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Abstract

Dempster’s rule of combination is the
classical rule for combining independent
belief functions. In 1987, Peter Walley
proposed an alternative rule for
combining belief function representations
of independent statistical evidence that
result in partially consonant belief
functions. In this paper, we examine in
detail Walley’s combination rule and
compare it with Dempster’s rule. We
illustrate  the  commonalities and
differences between the two rules using a
simple coin tossing example. Also, we
characterize the class of partially
consonant belief functions. Finally we
show that if we reduce a belief function
to a probability distribution using the
plausibility transformation, the two
combination rules result in the same
probability distribution function.

Key Words: Basic probability assignment,
commonality function, plausibility, belief
functions, consonant belief functions, partially
consonant  belief functions, plausibility
transformation

1 Introduction

Dempster’s rule of combination is the classical
rule for combining independent belief functions
in the Dempster-Shafer (D-S) belief function
theory. However, Walley [5] introduced an
alternative rule for combination of belief
function representations of statistical evidence.
This alternative rule is defined only for partially
consonant belief functions. The goal of this
paper is a detailed examination of the two
combination rules for representing statistical
evidence. Using two coin tossing examples, we
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illustrate the commonalities and differences in
these two rules and provide some general
results.

Shafer [4] proposed consonant belief functions
as representations of statistical evidence in the
form of likelihood functions. However the class
of consonant belief functions is not closed under
Dempster’s rule of combination, the main
updating rule in the D-S belief function theory.
Walley [5] proposed a modification of
Dempster’s combination rule that ensures that
the class of partially consonant belief functions
is closed. Walley’s rule applies only to partially
consonant belief functions, a class of belief
functions that includes the class of consonant
belief functions. Walley’s rule hasn’t received
much attention in the literature. In this paper,
we examine Walley’s rule in detail and compare
it with Dempster’s rule.

An outline of the remainder of the paper is as
follows. In section 2, we provide the basics of
D-S belief function theory. In section 3, we
describe consonant belief functions and
illustrate it with a biased coin tossing example
adapted from Shafer [4]. In section 4, we
describe partially consonant belief functions and
describe some characterizations. We also
describe an extremely biased coin tossing
example that leads to a partially consonant
belief function. In section 5, we describe
Walley’s combination rule. In section 6, we
compare Walley’s rule with Dempster’s rule. In
section 7, we summarize and conclude.

2 Basics of Belief Function theory

In this section, we provide the basics of the D-S
belief function theory. There are several
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equivalent ways of representing a belief
function, namely basic probability assignment,
belief function, plausibility function, and a
commonality function. The main updating rule
is called Dempster’s combination rule.

2.1 Belief Function Representations

Let © denote the state space. A basic
probability assignment (bpa) m for © is a
function s 2© — [0, 1] such that m() = 0, and
Y{m(A)| A c O} = 1. m(A) is a measure of the
belief that is committed exactly to A. If m(A) >
0, then A is called a focal element of m. A basic
probability assignment differ from a probability
function in that they can assign a measure of
belief to a subset of the state space without
assigning any to its elements.

Belief functions, plausibility functions and
commonality functions can all be defined in
terms of the basic probability assignments. A
belief function Bel corresponding to abpamisa
function Bel: 29 — [0, 1] such that Bel(A) =
Y{m(B)| B c A} for all A< ©. Bel(A) can be
interpreted as the probability of obtaining a set
observation that implies the occurrence of A.

A plausibility function Pl corresponding to a
bpa m is a function Pl 20 [0, 1] such that
Pl(A) = Y{m(B)| BnA # &} for all Ac@.
PI(A) can be interpreted as the probability of
obtaining a set observation that is consistent
with some element of A.

A commonality function Q corresponding to bpa
m is a function Q: 2€ — [0, 1] such that Q(A) =
>{m(B)| Bo A} for all Ac ©. Q(A) can be

interpreted as the probability of obtaining a set
observation that is consistent with every
element of A. The commonality function Q has
the property that

T -D*o)=1, @1
A%
and this follows directly from the corresponding

property for m that }{m(A)|IAc®} = 1.

