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Abstract

System-level design is an engineering discipline focused on producing methods,

technologies, and tools that enable the specification, design, and implementation

of complex, multi-discipline, and multi-domain systems. System-level specifica-

tions are as abstract as possible, defining required system behaviors while eliding

implementation details. These implementation details must be added during the

implementation process and the high effort associated with this locks system en-

gineers onto the chosen implementation architecture.

This work provides two contributions that ease the implementation process. The

Rosetta synthesis capability generates hardware/software co-designed implemen-

tations from specifications that contain low level implementation details. The

Rosetta refinement capability extends this by allowing a system’s functional be-

havior and its implementation details to be described separately. The Rosetta Re-

finement Tool combines the functional behavior and the implementation details

to form a system specification that can be synthesized using the Rosetta synthe-

sis capability. The Rosetta refinement capability is exposed using existing Rosetta

language constructs that have, previous to this work, never been exploited.

Together these two capabilities allow the refinement of high level, architecture in-

dependent specifications into low level, architecture specific hardware/software

co-designed implementations. The result is an effective platform for rapid proto-

typing of hardware/software co-designs and provides system engineers with the

novel ability to explore different system architectures with low effort.
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1 Introduction
System-level design is an engineering discipline focused on producing methods, technolo-

gies, and tools that enable the specification, design, and implementation of complex, multi-

discipline, andmulti-domain systems. Modern computer systems are composed of thousands

tomillions of heterogeneous components so technologies and tools for system-level design are

aimed at helping engineers deal with the complexity of requirements, design, implementation,

and integration when creating systems of this scale.

Traditionally, complexity is reduced by introducing abstractions. These abstractions, if cho-

senproperly, prune unimportant details from the engineer’s view and focus themon important

details. For instance, when designing a large hardware system by composing together multi-

ple hardware components, all of the individual components in the system are abstracted into

input/output interfaces by throwing away the internal implementation details. Because the

implementation details are no longer present, the engineer composing the system must rea-

son about system behavior by examining the interaction of components via their input/output

protocols. The abstraction is appropriate in this instance because it is focusing the engineer on

the task at hand, component composition. Focusing on how every component in the system

computes its outputs from its inputs would be needlessly complicated. However, abstractions

must eliminated if systems are to be realized as concrete products. There are two ways that

this can be done.

First, a compiler or synthesizer can be used to remove abstractions by filling in the details

needed for a concrete implementation. Expanding on the example above, a synthesizer will

fill in an instantiated component’s interface with the internal implementation details produc-

ing a complete hardware circuit for the design. This approach is highly desirable because

it reduces engineering effort, reduces time-to-market, and controls design and implementa-

tion costs. However, completely automated concretization via compilation and/or synthesis

can produce inefficiencies. For many products, especially software products, these inefficien-

cies are tolerable and can be worked around by increasing the performance of the underlying
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hardware. At the system-level, however, these inefficiencies add up quickly due to the scale of

the problems. The resulting implementations are either undesirable or incorrect due to non-

functional requirements not expressed in the design and not taken into account during the

compilation process.

Second, an engineer can manually eliminate abstractions by replacing them with low-level

equivalents. Thismethod is common in system-level design due to inefficiencies introduced by

automated synthesis. Highly abstract system models are developed using a system-level lan-

guage so system properties can be accurately understood. It is then converted into an imple-

mentation by developing an equivalent low-level model containing only implementation-level

abstractions. Any unsupported abstractions in the abstract model must be replaced with their

low-level equivalents. Abstractions are never completely removed by a system engineer, they

are simply iteratively refined until the engineer is content with the results produced via auto-

mated synthesis. The problem with first approach is not that tools are incapable of producing

efficient implementations. Indeed, compilers formany languages producemore efficient code

than most engineers are capable of and they do so without introducing errors. The problem is

the size of the semantic gap between abstract specifications and concrete implementations.

The size of this semantic gap is dependent on the language being used and is caused by the clas-

sic trade-off in language design: expressiveness versus interpretability. Common languages,

such as C/C++ and Java, sacrifice expressiveness so that they can easily be interpreted by a

computer. The semantic gap for languages that lean towards interpretability is small because

the abstraction levels are low. The semantic gap between a C/C++ design and the interpre-

tation of that design at the microprocessor level is small. A compiler can easily navigate this

gap on behalf of the engineer because there are few intelligent choices that need to be made.

A good compiler could easily test all of the available choices and pick the best choice based on

some optimization criteria set by the engineer. Most compilers for these languages already do

this to some extent.
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Languages that lean towards expressiveness sacrifice interpretability to gain high levels of ab-

straction. As the abstraction level rises, however, the semantic gap between design and imple-

mentation becomes larger and the number of intelligent decisions that a compiler must make

grows. Eventually it is either impossible or undesirable for a compiler tomake these decisions.

For instance, expressive specification languages allow system engineers to purposefully un-

derspecified systems by omitting the definition of a function. Obviously there is no way for a

compiler to “fill in implementation details” for a function that is never specified.

Evenwhen a compiler is able to provide the required details, their usemay still be undesirable.

To be desirable, the compiler must make implementation decisions on behalf of an engineer

that the engineer considers both correct and intelligent. Compilers are typically very good

about making correct decisions and, as such, they rarely introduce errors into an implementa-

tion. However, in highly abstract designs, compilers are not always capable of making intelli-

gent decisions because they lack the information needed to make intelligent implementation

decisions because this information is often elided in specifications.

The system design as described by a specification is ambiguous with respect to desired im-

plementations because specifications are suppose to be ambiguous in this respect. Modern

compilers are poorly suited to these highly abstract specification languages because the inten-

tional ambiguity leads to poor implementation decisions. To achieve synthesizability, themost

often used system-level design methodologies are built upon low-level abstractions with sys-

tem engineers often hand-coding software components in C/C++ and hardware components

in VHDL or Verilog. Even the next generation of system-level design tools only use moder-

ate levels of abstraction. For instance, SpecC, SystemC, and SPARK are all next generation

system-level synthesis tools that take C/C++ designs in various forms and synthesize systems

from them [8, 10, 19, 20]. While C/C++ provides much more abstraction for hardware de-

sign than the traditional VHDL or Verilog, even these abstraction levels are far below those

provided by specification languages such as Rosetta.
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1.1 Motivation

The motivation for this work comes from personal experience in system-level design and im-

plementation. System engineers want to raise abstraction levels because it eases the devel-

opment effort by reducing the overwhelming amount of information in a system design into

approachable chunks. Raising abstraction levels helps produce correct designs quicker and

cheaper. In contrast, system engineers also desire control over every aspect of a product’s fi-

nal implementation so that non-functional requirements can be met. These non-functional

requirements vary depending on the engineering domain, but include things such as mini-

mizing computational latency, maximizing computational throughput, minimizing transistor

counts, minimizing memory requirements, minimizing jitter, maximizing battery life, reduc-

ing cost, etc.

The great conundrum in system-level design, especially when multiple engineering domains

are involved, is how to produce methods, technologies, and tools that promote rapid creation

of functionally correct specifications and designs without compromising control over non-

functional requirements.

1.2 Research Contribution

Thiswork provides twomajor contributions, one to the engineering community and another to

the research community. First, a Rosetta synthesis capability is provided that allows a subset

of the Rosetta specification language to be automatically and efficiently implemented either

as hardware circuits via VHDL or software programs via LLVM. Second, a system-level refine-

ment capability is provided that supports rapid transformation of abstract, architecture inde-

pendent specifications into low-level, architecture specific implementations. Together these

two contributions provide an effective rapid prototyping platform for hardware/software co-

design using the Rosetta specification language and give system engineers the novel ability

to rapidly explore different implementation architectures without sacrificing control over the

design of those architectures.
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2 RelatedWorks
The refinement capability developed in this work is implemented as a program transformation

system that refines system-level specifications into HW/SW co-designed implementations.

The transformation system identifies declarative refinements present in a system specification

and then mechanically applies those refinements, creating a new system specification in the

process.

Program transformation has a long and varied history in computing. Modern programming

language compilers are built as complex program transformation systems that iteratively trans-

form the high-level language syntax into low-level machine implementations. Many formal

languages, specify evaluation, type-checking, and proof systems as term-rewriting systems

and can be considered program transformation systems. Additionally, some modern pro-

gramming languages include program generation facilities implemented as program trans-

formation systems.

2.1 Ad-Hoc Program Transformation

Ad-hoc program transformation techniques facilitate user directed transformation using tool

specific techniques often expressed outside a language’s normal syntax. These techniques typ-

ically focus on providing program optimization transformations or on providing program gen-

eration capabilities aim at eliminating boilerplate code.

The Glasgow Haskell Compiler (GHC) supports program transformation by applying user de-

fined rewrite rules on any code that matches a rewrite condition [21]. The rules themselves

are specified and applied usingGHC specific extensions to theHaskell programming language.

The authors make it clear that this rule-based program transformation system should only be

used to facilitate program optimizations beyond the capabilities of the compiler. For instance,

short-cut deforestation is a common optimization applied using GHC’s rule based program

refinement [12].
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As another example, the Groovy [6] programming language makes use of declarative annota-

tions to support transformation of the compiler’s internal AST representation. The program

refinements are created by implementing customGroovy compiler plugins. These refinements

are most often applied by matching annotations that are specified declaratively within the

Groovy program. The Groovy compiler uses these program transformations mainly to facili-

tate program generation targeted at eliminating boilerplate code. For instance, lazy field in-

stantiation can be used for a Groovy object simply by annotating the object. The compiler will

then transform the implementation of the object to include the necessary code to facilitate lazy

instantiation.

These ad-hoc program transformations systems focus on performing transformation that pre-

serve the functional behavior of a programbut alter the performance ormemory requirements

of the program. In contrast, this work’s transformation system focuses on the process of re-

fining specifications into implementations via the addition of implementation details used to

iteratively refine high-level specifications into low-level specifications. These additional im-

plementation details are concerned chiefly with the process of mapping behaviors at the spec-

ification level onto resources at the implementation-level. Additionally, the process of map-

ping functional behavior onto implementation-level resources allows specification of specific

implementation architectures, something not supported in existing program transformation

tools.

2.2 Program Transformation Tools

Program transformation tools use program transformation techniques to aid in the develop-

ment of a program. These tools range from standalone tools that transform specific languages,

such as KBEmacs[36] and Inject/J[11], to transformation languages such as Stratego[35, 5]

that help designers create custom transformations for any language, to runtime transforma-

tion engines that enable the construction of custom program transformation tools such as

the ubiquitous byte-code engineering libraries for Java or the generic programming libraries

Scrap Your Boilerplate[24] and Strafunski[23] for Haskell.
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There are two classes of tools presented here. First, KBEmacs and Inject/J provide program

transformation capabilities that aid in the development of a program. When using these tools

a programmer will typically intermingle manual coding with automated program transforma-

tion to create the desired final program implementation. The second class of tools aid in the

creation of custom program transformation tools. In the case of Stratego, a domain specific

language is exposed that aids in the development of abstract syntax trees, rewrite rules, and

traversals. This domain specific language can be compiled into a C program that implements

the transformation system. Strafunski and Scrap Your Boilerplate are similar in that they aid

in the development of custom transformation systems but are provided as Haskell libraries

instead of as languages.

In comparison to the first class of program transformation tools, this work is chiefly concerned

with providing rapid prototyping and hardware/software co-design. Instead of intermingling

manual coding and automated program transformation, the approach is to expose transfor-

mations as special language constructs that are intermingled within the specification. This

approach provides better support for rapid prototyping because refinements are kept sepa-

rate allowing them to be easily modified to achieve different results.

In comparison to the second class of program transformation tools, this work is not concerned

with aiding in the development of transformation systems. Indeed, this work’s transformation

system is built with the aid of Uniplate[29], a Haskell transformation library in the same spirit

as Strafunski and Scrap Your Boilerplate.

