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Abstract

This work presents development of mathematical models based on conservation laws

for a saturated mixture of ν homogeneous, isotropic, and incompressible constituents for

isothermal flows. The constituents and the mixture are assumed to be Newtonian or gen-

eralized Newtonian fluids. Power law and Carreau-Yasuda models are considered for gen-

eralized Newtonian shear thinning fluids. The mathematical model is derived for a ν con-

stituent mixture with volume fractions φα using principles of continuum mechanics: con-

servation of mass, balance of momenta, first and second laws of thermodynamics, and

principles of mixture theory yielding continuity equations, momentum equations, energy

equation, and constitutive theories for mechanical pressures and deviatoric Cauchy stress

tensors in terms of the dependent variables related to the constituents. It is shown that

for Newtonian fluids with constant transport properties, the mathematical models for con-

stituents are decoupled. In this case one could use individual constituent models to obtain

constituent deformation fields, and then use mixture theory to obtain the deformation field

for the mixture. In the case of generalized Newtonian fluids, the dependence of viscosities

on deformation field does not permit decoupling. Numerical studies are also presented to

demonstrate this aspect. Using fully developed flow of Newtonian and generalized Newto-

nian fluids between parallel plates as a model problem, it is shown that partial pressures pα
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of the constituents must be expressed in terms of the mixture pressure p. In this work we

propose pα = φαp and
∑ν

α pα = p which implies
∑ν

α φα = 1 which obviously holds. This

rule for partial pressure is shown to be valid for a mixture of Newtonian and generalized

Newtonian constituents yielding Newtonian and generalized Newtonian mixture. Modifi-

cations of the currently used constitutive theories for deviatoric Cauchy stress tensor are

proposed. These modifications are demonstrated to be essential in order for the mixture

theory for ν constituents to yield a valid mathematical model when the constituents are

the same. Dimensionless form of the mathematical models are derived and used to present

numerical studies for boundary value problems using finite element processes based on a

residual functional i.e. least squares finite element processes in which local approximations

are considered in Hk,p
(
Ω̄e
)

scalar product spaces. Fully developed flow between parallel

plates and 1:2 asymmetric backward facing step are used as model problems for a mixture

of two constituents.
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Chapter 1

Introduction, Literature Review, and

Scope of Work

1.1 Introduction and Literature Review

Most of the literature on mixture theories can be divided into two major categories:

theories based on volume averaging and theories based on the principles of continuum me-

chanics. The primary focus of this thesis is on mixture theories based on principles of con-

tinuum mechanics. Theories based on volume averaging involve applying volume and/or

time integrals over a heterogeneous mixture to obtain “averaged” properties of the mixture.

While these techniques may be useful due to their ability to reduce the number of depen-

dent variables for a given problem, they generally lack a mechanism to recover meaningful

information about the behavior of individual constituents. Because of this shortcoming, the

primary focus of the majority of recently published works has been on continuum mechan-

ics based theories. Information on averaged theories can be found in papers by Drew [1],

1



Rubinow and Keller [2], Enlwald and Almstedt [3,4], Terada et al [5], and Ahmadi et al [6].

Mixture theories based on continuum mechanics principles assume that each material

point in the mixture is occupied simultaneously by each constituent [7]. This assumption

is not physically accurate of course, but is necessary so that the quantities used to describe

deformation are continuous and differentiable. This allows the development of the mathe-

matical models that describe the behaviors of mixtures in a similar manner to those for ho-

mogeneous matter. One of the first authors to use this idea was Truesdell [8] who proposed

a theory called a mechanical basis for diffusion. Author presents definitions for the basic

kinematic relations as well as the continuity and momentum equations for mixtures of ν

arbitrary constituents. This theory allows for the transfer of mass and momentum from one

constituent to another, which is commonly referred to as the "interaction force" [7, 9, 10].

It is shown that Fick’s Law of diffusion is a specific case of this theory.

Later Müller [11] presented the energy equation and entropy inequality for ν con-

stituents, as well as a linear constitutive theory for a mixture of two Newtonian fluids.

The author uses density gradients, the symmetric and anti-symmetric parts of the velocity

gradient tensors, temperature gradient, and relative velocity between constituents as the

arguments of the dependent variables in the constitutive theory. The author also shows

that based on this theory, a mixture of two ideal gasses is still an ideal gas with properties

that agree with the principle of partial pressures based classical thermodynamics. Green

and Naghdi [12] propose a similar theory in which they use the energy equation and en-

tropy inequality to derive the continuity and momentum equations. This is followed by

the derivation of constitutive equations for the mixture of two Newtonian fluids including

resulting thermodynamic restrictions. Atkin and Craine [13] derive continuity, momentum,

and energy equations, and the entropy inequality for mixtures, as well as a constitutive
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theory for mixtures of ideal inviscid fluids. The authors show that the results agree with

kinetic theory of gasses. Bedford and Drumheller [14] present a survey of continuum the-

ories of mixtures. The authors include constitutive examples for mixtures of immiscible

fluids, solid particles suspended in fluids, fluids flowing through porous media, chemically

reacting fluids, and composite materials. The authors also provide an overview of volume

averaged theories, and micro-structure theories. The theory for mixtures of two fluids is

restricted to mixtures of an inviscid and a viscous fluid.

In [7] Rajagopal and Tao derive the conservation laws for mixtures and provide details

for several example problems including: diffusion of a fluid through a solid experiencing

finite deformation, steady state diffusion problems, a diffusing singular surface, wave prop-

agation, mixtures of Newtonian fluids, and solid particle suspensions. The main difference

in these is the constitutive theory used for the stress tensor and the “interaction force”. The

authors derive the constitutive theory by selecting argument tensors based on the assumed

physics of the problem and use the entropy inequality to determine appropriate restrictions

on the material coefficients.

In [9] Rajagopal et al give a review of interaction force terms for fluid-solid mixtures.

The authors compare constitutive theory for the interaction force to volume averaged the-

ories based on results for single particle flows. The results include comparisons for drag,

lift, buoyancy, and other effects. Johnson et al present numerical results for flow between

parallel plates of solid particles suspended in a fluid [15]. The authors present a constitutive

model for granular particles suspended in a fluid and simplify the governing equations to a

system of ODE’s which are then solved using a collocation method. Results are presented

showing the effect of varying the volume fraction of the constituents and the coefficients of

the interaction force terms. Massoudi et al [16] present results for a similar problem using
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pipe flow assumptions, and Massoudi and Rao [17] give results for flow between parallel

plates. In [18] Massoudi et al show results for particulate flow down an inclined plane.

Rajagopal et al [19–21] present a series of studies for mixtures of fluids in a bearing.

In [19] an oil-water mixture is considered. The authors give a mathematical model and

results for 2D non-isothermal flow in a bearing. Portions of this mathematical model are

used in section 2.3.4. The authors use a constitutive theory that includes relative velocity,

volume fraction gradients, temperature gradient, and the symmetric part of the velocity

gradient tensor as argument tensors of the dependent variables in the constitutive theories.

Results are given for different volume fractions. In [20] a "bubbly oil" mixture is consid-

ered, and in [21] an oil-water mixture is studied in an elastohydrodynamic bearing. Similar

results are given and the mathematical models only vary because of the different consti-

tutive theory used for the gas phase. In all of the published work, the authors use finite

difference method to obtain numerical results.

Massoudi [10] shows how the constitutive theory for solid particles suspended in a

fluid (given previously in [9]) can be derived using the theory of invariants and generators.

In [22] the author gives a method for applying boundary conditions when computing solu-

tions to mixture problems. Massoudi [23] also shows that the constitutive theory used for

a mixture of two fluids must reduce to the theory for a single fluid as the volume fraction

approaches the limiting case of 0 or 1. The author also notes that the best way to ensure

this is to have viscosity terms that are weighted by volume fraction. For more information

on mixture theories see reference [7].
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1.2 Scope of Work

Mathematical models are derived based on mixture theory for ν homogeneous, isotropic,

and incompressible constituents using conservation of mass, balance of momenta, and the

first law of thermodynamics. For isothermal flows the constitutive theories for mechani-

cal pressure and the deviatoric Cauchy stress tensor are presented for the constituents and

the mixture based on the second law of thermodynamics. Currently used mixture theories

are examined and essential modifications are suggested based on the physics. The result-

ing modified mixture theory is used in the numerical studies to demonstrate its validity.

The mixture theory presented in the work considers Newtonian and generalized Newtonian

fluids. Power law and Carreau-Yasuda models for shear thinning fluids are used for the gen-

eralized Newtonian fluids. Dimensionless forms of the mathematical models are derived

and used in the numerical studies. Numerical studies are given for Newtonian, power law,

and Carreau fluids using fully developed flow between parallel plates and 1:2 asymmetric

sudden expansion as model problems for a saturated mixture of two constituents.

