

Figure 3.9 shows the operation of ResTP-ARQ mode using fast recovery. In

this example the sender schedules a retransmission for every TPDU like in the

previous example. However, when a TPDU is not ACKed, for example TPDU 2,

the sender immediately retransmits it without waiting for tack to timeout. This

implies that the sender has to keep track of the next expected ACK which in this

case after A0, A1 is A2 and after A3, A4 is A5. The expected ACK must updated

every time an ACK is received to ensure that the sender does not unnecessarily

retransmit the TPDUs.
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Figure 3.9. ResTP-ARQ using fast recovery
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3.4.3 ResTP Hybrid-ARQ Modes

In this section we consider the behavior of hybrid-ARQ modes with only

NACKs and with both ACKs and NACKs. In Figure 3.10, the sender in ResTP-

NACK mode assumes that a packet is correctly delivered if it does not receive any

NACK. For example, when TPDU 0 arrives at the receiver, the receiver performs

an FEC check on the TPDU. If the TPDU is error free the receiver delivers it to

the application. The receiver does not send an ACK indicating that the TPDU

has been delivered correctly. If a TPDU is corrupted, for example TPDU 2, and

the number of errors detected is greater than the FEC’s ability to correct them,

the TPDU is dropped and a NACK is transmitted. In this case NACK 2 is trans-

mitted requesting retransmission of TPDU 2. When the sender receives NACK 2,

TPDU 2 is retransmitted. While this approach recovers corrupted TPDUs it fails

to recover any lost TPDUs. However, when a retransmitted TPDU is lost, it can

be recovered up to a certain number of retries. For example, in Figure 3.11, when

TPDU 2 is lost after retransmission the receiver retransmits NACK 2 after time

tnack. However, in this thesis we limit the number of NACK retries to 5. The

behavior of ResTP-NACK+MACK mode is similar to that of the ResTP-NACK

mode while dealing with corrupted TPDUs. However, since the mode also em-

ploys ACKs to acknowledge correctly delivered TPDUs and maintains RTOs, lost

TPDUs can be recovered (Figure 3.10). This has an advantage over ResTP-NACK

in terms of achieving higher reliability.

3.5 Summary

In this chapter we presented the design of ResTP. The chapter discussed a

brief overview of the protocol and its development in our previous work. The
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Figure 3.11. Comparison of hybrid-ARQ modes

ResTP segment structures for both TPDUs, ACKs, and MACKs were discussed

in detail. We also discussed the connection management strategy used by the

protocol which involved both connection setup and connection termination. We

discussed the various error control schemes implemented in this protocol and their

behavior in the case of corrupted and lost TPDUs.
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Chapter 4

Implementation of ResTP

Following the design features of the protocol in the reliable-mode and hybrid-

ARQ modes from the previous chapter, we describe the implementation of the

protocol in ns-3. The details are discussed using a class interaction diagram to

understand various classes used during implementation. The chapter is organized

as follows: Section 4 introduces the building blocks of the transport layer in ns-3

and how various classes involved in the implementation interact, Section 4.1.1 dis-

cusses the modularity of the ResTP code. ResTP provides multiple error control

schemes and features unique to each. This enables us to choose a combination of

mechanisms for different scenarios. Section 4.2 presents the algorithm and flow of

ResTP error control schemes using transmit and receive for both the sender and

the receiver.

4.1 ResTP Implementation in ns-3

Implementing ResTP in ns-3 primarily involved understanding and learning

how the application, transport, and routing layer were structured in it. From a
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transport layer perspective it meant building sockets that communicated directly

with the application. Much of the protocol is implemented within this class. The

ns3::Socket is an API that deals with creating sockets, performing sending and

receiving operations, and initiating and terminating a connection with a remote

host [18]. Although the sockets perform sending and receiving operations, sockets

do not directly send to the routing layer. There is a layer in between sockets

and the IP, ns3::Ipv4L4Protocol, which allocates endpoints objects and performs

header checksum operations on the packets. For example, the packets are only

forwarded to the endpoints depending on the checksum results.
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Figure 4.1. ResTP class interaction diagram

With the majority of the functional placement determined, the rest of the im-

plementation involved creating classes for headers, buffers, and state machines.

Figure 4.1 shows a class interaction diagram that briefly describes the attributes
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and methods involved in each class of the protocol. A detailed explanation of var-

ious classes used in implementing the ResTP protocol is presented in the following

list.

• ns3::ResTPSocketImpl: A class that contains majority of the implemen-

tation of the protocol. This class implements the socket specific operations

such as initiating and terminating a connection and receive and deliver ap-

plication data. The class is also responsible for building ResTP data headers

and MACK headers. It is derived from the ns3::ResTPsocket class that in

turn is derived from the ns3::socket class. This class also implements the

state machine that is declared in ns3::ResTPStateMachine and defined in

ns3::ResTPL4Protocol. The ResTP reliable-connection mode, ResTP-ARQ,

and the ResTP hybrid-ARQ modes, ResTP-Nack and ResTP Nack+Mack,

are implemented within this class.

• ns3::ResTPL4Protocol: This class implements socket independent logic.

It is responsible for adding the ResTP header to the payload and initializing

the header checksum. This class is responsible for determining if the received

segment is intended for the right endpoint which is stored in a class called

the ns3::Ipv4EndPointDemux. This is done by storing a tuple that contains

the local port, local address, destination port, and the destination address.

