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a b s t r a c t

Using known occurrences of species and correlational modeling approaches has become a common
paradigm in broad-scale ecology and biogeography, yet important aspects of the methodology remain
little-explored in terms of conceptual basis. Here, we explore the conceptual and empirical reasons behind
choice of extent of study area in such analyses, and offer practical, but conceptually justified, reasoning
for such decisions. We assert that the area that has been accessible to the species of interest over relevant
time periods represents the ideal area for model development, testing, and comparison.

© 2011 Elsevier B.V. All rights reserved.

The area of distribution of a species is a complex expression of
its ecological and evolutionary history (Brown et al., 1996; Gaston,
2003). Among factors determining distributional areas, the most
important are the limits of the species’ tolerances and needs for
certain abiotic conditions, the suite of other species with which it
interacts, and the potential for dispersal and colonization within
a given time period (Grinnell, 1917; Udvardy, 1969; MacArthur,
1972; Pulliam, 2000; Soberón and Peterson, 2005). These fac-
tors are expressed across a geographic matrix that is in itself
dynamic: climatic conditions, coastlines, locations of rivers, moun-
tain ranges, and other possible barriers change over time (Jackson
and Overpeck, 2000; Zachos et al., 2001). A species can respond
in diverse ways to its physical and biotic environments: ecological
niches may evolve, or may remain conserved; in the latter case,
shifting conditions can cause geographic isolation and eventual
speciation (Wiens, 2004; Byrne et al., 2008; Stigall, 2008).

The processes affecting species’ geographic distributions have
been summarized in mathematical models that only take into
account ecological factors (Vandermeer, 1972; Pulliam, 2000; Holt,
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2003; Soberón, 2010); those that include microevolutionary (Holt,
2003) and macroevolutionary processes (Rangel et al., 2007; Roy
and Goldberg, 2007) tend to be very complex (Gotelli et al., 2009).
In formal terms, if interest is in changes in the area of distribution,
particularly in terms of the mechanistic factors that influence it, one
would need to solve ecological and evolutionary equations simul-
taneously, which is normally not tractable analytically. For this
reason, Soberón and Peterson (2005) proposed a much-simplified
approach based on a static approximation to describe three classes
of factors, as follows: (1) Environmental factors with values not
dependent on the dynamics of the species’ population. These are
mostly abiotic dimensions such as climate, topography, and solar
radiation. These variables have their own intrinsic dynamics, but
may be regarded as independent of the presence or abundance of
the species in question. The geographic region presenting favor-
able conditions of this type is called A, the geographic expression
of what Jackson and Overpeck (2000) call the “potential niche”
of a species and Peterson et al. (2012) the “existing fundamental
niche.” This term actually describes the intersection of the fun-
damental ecological niche (defined physiologically as the ranges
or values or environmental variables where a species can survive;
cf. Hutchinson, 1957) with the set of environments that actually
exist on the landscape in question (Soberón and Nakamura, 2009).
(2) Sets of variables that are dynamically linked to the population
numbers of the species of interest include limited food resources;
presence and influence of competitors, predators, and mutualists;
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Fig. 1. A BAM diagram (Soberón and Peterson, 2005) to illustrate the three
interacting factors that determine a first-order view of species’ geographic distri-
butions: Biotic, Abiotic, and Movement. Closed circles = source populations, open
circles = sink populations.

and other factors, mostly biotic in nature. This region is denoted by
B, although it is difficult to estimate owing to the fine spatiotempo-
ral resolution and potentially complex nature of biotic dimensions
(Engler and Guisan, 2009; Anderson and Raza, 2010); indeed, in the
simulations to be developed in this paper, we neglect B entirely (see
discussion in Soberón, 2010). (3) The parts of the world that have
been accessible to the species via dispersal over relevant periods of
time are symbolized by M. As a first approximation, the intersection
of these three sets (i.e., B ∩ A ∩M) determines the region in which
one can find a species (Fig. 1), while B ∩A defines the distributional
potential of the species were dispersal barriers to be removed (e.g.,
in the case of invasive species); this simple heuristic framework is
termed the BAM diagram (Soberón and Peterson, 2005).

Ecological niche modeling (ENM) is used to estimate the realized
(as opposed to the fundamental) coarse-resolution environmental
requirements of species, which can be projected onto real-world
landscapes to identify regions in which the requirements of species
are manifested; given the coarse-resolution nature of the variables
employed, and the practical problems involved in measuring vari-
ables related to B, this region is defined mostly by variables related
to A. The region M depends on opportunities for and constraints
on movements of the species, factors not often included in model-
ing efforts, although some exceptions exist (Kot et al., 1996; Engler
and Guisan, 2009; Cabral and Schurr, 2010; Smolik et al., 2010).
However, over the period of the species’ existence, its populations
may experience a suite of environmental conditions, only some of
which are within its fundamental niche. Because estimation of eco-
logical niches using correlative methods relies upon comparisons
of environmental characteristics of sites of known occurrence with
those associated with sites of the background of conditions pre-
sented across the study area (Stockwell and Peters, 1999; Phillips
et al., 2006), it is crucial to understand and outline the area that the
species has potentially visited (M), as the species will be absent from
outside of this area for reasons unrelated to A (Anderson and Raza,
2010).