Numerical solutions of the BVPs are computed using finite element processes based on

a residual functional, i.e. least squares finite element processes, that ensure uncondition-

ally stable computation. Local approximations are considered in Hk,p
(
Ω̄e
)

scalar product

spaces.
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Chapter 2

Development of Mathematical Model for

a Mixture of ν Fluids

2.1 Introduction

In this chapter we present derivations of continuity equation, momentum equations,

energy equation, entropy inequality, and the constitutive theory derived from the entropy

inequality for a saturated mixture of ν Newtonian and generalized Newtonian fluids. Some

basic definitions of bulk densities of constituents, mixture density, mixture velocities, etc.

are introduced based on basic physical principles that are used in the development of the

mathematical model for the mixture. To avoid confusion in the notation used here and

those commonly used in continuum mechanics we adopt the following convention. Greek

letters such as α, β, γ, ν, etc. used as subscripts, superscripts, or indices refer to a quantity

associated with an individual constituent and have no implied summation when the index is

repeated. Any index using English letters i, j, k, etc. implies standard continuum mechan-
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ics summation conventions, i.e. summation over repeated indices. The derivation of the

mathematical model presented in this chapter is strictly based on principles of continuum

mechanics and thermodynamics.

2.2 Preliminary Definitions

In this section we present basic definitions of bulk densities of constituents, mixture

density, mixture velocity, material derivative for the constituents and the mixture etc. These

are subsequently used in the conservation laws. We consider a saturated mixture of ν

constituents with φα; α = 1, 2, . . . , ν volume fraction, and ρ(α); α = 1, 2, . . . , ν constituent

densities. Following Truesdell [8] we can give the following definitions:

2.2.1 Definitions of densities

Consider an elemental volume dV of the mixture of Volume V . Then ρ(α)φαdV is the

mass of each constituent in the volume dV . If ρm is the bulk density of the mixture, then

ρmdV is also the total mass in the elemental volume dV . Hence, for volume V , we have∫
V (t)

ρmdV =
ν∑

α=1

∫
V (t)

ρ(α)φαdV (2.1)

or ∫
V (t)

(
ρm −

ν∑
α=1

ρ(α)φα

)
dV = 0 (2.2)

Since V (t) is arbitrary, we have

ρm =
ν∑

α=1

ρ(α)φα (2.3)

If we define bulk density of a constituent ρα as

ρα = ρ(α)φα (2.4)
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Then 2.3 can be written as

ρm =
ν∑

α=1

ρα (2.5)

Additionally, for a saturated mixture, the volume additivity constraint must hold, i.e.

ν∑
α=1

φα = 1 (2.6)

2.2.2 Mixture velocities

Let vα be the velocities of the constituents at a material particle (simultaneously oc-

cupied by all constituents) and v the velocity of the mixture, then using the principle of

balance of momentum, i.e. the momentum of the mixture must be equal to the sum of the

momenta of the constituents, we have

ρmv =
ν∑

α=1

ραvα (2.7)

Equation 2.7 defines the mixture velocity at a material particle in terms of bulk densities of

the constituents, their velocities, and the mixture density.

2.2.3 Material derivative for the constituents and the mixture

Since the material derivative D(·)
Dt

in Eulerian description uses the velocity of a material

particle, it needs to be defined for each constituent. The material derivative of a dependent

variable Q for constituent α is defined as

DαQ

Dt
=
∂Q

∂t
+ vα ·∇Q (2.8)

The material derivative of Q for the mixture is defined as

ρm
DQ

Dt
=

ν∑
α=1

ρα
DαQ

Dt
=

ν∑
α=1

ρα

(
∂Q

∂t
+ vα ·∇Q

)
8



or

ρm
DQ

Dt
=

(
ν∑

α=1

ρα

)
∂Q

∂t
+

(
ν∑

α=1

ραvα

)
·∇Q

∴

ρm
DQ

Dt
= ρm

∂Q

∂t
+ ρmv ·∇Q (2.9)

2.3 Conservation Laws

We use the definitions presented in section 2.2 to derive details of the mathematical

model for the mixture using conservation laws. We assume the constituents and the mixture

to be incompressible and the flows to be isothermal. The constituents and the mixture are

considered to be Newtonian and generalized Newtonian fluids. The viscosities of the con-

stituents and the mixture are described using the Carreau-Yasuda model [24]. We present a

general derivation which is made specific based on the assumptions stated above.

2.3.1 Conservation of Mass

If we apply conservation of mass to an arbitrary volume containing ν constituents with

bulk densities ρα and velocities vα, then for each constituent we obtain

∂ρα
∂t

+∇ · (ραvα) = 0 (2.10)

Summing (2.10) for the constituents

ν∑
α=1

∂ρα
∂t

+
ν∑

α=1

∇ · (ραvα) = 0 (2.11)

or
∂

∂t

(
ν∑

α=1

ρα

)
+∇ ·

(
ν∑

α=1

ραvα

)
= 0 (2.12)

9



Using (2.5) and (2.7), (2.12) can be written as

∂ρm
∂t

+∇ · (ρmv) = 0 (2.13)

For the incompressible case (2.10) and (2.13) reduce to

ρα (∇ · vα) = 0 (2.14)

ρm (∇ · v) = 0 (2.15)

2.3.2 Balance of Momenta

Using the principle of balance of linear momentum to an arbitrary volume of mixture

yields the following three equations for constituent α (in the absence of body forces)

ρα
Dαvα
Dt

=∇ · [σα]T + πα (2.16)

Where [σα]T is the contra-variant Cauchy stress tensor and πα is the force exerted on the

αth constituent by each of the other constituents. In general
ν∑

α=1

πα = 0 (2.17)

must hold. In the case of a mixture of two constituents, 2.17 reduces to:

π1 = −π2 (2.18)

2.3.3 Energy equation

In the derivation of the energy equation we assume that the sum of the constituent

energies is the total energy of the mixture. For a constituent α, the rate of change of the

total energy must be equal to the rate of heat added and the rate of work done.

DαE
α
t

Dt
=
DαQ

α

Dt
+
DαW

α

Dt
(2.19)
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and for the mixture
ν∑

α=1

DαE
α
t

Dt
=

ν∑
α=1

DαQ
α

Dt
+

ν∑
α=1

DαW
α

Dt
(2.20)

where (in the absence of body forces)

Eα
t =

∫
V (t)

ρα

(
eα +

1

2
vα · vα

)
dV (2.21)

ν∑
α=1

DαQ
α

Dt
= −

∫
∂V

q · ndS = −
∫
V (t)

∇·qdV (2.22)

q is total heat flux and n is the outward unit normal to the boundary dV of volume V (t) in

the current configuration.

DαW
α

Dt
=

∫
∂V

P · vαdS =

∫
∂V

(
[σα]T · n

)
· vαdS (2.23)

=

∫
V

∇ ·
(
vα · [σα]T

)
dV

or
DαW

α

Dt
=

∫
V

(
vα ·

(
∇ · [σα]T

)
+ (σα)ij

∂ (vα)i
∂xj

)
dV (2.24)

DαE
α
t

Dt
=
Dα

Dt

∫
V (t)

ρα

(
eα +

1

2
vα · vα

)
dV (2.25)

for the αth constituent

(ρα)0 dV0 = (ρα) dV (2.26)

(ρα)0 and dV0 are densities and volumes in the reference configuration. Hence

DαE
α
t

Dt
=

∫
V0

Dα

Dt

(
(eα +

1

2
vα · vα) (ρα)0

)
dV0 (2.27)
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Since D(ρα)0
Dt

= 0 , (2.27) reduces to

DαE
α
t

Dt
=

∫
V0

Dα

Dt
(eα +

1

2
vα · vα) (ρα)0 dV0

=

∫
V (t)

Dα

Dt
(eα +

1

2
vα · vα)ραdV

=

∫
V (t)

(
Dαeα
Dt

+
1

2

Dα

Dt
(vα · vα)

)
ραdV

or
DαE

α
t

Dt
=

∫
V (t)

(
Dαeα
Dt

+ vα·
Dα (vα)

Dt

)
ραdV (2.28)

Thus, the energy equation for the αth constituent can be written as∫
V (t)

ρα

(
Dαeα
Dt

+ vα·
Dα(vα)

Dt

)
dV = −

∫
V (t)

∇ · qαdV

+

∫
V (t)

(
vα ·

(
∇ · [σα]T

)
+ (σα)ij

∂(vα)i
∂xj

)
dV (2.29)

In (2.29) we have used

q =
ν∑

α=1

qα (2.30)

Since the volume V (t) is arbitrary, (2.29) reduces to

ρα
Dαeα
Dt

+ ραvα·
Dα(vα)

Dt
+∇ · qα −

(
vα ·

(
∇ · [σα]T

)
+ (σα)ij

∂(vα)i
∂xj

)
= 0 (2.31)

From the momentum equation for αth constituent

ρα
Dαvα
Dt

=∇ · [σα]T + πα (2.32)

Substituting from (2.32) into (2.31)

ρα
Dαeα
Dt

+ vα·
(
∇ · [σα]T + πα

)
+∇ · qα

−
(
vα ·

(
∇ · [σα]T

)
+ (σα)ij

∂(vα)i
∂xj

)
= 0 (2.33)
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or

ρα
Dαeα
Dt

+ vα · πα +∇ · qα − (σα)ij
∂(vα)i
∂xj

= 0 (2.34)

Summing (2.34) over the constituents and using (2.30)

ν∑
α=1

ρα
Dαeα
Dt

+
ν∑

α=1

vα · πα +∇ · q−
ν∑

α=1

(σα)ij
∂(vα)i
∂xj

= 0 (2.35)

If we assume that for the αth constituent

eα = cpαθ (2.36)

and further assume constant cpα , then (2.35) reduces to

ν∑
α=1

ραcpα
Dαθ

Dt
+

ν∑
α=1

vα · πα +∇ · q−
ν∑

α=1

(σα)ij
∂(vα)i
∂xj

= 0 (2.37)

This is the final form of the energy equation for ν constituents. If we consider only two

constituents then (2.37) becomes(
ρ1cp1

D1θ

Dt
+ ρ2cp2

D2θ

Dt

)
+ (v1 · π1 + v2 · π2) +∇ · q

− (σ1)ij
∂(v1)i
∂xj

− (σ2)ij
∂(v2)i
∂xj

= 0 (2.38)

The theories based on (2.37) and (2.38) are much simplified as some interaction effects [7]

are neglected. But in view of the fact that we only consider incompressible constituents

and isothermal flows, these derivations are adequate.