The class also maintains a lookup table for state-action pairs and flag value

to determine the event.

• ns3::ResTPSocket: This is a parent class of ns3::ResTPSocketImpl. This

class contains the ResTP socket attributes that can be assigned and changed

over various simulation scenarios. This class defines the various error control
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options and retransmission strategies. The user can initialize the attributes

to control the behavior of the protocol.

• ns3::ResTPHeader: This class implements the ResTP header discussed

in Chapter 3.

• ns3::ResTPMackHeader: This class implements ResTP Mack header.

The MACK header is a variable length header that is treated as a vector.

• ns3::ResTPBuffer: This is a buffer class that implements any buffer in-

stance used in ResTP. It primarily enables the endpoints to perform enqueue

and dequeue operations.

• ns3::ResTPBufferEntry: This class is used to create an entry in a buffer.

It is indexed by sequence number of the TPDU. It also holds the ADU (ap-

plication data unit), ResTP header, an event id, and the maximum number

of retries for ARQ.

• ns3::ResTPStateMachine: This class is used to create a state machine

using a event vector and state-action pair.

4.1.1 Modularity of the ResTP Protocol

As described in previous chapters, ResTP is an adaptive transport protocol

that offers resilience by offering multiple reliability modes. Multiple error control

schemes offer a good platform for studying the tradeoffs of each protocol in various

challenge conditions. Before further describing ResTP operation, we consider

various options ResTP has to offer, as shown in Table 4.1.
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Table 4.1. Modularity in ResTP protocol
Features Options

Error control scheme ResTP-ARQ, ResTP-Nack, ResTP-Nack+Mack
Retransmission strategy fast recovery, timeouts
ACK aggregation single ACK, MACK
Retransmission limit no limit, maximum number of retransmissions

4.2 ResTP Operation

The basic ResTP protocol operation can be divided into transmit events and

receive events. Transmit events are those associated with explicitly sending an

outstanding TPDU. Receive events are events associated with receiving of a TPDU

or an ACK. In this implementation, the sender implements an identical transmit

event regardless of the error control scheme chosen. However, the sender has

different receive events depending on if ACKs, NACKs, or MACKs are received.

The receiver implements different receive events based on the error control scheme

chosen. It does not perform any transmit event in the state machine although it

transmits an ACK. The following sections describe the flow of protocol operation.

4.2.1 Transmit Event

Figure 4.2 shows the transmit event of the protocol. The transmit event here

is explained along with the a few states, events, and actions as seen in the state

table. Initially the sender and the receiver are in the CLOSED state. A connection

is initiated by the sender through an APP CONNECT message from the applica-

tion. The sender populates the ResTP header based on the current state and

the error control scheme chosen. For example, in the case of ResTP-ARQ mode,

the header will not carry any FEC strength information and in the hybrid-ARQ

modes the header carries FEC strength information. Once the header is added
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to the payload (ADU in this case), the sender creates a buffer entry using the

ns3::ResTPBufferEntry class. The entry stores a copy of the original TPDU and is

then added to the transmit buffer by using the ResTPBuffer::Enqueue() function.

A retransmission is scheduled to that entry after time t. Once an entry has been

created the protocol then sends the original TPDU to ns3::ResTPL4Protocol in

which the header checksum is added. The TPDU is then transmitted to the IP

layer and subsequently lower layers. The ns3::ResTPSocket continues to receive

ADUs from the application until no more data is available. The application then

issues an APP CLOSE message.

Receive ADU  
from application 

Build ResTP header 
based on mode 

Insert TPDU 
 into tx buffer 

Space 
in NetProt 
queue? 

Insert packet into 
pending buffer;  

wait for space in NetProt 
queue 

no 

Send to 
 ResTPL4Protocol, 

Add header checksum 

Send to Ipv4L3/ 
NetProt 

yes 

Schedule  
retransmission  

after time t 

RTO 
expired? 

yes 

Dequeue packet from 
buffer; retransmit; 
 re-add to tx buffer 

no Wait for  
timeout 

Figure 4.2. ResTP sender: Transmit event
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4.2.2 Sender: Receive Event in ResTP-ARQ Mode

Figure 4.3 shows the sender’s course of action when an ACK or an MACK is

received. In case of a receive event, the sender processes the header to obtain the

flag bit. The flag indicates if the received TPDU is an ACK or an MACK. In

case of an ACK, the sender checks the sequence numbers contained in the header

to determine if the ACK is expected. If the ACK is not the expected ACK,

the sender then dequeues the corresponding TPDU from the transmit buffer and

retransmits it. It then inserts the TPDU to the transmit buffer and schedules

another retransmission. If the ACK is an expected ACK, then the sender cancels

the retransmit event of the corresponding TPDU and dequeues it.

Receive  ACK/MACK  
from Ipv4L3/NetProt 

Process ACK/MACK based on 
flags 

Expected 
ACK/MACK ? 

Cancel retx event 
based on  

sequence number 

yes 

no 
Dequeue packet from buffer; 

retransmit; 
 re-add to tx buffer or wait 

for timeout 

Figure 4.3. ResTP sender: Receive event for MACK/ACK
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4.2.3 Sender: Receive Event in ResTP-NACK Mode

Figure 4.4 shows sender’s behavior when a NACK is received. In the case of a

NACK, the sender checks the sequence numbers contained in the header to deter-

mine which TPDU has been corrupted. It then then dequeues the corresponding

TPDU from the transmit buffer and retransmits it. It then adds the TPDU to

the transmit buffer and schedules another retransmission.

