
A Regression Test Selection Technique for
Graphical User Interfaces

Carl Chesser

B.S., Computer Technology, Purdue University, 2005

Submitted to the graduate degree program in the department of
Electrical Engineering and Computer Science and the Graduate Faculty

of the University of Kansas in partial fulfillment of the requirements
for the degree of Master of Science.

Dr. Hossein Saiedian
Professor and Chairperson

Dr. Bo Luo
Assistant Professor

Dr. Perry Alexander
Professor

May 4, 2012

Date Defended

The Thesis Committee for Carl Chesser certifies
that this is the approved version of the following thesis:

A Regression Test Selection Technique for Graphical User
Interfaces

Dr. Hossein Saiedian
Professor and Chairperson

Dr. Bo Luo
Assistant Professor

Dr. Perry Alexander
Professor

May 4, 2012

Date Approved

ii

Abstract

Regression testing is a quality control measure to ensure that the newly modified

part of the software still complies with its specified requirements and that the un-

modified part has not been affected by the maintenance activity. Regression testing

is an important and expensive activity during the software maintenance process

and its purpose is to ensure quality and reliability in modified software. Regression

testing selection techniques are focused on the reusability of existing test suites

for a modified program from a previous version. Many regression testing selection

techniques have been approached for conventional and object-oriented software.

There is little discussion about those techniques to be applied for the Graphical

User Interfaces (GUIs). This thesis addresses the gap. GUIs have characteristics

different from traditional software, and the conventional testing techniques do not

directly apply to GUIs. Unlike most previous techniques for selective retest, this

thesis focuses on developing an event driven regression testing selection technique

for GUIs. It defines an event dependence graph (EDG) to identify the interaction and

relationship of the events within GUI components, develops an algorithm to con-

struct the EDG for GUIs, and presents the GUI modeling structure and its selection

retest technique. An algorithm is given to determine and generate a modified test

suite automatically for GUI based on its original version. Experiments are presented

on an implementation of this solution and discusses newly found challenges when

iii

applied to an established GUI application. Finally, feasibility and future areas of

research are addressed on the findings during the implementation of the solution.

iv

Acknowledgements

I would like to show my gratitude to my advisor, Dr. Hossein Saiedian, whose guid-

ance and instruction was pivotal in the development of this subject matter. Fur-

thermore, this thesis benefited from previous research conducted by Kevin Yu while

working under Dr. Saiedian. I would also like to thank the committee members, Dr.

Bo Luo and Dr. Perry Alexander, for their time and consideration in assessing my

work in this area. Finally, I would like to thank Cerner Corporation for their finan-

cial support in my education and my family and friends who have given me support

throughout the time of pursuing this degree.

v

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Problem Statement . 2
1.2 Significance . 2
1.3 Research Methodology . 4
1.4 Organization . 5

2 Background 6
2.1 GUI Testing . 7
2.2 GUI Regression Testing . 9
2.3 GUI Event Modeling . 12

2.3.1 Control Flow Graph . 13
2.3.2 Program Dependence Graph . 13
2.3.3 Event Flow Graph . 15
2.3.4 Event Interaction Graph . 15

2.4 GUI Regression Test Generation . 16
2.5 Related Work . 19
2.6 Summary . 21

3 Algorithms for Developing an Event Dependence Graph 23
3.1 GUI Components and Event Classification 24

3.1.1 Event Dependence Graph . 26
3.1.2 Construction of Event Dependence Graph 29

3.2 Regression Test Selection Techniques for GUIs 33
3.2.1 Motivating Observations for Testing a Modified Program 33
3.2.2 The Test Selection Algorithm . 35

3.3 Summary . 40

vi

4 Research Results Evaluation and Validation 42
4.1 Static and Dynamic Analysis of GUI Components 44
4.2 GUITAR Framework Overview . 49
4.3 Apache JMeter Application Assessment . 49
4.4 Graphical User Interface Ripping Process 51
4.5 Event Dependence Graph Construction . 60

4.5.1 Parsing the EDG output from GUI Ripper 60
4.5.2 Analyzing GUI model to identify events in Event Dependence

Graph . 62
4.6 Test Case Selection Data Model and Process 65
4.7 Feasibility of the Proposed Solution Implementation 69
4.8 Summary . 72

5 Contributions and Areas for Further Research 73
5.1 Summary . 73
5.2 Research Contributions . 74
5.3 Future Work . 75

5.3.1 Accurately Maintaining an Identity of a Modified Event 76
5.3.2 Automated Identification of Changed Events 76
5.3.3 Improving the GUI Ripping Process 77

Bibliography 78

vii

List of Figures

2.1 Control Flow Graph . 14
2.2 Program Dependence Graph . 15
2.3 Event Flow Graph . 16

3.1 Microsoft Notepad . 24
3.2 Pictorial Symbols for the GUI Events . 26
3.3 A Copy-Paste Edge in Notepad . 28
3.4 Open and Save-As Screens in Notepad . 31
3.5 An EDG for Editing a File . 32
3.6 Screen Shots of of Find Screen and its Modified Version 39
3.7 EDG for Find Screen and its Modified Version 40

4.1 Overview of Implementation . 44
4.2 Initial Edit menu options and Edit menu options after state change . . 57
4.3 Graph of time taken for GUI event parsing 62
4.4 Graph of time taken for EDG construction 64
4.5 GUI Test Case Entity Relationship Diagram 66
4.6 JMeter Search menu . 68
4.7 JMeter Search window . 69

viii

List of Tables

3.1 Test Cases for Opening a File in Notepad 35

4.1 JFC GUI Ripper Arguments . 52
4.2 JMeter GUI Ripping Results . 58
4.3 JMeter GUI Ripping Timings (in seconds) 59
4.4 JMeter GUI Ripping Timing Summary (in seconds) 59
4.5 JMeter GUI Parsing Times of Ripping Output (in milliseconds) 61
4.6 Conceptual Example of Data . 67

ix

Chapter 1

Introduction

Graphical User Interfaces (GUIs) are normally more complex than the other tradi-

tional components of a software. GUIs present a “fluid” interface which can be

changed at the whim of the users. GUI testing is different and difficult in that the

input is interactive whereas the output may be graphical or may be an event. An

especially serious question can be asked in the software maintenance phase where

modifications are made to the GUI application: How can a modified GUI application

be tested? Regression testing is the process of validating modified software to pro-

vide confidence that the changed parts of the software behave as intended and that

the unchanged parts of the software have not been adversely affected by the mod-

ifications. Therefore, regression testing plays an integral role for the quality and

reliability in the software maintenance process, especially in the GUI applications.

Although the use of GUIs continues to grow very fast [8, 44], GUI testing has, until

the past decade, remained a neglected research area [20]. Recent advances in GUI

testing have focused on the development of test case auto generation, test oracles,

and coverage criteria for GUI testing [26, 28, 32, 41]. Moreover, the development of

regression testing selection techniques for GUIs has not been extensively addressed.

1

1.1 Problem Statement

It is desired to efficiently apply regression testing to a GUI application when changes

are applied. GUI applications are considered complex due to the large series of

states which they can potentially represent. With a large frontier of possible ap-

plication states, many valid testing flows will also exist for that application. The

costs of running all possible tests or performing analysis to determine which sub-

set of tests to execute for a given change can be a very costly exercise to perform

(in terms of time). It is desired to provide an effective model which represents a GUI

application that can be used to determine affected areas of an application from a

given change. This model can then support a regression test selection method that

is tailored for GUI applications which is capable of selecting the minimal required

set of tests which effectively validate the changes applied.

1.2 Significance

Regression test selection is the process of selecting an appropriate subset of the

original test suite for the given assumptions. A regression test case selection tech-

nique is considered safe if it will never exclude a test case if that test case can

reveal faults in the modified software [36]. Regression test selection techniques

can be used for analyzing relationships between the test cases and the software

entities they cover, using information about changes to select test cases for new

versions. Many regression test selection techniques have been presented in recent

years [13, 31, 33, 34, 37, 38]. These developed regression test selection techniques

are applied in both procedural-language software and object-oriented software and

focus on executing every statement of program’s code which relates to the applied

2

change. Therefore, they can be used to test modified class and derived class. How-

ever, those regression test selection techniques do not address the adequacy of

GUI regression testing for a number of reasons. First, a GUI application is an event

driven software. The input for this type of application is an ordered series of events.

Based on the series of events utilized, a large range of states in the application are

possible. Second, the source code tests may not completely cover the GUI testing

because there are many unsolicited events [28] Moreover, the event sequences that

must be tested on the GUI are conceptually at a much higher level of abstraction that

cannot be obtained from the code. This means that simply focusing on structure of

the code to dictate which tests are to be included in the regression test execution is

not sufficient without the context of the events which trigger the affected changes.

These challenges suggest that we need to develop regression test selection tech-

niques based on events for GUI applications because events are a key characteristic

in this type of program. There are several requirements for the development of

regression test selection techniques. First, the GUI applications need to be decom-

posed into some smaller GUI components so that a unit of testing can be performed

for each GUI component. This is because there might be an enormous number of

possible event permutations of GUIs. Second, we need a way of modeling the GUI’s

intended behavior so that we can make a comparison between a test suite and its

modified version. This thesis defines an event dependence graph, a new event inter-

action and relationship, for the GUI component, and presents a new regression test

selection technique that addresses the regression test selection problem for GUIs by

constructing the event dependence graphs for GUI components. This approach has

several benefits. First, the technique is currently the only selective retest technique

that is an event based test technique for GUI applications. Second, it selects test

cases based on events, not code explicitly. Third, it is independent of the method

3

used to generate tests initially for GUI components. Fourth, it selects every test

that may produce different output in the modified GUI components. Finally, it is

automatic.

1.3 Research Methodology

An empirical research methodology was applied when evaluating a new event graph

model and its effectiveness. First, the investigation of existing and related research

on GUI applications, general testing and GUI specific testing, regression testing

methods, GUI modeling, and approaches on event based analysis of GUI applications

were assessed. During this research, the work of Greg Rothermel, in the area of re-

gression testing methods, and Atif Memon, in the area of GUI modeling, analysis

and testing, were key sources of information due to their significant contributions

in these fields. In addition to these two key contributors, other sources in areas of

GUI testing, test selection methods, and areas of automated GUI testing approaches

were evaluated. After investigating these topics and establishing an understanding

of the current state of research in these areas, the gap of regression test selection

based solely on event state of a GUI application was further examined. A hybrid

model was then proposed from the event-flow graph [28] and the program depen-

dence graph [33, 37, 38], to represent the GUI application. Experiments were then

applied against this proposed model to determine its effectiveness and feasibility

in implementation. Through the experiments applied, several new challenges in the

complexity of GUI applications were discovered. In this thesis, these experimental

findings helped prove the proposed solution’s effectiveness and opened new areas

of future to extend the ideas and concepts proposed in this thesis.

4

1.4 Organization

The organization of this thesis is as follows:

• Chapter 2: Background - This chapter provides background information on
related research and foundational information which supports the concepts
proposed in this thesis. GUI testing, regression testing, GUI event modeling,
test generation, and other related topics are presented.

• Chapter 3: Algorithms for Developing an Event Dependence Graph - GUI
event classification is described and then further extended into a new GUI
model which supports the proposed solution for a regression test selection
method for GUI applications. In this chapter, the event dependence graph is
defined and illustrated through examples. Related algorithms to support the
event dependence graph construction and graph traversal for test selection
are also presented.

• Chapter 4: Research Results Evaluation and Validation - This chapter will
take the approach described from Chapter 3, and apply to an established GUI
application (Apache JMeter). Implementation details and reasoning behind im-
plementation choices are discussed. Performance measurements are taken
throughout the experiments to provide context of relative costs as compared
to other stages of the implementation. Tests are then applied on the imple-
mentation to evaluate if proposed solution supports the expected behavior.
A feasibility section is included which lists findings from the experiments ap-
plied.

• Chapter 5: Conclusion - In this chapter, the findings from the evaluation
(Chapter 4) are summarized and candidates of future research are stated.

5

Chapter 2

Background

Today’s GUI applications give users more control and flexibility, which translates

into a dramatic increase in the number of situations that need to be tested during

software development processes. Regression testing verifies that previously iden-

tified problems have been corrected, and that these “corrections” have not caused

problems elsewhere. Thus, GUI applications raise interesting concerns for regres-

sion testing [43]. This section discusses our concerns relevant to GUI testing, regres-

sion testing and its selective techniques; describes the selection retest techniques

for GUI applications. Selective retest techniques reduce the cost of regression test-

ing by reusing existing test cases and identifying portions of the modified GUI com-

ponents. Selective retest techniques differ from the retest-all technique, which run

all test cases in the existing test suite. Section 2.1 provides the general information

for GUI applications. Section 2.2 describes general approaches to regression test

selection techniques for GUI applications.

6

2.1 GUI Testing

Graphical User interfaces add a new dimension of complexity to software testing

[3, 22]. GUIs have brought considerable benefits to developers. They release the

developer from the concerns of interface design in most environments. The GUI

design standards impose conventions which make one application look very much

like another on the same platform. In addition, GUIs free the user to access system

functionality in their preferred way. They have a permanent access to all features

and may use the mouse, the keyboard or a combination of both to have a more

natural dialogue with the system.