2.3.4 Constitutive theory

We follow the derivations in reference [19] based on the following notations

L(α) = gradvα(x, t) D(α) =
1

2

(
L(α) + LT

(α)

)
q =

ν∑
α=1

qα

Q =
1

ρm

ν∑
α=1

ραQα η =
1

ρm

ν∑
α=1

ραηα(x, t) π = −π1 = π2

(2.39)
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In which q is heat flux, Q is heat supply, η and ηα are entropy densities of the mixture and

the constituents. We begin with the entropy inequality

ρm
Dη

Dt
+ div

(q
θ

)
− ρQ

θ
≥ 0 (2.40)

We have assumed that entropy due to heat flux qα is qα
θ

where θ is the common temperature

of the constituents and the entropy due to heat supply Qα is Qα
θ

.

Let the partial Helmholtz free energy Φα for the constituent α be

Φα = eα − θηα (2.41)

Using (2.40) and (2.41) and the energy equation in eα and the additivity constraint
∑ν

α=1 φα = 1

we can establish the following dependent variables in the constitutive theory for con-

stituent α.

Φα, ηα,π,q,σα (2.42)

The following argument tensors of the dependent variables in the constitutive theory are

considered in the development of the constitutive theory.

v(12),g,h(α),D(α), w(12) (2.43)

in which v(12) is relative velocity, h(α) = gradφα, and w(12) is relative spin. We con-

sider Φα = Φα(φα, θ), Φ = Φ(φα, θ). We have the following for the constitutive theory

derived using the theory of generators and invariants [25, 26] based on the assumption of

linear dependence of the constitutive variables on the argument tensors. We consider two

14



constituents only.

η =− ∂Φ

∂θ

π =β1v
(12) + β4g +

(
−ρ2

∂Φ2

∂φ1

+
ρ2
ρm

π

)
h(1)

+

(
ρ1
∂Φ1

∂φ2

+
ρ1
ρm
π

)
h(2)

q =− k1g − k2v(12)

σ1 =− p1[I] +d σ1

σ2 =− p2[I] +d σ2

(2.44)

in which p1 and p2 are mechanical pressures and dσ1 and dσ2 are deviatoric contravariant

Cauchy stress tensors for constituents one and two.

p1 = φ1

(
ρ1
∂Φ1

∂φ1

+ ρ2
∂Φ2

∂φ1

− Π

)
= ps1 − φ1Π

p2 = φ2

(
ρ1
∂Φ1

∂φ2

+ ρ2
∂Φ2

∂φ2

− Π

)
= ps2 − φ2Π

dσ1 =
(
λ1 trD(1) + λ3 trD(2)

)
[I] + 2µ1D(1) + 2µ3D(2) + λ5w(12)

dσ2 =
(
λ4 trD(1) + λ2 trD(2)

)
[I] + 2µ4D(1) + 2µ2D(2) + λ5w(12)

(2.45)

In which Π is a Lagrange multiplier [19] and

β1 ≥ 0 k1 ≥ 0

(
ρ2

(
η2 +

∂Φ2

∂θ

)
+ β4 +

1

θ
k2

)
≤ 1

θ
4β1k1

λ5 ≥ 0 µ1 ≥ 0 µ2 ≥ 0 (µ3 + µ4)
2 ≤ 4µ1µ2

λ1 +
2

3
µ1 ≥ 0

2

3
µ2 ≥ 0[

λ3 + λ4 +
2

3
(µ3 + µ4)

]2
≤ 4

(
λ1 +

2

3
µ1

)(
λ2 +

2

3
µ2

)
(2.46)

The constitutive theory can be simplified for incompressible constituents and the mix-

ture with further assumption of isothermal flow.

h(1) = 0, h(2) = 0, g = 0, trD(1) = 0, trD(2) = 0
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If we assume Φα = Φα(θ), then

∂Φα

∂φ1

= 0,
∂Φα

∂φ2

= 0

and if we ignore dependence of dσα on w(12), then the constitutive theory becomes

π = β1v
(12)

σ1 = −p1[I] +d σ1

σ2 = −p2[I] +d σ2

dσ1 = 2µ1D(1) + 2µ3D(2)

dσ2 = 2µ4D(1) + 2µ2D(2)

(2.47)

q is not a dependent variable in this constitutive theory due to the assumption of isothermal

flow.

2.4 Complete mathematical model

If we consider two incompressible, homogeneous, and isotropic constituents with satu-

rated mixture that is also incompressible, we have the following.

Continuity equations

ρ1∇ · v1 = 0

ρ2∇ · v2 = 0

(2.48)

Momentum equations (in the absence of body forces)
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ρα

(
(vα)1

∂ (vα)1
∂x1

+ (vα)2
∂ (vα)1
∂x2

)
+
∂p1
∂x1
− ∂ (dσα)11

∂x1
− ∂ (dσα)21

∂x2
− (πα)1 = 0

ρα

(
(vα)1

∂ (vα)2
∂x1

+ (vα)2
∂ (vα)2
∂x2

)
+
∂p1
∂x2
− ∂ (dσα)12

∂x1
− ∂ (dσα)22

∂x2
− (πα)2 = 0

α = 1, 2

(2.49)

Constitutive equations

dσ1 = 2µ1D(1) + 2µ3D(2)

dσ2 = 2µ4D(1) + 2µ2D(2)

(2.50)

Material coefficients µ1, µ2, µ3, and µ4 are functions of ηα, viscosities of the constituents

and the volume fractions φα. This mathematical model has closure, twenty equations in

twenty variables for 3D case and twelve equations in twelve variables for 2D case: vα,

α = 1, 2; p1, p2; dσα, α = 1, 2.

Material coefficients

Based on references [19, 27], we consider the following:

µ1 = φ2
1η1 + φ1φ2η12

µ2 = φ2
2η2 + φ1φ2η12

µ3 = µ4 = φ1φ2η12

η12 =
√
η1η2

(2.51)

where η1, η2 are constituent viscosities. For Newtonian fluids these are constant. When

the constituents are generalized Newtonian fluids, then η1 = η1(I
1
2 ), η2 = η2(I

2
2 ) in which

Iα2 ; α = 1, 2 are second invariants of the strain rate tensors D(α); α = 1, 2. Both Power

Law and Carreau-Yasuda models are admissible in defining η1 and η2 when the constituents

are generalized Newtonian fluids.
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Remarks

1. We note that deviatoric Cauchy stress dσ for the mixture is the sum of dσ1 and dσ2.

The constitutive theories for dσ1 and dσ2 must satisfy this requirement. Using (2.50)

and (2.51) we consider the following.

Consider the two constituents to be the same (say constituent one), hence in this case

η2 = η1. Thus

µ1 = η1
(
φ2
1 + φ1φ2

)
µ2 = η1

(
φ2
2 + φ1φ2

)
µ3 = µ4 = φ1φ2η1

(2.52)

Therefore

dσ1 = 2η1
(
φ2
1 + φ1φ2

)
D(1) + 2φ1φ2η1D(2) (2.53)

dσ2 = 2η1
(
φ2
2 + φ1φ2

)
D(2) + 2φ1φ2η1D(1) (2.54)

Since constituent two is the same as constituent one

ρ(2) = ρ(1) , ρ1 = φ1ρ
(1) , ρ2 = φ2ρ

(1)

Since ρmv = ρ1v1 + ρ2v2 and ρm = ρ(1)

ρ(1)v = φ1ρ
(1)v1 + φ2ρ

(1)v2

∴ v = φ1v1 + φ2v2

Thus for the mixture we have

D = φ1D(1) + φ2D(2) (2.55)
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Now, going back to (2.53) and (2.54)

dσ1 = 2η1 (φ1 + φ2)φ1D(1) + 2η1φ1φ2D(2)

dσ2 = 2η1 (φ1 + φ2)φ2D(2) + 2η1φ1φ2D(1)

(2.56)

Since φ1 + φ2 = 1, using (2.56) we can write

dσ =d σ1 +d σ2 = 2η1
(
φ1D(1) + φ2D(2)

)
+ 2η1φ1φ2

(
D(1) + D(2)

)
(2.57)

using (2.55) in (2.57), we can write

dσ = 2η1D + 2η1φ1φ2

(
D(1) + D(2)

)
(2.58)

But dσ = 2η1D must hold regardless of φ1 and φ2, hence the second term in (2.58)

must be zero which is only possible if µ3 = µ4 = 0.