In this paper, we present a framework for thinking about and
estimating M in ecological niche modeling (and the related species
distribution modeling). We present a simulation of the next step
of the BAM scheme, in which we model M as well as A using sim-
ple and straightforward rules. To make this scheme operational,
we take advantage of heretofore unavailable data on past climates
that affected species’ distributions. Our scheme is simple concep-
tually, but computationally intensive, which is becoming a distinct
modality of science (Hey et al., 2009). Although our emphasis is on
estimating the set of areas that a species has “sampled” over its
history to inform a niche model, the ideas we explore have addi-
tional implications for fields such as biogeography, macroecology,
and phylogeography.

1. Importance of estimating the region M

The extent used during the niche modeling process has perva-
sive influences on the outcome of the model. Specifically, if the
extent under consideration is too limited to represent M entirely,
the importance of coarse-resolution factors such as climate in
delimiting species’ distributions may be underestimated. A rather
dramatic example of this limitation was the recent conclusion that
climate has negligible influences on species’ distributions (Beale
et al., 2008), a conclusion that turned out to be heavily extent-
dependent (Jiménez-Valverde et al., 2010). More generally, M has
important implications in all aspects of ecological niche modeling
studies, including model parameterization, model validation, and
model comparisons, as follows:

(1) Effects on model training: In model training, M determines the
arena of comparison – that is, the area within which presences
may exist and within which absences are meaningful, in that
they represent sites with the broader background landscape
actually likely to have been “tested” by the species for suit-
ability, but not occupied. VanDerWal et al. (2009) illustrated
the effect of varying the extent on parameterization of ENM
models: using 12 vertebrate species in Australia, they fitted
maximum entropy models (Phillips et al., 2006; Phillips and
Dudík, 2008) within 10 different buffers around known occur-
rence points. Their results showed that increasing the extent
reduced the number of variables included in the models, which
in turn changed predicted geographic patterns, such that suit-
able areas were broader when models were calibrated at greater
extents. Anderson and Raza (2010) present parallel analyses
that also show significant effects of training area on model
results, although in their case modeled suitable areas were
smaller when models were calibrated at broader extents.

(2) Effects on model validation: Lobo et al. (2008) highlighted effects
of extent (which should be equivalent to M) on results of model
validation tests and, in particular, on the results of receiver
operating characteristic (ROC AUC) tests. During validation
exercises, areas outside M (where the species cannot occur) will
generally be predicted at lower suitability levels; as a result,
inclusion of these areas (which hold no presence data, but
owing to restrictions resulting from M and not A) makes the
model look better than it actually is. Increasing the extent also
often includes absences that are more distant environmentally
from the presences, so the ROC AUC (as well as other discrimina-
tion measures, such as sensitivity or specificity) values increase,
because it is easy to parameterize models with good discrim-
ination capacity but that are low in useful information (e.g.,
it is easy to see that no polar bears live in the Tropics, but
this information is scarcely useful; VanDerWal et al., 2009). In
consequence, high and statistically significant AUC values can
be obtained simply by increasing the area of study (Jiménez-
Valverde et al., 2008); here, careless use of these statistics
procedures gives results that are of dubious merit (Lobo et al.,
2008). Indeed, such careless applications may cast doubt on the
robustness of the entire field, given lack of means of objective
model evaluation (Peterson, 2005).

(3) Effects on model comparisons: Warren et al. (2008) highlighted
the importance of correct specification of null hypotheses in
comparisons of modeled niches: some previous studies have
tested hypotheses of niche identity (Graham et al., 2004),
while others have tested hypotheses of relative niche simi-
larity (Peterson et al., 1999). Warren et al. (2008) developed
and presented software tools enabling both types of compar-
isons (ENMTools, http://enmtools.com). Importantly, only the
background similarity tests include specification of an “area of
interest” – such that niches are “similar” only relative to some
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Fig. 2. Distributions of two virtual species generated from the set of environments most similar to the climate of Lawrence, Kansas (B; details in text). The two species share
the same fundamental niche, but are separated by a hypothetical barrier to dispersal (line running northwest to southeast). The distributional area of each virtual species is
shown in relation to the 6 extents across which examples of model calibration, evaluation, and comparison are developed (0%, 5%, 10%, 20%, 40%, and 60%). Inset (A) shows
the location of the ranges of the two “species” relative to North America.

background area, which we would argue should be equivalent
to M. Specification of this area of interest has critical and direct
effects on the relative similarity of two niches sampled from
that space (see example developed below).

In sum, M has pervasive effects throughout the realm of ecolog-
ical niche modeling and species distribution modeling. Essentially
no aspect of this modeling approach can be developed appropri-
ately without a carefully considered hypothesis of M, as this region
is the only appropriate arena for such analyses. In the following
section, we illustrate these effects by means of exploration of the
niche and distribution of a virtual species.