GUI testing is a difficult problem to solve due to the large number of states to be

tested. The input space is extremely large because of the different permutations of

inputs and events that affect GUIs. The complex GUI objects and event dependencies

will increase the complexity of testing. With the complex nature of GUI applications,

testing is a challenge that is continually faced when changes are applied to the

application. Some of the reasons for these challenges are as follows:

• Event-Driven Software: The event-driven nature of GUIs presents the first se-

rious testing challenge. Because users may click on any pixel on the screen,

there are significantly more possible user inputs that can occur. The user has

an extremely wide choice of actions. At any point in the application, the users

may click on any field or object within a window. They may bring another

window in the same application to the front and access that. The window may

be owned by another application. The user may choose to access an operating

system component directly, e.g. a system configuration control panel [5].

• Unsolicited Events: Unsolicited events cause problems for programmers and

7

testers due to their originating nature. For example, a message-oriented mid-

dleware component might dispatch a message (an event) to remind the client

application to redraw a diagram on screen, or refresh a display of records

from a database that has changed. Testing of unsolicited events is difficult

because the number of test cases may be high and special test drivers may be

necessary to generate such events within the operating systems.

• Hidden Synchronization: It is common for window objects to have some forms

of synchronization implemented. For example, if a check box is set to true, a

text box intended to accept a numeric value elsewhere in the window may be

made inactive or invisible. The GUI developers must use the event handling

mechanisms to implement the synchronization functionality, so it is challeng-

ing to identify all related events that contribute to targeted synchronization

points in the application which are desired to test.

• Large Magnitude of Input/Output: GUI applications can take a large range of

different forms of input and therefore can produce a large range of output to

support feedback when these means of input are applied. With a large range

of inputs/outputs to test, it produces significant challenges to thoroughly an-

alyze all of these points to test when a change is applied to the program [42].

More importantly, this threatens an organization’s mean of scaling their abil-

ities in performing tests as inventory of GUI applications expand and the fre-

quency of testing increases.

8

2.2 GUI Regression Testing

A regression test is a comprehensive retest of the entire GUI applications and/or

their dependent components after validation that the defects or enhancements were

successfully implemented. A regression test should be performed to ensure that

the GUI applications still work as designed. This testing is focused on testing areas

of the application which relate to the change that was applied to the GUI applica-

tion [27]. If only portions will be affected by a modification, then only a partial

regression test of the affected portion will be necessary. The complete regression

testing should be performed when the whole system architecture has been signifi-

cantly affected by a modification. The GUI regression testing includes two phases:

initial phase and critical phase. During the initial phase, while the GUI application

is still under developing process, its regression testing is not on critical. Testers

may retest modified units, develop test plans, and do limited integration tests, but

the bulk of the testing effort awaits inclusion of the final modifications. When mod-

ifications are complete, regression testing enters the critical phase, where the final

integration and all application test must be selected and executed. The testing cir-

cumstances (sufficient test time and personnel) affect the regression test for GUI

application in real life scenarios. For example, retest-all technique can simply reuse

all existing test cases while ad hoc/random techniques will be applied when time

constraints prohibit the use of a retest-all approach. Therefore, it is in the critical

phase that which can have large cost implications of the project if it is not per-

formed effectively. Regression test selection techniques can be applied in these

phases to minimize the testing execution effort by selecting the minimal set of tests

which can safely ensure that no new fault will be missed. A variety of regression

test selection techniques have been described in the research literature. Rothermel

9

& Harrold [34] analyzed and classified these selection techniques.

One approach of regression testing that is identified by Rothermel & Harrold

[37,38] is the retest all method, which executes all existing test plans during regres-

sion testing. This approach is simple and highly effective, as all existing test plans

are utilized. This avoids the need to perform analysis for selecting tests that are

capable of exposing potential faults which are introduced with the newly changed

application. However, this is normally the highest cost option when tests require

to be executed through human intervention. If the tests are automated, this is a

common approach applied since the cost is relatively low to re-execute the existing

tests. Therefore, it has become an attractive option to adopt automated testing for

GUI applications due to the power of being able to execute all tests with low costs.

Memon & Xie [29] identify how automated regression testing commonly is ap-

plied to GUI applications by either:

• Bypassing GUI components to test business logic: This approach obviously

faces challenges in quality assurance as it is scoped to only the business logic

components and it is not testing the end-to-end user experience. This ap-

proach allows many different well established unit testing frameworks (i.e., xU-

nit family frameworks) to be leveraged; however, this testing approach avoids

some of the desired integration aspects of testing the GUI events. Therefore,

this form of testing is less desirable when testing the GUI events is the changed

component in the software.

• Test GUI components by utilizing an external tool to record/playback [14] a

testing walkthrough of the application: The recording stage of the process

is when user is manually executing the software and their steps are being

recorded. The playback stage is when the test is executed automatically, by

10

going through the same steps the user performed during the recording stage.

This approach relies on manual selection of the flows to test event space

which is possible, and therefore its effectiveness hinges on the expertise of

the testers involved [11,40,47].

If a GUI application does not have a full suite of automated tests, it is generally

not feasible to follow the retest all method. Therefore, GUI applications are favored

to go through a different selection process of determining test cases during regres-

sion testing. Moreover, due to the difficulty of GUI testing discussed in the previous

section, faults can be effectively discovered through testing events as they occur in

the entire application, rather than testing an identified event in isolation. Thus, if

we want to be sure that we have executed all existing tests that may expose faults

in a modified GUI component, the entire application needs to be assessed in terms

of its relationship to the modified component. Rothermel & Harrold [37, 38] define

a method for selecting tests as “safe” if it selects all tests from the original test set

which can expose faults in the modified component of the application. Therefore,

it is desired to seek a test case selection method which is safe to produce the most

effective test set for regression testing.

The general selective retest process is provided by [37, 38]. As a special case,

the following describes the typical GUI selective retest process: Let G be a GUI

component, let G′ be a modified version of G, and let T be a set of test cases (a test

suite) created to test G. A GUI regression testing will proceed as follows:

1. Select T ′ ⊆ T , a set of test cases to execute G′

2. Test G′ with T ′, establishing G′ correctness with respect to T ′

3. If necessary, create T ′′, a set of new test cases for G′

11

4. Test G′ with T ′′, establishing G′ correctness with respect to T ′′

5. Create T ′′′, new test cases and test history for G′, from T, T ′, T ′′.

As Rothermel & Harrold [37,38] define this process, they also identify several prob-

lems that are addressed at each step. Step 1 involves the problem of selecting the

test cases (T ′) from the existing test set (T ′) to test G′, which is known as the re-

gression test selection problem. Step 2 addresses the problem of efficiently testing

G′ with T ′, which is known as the test suite execution problem. Step 3 addresses

the problem of performing additional testing to ensure that all changes which exist

in G′ are being covered, which is called the coverage identification problem. Step 4

also addresses the test suite execution problem in performing the additional tests

(T ′′) to fully cover G′. Finally, Step 5 addresses the problem of managing all the

test data which is created from T, T ′, T ′′, which is known as the test suite mainte-

nance problem. Although each of these problems is significant, this thesis will only

restrict our attention to the regression test selection problem for GUI applications.

2.3 GUI Event Modeling

In modeling processes and state of an application, many approaches can apply. For

GUI event modeling, other modeling approaches can be evaluated as each approach

has relatable attributes which lend themselves to illustrating GUI event flows. In

this section, a high level summary of different types of graphs which are supportive

of GUI event modeling will be described.

12

2.3.1 Control Flow Graph

One of the core types of modeling used to illustrate software processing is a con-

trol flow graph [33, 37, 38]. A control flow graph provides a simple illustration of

the continuity between logical sets of operations [7]. Through its illustration, logic

of the application is clear where branching would occur and how the application

navigates through its flows. For example, in Listing 1, a simple set of instructions

exist.

This set of instructions from Listing 1 can then be illustrated in a generic control

flow graph, presented in Figure 2.1. In the control flow graph, the instructions are

illustrated as vertices and directed edges flow from those which indicate possible

paths in the graph. In addition, the control flow graph establishes to key elements:

an entry point (source) and exit point (sink). By having these established in the

graph, one can discern where it must begin in the graph and when to terminate in

performing graph traversals.

2.3.2 Program Dependence Graph

Another core type of graphing model which can be used to illustrate an application

is a program dependence graph [12]. The program dependence graph is somewhat

similar to a control flow graph in that it captures the flow of which operations are

int courseNum = 899
if (courseNum >= 700) {

graduateCourse = 1;
} else {

graduateCourse = 0;
}

Listing 1: Simple Set of Procedural Statements

13

Figure 2.1: Control Flow Graph

performed in the application. Two key types of relationship information is pre-

sented in the program dependence graph. The first type is control dependencies

and the seconds is data dependencies [30]. Relationships are directed edges in the

graph which illustrate the dependency of either control or data for a given oper-

ation. This is type of graph is more expensive to construct due to its additional

relationship information that it captures. With that cost, additional benefits exist

that support different forms analysis of the program. Typical types of analysis that

utilize the program dependence graph are motivated to discover optimizations that

achievable through parallelism [6, 12]. In Figure 2.2, an example program depen-

dence graph depicts the relationships which exist from the operations provided in

Listing 1.

14

Figure 2.2: Program Dependence Graph

2.3.3 Event Flow Graph

A specific type of modeling which is tailored to illustrate GUI events, is the event

flow graph [2,19,29,46]. This graph communicates the flow of events by depicting

their sequence in how they can be invoked in the application. Within this graph,

all event sequence permutations which are possible in the program are provided. In

Figure 2.3, an abstract example of this graph is provided which illustrates a possible

event flow when opening a file. This graph illustrates the flow (or possible flow) of

events through the directed edges which relate to each event (listed as a vertex).

The general layout of this graph is similar to how a control graph is modeled [47].

2.3.4 Event Interaction Graph

The event interaction graph is a more selective type of graph than an event flow

graph, in which it only represents the events which can invoke business logic com-

ponents of the application [29,49]. Therefore, the events modeled in this graph do

not represent GUI control events like minimize or maximize of a window. This re-

15

Figure 2.3: Event Flow Graph

stricted type of graph simplifies the views presented by only showing the key event

which dictate how business logic is being invoked within the program [47].

2.4 GUI Regression Test Generation

In recent years, automated test case generation has gained more attention due to

its relative low cost and its generic assessment to find faults in an application.

This section will present some of the recent developments of this area to provide

insight of the different approaches being used. Although, these approaches do

not lend themselves to a selection method of existing tests, their approaches have

similar aspects to the proposed solution of this thesis. Some of these similarities

16

include the application of reverse engineering to decompose a GUI application to its

supporting events and then constructing an abstract model to determine tests to be

applied given a set of criteria (what events to test).

Utilizing usage patterns of an application is another way to accurately identify

real use-cases of the software when evaluating testing flows. Brooks & Memon [4]

propose an approach of capturing the actual usage of a GUI application, known as a

usage profile, which guides the testing efforts of what workflows to test. This usage

profile captures a sequence of events which a user walks through in a common

usage of the application. These events are then presented in event flow graphs

which are constructed with two key nodes that serve as a start and end point in the

graph for the testing flow. Thus, there is one entry point and one exit point of the

graph. Weights are then associated to the edges of the graph, and a probabilistic

event flow graph is then defined which provides the ability to determine the highest

probable pairs of events that would occur for testing. Test cases are then generated

to test for fault detection. Through their empirical study of this approach, they were

able to produce a smaller test suite which was more effective in exposing faults in

the application than just replaying the user profiles in how they were originally

captured.

A challenging area in test case generation has been assessing potential test case

flows from the software’s static state. Memon and Yuan [50] evaluated a means

of doing incremental sampling of an application to assess user feedback during a

run-time test of a GUI application. The approach first builds a seed test suite based

on an event interaction graph, which is then executed by an automated means. The

run-time state is then captured and constructs a new type of graph, called an event

semantic interaction graph, which is used to then determine the next set of tests to

be executed based on the current run-time state. This approach explores a new way

17

of doing multi-way interaction testing of GUI events and in their experiments, was

able to find new faults in existing open source software projects.

A dynamic test generation technique named “ALT” is proposed by Memon and

Yuan [48, 51], which assists in generating test cases for GUI applications based on

the run-time information assessed from prior execution. The name of “ALT” is de-

rived from the steps of the process which alternates between running a set of tests

and assessing program state to generate the next tests to execute. This style of

alternating steps is a principle attribute of the process as it is continually evaluat-

ing the run-time state of the application after set of tests have been executed. This

assessment of the program’s state is essential during run-time, as the possible state

of the GUI application cannot easily be determined from the static state of the code.

Throughout this process, new tests are created based on the state of the program

from the prior set of tests being executed, and unnecessary tests are avoided by only

evaluating actual run-time states given the current event sequence. With this tech-

nique, the testing oracle evaluates a test result as passing if the program does not

unexpectedly terminate. Therefore, the testing oracle in not comprehensive enough

to expand beyond seeing invalid states of the program which do not unexpectedly

terminate the program. Therefore, the strength of this technique is exposed in its

ability to dynamically produce test cases based on the complex run-time state of

the GUI application to seek event sequences which will cause the program to unex-

pectedly terminate.