2.3 Program Synthesis

Figure 2.1: Formal Specification[32, 22]� �
function F(x :: D) where I(x)

returns z :: R|O(x,z) ≡ Body�
Program synthesis refers to a class of re-

search that deals with automating soft-

ware development with the goal of me-

chanically deriving correct and efficient programs from formal specifications. Research in this

area can be broken down into three major categories: proofs as programs, transformational

synthesis, and knowledge based program synthesis[22].
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All of the program synthesis research operates over formal specifications that can be rep-

resented as a quadruple F =< D,R, I,O > where D is the input type constrained by the in-

put condition I : D 7→ boolean and R is the output type constrained by the output condition

O : D×R 7→ boolean[32, 31, 22]. Syntactically, these specification can written as shown in fig-

ure 2.1. For a specification to be consistent, the expression Body and the output definition O

must produce the same solutions for any input deemed valid by I.

Proofs as Programs

Figure 2.2: Square Root Specification� �
function sqrt(x :: N) where x ≥ 0

returns z :: N|(z2 ≤ x∧ x < (z+1)2)�
In the proofs as programs approach

to program synthesis, specifications are

hypotheses of the form ∀(x :: D) . ∃(z :: R)

. (I(x) =⇒ O(x,z)). In words, hypotheses of this form state that for all valid inputs there exists

a valid output. Program synthesis then proceeds by performing a constructive proof of the

conclusion O(x,z) using the premise I(x). Because the proof is constructive, a program can be

automatically extracted from the proof[22]. Proofs as programs techniques and tools include:

QA3[18], Coq[25, 27], NuPrl[7], and Isabelle/HOL[4].

As an example of the proofs as programs approach, Kreitz[22] presents the formal specifica-

tion of an integral square root algorithm as ∀(x :: N) . ∃(z :: N) . (x ≥ 0 =⇒ z2 ≤ x∧x < (z+1)2).

The syntactic representation of this formal specification is given in figure 2.2.

Figure 2.3: Square Root Proof[22]� �
function sqrt(x :: N) where x ≥ 0

returns z :: N|(z2 ≤ x∧ x < (z+1)2)≡
if x = 0 then 0 else

let z = sqrt(x−1) in
if z2 = x−1 then z+1 else z�

The constructive proof of this formal speci-

fication can be done inductively. The base

case of the inductive proof, x= 0, is proved by

supplying the witness 0 for z0. The inductive

case uses the inductive hypothesis “assume

∃(zi−1 :: N) . zi−1 = sqrt(x−1)”. To prove the inductive case a case analysis is done on zi−1. In

the first case z2
i−1 = x−1 and the witness zi−1 +1 can be supplied for zi to discharge the proof.

In the second case z2
i−1 ̸= x−1 and the witness zi−1 can be supplied for zi to discharge the proof.
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The complete specification with accompanying proof is shown syntactically in figure 2.3. It

should be clear that a program could be extracted from the proof of the formal specification

of sqrt. Research in the proofs as program domain focuses on the development of strong,

constructive theorem proving languages and the extraction of efficient programs from these

constructive proofs[22].

Transformational Synthesis

Transformational synthesis techniques typically view formal specifications as executable pro-

grams that are simply inefficient. Starting with these easily written but inefficient formal

specifications, an efficient executable program is derived through the application of correct-

ness preserving term rewriting rules. Efficiency is achieve by applying simplification and ab-

stract data type removal, often at the expense of complicating the formal specification[26].

DEDALUS[30] is an example of a program synthesis tool in this area.

Figure 2.4: Less-All Specification� �
function lessall(x :: N, l :: List(N)) where true

returns z :: Bool|z = all(λ i 7→ x < i, l)�
As an example,Manna andWaldinger[26]

introduce a formal specification for the

lessall predicate and give the derivation

of an efficient program. Figure 2.4 shows the same specification using the notion of a specifi-

cation as a quadruple < D,R, I,O >. This specification states that lessall is true only when the

natural valued input x is less than all of the natural values in the input list l.

The DEDALUS[30] transformation system contains many generic rewrite rules allowing for

things such as arithmetic simplification and case analysis. In addition to the generic rules,

domain specific rewrite rules can be introduced. These rewrite rules could be considered ax-

iomatic function definitions rather than operational function definitions. For instance, the

following domain specific rewrite rules are used to transform this specification:

Vacuous All Rule: all(P, l) | (l = nil) = true
All Decomposition Rule: all(P, l) | (l ̸= nil) = P(head(l))∧all(P, tail(l))
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The first transformation done to the lessall specification is to apply a case analysis rule over

the input list l with the cases being l = nil and l ̸= nil. This rule introduces a conditional into

the specification transforming the body of the specification into i f l = nil then all(P,nil) else

all(P, l) where P = λ i 7→ x < i.

Figure 2.5: Less-All Program[26]� �
function lessall(x :: N, l :: List(N)) where true

returns z :: Bool|z =if l = nil then true
else (x < head(l))∧ lessall(x, tail(l))�

At this point the vacuous rule can be ap-

plied to the then branch of the condi-

tional and the decomposition rule can be

applied to the else branch of the condi-

tional. Application of these two rules produces i f l = nil then true else P(head(l))∧all(P, tail(l)).

If the operations < and head are considered primitive then the expression P(head(l)) can-

not be simplified any further. Thus, further transformation concentrates on the expression

all(P, tail(l))

Noticing that all(P, tail(l)) is an instance of the original expression all(P, l)with a smaller list, a

recursion introducing rule can be applied to transform the expression all(P, tail(l)) into simpli-

fied expression lessall(x, tail(l)). The final program representation for the lessall specification

is shown in figure 2.5. This program representation implements the original specification of

lessall correctly and efficiently.

Knowledge Based Program Synthesis

Knowledge based program synthesis focuses on program synthesis as a development process

requiring intimate knowledge of both software engineering and of the specification’s engineer-

ing domain. Typically, knowledge based program synthesis tools provide formally defined,

generic synthesis strategies that automatically construct algorithms via analysis of the speci-

fication. These algorithms can then bemademore efficient though the application of optimiz-

ing transformations. The Kestrel Interactive Development System (KIDS) is representative of

this category of program synthesis tools[32]. A modern, commercially supported descendent

of KIDS is available in the form of SpecWare[28].
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Consider the abstracted specification given in figure 2.1. In the KIDS nomenclature, this spec-

ification defines a problem F with a domain of D and a range of R. The expression Body of

the problem F may be omitted if the problem specification is abstract. If the expression is

present, however, it defines how solutions to the problem F can be computed from the inputs.

The input condition I and the output condition O can be considered constraints over valid

inputs and constraints over valid solutions for a given input. In effect, I and O allow tighter

input and output constraints for a problem specification than the implicit input and output

constraints due to the problem’s domain and range types.

From this definition, KIDSprovides interactive support for automatic derivation of correct and

efficient programs. To accomplish this a KIDS users typically goes through six steps, though

the steps are not prescribed by the KIDS tool[31]. First, the user will develop a domain theory

that describes the relevant concepts, operations, relationships, and properties of the problem

that is being solved. Domain theories are constructed in KIDS by importing existing domain

theories and then adding additional type definitions, function specifications, laws, and rules

of inference.

Second, a problem specification will be created that uses the definitions provided by the do-

main to describe solutions to a specific problem. The problem specification is provided in the

form shown in figure 2.1. The initial problem specification omits the expression Body with

valid solutions specified solely via the output constraints O. Then a design tactic us applied

to the problem specification to create an initial operational definition (i.e. the design tactic

provides an initial definition of Body). KIDS’ design tactics are generalized problem solving

algorithms such as divide-and-conquer, local search, or global search. These generalized al-

gorithms are then specialized, using the KIDS tools, to solve a particular problem.

For example, a KIDS user may decide that global search is a good algorithm for solving their

problem. To provide the initial operation definition for their problem F the user would:

1. Select a global search theory Gb from a library of existing general global search theories

such that Gb enumerates all possible values for the range of F . Because Gb enumerates
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all values in the range of F we can be sure that solutions to F as defined by O are in the

set of values enumerated by Gb.

2. Produce a specialized global search theory G f from the global search theory Gb with

respect to the problem specification F by finding a mapping θ that maps inputs x of

problemF into inputs θ(x)ofGb such that∀(z :: R f ).O f (x,z)=>Ob(θ(x),z). Thismapping

can be determined automatically by the KIDS tools.

3. Derive a necessary f ilter to prune the search space of invalid partial solutions and use it

to create a global search program Body. This provides the initial operational definition

for the problem specification F .

The initial operational definition formed during these first three steps is a correct behavioral

description of the specification, however, the definition is typically far from efficient. To com-

plete the process of generating a correct and efficient executable from the specification, the

user would:

4. Apply optimizations to the initial operational definition of the problemF to create amore

efficient operational definition. During this step the KIDS user manually identifies ex-

pressions within the operational definition of F and then applies optimizations to those

expressions. The optimizations are performance automatically by KIDS and include op-

erations such as simplification, partial evaluation / specialization, finite differencing,

and case analysis[31].

5. Apply data type refinement to the operational definition to eliminate abstract data types.

The abstract data types are replacedwith specialized representations that efficiently rep-

resent the data used by the operational definition. It is important to note that the elim-

ination of abstract data types respects the correctness properties of that data type. For

example, when replacing a set with a list representation the transformationmust ensure

that an element does not appear in the list twice.

6. Compile the operational definition of the problem specification into an executable that

will compute solutions to the problem when given inputs.
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After completing these six steps, the KIDS users has automatically derived a correct and effi-

cient executable representation of their specification.

Comparison to ProposedWork

Program synthesis tools, are related to this work in the sense they all desire to produce effi-

cient program representations from high-level, difficult to synthesize specifications. Each of

the categories of program synthesis also have some notion of how engineers interact with the

program synthesis tool to achieve the desired results. In the proofs as programs category, en-

gineers interact with the program synthesis tool via the creation of a proof where the choice

of a particular proof construct will influence the eventual outcome. Tools in the transforma-

tional synthesis category vary on the level of engineer interaction with some tools being highly

automated and other tools beingmainly engineer driven[9]. Knowledge based transformation

systems try to strike a balance by giving engineers control over the application and composi-

tion of transformations that are then mechanically applied.

Another relation between all program synthesis tools is that program transformations are de-

scribe either formally or semi-formally so that the result of applying the transformation iswell-

known to the engineer. The transformations supplied by this work are not formally defined

but the intention is that the result of applying the transformations is well-known. Formalizing

the transformations is left as future work.

Themain difference between this work and existing program synthesis tools is the scope of the

transformations that are provided. Existing program synthesis tools aim to produced a sin-

gle, efficient, software implementation from abstract specifications. This work is concerned

primarily with providing a rapid-prototyping capability that is capable of iteratively refining

abstract specifications into one ofmany low-level, hardware/software co-designed implemen-

tations.
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2.4 Approaches to System-Level Design

There are many existing tools and techniques for performing system-level design. Generally,

these tools and techniques fall into one of two categories. First, some tools ease system-level

design by generating hardware components from high-level programming languages. Tools

such as Catapult C[15], Handle-C[16], and SPARK[20] generate circuits from algorithmic de-

scriptions written in languages like C, C++, or SystemC[19]. BlueSpec[3] and Kansas Lava[13]

take the abstraction levels used to implement hardware circuits even higher by leveraging

functional programming techniques to describe circuit elements.

As an example, Kansas Lava is capable of producing hardware circuits from descriptions writ-

ten in a domain specific language that is hosted in Haskell. During this process the system

engineer describes functional behavior and communication using highly abstract constructs,

manually refines behavior using worker/wrapper[14] transformations, and then produces a

VHDL implementation using the Kansas Lava tools. The end result is a hardware system that

implements the described functional behavior.

Compared to these tools, this work supports HW/SW co-designed implementations and rapid

prototyping. Support forHW/SWco-designmeans that this work is capable taking a high level

system specification and generating a system implementation composed of interacting hard-

ware and software components. The tools described previously only support generation of

hardware systems. To support rapid prototyping, a tool must allow rapid generation of many

system implementations from a single system description. This work achieves this by sepa-

rating high level functional behavior from low level implementation details. When using the

tools described previously, functional behavior and implementation details are intermingled,

making it difficult to produce different implementations from a single description.