Thus for saturated Newtonian and generalized Newtonian mixtures of two Newtonian

and generalized Newtonian fluids we have the following constitutive equations

dσ1 = 2µ1D(1)

dσ2 = 2µ2D(2)

(2.59)

2. Generalized Newtonian fluids

If we consider both constituents and the mixture to be generalized Newtonian fluids,

then

η1 = η1
(
I12
)
, η2 = η2

(
I22
)

(2.60)

In which I12 and I22 are the second invariants of the tensors D(1) and D(2). We can

use power law or Carreau-Yasuda model to define η1 and η2.

Power law
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The viscosity of the αth constituent is defined by

ηα = η0α (Iα2 )
nα−1

2 ; α = 1, 2 (2.61)

where η0α is the zero shear rate viscosity, nα is the power law index, and (Iα2 ) is the

second invariant of D(α). For example in R2 we have the following

Iα2 = 2

(
∂ (vα)1
∂x1

)2

+ 2

(
∂ (vα)2
∂x2

)2

+

(
∂ (vα)1
∂x2

+
∂ (vα)2
∂x1

)2

; α = 1, 2 (2.62)

and η0α and nα are given data for a fluid.

Carreau-Yasuda model

ηα = η∞α +
(
η0α + η∞α

) (
1 + λ2αI

α
2

)mα−1
2 ; α = 1, 2 (2.63)

η0α and η∞α are zero and infinite shear rate viscosity. η0α, η∞α , λα, andmα are constants

of the αth constituent.

3. Mixture viscosity

The mixture viscosity µm can be determined using D(1), D(2), µ1, µ2, and ρ1, ρ2,

ρm. For an isotropic, homogeneous, saturated mixture (Newtonian or generalized

Newtonian) we can write

dσm = µmD (2.64)

in which

dσm =
∑
α

dσα (2.65)
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and

dσα = µαDα (2.66)

using (2.7), we can write

D =
∑
α

ρα
ρm

Dα (2.67)

using (2.67) and (2.64), we obtain

dσm = µm

(∑
α

ρα
ρm

Dα

)
(2.68)

or

(dσm)ij = µm

(∑
α

ρα
ρm

(Dα)ij

)
(2.69)

also from (2.64)

(dσm)ij = µm (Dij) (2.70)

The mixture viscosity µm is deterministic from (2.69) or (2.70). For known volume

fractions and constituent viscosities it is shown that for fully developed flow between

parallel plates (2.69) or (2.70) holds.

2.5 Dimensionless form of the mathematical models in R2

For convenience, we introduce more familiar notation. Let

(vα)1 = uα , (vα)2 = vα , x1 = x , x2 = y

In (dσα)ij ; i, j = 1, 2 correspond to x and y. Velocities u and v are x and y components of

v. Likewise, vα has components uα and vα in the x and y directions.
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Using this notation, the mathematical model in R2 for a two constituent, saturated,

incompressible mixture of Newtonian or generalized Newtonian fluids can be written as

(for isothermal flows).

ρα = φαρ
(α)

ρm =
2∑

α=1

ρα

2∑
α=1

φα = 1

ρmv =
2∑

α=1

ραvα

(2.71)

Continuity equations:

ρα

(
∂uα
∂x

+
∂vα
∂y

)
= 0 ; α = 1, 2 (2.72)

Momentum equations:

ρα

(
∂uα
∂t

+ uα
∂uα
∂x

+ vα
∂uα
∂y

)
+
∂pα
∂x
− ∂ (dσα)xx

∂x
−
∂ (dσα)xy

∂x
− (πα)x = 0 ; α = 1, 2

ρα

(
∂vα
∂t

+ uα
∂vα
∂x

+ vα
∂vα
∂y

)
+
∂pα
∂y
−
∂ (dσα)xy

∂x
−
∂ (dσα)yy

∂x
− (πα)y = 0 ; α = 1, 2

(2.73)

Constitutive equations:

dσα = µαD(α) ; α = 1, 2 (2.74)

where

µ1 = φ2
1η1 + φ1φ2η12 ; µ2 = φ2

2η2 + φ1φ2η12 ; η12 =
√
η1η2 (2.75)

η1 and η2 are the viscosities of the two constituents.

Power Law model:
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ηα = η0α (Iα2 )
nα−1

2 ; α = 1, 2

Iα2 = 2

(
∂uα
∂x

)2

+ 2

(
∂vα
∂y

)2

+

(
∂uα
∂y

+
∂vα
∂x

)2

; α = 1, 2

(2.76)

Carreau-Yasuda model:

ηα = η∞α +
(
η0α + η∞α

) (
1 + λ2αI

α
2

)mα−1
2 ; α = 1, 2 (2.77)

2.5.1 Dimensionless form

First we introduce ‘ ˆ ’ (hat) on all quantities in (2.71) – (2.77) indicating that the quan-

tities have their usual dimensions or units and use the following reference quantities and

the dimensionless variables

x̂ = xL0, ŷ = yL0, ûα = uαu0, v̂α = vαu0

η̂α = ηαη0, p̂α = pαp0, dσ̂α =d σατ0, ρ̂α = ραρ0

(2.78)

In which L0 is the reference length, u0 is the reference velocity, η0 is the reference

viscosity, p0 is the reference pressure, τ0 is the reference stress, and ρ0 is reference density.

For consistency we must use p0 = τ0. We can use either characteristic kinetic energy or

characteristic viscous stress to choose reference value τ0.

The reference time t0 is given by

t0 =
L0

u0
(2.79)

Using (2.71) – (2.77) with ’ ˆ ’ (hat) on all quantities and using (2.78) and (2.79), we

can obtain the following dimensionless form of the GDEs for the two constituent mathe-

matical model in R2.

Equations (2.71) and the continuity equations remain unchanged.
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ρα = φαρ
(α) ; ρm =

2∑
α=1

ρα ;
2∑

α=1

φα = 1 ; ρmv =
2∑

α=1

ραvα (2.80)

Continuity equations:

ρα

(
∂uα
∂x

+
∂vα
∂y

)
= 0 ; α = 1, 2 (2.81)

Momentum equations:

ρα

(
∂uα
∂t

+ uα
∂uα
∂x

+ vα
∂uα
∂y

)
+

(
p0
ρ0u20

)
∂pα
∂x

−
(

τ0
ρ0u20

)(
∂ (dσα)xx

∂x
+
∂ (dσα)xy

∂y

)
−
(
L0

ρ0u20

)
(πα)x = 0 ; α = 1, 2

ρα

(
∂vα
∂t

+ uα
∂vα
∂x

+ vα
∂vα
∂y

)
+

(
p0
ρ0u20

)
∂pα
∂y

−
(

τ0
ρ0u20

)(
∂ (dσα)xy

∂x
+
∂ (dσα)yy

∂y

)
−
(
L0

ρ0u20

)
(πα)y = 0 ; α = 1, 2

(2.82)

2.5.2 Power law for constituents and mixture

η̂α = η̂0α

(
Îα2

)nα−1
2

; α = 1, 2 (2.83)

where η̂α are the viscosities of the constituents. η̂0α, Îα2 , and nα are zero shear rate

viscosity, second invariant of the strain rate tensor, and power law index for constituent α.

Using (2.78), we can write (2.83) as

η̂α = η0η
0
α

(
u0
L0

)nα−1
(Iα2 )

nα−1
2 =

(
η0

(
u0
L0

)nα−1)
η0α (Iα2 )

nα−1
2 ; α = 1, 2 (2.84)
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η0α is dimensionless zero shear rate viscosity and Iα2 is the dimensionless second invari-

ant of the strain rate tensor for constituent α.

or

η̂α =

(
η0

(
u0
L0

)nα−1)
ηα ; ηα = η0α (Iα2 )

nα−1
2 ; α = 1, 2 (2.85)

in which ηα is the dimensionless viscosity of constituent α. Using (2.85) we can define

µ̂1 and µ̂2 in (2.75).

µ̂1 = φ2
1η̂1 + φ1φ2

√
η̂1η̂2

µ̂2 = φ2
2η̂2 + φ1φ2

√
η̂1η̂2

(2.86)

Consider µ̂1. Substituting from (2.85) for α = 1.