Receive  NACK from 
Ipv4L3/NetProt 

Process NACK 

Dequeue packet from tx 
buffer; retransmit; 
 re-add to tx buffer 

Figure 4.4. ResTP sender: Receive event for NACK

4.2.4 Sender: Receive Event in ResTP-NACK+MACK Mode

When the hybrid-ARQ error control scheme involving both ACKs and NACKs

is chosen, the sender checks for the flag bit in the header to determine if the

received TPDU is an ACK, MACK, or a NACK as shown in Figure 4.5. If the

flag indicates that the received segment is a NACK, then it functions similar to

the ResTP-NACK receive event. In the case of an ACK or a MACK the sender

functions similarly to the ResTP-ARQ receive event.
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Figure 4.5. ResTP sender: Receive event for MACK+NACK

4.2.5 Receiver: Receive Event in ResTP-ARQ Mode

Figure 4.6 shows the receiver end, which upon receiving a TPDU, sends either

a single ACK or aggregates multiple ACKs based on the m AckAgg value. If

the value is set to zero then an ACK is sent for every correctly received TPDU,

otherwise the receiver waits to aggregate the specified number of ACKs and trans-

mits the acknowledgment. It then verifies if the sequence number in the received

TPDU is in sequence to determine whether to deliver to the application or to wait

for the next TPDU in sequence to arrive. While waiting the receiver inserts the

TPDU in the receive buffer until the next TPDU in sequence arrives.
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Figure 4.6. ResTP receiver: MACK/ACK

4.2.6 Receiver: Receive Event in ResTP-NACK Mode

Figure 4.7 shows the receiver’s behavior upon receiving a TPDU in ResTP-

NACK mode. When a TPDU arrives, the receiver performs an FEC check on the

TPDU to determine if the TPDU is correctly received. If the TPDU is corrupted

then the receiver sends a NACK to the sender requesting retransmission of the

original TPDU. The receiver maintains a NACK buffer to store the NACKs for

retransmission. It then schedules the NACK for retransmission in case the original

TPDU gets lost or the NACK gets lost during transmission. If the received TPDU

is not corrupted then the receiver performs a CRC check on the TPDU. If the

check fails the TPDU is dropped and cannot be recovered, otherwise the receiver

checks the NACK buffer to verify if the received TPDU is a retransmitted TPDU

or an outstanding TPDU. If it is a retransmitted TPDU, the receiver cancels the
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retransmission timer of the corresponding NACK and dequeues it. It then delivers

the TPDU to the application.
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Figure 4.7. ResTP receiver: NACK

4.2.7 Receiver: Receive Event in ResTP-NACK+MACK Mode

Figure 4.8 shows the receiver’s behavior upon receiving a TPDU in ResTP-

NACK+MACK mode. When a TPDU arrives the receiver performs an FEC check

on the TPDU to determine if the TPDU is correctly received. If the TPDU is cor-

rupted then the receiver sends a NACK to the sender requesting retransmission of

the original TPDU. The receiver maintains a NACK buffer to store the NACKs for

retransmission. It then schedules the NACK for retransmission in case the original

TPDU gets lost or the NACK gets lost during transmission. If the retransmission

timer on the NACK expires, the receiver checks the retransmission limit. If the
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limit exceeds the maximum, which defaults to 5, the receiver dequeues the NACK

from the buffer.
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Figure 4.8. ResTP receiver: MACK+NACK

Otherwise the NACK is retransmitted and the retransmission limit is updated

to one less than the previous value. If the received TPDU is not corrupted then

the receiver performs a CRC check on the TPDU. If the check fails the TPDU

is dropped. The dropped TPDU is recovered through retransmission after the

sender side timer on the TPDU expires or when the sender detects a missing

sequence number in the ACKs. In case the checksum is correct, the receiver

checks the NACK buffer to verify if the received TPDU is a retransmitted TPDU

or an outstanding TPDU. If it is a retransmitted TPDU then the receiver cancels

the retransmission timer of the corresponding NACK and dequeues it. Then the
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receiver checks to see if the TPDU in sequence. When in sequence it delivers the

TPDU to the application, otherwise it stores the TPDU in the receive buffer and

waits until the next TPDU in sequence arrives.

4.3 Summary

In this chapter we have discussed the implementation of ResTP protocol in ns-

3. We showed the ns-3 classes used in implementing and developing this protocol.

To gain a better understanding on the operation of ResTP we explained in terms

of transmit and receive events for both the sender and receiver side. Finally, we

have discussed in detail the operation of ResTP for all three error control schemes.
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Chapter 5

Simulations

This chapter presents the simulation scenarios used to test various modes of

the ResTP protocol and compare them against each other. The simulations in this

thesis are performed using open source network simulator-3 (ns-3) [18]. ns-3 is a

discrete-event network simulator used to model, test, analyze, and simulate proto-

cols over various network scenarios. Section 5.1 explains the various performance

metrics used in the analysis of the transport protocols. Section 5.2 discusses the

simulation scenario used to provide some baseline analysis.