2. Worked example: a virtual species

A virtual ecological niche was generated by means of visualizing
climatic variation across North America with respect to the condi-
tions presented at Lawrence, Kansas (7 of the so-called “bioclimatic
variables” at a resolution of 0.17◦ from Hijmans et al., 2005: annual
mean temperature, mean diurnal temperature range, maximum
temperature of warmest month, minimum temperature of cold-
est month, annual precipitation, and precipitation of the wettest
and driest months). We transformed this 7-dimensional space by
means of principal components analysis (PCA) to create 4 orthogo-
nal axes summarizing climatic variation across North America. We
chose the 5% of the overall distribution of environments associated
with pixels that were most similar climatically to our reference site,
and identified the geographic area matching those environments.
This area, curiously, is in large part coincident with the original
range of tall-grass prairie in the central part of the continent.

We then created a pair of virtual “sister” species sharing this
same fundamental ecological niche by bisecting its spatial footprint
with a barrier that might be a large river crossing the region from
northwest to southeast. Our two “species” are found in the suit-
able regions fitting the same virtual niche on either side of this
barrier (Fig. 2a). We emphasize that the two species share a single
fundamental ecological niche; the only difference between them is
that they inhabit the spatial footprints of that niche on either side
of a barrier, which may manifest different portions of the envi-

ronmental space within the niche, thus differing in their existing
fundamental ecological niche.

To illustrate the effects of assumptions regarding M on model
calibration, we plotted 14 points (number chosen for the purpose of
illustration only) from within the distribution of the northeastern
species, and built models based on calibration areas of different
sizes. Specifically, we buffered the habitable area of the species by
0%, 5%, 10%, 20%, 40%, and 60% of additional area (Fig. 2b); note
that, in the case of the 0% buffer, all pseudoabsence or background
data are selected from suitable areas, so the model is in the end
fit to noise. Then, we calibrated models using Maxent version 3.3.1
(Phillips et al., 2006) on default parameter settings using the same
input occurrence data, but over the six different extents, and with
a random testing percentage of 50%.

To illustrate the effects of the different areas on model calibra-
tion, we used global fuzzy pattern comparisons (Power et al., 2001)
among all predictions using the freely available software Map Com-
parison Kit (Visser and de Nijs, 2006). To depict the area of presence,
we thresholded model outputs based on the lowest suitability value
assigned to any training presence data point (Pearson et al., 2007).
Comparisons of the predictions among the six calibration extents
show no two results to be the same, and a tendency towards a
higher similarity as extent of analysis increases (Fig. 3).

To illustrate effects of assumptions regarding M on model eval-
uation, we used the non-thresholded logistic output from the
niche model and the six background areas (0–60%) for the north-
eastern species described above. This raster grid presents values
between 0 and 1, based on the logistic output of the Maxent algo-
rithm (Phillips and Dudík, 2008). We calculated traditional receiver
operating characteristic area under the curve (ROC AUC) statis-
tics using ROC bootstrapping software developed for alternative
ROC calculations (Peterson et al., 2008). Thus, we used the same
“independent” testing points in relation to the same model out-
put, and changed only the extent across which the model was
tested.

When evaluation was limited to areas close to the species’
range (buffers of 0% and 5% in Fig. 2b), the AUC scores did not
indicate predictive ability significantly better than random expec-
tations (both P�0.05). However, if the distributional area was
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Fig. 3. Fuzzy global matching among the Maxent models generated for the first six
extents of analysis.

buffered by 10–20%, the evaluation exercise indicated significant
predictive ability (both P < 0.05). Statistical significance was exag-
gerated still more as broader areas around the distributional area
were included within the testing area (40% and 60% buffers, both
P�0.05; Fig. 4). A researcher interested in evaluating this model
might choose any of these different areas of analysis as extents of
analyses, but we can see that the “answer” that she obtains can
range from non-significant to highly significant. This example thus
illustrates how model evaluation exercises can be subjective, if
careful and well-founded assumptions regarding M are not stated
a priori.

Model comparisons are also affected by choice of M, although
the ideas and tools for such tests are much younger than model
calibration and model evaluation. We illustrate this point using the
randomization tests proposed by Warren et al. (2008). In partic-
ular, we evaluated effects of the same set of buffered extents on
the results of background niche similarity tests comparing our two
virtual species (see Fig. 5). Briefly, the background similarity test

Fig. 4. Effect of the extent of study area in model validation. AUC values tend to
increase, meaning a higher model significance, as model testing area increases.

Fig. 5. Comparison of the similarity of the two virtual species depending on the
background area used to select pseudoabsences (i.e., different buffer sizes around
the distribution of the southwestern species) for the I index from Warren et al. (2008)
implemented in ENMTools. Note that the buffer size axis is reversed from that of
Fig. 4, but that again the likelihood of the observed I value being a consequence of
random differences decreases markedly with buffer size.

of Warren et al. (2008) uses two similarity indices, Hellinger’s I
and Schoener’s D, to quantify the level of overlap between models,
and compares this observed overlap to a null distribution of val-
ues generated from models associated with random points from
within the “area of interest.” More specifically, we used each of the
six buffer extents (0–60%) as a distinct “area of interest” to select
14 points at random 99 times and generate niche models with
Maxent for each random draw. The parameters in Maxent were
kept at default settings and models were reduced from continuous
probability maps to presence/absence maps using the minimum
presence threshold setting (Pearson et al., 2007) to avoid com-
plications notable at higher levels of prediction in Maxent output
(Peterson et al., 2007). The observed I and D values were 0.42 and
0.32; similarity tests compared the northeastern species’ occur-
rence points against the background of the other species at each
buffer size. As summarized in Fig. 5, observed values were in
the non-significant region of the null distribution (0.05 < P < 0.95)
when buffer sizes were small (<10%). Warren et al. (2008) sug-
gested that such observations are equivocal, and that no inference
about similarity can be made. At 10–20%, the I metric was non-
significant, but comparisons using the D metric indicated that the
two models were statistically similar (P > 0.95). When buffers were
>20%, we observed significant similarity (P > 0.95) in both met-
rics.