µ̂1 = φ2
1η0

(
u0
L0

)n1−1

η1 + φ1φ2

√
η0

(
u0
L0

)n1−1

η0

(
u0
L0

)n2−1

η1η2 (2.87)

Consider (dσ̂1)xx in (2.74). Substituting from (2.87) and non-dimensionalizing gives

τ0 (dσ1)xx = 2

φ2
1η0

(
u0
L0

)n1−1

η1 + φ1φ2

√
η0

(
u0
L0

)n1−1

η0

(
u0
L0

)n2−1

η1η2

 u0
L0

∂u1
∂x

or

(dσ1)xx = 2

φ2
1

(
u0
τ0L0

)
η0

(
u0
L0

)n1−1

+ φ1φ2

√√√√( u0
τ0L0

η0

(
u0
L0

)n1−1
)(

u0
τ0L0

η0

(
u0
L0

)n2−1
)
η1η2

 ∂u1
∂x

(2.88)

If we use τ0 = ρ0u
2
0 (characteristic kinetic energy), then
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u0
τ0L0

(
η0

(
u0
L0

)n1−1
)

=
η0u0
ρ0u20L0

(
η0

(
u0
L0

)n1−1
)

=
η0

ρ0 (L0)
n1 (u0)

2−n1
=

1

(Ren)1
(2.89)

where (Ren)1 is the Reynolds number for constituent one. Similarly

u0
τ0L0

(
η0

(
u0
L0

)n2−1
)

=
η0

ρ0 (L0)
n2 (u0)

2−n2
=

1

(Ren)2
(2.90)

Hence, we can write the following for (dσ1)xx

(dσ1)xx = 2

(
φ2
1

η1
(Ren)1

+ φ1φ2

√
1

(Ren)1 (Ren)2
· η1η2

)
∂u1
∂x

(2.91)

or

(dσ1)xx = 2µ˜1∂u1∂x
(2.92)

where

µ˜1 = φ2
1

η1
(Ren)1

+ φ1φ2

√
1

(Ren)1 (Ren)2
· η1η2 (2.93)

Similarly for (dσ2)xx, we have

(dσ2)xx = 2µ˜2∂u2∂x
(2.94)

where

µ˜2 = φ2
2

η2
(Ren)2

+ φ1φ2

√
1

(Ren)1 (Ren)2
· η1η2 (2.95)
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Similar derivation holds for the other components of the deviatoric Cauchy stress com-

ponents. In summary we have the following for the constitutive equations

dσα = µ˜αD(α) ; α = 1, 2 (2.96)

and

dσm = µ˜mD (2.97)

Equations (2.80)–(2.82), (2.96), (2.93), (2.95), and (2.85) constitute the dimensionless

form of the complete mathematical model in R2 for a power law mixture of two power law

constituents.

2.5.3 Carreau model for constituents and mixture

In the case of the Carreau model, the definitions of µ1 and µ2 change compared to power

law. We consider details in the following.

Using (2.77)

η̂α = η̂0α +
(
η̂0α − η̂∞α

) (
1 + λ2αÎ

α
2

)mα−1
2

; α = 1, 2 (2.98)

Using (2.78) we can write the following for (2.98)

η̂α = η0

η0α +
(
η0α − η∞α

)(
1 + λ2α

(
u0
L0

)2

Iα2

)mα−1
2

 ; α = 1, 2 (2.99)

Let
λαu0
L0

= cuα be the Carreau number for constituent α.

∴ η̂α = η0

(
η0α +

(
η0α − η∞α

) (
1 + (cu1)

2Iα2
)mα−1

2

)
= η0ηα ; α = 1, 2 (2.100)
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where

ηα = η0α +
(
η0α − η∞α

) (
1 + (cuα)2Iα2

)mα−1
2 ; α = 1, 2 (2.101)

Using (2.100) we can define µ̂1 and µ̂2 in (2.75).

µ̂1 = φ2
1η̂1 + φ1φ2

√
η̂1η̂2

µ̂2 = φ2
2η̂2 + φ1φ2

√
η̂1η̂2

(2.102)

Consider µ̂1. Substituting from (2.100) we obtain

µ̂1 = φ2
1η0η1 + φ1φ2

√
η0η1η0η2 (2.103)

Consider (dσ1)xx in (2.74). Substituting from (2.103) and nondimensionalizing gives

τ0 (dσ1)xx = 2
(
φ2
1η0η1 + φ1φ2

√
η0η1η0η2

) u0
L0

∂u1
∂x

(2.104)

using τ0 = ρ0u
2
0 (characteristic kinetic energy)

(dσ1)xx = 2

(
φ2
1

(
η0

L0ρ0u0

)
η1 + φ1φ2

√(
η0

L0ρ0u0

)
η1

(
η0

L0ρ0u0

)
η2

)
∂u1
∂x

(2.105)

or

(dσ1)xx = 2

(
1

Re
φ2
1η1 + φ1φ2

√
η1η2

)
∂u1
∂x

= 2µ˜1∂u1∂x
(2.106)

where Re = L0ρ0u0
η0

; Reynolds number

Similarly for constituent two we have

(dσ2)xx = 2

(
1

Re
φ2
2η2 + φ1φ2

√
η1η2

)
∂u2
∂x

= 2µ˜2∂u2∂x
(2.107)
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In summary, we have the following for the constitutive equations

dσα = µ˜αD(α) ; α = 1, 2 (2.108)

and

dσm = µ˜mD (2.109)

Clearly, µ˜1 =
µ1

Re
and µ˜2 =

µ2

Re
.

2.5.4 Newtonian constituents and mixture

For this case η̂α ; α = 1, 2 are constant, hence we have

µ̂1 = η0
(
φ2
1η1 + φ1φ2

√
η1η2

)
= η0µ1

µ̂2 = η0
(
φ2
2η2 + φ1φ2

√
η1η2

)
= η0µ2

(2.110)

where

µ1 = φ2
1η1 + φ1φ2

√
η1η2 ; µ2 = φ2

2η2 + φ1φ2
√
η1η2 (2.111)

Consider (dσ1)xx. Using (2.110) and nondimensionalizing (dσ1)xx

τ0 (dσ1)xx = 2η0µ1
u0
L0

∂u1
∂x

(2.112)

or

(dσ1)xx = 2µ1

(
η0u0
τ0L0

)
∂u1
∂x

(2.113)

when τ0 = ρ0u
2
0 (characteristic kinetic energy), we have
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(dσ1)xx = 2µ1

(
η0

ρ0u0L0

)
∂u1
∂x

= 2
µ1

Re

∂u1
∂x

= 2µ˜1∂u1∂x
(2.114)

In summary, we have the following constitutive equations in the dimensionless form

when the constituents and the mixture are Newtonian fluids.

dσα = µ˜αD(α) ; α = 1, 2 (2.115)

and

dσm = µ˜mD (2.116)

2.6 Remarks

1. If the constituents are Newtonian fluids and the mixture is also a Newtonian fluid

and if we neglect (π1)x, (π2)x, (π1)y, and (π2)y, then the mathematical model for the

constituents is decoupled. In this case we can use the continuity equation, momentum

equations, and the constitutive equations for each constituent to obtain deformation

fields and then use (2.80) to obtain the mixture deformation field. The combined

model will also function properly in the least squares computational process (see

Chapter 3). In the following we present details of the decoupled mathematical models

in R2 for a two constituent mixture. For partial pressures pα of the constituents we

assume pα = φαp and
∑

α pα = p yielding
∑

α φα = 1 which holds. Thus, for a two

constituent mixture we can write

pα = φαp

∂pα
∂xi

= φα
∂p

∂xi
; α, i = 1, 2

(2.117)
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Constituent 1: Decoupled mathematical model (BVP)

Using (2.117) and (2.81), (2.82), and (2.115) we have

ρ1

(
∂u1
∂x

+
∂v1
∂y

)
= 0

ρ1

(
u1
∂u1
∂x

+ v1
∂u1
∂y

)
+

(
p0
ρ0u20

)
φ1
∂p

∂x

−
(

τ0
ρ0u20

)(
∂ (dσ1)xx

∂x
+
∂ (dσ1)xy

∂y

)
−
(
L0

ρ0u20

)
(π1)x = 0

ρ1

(
u1
∂v1
∂x

+ v1
∂v1
∂y

)
+

(
p0
ρ0u20

)
φ1
∂p

∂y

−
(

τ0
ρ0u20

)(
∂ (dσ1)xy
∂x

+
∂ (dσ1)yy

∂y

)
−
(
L0

ρ0u20

)
(π1)y = 0

(dσ1)xx = 2µ˜1
∂u1
∂x

; (dσ1)xy = µ˜1
(
∂u1
∂y

+
∂v1
∂x

)
; (dσ1)yy = 2µ˜1

∂v1
∂y

(2.118)

Constituent 2: Decoupled mathematical model (BVP)

In this case also using (2.117), (2.81), (2.82), and (2.115) we obtain

ρ2

(
∂u2
∂x

+
∂v2
∂y

)
= 0

ρ2

(
u1
∂u2
∂x

+ v1
∂u2
∂y

)
+

(
p0
ρ0u20

)
φ2
∂p

∂x

−
(

τ0
ρ0u20

)(
∂ (dσ2)xx

∂x
+
∂ (dσ2)xy

∂y

)
−
(
L0

ρ0u20

)
(π2)x = 0

ρ2

(
u2
∂v2
∂x

+ v2
∂v2
∂y

)
+

(
p0
ρ0u20

)
φ2
∂p

∂y

−
(

τ0
ρ0u20

)(
∂ (dσ2)xy
∂x

+
∂ (dσ2)yy

∂y

)
−
(
L0

ρ0u20

)
(π2)y = 0

(dσ2)xx = 2µ˜2
∂u2
∂x

; (dσ2)xy = µ˜2
(
∂u2
∂y

+
∂v2
∂x

)
; (dσ2)yy = 2µ˜2

∂v2
∂y

(2.119)
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when using mathematical models (2.118) and (2.119) for constituents 1 and 2 the

calculated p in (2.118) is p1 and p from (2.119) is p2 and the pressure field for the

mixture is p = p1 + p2.