Notice that for singleton subsets {8}, the
definitions of plausibility and commonality

functions coincide, i.e., Q({0}) = PI({6}) for all
0e O.

2.2 Dempster’s Rule of Combination

The combination rule in Dempster-Shafer’s
theory is called Dempster’s rule. Given two
independent bpa’s m; and m,, we combine them
to obtain the joint bpa, denoted by m;®m,,
defined as follows:

(m © m, )(4) 22
=K' {m (Bym,(C)|B,CcO,BAC=4}

for all Ac®, A#J, where K is a
normalization constant given by K =
X{m(BYm,(C) | BNC # J}. The above
definition assumes that K > 0. If K =0, then this
means the two bpa’s are totally conflicting and
cannot be combined. Dempster’s rule in terms
of bpa’s consists of assigning the product of the
masses to the intersection of the focal elements
(followed by normalization).

Dempster’s rule of combination can also be
expressed in terms of commonality functions.
Let Q), Q,, and Q,®Q, denote commonality
functions corresponding to m, m,, and m;®m,,
respectively. Then (0,90)(4) =
K‘IQI(A)QZ(A) for all non-empty A c ©, where
K is given as follows:

k=3 DM m0,4).  @3)
Az

The normalization constant X is equal to the one
defined earlier for Dempster’s rule in terms of
bpa’s. Dempster’s rule in terms of commonality
functions is essentially pointwise multiplication
of the commonality functions (followed by
normalization).

3 Consonant Belief Functions

Consonant belief functions are belief functions
whose focal elements can be arranged in order
so that each is contained in the following one
[4]. The structure of the focal elements in a
consonant belief function implies some
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equivalence conditions which are stated in [4] as
follows.

Theorem 3.1 [4]. Suppose m is a bpa for © with
corresponding belief function Bel, plausibility
function P/, and commonality function Q. Then
the following statements are all equivalent:

m is consonant.

Bel(AnB) = min{Bel(A), Bel(B)}, for all
A, BcCO.
PI(AUB) =
A,Bc©O.

PI(A) = max{PI({6}) | 8 € A}, for all non-empty
AcCO.

O(A) = min{Q({6}) | 8 € A}, for all non-empty
AcCO.

max{Bel(A), Bel(B)}, for all

Consider a bpa m whose focal elements are {a},
{a, ¢}, and {a, b, ¢} with the following m-
values: m({a}) = 0.5, m({a, ¢}) = 0.3, m{{a, b,
c}) = 0.2. Clearly m is consonant by definition.
A general bpa can have as many as 2"-1 focal
elements (where »n is the size of the state space).
But a consonant bpa can only have a maximum
of n focal elements. From conditions 4 and 5
above, a consonant plausibility or commonality
function is completely determined by their
values for singleton subsets. The belief,
plausibility and commonality functions for this
consonant belief function are shown in Table
3.1.

Table 3.1 A Consonant Belief Function

A mA)  Beld) PKA) O4)
fa} 0.5 0.5 1 1
b} 02 02
{c} 0.5 05

{a, b} 0.5 1 02
{a,c} 03 03 1 05
{b,c} 0.5 02

{a,bc} 02 1 1 02

Notice that the plausibilities of singleton subsets
completely determine the plausibility function.
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The same is true for the commonality function.
Also, one of the singletons will always have
plausibility 1. Given the plausibility values for
singleton subsets, we can deduce the
corresponding bpa function as follows. We
order the elements with positive plausibilities
from high to low plausibility values. In the
example above, the ordering would be a ¢ b.
The focal sets are then {a}, {qa, ¢}, {a, ¢, b}. To
determine the bpa values of these focal sets, we
assign the differences of the plausibility values
of the singletons subsets, i.e., m({a}) = Pi({a})
- Pi{c}) = 0.5, m({a, c}) = Pi({c}) - PI({b}) =
0.3, m({a, c, b}) = PI({b}) =0.2.

In the example above, the plausibilities of all
singletons are distinct. In case of ties, we treat
the set of elements with the same plausibilities
as a singleton and use the method described
above to determine a bpa from a plausibility
function. Suppose for example we have a
consonant plausibility function as follows:
Pl({a}) = 1, PI({b}) = Pl({c}) = 0.6. Then the
corresponding bpa m is as follows: m({a}) =1 -
0.6 = 04, and m({a, b, ¢}) = 0.6. Table 3.2
shows all belief function representations for this
example.