The second category of tools generate HW/SW co-designed system implementations from

a single source language. SpecC[10] and Impulse C[33] support HW/SW co-design of sys-

tems by synthesizing hardware circuits and software instruction streams from ANSI-C like
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languages while Kiwi[17] is capable of generating HW/SW system by analyzing .NET C# pro-

grams.

As an example, Kiwi is capable of producing HW/SW system implementations from descrip-

tions written in C# and compiled to the .NET virtual machine. During this process, a C#

program is written to describe a system’s functional behavior and communication and then

compiled to the .NET virtual machine. Partitioning of this C# program’s instruction stream

is then done, with some components partitioned onto Xilinx FPGAs for implementation and

other components left on the .NET virtual machine. Integration of the hardware and software

components into a complete system implementation is done by connecting the components

using some form of physical communications link, Ethernet switches being one example.

The main difference between this work and the second class of tools is that this work pro-

vides better support for rapid prototyping and design space exploration by separating high

level functional behavior and low level implementation details. In this work, a system’s im-

plementation is derived from its behavioral specification by adding implementation details in

the form of easily changed, declarative, system-level refinements. Different implementations

can be generated rapidly by changing the refinements used to derive the implementation. The

second class of tools conflate the behavioral specification of a system and the implementa-

tion of that system. Because of this, changes in a system’s implementation must be achieved

by changing the system’s described behavior, making it difficult to rapidly generate different

implementations.
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3 The Rosetta Specification Language
Modern system design is increasingly complex and makes use of heterogeneous models of

computation so that individual components in a system can be designed and implemented

in the most appropriate domain Additionally, modeling an understanding system-level prop-

erties, such as security or power consumption, is increasingly important. The Rosetta[1, 2]

system-level design language is designed to meet the needs of modern system engineers. It

places special emphasis on support formulti-domainmodeling to support heterogeneousmod-

els of computation and allows the precise, formal expression of requirements in ways that are

natural to the domain. Additionally, system-level properties can be expressed succinctly using

behavior composition that is a core feature of the language.

3.1 Domains

The specification, design, and implementation of modern systems requires expertise in a wide

variety of engineering and scientific domains. Consider for example, a modern mobile phone.

Even the most basic modern mobile phone requires many components:

1. ADC and DAC - Conversion from and to analog representation.
2. DSP and CPU - Computation including processing of audio and video data.
3. RF, Bluetooth, and WiFi - Wireless communication using analog signals.
4. LCD - Video display and user interface.
5. Battery - Power for all of the components in the mobile device.

Expertise in many domains is needed to support all of these components. Expertise in analog

signals, analog circuitry, digital signals, and digital circuitry is needed for the requirements

modeling, specification, design, and implementation of most of the components. Expertise in

electrical power sub-systems is required if themobile device is tomeet its power requirements.

Expertise in networking is needed so that the device can communicate using its wireless com-

munications components. Expertise in audio and video processing is required to support voice

communications and audio/visual media. Expertise in wireless communications is needed to

support the analog transmission and reception of signals. Additionally, expertise in computer

security is needed to ensure a reasonable standard of privacy on behalf of the user. Even this
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long list is not exhaustive because the amount of expertise needed is vast due to the number

of system domains covered by the components in the device.

Modern systems necessitate support for the multi-domain requirements modeling, system

specification, design, and implementation. At the design and implementation level this has

traditionally been done by providing separate tools that target one specific domain. Integra-

tion of the separately designed and implemented components is normally done by hand in a

separate, ad-hoc integration phase. This works well enough for many products, as evidenced

by the number of complex yet working systems on the market, but recomposition of compo-

nents during the integration phase can have a significant time and cost impact.

Using separate tools for requirements modeling and system specification is difficult to the

point of being infeasible because of the complex interactions among different components in

the system. For example, when modeling power requirements in a system the power usage

of one component will affect the power usage and/or requirements of another component.

Modeling the requirements using separate tools and integrating them by hand would quickly

become too burdensome.

Rosetta proposes a solution to the problem by directly exposing multi-domain support in a

single language. This has not been done traditionally because each domain uses different vo-

cabulary for expressing requirements and constraints, a different model of computation, and

different abstractions. For instance, requirements and constraints in the power domainwould

be expressed using terms such as volt, current, ampere, andwatt, whereas terms such as cy-

cles, register,mux, and bit would be used in the digital circuits domain.

Rosetta provides support for multiple engineering domains by allowing vocabularies, models

of computation, and abstractions to be defined inside of the Rosetta language in the form of

a Rosetta domain. Domains are hierarchical in natural in that one domain can inherit the

vocabulary, model of computation, and abstractions provided by another domain and extend

or constrain them as appropriate. System components are constructed using the vocabularies,

models of computation, and abstractions provided by the component’s domains. Additionally,
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Rosetta allows engineers to express how different domains interact with one another so that

system-level properties can be understood across domain boundaries.

3.2 Facets

Rosetta facets build upon Rosetta domains to describe one model in a system of models. The

facet is expressed using the vocabulary, model of computation, and abstractions provided by

the domain. For instance, a behavioral model of a JK flip-flop could be constructed in the

state based Rosetta domain by expressing the next state, Q′, of the JK flip-flop in terms of its

current input bits J and K and its current state, Q:

Q′ = (J and (not Q)) or (K and Q)

In this definition the model of computation, the notion of current state, next state, bit, and

the behavior of the and, or, and not operations are defined by the domain state based. We

could just as easily provide a power model of the JK flip-flop:

P′ = P + (if (J or K) then switch else leak endif)

Likewise, switch and leak might be definitions that come from a power domain modeled in

Rosetta. Their definitions could come from either a simple, generic model of power or from a

more complexmodel of power that takes into account some fabric implementation technology,

for instance 45nm CMOS. The simple, generic model would be faster to construct and could be

used during the initial requirements and specification phases to get coarse grained estimates

on power usage in the system while the more complex 45 nm model could be used once a

more completemodel has been produced to provide tighter bounds on the power consumption

estimate.

Each different facet expresses some model of the component using the vocabulary, model of

computation, and abstractions that are most convenient when developing that model. A final

model of the component can then be created by composing the individual facets together to

provide a new model using the compositional features of the Rosetta language.
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Facet definitions permit both requirements modeling and specification of functional and non-

functional properties. In addition, facets requiring pre-conditions and implications can be

expressed using an extension of facets known as components.

3.3 Requirements Modeling and Specification

Inside Rosetta facets, requirements modeling and specification development is done using a

rich expression language. This expression language is similar tomost programming languages

in that it supports primitive operations and values with which additional constructs can be

derived using the available methods of composition. Unlike most programming languages,

Rosetta is declarative. Models in declarative languages are defined by equations, in contrast

to imperative programming languages where models are constructed by algorithms. Because

of this, Rosetta, like most requirements modeling and specification languages, deviates from

programming languages in two important aspects. First, expressions in the Rosetta language

are used to represent properties of the system. This is in contrast to traditional programming

language where expressions are used to represent computations. The distinction here can be

subtle, as in listing 3.1, or obvious, as in listing 3.2.

Listing 3.1: Subtle Difference� �
1 (1) if x == 1
2 then y’ = 1
3 else y’ = 0
4 end if
5

6 (2) if x == 1
7 then y = 1
8 else y = 0
9 end if�

In listing 3.1 there are two expressions with the

first representing a property constraint in a sys-

tem and the second representing a computation

in a system. The first expression is stating that if

x is equal to one in the current state then y is equal

to one in the next state otherwise y is equal to zero

in the next state. The second expression is stating

that the storage location named y is updated to the value one if the storage location named x

contains the value one otherwise y is updated to the value zero. The difference is subtle be-

cause the computation that updates y is effectively forming a new state in a way that is entirely

consistent with the system properties stated in the first expression.
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Listing 3.2 shows a more obvious distinction between expressing properties and expressing

computation. The first expression in this example states that if command is not equal toNOT HING

then the next state of the system is one of two different states, either READING orWRIT ING.

The second equation is instead expressing a computation that computes a single next state

by combining the data representation of READING with the data representation ofWRIT ING

using the or operator. More than likely the computation represents an invalid next state as-

signment whereas the expressed property is completely valid.

Listing 3.2: Obvious Difference� �
1 (1) if command != NOTHING
2 then state’ = READING or
3 state’ = WRITING
4 else state’ = IDLE
5 end if
6

7 (2) if command != NOTHING
8 then state = READING or
9 WRITING
10 else state = IDLE
11 end if�

The second major deviation is a by-product

of the first: expressions in Rosetta may be

underspecified. Underspecification, in the

context of requirements modeling and sys-

tem specification, means that some details

are omitted from the specification because

they are deemed unimportant by the engi-

neer. An engineer may even completely un-

derspecify something to express the notion that they are only interested in the existence of

something and are uninterested in any of its properties. In most cases underspecification is

used so that system properties can be expressed axiomatically rather than definitionally.

Listing 3.3: Underspecification� �
1 sin( value :: real ) :: real;
2 forall( x :: integer |
3 sin(x) >= -1.0 and
4 sin(x) <= 1.0 );�

Consider, for example, the specification

given in listing 3.3. This specification defines

the function sin but does not give a definition

of how to compute the output of sin from its

input value. Instead the specification simply constrains the range of the function sin to be

between −1.0 and 1.0 using a declarative axiom.

Underspecification can be seen as a double edged sword. It is useful because complex spec-

ification logic can be reserved for the parts of system model that are unknown and must be

explored. The parts of the model that are well known and have established behaviors can be
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underspecified and their behaviors can be encoded axiomatically. However, if important parts

of a model are left underspecified, then model exploration can be unintentionally constrained

and important system properties may be missed or misunderstood. This is because engineers

rarely understand complex systems in enough detail a-priori to known which parts of the sys-

tem are well known, especially because interactions among different models are complex and

not well defined.

Currently, engineers deal with this a-priori knowledge problem using manual specification

refinement. A highly underspecified system is initially created and used to gain more insight

into the problem. This additional knowledge is used to refine the original specification by

removing some of the underspecification to gain more insight in to the problem. This process

is repeated until the engineer finds that the model describes the system at the correct level of

detail.
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4 Synthesis of Rosetta Specifications
The system-level design tools developed in this work proceed through several steps during

the refinement of high-level Rosetta specifications into low-level hardware/software co-design

implementations. First, complex data-types, abstract communication, and functional behav-

iors are refined into lower level representations. Second, a specification’s top-level design is

partitioned andmapped to resources at the implementation level. Finally, each partition in the

design is synthesized to either hardware circuits via VHDL or software programs via LLVM.

The goal of the low-level synthesis support is to be as close as possible to the eventual target

implementation (either VHDL or LLVM). There are two major reasons for having this goal.

First, having the directly synthesizable subset close to the implementation target means that

an engineer can accurately predict the performance and area consumption of the low-level

specification. This is important for a system-level design tool as the turn around time for

pushing an implementation into a form that can be loaded into a physical system is much

longer than for simple software programs. As such, system engineers want to know what the

results will be like before this process begins. Second, being close to the implementation target

eases the implementation of the synthesis engine, helping ensure that the implementation of

the synthesis engine is free of bugs.

There are several implications of the close proximity between the synthesizable subset and

the synthesis target. First, there are relatively few types and expressions in a specification

language like Rosetta that are directly synthesizable to low-level hardware or software imple-

mentations. The purpose of the first two refinement steps is to ease this restriction, allowing

a much richer set of Rosetta constructs to be synthesized.

Second, the subset of Rosetta that is synthesizable to hardware via VHDL is different than

the subset of Rosetta that is synthesizable to software via LLVM. One reason for this is that

we want to support all of the low-level constructs in the synthesis target in some form at the

Rosetta specification level. This ensures that system engineers are not artificially constrained

at the specification level and can achieve the desired implementation even if it means that
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they must manually refine the specification. It is important to allow manual refinement as

it is infeasible for the refinement system to support all possible refinements that the system

engineer may want to perform.

Another reason that the synthesizable subset differs between hardware and software targets

is that we do not want to force abstractions on the system engineer or impose a model-of-

computation before the design process begins. If the synthesizable subset for both hardware

and software targets were the same then there would necessarily be abstractions ormodels-of-

computation in one or both targets that would not be present in the underlying implementa-

tion fabric. This is because the underlying model-of-computation for hardware and software

components are vastly different. Software models-of-computation are inherently sequential

becausemicroprocessors force sequential execution of instructionswhile hardwaremodels-of-

computation are inherently parallel because current flows through all elements of the circuit

at the same time. Forcing hardware to be sequential or software to be parallel would require

the introduction of abstractions beyond the control of the engineer and beyond the ability of

synthesis tools to eliminate efficiently.