In recent developments, Cohen, Memon, and Yuan [47] establish methods of uti-

lizing covering arrays [10, 17] of combinatorial testing to assist in incorporating

additional context for test case generation for GUI applications. This approach al-

lows for a rich evaluation of event states within long event sequences to produce

tests that are highly effective in producing faults. This approach focuses on the

18

importance of event context, the number of events within the test flow, and the

location of the event within overall sequence. When evaluating the events, it con-

siders the required state and dependencies of other events to know what events

sequences are truly possible, as all potential event sequences may not be possible

given their state dependencies. In their case study, they were able to determine that

by increasing the number of unique event combinations and dictating the position

of events in the overall sequence, they were able to generate more faults than from

earlier methods which used shorter tests.

These advances in GUI test generation assist in building test suites with basic

test oracles (test passes if the program does not crash); however, these advances

do not solve the problem of selecting existing tests (with specific test oracles) that

relate to the changes applied to the existing program.

2.5 Related Work

Some research has been presented in recent literature on regression test selection

techniques for the GUI application strictly based on GUI event interactions. Memon,

Pollack and Soffa [20] defined GUI event classifications and developed a test case

generation system for GUIs. Memon, Soffa and Pollack [28] developed a GUI mod-

eling system for the use of the GUI testing coverage criteria. Cohen, Memon, and

Yuan [47] later expressed test case generation means through the construction of

event-flow and event-interaction graphs.

There is a close relationship between test case generation techniques for original

applications and their modified version. A number of researches have addressed

the test case generation for GUIs based on the GUI event interaction techniques

[20,25,26,32,41].

19

The most commonly used techniques to generate test cases for the modified

programs are control flow graph and program dependence graph [13,31,34,37,38].

Those code-based techniques can be applied to programs for the structure lan-

guages as well as objected- oriented languages, classes, derived class, polymor-

phism and dynamic binding. By using those techniques, the test case generation

for the modified application is safe and efficient [37]. Rothermel, Li & Bernett [34]

applied the regression test selection techniques to the form- based visual program.

In that paper, they developed a cell relation graph and used it to present adequacy

criteria. Moreover, they described the differences between the form-based and im-

perative programming paradigms, and discussed effects that these differences have

on strategies for testing form-based programs [35]. However, all of those techniques

are based on the code and does not account for the context of events. Because of the

complicity of GUI applications (e.g. interactions between GUI program and testers),

code based testing techniques are not enough for the accurate of GUI testing [20].

In past years, Memon, Pollack & Soffa (2000, 2001) developed a nearly compre-

hensive framework for testing GUIs. This framework covers test case generator, test

coverage evaluator, test executor, test oracle and regression tester. The adequacy of

generated test suite is evaluated by the test coverage evaluator, which is employing

event-based coverage criteria developed specifically for the GUI testing framework.

In this framework, a test executor automatically executes all the test cases on the

GUIs. As test cases have been executed, a test oracle automatically determines the

correctness of the GUIs. The test oracle employs a model of the expected states

of the GUI in terms of its constituent objects and their properties. If we put all of

them together, the test case generator, test coverage evaluator, test executor, and

test oracles provide the necessary mechanisms to automatically test GUI applica-

tions. However, the accuracy of this testing approach hinges on the effectiveness

20

of the testing oracle and the correct test cases being generated for the modified

version of the program for the approach to be considered safe [1,45].

In more recent developments, Memon [23] proposed an approach of repairing

tests for regression testing, which can utilize an event flow graph to assist in se-

lecting tests which are usable based on the modified version. For tests cases of the

existing test suite which are not usable, they will be generated to support the test

cases which no longer are capable of fully working against the modified version.

This hybrid approach provides benefits of utilizing existing tests of a test suite, but

adapts for cases which it cannot handle by generating tests for cases which can

longer work for the modified version.

Based on these related works, a common requirement exists after changes are

made to a GUI component: a regression tester needs to determine the parts of the

GUI that have been modified and select a suitable subset on the test suite. Thus,

the GUI test selection techniques presented in this thesis can be applied to the ad-

ditional testing for the modified parts. This GUI regression test selection technique

is general and can be used to test other applications that share the event driven

characteristics of GUIs, such as object-oriented, web and reactive software.

2.6 Summary

In this chapter, related research work involving GUI applications and testing are

presented. The first area addressed was GUI testing and the complications which

they bring forth due to their complex nature. The focus of the their complexity

lies in how they are defined by being event driven and the large event space for

options of input into the application. This large event space presents challenges in

fully testing the application to cover that event space, and accurately testing events

21

which are unsolicited. GUI regression testing is discussed and general regression

test selection approaches are presented which are a means to avoid the retest all

approach due to the costs that it can impose. Automated testing approaches are

presented and explained in how they can be categorized. Additionally, automated

testing approaches may not always be feasible for existing applications which auto-

mated testing frameworks are not available or extensive manual testing is already

invested. A general regression selection approach is then defined to provide con-

text of how a selection process would be applied and what is considered as a safe

method in applying such an approach [37,38]. GUI modeling types such as control

flow graphs, program dependence graphs, event flow graphs, and event interaction

graphs are explained by providing their core attributes and examples of each. GUI

regression test generation approaches, which have had focus in several areas of the

related research, were presented and explained with how they relate to the problem

of selecting existing test cases. Finally closely related work in the area of test case

generation based on a control flow graph and program dependence graph, repairing

regression test cases by reusing working tests and generating new ones, and the

utilization of testing oracles with test case generation approaches.

22

Chapter 3

Algorithms for Developing an Event

Dependence Graph

Memon, Soffa and Pollack [26, 28] developed a framework for GUI structure and

event classification. Based on their framework, the section presents the definition

and concept of the event dependence graph (EDG) that extends the event flow graph

defined by Memon, Soffa and Pollack [28]. Then Microsoft Notepad software is used

as an example (shown as an Microsoft Notepad in Figure 3.1) to illustrate how to

construct the event dependence graph. Lastly, an algorithm is provided to construct

the EDG.

The important GUI characteristics include the graphical orientation, event-driven

input, event interaction and relationship, and hierarchical structure. A GUI compo-

nent consists of objects (buttons, menus, icon, etc) using metaphors familiar in real

life. The users of GUI applications interact with the GUI components by performing

events that manipulate the GUI component. GUI events cause deterministic changes

to the state of the GUI application that may be reflected by a change in the appear-

ance of one or more GUI components. Moreover, GUIs are hierarchical, and this

23

Figure 3.1: Microsoft Notepad

hierarchy may be exploited to identify groups of GUI events that can be tested in

isolation [20]. To test GUI software properly, we must test GUI events [28]. GUI

Event testing approaches typically invoke sequences of events in varying orders,

and then verify that the resulting state of the GUI components manipulated by the

events is correct.

3.1 GUI Components and Event Classification

This subsection lists some basic concepts defined by Memon, Soffa & Pollack [26,28].

A modal window is a GUI window, a kind of hierarchical GUI component, which

monopolizes the GUI interaction and restricts the focus of the user to a specific

range of events within the window until the window is explicitly terminated. The

other window in the GUI is called a modeless window that does not restrict the user’s

focus. A GUI component G [28] is an ordered pair (Rf , Rc), where Rf represents a

24

modal window in terms of its events and Rc is a set whose elements represent the

modeless windows also in terms of their events. Each element of Rc is invoked by

an event in either Rc or Rf . An event flow graph (EFG) is a directed graph in which

each node represents an event and each edge represents the possible interactions

between two nodes (events).

Memon, Pollack & Soffa [20] defined the most commonly used GUI events in GUI

applications:

• Restricted-focus events that open modal windows: Users have to explicitly

close the window by clicking the OK or Cancel button and return to the original

window. The common examples include the Save screen opened by clicking

menu File→Save in Notepad.

• Unrestricted-focus events that open modeless windows that do not restrict

user’s focus. These events will expand the GUI events that are available for

users. This will make GUI applications much more user friendly. The Find

menu option that opens an unrestricted-focus window is a common example.

• Termination events that close modal windows: Every main window or modal

window must have termination events that allow users to close the application

or window. The OK or Cancel buttons and the ‘x’ box on the right top of the

window are very common termination events.

• System-interaction events that interact with the underlying software to per-

form some actions: The system-interaction events can be launched in any

GUI component like button (the Find Next button), and menu option (Save,

Copy, Paste, etc).

• Menu-open events that are used to open a menu list: They group a set of GUI

25

events available to the users. Unlike system- interaction events, the menu-open

events do not interact with the underlying software. Most GUI applications

include File and Edit menu options so users can have more menu selections.

Figure 3.2 lists the five different shapes that represent five defined events. Restricted-

focus events (e.g., Save As under File menu option) are shown as rounded rect-

angles. Unrestricted-focus events (e.g., Find under Edit menu option) are shown

as rectangles. Termination events (e.g., OK button) are represented as hexagons.

System-interaction events (e.g., Copy under Edit menu option) are shown as el-

lipses. Octagons represent the menu-open events (e.g., File menu option).

3.1.1 Event Dependence Graph

This subsection defines the GUI event dependence graph (EDG) and its execution

semantics. It also discusses the standard translation from a GUI component to its

event dependent graph. Different shapes that represent different types of events

are used to represent explicitly the event nodes in the EDG.

Definition 1 For events vx and vy in G, vx is an event flow dependence predecessor
(efd-predecessor) of vy if (vx,vy) ∈ E; and vy is an event flow dependence successor
(efd-successor) of vx.

Definition 2 For each event v ∈ V , we define an event flow predecessor set (efp-set)
P of v if (p, v) ∈ E for any p ∈ P and p is the efd-predecessor of v . An event flow
successor set (efs-set) S of v if (v, s) ∈ E for any s ∈ S and s is the efd-successor of v .

Figure 3.2: Pictorial Symbols for the GUI Events

26

Definition 3 For events vx and vy in G, vx is an event control dependence prede-
cessor (ecd-predecessor) of vy if (vx, vy) ∈ E and the event vy will be only launched
after event vx ; vy is an event control dependence successor (ecd-successor) of vx.

Definition 4 For each event v ∈ V , we define an event control predecessor set (ecp-
set) P of v if (p, v) ∈ E for any p ∈ P and p is the ecd-predecessor of v . An
event control successor set (ecs-set) S of v if (v, s) ∈ E for any s ∈ S and s is the
ecd-successor of v .

Definition 5 Definition: An event dependence graph Σ for a GUI component G is a
4-tuple < V,E, B,Ψ > where:

1. V is a set of vertices representing all the events in the component. Each v ∈ V
represents an event in G.

2. E ⊆ V × V is a set of directed edges between vertices. An edge (vx, vy) ∈ E if
and only if the event represented by vy is efd-successor or ecd-successor of the
event represented by vx .

3. B ⊆ V is a set of vertices representing those events of G that are available to the
user when the component is first invoked.

4. P(v) ⊆ Ψ , P(v) is a ecs-set for the event v ∈ G.

An event dependence graph represents all possible dependencies among the events

in a component. The root of EDG is the ENTRY vertex, an event to start the GUI

application. Double clicking on an icon is a common example. Every event vertex

is reachable from the ENTRY vertex, and the termination events are reachable from

every event vertex on the GUI component. If an edge (vx, vy) ∈ E, and vx is only

a fd-predecessor of vy , that means two events vx and vy have no interaction with

each other. Menu-open events Save and Save As are such examples. Users can click

each event by any order. Any such edge is shown as a dash line in the EDG. On

the other hand, if vx is only a cd-predecessor of vy , then the event vy can only be

launched after event vx happens. Thus, these events are represented as solid lines.

27

Example 1: A Copy-Paste EDG in the Notepad. The copy-paste process in the

Notepad can be represented as an event sequence. When users want to copy and

paste a word or paragraph, they should highlight it first, and then click Edit and

Copy from the menu option, and lastly click Edit and Paste from the menu option.

During this process, the highlight event is the ecd-predecessor of the Copy event be-

cause users have to highlight a word or paragraph they want to copy, then Notepad

will store the word or paragraph in memory when the Copy event is fired. For the

same reason, the Paste event is the ecd-successor of the Copy event. Therefore, the

EDG can be displayed as Figure 3.3, a Copy-Paste EDG in Notepad.

Figure 3.3: A Copy-Paste Edge in Notepad

Figure 3.4 displays two screens, the Open screen on the left and the Save As

screen on the right. In order to edit an existing file, users have to execute a sequence

of events. Normally, users have to click the File→Open menu option to open the

Open screen, then select a desired directory in the Look in combo-box, then double

click or type the document name, then click the Open button to close the screen.

28

After the file has been modified, users need to click the Save As button, select a

desired directory in the Save in combo-box, type in a new file name, and then click

Save button. The whole process can be controlled by the EDG in Figure 3.5.

Example 2: An EDG for Editing an Existing File. Figure 3.5 shows the diagram for

our second example, an EDG for editing an existing file in the Notepad.

3.1.2 Construction of Event Dependence Graph

This subsection describes how to construct the event dependence graph, which ex-

tends the event flow graph defined by [28]. Listing 2 presents an algorithm to con-

struct an event flow graph for a GUI application.

Listing 2 presents an algorithm ConstructEDG for constructing EDG. The algo-

rithm takes a GUI component G, and returns Σ, an EDG that contains all events

and their dependence relationships. ConstructEDG first initializes all events in

the V (recall that V represents all events in the GUIs), the initial event set B (also

recall that B represents events that are available when a component is invoked),

and then constructs EDG (with Initial Event set B) for G. Next, the algorithm calls

FollowDependentSet for each event node in B. FollowDependentSet will con-

struct a set of outgoing edges and set the dependence type into of the EDG . This re-

cursive algorithm contains a switch structure that assigns FollowDependentSet(v)

according to the type of each event. In this processing, it is assumed that the source

code of the GUI application is available to elicit the event information.