5.1 Performance Metrics

We evaluate the performance of ResTP-ARQ, ResTP-NACK, ResTP-NACK+MACK,

ResTP-FEC, TCP, and UDP protocols using the following metrics.

• Total data delivered : Total number of received bytes that shows how

much of actual unique data packets have been received in order. This metric

is important to measure the total amount of application data delivered by a

protocol while the network conditions might cause the connection between
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the source-destination pair to be terminated.

• Average delay : This metric indicates the average time taken by all the

packets to reach the destination. This is an important parameter to study

the effects of using the selective-repeat ARQ mechanism and delayed ACKs

on the overall delay performance. Error recovery mechanism using an ARQ

mechanism affect delay because of retransmissions.

• Average goodput : The average goodput shows the average rate of suc-

cessful delivery of the application data. It is the rate of application data

transmitted over time. The metric shows efficiency of the protocol.

• Cumulative Overhead : The cumulative overhead shows the total num-

ber of extra bytes it takes for the protocol to deliver data. This includes

all the extra bytes in the header, retransmitted packets, acknowledgments,

connection set-up messages, and any extra bytes added for error correction.

This is used to understand the efficiency of protocol operation in terms

of contention for wireless channel and congestion and its impact on lower

layers.

5.2 Simulation Model

The simulation scenario used in thesis shows only one of many challenge con-

ditions for which ResTP is designed. We take an example of a highly-dynamic

airborne network mentioned in Chapter 1. The network in this simulation setup

consists of two nodes communicating via a lossy link. One node is configured as a

traffic generator, sending data at a constant data rate of 4.416 Mb/s (3000 pkts/s

with an MTU of 1500 B), and the other as a traffic sink. The path consists of a
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10 Gb/s link representing the LAN on end-system, a 5 Mb/s capacity link with

a latency of 10 s representing the challenged network, and a second 10 Gb/s link

representing the LAN on the other end-system. Bit errors are introduced in the

middle link with a fixed probability for each run, and the performance for each

probability of bit-errors is shown in the plots described in the next section. A total

of 1 MB of data is transmitted during a single simulation between the two nodes.

The link is made unreliable by introducing losses using an error model varying

bit-error probabilities ranging from 0 to 10−4 for each of the protocols. Each sim-

ulation case is run 25 times and the results averaged to obtain the data needed

for transport layer comparisons with 95 percent confidence-interval bars plotted.

The general parameter space used in the simulations are shown in Table 5.1.

Table 5.1. Simulation parameters
Parameter Value

Transport Protocol ResTP, TCP, UDP
ResTP-Mode ARQ, FEC, NACK, NACK+MACK
Retransmit Option Fast recovery, Timeouts
ACK aggregation 0–365
Limit retransmissions (boolean) 0, 1
ACK retransmit limit 5
NACK retransmit limit 5
α (EMWA smoothing factor) 0.125
β (RTT deviation smoothing factor) 0.25
Data Rate 4.416 Mbps
MTU 1500 B
Bandwidth 10 Gb/s LAN, 5 Mb/s constrained network
Delay on bottleneck link 10s
Maximum Packet Lifetime (MPL) 30 s
Bit Error Rate (BER) 0 to 0.0001
Total data transmitted 1 MB
Number of runs 25
Simulation Time 2000 s
FEC strength 0–255
TCP timeout 60 s
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5.3 Performance Analysis

In this section we will analyze the performance of each ResTP mode by varying

parameters that are uniquely tunable in that mode. This will enable us to under-

stand the behavior of each mode under different BER conditions. Furthermore,

we compare the performance of ResTP with TCP-NewReno and UDP protocols.
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Figure 5.1. Fully reliable: Average goodput

5.3.1 Fully-Reliable Mode Performance

In the fully-reliable mode, ResTP uses ARQ to provide complete reliability.

This trades off additional latency (in the case of lost or corrupted packets) and

overhead of the reverse channel, against reliability. The advantage of this mech-

anism is that given enough time, every lost packet can be correctly delivered to

the application.

The first set of simulations in this section show the effects of BER on ResTP-

ARQ using MACKs. As discussed in Chapter 3, the ResTP reliable mode provides
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an option to aggregate multiple ACKs. With an MTU size of 1500 bytes we can

aggregate up to 365 ACKs, in which each additional ACK adds 4 bytes to the 20-

byte ResTP header. The simulation parameters specific to ResTP-ARQ mode set

for this simulation are shown in Table 5.2. In this mode, the default retransmission
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mechanism is set as timeouts.

Table 5.2. ResTP-ARQ with MACK enabled
Parameter Value

Transport Protocol ResTP
ResTP-Mode ARQ using MACK
Retransmit Option Timeouts
ACK aggregation 10, 30, 50, 100, 200, 365
Limit retransmissions 0

Figure 5.1 shows decreasing goodput as BER increases due to fewer data pack-

ets delivered per unit time. The steep decrease in the goodput initially is due to

the large delay on the channel. The channel delay is set to 10 s and all of the

data initially is sent within 1 s of the actual data transmission. As mentioned

previously, this simulation scenario was taken as an example of a highly-dynamic

airborne network for which AeroRP is used as a routing protocol. The store-and-

forward delay for the AeroRP protocol was measured to be 10 s [13]. Figure 5.2

shows that the average delay in general increases across the range of BER due to an

64



increased number of retransmissions. However, there is no significant difference in

the goodput or delay performance amongst different MACK values. We attribute

this behavior to the amount of data transmitted being too small compared to

the delay across the channel to see any significant difference in the performance.