Furthermore, allowing the synthesizable subsets to differ is precisely what allows this work’s

synthesis tool to be used efficiently and effectively for hardware/software co-design. Hard-

ware/software co-design is an activity in optimizing system efficiency by leveraging the unique

capabilities of software resources and hardware resources. In effect, by partitioning a system

intelligently, we can gain all of the advantages of hardware over software or software over hard-

ware while mitigating or eliminating the disadvantages. By doing so we gain system efficiency

that would not be possible using exclusively software or exclusively hardware solutions.

4.1 Synthesizable Hardware Components

The Rosetta Synthesis Tool (RST) synthesizes Rosetta facets into hardware circuits via VHDL

in four phases. First, the synthesizable Rosetta specification is lowered into an intermediate

representation in register-transfer level form. Second, the intermediate form is converted into

an explicit graph representation. Third, the graph representation of the circuit is optimized
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Table 4.1: Supported Types
Rosetta Type VHDL Type
bit std_logic
word(W) std_logic_vector(W-1 downto 0)
integer std_logic or std_logic_vector
array(W,D) array(D-1 downto 0) of

std_logic_vector(W-1 downto 0)

and inferencing is done to discover high-level circuit constructs. Fourth, the graph represen-

tation is transformed into VHDL code.

The first step in this process, producing an RTL intermediate form, requires that the input

specification already be in hardware synthesizable form. To be in this form, the synthesizable

specification must only use the types given in table 4.1. This table lists the Rosetta types that

are supported by the hardware synthesis process and gives the VHDL types used for their

implementation.

The lowering of Rosetta types into VHDL types is extremely simplewith bit and word(W) rep-

resenting bits and bit-vectors at the circuit level. The array(W,D)Rosetta type is lowered into

the VHDL array type. These three type transformations, though simple, are all that is needed

to support all implementation level constructs for hardware circuits: wires, registers, logic

gates, RAMs, and ROMs. The hardware synthesis transformation supports one additional

type, integer. This Rosetta type is used to support the notion of an elastic width bit-vector.

The exact width of these bit-vectors is determined automatically during the synthesis process,

as discussed in section 4.1.2. The notion of elastic sizes could be extended to other types as

well, if additional flexibility is required in the synthesis process.

Table 4.2: Supported Modes
Rosetta Mode VHDLMode
design generic
input in
output out

inout

All Rosetta facets in the synthesizable specification

must meet certain requirements. First, the domain

must be one of static, state_based, resource, mem-

ory, target, bridge, or system. The domains re-

source, memory, target, bridge, and system are used to describe the top-level system design

and the resources instantiated within. They are discussed further in section 5.
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The domains static and state_based are used to represent functional behavior in Rosetta

specifications. These two domains are the only supported domains because they neatly cap-

ture the two different types of circuits at the implementation level. The static domain is

used to describe stateless behavior. Stateless behaviors compute their output solely based

on their current input, capturing the notion of combinational circuits. Comparatively, the

state_based domain allows the description of stateful behavior and captures the notion of

sequential circuits. RST ensures that any specification being synthesized meets the require-

ments on the domain but it performs no correctness checks. In particular, it assumes that the

Rosetta type checking capability assures static and state_based facetsmeet their definitions

according to the Rosetta language definition.

Table 4.3: Supported Expressions
var : Rosetta variable
lit : [0..9]* | bottom
seq : b” (0|1)* ”

| o” [0..7]* ”
| x” [A..F,0..9]* ”

pre : % | not
inf : + | - | * | / | & | =

| == | /= | > | < | >=
| <= | and | or | xor
| nand | nor | xnor

idx : <lit> , <lit>+
| <lit>,..<lit>

grd : <exp> | <var>’event
| <var>’event and <var>=1
| <var>’event and <var>=0

exp : <lit> | <seq>
| <pre> <exp>
| <exp> <inf> <exp>
| <var> ( <exp> )
| <exp> sub [ <idx> ]
| if <grd> then <exp>

else <exp> end if

In addition to the domain requirements, all

synthesizable Rosetta facets must only make

use of the parameter modes given in fig-

ure 4.2. Like the transformation of Rosetta

types into VHDL types, the transformation

of Rosetta parameter modes into VHDL pa-

rameter modes is straight-forward. Rosetta

design parameters become VHDL generics,

Rosetta input parameters become VHDL in

parameters, Rosetta output parameters be-

come VHDL out parameters, and Rosetta

parameters with no explicit mode become

VHDL inout parameters. The types of these

parameters must be one of the types given

earlier with one exception, design parame-

ters are allowed to be of type boolean, string, real, or natural in addition to those described

earlier. The reason for this exception is that the expanded type support is necessary for the
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correct modeling of black-box Xilinx primitives. These primitives make use of the expanded

types to defined generic configuration parameters.

The final two requirements are that all declarations in the facet must be of a supported type

and all terms in the facet must be a facet instantiation, facet interface instantiation, library

definition, library use, or equality between a “simple” variable and a synthesizable expression.

Support for facet and facet interface instantiations provides the structural design capability

that hardware engineers expect with facet interface instantiation providing “black box” com-

ponent support. This allows use of vendor IP cores and hardware cores constructed in other

languages.

Library definitions and library uses are special constructs used to allow the notion of libraries

and library uses to be imported into a facet’s implementation. These are usually used to sup-

port “black box” entities instantiated within a Rosetta design. These entities are typically de-

fined in an IP library that must be imported and used during implementation.

Figure 4.1: Example HW Circuit
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Support for equalities provides the behav-

ioral synthesis capability that has become

common in the hardware design community.

Synthesizable behavioral terms in the syn-

thesizable Rosetta subset must have a left

hand side (LHS) that is “simple”, meaning

the LHS is a declaration, output port, or is

the next state operator applied to either a declaration or output port.

The right hand side (RHS) of a behavioral term must be one of the synthesizable expressions

given by the grammar in table 4.3. The expressions defined by this grammar support all of

the implementation-level logic gates required to construct efficient hardware circuits and in-

cludes constant values, boolean logic gates, arithmetic gates, comparator gates, bit slicing,

concatenation, multiplexers, and registers.
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Listing 4.1: Synthesizable Facet� �
1 facet exfct(ITV :: design word(8); clk :: input bit; rst :: input bit;
2 ena :: input bit; ovl :: output word(8)) :: state_based is
3 acc :: word(8); res :: word(16);
4 begin
5 ovl = res sub [7,..0];
6 acc’ = if clk’event and clk == 1 then
7 if rst == 1 then ITV
8 elseif ena == 1 then acc + 1
9 else acc end if
10 else acc end if;
11

12 inst: otherfct(clk, acc, res);
13 end facet exfct;�

As an example, a synthesizable Rosetta facet is given in listing 4.1. In this example, an accu-

mulator, acc, is constructed using the clock signal clk, the reset signal rst, and the enable

signal ena. The clock signal and the value of this accumulator are supplied as inputs to facet

instantiation inst and the value res is driven by the output of inst. The output value ovl of

the facet is then driven by the lower eight bits of the value res.

The hardware circuit that is produced by RST is shown in figure 4.1. Comparing the example

facet’s code to the resulting hardware circuit, we see that every element in the code is reflected

in a simple, understandable way in the circuit. The input and output parameters of the facet

become input and outputs of the circuit, the accumulator described by v becomes a circuit

level accumulator using an adder and register and the facet instantiation becomes an entity in

the circuit.

In addition to the synthesizable functional behaviors described above, RST supports a rich

set of synthesis attributes that can be used to provide additional information to the Xilinx

synthesis tools. Listing 4.2 shows an example of how synthesis attributes can be used to direct

the Xilinx synthesis tools. In this case, a DCM is instantiation to provide a stable clock, clk,

from a reference clock, refclk. The three attributes tell the Xilinx synthesis tool that clk is a

clock signal, that refclk is the parent clock signal from which clk is generated, and that clk
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Listing 4.2: Synthesis Attributes� �
1 facet genclk2x(refclk :: input bit; clk :: output bit) :: state_based is
2 begin
3 idcm: DCM(...,refclk,...,clk,...);
4 clk’sigis = ”CLK”; clk’clk_inport = refclk; clk’period = 10*ns;
5 end facet exfct;�
has a 10 nanosecond period. Synthesis attributes are derived directly from those supported

by the Xilinx synthesis tools and are listed in appendix A.

RTL Representation

The first phase in the process of transforming synthesizable Rosetta code into VHDL is the

conversion of Rosetta code into an RTL intermediate form. The RTL intermediate form is a

list of RTL nodes as given by table 4.4. In this representation, connections between nodes are

implicit with the inputs to each node stored as references.

The conversion process is performed individually on each facet in five basic steps: conver-

sion of parameters, conversion of declarations, conversion of behavioral terms, conversion of

structural terms, and conversion of synthesis attributes. Because each facet is processed sep-

arately from the rest of the system, the result of synthesizing an entire system is a list of RTL

intermediate forms, one for each facet.

Representation of Types

During the first two steps, conversion of parameters and declarations into RTL intermediate

form, Rosetta types must be converted into the appropriate RTL intermediate form. In the

first and most common case, Rosetta types are converted into a simple integer bit width that

is stored inside an RTL node and used to determine the number of output bits produced by

that node. Table 4.5 shows the supported Rosetta types for this case and their corresponding

bit widths.

One special case is the Rosetta type array(D,word(n)). This type can only be used as part of a

Rosetta variable declaration and is used tomodel synthesizable RAMs in theRosetta language.
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Table 4.4: RTL Nodes

RTL Circuit Nodes
RTLE - Logic gate RTLI - Input port
RTLO - Output port RTLIO - Input/output port
RTLG - Generic value RTLN - Named value
RTLD - Entity output port RTLL - Library definition
RTLU - Library use RTLB - RAM storage

RTLBR - RAM read RTLBW - RAM write

RTLE Logic Gate Types
Cons - Constant value Unary - Unary gate

Binary - Binary gate Select - Mux Gate
Split - Slicing gate Entity - Entity instantiation

Const Value Types
Signed - Signed value Unsigned - Unsigned value

Integer - Integer value Natural - Natural value
String - String value Boolean - Boolean value

Real - Real value Derived - Derived value

Unary Gate Types
Not - Not

Binary Gate Types
Add - Addition Sub - Subtraction
Mul - Multiplication Div - Division
Mod - Modulo Rem - Remainder

Concat - Concatenation And - Bitwise And
Or - Bitwise Or Xor - Bitwise Xor

Nand - Bitwise Nand Nor - Bitwise Nor
Xnor - Bitwise Xnor

Select Test Types
Eq - Equality Ne - Inequality
Gt - Greater than Lt - Less than
Ge - Greater than or equal Le - Less than or equal
Rs - Rising edge Fl - Falling edge
Dl - DDR edge Id - Identity
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Requiring the type to be used as part of a variable declaration ensures that RAMs are not used

for facet I/O parameters, an unsynthesizable construct. The storage requirements for this

type would be D × N bits but the RTL representation is only N. This is because types at the

Rosetta level are represented as output bit widths in the RTL intermediate form. In this case,

the extra depth parameter D is modeled separately by the RTLB node and combined with the

output width to determine the total storage requirements for the RAM.

Table 4.5: RTL Types
Type Width

integer 0
bit 1

word(N) N
array(N,bit) N

array(D,word(N)) N

The second type representation in the RTL interme-

diate form only applies to facet parameters using the

designmode. In this case an expanded set of types are

supported so that synthesizable Rosetta designs can

more easily integrate with other synthesis tools. In ad-

dition to the bit-vector like types already supported, design parameters can have one of the

extra types string, natural, boolean, or real. Each of these extra types is modeled naturally

as their type indicates.