Table 3.2 A Consonant Belief Function with Non-
Distinct Plausibilities

A m(d)  Bel(d) PIA) O
{a} 04 04 1 1
{5} 06 06
{c} 0.6 06

fa, b} 04 1 0.6
{a,c} 04 1 0.6
{b,c} 06 06

{a,b,c} 06 1 1 0.6

The following example from [4] illustrates how
consonant belief functions arise from
probabilistic likelihoods.

Example 3.1: Biased Coin Tosses [4]

Suppose we are given a coin that is either
“biased heads (bh),” i.e., P(4 | bh) = 3/5, or “fair
0, i.e., P(h 1 ) =Pz 1 f) = ¥4, or “biased tails



(b1),” i.e., P(h | br) = 2/5. Let C denote the coin
type, and let the state space of C be denoted by
Q¢ = {f, bh, bt}. We have no further knowledge
of this coin (such as a prior belief function or a
prior probability distribution for C). Let T
denote the results of tossing the coin, so that the
state space of T is Qr = {h, t}. Suppose we toss
the coin and it results in A. How can we

represent this evidence by a belief function for
C?

No prior

° .= {bh, f, bt}
o 0, (h,1

Observe T=h

Figure 3.1: A Bayesian Network (with Missing
Prior) for the Biased Coin Tosses Example

Our knowledge about the three types of coin can
be described by probabilistic likelihoods as
follows:

bh: P(h1bh) =3/5
£ PRIp =%
bt P(h1bH =2/5

First, notice that we have only three likelihoods,
one for each element of C. It seems reasonable
that the belief function representation of this
evidence should be consonant since a consonant
belief function for C is characterized by at most
three parameters.

Second, given that we have observed A, it is
reasonable that bk is more plausible than £, and f
is more plausible than bt, since the likelihood
for bh is greater than likelihood for f and the
likelihood for fis greater than the likelihood for
bt. Following this intuition we can represent the
evidence & by a plausibility function P, for C
whose values for the singleton subsets are
proportional to the likelihood values [4]. Since
the plausibility of the most likely singleton is 1,
and since only the ratio of the likelihoods
matter, the proportionally constant is the
quotient of the largest likelihood. Formally, an
observation x should determine a consonant

plausibility function Pl obeying PL({08}) = ¢
go(x), for all 8 € ©, where c=1/ Igl%xqe(x) .

Thus, the plausibilities PI, for the singleton
subsets of C can be identified as follows:

PlL({bh}) = (3/5)/(3/5) =1,
PLAS) =2)/(315) =506,
PLbY) = (2IS)(3I5) =273,

Since the plausibility function is consonant, we
can represent it by a corresponding consonant
bpa function m,, as follows: m,({bh}) = 1-5/6 =
1/6, my({bh, f}) = 5/6-2/3 = 1/6, m,({bh, f, br})
=2/3.

4 Partially Consonant Belief Functions

Partially consonant belief functions are belief
functions in which the state space is partitioned,
and within each element of the partition, the
focal elements are nested [5]. An example of a
partially consonant bpa m for {a, b, c, d} is as
follows: m({a}) = 0.1, m({a, b}) =04, m({c}) =
0.3, m({c, d}) = 0.2. The partition associated
with bpa m is {{a, b}, {c, d}}. Table 4.1 shows
the corresponding Bel, PI, and Q functions.

Table 4.1 A Partially Consonant Belief Function

A m(4) Bel(d) Pi4) 0(A)
{a} 0.1 0.1 0.5 0.5
{5} 0.4 0.4
{c} 03 03 0.5 0.5
{d} 0.2 0.2
{a, b} 04 0.5 0.5 04
{a,c} 04 1
{a,d} 0.1 0.7
{b,c} 0.3 0.9
{b, d} 0.6
{¢,d} 0.2 0.5 0.5 0.2
{a, b, c} 0.8 1
{a,b,d} 0.5 0.7
{a,c,d} 0.6 1
{b,c,d} 0.5 0.9
{a,b,c,d} 1 1

The following theorem characterizes partially
consonant belief functions.