Figure 5.3 shows that all 1 MB of the data is delivered as expected, thus achieving

full reliability, which is expected in closed-loop error recovery. Figure 5.4 shows

increased overhead for ACKs aggregated above 200 due to the increased amount

of retransmissions for every MACK lost. In the next set of plots, we examine
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the effect of BER on the ResTP-ARQ mode while using both fast recovery and

timeouts as the retransmission mechanism. We also test the performance of the

protocol when a retransmission limit is set as opposed to when there are no limits

on the number of retransmissions. Table 5.3 shows the parameters in this scenario.

Figure 5.5 shows that setting a limit on the number of retransmissions achieves

better goodput using both fast recovery and timeouts. While during lower BER
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Table 5.3. ResTP-ARQ using retransmissions
Parameter Value

Transport Protocol ResTP
ResTP-Mode ARQ
Retransmit Option Timeouts, fast recovery
ACK aggregation 0
Limit retransmissions 1
ACK retransmission limit 5
Link delay 10 s

retransmissions using fast recovery and timeout perform similarly, at higher BER

using fast recovery achieves better goodput. This is because the the sender does

not have to wait for retransmission timeouts to expire to send the missing data.

Figure 5.6 shows that when TPDUs are retransmitted only based on RTOs the

delay incurred is much higher. However, by limiting the number of retransmissions

they can achieve lower delay at higher BER compared to fast recovery mechanism.

Figure 5.7 shows that all the variations achieve full reliability at lower BER. For

BER > 6 × 10−5 full reliability cannot be achieved with limiting the number of
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retransmissions. This is because once the protocol exceeds a certain number of

retries it closes the connection, thus not delivering outstanding TPDUs. While

not setting a retransmission limit offers complete reliability the overhead incurred

is also greater as seen in Figure 5.8. This is due to the increased amount of data
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transfer through retransmissions.

5.3.2 Hybrid-ARQ Mode Performance

In the hybrid-ARQ mode ResTP-ARQ uses both closed-loop and open-loop

error control to recover losses. This trades off additional latency and overhead

against higher end-to-end reliability. When compared to a pure open-loop error

recovery, such as ResTP-FEC mode, using hybrid error control can achieve higher

end-to-end reliability. In the ResTP-NACK+MACK mode, the protocol achieves

full reliability and still gains better goodput than ResTP-ARQ.

The first set of simulations in this section show the effect of increasing FEC

strength on ResTP-NACK mode’s performance. We evaluate the performance

over various error rates. The ResTP-NACK parameters set for this simulation are

shown in Table 5.4
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The results from simulating ResTP-NACK show that for error rates > 0
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Table 5.4. ResTP-NACK for varied strengths
Parameter Value

Transport protocol ResTP
ResTP mode NACK
NACK retransmission limit 5
BER 0, 0.0000125, 0.000025, 0.00005, 0.0001
FEC strength 0,2,4,8,16,32,64,96,128,160,196,255
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ResTP-NACK achieves significantly lower goodput when FEC strength is zero.

Having no FEC strength implies that error correcting bits are not added to the

payload. Hence any corrupted TPDU is dropped at the receiver. This also de-

creases the goodput by actually delivering less application data per unit time.

However, as FEC strength increases the goodput continues to increases indicating

much of the corrupted data is recovered. Figure 5.9 shows that for FEC strengths

greater than 96 words/pkt the goodput begins to decreases since the number

of FEC bytes added to every packet increases hence saturating the link. Fur-

thermore, this also means the amount of actual application data in every packet
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decreases resulting in requiring more numbers of TPDUs to send the same amount

of application data. This results in an increased overhead as seen in Figure 5.10.
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For error rates greater than zero, when no FEC bytes are added (FEC strength

being zero) the number of corrupted TDPUs increases. This results in an increased
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number of NACKs sent by the receiver requesting retransmission. Although this

results in some amount of application data being recovered the delay incurred

increases. This is shown in Figure 5.11 in which ResTP-NACK for an error rate

of 10−4 has the highest delay. However, the delay decreases up to a point as FEC

strength increases. Futhermore, for FEC strengths greater than 96 words/pkt

the delay increases since increased FEC words saturate the link. Figure 5.12

shows that for increased FEC strengths ResTP-NACK is able to deliver a higher

percentage of data compared to when no FEC words are added. The significance

of hyrbid error control can be seen in achieving higher end-to-end reliability for

higher error rate under lower FEC strengths. Although a percentage of application

data is not delivered when compared to a pure ResTP-FEC mode that uses open-

loop error control, the percentage is significantly higher due to feeback from the

receiver. The results for ResTP-FEC mode can be seen in our previous work [11].
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The second set of simulations in this section show the effect of increasing

BER for various error rates in the ResTP-NACK+MACK mode. The ResTP-

NACK+MACK mode employs hybrid error control similar to the ResTP-NACK

mode but differs by employing ACKs along with NACKs to achieve higher end-

to-end reliability than ResTP-NACK and ResTP-FEC. ResTP parameters chosen

for this set of simulation are shown in Table 5.5

Table 5.5. ResTP-NACK+MACK perf. over varied FEC strengths
Parameter Value

Transport protocol ResTP
ResTP mode NACK+MACK
NACK retransmission limit 5
Limit retransmissions 0
BER 0, 0.0000125, 0.000025, 0.00005, 0.0001
FEC strength 0,2,4,8,16,32,64,96,128,160,196,255

The results from simulating ResTP-NACK+MACK show that for BER > 0

ResTP-NACK+MACK achieves significantly lower goodput when FEC strength

is zero. This behavior is similar to ResTP-NACK, the difference is that lower

goodputs are achieved due to an increased amount of retransmissions that not only

saturate the link but also end up sending a lower amount of outstanding TPDUs.