The use of design parameters inside of behavioral and structural terms in the synthesizable

subset of the Rosetta language is restricted to the bit-vector like types given in table 4.5. This

limits the use of the extra types allowed for design parameters to simply passing arguments to

other design parameters during structural instantiation of a facet. Effectively, the extra types

are useful onlywhen instantiating a facet interface that is a hardware component implemented

outside of the Rosetta language.

For example, A Xilinx Digital Clock Multiplier (DCM) can be modeled in the synthesizable

subset of Rosetta as a facet interface that takes several design parameters that make use of the

extra type support. An instantiation of this facet interface is supported in the synthesizable

subset of Rosetta and will eventually lead to an implementation that contains the DCM with

its corresponding design parameters.
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Representation of Parameters

Lowering facet parameters into RTL intermediate form is accomplished by producing an RTL

node that corresponds to the parameter’s mode. As given in table 4.2, a parameter’s mode

must either bemissing, input, output, or design for a facet to be synthesizable. Themapping

of synthesizable parameter modes into RTL nodes representations is given by table 4.6

Table 4.6: RTL Parameters
Mode RTL Node
input RTLI size name
output RTLO size name ref

RTLIO size name ref
design RTLG size type

When lowering a parameter with mode input, RST

creates an RTLI node with size defined by the parame-

ter’s type and name defined as the parameters name.

The lowering of parameters with no mode or mode

output is similar with RTLIO and RTLO nodes being

produced respectively. The main difference is that RTLO and RTLIO nodes store an additional

ref that is a reference to the node whose value is used for the output.

Parameters using the designmode are considered design time constants and are lowered into

RTLG with size and type derived from the parameter’s type. The size of the design parameter

represents the number of bits required to represent the parameter at the implementation level

and is undefined for design parameters that use one of the extra types not supported by be-

havioral terms. The type representation for the node is a simple type encoding supporting all

of the extra types that can be used for design parameters.

As an example, the facet shown in listing 4.1 has five facet parameters. These parameters

would be converted into the following five RTL intermediate form nodes:

1. ITV :: design word(8)→ RTLG 8 (GenericBitVector 8)
2. clk :: input bit→ RTLI 1 “clk”
3. rst :: input bit→ RTLI 1 “rst”
4. ena :: input bit→ RTLI 1 “ena”
5. ovl :: output bit→ RTLO 1 “ovl” REF

For the output node ovl, the value REF in the produced RTLO would be a reference to the node

that was the result of synthesizing the Rosetta expression “res sub [7,..0]”.
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Representation of Declarations

Lowering facet declarations into RTL intermediate form is accomplished by producing either

a named RTL node (RTLN) or an RTL RAM storage node (RTLB1). RTLN nodes are created for

any declaration that is not of type array(D,word(N)) while RTLB nodes are created for that

type.

When an RTLN node is produced for a declaration the size and name of the declaration are

stored inside of the node much like RTL input nodes (RTLI). RTLB nodes are very similar in

that they store the size and name of the declaration as well. The main difference is that RTLB

nodes store an additional value D that is the depth of the RAM that the node represents. It is

combined with the size to determine the storage requirements for the RTLB node.

Declarations in the Rosetta language can also be given a constant value. In this case the two

declaration nodes, RTLN and RTLB, store an extra value. RTLN nodes store an extra bit-vector

like value that is the constant value of the declaration in bit-vector formwhile RTLB nodes store

an array of bit-vector like values of size D.

Representation of Behavioral Terms

The lowering of a facet’s behavioral terms into RTL intermediate form is the largest task faced

during the Rosetta to RTL conversion process. During this stage of the conversion process,

RST visits all of a facet’s behavioral terms one at a time and attempts to convert them into an

RTL representation.

As described in section 4.1, for a facet to be synthesizable the behavioral terms in that facet

must be one of three special forms:

1. add_library(“library name”);
2. add_use(“library use”);
3. lhs = rhs;

1The acronym RTLB stands for RTL Block RAM and was chosen when RST only supported Block-RAMs.
The current implementation supports Distributed-RAMs and Block-RAMs so the acronym is now a bit of a
misnomer.
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Listing 4.3: Library Terms� �
1 facet interface DCM(
2 ...
3 ) :: static
4 end facet interface;
5

6 facet libex :: static is
7 begin
8 add_library(”unisim”);
9 add_use(”unisim.all”);
10 idcm: DCM(...);
11 end facet;�

The first two forms support the notion of Vendor IP li-

braries and uses in the VHDL implementation of the

facet. For example, in figure 4.3 the facet libex has

one library definition term and one library use term.

Together these two terms allow access to the Xilinx

UNISIM IP library that contains the DCM entity. The

process of lowering these first two special forms is sim-

ple. For every add_library term found a correspond-

ing RTLL node is created containing the name of the library to define. Likewise, for every

add_use term found a corresponding RTLU node is created containing the required use clause.

Listing 4.4: Behavioral Terms� �
1 facet behex(c::input bit;
2 e::input bit;
3 a::input word(8);
4 b::output word(32))
5 ::state_based is
6 i :: word(9);
7 r :: array(512, word(32));
8 v :: word(32);
9 begin
10 i = e & a;
11

12 r(i)’ = if c’event and c==1
13 then x”10010004”
14 else r(i)
15 end if;
16

17 v = if c’event and c==1
18 then r(i);
19 else v
20 end if;
21

22 b = 3 * v + 1;
23 end facet;�

The third form supported by RST is the main

mechanism by which functional behavioral

is defined. In this form two Rosetta expres-

sions are defined to be equivalent. The left

hand side (LHS) of this equality must be an

output parameter, a declaration, or an index

into a RAM declaration. Listing 4.4 gives

an example of each of the allowed LHS ex-

pressions with line 10 showing a declaration,

line 12 showing a RAM index, and line 22

showing an output parameter. The declara-

tion andRAM index LHS forms can also have

an optional tick postfix operator applied. In

the Rosetta state_based domain, the post-

fix tick operator is used to mean “next state”.

When used in conjunction with one of the

clock generating expressions described below, this allows the description of stateful registers.
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The right hand side (RHS) of the behavioral termmust be a synthesizable expression as given

in table 4.3. When synthesizing the behavioral term, RST first converts the RHS expression

into an RTL intermediate form representation. The result of this process is an RTL node that

represents the value of the expression. RST will then perform one of three actions depending

on the LHS expression.

If the LHS expression is an output parameter then the RTL node corresponding to that pa-

rameter is found. The found node is then updated so that ref is a reference to the RTL node

produced by the RHS. The effect is that the output parameter is connected to the value pro-

duced by the expression that it is equivalent to.

If the LHS expression is a declaration then the RTL node corresponding to that declaration is

found. This node is then updated by replacing the contents of the found nodewith the contents

of the node produced by the RHS expression. All references to the found node remain valid so

that any connections between the found node an other nodes remain valid.

If the LHSexpression is aRAM index then a RTLBWnode is created. This node stores a reference

to the RAM being indexed into, a reference to the index being used, and a reference to the

RTL node produced by the RHS. As an example, the RAM index on line 12 of listing 4.4 would

produce a RTL node RTLBW (REF “r”) (REF “i”) (REF rhs) where rhs is a reference to the

RHS expression on line 12.

The conversion of the RHS expression into RTL intermediate form is a straight forward con-

version of the synthesizable expressions ,as defined in table 4.3, into one of the RTL interme-

diate form nodes given in table 4.4. The conversion is shown in table 4.7. This table shows the

eight major node types produced by RST when synthesizing the RHS of an expression. Ex-

cept for RAM nodes, each node created from a RHS expression is a RTLE node that stores an

operation and a set of operand references. The major nodes types are constructed as follows:

1. All constant value constructors in the Rosetta language are all reduced to a Const node.

2. Indexing into a Rosetta sequence or selecting a subset of bits using the sub operator are

both converted into a bit slicing node.
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Table 4.7: Rosetta Expressions as RTL Nodes

Constant Nodes
[0..9]∗ → RTLE Const v b” ... ” → RTLE Const v

x” ... ” → RTLE Const v o” ... ” → RTLE Const v

Bit Slicing Nodes
x(i) → RTLE Split x i i x sub [h, ..l] → RTLE Split x h l

Mux Nodes
if g1 then x elseif g2 then y else z end if → RTLE Select [g1,g2] [x,y] z

RAMNodes
ram(i) → RTLBR ram i

Unary Nodes
not x → RTLE Not x

Binary Nodes
x+ y → RTLE Add x y x− y → RTLE Sub x y
x∗ y → RTLE Mul x y x/y → RTLE Div x y
x&y → RTLE Concat x y x and y → RTLE And x y

x or y → RTLE Or x y x xor y → RTLE Xor x y
x nand y → RTLE Nand x y x nor y → RTLE Nor x y
x xnor y → RTLE Xnor x y

Comparison Nodes
x == y → RTLE Eq x y x/= y → RTLE Ne x y

x > y → RTLE Gt x y x < y → RTLE Lt x y
x >= y → RTLE Ge x y x <= y → RTLE Le x y

Clock Nodes
x′event and → RTLE Rs x x′event → RTLE Dl x

x == 1
x′event and → RTLE Fl x

x == 0
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3. All Rosetta if statements are converted into mux operations that have one operand ref-

erence for each guard, one operand reference for each clause, and a single operand ref-

erence for the default value from the else part of the if statement.

4. Indexing into aRAM is converted into a RTLBR node that contains a reference to theRAM

being read and to an operand that is the index being read.

5. The Rosetta unary operation not is turned into a unary Not operation in the RTL inter-

mediate form.

6. All Rosetta binary operations are converted into a corresponding binary operation in the

RTL intermediate form.

7. All Rosetta comparison operations are converted into their corresponding comparison

operation in the RTL intermediate form.

8. The Rosetta ’event attribute is turned into a clock node in the RTL intermediate form.

If the attribute is paired with an equality to 1 then a rising clock is generated and if it is

paired with an equality to 0 then a falling clock is generated. If the attribute is not paired

with any equality then a DDR clock is generated.

Representation of Structural Terms

The lowering of structural instantiations into RTL intermediate form is accomplished by gen-

erating two types of RTL nodes for every instantiation. First, an Entity gate is constructed

inside of a RTLE node to represent the instantiation as a “black box” entity. To form this gate

correctly, RSTmust be able to determine the parameters required by the entity via a facet or a

facet interface declaration. These parameters are stored in the Entity so that the name,mode,

and type of each parameters in the entity can be determined during the rest of the synthesis

process.

Once the parameters for the instantiation are found, they are hooked up to their corresponding

instantiation arguments. Design arguments and input arguments are stored in the Entity

gate just like all other input connections are stored in the RTL intermediate form, as a list of

references to the node whose output is used as the input to the entity.
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Outputs from the instantiation produce the second type of RTL node. For each output node in

the instantiated entity as single RTLD node is produced to represent the output. Each output is

required to have its own node in the RTL intermediate form because all connections from the

output of one node to the input of another node are stored as simple references to the node

producing the output. Thus, each output in the entity instantiation needs to have its own node

in the graph so that it can be referenced unambiguously by other nodes.

Each RTLD node stores a reference to the RTLE node created for the Entity gate, a size in bits,

and the name of the output parameter that the RTLD node corresponds to in the entity instan-

tiation. This information is used by RST in later stages to connect the RTLD node back to the

correct output port on the entity instantiation that generated it.

As an example, the facet shown in listing 4.1 has a single facet instantiation, inst, with two

input parameters and one output parameter. This term would be converted into RTL inter-

mediate form as follows:

inst: otherfct(clk, acc, res);
→
RTLE (Entity ”otherfct” [REF ”clk”, REF ”acc”])
RTLD 16 (REF ”otherfct”) ”otherfct_res”

The RTLD node that is created during the processing of the instantiation would be the node

referenced whenever the variable res is used in other parts of the facets.

Representation of Synthesis Attributes

During both behavioral synthesis and structural synthesis, RTL intermediate form nodes are

created as low-level representations of the specification being synthesized. The final step per-

formedbyRST is the extraction andprocessing of low-level synthesis attributes. This produces

a table of attributes that are used to produce synthesis constraints for the Xilinx synthesis tool.