In sum, then, our virtual species example illustrates how choice
of M has important implications for three aspects of ecological
niche modeling – model calibration, model evaluation, and model
comparison. One or more of these functionalities is used in all niche
modeling applications. As a consequence, the influence of M in
the field is simultaneously pervasive and ignored – we now pro-
ceed to outline means by which M can be estimated or otherwise
approximated in real-world applications.

3. Approaches to estimating M

Although effects of spatial scale (i.e., extent) on resource selec-
tion and ENM studies are well-known (Boyce, 2006; Meyer and
Thuiller, 2006), selection of appropriate regions within which
to develop analyses is not straightforward. Most frequently,
researchers take this decision without any biologically meaning-
ful basis (Meyer and Thuiller, 2006). For instance, in most studies,
a geopolitical unit is used to delimit the area of analysis without



Author's personal copy

1814 N. Barve et al. / Ecological Modelling 222 (2011) 1810–1819

justification – in the best and most fortunate cases, these geopoliti-
cal units coincide with significant biotic regions (e.g., Madagascar).
Too frequently, however, geopolitical units include significant bio-
geographic heterogeneity (e.g., areas east and west of the Isthmus
of Tehuantepec in Mexico, or areas east and west of the Isthmus
of Panama in Panama). We recommend strongly that niche mod-
els be calibrated, evaluated, and compared in light of explicit, a
priori hypotheses regarding the extent of M as the delimitation
of the study area (Anderson and Raza, 2010). This assertion, of
course, begs the question of how to estimate M in real-world
situations.

We have identified and explored three potential approaches to
estimating M, which should be carried out prior to initiation of
analyses. These approaches are as follows:

1. Biotic regions: A favorite challenge of biogeographers in past
decades was to delineate “biotic regions” as areas sharing sets
of species that are distinct from those of other regions (Wallace,
1860; Herbertson, 1905; Shelford, 1963; Dasmann, 1972; Bailey,
1996; Lomolino et al., 2005). In general, boundaries of these
regions correspond to shared sets of distributional limits of
species across landscapes, which may be informative about
barriers that have repeatedly constrained the distributional
potential of species. In this sense, it may be reasonable to take
the set of biotic regions within which a species is known to occur
as a hypothesis of the areas that have been available to it over
relevant time periods. This approach is quite simple, and may
prove the most operational (Soberón, 2010) – others, as will be
clear from discussions below, are more intricate.

2. Niche-model-based reconstructions: Previous studies have
explored the possibility of reconstructing historical distri-
butions of species from models based on their present-day
ecological niche characteristics (Martínez-Meyer et al., 2004;
Peterson et al., 2004; Martínez-Meyer and Peterson, 2006;
Waltari et al., 2007; Nogués-Bravo et al., 2008; Pearman et al.,
2008; Jakob et al., 2009; Nogués-Bravo, 2009), with the result
that such ‘hindcasting’ offers useful predictions regarding past
distributional potential. It is then feasible to use an initial round
of niche model calibration to estimate the basic dimensions
of a species’ distributional potential through time, in which
a present-day niche model would be back-projected onto
historical conditions for relevant time periods (e.g., Pleistocene
Last Glacial Maximum, Last Interglacial). These potential dis-
tributional areas back through time can then be buffered by
some estimate of long-term dispersal potential, and used as
an estimate of M in a second round of model calibration, now
with a more restricted estimate of the arena of distributional
possibilities. This approach runs some risk of circularity, in that
the initial round of modeling is conducted without reference to
a hypothesis of M, and yet determines the dimensions of M for
the final round of model development. However, this approach
is operational, and could be implemented readily.

3. Full dynamic dispersal model: Finally, in theory, it is feasible to
join estimates of the niche with scenarios of dispersal potential
to develop detailed simulations of distributions extending back
into the past through periods of environmental change (Engler
and Guisan, 2009; Cabral and Schurr, 2010). This approach
would be more realistic than the first two proposed, as it takes
into account explicitly the spatially path-dependent nature of
effects of environmental change on species’ dispersal reach
and consequent distributional potential, but it poses formidable
computational challenges. As a first illustration of this general
framework within which such a simulation would be erected,
we present a first simulation, albeit preliminary and quite sim-
plified.

4. The simulation

4.1. The geographic setting

We used a simple 12×12 cell grid to denote the geographic
domain of interest in this simulation, G. For geographic reality,
we used environmental conditions corresponding to the region
103–109◦W, 34.5–40.5◦N. The occupied area (i.e., the actual area
of distribution/area of occupancy) of a species at time t can be
represented by the symbol GO(t), a vector of ones and zeros cor-
responding to cells where the species is present (1) or absent
(0). The coordinates of each cell are maintained in another vector
with a one-to-one correspondence. We define symmetric adja-
cency matrices D with elements di,j as follows: if cell j can be
accessed from cell i in one time step, then di,j = 1; if it cannot be
reached from i, then di,j = 0. D therefore represents the connectiv-
ity of different cells within the geographic domain. We note that
future implementations of these ideas might include more complex
dispersal kernels, for example, a probabilistic view of adjacency,
as well as a time-dependent version of D, which would take into
account changing opportunities for dispersal among cells.