Theorem 4.1. Suppose Bel is a partially
consonant belief function for © with partition
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{P, ..., P,}. Within each element of the
partition, the rules for consonant belief
functions apply, i.e.,

(1) Bel(A B)=min{Bel(A), Bel(B)} for
allA,BCP,j=1,...m

@) PI(AU B)=max{PI(A),PI(B)} for all
ABCP,j=1,...m

3) Pl(A)= max{Pl({B})IG € A} for all non-
empty A ;Pj,j= 1,...m

@) O(A)=min{Q( {9})19 € A} for all non-
empty A ng,j= 1,....m

The additional rules for the partially consonant
belief functions over the state space are:

(5) Bel(A)="Y Bel(ANP)), forall Ac®.

j=1

©6) Q) =0ifAcP,j=1,...,m.

N Pl(A)=zm:Pl(AnPj)=imax{Pl{(9)}|ﬂeAnPj}

Il jH

forall A c ©.

The following example illustrates how partially
consonant belief functions arise from statistical
evidence.

Example 4.1 (Extremely Biased Coin Tosses)

Consider the following situation. First we toss a
fair coin. If the result of the first toss is heads
(hy), we toss a second coin repeatedly that is
either extremely biased heads (ebh) or
extremely biased tails (ebr). If the result of the
first toss is tails (f;), we toss a second coin
repeatedly that is either biased heads (bh), fair
(f), or biased tails (bf). We are not informed
about the result of the first toss, but we are
informed about the results of the succeeding
tosses. We are interested in assessing our belief
of C, the nature of the second coin that is being
tossed, whose state space is {ebh, ebt, bh, f, bt}.
Suppose we are informed that the first toss of
the second coin is 2. How can we represent this
evidence as a belief function for C? And what is
the posterior distribution of C?
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Before we observe the result of tossing the
second coin, our prior belief about C is as
follows: my({ebh, ebt}) = %, my({bh, f, bt}) =
. Notice that m, is partially consonant with
partition {{ebh, ebt}, {bh, f, bt}}. After
observing a toss of the second coin, we can
represent the evidence by a consonant belief
function as described earlier. Suppose that the
probabilistic likelihoods are as follows:

Belief function prior m,

° @c= {cbh, ebt, bh, £, bi}
° 0,= th, 8

Observe T=h

Figure 4.1 A Bayesian Network with a Belief
Function Prior

ebh: P(h|ebh) =4/5

bh:  P(hIbh) =3/5
£ PRl =%
bt Phiby =2/5

ebt:  P(hlebt) =1/5

Following the intuition described in Example
3.1, we can represent the evidence ‘heads’ we
got on the second toss by the consonant
plausibility function Pl, as follows (only
singletons are shown).

PlL({ebh}) = (4/5)/(4/5)=1
PL({bRY) = (3/5)/(4I5) =%
PLER) = (1/2)/4/5)=5/8
PL(bEY) = (QI5)(4/5) =%
PL({ebt}) = (1/5)/(4]5) =Y

The corresponding bpa function we obtain from
the above given plausibilities is as follows:

my({ebh}) =4
my({ebh, bh}) =1/8
m,({ebh, bh, f}) =1/8
my({ebh, bh, f, bt}) =4
my({ebh, bh, f, bt, ebt}) ='%

If we combine m, and m, using Dempster’s
rule, we obtain the posterior belief function for
C as shown in Table 4.2 (only A such that
(Qy®Q,)(A) >0 are shown).



For this example, the posterior belief function is
partially consonant. This is not always true. To
summarize the result, we have transformed the
posterior belief function to a probability mass
function using the plausibility transformation
[1]. Thus, the most plausible state is ebh
followed by bh, f, bt, and ebt.