The semantics of each synthesis attribute is enforced outside of RST. As such, synthesis at-

tributes are represented in the Rosetta language using Rosetta attribute constructs connected

to either declarations, instantiations, or parameters. When RST processes the synthesis at-
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tributes an appropriate Xilinx synthesis constraint is generated containing a reference to the

correct declaration, instantiation, or parameter node. A list of supported synthesis constraints

can be found in appendix A.

Graph Representation

The second phase performed when lowering synthesizable Rosetta specifications into hard-

ware circuits is to convert the RTL intermediate form into graph based representation that

has explicit connections between nodes. The process of lowering Rosetta specifications into

graph based form is done in two steps so that each of the steps is more easily accomplished.

The RTL intermediate form produced in the first step represents the hardware circuit as a set

of RTL intermediate form nodes with connections between nodes represented as references

stored in the consuming node and referencing the producing node. This intermediate form

is easy to produce from the Rosetta language because the language represents connections

between nodes as references to intermediary variables. However, examining, canonicalizing,

and optimizing the RTL intermediate form directly is more difficult than necessary. Because

of this, the RTL intermediate form is converted into a explicit graph representation before

processing is done.

The process of converting the RTL intermediate form into the explicit graph based represen-

tation is relatively straightforward. The graph representation is stored as a traditional multi-

digraph, G = (V,E) with loops allowed in the graph. The vertices V in the graph are labelled

with one of the operations in table 4.8 and determine the operation that the node applies to

its incoming edges.

The edges E in the graph are labelled with a three tuple (F,T,S) with F and T representing

the port on the source node and the port on the target node. S represents the bit-width of the

edge. Each edge is labelled with source and target ports to allow the ordering of incoming and

outgoing edges so that non-commutative nodes such as GSub and GEnt can correctly order their

operands. Additionally, the bit-width of the edge is maintained to aid in graph processing and

VHDL conversion.
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Table 4.8: Graph Nodes
RTL Circuit Nodes

GIn - Input port GOut - Output port
GInOut - Input/output port GGen - Generic value

GNam - Named value GLib - Library definition
GUse - Library use GVal - Constant value
GRam - RAM storage GBram - Block-RAM storage
GReg - Register GMux - Mux Gate
GIdx - Slicing gate GEnt - Entity instantiation
GAdd - Addition GSub - Subtraction
GMul - Multiplication GDiv - Division
GMod - Modulo GRem - Remainder
GCon - Concatenation GNot - Not
GAnd - Bitwise And GOr - Bitwise Or
GXor - Bitwise Xor GNand - Bitwise Nand
GNor - Bitwise Nor GXnor - Bitwise Xnor
GEq - Equality GNe - Inequality
GGt - Greater than GLt - Less than
GGe - Greater than or equal GLe - Less than or equal
GRs - Rising edge GFl - Falling edge
GDl - DDR edge

Const Value Types
Signed - Signed value Unsigned - Unsigned value

Integer - Integer value Natural - Natural value
String - String value Boolean - Boolean value

Real - Real value Derived - Derived value

Most of the nodes in the RTL intermediate form have vertices in the explicit graph represen-

tation with identical form except that references are not stored in the nodes but are instead

converted into graph edges from the referenced node to the referencing node. The conversion

of the RTL intermediate form to graph representation starts by selecting an unprocessed node

from the RTL intermediate form, in no particular order. A corresponding vertex will then be

created and added to the graph. For example, if a RTLE Add x y node is selected then a GAdd

vertex will be created and added to the graph.

All of the RTL intermediate form node references in the selected node will then be converted

into graph edges. There are two cases that need to be handled. First, if the reference is to a

RTL intermediate formnode that has already been processed then the vertex corresponding to
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that node is selected as the source vertex SV and the node currently being processed is selected

as the target vertex TV . Second, if the reference is to an unprocessed RTL intermediate form

node then that node is converted into its corresponding graph representation and the resulting

vertex is used as the source vertex SV with the target vertex TV being the vertex from the node

being processed. Note that the process will correctly deal with loops in the resulting graph

because a vertex for an RTL node is created before any references are resolved.

After the source vertex SV and target vertex TV have been determine, the label for the new

edge must be determined by figuring out the source port F and target port T . The target port

is determined by examining the order of the references in the RTL intermediate form node.

For instance, in a binary node the first reference would have a target port of 0 and the second

reference would have a target port of 1. Determining the source port F involves examining

the referenced node. If the referenced RTL intermediate form node is a RTLD, RTLBW, or RTLBR

node then the source port is determined either by finding the correct output port from the RTLD

node’s associated entity using the port name stored in the RTLD node or by creating a new port

on the GRam vertex associated with the RAM being read or written. If the RTL intermediate

form node is not one of these then the source port is 0 because all other nodes have only a

single output. After the source and target vertices have been determined and the source and

target ports have been determined, a new edges (SV,TV ) is created an added to the graph with

the label (F,T,0). With the bit-width 0 indicates that the width of the edge is unknown.

RTLD, RTLBR, and RTLBW nodes are treated differently than other nodes when converting the

RTL intermediate form representation into the explicit graph representation because the pur-

pose of these nodes is to represent the input or output ports of another node. As such, these

nodes do not create new vertices in the graph but are instead used to determine the correct

port to use when creating edges, as described above.

Determining the Bit-Width of Graph Edges

The initial width given to each edge in the graph is 0 to indicate that the width is unknown.

After all of the nodes in the RTL intermediate form have been processed, the explicit graph
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based representation is complete with all vertices and edges in the graph resolved correctly.

At this point, the bit width of each edge is determined by visiting each vertex in the graph

in topological order. When visiting each node, a simple algorithm validates the bit-width of

all incoming edges and then determines the output bit-width by combining the information

about the incoming widths with the node’s label. Because vertices in the graph are visited in

topological order, the algorithm to determine the width of each edge propagates information

from input parameters, declarations, and constants to output parameters and other declara-

tions. GIn, GOut, GInOut, GNam, and GVal vertices are decorated with their declared width by

examining the RTL node fromwhich the vertex was created. This provides the initial bit-width

information that is propagated though the graph.

As the algorithm visits each vertex in the graph if first ensures that the incoming edges have

appropriate widths. For instance, when visiting GOut or GNam vertices, the algorithm ensures

that the incoming edges have the same width as the vertex’s decorated width, ensuring that

the equality in the original specification was an equality between bit-vectors of equivalent size.

Once the width of each incoming edge has been validated, the width of each outgoing edge is

assigned as appropriate. For instance, the width of the outgoing edge of a GAdd vertex is the

same as all incoming edges while the width of a GCon vertex’s output edge is the sum of all

incoming edges. Upon successful completion, the complete graph based representation has

been formedwith vertices in the graph corresponding directly to the parameters, declarations,

instantiations, and behavioral expressions in the original specification and edges in the graph

representing either structural composition or equalities from behavioral terms.

Graph Canonicalization

The third phase performed in the process of synthesizing Rosetta specifications to hardware

circuits is the canonicalization of the explicit graph representation. After the complete graph

representation has been formed, a series of canonicalization and resource discovery transfor-

mations are performed on the graph to prepare the graph for conversion into a hardware cir-

cuit. The purpose of these transformations is not necessarily to optimize the hardware circuit.
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Figure 4.2: Comparator Canonicalization
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The main purpose is to discover resources described in the Rosetta specification that are not

discovered by the lower-level hardware synthesis tool (in this case the Xilinx synthesis tool)

when producing the naïve description of the circuit directly from the untransformed graph.

Canonicalization of Comparators

Table 4.9
X 1 X == 1
0 1 0
1 1 1

The first transformation performed on the graph representation is the

canonicalization of comparators. Figure 4.2 shows the four transforma-

tions that are applied to the graph. Each of these four transformations

only applies to vertices whose incoming edges have a bit-width of 1, i.e. these transformation

are only applied to bits not bit-vectors.

The first transformation eliminates comparators or replaces them with simpler GNot gates. If

the output of a graph vertex X is compared for equality against the constant value 1 then we get

the truth table shown in figure 4.9. As shown in the table, the output value from the equality

comparison is the same as the output value from the vertex X. Thus, the equality comparator

can be removed from the graph and any outgoing edges can be replaced by outgoing edges

from the vertex X. There are three similar forms, as shown in figure 4.2, with two of the forms

transforming the comparator into a GNot gate instead of eliminating it.
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Figure 4.3: Multiplexer Canonicalization
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Table 4.10
X == Y 0 1 MUX

0 0 1 0
1 0 1 1

The second transformation eliminates multiplexers or replaces

them with simpler GNot gates. Like the first transformation,

these two transformations apply only to bits, not bit-vectors.

This transformation eliminates multiplexers whole selector in-

put is a comparator and whose input values are the constants 0 and 1. The truth table for

this circuit is shown in table 4.10. Like the first transformation, the truth table shows that

the output of the circuit is the same as the output of the comparator so the multiplexer can be

removed. In the second case the output of the circuit is the complement of the output of the

comparator and so the multiplexer is transformed into a GNot gate.

The comparator canonicalization transformation is the only graph transformation applied

multiple times by RST. This transformation is applied as the first transformation and is also

applied after every other canonicalization and resource discovery transformationbecause these

other transformations tend to produce the degenerate comparators eliminated by these trans-

formation.

Canonicalization of Multiplexers

The canonicalization ofmultiplexers in the graph eliminates or simplifiesmultiplexers. Figure

4.3 shows the four basic multiplexer transformation that are applied. The first two transfor-

mations are a generalization of some comparator transformations described earlier. In these

cases the output of the multiplexer is the sames as either the selector input or the complement

of the selector so the multiplexer is eliminated or replaced with a GNot gate.
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The second transformation replaces two multiplexers that are chained together with a single

multiplexer that has an expanded selector input. The truth table for this circuit can be seen in

table 4.11. This table shows that the output of the given circuit is only the output from the gate

Y when both selector inputs are 1. Thus, the circuit is replaced by a simpler circuit containing

only a single multiplexer with the selector input to the new multiplexer a GAnd gate of the two

original selector inputs.

Table 4.11
E1 E2 RES
0 0 X
0 1 X
1 0 X
1 1 Y

The last transformation applied during multiplexer canonical-

ization multiplexers with inputs identical to the default mul-

tiplexer value. Multiplexers in the graph representation are

slightly different than hardwaremultiplexer circuits. Multiplex-

ers in the graph representation have multiple inputs with each

input having its own selector. If the selector for an input is 1 then that value is output as the

output of the multiplexer. When multiple selector inputs are 1 then the output of the multi-

plexer is resolved by assigning a priority to the selector inputs, in the figures shown the priority

is represented by having inputs with higher priority be above inputs with lower priority. If the

multiplexer has no selector inputs with a value of 1 then the default input is used as the output.

The semantics of themultiplexer in the graph representationwere selected because theymatch

the semantics of the Rosetta language constructs that create multiplexers. If expressions in

the Rosetta language can havemultiple guard expressions each with an associated value when

that guard is true. The guard statements are prioritized by the order in which they appear in

the if expression and a default value is given by the else part of the expression to handle the

case where no guard expressions are true.

The last transformation applied during multiplexer canonicalization eliminates inputs, and

their associated selector, when that input is the same as the default input andno other selectors

have lower priority. This maintains the priority encoded by if expressions at the Rosetta level

but simplifies multiplexers by reducing the number of inputs they have.
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Figure 4.4: Register Canonicalization
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Register Discovery

After the two canonicalization transformations have been performed, the graph representa-

tion has been sanitized so that comparators and multiplexers are in well-known form. At this

point, a register discovery transformation is performed on the graph.

All of the vertices in the graph, before transformations have been performed, directly corre-

spond to a syntactic construct in the original Rosetta specification. For instance, any GAdd

node could be traced back to the exact syntactic + operator that it corresponds to. Thus, the

process of converting Rosetta specifications into the graph representation has been syntax

directed up to this point.

At this point RST attempts to determine if the semantics of some parts of the original Rosetta

specification can be modeled in hardware using registers. This is done by looking for sub-

graphs that contain GRs, GFl, or GDl vertices that are connected as selectors to multiplexers.

The three different vertex labels are those produced by the ’event attributes used to as clock-

ing expressions in Rosetta specifications.