If the type of the event v is a menu-open event and v is in B then the user may

either perform v again, its sub-menu options, any event in B, or the events in ecs-set

of v (recall ecs-set includes all events that are event control dependence of v). How-

29

algorithm ConstructEDG(G): Σ

input G: a GUI component
output Σ: the EDG for G

begin
Initialize(V)
Initialize(B)
Initialize(Ψ)
for each event v in B do

FollowDependentSet (v)
end-for
Σ = < V, E, B, Ψ >

end

algorithm FollowDependentSet(v ∈ V)
begin

switch (eventType(v))
case menu-open

if v ∈ B
E = E ∪ {(v, s) ∈ E where

s ∈ Menuchoices(v) ∪ {v} B ∪ ecs-set(v) is efd-successor}
else

E = E ∪ {(v, s) ∈ E where
s ∈ Menuchoices(v) ∪ {v} ∪ FollowDependentSet(ecp-set (v)) ∪
ecs-set(v) is efd-successor}

end-if
case system-interaction

if v ∈ B
E = E ∪ {(v, s) ∈ E where

s ∈ B ∪ ecs-set(v) is efd-successor}
else

E = E ∪ {(v, s) ∈ E where
s ∈ ecs-set(v) ∪ FollowDependentSet(ecp-set (v))
is efd-successor of v}

end-if
case exit

E = E ∪ {(v, s) ∈ E where
s ∈ B of Invoking component is efd-successor}

case restricted-focus
E = E ∪ {(v, s) ∈ E where

s ∈ B of Invoked component is efd-successor}
case unrestricted-focus

E = E ∪ {(v, s) ∈ E where
s ∈ B ∪ of B Invoked component is efd-successor}

end-switch
end

Listing 2: Algorithm for Constructing EDG
30

Figure 3.4: Open and Save-As Screens in Notepad

ever, if v is not in B then the user may either perform all sub-menu options of v , v

itself, the event in ecs-set of v , or all events in the FollowDependentSet(ecp-set(v)).

If v is a system-interaction event and v is in B, then after performing v , the GUI

reverts back to the events in B or moves to the events in ecs-set of v . Otherwise, if

v is not in B, the user may perform the events in ecs-set of v or all events in the

FollowDependentSet(ecp-set(v)).

If v is a termination event, the FollowDependentSet(v) consists of all events

of the invoking component. If v is a restricted-focus event, then only the events

of the invoked component are available. Finally, if v is an unrestricted-focus event

then the available events include both the events that are available in the invoked

component and all events in the invoking component.

31

Figure 3.5: An EDG for Editing a File

32

3.2 Regression Test Selection Techniques for GUIs

We now turn to the problem of testing a GUI component after it has been modi-

fied. Rothermel & Harrold [33,37,38] developed general regression testing selection

techniques by using control flow graph and program dependence graph for the

object-oriented software. Those techniques are applied to GUI applications by us-

ing event dependence graph in this section. We will use the information provided

in the Sections 2 and 3 to present EventTestSelections, the regression test se-

lection algorithm for GUIs. EventTestSelections takes a GUI component G, its

modified version G′, and the test suite T for G, and returns G′, a set that contains

tests that are modified for G and G′, and then an example is used to explain how

the algorithm works for the GUI regression testing.

3.2.1 Motivating Observations for Testing a Modified Program

Ideally, after modifying a GUI component, one would like to create an adequate test

suite for the modified GUI component (reusing as many old tests as possible), and

to run the GUI component on all of the tests in this suite. However, it may be too

expensive to run all of the tests. Therefore, a reasonable goal is to run enough

tests to guarantee that every affected GUI events of the modified GUI components is

exercised. In this case, if a reused test is only known to test unaffected GUI events,

that test should not be rerun.

Given the goal discussed above, the following process can be used to test a mod-

ified GUI component:

1. A subset of the original test suite is identified for use in exercising events of

the modified GUI components.

33

2. A subset of the tests selected in Step 1 is identified for use in exercising af-

fected events

3. The tester runs the modified GUI component on the tests selected in Step 2;

when the component is run, a record is kept of the events that actually were

exercised.

4. The tester creates new test cases for the affected events of the modified GUI

component that were not exercised by the reused tests.

In order to perform regression testing using an existing test suite, we must have

access to test history information, which keeps data on the previous executions of

the tests. For the purposes, the test history information includes an event trace:

a list of the events executed by each test. Using the event trace, each event in the

EDG is associated with the set of tests in T that execute all events during running

of the original GUI components. This set is called an event history, whose concept

is provided by Rothermel & Harrold [33]. For an event N, N.history represents its

event history. Let’s use an example to illustrate the event history. The left picture

in Figure 3.4 is the screen that allows users to open a file. The users have many

ways to open a file research.txt in the directory C:\EECS\899. Table 3.1 lists

five test cases to open the file. Each test case includes a sequence of events. The

event double clicking research.txt has only T2 associated with it while open event

has all tests in the test suite associated with it. Thus, the history of event double

clicking research.txt is {T2} and the history of event clicking open button is

{T1, T2, T3, T4, T5}.
The simplest method for selecting tests based on the preceding observations re-

quires a complete mapping of the event nodes in G to the event nodes in G′, and

information on which nodes in G′ enclosed changed nodes. Given such a mapping,

34

Table 3.1: Test Cases for Opening a File in Notepad

Test Case Event History

T1 Click Open menu, type text
C:\EECS\899\research.txt in name field, click
Open button

T2 Click Open menu, select D in combobox, double
click EECS folder, then 899 folder, double click
research.txt file, click Open button.

T3 Click Open menu, select D in combobox, type text
EECS\899\research.txt in name field, click Open
button.

T4 Click Open menu, select D in combobox, double click
EECS folder, type text 899\research.txt in name
field, click Open button.

T5 Click Open menu, select D in combobox, double click
EECS folder then 899, type research.txt file in
name field, click Open button.

this method just simply selects all tests associated with the events that enclose

changed event nodes. However, such a mapping may be difficult and costly to ob-

tain. We can improve on the simplest method by instead traversing G and G′ in

preorder and, on reaching an event node whose ecd-successors have changed, se-

lecting all tests that reach that node. Having selected these tests, it is not necessary

to proceed further in this traversal; all tests reaching nodes farther in the traversal

through this chain of control dependence events have necessarily been selected.

3.2.2 The Test Selection Algorithm

Listing 3 presents EventTestSelections, the regression test selection algorithm.

This algorithm takes a GUI component G, its modified version G′, and the test suite

T for G, and returns T ′, a subset of T to test G′. EventTestSelections uses re-

cursive procedure compare to perform synchronous depth-first traversals of G and

35

G′, relying on a “visited” flag attached to each node to avoid revisiting nodes dur-

ing the traversals. EventTestSelections first marks all EDG event “not visited,”

and then initiates the graph traversals by calling function EventIdentify with the

entry nodes of G and G′.

The EventIdentify procedure selects the tests for a given pair of events in G

and G′. Called with a pair of event N and N′, EventIdentify first marks them

“visited,” and then calls function GetRelationship(N,N′). Given any such pair

of events N and N′, the GetRelationship determines the relationship between

two events N and N′ in certain status: NoMatch, Added, Equivalent, Modified

and Deleted. If N and N′ are equivalent, then the EventIdentify function will

continue to look for their ecd-successor events and do further compare.

The GetRelationship function determines whether traversals should continue

beneath N and N′. Essentially, this approach obviates the need for prior knowledge

of modifications, instead locating the changed event as it traverses the graph, and

only as needed. Listing 4, The GetRelationship procedure, attempts to establish

a “mapping” between a pair of events N and N′ and records that mapping in Corre-

spondence. Correspondence is a pair of arrays that list all events as “not examined.”

As GetRelationship determines mappings between events in G and G′ it updates the

arrays, recording event nodes that are in G but not G’ as “deleted.” Event Nodes

that are in G′ but not G as “added.” Event nodes that exist in both G and G′ differ

as “modified,” and event nodes that are the same in both G and G′ as “equivalent.”

In the case of “modified” event nodes, Correspondence also tracks which node in

G corresponds to which node in G′. If GetRelationship cannot establish a map-

ping, it just marks as “no match”: all tests through G must be selected. If, however,

GetRelationship can establish a mapping, it examines the mapped event nodes. If

event nodes are new, modified, or deleted, then GetRelationship returns the cor-

36

algorithm EventTestSelections(G, G′, T, Correspondence): T ′
input G, G′: base and modified GUI component

T: a test set used to test G

output T ′: the subset of T selected for reuse to test G′
Correspondence: a partial mapping between event nodes in G in G′

begin
Σ = ConstructEDG(G)
Σ
′= ConstructEDG(G′)

for each event v in Σ and Σ
′ do

mark v ‘not visited’
end-for

for each event N, N′ ∈ B, B′
T ′ = T ′ ∪ EventIdentify(N, N′)

end-for
end

procedure EventIdentify (N, N′)
input N, N′: events in Σ, Σ′

begin
mark N and N′ ‘visited’
switch (GetRelationship(N, N′))
case ‘Equivalent’

for each ecd-successor n, n′ of N, N′ do
EventIdentify(n, n′)

end-for

case ‘Added’
T ′ = T ′ ∪ {new test set for the event N′ in G′}

case ‘Modified’
T ′ = T ′ ∪ N.history // processing can’t continue in N & N′

case ‘Deleted’
for each ecd-successor n of N do

T ′ = T ′ ∪ n.history
end-for

end-switch
end

Listing 3: EventTestSelections Algorithm for Regression Test Selection

37

responding status, indicating that all tests through N must be selected. However, if

neither of these conditions holds, the function returns “no match,” indicating that

nothing needs to be changed, and possibly avoids selecting all tests through N.

When GetRelationship returns “equivalent,” either there are no changes be-

tween two events N and N′, or the changes are not sufficient to force selection of

all tests through event N. For the later case, EventIdentify considers each ecd-

successor n of N and n′ of N′, and calls the recursive function for each child pair.

When GetRelationship returns “added,” that means N′ is a new event that didn’t

exist in G. EventIdentify will add the related test cases into T ′. If its return value

is “deleted,” EventIdentify will add all test cases in the history for all cds-set for

the deleted event. If the return is modified, EventIdentify simply adds N.history

into T ′.

We now consider an example that illustrates the use of EventTestSelections.

Figure 3.6 shows the picture for Find Screen on left and its modified version on

right. The modified version of the Find Screen includes a new control: a checkbox

Find whole words only for users to check it when they want to to find only that

word. Thus, the right screen reflects the modification. Therefore, developers need

to add the checkbox on the screen and modify the Find Next button event. All

other events on this GUI component remain the same as the left screen.

Figure 3.7 shows the original EDG and its modified EDG shown on the right. The

GetRelationship function marks the event Find whole words only as “added,”

and Find Next as “modified,” and there is no corresponding event in G for Find

whole words only, so the new test cases for the new event needs to be added

into T ′. In this simple example, Find Next event is the ecd-successor of event Type

in Word. GetRelationship returns “modified” for event Find Next because it

should be modified after new event is on the screen. Thus, all test cases in the

38

procedure GetRelationship (R, R′): Relationship Status
input R, R′: events in EDG G and G′
output Relationship Status in {NoMatch, Equivalent, Added, Modified, Deleted}

begin
attempt to match R and R′, locating new, deleted, and modified flags
if N and N′ are equivalent

return ‘Equivalent’
else

record information on node Correspondence, and on new, deleted,
and modified nodes in Correspondence

if N′ modified then return ‘Modified’
else if N′ is new then return ‘Added’
else if N is deleted then return ‘Deleted’
else return ‘No Match’
end-if

end-if
end

Listing 4: The GetRelationship Procedure

history of event Find Next in G will be added into T ′.

Figure 3.6: Screen Shots of of Find Screen and its Modified Version

39

Figure 3.7: EDG for Find Screen and its Modified Version

3.3 Summary

In this chapter, the approach of defining and constructing the event dependence

graph is presented and the process of regression test selection utilizing this model

are explained. Event type classification is presented to first provide an under-

standing of the different types of events and their importance in the relationships

of events. The event types defined are system interactions, unrestricted focus,

restricted focus, termination, and menu open. The event dependence graph is

then defined which is a hybrid model that has similar characteristics of the con-

trol flow graph, program dependence graph, and the event flow graph. From its

definition, the algorithm to construct the event dependence graph is presented

(ConstructEDG). With the event dependence graph defined, the motivation of lever-

aging a test case selection process against this model is presented. The motivating

factors are the core needs which drive regression testing of an evolving software

solution. It is explained how test cases are associated to events within the event

40

dependence graph, and how the entire set of related events is considered the event

trace of a test case. Finally the test selection algorithm (EventTestSelections),

is presented and explains how changed events are utilized to dictate which test

cases need to be executed to sufficiently test the impacted events (based off of their

relationships in the event dependence graph).