Connectivity of areas, and its representation by adjacency matri-
ces as just described, is strongly dependent on the natural history
of the species and the geographic structure of the world at time
t (e.g., positions of barriers like mountain ranges, rivers, deserts,
and oceans). This point will be explored in greater depth later, but
we will take the adjacency matrices as a given for the moment.
Assume first that the entire world is favorable to the species (i.e.,
the region G⊆A). Let GO(0) be the occupied distributional area of
the species of interest at some initial time t = 0. At t = 1, the follow-
ing multiplication produces a vector J(1) = DGO(0). The elements of
J(1) contain the number of ways in which every cell of the world
can be reached, in one step, from GO(0). The occupied distributional
area after one step, GO(1), then, is simply a vector of zeros and ones
corresponding to those cells where J(1) > 0. Repeated application of
the adjacency matrix produces a vector J(t) = (

∏t
�=0D)GO(0) rep-

resenting the number of ways in which every cell can be reached in
t steps from the initial distribution GO(0), and the species’ occupied
distributional area at time t is simply the vector GO(t) of ones where
J(t) > 0, and zeroes otherwise.

If the connectivity matrix D is constant (as assumed herein),
the above equation reduces to J(t) = DtJ(0); assuming that D has
some standard properties (i.e., irreducibility, non-periodicity), the
elements of the first eigenvector of D are proportional to the “acces-
sibility” of the elements. We stress that the elements of J(t) are
integers, in principle >1, so it is necessary to convert J(t) to a binary
vector by recoding all elements with value >0 as 1. This step yields a
final vector GO(t), which summarizes the corresponding occupied
distributional area after t time steps, which is, in effect, the total
area reached by the species during the entire simulation process.

4.2. The fundamental ecological niche

In reality, of course, a cell in G is not occupied simply by reaching
it. Rather, the correct suite of environmental and biotic conditions
(A and B respectively) must also be fulfilled. We will simply ignore
the biotic factors in B, given their very complex nature and lack of
available data. Following Soberón and Nakamura (2009), and for
the sake of illustration, we assume that some convex envelope in a
space of v environmental variables that constitute the environment
can represent the fundamental niche of a species. For example,
the fundamental niche might be represented as an ellipsoid of the
form NF = (x−�)˙(x−�)T−1, wherein � is a symmetric positive
definite matrix that defines the semi axes of the ellipsoid, and �
represents its centroid.
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This ellipsoid in our example represents the fundamental niche;
its intersection with E(t), the available environmental space at time
t, which can be expressed in symbols as NF ∩E(t), gives the regions
of G that are suitable for settling at time t because the abiotic envi-
ronment is favorable. This intersection, which was first identified
by Jackson and Overpeck (2000) as of extreme importance in niche
theory, we term the “existing fundamental niche” (Peterson et al.,
2012).

A simple and natural assumption is that individuals of the
species will be able to settle in a cell i that has been reached, as
long as the v-dimensional environment in cell i [denoted by �ei(t)]
is contained within the envelope that represents the fundamen-
tal niche of the species. In simple words, in our simulation, a new
cell is added to the occupied distributional area in a time step if
(1) it can be reached from an occupied cell in time t−1, and (2)
its environment is favorable. To formalize this idea, we use a diag-
onal matrix S(t), with 1s or 0s along the diagonal, depending on
whether the environment is suitable or not, respectively, at time
t. A cell i will have a 1 if �ei(t)∈NF ∩ E(t), or in other words, if �ei(t)
is within the existing fundamental niche at time t. Notice that this
step assumes strict conservatism of the fundamental niche, but a
dynamic environment.

Multiplication of S(t) by D defines, for one time step, which cells
can be both reached and colonized. If we substitute the new vector
after each multiplication, we get

GO(t + 1)← J(t + 1) = S(t)DGO(t) (1)

where the arrow indicates that positive values in J(t + 1) are trans-
formed to 1.

Region M, by definition above, is that part of G that has been
accessible to a species in a given, relevant time interval. It is the
region that the species has “sampled” over the period from 0 to t
(expressed hereafter as [0,t]). Several ways of defining M are thus
possible: a very natural one is simply to consider the union of all the
vectors of cells that have been accessed, with or without successful
establishment. This set is

M(t) =
t⋃

�=0

GO(�) (2)

where ∪ indicates the union of the succeeding terms over [0,t]. This
definition is that which we propose for M for the time interval [0,t].