2. However, when the constituents are generalized Newtonian fluids and when the mix-

ture is also a generalized Newtonian fluid, decoupling is not possible due to the fact

that µ1 and µ2 are functions of deformation fields of both constituents.

3. In the numerical studies we neglect (π1) and (π2) in the momentum equations.

4. In section 2.7 that follows these remarks, we derive the mathematical model for fully

developed flow between parallel plates. This model reveals some features that are

not obvious from the mathematical model in R2.

2.7 Mathematical model for fully developed flow between

parallel plates: mixture of two constituents

In this case the mathematical model describes a BVP. For fully developed flow between

parallel plates we only need to consider the one dimensional case i.e. a typical section

A–A (Figure 2.1) where the flow is fully developed. In this case

v1 = 0 , u1 6= 0

∂u1
∂x

= 0 ,
∂v1
∂x

= 0 ,
∂v1
∂x

= 0 ,
∂u1
∂y
6= 0 , (dσ1)xy 6= 0 ,

∂p1
∂x
6= 0 ,

∂p1
∂y

= 0 , (dσ1)xx = 0 , (dσ1)yy = 0
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y

x
direction of flow

A

A

2Ĥ

Figure 2.1: Flow between parallel plates

similarly

v2 = 0 , u2 6= 0

∂u2
∂x

= 0 ,
∂v2
∂x

= 0 ,
∂v2
∂x

= 0 ,
∂u2
∂y
6= 0 , (dσ2)xy 6= 0 ,

∂p2
∂x
6= 0 ,

∂p2
∂y

= 0 , (dσ2)xx = 0 , (dσ2)yy = 0

(2.120)

Hence, continuity equations are identically satisfied. Using (2.120), the dimensionless

forms of the momentum equations and the constitutive equations reduce to (neglecting (π1)

and (π2))

(
p0
ρ0u20

)
∂pα
∂x
−
(

τ0
ρ0u20

)
∂ (dσα)xy

∂y
= 0 ; (dσα)xy = µ˜α (η1, η2, φ1, φ2)

∂uα
∂y

; α = 1, 2

(2.121)

Details of µ˜1 and µ˜2 are given in the following.
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Newtonian constituents and mixture

µ˜α =
µα
Re

(2.122)

µα is defined in (2.114). If we assume the mixture to be a Newtonian fluid, then using (2.69)

or (2.70) we have the following for the dimensionless case

(dσ)xy = µ˜m∂um∂y (2.123)

In which (dσ)xy = (dσ1)xy + (dσ2)xy and um is the mixture velocity in the x direction.

Using (2.123) we can determine µ˜m for the mixture. However, since ∂u
∂y

= 0 at the center-

line it is better to use

µ˜m =

 ∂(dσ)xy
∂y

∂2u
∂y2

 (2.124)

to determine µ˜m.

Power law model for constituents and mixture

In this case µ˜1 and µ˜2 are given by

µ˜α = φ2
α

ηα
(Ren)α

+ φ1φ2

√
1

(Ren)1 (Ren)2
η1η2 ; α = 1, 2 (2.125)

where

ηα = η0α (Iα2 )
nα−1

2 ; α = 1, 2 (2.126)

and

34



Iα2 =

(
∂uα
∂y

)2

; α = 1, 2 (2.127)

For the mixture we can write

(dσ)xy = µ˜m∂um∂y (2.128)

Using (2.128) we can determine µ˜m for the mixture.

Carreau model for constituents and mixture

In this case µ˜1 and µ˜2 are given by (2.106) and (2.107) in which ηα are defined by (2.101).

The definition of Iα2 remains the same as in (2.127). For the mixture we can write the fol-

lowing using (2.69) or (2.70).

(dσ)xy = µ˜m∂um∂y (2.129)

In this case also we can determine µ˜m for the mixture using (2.129).

Remarks:

1. We note that the mathematical model consists of four PDEs (2.121) in u1, u2, (dσ1)xy,

(dσ1)xy, p1, and p2. Thus, the mathematical model does not have closure. However,

for this case (fully developed flow), if we assume the flow to be pressure driven, then

∂p1
∂x

and ∂p2
∂x

are known. p1 and p2 are partial pressures of the constituents and hence

must be related to the volume fractions of the constituents. We assume

p1 = φ1p , p2 = φ2p

ie p1 + p2 = p

(2.130)
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Hence,
∂p1
∂x

= φ1
∂p

∂x
,

∂p2
∂x

= φ2
∂p

∂x
(2.131)

Thus, knowing volume fractions φ1, φ2 and ∂p
∂x

for the mixture, ∂p1
∂x

and ∂p2
∂x

are de-

fined and the mathematical model has closure. Based on this (as stated earlier),

pα = φαp and
∑ν

α=1 pα = p which implies
∑ν

α=1 φα = 1 which obviously holds

regardless of the model problem as long as the constituents and the mixture are New-

tonian or generalized Newtonian fluids. Validity of this assumption is demonstrated

for this model problem as well as the backward facing step.

2. The validity of the assumption in remark (1) can be verified using the model problem

in R2 using the combined model in which p1 and p2 remain dependent variables in

the mathematical model.

3. Using (2.130) and (2.131) the mathematical model given by (2.121) reduces to(
p0
ρ0u20

)
φα
∂p

∂x
−
(

τ0
ρ0u20

)
∂ (dσα)xy

∂y
= 0

(dσα)xy = µ˜α (η1, η2, φ1, φ2)
∂uα
∂y

; α = 1, 2

(2.132)

in which ∂p
∂x

is known (pressure driven flow). This mathematical model has closure.

4. In the case of Newtonian constituents and mixture, µ˜1 and µ˜2 are not functions of the

deformation field, hence the combined mathematical model can be decoupled for the

constituents using (2.132) we can obtain mathematical models for each constituent

(α = 1, 2).
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Constituent 1: (decoupled model)(
p0
ρ0u20

)
φ1
∂p

∂x
−
(

τ0
ρ0u20

)
∂ (dσ1)xy

∂y
= 0 (2.133)

(dσ1)xy = µ˜1 (η1, η2, φ1, φ2)
∂u1
∂y

(2.134)

Constituent 2: (decoupled model)(
p0
ρ0u20

)
φ2
∂p

∂x
−
(

τ0
ρ0u20

)
∂ (dσ2)xy

∂y
= 0 (2.135)

(dσ2)xy = µ˜2 (η1, η2, φ1, φ2)
∂u2
∂y

(2.136)

Solutions for (2.132) ie the combined mathematical model must be the same as the

combined solution obtained using decoupled models (2.133), (2.134) and (2.135),

(2.136) for constituents 1 and 2.
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Chapter 3

Numerical studies

3.1 Introduction

The mathematical models presented in Chapter 2 are a system of non-linear partial dif-

ferential equations describing boundary value problems. Based on references [28–31] the

finite element processes derived using the residual functional (least squares process) yield

variationally consistent integral forms when the second variation of the residuals are ne-

glected in the second variation of the residual functional. Justifications for doing so are

given in the references by the authors. Variationally consistent integral forms yield uncon-

ditionally stable computations. Hence, in the present work we use this approach for obtain-

ing numerical solutions of the mixtures of Newtonian and generalized Newtonian fluids.

The local approximations are considered in Hk,p(Ω̄e) scalar product spaces in which k is

the order of the space defining global differentiability of approximations and p is the de-

gree of local approximations for all dependent variables. With this choice the least squares

processes remain convergent [32].
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We consider two model problems consisting of fully developed flow between parallel

plates and an asymmetric backward facing step. In both model problems we only con-

sider a saturated mixture of two fluids. Both Newtonian and generalized Newtonian fluids

are considered. In the case of generalized Newtonian fluids we consider power law and

Carreau-Yasuda models for shear thinning fluids. In all numerical studies (both R1 and R2)

p0 = τ0 = ρ0u
2
0 (characteristic kinetic energy) is used to choose reference pressure and

reference stress.

3.2 Fully developed flow between parallel plates

In this model problem we consider fully developed flow between parallel plates. Fig-

ure 2.1 shows a schematic. We only need to consider a typical section A–A. Furthermore,

due to symmetry considerations only half of the domain A–A is considered (consider

0 < y < 1 at A–A). We consider the distance between the plates to be 2Ĥ = 2 cm

and if we choose L0 = 0.01 m then the dimensionless distance 2H between the plates is 2

and our computational domain is 0 ≤ y ≤ 1 at A–A. We consider saturated mixtures of

two constituents. The properties of the constituents are given in the following.