The most basic register discovery transformation looks for clocking vertices that are used as

selectors to a multiplexer. If this multiplexer’s default input is connected to its own input, i.e.

the vertex forms a self loop, then the semantics of the hardware circuit is that the output value
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Figure 4.5: RAM Canonicalization
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only changes on a clock edge. These semantics directly match those of a hardware register and

so the multiplexer is replaced with a register.

The remaining four transformations performed during register discovery attempt to find en-

able signals and reset signals applied to registers. If these signals can be found in the graph

then they are eliminated and hooked up directly to the register to ensure the register descrip-

tion given to the lower-level hardware synthesis tool produces the correct register resource. If

any GRs, GFl, or GDl vertices remain in the graph after this transformation has completed then

the specification cannot be synthesized because it contains a clocking expression that cannot

be realized in hardware.

Block-RAM Discovery

After register discovery has completed, RST performs a Block-RAM (BRAM) discovery trans-

formation on the graph. During the initial process of converting the RTL intermediate form

representation into the explicit graph representation, all RTLBR, RTLBW, and RTLB nodes are

combined to form a single GRam vertex with the correct number of read and write ports.

The BRAM discovery transformation attempts to determine if a GRam vertex in the graph can

be changed into a GBRam vertex. The semantics of a GRam vertex are that the value of each read

port is the value in the RAM at the associated read index and that any value appearing on

any write port is used to update the RAM contents within a shorter period of time than the

fastest clock in the system (i.e. RAM reads and writes appear instantaneous to synchronous

elements).

47



GBram vertices are used to model the semantics of Xilinx BRAMs. BRAMs require that all read

indexes, all write ports, and all read ports are registered. Because all GRam reads and writes

look instantaneous to synchronous elements in the graph representation, this corresponds to

GRam vertices where all incoming edges are from registers and all outgoing edges go to reg-

isters. As shown in figure 4.5, the BRAM discovery transformations looks for GRam vertices

whose incoming and outgoing edges match these constraints. Any GRam vertex that matches

the constraints is transformed into a GBram vertex and the registers associated with the GRam

vertex are then removed.

VHDL Production

The fourth and final phase in the process of converting synthesizable Rosetta specifications

into hardware circuits is the production of VHDL from the explicit graph representation. To

produce the VHDL representation, the explicit graph based representation is traversed in

topological order and each vertex in the graph is used to build up a data structure that stores

the information needed to construct the final VHDL document. Table 4.12 shows the five

different kinds of information stored in the data structure and gives examples of the kind of

information stored.

After the explicit graph representation has been converted into a VHDL data structure repre-

sentation the VHDL output is created by assembling the separate pieces in the data structure

into complete VHDL document. First, the library and use statements are used to generate a

VHDL header for the document and then the information about generic and I/O parameters

are used to construct a VHDL entity declaration. Afterwards, the signal and RAMdeclarations

are used to create a new VHDL architecture with the terms and instantiations being used to

fill out the body of the architecture.

The VHDL output process also supports emitting VHDL attributes to support the synthesis

constraints listed in sectionA. TheVHDL representation of these constraints follows theXilinx

recommendations and are processed correctly when using the Xilinx synthesis tools to convert

the VHDL representation into a hardware circuit for use on Xilinx FPGAs.
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Table 4.12: Conversion of Explicit Graph into VHDL

Generics and I/O
GIn n → n : in std_logic GOut n → n : out std_logic

GInOut n → n : inout std_logic GGen n → n : natural

Libraries and Uses
GLib l → library l GUse u → use u

Signals and RAMs

GRam n → type r is array(...) of std_logic_vector(...)
signal n : r

GBram n → type b is array(...) of std_logic_vector(...)
signal n : b

GNam n → signal n : std_logic
GNam n v → constant n : std_logic_vector(...) := v

Terms
GAdd → o ⇐ x+ y GSub → o ⇐ x− y
GMul → o ⇐ x∗ y GDiv → o ⇐ x/y
GMod → o ⇐ x%y GRem → o ⇐ x rem y
GCon → o ⇐ x&y GNot → o ⇐ not x
GAnd → o ⇐ x and y GOr → o ⇐ x or y
GXor → o ⇐ x xor y GNand → o ⇐ x nand y
GNor → o ⇐ x nor y GXnor → o ⇐ x xnor y
GEq → o ⇐ x = y GNe → o ⇐ x/= y
GGt → o ⇐ x > y GLt → o ⇐ x < y
GGe → o ⇐ x >= y GLe → o ⇐ x <= y

GIdx i i → o ⇐ x(i) GIdx h l → o ⇐ x(h downto i)

GMux → o ⇐ x when s else y
GReg → o ⇐ v when rising_edge(c) else o
GReg → ev ⇐ v when ena else o

o ⇐ ev when rising_edge(c) else o
GReg → rv ⇐ IV when rst else v

o ⇐ rv when rising_edge(c) else o

Instantiations
GEnt i e → i : entity e generic map (...) port map (...)
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4.2 Synthesizable Software Components

In addition to hardware circuits, RST is also capable of producing software programs for Mi-

croBlaze processors via the Low-Level Virtual Machine Intermediate Representation (LLVM-

IR). Like the creation of hardware circuits, the creation of software programs is accomplished

in several steps. First, an LLVM-IR data structure is created to represent the state of any facet

being lowering into software. Second, an LLVM-IR function is created for each facet that im-

plements the behavior described by the facet’s behavioral specification. Finally, a top-level

main function is created to serve as the software programs main entry point.

As with hardware, facets that are to be synthesized into software programs must meet a set of

constraints. First, any declarations inside of the facet must be of type word(N), float(32), or

float(64). These Rosetta types represent the integer values, single precision floating point

values, and double precision floating point values supported by themicroprocessor. Addition-

ally, behavioral terms in the facet must match a set of supported terms, as described below.

The supported behavioral terms are designed to closely match the semantics of the micropro-

cessor instructions so that the resulting implementation is as efficient as possible. Finally, the

facet must have no parameters and no structurally instantiated facets. The requirement that

software synthesizable facets have no parameters is due to the fact that software programs do

not directly support I/O. Instead, software performs I/O using microprocessor instructions.

Support for the notion of instructions that perform I/O is provided in the form of the uninter-

preted Rosetta functions mmioread, mmiowrite, fslread, and fslwrite. These functions are

described in more detail below.

The lack of support for structurally instantiated facets when synthesizing software programs

is due to the fact that none of the examples that were constructed to evaluate the Rosetta syn-

thesis and transformation tools required structural instantiation. It is believed that software

support could be added for structural instantiation with a moderate amount of effort.
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Facet State Representation

The first step in the synthesis of a software programs from Rosetta specifications is to form an

LLVM-IR data structure to represent the state needed by any facet that will be part of the soft-

ware program. This is accomplished by examining all of the declarations in each facet. Table

4.13 shows the supported Rosetta declarations types along with the LLVM-IR representation

of those types.

Table 4.13: Facet State
Rosetta Type LLVM-IR Type

word(8) i8
word(16) i16
word(32) i32
float(32) float
float(64) double
word(N) iN

The first five entries in this table list the types sup-

ported by RST that are directly supported by the

MicroBlaze microprocessor. These types repre-

sent 8-bit, 16-bit, and 32-bit integer as well as 32-

bit and 64-bit floating point values. Since these

types are supported directly by the microproces-

sor being targeted, the use of these types will result in efficient implementation at the instruc-

tion level.

The final supported type represents arbitrary width integers. This type is converted to an

LLVM-IR type of the same bit-width, which is directly supported by LLVM-IR but not directly

supported by the MicroBlaze microprocessor. When compiling LLVM-IR into MicroBlaze as-

sembly, LLVMwill convert the type into an appropriate instruction level representation. Cur-

rently, this only works reliably in the LLVMMicroBlaze backend for bit-widths up to 64-bits.

More information on the LLVMMicroBlaze backend is given in section B.

Behavioral Terms as Software

After the LLVM-IR state representation has been formed for a facet, a LLVM-IR function is

created that implements the behavior of the facet. Because RST relies on the LLVM-IR to

represent software semantics, the process of lowering Rosetta behavioral specifications into

software is much simpler than the process required to create hardware circuits.
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Table 4.14: LLVM-IR Representation
Constant Values

12 → i32 12 b”001” → i3 1
x”FF” → i8 255 o”70” → i32 56

12.0 → float 12.0

Integer Unary Expressions
not x → %o = xor i32 %x, 0xFFFFFFFF

Integer Binary Expressions
x+ y → %o=add i32 %x, %y x− y → %o=sub i32 %x, %y
x∗ y → %o=mul i32 %x, %y x/y → %o=udiv i32 %x, %y

x and y → %o=and i32 %x, %y x or y → %o=or i32 %x, %y
x xor y → %o=xor i32 %x, %y x nand y → %o=nand i32 %x, %y
x nor y → %o=nor i32 %x, %y x xnor y → %o=xnor i32 %x, %y

x&y → %xs=shl i64 %x, 32 x sub [...] → %m=and i32 ...
%o=or i64 %xs, %y %o=shr i32 ...

Integer Comparison
x == y → %o=icmp eq i32 %x, %y x/= y → %o=icmp ne i32 %x, %y

x < y → %o=icmp ugt i32 %x, %y x < y → %o=icmp ult i32 %x, %y
x >= y → %o=icmp uge i32 %x, %y x <= y → %o=icmp ule i32 %x, %y

Floating-Point Binary Expressions
x+ y → %o=fadd float %x, %y x− y → %o=fsub float %x, %y
x∗ y → %o=fmul float %x, %y x/y → %o=fdiv float %x, %y

Floating-Point Comparison
x == y → %o=fcmp ueq float %x, %y x/= y → %o=fcmp une float %x, %y

x < y → %o=fcmp ugt float %x, %y x < y → %o=fcmp ult float %x, %y
x >= y → %o=fcmp uge float %x, %y x <= y → %o=fcmp ule float %x, %y

I/O Access
mmioread(x) → %o=load i32 %x, %y
fslread(x) → %o=llvm.mblaze.fsl.nget(%x)
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Figure 4.6: If-Expression LLVM-IR
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if g then x
elseif g2 then y
elseif g3 then z
else d
end if

Much like the case for hardware synthesis, behavioral terms that are to be synthesized to soft-

ware programs must be I/O terms or terms of the form “lhs = rhs;”. I/O terms are either

“mmiowrite(addr, val)” or “fslwrite(port, val)”. For the mmiowrite case, a memory

write is generated to the address addr with the value val being written into this memory ad-

dress. In the fslwrite case, an FSL put instruction is generated that puts the value val into

the FIFO transmission queue of FSL port port. For other synthesizable terms, lhsmust be a

declaration and rhs must be an expression that can be synthesized into software. Table 4.14

lists the expressions that are supported by software synthesis along with the LLVM-IR repre-

sentations of those expressions.

RST first creates an LLVM-IR implementation of the rhs expression. This produces an LLVM-

IR value that is the result of the rhs expressions. It then creates and LLVM-IR store instruc-

tion to store the value into the facet’s state. Access to the facet’s state is done by having the

state as a parameter to the facet’s implementing function.

RSTproduces a facet’s implementation in a top-downmanner,meaning that the order of terms

in a facet’s body are preserved in the facet’s LLVM-IR implementation. This breaks from the

strict semantics of the Rosetta language but provides an efficient mechanism for describing

the sequentiality provided by microprocessors. It is believed that the semantic difference be-

tween the software implementation and the Rosetta specification can be eliminated by speci-

fying software facets in a special Rosetta domain that has the same semantics as the software

implementation.
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Not shown in table 4.14 but supported by RST is support for Rosetta if-expressions. Synthe-

sizable if-expressionsmust be composed only of guards and values that are also synthesizable.

If this is the case then RST will generate an LLVM-IR diamond control flow pattern as shown

in figure 4.6. In the figure the four basic blocks represent the instruction sequences needed

to implement the value expressions x, y, z, and d. The guard expressions g1, g2, and g3 have

their instructions placed in the SELECT block. This block ends with an LLVM-IR select in-

struction that branches to the correct basic block based on the guard conditions. At the end

of each basic block an LLVM-IR br instruction is used to unconditionally branch to the PHI

block. This block uses an LLVM-IR phi instruction to select the correct final result.