Table 4.2 The Posterior Distribution for C

A4 Q) 2p(0) Q@2 PO
{ebh} Y% 1 417 8/25
{ebt} Yo Ya 177 225
{bh} Y % 377 6/25

143 Y 5/8 5/14 1/5
o1 ¥ % 27 4025

{ebh, ebt} Y Ya 177
{bh, f} Yo 5/8 5/14
{bh, bt} Y Y 217
{f, bt} Y ¥ 2/7
{bh, f, bt} Y Y 2/7

5 Walley’s Rule of Combination

The need for an alternative rule to Dempster’s
rule of combination has been motivated by a set
of axioms, which are given below as follows:

Define § = {(t5,....,T): 0 £ ;<1 for all j, 1> 0
for some j} to be the set of likelihood vectors
that are not identically zero.

(Al) Q(-, T) is a commonality function on @
whenever T € §.

According to this axiom, the commonality
function Q(-, 1) should represent statistical
evidence in the form of likelihood vector 1.

(A2) Q(, ©YHQ(, 6) = O(-, 16) whenever
1€ S,0e S,and1o € S.

The second axiom requires that the
commonality functions based on two
independent likelihoods should result in the
same belief function whether we regard the two
likelihood vectors as one piece of evidence or
two pieces of independent evidence.
Unfortunately, Dempster’s rule does not satisfy
this requirement since the class of partially

consonant belief functions is not closed under
Dempster’s rule.

Ilustrating the requirement of the second axiom
in the context of Example 3.1 on biased coin
tosses, suppose that we toss the coin three times
and observe heads, heads, and tails as results
(see Figure 5.1). If we consider our observations
as three different independent pieces of
evidence and combine them by Dempster’s rule
of combination we get the following results.

Observe T, =h

Observe T,=h

Observe T, =1¢

Figure 5.1 A Bayesian Network with Missing Priors
for Example 3.1

Table 5.1 Combining Evidence with Dempster’s
Rule for Example 3.1

4 0,0 oM CA0,W0M (200,00
(bh} 1 273 213 144/185 = 0.78
7 56 5l6 1251216 25/37=0.68
by 23 1 4/9 967185 = 0.52
(bh,f} 56 213 25/54 20/37 = 0.54
Bhby 23 23 8127 64/185 ~ 0.35
7, bt} 23 5/6 10127 16/37 = 0.43
bhfby 23 23 827 64/185 = 0.35
K 1 1 1851216 1

If we regard the observations A, h, ¢ as one piece
of evidence, then the likelihoods for the three
types of coins as follows:

bh: P(hht!|bh) =3/5*%3/5*%2/5 =18/125
f Pt fy =172%¥172*%172 =1/8
bt: P(hht1bt) =2/5%2/5*%3/5 =12/125

As shown in the table below, the commonality
function we obtain using the new probabilistic
likelihoods is quite different from the ones we
found after combining three pieces of evidence
using Dempster’s rule of combination.
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Notice that @, is consonant, whereas
0,90,®0, is not. Since the class of consonant
belief functions is not closed under Dempster’s
rule, we don’t expect Dempster’s rule to satisfy
Axiom A2.

Table 5.2 A Comparison of Dempster’s Rule with
Evidence Modeled in Two Ways

A (Qhthth)(A) tht(A)
{bh} 144/185 = 0.78 1
i 25/37 = 0.68 125/144 = 0.87
{bt} 96/185 =0.52 2/3 =0.67
{bh, f} 20/37 = 0.54 125/144 = 0.87
{bh, bt} 64/185 = 0.35 2/3 =0.67
{f, bt} 16/37 =0.43 2/3 =0.67
{bh, f, bt} 64/185 = 0.35 2/3 = 0.67

The second axiom has been the main incentive
to look for an alternative to Dempster’s rule of
combination since as the demonstration above
indicates the Dempster’s rule of combination
doesn’t satisfy the requirements of the second
axiom.

(A3) R(-, p) is a commonality function on ©
whenever p € P, where P is the set of all
Bayesian probability functions on ©.

The third axiom requires that any Bayesian prior
p should be able to be translated into a
commonality function R(-, p) on ©.

(Ad)Ifpe P, te S, and Pt > 0 for some j,
then R(:, p)BQ(-, T) = R(, pT)

According to this axiom the combination of
Bayesian prior and observational evidence
represented by commonality functions should be
the same as the translation of the Bayesian
posterior.