Newtonian constituents [19]

Fluid 1 (or constituent 1)

ρ̂(1) = 900 η̂1 = 0.0267

Fluid 2 (or constituent 2)

ρ̂(2) = 1000 η̂2 = 0.0018
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Power law constituents [30]

Fluid 1 (or constituent 1)

ρ̂(1) = 1001; η̂01 = 0.567 (zero shear rate viscosity)

n1 = 0.854 (power law index)

Fluid 2 (or constituent 2)

ρ̂(2) = 1001; η̂02 = 0.332 (zero shear rate viscosity)

n2 = 0.738 (power law index)

Carreau model constituents [30]

Fluid 1 (or constituent 1)

ρ̂(1) = 1001 , η̂01 = 0.18 , η̂∞1 = 0.0 , λ1 = 0.048 , m1 = 0.729

Fluid 2 (or constituent 2)

ρ̂(2) = 1001 , η̂02 = 0.450 , η̂∞2 = 0.0 , λ2 = 2.28 , m2 = 0.756

We consider a 5 element discretization of the domain 0 ≤ y ≤ 1 (at A–A) using 3-node

p-version elements with local approximation in Hk,p(Ω̄e) scalar product spaces.

3.2.1 Newtonian constituents and Newtonian mixture

In this section we present a number of different numerical studies using the combined

model for both constituents as well as using individual models for the constituents to

demonstrate

1. that for Newtonian constituents and mixture the mathematical models for the con-

stituents are decoupled
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2. that the combined model produces exactly the same results as the individual models

for the constituents.

In the numerical studies we choose
∂p

∂x
= −0.2, thus based on the assumption p1 = φ1p

and p2 = φ2p we have

∂p1
∂x

= φ1
∂p

∂x
= −0.2φ1

∂p2
∂x

= φ2
∂p

∂x
= −0.2φ2

(3.1)

We use (3.1) in the numerical studies using the combined model as well as the individual

models for the constituents. The validity of assumption (3.1) is also verified numerically in

the section containing numerical studies in R2. We consider and present results for various

numerical studies using the combined mathematical model based on assumption (3.1) in

the following. We consider a 5 element discretization using 3-node p-version elements. C1

approximations at p-level 3 are used for the Newtonian studies, and C2 approximations at

p-level 9 are used for power law and Carreau model studies.

Case (a) when constituent 2 is the same as constituent 1 (combined model)

This is perhaps the simplest case for which the mixture theory must produce results that

are obvious. We choose

η0 = η̂01 = 0.0267; ρ0 = ρ̂(1) = 900; and φ1 = 0, 0.01, 0.1, 0.5, 0.9, 0.99, and 1.

As expected the velocity u (figure 3.1) as a function of y is independent of volume

fraction and the mixture velocity is the same as those of the constituents. Figure 3.2

shows plots of the mixture and constituent shear stresses for different volume fractions.

(dσ)xy = (dσ1)xy + (dσ2)xy produces shear stress for the mixture that is in agreement with
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y

axial velocity u

(all values of φ1)
u1 = u2 = u :

Figure 3.1: Velocity of constituents and mixture: Newtonian - fluid 2 same as fluid

1 (Combined Model)

the theoretical solution. Figure 3.3 shows plots of µ˜1, µ˜2, and µ˜m versus volume fraction

φ1. With progressively increasing φ1, µ˜1 increases linearly while µ˜2 decreases linearly

such that µ˜1 + µ˜2 = µ˜m = constant (corresponding to η̂1). This study shows the validity of

mixture theory when the two constituents are the same.
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Figure 3.3: µ˜1, µ˜2, and µ˜m versus y for different volume fractions

Case (b) mixture of constituent 1 and constituent 2 (combined model)

In this study we consider a saturated mixture of constituents one and two for different

volume fractions. We choose ρ0 = ρ̂(2) = 1000 and η0 = η̂01 = 0.0267 as reference

quantities. Figures (3.5) and (3.6) show plots of u1, u2, and u for different volume fractions.

For φ1 = 0, the mixture consists of only constituent 2 and likewise for φ1 = 1, the mixture

consists purely of constituent 1. The plots of u versus y for φ1 = 0.0 and φ1 = 1.0 confirm

this. For φ1 = 0.0 and φ1 = 1.0, u versus y agrees precisely with the theoretical solutions

for constituent 2 and constituent 1. u versus y for φ1 = 0.0 and φ1 = 1.0 obviously bracket

the velocity profiles for different values of the volume fractions. Plots of shear stress for the

constituents and the mixture are shown in figure 3.7. Plots of µ˜1, µ˜2, and µ˜m for different

volume fractions are shown in figure 3.4. For φ1 = 1 and φ1 = 0, µ˜m corresponds to η1
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and η2 as expected.
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Figure 3.4: Mixture viscosity: Newtonian
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Remarks

1. The same numerical studies were repeated using decoupled models for the con-

stituents. The results are identical to those reported above using the combined model.

2. The assumption (3.1) regarding partial pressures p1 and p2 appears to work well. The

validity of this assumption is further established numerically (see section 3.3).

3.2.2 Carreau model for constituents and the mixture (combined model)

As described earlier, for generalized Newtonian fluids the decoupled model can not

be used due to the fact that viscosities are deformation field dependent. In this section

we present numerical studies similar to those presented in section 3.2.1 for the Newtonian

case. In these studies the local approximations (equal order, equal degree) for all variables

are of class C2(Ω̄e) with p-level of 9. For this choice, I is O(10−8) or lower. The uniform

discretization consists of five 3-node p-version elements.

Case (a): when constituent 2 is the same as constituent 1

For this case we choose ρ0 = ρ̂(1) = 1001 and η0 = η̂01 = 0.18 as reference values

for density and viscosity. The plot of axial velocity versus y (figure 3.8) confirms that

u1 = u2 = u holds for all volume fractions as expected. Figure 3.9 shows plots of shear

stresses for constituents and the mixture for different volume fractions. For φ1 = φ2 = 0.5

we note that (dσ1)xy = (dσ2)xy. For all volume fractions (dσm)xy = (dσ1)xy+(dσ2)xy holds.

As expected, shear stresses are linear functions of the y coordinate. µ˜m as a function of y

(figure 3.10) is independent of the volume fraction due to the fact that the two constituents

are the same. Graphs of µ˜1 and µ˜2 are shown in figures 3.10 and 3.11. For all volume
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fractions µ˜m = µ˜1 + µ˜2 holds as ∂u1
∂y

= ∂u2
∂y

= ∂u
∂y

.

0
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0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

y

axial velocity u

u1 = u2 = u :

Figure 3.8: Velocity of constituents and mixture: Carreau - fluid 2 same as fluid 1

(combined model)
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Figure 3.10: µ˜m for the mixture versus y: Carreau

Case (b): Mixture of constituents 1 and 2 (combined model)

In this case we consider the same discretization with k = 3 (order of approximation

space) and p = 5 as in case (a). We choose ρ0 = ρ̂(1) = 1001 and η0 = η̂02 = 3.6

as reference values of density and viscosity. Plots of velocities u1, u2, and u versus y

for different volume fractions are shown in figures 3.13 and 3.14. Shear stresses for the

constituents and the mixture as a function of y are shown in figure 3.15. These remain

linear functions of y and are the same as those reported in case (a). Plots of µm as a

function of I2, second invariant of the strain rate tensor for different volume fractions are

shown in figure 3.17. For φ1 = 0.99 and φ2 = 0.01, µm is close to η1 and η2 for constituents

1 and 2.
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Figure 3.11: Viscosity fluid 1: Carreau
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Figure 3.12: Viscosity fluid 2: Carreau
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3.2.3 Power law model for constituents and the mixture (combined

model)

These studies are parallel to those for the Carreau model using the same discretization,

k, and p.