41

Chapter 4

Research Results Evaluation and

Validation

An implementation for the proposed solution will compose of several different com-

ponents, each of which will have key responsibilities. This implementation is fo-

cused on supporting the proposed solution’s attribute of being an automatic pro-

cess of selecting all the relevant tests for a given event change. In order to support

an automatic process, each component will perform its responsibilities with mini-

mal human intervention. The details of this implementation will be specific to Java

programs, but its structure in design is agnostic to any specific language. The listing

of components is as follows:

1. Data Store A persistent data store will exist to maintain a relationship of test

plans which relate to a given event of an application. This data store only

requires storing test plan relationships to events, and does not necessarily

store details of the test plans (i.e., test steps, expectations). This will capture

all initial test plan / event relationships, as well as, new test plans or events

which are created during the maintenance phase of the application.

42

2. Ripper An external component from the GUITAR framework [21,24,39] which

will execute the GUI application and performing a ripping process which will

extract GUI components and construct an event flow graph.

3. Analyzer Applies the proposed solution algorithms to determine all the de-

pendent events for a selected event. The selected event can either be selected

by the human who is initiating the program or can be elicited during the scan-

nerÕs phase to determine what changes have occurred based comparing two

different version of the program (G and G′).

4. Report Generator With the selected events which are dependent on the event

supplied to the analyzer, the related test plans need to be selected from the

data store and presented so the consumer is aware of what tests have been

selected to be executed.

The relationship of these components are listed in Figure 4.1. The workflow

of data through these components begins with the specifications of how to perform

the GUI ripping process for the application under test. The GUI ripper then executes

its process and collects the GUI component and event information and presents this

in an output file that is in an XML format. This output file is then consumed by the

analyzer which constructs the event dependence graph based on the GUI compo-

nent and event information presented by the GUI ripper. The output of the analyzer

(file which constitutes the structure of the event dependence graph) can then be

consumed by the report generation tool which can then select test cases. This se-

lection process is based on the event dependence graph and the events that have

been specified as being changed. The output of the report generator will list these

test cases, which a software tester could then use as their test suite for regression

testing of change set to the software.

43

Figure 4.1: Overview of Implementation

4.1 Static and Dynamic Analysis of GUI Components

When assessing how to extract GUI event information from the application under

test, two different approaches were considered: static analysis and dynamic anal-

ysis. The first approach that was considered was static analysis, since it was ex-

pected that the tester would have access to the source code of the application under

test. Since the focus of this experiment is using Java technologies, it was assessed

whether static analysis could be performed for event information extraction using

the compiler API which is present in the Java Standard Development Kit version 6.

With this API, it would be capable of extracting types of classes which represent

44

specific known Java GUI components and action listeners. However, it can be chal-

lenging when utilizing this compiler API against a large application with complex

structures to determine all the inter-relationships of types. A critical challenge ex-

ist with this approach where it is not apparent what all other GUI components are

available to be invoked based on the static structure of code that represents the

application. For example, it was capable of determining that a given GUI component

(i.e., button), when clicked, would open a window. However, it wasn’t clearly evident

that from that window which was opened, what other GUI components (possibly

in the background) were capable of being invoked while that window was present.

Therefore, the extensive cross relationships of components would not be easily cap-

tured without analyzing this during runtime. State information of the application

would also dictate the behavior of these GUI components (i.e., if a button was en-

abled or not). This further made static analysis challenging in accurately capturing

the possible event relationships since the potential state information could not be

inferred. From these conclusions when assessing static analysis as an approach

for event extraction, it became apparent that dynamic analysis would be a more

accurate method for obtaining the desired event information.

When assessing the feasibility of using dynamic analysis of the GUI application, it

became apparent that certain attributes must exist in the tooling which is leveraged

to perform the analysis. The key attributes were: automated execution, extensive

state extraction, and capable of identifying events.

During dynamic analysis, the application is put into motion by starting it in a

running state and invoking functionality until it ultimately terminates (or reaches

some targeted state). In order to trigger the GUI application to go into a running

state and invoke all possible events (so an accurate analysis can be performed) re-

quires an automated tool to efficiently accomplish this. Hence, it is not desirable

45

to utilize any tooling which requires human intervention to exercise the GUI ap-

plication in a running state to extract information. The driving force which would

navigate the application during this run-time must be a consistent and timely pro-

cess. If the process was not automated, several challenges would exist:

1. Variance in execution process If a manual process was applied every time

the GUI application was analyzed for event information, there would be a pos-

sibility of variance in how that GUI application was executed. This variance

would drastically cause issues in the quality of the analysis, as many decisions

are based on that event information which is extracted. If an event is missed,

it would be determined that an event was deleted from the application, which

cascades into triggering many tests cases to be utilized in testing when that

should not be the case. This would degrade the quality of the test case se-

lection, as it would not be accurately restricting the number of tests to be

executed from the set which would be utilized from a retest all approach. In

order to compare against previous analysis, the same process of performing

that analysis must be followed to remove the chances of variance (which could

injected into the process if it were performed manually by a human).

2. Costs increased due to time required The goal of this solution is to provide

a minimal listing of tests that can be performed for regression testing and are

considered safe. If the analysis is a lengthy process, it would add costs to

the process and ultimately to the overall costs of performing regression test-

ing. Therefore, we must try to avoid any additional costs when performing

this analysis. One key challenge that exists is that when performing analysis

on the runtime state of an application, the time progression which an appli-

cation state would reside can be a valuable element in the tests when time

46

based event triggers exist. For example, if an event fires every five minutes

to alert the user of something (i.e., displays a modal window), the analysis

process may miss these events. This is a known limitation of performing the

analysis, where events that are not invoked by GUI components may not be

captured (as they may not easily be triggered). In any case, the analysis will be

performed in a consistent manner to ensure comparisons are accurate when

performed. Meaning, if a time based event will not be captured due to time

taken by the dynamic analysis being performed, then it will not be captured

on any subsequent analysis which will be used to compare previous states.

3. Inaccurate analysis With performing dynamic analysis, we need to capture

state information closely to the time which the event is being invoked. If this

were to be applied in a manual fashion (i.e., utilizing a debugger) it would be

a very costly and challenging task to ensure state information is accurately

paired with the time which the event occurred. By leveraging an automated

means, you can accurately listen for the state change of the application when

changing its state during the its runtime. This is due to necessary synchro-

nization of checking state with the invocation of the GUI event.

When analyzing the GUI application at runtime, it is necessary to extract a rich

amount of information about its state. This is desirable as this information is ex-

panded upon and used to identify each GUI component within the application. With

comprehensive applications, a large breadth of events are possible and it is required

to be capable of uniquely identifying each one of those events to perform analysis

in comparison to the previous event dependence graph. Therefore, identifiable at-

tributes are necessary to be extracted. With those identifiable attributes, their value

at the point of extraction (their state) is needed be known, as that data dictates an

47

event’s relation to a given component.

An event is identifiable based on the context of what it relates to and what it

supports. Its relationship information to GUI components (i.e., buttons, labels, pan-

els) provide sufficient identifying marks of its source of invocation. The type of

event and its resulting behavior provided added uniqueness to how that event can

be identified in the graph. For example, the source of the event is a menu-item in

the main application window that is called “Search”, which when clicked, invokes a

“Search” window (restricted focus type of event). All of this information provides

an identity for that event which makes it unique within the host program.

The analysis must be capable of identifying events, which means it must be

aware of when an event occurs. To achieve this, the process which is analyzing

the application must know and listen for specifics in alterations of the application

which may not be apparent from the visual state of the program. For example, I may

have an event which is triggered based on a mouse hovering over a particular area

of window pane. That event may not change anything in terms of visuals which

are present in the application, but may trigger some type of system interaction

to occur. These types of events make it exceptionally difficult of knowing all the

different areas to invoke to trigger such events.

With these supporting reasons to utilize dynamic analysis, it was further investi-

gated into what tooling exists that would support this need. The approach of utiliz-

ing runtime information of a Java program to support test case selection is an area

which has been investigated in other research [16]. With the rich tooling support

of the Java Virtual Machine, several options exist in obtaining runtime information

of a program when exercising its functionality. The next section will further ex-

plain the GUITAR framework which was chosen to be utilized in this experiment for

extracting runtime information.

48

4.2 GUITAR Framework Overview

Automated event identification is a challenging task. When assessing options to

implement this mechanism, the approach of GUI ripping from the GUITAR frame-

work was evaluated [15, 24]. This approach performs its analysis at runtime of the

application (rather than static analysis). Therefore, it must exercise the application

through the events desired to produce the listing of GUI components of the applica-

tion. It is desired to leverage this existing tooling in order to extract GUI components

of the application to assist in constructing the event dependence graph.

GUITAR is a testing framework which offers several valuable components when

evaluating a GUI application to test. As mentioned earlier, it is capable of ripping

a GUI application to obtain information of its structure (represented as an XML file

with a *.gui file extension). It can take this information and build an event flow

graph (which is listed as XML in a file that has a *.efg file extension). Within this

file, is defines the EFG through an adjacency matrix. This file can then be used to

generate graphs which are constructed in the Graphviz *.dot format to illustrate the

directed graphs. Furthermore, test generation can be fueled by this data, as well as,

replaying the desired events for the test cases.

4.3 Apache JMeter Application Assessment

Apache JMeter is an open-source Java application that allows users to load test their

applications [18]. It supports load testing on many of the core server types, such as:

RESTful and SOAP web servers, database servers through JDBC, and LDAP servers.

It was desired to apply our experiments against this application, as it has several

attractive traits:

49

1. Identifiable The application is well established in the development and testing

communities and therefore details of the experiments may be well understood

based on the audience’s general knowledge of the application.

2. Relevant The initial version of JMeter (1.0) was released in 1998. This applica-

tion has a large history of changes and it is clearly in the maintenance phase

of its existence. Thus, by using this application in our experiments, it will ex-

hibit similar challenges of analyzing and identifying test cases in a established

software solution. The purpose of the experiment is to show the effectiveness

of the proposed solution and doing so on a relevant scenario (i.e., analyzing

an existing software project to identify test cases based on an event change to

the application).

3. Adequate Complexity JMeter is presented in a fairly simple GUI layout, but

does offer complex functionality. It was desired to experiment with an ap-

plication that did not have an excessively complex GUI layout so that the de-

scription of the steps in the experiment are not plagued with the complexity of

the application. In addition, experiments could be easily scoped to individual

event flows which are of a digestible size when explaining their relationships

in an EFG and EDG. Furthermore, the application has complex system inter-

actions (i.e., starting processes to load test a remote service) which can present

realistic and relevant challenges when performing analysis of of the applica-

tion at run-time to extract event information.

50

4.4 Graphical User Interface Ripping Process

The first step to construct the EDG is to extract the event information from an

application through the GUI Ripping mechanism in the GUITAR application suite.

There are several different flavors of the GUI ripping functionality based on the

type of technology being used to support the GUI. In our case, we are testing a Java

application and therefore will use the JFC (Java Foundation Class) GUI ripper. The

ripper is a command prompt application which takes in several different arguments.

In Table 4.1, the specifics of the command line options are listed which were utilized

to execute the GUI ripper on JMeter.

When performing the ripping process, it is possible to be an exhaustive process

due to all the potential events that are being captured. The output of the ripping

process is an XML document which is identified by the GUITAR framework with a

*.gui file extension. This file contains all the GUI component information which

is organized by containers. GUI windows are core types containers that are the

root containers for GUI components. These containers (which are identified as a

Container element in the XML schema) are nested structures which can further

expand to indicate reachable GUI components from parent containers. In each con-

tainer, a generic name/value pair structure exists (identified as a Property element).

There can exist variable number of properties one GUI component may have, all of

which are hosted in the Attributes element of the XML schema. Within each prop-

erty, some of the key attributes which are obtained:

• ID Identifier of the GUI component. This attribute is a valuable piece of infor-

mation which is further leveraged to identify events.

• Size Size is specified by its overall width and height based on pixel spaces.

51

Table 4.1: JFC GUI Ripper Arguments

Argument Description

-c Main Java class under test. The first thing which
needs to be identified is the main class of the
Java application. JMeter, which is bundled as a
JAR (called ApacheJMeter.jar), has this information
bundled in the manifest of the JAR. Within the man-
ifest (MANIFEST.MF), it identifies the main class as
org.apache.jmeter.NewDriver

-cf Ripping configuration file. Within this file, we can
specify what components we wish to ignore and
which components are terminal. For the initial run
(to hit expand upon all possible event states, nothing
was ignored, and only the "Exit" option of the main
menu was listed as a terminal component.

-cp Classpath of the Java application. For this particular
case, this was a large input as JMeter had 60 differ-
ent JARs included in its lib folder which needed to
be included in the classpath. All of these JARs may
not have been required, but it was assumed that they
should be included to support a complete execution
of the application. This argument includes the full file
path to each of these JARs, and that listing is the de-
limited by a colon character when executed in a Unix
system (or a semi-colon when executed on a Windows
system).

-d Delay (in milliseconds) after each GUI component
is triggered before activating another. This config-
uration was desired to be applied to ensure ade-
quate time was applied for other events that could
be loaded which may have just been delayed.

-i Initial warm-up time (in milliseconds) of the applica-
tion prior to allowing the ripping process to begin.

• Location Location of a GUI component which is specified by a horizontal (x)

and vertical (y) coordinate.

• Class Type of GUI component based on the languages type of component. For

52

an example in Java Swing, a window panel would be a javax.swing.JPanel.

• Visible Boolean indicator to signify if that GUI component is visible in the

current view.