Having no FEC strength implies that error correcting bits are not added to the

payload. Hence any corrupted TPDU is dropped at the receiver and NACKs

are sent requesting retransmissions. Any lost TPDUs also increases the number

of retransmissions. However, as FEC strength increases the goodput continues to

increase indicating much of the corrupted data is recovered. Figure 5.13 shows that

for FEC strengths greater than 96 words/pkt the goodput begins to decreases since

the number of FEC bytes added to every packet increases, hence saturating the

link. Furthermore, this also means the amount of actual application data in every
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packet decreases resulting in requiring more TPDUs to send the same amount of

application data. This results in increased overhead as seen in Figure 5.14.
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For BER > 0 when no FEC bytes are added, the number of corrupted TDPUs

increases. This results in an increased number of NACKs sent by the receiver re-
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questing retransmissions. Although some amount of application data is recovered,

the delay incurred increases. This can be seen in Figure 5.15 in which a BER of

10−4 has the highest delay. However, the delay decreases up to a point as the

FEC strength increases. This behavior is very similar to ResTP-NACK except for

the difference in delay incurred is significantly higher for ResTP-NACK+MACK.

From Figure 5.11 and Figure 5.15 we can see that at BER of 10−4, ResTP-NACK

only incurs delay of 18 s while ResTP-NACK+MACK incurs a delay of 60 s.

Futhermore, for FEC strengths greater than 96 words/pkt, the delay increases

since increased FEC words saturate the link.
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Figure 5.12 shows that ResTP-NACK+MACK is able to achieve full reliability

at all BERs due to feedback from both ACKs and NACKs. Even when no FEC

bytes are added for correcting errors, this mode delivers the packet based on the

ACK feedback. Hence, this mode can achieve higher reliability with lower FEC

strengths.
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5.3.3 Effect of End-to-End Delay on ResTP Performance

In this section we present the performance of ResTP over various end-to-end

delays. The premise for this simulation is that one of the characteristics than can

be indicative of network connectivity is end-to-end delay. For example, low delays

can be indicative of a well connected network and higher delays can be indicative

of a disconnected network in which packets are ferried. Varying end-to-end delays

have an impact on RTO estimation, making it especially challenging to estimate

RTO accurately due to higher variance in sample RTTs.

Table 5.6. ResTP performance over varied end-to-end delay
Parameter Value

Transport protocol ResTP
ResTP mode ARQ, FEC, NACK, NACK+MACK
Retransmission strategy fastRetransmit
NACK retransmission limit 5
Limit retransmissions 0
Delay 1 ms, 10 ms, 100 ms, 1s, 10 s
BER 0.0000125
FEC strength 64

The following set of results compare the performance of ResTP-ARQ, ResTP-

FEC, ResTP-NACK, and ResTP-NACK+MACK for increasing delays. Table 5.6

shows the parameters selected for simulating this scenario. We choose a BER of

125 × 10−7 based on our observations with the performance of ResTP-ARQ at

low error rates. Figure 5.1 shows that the goodput drops drastically at very low

error rates. In the case of previous simulations we used a delay of 10 s and we

show how this long delay affects the goodput. We also choose an FEC strength of

64 as a default value since FEC strengths greater than 64 words/pkt are able to

correct most of the errors in corrupted packets. Hence, having an FEC strength

of 64 words/pkt poses a more challenging condition.
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Figure 5.17. ResTP: Average goodput
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Figure 5.18. ResTP: Average delay

Since the hybrid-ARQ modes employ both extra FEC bytes and retransmis-

sions to recover losses, they achieve lower goodput when end-to-end delays are

low as seen in Figure 5.17. All the modes in general are able to achieve higher

goodputs because the channel does not go unutilized, unlike when end-to-end de-
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Figure 5.19. ResTP: Total data delivered

lays are longer. When the delays are as high as 10 s, modes involving closed-loop

error control scheme take longer to detect and recover losses. Hence, the good-

putput drops with increasing delays. This also results in higher delays as seen in

Figure 5.18. ResTP-ARQ employs a pure closed-loop error control that can only

detect losses based on ACKs. When delays are long, the ResTP-ARQ mode takes

longer to deliver all of the application data. The same reasoning applies to ResTP-

NACK and ResTP-NACK+MACK. However, they able to achieve better delay

characteristics than ResTP-ARQ because they employ FEC codes to correct cor-

rupted TPDUs whenever possible, resulting in fewer retransmissions. ResTP-FEC

incurs the least delay since it does not employ any retransmission mechanism for

error recovery. Although delays within the network affect the goodput and overall

delay of the protocol, it does not affect the overhead or the total amount of data

delivered. This is because these metrics are not dependent on time. This behavior

is shown in Figure 5.20 and Figure 5.19.
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Figure 5.20. ResTP: Cumulative overhead
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5.3.4 Mode Comparison over Lossy Links

In this section, we discuss the effect of increasing BER on transport layer per-

formance metrics using different ResTP modes, on UDP, and on TCP NewReno.