Case (a): when constituent 2 is the same as constituent 1

We use ρ0 = ρ̂(1) = 1001 and η0 = η̂01 = 0.332 as reference values. Plots of u1 = u2 =

u versus y, shear stresses versus y, and µm as a function of y for different volume fractions

are shown in figures 3.17 – 3.21. The results follow the same pattern and behaviors as

explained for the Carreau model.
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1

0 20 40 60 80 100 120

y

axial velocity u

u1 = u2 = u :

Figure 3.17: Velocity of constituents and mixture: Power Law - fluid 2 same as

fluid 1
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Figure 3.19: µ˜m for the mixture versus y: Power Law

Case (b): mixture of constituents 1 and 2 (combined model)

For these numerical studies we choose ρ0 = ρ̂(1) = 1001 and η0 = η̂02 = 2.04 as

reference values. Graphs of u1 = u2 = u versus y, and µm as a function of y for different

volume fractions are shown in figures 3.22 – 3.25. Behaviors are similar to the Carreau

model.
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Figure 3.20: Viscosity of fluid 1: Power Law

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

y

µ˜2

φ1 = 1.0
φ1 = 0.01
φ1 = 0.1
φ1 = 0.5
φ1 = 0.9
φ1 = 0.99

Figure 3.21: Viscosity of fluid 2: Power Law
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3.3 1:2 backward facing asymmetric expansion

We consider a 1:2 backward facing asymmetric expansion. A schematic and the bound-

ary conditions are shown in figure 3.26. This problem has been experimentally investigated

by Patrick and Denham [33]. More recently Winterscheidt and Surana [31] presented nu-

merical simulations using p-version least squares finite element method. Figure 3.27 shows

a graded twenty element discretization using nine node p-version elements. In the numeri-

cal studies we only consider the constituents and the mixture to be Newtonian and use the

same properties as listed for the Newtonian constituents for fully developed flow between

parallel plates (section 3.2). At the inlet, the flow is assumed to be fully developed with

a parabolic velocity field with maximum value of one (figure 3.26). C00 local approxi-

mations at p-level 9 are used for all variables. For this choice, I values are O(10−8) or

lower confirming good accuracy of the solution. Characteristic kinetic energy is used for

reference pressure and reference stress.
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Case (a): constituent 2 same as constituent 1 (coupled model)

We choose ρ0 = ρ̂(2) = 1000 and η0 = η̂01 = 0.0267 as reference values. We consider

two combinations of volume fractions, φ1 = φ2 = 0.5 and φ1 = 1.0, φ2 = 0.0. When

φ1 = φ2 = 0.5 we expect the two constituent behaviors to be the same. The mixture

response in this case is obviously the same as when φ1 = 1.0, φ2 = 0.0. As obvious in this

case the mixture behavior is independent of the volume fractions. In this study p1 and p2,

the constituent partial pressures, are dependent variables. Figures 3.28 and 3.29 show plots

of pressures p1, p2, and p (= p1 + p2) for φ1 = 0.5, φ2 = 0.5 and φ1 = 1.0, φ2 = 0.0 at the

top and bottom boundaries (or plates). Results for pressure for volume fraction φ1 = 0.2

and φ2 = 0.8 and comparisons with φ1 = 1.0, φ2 = 0.0 are shown in figures 3.30 and

3.31. Plots of representative u1, u2, and u versus y at x = 0.0 and x = 2.0 are shown in

figures 3.32 and 3.33. These are obviously independent of the volume fractions for the case

when both constituents are the same.

Numerical studies were also conducted using decoupled models for the constituents

using p1 = φ1p and p2 = φ2p. The results obtained from these studies are identical to those

presented here using combined models in which volume fractions are not used to describe

partial pressures of the constituents. These studies confirm that (2.118) and (2.119) used in

chapter 2 and in the studies for fully developed flow between parallel plates is justified.

Case (b): mixture of constituents 1 and 2

In this case we choose volume fractions φ1 = 0.8 and φ2 = 0.2. Figures 3.34 and 3.35

show plots of u1, u2, and u versus y at x = 0.0 and x = 2.0. Differences in u1, u2, and u

are quite clear in figure 3.35. Figures 3.36 and 3.37 show plots of pressures p1, p2, and p at
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Figure 3.28: Pressure at top boundary (y = 3,−1 ≤ x ≤ 28): fluid 2 same as

fluid 1, φ1 = φ2 = 0.5

69



-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

-5 0 5 10 15 20 25 30

p

x

φ1 = φ2 = 0.5

p1 = p2
p = p1 + p2

φ1 = 1.0
p = p1

Figure 3.29: Pressure at bottom boundary (y = 1,−1 ≤ x ≤ 0; y = 0, 0 ≤ x ≤
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Figure 3.30: Pressure at top boundary (y = 3,−1 ≤ x ≤ 28): fluid 2 same as
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Figure 3.31: Pressure at bottom boundary (y = 1,−1 ≤ x ≤ 0; y = 0, 0 ≤ x ≤

28 ): fluid 2 same as fluid 1, φ1 = 0.2, φ2 = 0.8
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Figure 3.32: Velocity at x = 0: fluid 2 same as fluid 1
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Figure 3.33: Velocity at x = 2.0: fluid 2 same as fluid 1

y = 3 and at y = 0.

Numerical studies were also conducted using decoupled models for the constituents

using p1 = φ1p and p2 = φ2p. The results obtained from these studies are identical to those

presented in figures 3.34 – 3.37 using the combined model in which volume fractions are

not used to define partial pressures of the constituents. These studies once again confirm

the validity of (2.118) and (2.119) .
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Figure 3.34: Velocity at x = 0.0: mixture of fluid 1 and fluid 2, φ1 = 0.8, φ2 = 0.2
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Figure 3.35: Velocity at x = 2.0: mixture of fluid 1 and fluid 2, φ1 = 0.8, φ2 = 0.2
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76



Chapter 4

Summary and Conclusions

In this work, derivation of the mathematical model(s) for a homogeneous, isotropic, in-

compressible mixture of ν homogeneous, isotropic, and incompressible constituents using

basic principles of mixture theory and continuum mechanics is presented. The deformation

process is assumed to be isothermal, hence temperature effects due to viscous dissipation

are assumed to be negligible. The basic definition of densities of the constituents, density

of the mixture, mixture velocities, and the material derivative for the constituents and the

mixture are presented and are utilized in the conservation laws: conservation of mass, bal-

ance of momenta for the constituents, and the energy equation for the mixture based on

the first law of thermodynamics. The second law of thermodynamics (entropy inequality)

and the theory of generators and invariants is used as a basis for the constitutive theories

for the mechanical pressure and deviatoric Cauchy stress tensors for the constituents and

the mixture. The constitutive theories borrow basic derivations from references [7, 19];

these are modified to account for the correct physics of the mixture for the constituents

used in the present work. Specific forms of the complete mathematical models are pre-
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sented in R1 and R2 using x–frame (x, y orthogonal coordinate system). The constituents

and the mixture are assumed to be Newtonian or generalized Newtonian (power law and

Carreau models). In R2, the mathematical model for two constituents indicated by sub-

scripts 1 and 2 is presented in terms of velocities u1, v1, u2, v2, pressures p1, p2, and the

deviatoric Cauchy stress tensors (dσ1)ij , (dσ2)ij; i, j = x, y (total of 12 dependent vari-

ables). This constitutive model consists of twelve first order partial differential equations

in twelve variables. The force πα exerted on the αth constituent by the other constituents

are considered in the derivation of the momentum equations for the constituents but are

neglected in the numerical studies and decoupled models. The constitutive theories pre-

sented here are based on [7, 19] and utilize material coefficients λi, i = 1, 2, . . . , 5 and µi,

i = 1, 2, . . . , 4 which are shown to reduce to a much simplified form containing material

coefficients µ1, µ2, . . . , µ4 for the Newtonian and generalized Newtonian constituents and

the mixture considered in the work.

The interaction forces πα are much more significant in the case of liquid and solid par-

ticulate constituents, but are neglected in the present work. This mathematical model in

various forms is commonly used for mixture theory in which the constituents are homo-

geneous, isotropic, incompressible fluids. In the present work we have shown that for the

degenerated case when the two constituents in a mixture are the same, µ3 and µ4 must be

zero for the mixture constitutive theory to be meaningful. Hence, in the constitutive theory

used in the present work we use µ3 = µ4 = 0. The final mathematical model in R2 with

u1, v1, u2, v2, p1, p2, and (dσ1)ij , (dσ2)ij; i, j = x, y as dependent variables with only

µ1(φ1, φ2, η1, η2) and µ2(φ1, φ2, η1, η2) as material coefficients in the constitutive theory

has closure and is used for numerical studies in R2. This model requires no assumptions

regarding p1 and p2 and is used to compute numerical results for 1:2 backward facing step.
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From the mathematical model presented in R1 for fully developed flow between parallel

plates, it is obvious that p1 and p2 for the constituents must be expressed in terms of the

pressure p for the mixture. In the present work we propose pα = φαp,
∑ν

α=1 pα = p, which

implies
∑ν

α=1 φα = 1 which obviously holds; hence this was used to compute numerical

results for fully developed flow between parallel plates. This assumption is verified using

the second model problem in which the combined model is used to compute constituent

pressure p1 and p2 and then compared with p1 and p2 obtained using the decoupled model

to demonstrate that p1 and p2 obtained from this mode are in precise agreement with those

from the coupled model.

It is shown that the combined mathematical model proposed in this work can be decou-

pled when the constituents for the mixture are Newtonian fluids as for this case the viscosi-

ties are constant. However when the constituents and the mixture are generalized Newto-

nian fluids (power law and Carreau-Yasuda), the viscosities of the constituents are functions

of the corresponding second invariant of the symmetric part of the velocity gradient ten-

sors, hence the combined model can not be decoupled. The numerical studies presented

for fully developed flow between parallel plates and 1:2 asymmetric backward facing step

confirm the validity of the proposed mathematical model using p1 = φ1p, p2 = φ2p, and

p1 + p2 = p and the modifications proposed in the constitutive theory for the constituents.
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