Walley proposes a new rule of combination for
partially consonant commonality functions Q,
and g, as follows:

(leQz)(A) =0, if Ql(A)Qz(A) =0,

= K1 min{Q,({6})0,({6}) | 6 € A} otherwise,
5.1
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for all non-empty sets A, where K>0 is
uniquely determined by (2.1) so that Q,HQ, is a
commonality function. Q,HQ, is well defined
provided Q,({6})0,({6}) >0 for some B € ©.

One can easily verify that Walley’s rule satisfies
axioms Al-A4. If Q, is partially consonant over
the partition {A,, ..., A} and Q, is partially
consonant over the partition {B,, ..., B,}, then
Q,H0Q, is partially consonant over the common
refinement {C,, ..., C,} where C; = Ajan.
Thus, the class of partially consonant belief
functions is closed under Walley’s rule.
However, Walley’s rule cannot be used to
combine general belief functions since their
combination may fail to be a commonality
function.

Like Dempster’s rule, Walley’s rule is
commutative (0,80, = @,HQ,) and associative

((Q1EQ2)EEQ3 = Q]EH(Q2BHQ3))9 Q183Q2 = Q1
when O, is vacuous, and Q,HQ, is Bayesian
when Q) is Bayesian.

6 Comparison of Walley’s and Dempster’s
Rules

Walley’s rule of combination is an alternative to
Dempster’s rule of combination and it satisfies
the above defined axioms. However it is not
clear in which ways the results of the two
combination rules differ. In order to have a
more detailed examination, we will compare the
results of using Dempster’s and Walley’s rule
for the two coin tossing examples introduced
earlier.

For the biased coin tossing example described in
Example 3.1 (see Figure 5.1), suppose the
results of the first three tosses are A, A, and .
The results after using Dempster’s and Walley’s
rules are shown in Table 6.1.

Both Dempster’s and Walley’s rules agree on
the ordinal ranking of the three states. Given the
evidence, bh is more likely than f, and f is more
likely than bt. If we convert the two belief
functions to probability functions using the
plausibility transformation method [1], we get
identical results. This is because, up to a



normalization constant, both rules agree on the
commonality values for singletons. This is
always true if the belief functions being
combined are consonant [4].

Table 6.1 A Comparison of Dempster’s and Walley’s
Rules for Example 3.1

ebh: P(hht| ebh) = 4/5%4/5%1/5 = 16/125
ebt: P(hht|ebt) =1/5%1/5%4/5 = 4/125
bh: P(hht|bh) =3/5*%3/5%2/5=18/125
£ PGhtlf) =1/2%1/2%1/2=1/8

bt: P(hht|bt) =2/5%2/5%3/5=12/125

Table 6.2 A Comparison of Dempster’s and Walley’s
Rules for Example 4.1

A (0,90,80)(4) (Q,B0,B0)4)
{bh} 144/185~0.78 1

n 25/37 = 0.68 125/144 = 0.87
(b1} 96/185 = 0.52 2/3=0.67

{oh, f} 20/37 = 0.54 125/144 = 0.87
{bh, b1} 64/185 =035 2/3=0.67
{f, bty 16/37 = 0.43 2/3=0.67
{bh, f, bt} 64/185 = 0.35 2/3~0.67

Next, let’s compare the two combination rules
for the second example of extremely biased
coins. Suppose we observe h, h, and ¢, in the
succeeding tosses of the second coin. When we
combine the prior belief function with the
consonant  belief functions representing
likelihoods both with Dempster’s and Walley’s
rule of combination, we get the results shown in
Table 6.2.

These results illustrates once again that although
the two combination rules end up with different
commonality numbers, the ordinal ranking they
indicate for singletons is the same (bh, ebh, f, bt,
ebt). Notice also that the relative plausibilities
for the singletons are the same. This implies that
if we transform the belief functions to
probability functions using the plausibility
transformation method [1], we get identical
probability functions. Notice that the belief
function obtained by Dempster’s rule is neither
consonant nor partially consonant, whereas the
belief function resulting from Walley’s rule is
partially consonant. This is because all four
belief functions Q,, Q,, Q,, Q, are partially
consonant, and the class of partially consonant
belief functions is closed under Walley’s rule.