• Enabled Boolean indicator to signify if that GUI component is enabled. For

example, a button may be disabled for certain states of a given form.

• Focusable Boolean indicator to signify if the GUI component is in focus in the

current view.

Other attributes are available about components; however, most of them are not

that critical when determining event information of the application. Within the XML

contents, one can recursively search into a container to find other GUI components.

This is the approach that will be further explained in the implementation notes of

how to handling the GUI information which the GUITAR ripping process produces.

For these experiments, the machine which is being utilized has a 2.4 GHz Intel

Core i7 processor, 4 GB 1333 MHz DDR3 memory, running on the Mac OS 10.6

operating system. The time cost on ripping the JMeter application, on average, took

116.218 seconds (when using a 500 ms delay between GUI component activation).

The results of the ripping process can be viewed in Table 4.2. With this listing of

GUI components, the events were later assessed with the GUI to EFG tool (gui2efg)

in the GUITAR suite, where it was recognized to have 260 events. When represented

in the EFG, there were 260 nodes which had 6969 edges. In Table 4.2, it lists the

summary results by GUI component type which was extracted from JMeter.

The results of the ripping process brought forth light to the complexity of event

relationships which exist in the application. By having 6969 edges that are estab-

lished between the 260 events in the graph, it showed that many events were reach-

53

able from other events. Therefore, a single change to one event, had the potential

of impacting many events. The number of relationships seemed high; however, it is

still only 10% of the potential maximum edges (V 2) in the graph and therefore could

be seen as sparse. Since the number of event relationships was below the potential,

our test selection process can restrict the number of tests that what the retest all

method would select.

One of the important factors described earlier in assessing a dynamic analysis

approach, was to have a timely response rate in the automated execution. The pro-

cess to performing the GUI ripping was executed in a loop of 20 times to determine

an average time cost in performing the analysis. In Table 4.3, a listing of the times

are listed. In Table 4.4, a listing of the minimum, maximum, and average are listed.

When performing iterations of the same analysis of the application, differences

in the output were assessed. One noticeable change in the output was investigated

to be a different window placements during its execution. If a GUI component were

to show a window in a different placement from the previous execution, different

coordinate attributes would exist, which would impact how that component is iden-

tified in the application. This could be accomplished by intercepting the ripping

process and moving a window while it is capturing information. By discovering

this finding, it became critically known that the process which is performing the

dynamic analysis must be executed in complete isolation. If anything invaded this

process during analysis, it would disrupt the opportunity of being able to correlate

events from this extraction to a previous extraction. This is due the alteration of the

identifiable attributes (placement based on x and y coordinates) of the GUI com-

ponent, and would then affect the identification of the event (appear as a different

event).

Another factor of isolation is the host environment (i.e., OS) which the ripping

54

process is being executed. When ripping the application, if GUI components are to

view state of the OS (such as the filesystem), different flows will occur based on

differences of state. For example, if you run one rip of the application, and it an-

alyzes the “Save As” window, it may invoke the “Save” button, which creates some

file with a default name during the ripping process. If you were to run another rip

of the application again and it were to analyze the “Save As” window and invoke

the “Save” button, it may invoke a new error window instructing that this file al-

ready exists, or something informational that you are about to overwrite an existing

file. Therefore, there are points of application where state can be inherited from

the hosting environment. This can expand to settings or configuration files which

support some type of change to the software, and therefore a change in that file

between executions of the ripping process would alter the state of the application

and further change what the ripping process could determine during its analysis.

A generic approach may be applied, where the application under analysis would be

executed in a virtual machine host. Once the ripping process is completed, the state

of the virtual machine would rollback to its state prior to execution of the ripping

process. This can be accomplished through the concept of snapshots which are

generally offered with many of the software virtualization solutions. This greatly

reduces the complexity of work for the individual trying to perform analysis of the

application. Without this generic approach, they would need to be concerned about

the specifics of what could have changed, which would require a deep knowledge

and understanding of the implementation details of the application.

When assessing the accuracy of all the events which were extracted, it was no-

ticed that some associations may not exist due to the reconstruction of menu-items

during run-time when state changed of the GUI application. An example of this in

JMeter is the ability to add different components to a workbench (which is used to

55

exercise tests). When adding a component to the workbench, the state changes for

having a component available for adding. The added component is built into a tree-

view pane and the added component is then selected in that view. By having that

component selected, the menus change on what is available. In the base JMeter rip-

ping of the application, it would add a component, which was a Property Display

from the Non-Test Elements menu, and then subsequently would try to add an-

other component. However, this state change of adding the component would not

allow adding other types as the Edit menu would change to no longer have the Add

menu-item (illustrated in Figure 4.2). During ripping, these menu-items are con-

sidered part of the frontier of GUI components to invoke; however, they no longer

capable of being invoked for that current state.

Based on these findings, it was then assessed of scoping the analysis for given

flows by using ripping configurations. In the GUITAR ripping framework, it allows

configuring the ripper by specifying what elements (by name) to ignore. This allows

for more control over the ripping process by dictating what elements should should

be avoided if specific workflows cause early termination or block the ripping process

from hitting all desired areas of the application.

56

Figure 4.2: Initial Edit menu options and Edit menu options after state change

57

Table 4.2: JMeter GUI Ripping Results

GUI Component Type Occurrences

com.apple.laf.AquaFileChooserUI ScrollPaneCornerPanel 2
com.apple.laf.AquaFileChooserUI JSortingTableHeader 2
javax.swing.JCheckBoxMenuItem 1
org.apache.jmeter.gui.MainFrame 1
javax.swing.JDialog 4
javax.swing.JLabel 13
javax.swing.JButton 36
javax.swing.JScrollPane ScrollBar 8
javax.swing.plaf.basic.BasicOptionPaneUI MultiplexingTextField 1
org.apache.jmeter.control.gui.WorkBenchGui 1
org.apache.jmeter.gui.util.VerticalPanel 2
javax.swing.JOptionPane 2
com.apple.laf.AquaFileChooserUI$JTableExtension 2
javax.swing.Box Filler 28
javax.swing.JScrollPane 4
org.apache.jmeter.gui.util.JMeterToolBar 1
org.apache.jmeter.gui.MainFrame$3 1
javax.swing.Box 3
javax.swing.JLayeredPane 5
javax.swing.JMenuItem 184
javax.swing.JComboBox 4
com.apple.laf.AquaSplitPaneDividerUI 1
javax.swing.JSplitPane 1
javax.swing.JTextField 3
org.apache.jmeter.gui.util.JMeterMenuBar 1
javax.swing.JFileChooser 2
javax.swing.JRootPane 5
javax.swing.CellRendererPane 9
com.apple.laf.AquaFileChooserUI 6 2
org.apache.jmeter.gui.CommentPanel 1
javax.swing.JToolBar Separator 7
javax.swing.JMenu 22
javax.swing.JSeparator 1
javax.swing.JPanel 45
org.apache.jmeter.gui.NamePanel 1
javax.swing.JTextArea 1
javax.swing.JPopupMenu Separator 10
javax.swing.JViewport 6
com.apple.laf.AquaComboBoxButton 4

58

Table 4.3: JMeter GUI Ripping Timings (in seconds)

Iteration Elapsed Real Time User CPU time System CPU time

1 113.619 97.116 0.687
2 113.235 96.994 0.712
3 113.098 96.651 0.677
4 142.996 96.571 0.713
5 113.665 97.096 0.716
6 113.127 96.720 0.707
7 113.566 97.112 0.735
8 113.692 97.415 0.733
9 113.155 96.803 0.714

10 111.913 96.065 0.568
11 112.312 96.286 0.565
12 113.703 96.680 0.578
13 114.093 96.712 0.695
14 113.082 96.693 0.718
15 113.082 96.827 0.690
16 114.156 96.809 0.697
17 113.116 96.624 0.691
18 143.500 97.041 0.714
19 113.122 96.023 0.556
20 112.132 96.193 0.572

Table 4.4: JMeter GUI Ripping Timing Summary (in seconds)

Calculation Elapsed Real Time User CPU time System CPU time

Minimum 111.913 96.023 0.556
Maximum 143.500 97.415 0.735
Average 116.218 96.722 0.672

59

4.5 Event Dependence Graph Construction

The construction of the EDG can be viewed in two stages of processing: parsing the

output from the GUI ripping and analyzing this data to identify event relationships

to construct the graph. The parsing phase will first be described

4.5.1 Parsing the EDG output from GUI Ripper

When constructing the EDG, the input from the ripping process must be handled.

The format of this data is XML, and there are various types of XML parsers which can

be utilized in Java. However, when investigating the uses of the GUITAR framework,

it was discovered that this functionality is available in one of their library artifacts.

The gui-model-core JAR, which is utilized by GUITAR, has modeled entities which

support parsing the XML that is produced from the ripping process. The implemen-

tation for the experiment then used this library for its parsing of the XML into its

model objects, and processed the model object for its graph representations. An

initial test of costs on parsing this data was applied based on the results of the

initial ripping process. To gain an accurate cost of time to parse the data, two dif-

ferent approaches where applied in gathering data on timings. One approach was

to simply parse a file multiple times in a loop in the Java Virtual Machine (JVM) and

measure the time taken (in milliseconds) of each iteration in the loop. The second

approach parsed the file and captured the time taken in the JVM, but executed each

iteration in a fresh JVM. The second approach was applied when the data was ini-

tially assessed from the first approach. It became clear that forms of caching were

occurring in the JVM; as the initial times were high, but immediately dropped on

secondary executions of parsing phase when executed in the same JVM host. This

progression in performance times is illustrated in the line chart of Figure 4.3. When

60

executing the parse in a fresh JVM instance each time, the times were more consis-

tent with the time of the first iteration in the earlier approach. From this data (listed

in Table 4.5), it was apparent that the parsing phase was relatively expensive, as its

average time to process the initial ripping output of JMeter was 538.25 milliseconds.

Table 4.5: JMeter GUI Parsing Times of Ripping Output (in milliseconds)

Execution time Execution time
Iteration (single JVM) (individual JVMs)

1 512 538
2 105 527
3 89 536
4 66 540
5 83 533
6 68 542
7 69 533
8 67 539
9 63 538
10 59 531
11 70 555
12 61 535
13 61 540
14 63 540
15 62 526
16 62 530
17 60 538
18 56 585
19 57 526
20 54 533

61

Figure 4.3: Graph of time taken for GUI event parsing

4.5.2 Analyzing GUI model to identify events in Event Dependence

Graph

Once the GUITAR GUI model was constructed from the XML, it was matter of then

analyzing and traversing through its model to construct the event dependence

graph. In the GUITAR model, the core elements to begin inspection, are the windows

which have components that initiate other components through events. Therefore,

the main window of JMeter is the first element of analysis, and then other windows

are listed, which are identified by GUITAR as being invoked from another event.

In Table 4.2, a listing of GUI component types were identified from the appli-

cation. These are simply the Java Swing types which are used to represent the

concepts. During analysis, it was desired to build a mapping of these types so

the output would be more understandable by listing the logical GUI component

62

type (i.e., button) versus the Java type (i.e., javax.swing.JButton). This mapping

of types was based on the Java package summary documentation of all the Swing

data types (javax.swing package). With this mapping, it then allowed for specific

GUI component types to be modeled and constructed differently. The GUITAR GUI

model objects are generic in nature and have a listing of attributes that can be

queried, but this type of model causes complexity in the analysis. The complexity is

caused from exposing generic types throughout the stack of processing, and each

tier in that stack must treat it generically, and check for a larger array of attributes

to fully determine its type. By constructing the GUI component objects differently

by type (through a factory pattern), it greatly simplified the downstream processing

of listing the logical representation of the GUI component associated to an event.

A simple example of this, is a Java Swing button. From the GUITAR ripping out-

put, this would have a type of javax.swing.JButton and would may have a title,

and possibly an icon. When constructing a GUI component from the parsed GUI-

TAR ripping output, this object type would have a enumeration of BUTTON and its

description would first utilize the title attribute (if available), else it would use the

icon attribute (which is the name of the image used for the button). From the eval-

uation of JMeter, the names of the icons where typically descriptive. As a result, it

was then possible to query the EDG for events which are tied to a GUI component

based on type and description. This became a common activity when validating the

construction of the graph and a useful tool as it was more natural way of seeking

events (in this case action listeners) within the functioning program based on the

GUI component that was initiating that action.

In constructing the EDG, timings were taken (similar to the steps of parsing the

GUITAR ripping output) to validate the general performance cost relative to other

steps of the process. These timings were taken on constructing the EDG on the

63

same GUITAR ripping output of the JMeter application. The process of performing

these tests first parsed the contents of ripping output into the desired model object,

started the timer, constructed the EDG from that model object, and then capture the

timing. Therefore, timing was only around the construction of the EDG; however,

object references were leveraged from the model object of the parsing for the EDG

construction, so the cost was dramatically lower. Twenty executions of the EDG

construction were performed, and each iteration of that test was performed in a

new JVM. The average time to construct the EDG was 44.9 milliseconds. The times

and variance between execution can be viewed in Figure 4.4.

Figure 4.4: Graph of time taken for EDG construction

64

4.6 Test Case Selection Data Model and Process

The test case selection portion of the evaluation requires designing a data store

which will support the needs of selecting tests associated to events in an applica-

tion. Since mapping of events to test cases (and events to applications) was highly

relational, a relational data model was utilized. A basic model was devised to have

six entities:

• GUI_APPLICATION: Represents the GUI application which is under test. One

entity would exist for a single application as it evolves over time. By having this

record tied to a given application, it allows for reports which are application

specific and across versions.