4.3. Calculating M

To illustrate how the preceding scheme would work, within
the simulation, we set the species as initially present in 6 con-
tiguous pixels near the center of the region (Fig. 6). We defined
the relevant time period as ranging from the Last Interglacial (LIG;
135,000 BP), through the globally cold period of the Last Glacial
Maximum (LGM; 20,000 BP), and up to the present. Climate data
for LIG, LGM, and present are available in the form of “bioclimatic”
variables developed from monthly temperature and precipitation
data (Hijmans et al., 2005; Waltari et al., 2007); environments
across our simple G were interpolated between these points in
time at 1000-year intervals using R scripts available upon request
from the authors. Hence, we used three climatic data matrices:
S(t =−135,000), S(t =−20,000) and S(t = 0). These matrices were
then interpolated to create 132 intermediate matrices by using the
following weighting formula:

S(t) = S(−135, 000)[e−6e−0.00005(t+20,000) − e−6]

+ S(−20, 000)[1− e−6e0.00005(t+20,000)
] t < −20, 000

S(t) = S(−20000)e−0.001e0.0005(t+20000)

+ S(0)[1− e−0.001e0.0005(t+20000)
] t ≥ −20, 000

Define landscape / Grid

Interpolate environmental data

Disperse to neighboring cells

Iterate every time step of 1000 yrs 
from Last Interglacial till Present

Check whether niche conditions fulfilled 
in cells to which species dispersed

Within limits Die !

Invade !

Store current distribution
at time t

Add to total cells 
visited (M)

Fig. 6. Flow chart of simulation used to estimate M.

We defined the fundamental niche of our hypothetical species
NF as an ellipsoid with centroid � = (10, 500) and axes matrix S =[

0.001 0.00031
0.00031 0.00015

]
, which yields the following expression for

the fundamental niche in our simulation:

39.8113− 0.333671x + 0.00100925x2 − 0.152572y

+0.000626971xy+ 0.000146302y2

From the initial conditions (i.e., presences in the 6 central cells),
we simulated dispersal and colonization by the species according
to the scheme of Eq. (1). First, the species had to be able to actu-
ally reach the cell physically via dispersal: we assumed that the
species would disperse to all first-order neighboring cells in a given
1000-year time period, a process summarized in the corresponding
adjacency matrix D, which we held constant through time in this
example. Second, the matrices S(t) (as described and defined above)
were used to check whether a given cell is suitable or unsuitable at
time t (i.e., whether its environments are within NF). Cells that are
both accessible and suitable are assumed in this simple simulation
to be settled successfully.

At each time step, each cell on the landscape is checked as to
whether it presents favorable conditions (i.e., whether its environ-
ment is within the fundamental niche), which is summarized as a
“niche matrix.” The distribution of the species in the next time step
is then calculated as the product of the adjacency matrix, D, the
distribution vector, GO, and the niche matrix, NF, and then iterated
through the entire period of the simulation. The union of all cells
visited (whether or not successfully colonized) through the entire
course of the simulation constitutes the total area explored by the
species over time, producing in effect a direct estimate of M. The
temporal sequence of the evolution of the size of the distributional
area [denoted |GO(t)|], and of our estimate of M, are presented in
Fig. 7.
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Fig. 7. Simulation results, showing the number of cells occupied by the species at a particular time and the cumulative tracking of cells that have been occupied by it at any
point previously in the simulation. Shown are the continuous traces of cells occupied at any point in time and cumulatively, as well as three time “snapshots” showing actual
distributions.

4.4. Simulation results

The number of occupied cells at any particular time (from
135,000 BP to present) during the simulation varied depending on
their suitability and reachability in relation to the favorable condi-
tions for, and the dispersal of, the species. The area of distribution,
GO, expanded initially until the LGM, when the extent of suitable
environments was reduced. The total number of cells explored
increased until the LGM as well, when it stabilized until ∼5000 BP,
after which it increased again, but only slightly (Fig. 7). The sum
of all cells explored is, in turn, a hypothesis of the complete set
of sites that have been available (i.e., within the dispersal distance
of an occupied cell at least once) to the species during the entire
simulation, and may be used as the best estimate for M, where both
historical (e.g., environmental shifts) and ecological processes (e.g.,
dispersal and establishment) have been taken into consideration.

5. Discussion

5.1. General scenarios

The arguments and examples presented in the first section of
this paper should – we believe – suffice to convince the reader that
M is an important consideration in studies of distributional ecology.
Basically, it is the realm within which the species has sampled the
landscape in question, and so it is the appropriate arena for train-
ing, validating, and comparing ecological niche models. Because
our simulation was little more than a caricature of the processes

involved in producing a complex and more realistic M, we do not
expect that such simulation approaches will soon see extensive use
– as discussed below, the complexity of such approaches is daunt-
ing, at least for the time being. As a consequence, the niche modeler
who is convinced that M is important will (obviously) ask how can
one estimate it in a very practical and real-world sense.