The results show tradeoffs between the modes as a result of deteriorating chan-
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Figure 5.23. Mode comparison: Total data delivered

nel conditions. Figure 5.21 shows that the ResTP quasi-reliable mode is able to

achieve better performance than ResTP reliable mode, which drops off signifi-

cantly as the BER increases. Both the ResTP hybrid-ARQ modes perform better

than ResTP reliable mode as expected. In comparison to the ResTP protocol,
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Figure 5.24. Mode comparison: Cumulative overhead

TCP backs off significantly as the BER increases due to its congestion control

mechanism. The UDP protocol is able to achieve better goodput compared to

ResTP reliable mode and hybrid-ARQ modes but it drops off as BER increases

due to corrupted data. The ResTP reliable mode end-to-end delay increases sig-

nificantly in comparison with ResTP hybrid-ARQ modes with a BER of 10−4 as

shown in Figure 5.22. This can be attributed to the decrease in number of retrans-

missions due to the use of FEC codes. On the other hand, ResTP-FEC and UDP

incur no delay as they do not retransmit any data. The TCP’s end-to-end delay

increases to nearly double than that of the ResTP fully-reliable mode at BER of

10−4 due to a greater number of retransmissions. Over the course of the simula-

tion, the ResTP fully reliable mode and ResTP hybrid mode with both NACKs

and MACKs enabled are able to deliver the full 1 MB of data transmitted for all

BERs, but the ResTP hybrid mode with only NACKs enabled starts losing data

for BER > 2.5 × 10−5, as shown in Figure 5.23. The plot also shows that FEC
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looses a higher percentage of the data due to corruption as the BER increases

compared to ResTP NACK, because the hybrid mode requests retransmissions

and recovers some data. The UDP protocol does not employ any error detection

or recovery, hence loses a fraction of data at higher BERs. Furthermore, the plot

shows that the TCP is unable to deliver the full 1 MB of data due to the decrease

in the congestion window each time a data segment is lost, after which eventually

the TCP connection times out. Figure 5.24 shows that both ResTP hybrid modes

have larger overhead compared to a purely FEC-based quasi-reliable mode and

purely-ARQ based fully-reliable mode because they have both additional FEC

bits sent and data retransmitted. All the ResTP modes incur much less overhead

compared to that of TCP NewReno.

5.4 Summary

In this chapter we presented the performance of the ResTP modes and com-

pared it against different TCP and UDP protocols. We also presented the char-

acteristics of each ResTP mode as a function of BER. We presented the tradeoffs

between using a pure open-loop error control (FEC) and a pure closed-loop error

control (ARQ) against a hybrid error control.

We found that hybrid error control performs better than pure FEC and pure

ARQ at moderate error conditions by combining the advantages of both. We

also found that higher end-to-end reliability is achieved at the cost of increased

overhead. We also presented the effect of delay on the performance of the ResTP

protocol and determined that with large delays the goodput drops significantly

due to inefficient utilization of the channel. Furthermore, to show the efficiency

of ResTP protocol, we compared it against the TCP and the UDP protocols. We
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showed that ResTP clearly outperforms TCP and UDP both in terms of reliability

and in terms of achieving higher goodput.
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Chapter 6

Conclusions and Future Work

This chapter summarizes the contributions of this thesis and its achievements.

It highlights the advantages of using end-to-end alternative error control schemes

as a part of the ResTP protocol. We also discuss the future work needed to

improve the design of the protocol.

6.1 Contributions

The contributions of this thesis are:

• modified and implemented ResTP segment structure by adding additional

MACK flag bit and additional MACK length field to the header

• implemented ResTP connection management scheme by modifying and im-

plementing the ResTP state machine by defining event vectors, state-action

pairs, and event lookup

• implemented ResTP reliable mode, ResTP-ARQ in ns-3
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– implemented selective-repeat ARQ mechanism with retransmissions

based purely on timeouts and based on fast recovery

– optimized the selective-repeat ARQ algorithm by employing aggregated

MACKs to achieve improvement in performance over low error rates

• implemented type-I hybrid-ARQ modes, ResTP-NACK and ResTP-NACK+MACK,

based on only NACKs and both ACKs and NACKs respectively in ns-3

• analyzed the performance of end-to-end ARQ (ResTP-ARQ), hybrid-ARQ

(ResTP-NACK and ResTP-NACK+MACK), end-to-end FEC (ResTP-FEC)

and compared them against each other and with traditional TCP and UDP

protocols

• examined the tradeoffs between using open-loop and closed-loop error con-

trol with hybrid filling in the spectrum

6.2 Conclusions

To address the end-to-end issues posed by challenged networks we employed

adaptive error control schemes in the design of ResTP protocol. We provided

reasons as to why traditional protocols fail to perform in such environments by

learning their drawbacks. We also discussed various optimizations made to TCP

protocol for wireless networks. We presented various error control schemes that

can be used to detect and recover lost or corrupted packets. Furthermore, in this

thesis we presented the ns-3 implementation of the ResTP protocol and described

in detail the implementation of ResTP-ARQ, ResTP-NACK+MACK, and ResTP-

NACK modes.