• GUI_APPLICATION_VERSION: Represents a version of a GUI_APPLICATION. There

can be many versions for one application. This entity is a core entity which

supports tracking event changes over time of the application.

• GUI_APPLICATION_VERSION_EVENT: Represents a GUI event which is associ-

ated to a GUI application version. This entity serves as an associative entity to

resolve the many-to-many relationship between GUI_EVENT and

GUI_APPLICATION_VERSION. A single GUI event may relate to many or all ver-

sions of an application and a version of the GUI application may relate to many

GUI events.

• GUI_EVENT: Represents a GUI event of the application. This entity is a unique

instance of an event which relates to one or many versions of the application.

• GUI_EVENT_TEST_CASE: Represents a relationship of a GUI event to a test case.

This associative entity exists to resolve a many-to-many relationship between

65

GUI_EVENT and TEST_CASE entities. This fact of the data modeling is that a

single GUI event may be associated to many test cases and a single test case

may be associated to many GUI events.

• TEST_CASE: Represents the test cases which have been already created for

applications. A test case will relate to one or many GUI events.

Figure 4.5: GUI Test Case Entity Relationship Diagram

In this data model (illustrated in Figure 4.5), it was desired to have a focus on

establishing a listing of GUI events which are extracted during the ripping process

and associate them to a specific application version. These events would then be

associated to specific test cases. With this data model, one may then be able to

66

determine several key facts: what events are associated to a GUI application ver-

sion, what events have been added/removed between application versions, what

test cases relate to a specific set of events, how many test cases are supported a

given application version (or all versions). In Table 4.6, an example listing of data is

provided to illustrate the relationships of data.

Table 4.6: Conceptual Example of Data

Entity Data

GUI_APPLICATION {JMeter}
GUI_APPLICATION_VERSION {2.5, 2.5.1}
GUI_APPLICATION_VERSION_EVENT {(2.5, E1), (2.5, E2), (2.5.1, E1), (2.5.1, E3)}
GUI_EVENT {E1, E2, E3}
GUI_EVENT_TEST_CASE {(E1, T1), (E2, T1), (E3, T2), (E3, T3)}
TEST_CASE {T1, T2, T3}

For the purposes of this experiment, the focus was hosting all of the event in-

formation for the targeted application (JMeter) in the data model, and establish a

set of test cases related to the application. Of the test cases, it was desired to

build test cases to support our experimental needs. The experiment is to focus on

one area of the JMeter application (Search window), and have an adequate listing

of test cases which are associated to events of that window and to events which

are related in the event dependence graph. In addition, test cases which are not

related to these events will also be included. Throughout the experiments, the im-

plementation will be tested by specifying changed events which are related to the

Search window events and ensure the expected set of test cases which have been

documented for all related events are chosen. During the assertion of these results,

it will also check that other test cases which are known not to be related to these

events are not selected.

67

The implementation of the relational database used in the experiments is the

Apache’s Derby database [9]. This solution was used for its ability to represent a

relational database which could support a larger scale use, but offers the ease of

hosting an embedded database in the program. The embedded database simplified

the work of deployment for utilizing the application. The supporting files for the

database were just hosted in a subdirectory of the application’s run-time directory.

When assessing the test case selection based on changes to a specific set of GUI

components (within JMeter’s search window), data was desired to be generated for

all events in the graph. A test case generator was built which generates three tests

for each event in the graph. The name of the test is a generic pattern which indicates

to test the related GUI component (i.e., Search text field) to assist in clarifying the

target of the tests (based on the associated event in the data model). With this

listing of tests from the generator, the test selection was then tested by supplying

an EDG based on the JMeter GUI rip which specifically included the context of the

Search window (which is reachable in JMeter through the Search menu and then

selecting the Search menu-item), as illustrated in Figure 4.6.

Figure 4.6: JMeter Search menu

The Search window, illustrated in Figure 4.7, contains several GUI components

which have events tied to them: text box, checkboxes, and buttons. The events

which were discovered in this window are all accessible from the Search menu-

68

item selection. One test will be, indicating that the Search menu-item has changed,

and ensure tests are selected which exist in this window. When performing this

test, the test selection process selected all the tests associated to the events asso-

ciated which were hosted in the Search window. In addition, it discovered other

tests since this is a menu-item that has larger visibility to have other events in-

voked downstream that were available in the appellation toolbar. When narrowing

the tests down further, and instructing the Case sensitive checkbox event was

changed, the test selection process correctly selected all the valid tests associated

to the events which were tied to the GUI events available in that window (and ad-

jacent to the Case sensitive checkbox event in the graph. In addition, no other

test cases were selected for GUI components that were not capable of being invoked

outside of this modal window.

Figure 4.7: JMeter Search window

4.7 Feasibility of the Proposed Solution Implementation

During the implementation of the proposed solution, the area of feasibility was

an important area of focus. The goal of this research is to determine an affective

solution to a common problem of regression testing for GUI applications. The fea-

sibility perspective of the solution helps gauge the practicality of the solution and

how much effort it would require to put into practice. This section will cover some

69

of the areas of interest which were discovered during the experiments applied to

the implementation.

The first area to address will be the GUI event extraction process which was

implemented through the GUITAR framework. The GUI ripping process was an

effective way of getting an initial measure of the events that exist in an application.

As discussed in the earlier section on GUI ripping, one of the key challenges that was

encountered was obtaining accurate event information of the application. Due to the

natural complexities of GUI applications, it was difficult to get a complete listing

of events due to the dynamic nature of events changing state in the application.

The state change in the application during runtime would cause altered paths in

the ripping process, which may not result in all events getting invoked prior to

program termination. By not being capable of invoking all possible events, the

event dependence graph would only be partially capable of selecting all possible

events affected by a change. This would result in the implementation in not being

completely safe on the test case selection process, as it may miss selecting tests

without the full context of event relationships for the graph to make its decisions.

Another interesting finding when utilizing the GUITAR framework, was its in-

terpretation of different event types during the ripping process. All events which

were identified in the JMeter application were considered as system interaction

events. This type of designation in events caused the event dependence graph to

be somewhat limited in the possible style of construction for this application. Re-

gardless, the graph traversal to find dependent events still progressed as this type

of event was would not hinder in how the FollowDependentSet would seek de-

pendent events. In terms of feasibility, it would be desirable to further investigate

the functionality of the GUITAR ripping process to determine why this designation

of events was occurring. This investigation may lead into further changes to the

70

ripping functionality to ensure the source of input for the graph construction is as

expected. If this investigation is not pursued, the implementation may not be fully

complete as the input for event analysis is limited (by being biased to the system

interaction event type tied to all the events).

Automated detection of event changes was not included in the implementation

used in these experiments. The current implementation would be supplied an event

identifier which has changed and it would use this when deciding which test cases

to select. It is desired that this would also be an automated process; however, it was

discovered through these experiments that detection of an event change is a diffi-

cult challenge based on the source of identification of events. When leveraging the

GUITAR framework for GUI ripping, other core attributes of the associated GUI com-

ponent are extracted and are available to make further decisions. These attributes

directly relate to the characteristics of the GUI itself; such as, location, size, active

or in-focus. Therefore, if the change is applied to one of these attributes, it would

be capable of detecting that change by comparing the the ripping results against

previous versions of the application. The challenge introduced would be determin-

ing the natural key (set of attributes) for identifying the events which would not

cause a new identity based on the GUI component’s change. The identification that

is used currently, is a hash computation based on some of the GUI component’s at-

tributes, and therefore if these attributes change, the identity of the event will also

change. By having a new identity, you could not simply compare by ID for events, as

a new identity would be created each time. This would result in the analysis viewing

a modification of an event, as an event which was removed and a new event was

added (one identity lost, one identity created).

71

4.8 Summary

In this chapter, an implementation of the proposed solution was explained and as-

sessed. The targeted application (Apache JMeter) that was under test was described

and reasoning for utilizing this program in the experiment was presented. The il-

lustrated implementation was comprised of several key components: a GUI ripping

utility (GUITAR framework) for assessing dynamic state of the application, a Java

analysis tool was built which consumed the output of the ripping process, a rela-

tional data model was constructed for associating test cases to events, and lastly

functionality implemented in Java was used to select test cases which were associ-

ated to affected events based on the event dependence graph. Tests were applied on

the GUI ripping process to evaluate the accuracy of events selected. Challenges and

limitations of the ripping process became known and were explained. During the

experiments on the implementation, general performance metrics were captured to

help illustrate some of the relative time costs in the execution of each phase. One

GUI component from Apache JMeter was then focused on, the Search window, to ex-

amine what test plans would be filtered when assessing the entire set of test plans

associated to the application. Through the test of this example, all the desired tests

associated to the GUI events which could be triggered from the Search window were

then selected, and no other tests which were undesirable for this change set were

selected. Finally, a feasibility section was provided which listed the challenges and

risk points when assessing to utilizing this approach on GUI applications. In this

section, several areas were discovered for future work to support the area of GUI

event analysis.

72

Chapter 5

Contributions and Areas for Further

Research

5.1 Summary

This thesis defines the event control dependence predecessor (ecd-predecessor) and

the event control dependence successor (ecd-successor); identifies the event rela-

tionship and represents them as an event dependence graph. It also provides an

algorithm to construct event dependence graphs for GUI components. Then it ex-

pands and applies the regression test selection technique to event based GUI compo-

nents. At last, it presents a regression test selection algorithm EventTestSelections

for the GUI component by using the event dependence graph. The algorithm takes

a GUI component G, its modified version G′, and the test suite T for G, and returns

T ′, a set that contains test cases that are modification traversing from G and G′.

Experiments are applied which provide an implementation of the proposed so-

lution. The implementation utilizes the GUITAR framework to extract event infor-

mation. A Java application was built which constructs a graph from the GUITAR

73

event extraction information that is capable of determining dependent events. A

data model was designed and utilized which allows for selection of test cases for

events which are considered affected from a specified event change. Tests are ap-

plied against the Apache JMeter application to prove it is capable of identify relevant

tests for a specified changed on a non-trivial application.

5.2 Research Contributions

Throughout this research, several key contributions to the area of regression testing

and GUI event analysis were made.

The first major contribution was the presentation of a new model which illus-

trates GUI event relationships and how those can be considered when assessing

which test plans should be selected during regression testing. Currently, there are

significant costs which exist with regression testing and this model promotes as-

sessing event relationships to assist in accurately selecting tests plans for a GUI

component change. This approach is a paradigm shift from traditional approaches

which would assess more of workflows and static relationships of the underlying

code, rather than the rich and extensive nature of events within the GUI application.

By further examining the event relationships of a GUI application, many new oppor-

tunities of assessing relationships of software can be made which can dramatically

improve how software is tested and focusing on tests which exercise the affected

areas of the application.

With the proposed solution, the experiments of implementing this approach pro-

vided rich context to the true challenges of assessing events and the fluid nature of

GUI applications. From doing prior research in these areas, it was not apparent how

difficult it was to extract and accurately discern event relationships of a GUI appli-

74

cation until it was attempted in these experiments. Other related research in these

areas did not address the challenges of controlling the environment of the GUI ap-

plication and the importance of naturally determining an identity of an event simply

off of its current state. Feasibility notes were provided which further helps provide

transparency of true challenges in these areas which have not been expressed in

other related areas of GUI event analysis.

Finally, the implementation notes supporting the proposed solution, provides

a working solution which can select test cases based on a specified changed event

by evaluating all the related events in its model. These contribute to future efforts

in the area of assessing what implementations exist to support GUI event analysis

and how that data can be further leveraged (in this case relating to test cases).

When utilizing the GUITAR framework, documentation exists for select uses and

for extending their framework, but it was not clear on the candidate data which it

can capture and how the framework needs to be used to accurately capture that

information. The experiments provide further transparency in utilizing this tooling

and how it was orchestrated to support the goal of the implementation (which may

related to other areas of GUI event analysis functionality).

5.3 Future Work

The scope of this work was focused on providing a selective regression test selection

technique for modified GUI applications. Several important related topics such as

the coverage criteria and test coverage requirements for the modified GUIs are not

addressed. When working through the experiments applied in this research, several

areas in regards to event analysis are candidates for future work. The following

areas are listed below which related to event identification through its lifetime of

75

modification, automatic event change identification, and improved process of event

information extraction through GUI ripping.

5.3.1 Accurately Maintaining an Identity of a Modified Event

During the experiments to support the proposed solution, it was discovered that

there is a significant challenge in identifying an event based on its natural iden-

tifiable characteristics. This is because those characteristics can be changed with

the software, which can ultimately change the identity of that event. This change

to the event’s identity can cause disruption in the event to test case relationships

which have been established. Therefore, it would be desirable to seek out other

means of determining the natural key of an event based on its characteristics in the

GUI application which can maintain its original identity as changes are applied to

those characteristics. This is to strengthen the relationships to existing test cases

for an event, since a change to the event’s identity would cause it to possibly lose

its relational identity to those previous test cases. By maintaining this history of

identity, the history of test cases associated to that event can be leveraged for test

case selection (rather than a hashing of new event identities on each change which

orphans its previously established relationships to existing test cases).