Hence, we explore possible approaches to estimating M that
may or may not be appropriate in a particular situation. Specifically,
the time span involved in a particular question becomes fundamen-
tal – some species may only have been “exploring” a landscape
for a few years (e.g., invasive species), whereas other species may
have been present on landscapes for millions of years and have
responded distributionally to diverse climatic changes and geolog-
ical or environmental shifts. As a result, we can consider three sets
of strategies as bases for hypothesizing the spatial footprint of M,
as a function of the time that the species has been present on the
landscape:

• History nil: In the case of a species that is just arrived on a land-
scape, the area that is sampled by it is more or less equivalent to
its generation-to-generation maximum dispersal distance. That
is, one can consider the present-day distribution of the species,
buffered by an estimate of that maximum dispersal distance, as
an estimate of M. This simple process will identify areas likely
sampled by the species in determining its distributional poten-
tial on the landscape of interest. Examples of this sort of situation
and corresponding approach are relatively few, as we gener-
ally focus on species that have a longer history of presence on
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a landscape – nonetheless, see Anderson et al. (2006) for a partial
example.
• History included but no environmental change: When a species has

had a longer-term presence on a landscape, a single generation’s
maximum dispersal distance will underestimate its maximum
dispersal “reach,” in the sense that the species may have had the
possibility to explore out several-fold times more than the basic,
individual dispersal distance, and so M will be underestimated.
Under such situations, dispersal simulations can be iterated by
a number of generations that corresponds approximately to its
time of presence on that landscape (e.g., Smolik et al., 2010). It
should be noted, however, that such simple, iterative consider-
ation of dispersal assumes stable environmental conditions, and
therefore must still be over time spans that are reasonably short.
• History included, environmental change: The most challenging –

and unfortunately perhaps most generally relevant – of these sit-
uations are those in which the species has had a long period of
presence on the landscape of interest, as would be the case of
most or all resident/native species. “Long” is defined as sufficient
time such that environments represented in G have not been con-
stant over the time period of interest. This case presents both
advantages and disadvantages to the niche modeling exercise. On
the positive side, the species is much more likely to have achieved
distributional equilibrium: that is, it has probably explored via
dispersal out in all directions, and has more likely filled in all of
the areas that are suitable (i.e., areas within A∩B) and that are
also within M, and thus that are within GO –in such cases, appar-
ent commission error is much reduced and areas from which the
species is absent are more likely to be lacking the species for rea-
sons of environmental suitability, rather than because of dispersal
limitation. On the negative side, however, such species will have
experienced a much greater variety of environmental shifts, and
may have had much more diverse opportunities to colonize suit-
able areas that might otherwise appear to be inaccessible – con-
sider, for example, the “sky islands” situation in the southwestern
United States, and the many isolated conspecific populations of
montane organisms that likely were founded in the region under
quite-different climatic conditions (Patterson, 1982).

Managing situations such as the latter is correspondingly much
more complicated than the previous two situations. In essence, we
have the challenge of taking into account historical environmental
changes that may have broadened the overall dispersal reach of the
species. Above we outlined three more or less practical approaches
to this situation – while none of the three is completely satisfac-
tory, and all have limitations, they represent explicit assumptions
regarding M and its extent, and may thus take the niche mod-
eling process one or more steps closer to being fully reasonable
and realistic by linking it explicitly to ecological and biogeographic
theory.

5.2. The eventual challenge regarding M

The process of estimating ecological niches is complex, and this
paper aims to clarify one aspect of this process that has heretofore
not been explicit – that of how to delineate the area of analy-
sis appropriately. To date, this area has been generally chosen as
a convenient rectangle enclosing the area of interest (Peterson,
2001), the outline of the country in which the species of interest is
distributed (Peterson et al., 2002), or some other area that is conve-
nient. No good rationale has been used as a basis for this decision,
and in most cases the study area is delimited without any state-
ment of reasoning as to why (Anderson and Raza, 2010). In this
paper, we argue that M from the BAM framework (Soberón and
Peterson, 2005) provides an appropriate conceptual framework for
this decision (see Anderson and Raza, 2010 for similar conclusion).

However, estimating M is only rarely easy and straightforward
(e.g., when history is a negligible component of the situation). More
frequently, multiple options will be available, and perhaps several
such scenarios should be explored, to make the niche estimation
exercise as realistic as possible. Explicit statement of the rationale
for these hypothesized scenarios in the Methods sections of papers
presenting these analyses should constitute a critical step in the
niche modeling process.

M depends simultaneously on the natural history and disper-
sal characteristics of the species in question, the geography of the
landscape of interest, the spatial configuration of suitable habitats,
and the time span relevant to the species’ presence on the land-
scape and any environmental changes that occurred during that
time period. Each of these points must be weighed carefully in out-
lining M, or the estimate may be incomplete, biased, or misleading.
The following list outlines key considerations:

1. Estimate dispersal characteristics: The importance of dispersal-
driven processes in range dynamics has only been recently
incorporated into ENM studies (Cabral and Schurr, 2010; Smolik
et al., 2010) in an effort to link ecological theory with the mod-
eling of species’ niches and distributions, in spite of the great
potential importance of these considerations (Engler and Guisan,
2009). A first challenge in incorporating these processes is that of
estimating the dispersal characteristics of species over the time
period that makes sense for the problem, or, in other words,
estimating the parameters of the matrix D or any equivalent
dispersal kernels. On ecological time scales, dispersal has been
estimated by measuring seed shadows (Carey et al., 1995), pollen
dispersal (Okubo and Levin, 2001), and results of mark-recapture
studies (Dobzhansky and Wright, 1943; Dobzhansky et al., 1979).
In this latter case, the separation of natal and breeding sites
in space estimates the dispersal characteristics of the individ-
ual in question. The problem with mark-recapture approaches
is that individuals that are not recaptured may have died, but
also may have dispersed much-longer distances, which ends up
determining much of the dynamics of the system (Trakhtenbrot
et al., 2005). As a result, such individual-tracking studies will
frequently fail to characterize the dispersal characteristics of the
species fully. Other options include use of population-genetic
profiles, which, though indirect, have the potential to integrate
over the full dispersal profile of the species (Avise, 2000).