84



Simulations performed on these protocols show the effect of BER on the per-

formance of these modes. We showed the tradeoffs between using ResTP reliable

mode, quasi-reliable, and the hybrid modes in terms of achieving reliability, in-

curring overhead, and compromizing delay and goodput. The results of ResTP-

ARQ, ResTP-FEC, ResTP-NACK, and ResTP-NACK+MACK modes showed

that while ResTP-ARQ and ResTP-NACK+MACK are able to achieve high re-

liability they do incur larger delays due to retransmission. However, ResTP-

NACK+MACK mode is able to achieve better goodput and delay than ResTP-

ARQ since it has more accurate feedback from the receiver with the use of NACKs.

The number of retransmissions in the ResTP-NACK+MACK is more controlled

compared to the ResTP-ARQ mode. ResTP-FEC and ResTP-NACK incur lower

delay since they do not employ any retransmission strategies. This is also why

they do not achieve full reliability. However, ResTP-NACK is able to achieve

higher system reliability than ResTP-FEC since it employs a feedback mecha-

nism through which it is able to recover losses. These observations show that full

reliability can be achieved only by employing positive ACKs.

Another important aspect of these simulations was the effect of BER on TCP

and UDP protocols. In Chapter 5 we established that the performance of TCP-

NewReno degrades with increasing BERs and ResTP clearly outperforms TCP-

NewReno. TCP fails to distinguish between congestion based losses and corrup-

tion based losses and triggers the congestion control scheme that reduces TCP

window size each time a loss occurs. At higher BER TCP backs off until the

connection times out thus achieving lower data reliability. UDP, however, incurs

no delays since it does not perform any retransmissions. UDP also achieves higher

goodput than ResTP at lower BER but loses a significant amount of data at higher
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BER thus decreasing the goodput.

6.3 Publications

Following are the publications as a result of my research with the ResiliNets

group:

1. Justin P. Rohrer, Kamakshi Sirisha Pathapati, Truc Anh N. Nguyen,

and James P.G. Sterbenz. Opportunistic Transport for Disruption Airborne

Networks. In Proceedings of IEEE Military Communications Conference

(MILCOM 2012), San Diego, CA, November 2012 (to appear).

2. Kamakshi Sirisha Pathapati, Justin P. Rohrer, and James P.G. Ster-

benz. Comparision of Adaptive Transport Layer Error-Control Mecha-

nisms for Highly-Dynamic Airborne Telemetry Networks. In Proceedings of

the International Telemetering Conference (ITC), San Diego, CA, October

2012 (to appear).

3. Kamakshi Sirisha Pathapati, Anh Nguyen, Justin P. Rohrer, and James P.G.

Sterbenz. Performance analysis of the AeroTP transport protocol for highly-

dynamic airborne telemetry networks. In Proceedings of the International

Telemetering Conference (ITC), Las Vegas, NV, October 2011, awarded

best graduate-student paper.

4. Kamakshi Sirisha Pathapati, Justin P. Rohrer, and James P. G. Ster-

benz. Edge-to-edge ARQ: Transport-layer reliability for airborne teleme-

try networks. In Proceedings of the International Telemetering Conference

(ITC), San Diego, CA, October 2010.
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6.4 Future Work

This thesis presents the design and implementation of ResTP, a resilient and

disruption tolerant transport protocol. There is scope for improving the design of

the ResTP protocol by employing type-II hybrid-ARQ schemes, by investigating

a mechanisms to detect lost packets in ResTP-NACK mode, and by employing

FEC to protect the header information. Employing type-II hybrid error control

schemes means modeling and implementing convolution codes instead of linear

block codes such as Reed-Solomon. Type-II hybrid error control schemes offer

various retransmission strategies, for example, while some retransmit only the

error correcting codeword some retransmit the original TPDU. This requires an

investigation into various strategies and their performance in varying error condi-

tions. ResTP-NACK mode is able to recover only corrupted TPDUs but fails to

recover lost TPDUs since it does not look for missing seqeunce numbers.

Most of the performance analysis is based on one challenge scenario, an exam-

ple of a bandwidth constrained network with varying BER. This shows that there

is a need to model more challenge scenarios to study the effects of parameters

other than channel BER. For example, in wireless scenarios, the effects of mobil-

ity and node velocity can be analyzed on the performance of ResTP and attacks

can be modelled to disrupt the network [51]. Other possible scenarios include run-

ning ResTP over various mobile ad hoc routing protocols such as DSDV, AODV,

OLSR, DSR and performance analysis of ResTP in the face of link failures and

node failures [52,53]. Another important area to evaluate performance is to study

the effect of high delay variance on the performance of ResTP. Since ResTP’s

RTO is calculated using current RTT, when the delay variation is very high, esti-

mating RTO becomes challenging. The future work also includes comparing the
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performance of ResTP against various TCP variants such as TCP Vegas, TCP

Westwood, TCP Westwood+, and SCPS-TP. These variants are currently being

implemented in ns-3 by the members of the ResiliNets research group [54–57].
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[13] Hemanth Narra, Egemen K. Çetinkaya, and James P.G. Sterbenz. Perfor-

mance analysis of aerorp with ground station updates in highly-dynamic air-

borne telemetry networks. In Proceedings of the International Telemetering

Conference (ITC), Las Vegas, NV, October 2011.
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