5.3.2 Automated Identification of Changed Events

As mentioned in the feasibility related section in Chapter 4, the implementation did

not support the automated means of determining the difference between two ver-

sions of a GUI application. This limitation hinges on the future work listed earlier

on being capable of accurately relating event changes when that change alters an

attribute which alters its natural identity. Meaning, if an event is changed and that

76

change makes it appear as a new event, the automated process may not be able

to determine that the event was modified, rather being an event which has been re-

moved and a new event added. Therefore, it would desirable to expand the means of

comparing event dependence graphs so that changes between application versions

can be accurately captured through an automated means.

5.3.3 Improving the GUI Ripping Process

Lastly, it would be highly desirable to improve the GUI ripping process to become

a more robust process which is capable of exploring additional events in a given

application. As mentioned in Chapter 4 when explaining the feasibility of the im-

plementation approach, it was discovered that not all possible events were being

discovered due to the complexity of previous event invocations changing the appli-

cations state to prevent other event paths from being potentially explored. It would

be beneficial to make the GUI ripping process capable of taking snapshots of the

flows which it has explored and then replaying subsets of those known workflows

again in a fresh application state but take a different path to explore (i.e., selecting

the second menu item rather than the first one again at a given state). Currently, the

ripping process will just explore all possible events until termination (by only avoid-

ing specific components which have been specified to be ignored). This approach

builds a large rich application state as the chain of events which are being invoked

in sequence is large, but it doesn’t necessarily invoke all the possible events or in

the flows which would expose other relationships.

77

Bibliography

[1] Sergio Antoy and Dick Hamlet. Automatically checking an implementation
against its formal specification. IEEE Trans. Softw. Eng., 26(1):55–69, Jan. 2000.

[2] F. Belli, M. Beyazit, and N. G§andler. Event-based GUI testing and reliability as-
sessment techniques – an experimental insight and preliminary results. In Soft-
ware Testing, Verification and Validation Workshops (ICSTW), 2011 IEEE Fourth
International Conference on, pages 212 –221, Mar. 2011.

[3] Fevzi Belli, Christof J. Budnik, and Lee White. Event-based modelling, analysis
and testing of user interactions: approach and case study: Research articles.
Softw. Test. Verif. Reliab., 16(1):3–32, Mar. 2006.

[4] Penelope Brooks and Atif M. Memon. Automated GUI testing guided by usage
profiles. In ASE ’07: Proceedings of the 22nd IEEE international conference on
Automated software engineering, Washington, DC, USA, 2007. IEEE Computer
Society.

[5] Renee Bryce, Sreedevi Sampath, and Atif M. Memon. Developing a single model
and test prioritization strategies for event-driven software. IEEE Transactions
on Software Engineering, NN(N), 2011.

[6] Robert Cartwright and Mattias Felleisen. The semantics of program depen-
dence. In Proceedings of the ACM SIGPLAN 1989 Conference on Programming
language design and implementation, PLDI ’89, pages 13–27, New York, NY,
USA, 1989. ACM.

[7] Bruce A. Cota, Douglas G. Fritz, and Robert G. Sargent. Control flow graphs
as a representation language. In Proceedings of the 26th conference on Winter
simulation, WSC ’94, pages 555–559, San Diego, CA, USA, 1994. Society for
Computer Simulation International.

[8] Brett Daniel, Qingzhou Luo, Mehdi Mirzaaghaei, Danny Dig, Darko Marinov, and
Mauro Pezzè. Automated GUI refactoring and test script repair. In Proceedings
of the First International Workshop on End-to-End Test Script Engineering, ETSE
’11, pages 38–41, New York, NY, USA, 2011. ACM.

78

[9] Apache Derby. http://db.apache.org/derby.

[10] Emine Dumlu, Cemal Yilmaz, Myra B. Cohen, and Adam Porter. Feedback driven
adaptive combinatorial testing. In Proceedings of the 2011 International Sym-
posium on Software Testing and Analysis, ISSTA ’11, pages 243–253, New York,
NY, USA, 2011. ACM.

[11] O. El Ariss, Dianxiang Xu, S. Dandey, B. Vender, P. McClean, and B. Slator. A
systematic capture and replay strategy for testing complex GUI based java ap-
plications. In Information Technology: New Generations (ITNG), 2010 Seventh
International Conference on, pages 1038 –1043, Apr. 2010.

[12] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program depen-
dence graph and its use in optimization. ACM Transactions on Programming
Languages and Systems, 9:319–349, 1987.

[13] Todd L. Graves, Mary Jean Harrold, Jung-Min Kim, Adam Porter, and Gregg
Rothermel. An empirical study of regression test selection techniques. ACM
Trans. Softw. Eng. Methodol., 10(2):184–208, Apr. 2001.

[14] Mark Grechanik, Qing Xie, and Chen Fu. Maintaining and evolving gui-directed
test scripts. In Proceedings of the 31st International Conference on Software En-
gineering, ICSE ’09, pages 408–418, Washington, DC, USA, 2009. IEEE Computer
Society.

[15] GUITAR. http://sourceforge.net/apps/mediawiki/guitar.

[16] Mary Jean Harrold, James A. Jones, Tongyu Li, Donglin Liang, Alessandro Orso,
Maikel Pennings, Saurabh Sinha, S. Alexander Spoon, and Ashish Gujarathi.
Regression test selection for java software. SIGPLAN Not., 36(11):312–326, Oct.
2001.

[17] D. Hoffman, L. Sobotkiewicz, Hong-Yi Wang, P. Strooper, G. Bazdell, and
B. Stevens. Test generation with context free grammars and covering arrays.
In Testing: Academic and Industrial Conference - Practice and Research Tech-
niques, 2009. TAIC PART ’09., pages 43 –47, Sept. 2009.

[18] Apache JMeter. http://jmeter.apache.org/.

[19] A. Memon, I. Banerjee, N. Hashmi, and A. Nagarajan. Dart: a framework for
regression testing “nightly/daily builds” of GUI applications. In Software Main-
tenance, 2003. ICSM 2003. Proceedings. International Conference on, pages 410
– 419, Sept. 2003.

[20] A.M. Memon, M.E. Pollack, and M.L. Soffa. Hierarchical GUI test case genera-
tion using automated planning. Software Engineering, IEEE Transactions on,
27(2):144 –155, Feb. 2001.

79

[21] Atif Memon, Adithya Nagarajan, and Qing Xie. Automating regression test-
ing for evolving GUI software. Journal of Software Maintenance and Evolution,
17(1):27–64, Jan. 2005.

[22] Atif M. Memon. GUI testing: Pitfalls and process. Computer, 35(8):87–88, 2002.

[23] Atif M. Memon. Automatically repairing event sequence-based GUI test suites
for regression testing. ACM Trans. Softw. Eng. Methodol., 18(2):4:1–4:36, Nov.
2008.

[24] Atif M. Memon, Ishan Banerjee, and Adithya Nagarajan. GUI ripping: Reverse
engineering of graphical user interfaces for testing. In Proceedings of The 10th
Working Conference on Reverse Engineering, Nov. 2003.

[25] Atif M. Memon, Martha E. Pollack, and Mary Lou Soffa. Using a goal-driven
approach to generate test cases for GUIs. In ICSE ’99: Proceedings of the 21st
international conference on Software engineering, pages 257–266, Los Alami-
tos, CA, USA, 1999. IEEE Computer Society Press.

[26] Atif M. Memon, Martha E. Pollack, and Mary Lou Soffa. Automated test oracles
for guis. In Proceedings of the 8th ACM SIGSOFT international symposium on
Foundations of software engineering: twenty-first century applications, SIGSOFT
’00/FSE-8, pages 30–39, New York, NY, USA, 2000. ACM.

[27] Atif M. Memon and Mary Lou Soffa. Regression testing of GUIs. In ESEC/FSE-11:
Proceedings of the 9th European software engineering conference held jointly
with 11th ACM SIGSOFT international symposium on Foundations of software
engineering, pages 118–127, New York, NY, USA, 2003. ACM Press.

[28] Atif M. Memon, Mary Lou Soffa, and Martha E. Pollack. Coverage criteria for GUI
testing. In Proceedings of the 8th European software engineering conference
held jointly with 9th ACM SIGSOFT international symposium on Foundations of
software engineering, ESEC/FSE-9, pages 256–267, New York, NY, USA, 2001.
ACM.

[29] Atif M. Memon and Qing Xie. Studying the fault-detection effectiveness of GUI
test cases for rapidly evolving software. IEEE Trans. Softw. Eng., 31(10):884–
896, 2005.

[30] I. A. Natour. On the control dependence in the program dependence graph. In
Proceedings of the 1988 ACM sixteenth annual conference on Computer science,
CSC ’88, pages 510–519, New York, NY, USA, 1988. ACM.

[31] A. Orso, M.J. Harrold, D. Rosenblum, G. Rothermel, M.L. Soffa, and H. Do. Using
component metacontent to support the regression testing of component-based

80

software. In Software Maintenance, 2001. Proceedings. IEEE International Con-
ference on, pages 716 –725, 2001.

[32] Thomas Ostrand, Aaron Anodide, Herbert Foster, and Tarak Goradia. A visual
test development environment for GUI systems. In Proceedings of the 1998
ACM SIGSOFT international symposium on Software testing and analysis, ISSTA
’98, pages 82–92, New York, NY, USA, 1998. ACM.

[33] G. Rothermel and M.J. Harrold. Selecting regression tests for object-oriented
software. In Software Maintenance, 1994. Proceedings., International Confer-
ence on, pages 14 –25, Sept. 1994.

[34] G. Rothermel and M.J. Harrold. Analyzing regression test selection techniques.
Software Engineering, IEEE Transactions on, 22(8):529 –551, Aug. 1996.

[35] G. Rothermel, L. Li, and M. Burnett. Testing strategies for form-based visual
programs. In Proceedings The Eighth International Symposium On Software
Reliability Engineering, pages 96 –107, 1997.

[36] Gregg Rothermel, Sebastian Elbaum, Alexey G. Malishevsky, Praveen Kallakuri,
and Xuemei Qiu. On test suite composition and cost-effective regression test-
ing. ACM Trans. Softw. Eng. Methodol., 13(3):277–331, July 2004.

[37] Gregg Rothermel and Mary Jean Harrold. A safe, efficient regression test selec-
tion technique. ACM Trans. Softw. Eng. Methodol., 6(2):173–210, Apr. 1997.

[38] Gregg Rothermel, Mary Jean Harrold, and Jeinay Dedhia. Regression test se-
lection for c++ software. Software Testing, Verification & Reliability, 10:2000,
1999.

[39] J. Strecker and A.M. Memon. Relationships between test suites, faults, and fault
detection in GUI testing. In Software Testing, Verification, and Validation, 2008
1st International Conference on, pages 12 –21, Apr. 2008.

[40] Yanhong Sun and Edward L. Jones. Specification-driven automated testing of
gui-based java programs. In Proceedings of the 42nd annual Southeast regional
conference, ACM-SE 42, pages 140–145, New York, NY, USA, 2004. ACM.

[41] L. White and H. Almezen. Generating test cases for GUI responsibilities us-
ing complete interaction sequences. In Software Reliability Engineering, 2000.
ISSRE 2000. Proceedings. 11th International Symposium on, pages 110 –121,
2000.

[42] L.J. White. Regression testing of GUI event interactions. In Software Mainte-
nance 1996, Proceedings., International Conference on, pages 350 –358, Nov.
1996.

81

[43] Q. Xie and A.M. Memon. Rapid “crash testing” for continuously evolving gui-
based software applications. In Software Maintenance, 2005. ICSM’05. Proceed-
ings of the 21st IEEE International Conference on, pages 473 – 482, Sept. 2005.

[44] Qing Xie and A.M. Memon. Model-based testing of community-driven open-
source GUI applications. In Software Maintenance, 2006. ICSM ’06. 22nd IEEE
International Conference on, pages 145 –154, Sept. 2006.

[45] Qing Xie and Atif M. Memon. Designing and comparing automated test oracles
for gui-based software applications. ACM Trans. Softw. Eng. Methodol., 16(1),
Feb. 2007.

[46] Qing Xie and Atif M Memon. Using a pilot study to derive a GUI model for au-
tomated testing. ACM Trans. Softw. Eng. Methodol., 18(2):7:1–7:35, Nov. 2008.

[47] Xun Yuan, Myra B. Cohen, and Atif M. Memon. GUI interaction testing: Incorpo-
rating event context. IEEE Transactions on Software Engineering, 37(4):559–574,
2011.

[48] Xun Yuan and A.M. Memon. Alternating GUI test generation and execution.
In Practice and Research Techniques, 2008. TAIC PART ’08. Testing: Academic
Industrial Conference, pages 23 –32, Aug. 2008.

[49] Xun Yuan and A.M. Memon. Generating event sequence-based test cases us-
ing gui runtime state feedback. Software Engineering, IEEE Transactions on,
36(1):81 –95, Jan.-Feb. 2010.

[50] Xun Yuan and Atif M. Memon. Using GUI run-time state as feedback to generate
test cases. In ICSE ’07: Proceedings of the 29th International Conference on
Software Engineering, pages 396–405, Washington, DC, USA, May 2007. IEEE
Computer Society.

[51] Xun Yuan and Atif M. Memon. Iterative execution-feedback model-directed GUI
testing. Information and Software Technology, 52(5):559 – 575, 2010.

82