2. Estimate the niche: As discussed above, several approaches to
understanding M require initial estimates of the fundamental
niche of the species. Indeed, our caricature of the dynamic
approach to estimation of M required us to postulate a fun-
damental niche as part of the design of the simulation – in
real-life examples, this niche is unknown, and so would have
to be estimated either from first-principles approaches (Kearney
and Porter, 2004), experimental approaches (Etterson and Shaw,
2001), or a first round of correlational niche modeling. Although
this latter approach runs the risk of circular reasoning, in which
biases and complications introduced in initial iterations prop-
agate through the process and cause downstream problems,
some initial estimate of the niche will be needed, and correl-
ative approaches frequently offer the only or the most practical
recourse (Peterson et al., 2012).

3. Estimate relevant time span: This point is quite critical: witness
the implications of different time spans discussed above. When
a species is newly arrived, or relatively newly arrived, on a
landscape, many aspects of its associated M can be estimated
from dispersal considerations only. When, however, the species
has a longer history on a landscape, the process becomes con-
siderably more complex, and environmental changes must be
incorporated into the estimation process. Phylogeographic stud-
ies may be particularly relevant here: population history can be
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estimated using approaches like the coalescent (Edwards and
Beerli, 2000; Knowles, 2004), and these estimates can then at
least provide an order-of-magnitude view of how far back into
time environmental history must be considered (Carstens and
Richards, 2007). However, we note that time-resolution infor-
mation regarding paleoclimates is scarce (particularly prior to
the Last Glacial Maximum), which may present an obstacle to
full implementation of these approaches.

4. Identify relevant environmental changes: Once the time span
of the species’ distributional history on a landscape has been
determined, the environmental changes relevant to its dis-
tribution can be summarized. Frequently, these changes will
be those related to the dramatic climatic fluctuations of the
Pleistocene (Davis and Shaw, 2001), with cold glacial maxima
contrasting with warm interglacials. Recent niche-model-based
explorations have taken advantage of global estimates of Last
Glacial Maximum and Last Interglacial climate conditions to
explore Pleistocene distributional patterns. These estimates,
derived from general circulation models tuned to relevant land-
scape characteristics and then-current atmospheric composition
and conditions, are not without error, but succeed in reconstruct-
ing many relevant features of paleoclimates (Otto-Bliesner et al.,
2006), and have been quite successful in applications to distribu-
tional ecology (Nogués-Bravo, 2009). In the example presented
above, we used a simple regularly distributed interpolation, but
more realistic interpolations can be developed via reference to
detailed global temperature profiles on more realistic time scales
(Dansgaard et al., 1993).

It is important to note that, although we favor a spatially explicit
and dynamic mechanistic approach as the best way to estimate M,
taking into account dispersal and habitat-driven processes, other
important factors that depend on the time frame considered can
have a crucial role in determining M. A first consideration is of
the effects of B, the set of areas that are suitable in terms of biotic
considerations – although neglected in our simulation presented
here, B and M may interact in important ways to affect estimates
of ecological niches (Anderson and Raza, 2010). Finally, evolution-
ary adaptive processes can shift the fundamental niche of a species
(Holt and Gaines, 1992). Nonetheless, in our example above (and
likely also in other studies), the time frame (135,000 BP) used may
not be large enough for evolutionary processes to take place, at least
for vertebrates and other long-lived species (Rodríguez-Trelles and
Rodríguez, 1998; Peterson, 2011).

Computational challenges enter rather dramatically into the
methodologies that we would ideally recommend. Realistic simula-
tion of spatially explicit population processes is always numerically
challenging (Bolker and Pacala, 1997). The example presented
above was a 12×12 matrix of cells in a caricature of a real-world
landscape. Adjacency matrices grow in size as the square of the
number of cells. A space-of-configurations representation grows
exponentially with the number of cells in the grid. Since real land-
scapes will frequently be represented by arrays of 105–106 pixels,
these simulations will be computationally expensive, likely out of
reach of the computing capacities currently available. A final step
that will augment computational demands considerably is that
of making these simulations probabilistic and not deterministic,
which will require numerous replicate simulations to be able to
characterize both the behavior of a system and the variation in that
behavior.

The challenge outlined in this paper boils down to that of under-
standing the distributional potential of species over time across
a changing environmental landscape, plus the species’ dispersal
potential over that time, in a more mechanistic manner than the tra-
ditional phenomenological approach (Guisan and Thuiller, 2005).
This exercise in and of itself would be of considerable interest

to biogeographers, who focus on understanding the distributional
potential of lineages through time (Liow and Stenseth, 2007) – as
such, it presents considerable challenges, and we in no sense pur-
port to have solved the challenge in this paper. What we have done
in this paper, nonetheless, is to raise the issue, for the first time
explicitly and in detail in the niche modeling literature (Elith et al.,
2010), such that researchers can incorporate these ideas as part of
the process of their investigations. As we have demonstrated, this
explicit presentation of assumptions has critical implications for
the robustness and validity of models that have been previously
developed and those yet to come.
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