If we regard the observations h-k-t as one piece
of evidence, then the likelihoods for the three
types of coins are as follows:

Q Cp O 9,90,90,80 0,50,50,F0
{ebh} Y 1 Ya o 128337=038 8/17 = 0.47
{ebt} %o Y 1 32/337 = 0.09 2/17=0.12
{bh} Yo Y& Y 144B337=043 9/17 = 0.53

{f Yo Vi 518  125837=037  125272=046
{bt} Yo Yo Y 96/337 =0.28 6/17 = 0.35
{ebhoebty Vo Va Ya 8/337=0.02 2017 =0.12

{bh, f} Y 518 % 100337 =030 1257272 =046
(hoby Vo Y Y 64337019 6/17=0.35
{f, bt Yo Y5 518 80/337~024 6/17=0.35
hfbty Vi Yoo Vi 641337=0.19 6/17=0.35

Observe T, =h Observe T,=h

Observe T; =¢

Figure 6.1 A Bayesian Network (with Belief
Function Prior) for Example 4.1

As shown in Table 6.3, the commonality
function we obtain using these probabilistic
likelihoods is exactly the same as the results of
Walley’s rule of combination.

Table 6.3 A Comparison of Dempster’s and Walley’s

Rules with Composite Evidence

A QDO )A) (QoEOw)(A)
{ebh} 8/17 =047 8/17 =047
{ebt} 2/17=0.12 2/17=0.12
{bh} 9/17 =0.53 9/17 =0.53

0 125272 =046 125272 = 0.46

(b8} 6/17 =035 6/17=0.35
{ebh, ebt} 217=0.12 2/17=0.12
{oh, f 125272 =046 1257272 =0.46
{bh, bt} 6/17 =035 6/17=035
i bty 6/17=0.35 6/17=035
(bh.f. b1} 6/17 =035 6/17 =035
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For this example, Dempster’s rule and Walley’s
rule give us identical answers. However, this is
not true in general since Dempster’s rule doesn’t
always give us a partially consonant belief
function.

7 Summary and Conclusions

Dempster’s rule of combination has been the
main tool for combining independent belief
functions. However, for statistical evidence, it
has some apparent shortcomings since the class
of partially consonant belief functions is not
closed under Dempster’s rule. In this paper, we
investigate the properties of Walley’s rule of
combination, introduced by Walley [5] for
combining belief function representations of
independent statistical evidence.

Walley’s rule has the feature that when we have
several independent statistical evidence, it
makes no difference whether we represent each
piece of evidence as a partially consonant belief
function and then combine them using Walley’s
rule, or if we represent the totality of all
independent pieces of statistical evidence by a
single partially consonant belief function.
Dempster’s rule does not have this feature since
the class of partially consonant belief functions
is not closed under Dempster’s rule. Of course,
one can question the desirability of this feature
in the context of general belief functions, for
which Dempster’s rule is designed.

Notice that Walley’s rule of combination is only
defined for partially consonant belief functions,
whereas Dempster’s rule of combination is
defined for all belief functions. Of course, one
could extend the validity of Walley’s rule to all
belief functions by first approximating a general
belief function by a consonant one [2], and then
applying Walley’s rule. This would be similar to
first transforming a general belief functions to a
probability functions using the plausibility
transformation, and then combining the
probability functions using Bayes’ rule.
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The computational complexity of Walley’s rule
is much lower than the computational
complexity of Dempster’s rule, since like
probability functions, a partially consonant
belief function is completely determined by its
values for singleton subsets.

After Walley introduces the new combination
rule, he dismisses its significance since he
claims its use could lead to sure loss (or “Dutch
book™) in decision-making situations. However,
Giang and Shenoy [3] have described a decision
theory for partially consonant belief lotteries
that is as principled as Bayesian decision theory
for probabilistic lotteries.

The class of partially consonant belief functions
with Walley’s rule of combination is an
uncertainty calculi (distinct from D-S theory of
belief functions) that is worthy of further
studies. Although its origins are in the
representation of statistical evidence, it may be
applicable more generally.
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