Software synthesis support for the Rosetta sub operation allows selection of sub-sequences

from Rosetta bit-vectors. This operation is lowered into a sequence of LLVM-IR and and shr

instructions that select the correct bits from the integer value that represents the Rosetta bit-

vector.

Comparison of terms supported by hardware synthesis, shown in table 4.7, against the terms

supported by software synthesis shows that software synthesis supports additional constructs

in the form of floating point support, though, the software synthesis support lacks clock con-

struct support and RAM support offered by hardware synthesis. Clock support is omitted

purposefully because software programs have no need for clocks. The lack of RAM support is

because software RAMswere not needed in the course of evaluating this work. Adding support

for RAMs during software synthesis would not be difficult.

FSL I/O Support

RST provides support for Fast Simplex Link (FSL) communication to facilitate communica-

tion between MicroBlaze microprocessors and hardware circuits. This support is provided

in the form of three uninterpreted Rosetta functions: fslread, fslwrite, and fslcanread.

When used in a Rosetta facet that is synthesized to software, these three functions become

MicroBlaze FSL nget, put, and tnget instructions.
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MicroBlazemicroprocessors support up to 16 bi-directional FSL communication channels that

are implemented using 32 uni-directional FSLs. Each link can have an optional FIFO buffer

with a depth of up to 8192 elements and each element can be up to 32-bits in width. Each FSL

implements a point-to-point communication primitive and provides high-speed, low-latency,

arbitration free data transmission.

FSL components can be used in a Rosetta specification to provide communication between

software programs running on different MicroBlaze microprocessors, to provide communica-

tion between aMicroBlazemicroprocessor and a hardware circuit, or to buffer communication

between hardware circuits.2 RST exposes FSLs as the only HW/SW co-design capable com-

munication mechanism, although it is believed that other communication mechanisms could

be easily added.

The three exposed FSL functions provide a mechanism to allow software to read data from an

FSL port, to write data into an FSL port, or to query if data is available on an FSL port. The

semantics of these operation match the semantics of the non-blocking MicroBlaze FSL read

instructions and the blockingMicroBlaze FSLwrite instruction. The fslread function returns

valid results only if fslcanread results in a true value. The FSL fslwrite function waits until

there is space in the FSL port before writing data into the port.

Note that the three FSL functions are side-effecting functions but the Rosetta language does

not provide good support for defining sequential computation. As described earlier, RST

works around this problem using a top-down sequencing semantics outside of the Rosetta

language.

Support for synchronizing when writing to an FSL port has not been implemented because

it was not necessary for any of the example designs constructed to evaluate this work. Sup-

port for this functionality, in the form of the fslcanwrite function, would not be difficult to

implement.

2This is typically done when the hardware circuits involved use different clock domains.
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Conversion into an MicroBlaze Instruction Stream

Once the complete LLVM-IR representation has been formed for all facet’s being implemented

on the MicroBlaze microprocessor, RST invokes the LLVM toolset to convert the LLVM-IR

representation into an instruction stream for the MicroBlaze processor. The result is a binary

software program that can be loaded into memory and executed by a MicroBlaze processor.

Deficiencies in Software Synthesis

Currently software synthesis does not support implementation of recursive functions, imple-

mentation of recursive data types, or any form of dynamic resource allocation. These defi-

ciencies limit RST’s ability to produce large software programs because these constructs are

highly important in the construction of such programs. Support for these constructs was not

provided because the rapid prototyping and hardware/software co-design aspects of this work

can be evaluated without them. Adding support for these features is possible and would make

the tool much more useful but would require much more engineering effort.

4.3 Synthesis Example

Listings 4.5 and 4.6 are examples of Rosetta specifications that are synthesizable to hardware

and software respectively. Listing 4.5 gives an example of a pseudo-random number gener-

ator (PRNG) implemented using three linear-feedback shift registers (LFSRs). In this speci-

fication, the PRNG facet is controlled via a clock signal, a reset signal, and an enable signal.

Each clock cycle, when enable is high and reset is low, the PRNG facet produces a new random

value as its output.

The specification contains both behavioral and structural design elements along with a total

of 12 state elements, three for PRNG and three for each LFSR. The specification of the PRNG

facet uses structural instantiation to provide three LFSR components. The output of the first

LFSR is examined and used to select between the outputs of the other two LFSRs.

The LFSRs themselves, are specified using a behavioralmodel. In this design, the shift register

sr is updated every clock cycle that enable is high and reset is low to shift the current value
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Listing 4.5: Rosetta Hardware Synthesis Example� �
1 facet prng(clk,rst,ena::input bit;o::output word(8))::state_based is
2 l0, l1, l2 :: word(9);
3 begin
4 o’ = if l0(0) then (l1 sub [7,..0]) else (l2 sub [7,..0]) end if;
5 lfsr0: lfsr(o”265”, clk, rst, ena, l0);
6 lfsr1: lfsr(o”654”, clk, rst, ena and l0(0), l1);
7 lfsr2: lfsr(o”271”, clk, rst, ena and (not l0(0)), l2);
8 end facet;
9

10 facet lfsr(IV::design word(9); clk,rst,ena::input bit;
11 o::output word(9) ) :: state_based is
12 sr::word(9); sh::word(8); fb::bit;
13 begin
14 o = sr; sh = sr sub [7,..0]; fb = (sr(4) xnor sr(0));
15 sr’ = if clk’event and clk=1 then
16 if rst=1 then IV
17 elseif ena=1 then sh & fb
18 else sr end if
19 else sr end if;
20 end facet;�

left by one-bit with the least significant bit being replaced by a linear function of the other bits

in the register.

First Phase of Hardware Synthesis

The results of the first phase of hardware synthesis are shown in tables 4.15 and 4.16. Table

4.15 shows the RTL intermediate form that is produced from the specification of the LFSR

facet. Comparing the RTL intermediate form to the original specification starting on line 10 of

listing 4.5, we see that the design parameter becomes a generic node and that all of the input

and output parameters become input nodes and output nodes respectively.

The three terms that appear on line 14 of the specification result in three multiplexer nodes

that have no selectors present. RST produces these nodes as a way to alias another node.

These nodes will be eliminated when the explicit graph representation is formed. The RHS
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Table 4.15: LFSR RTL Intermediate Form
ID RTL Node ID RTL Node
0 → RTLG BitVector ”IV” 1 → RTLI ”clk”
2 → RTLI ”rst” 3 → RTLI ”ena”
4 → RTLO ”o” 5 5 → RTLE (Select [] 15)
6 → RTLE (Select [] 8) 7 → RTLE (Select [] 11)
8 → RTLE (Split 7 0 5) 9 → RTLE (Split 4 4 5)
10 → RTLE (Split 0 0 5) 11 → RTLE (Binary Xnor 9 10)
12 → RTLE (Const 1) 13 → RTLE (Const 1)
14 → RTLE (Binary Concat [6,7]) 15 → RTLE (Select [Rs 1] [16] 5)
16 → RTLE (Select [Eq 2 12,Eq 3 13] [0,14] 5)

expressions in these three terms become the value used by output node 4, the bit-vector split

operation of node 8, and the bit-vector split nodes 9 and 10 along with the xnor node 11.

The last term, starting on line 15, results in a couple of constant value nodes along with two

multiplexer nodes and a concatenation node. The first multiplexer is used to implement the

outer if expressions and produces a rising edge clock selector. The second multiplexer is used

to implement the inner if expression and contains one equality selector for the reset case and

another equality selector for the enable case.

Table 4.16 shows the RTL intermediate form that is produced from the specification of the

PRNG facet. The parameters and behavioral terms of the PRNG facet are implemented very

similarly to the LFSR facet. In this case, the representation of the structural instantiations is

of more interest.

The first structural instantiation, lfsr0, is implemented by creating the entity node 16, and

the entity output node 17. The entity node contains the names of all design parameters, input

parameters, and output parameters that are needed by the instantiated facet. Additionally,

for generic parameters and input parameters, the entity contains a list of node references that

provide the values for those ports. In this case, node 11 provides the design parameter and

nodes 0, 1, and 2 provide the input values. The name of the entity’s only output is contained

in the entity declaration but its value is represented by node 17. This nodes can be used to

reference the correct output port of the instantiated entity, as seen by node 17’s use in node 4.
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Table 4.16: PRNG RTL Intermediate Form
ID RTL Node ID RTL Node
0 → RTLI ”clk” 1 → RTLI ”rst”
2 → RTLI ”ena” 3 → RTLO ”o” 3
4 → RTLE (Select [] 17) 5 → RTLE (Select [] 26)
6 → RTLE (Select [] 36) 7 → RTLE (Split 0 0 4)
8 → RTLE (Split 7 0 5) 9 → RTLE (Split 7 0 6)
10 → RTLE (Select [TId 7 8] 9) 11 → RTLE (Const 181)
12 → RTLE (Const 0) 13 → RTLE (Const 0)
14 → RTLE (Const 0) 15 → RTLE (Const 0)
17 → RTLD ”o” 16 18 → RTLE (Const 428)
19 → RTLE (Const 0) 20 → RTLE (Const 0)
21 → RTLE (Const 0) 22 → RTLE (Split 0 0 4)
23 → RTLE (Binary And [2,22]) 24 → RTLE (Const 0)
26 → RTLD ”o” 25 27 → RTLE (Const 185)
28 → RTLE (Const 0) 29 → RTLE (Const 0)
30 → RTLE (Const 0) 31 → RTLE (Split 0 0 4)
32 → RTLE (Unary Not 31) 33 → RTLE (Binary And [2,32])
34 → RTLE (Const 0) 36 → RTLD ”o” 35
16 → RTLE (Entity ”lfsr” [”IV”] [11] [”clk”,”rst”,”ena”] [0,1,2] [”o”])
25 → RTLE (Entity ”lfsr” [”IV”] [18] [”clk”,”rst”,”ena”] [0,1,23] [”o”])
35 → RTLE (Entity ”lfsr” [”IV”] [27] [”clk”,”rst”,”ena”] [0,1,33] [”o”])

The other two structural instantiations have implementations that are very similar to the first

node. The results are two additional entity nodes, nodes 25 and 35, along with two entity out-

put nodes, nodes 26 and 36. The remaining nodes in the RTL intermediate form output are

used to form the implementations of the PRNG facet’s outputs and to implement the argu-

ments used by the LFSR instantiations.

Second and Third Phase of Hardware Synthesis

The results of the second and thirds phases of hardware synthesis are shown in figures 4.7 and

4.8. Figure 4.7 shows the results of the second phase of hardware synthesis for the LFSR facet

on the top of the figure and the third phase on the bottom of the figure. In the top figure we

can see that the explicit graph representation has mostly the same content as the RTL inter-

mediate form from which it is generated. All of the parameters show up in the explicit graph

representation, as well as the two multiplexers, equality selectors, rising edge clock selector,

bit-vector slices, xnor, and concatenation.
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Figure 4.7: LFSR Graph Representation
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Obviously, the most major difference between the RTL intermediate form representation and

the explicit graph representation is that node references in the RTL intermediate form have

been resolved into edges with known width. Additionally, node aliases, nodes 5, 6, and 7, in

the RTL intermediate form have been eliminated and selectors have been split out into their

own vertices in the graph instead of being contained inside of the multiplexer node.

The lower diagram in figure 4.7 shows the results of performing canonicalization and resource

discovery. In this case, both multiplexers and all of the selectors have been eliminated from

the graph and a register with a clock signal, reset signal, and enable signal has been created in

their place. The rest of the graph remains the same.

Figure 4.8 shows the second and third phases of hardware synthesis for the PRNG facet. Like

the explicit graph representation for the LFSR facet, the explicit graph representation of the

PRNG facet contains mostly the same contents as its corresponding RTL intermediate form,

with alias nodes and selector vertices being the main difference. In this graph however, the

entity output nodes have also been eliminated during the conversion from RTL intermediate
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Figure 4.8: PRNG Graph Representation
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form to explicit graph representation. The entity nodes from the RTL intermediate form have

become vertices in the graph with multiple output ports and the nodes from the RTL interme-

diate form that represented these output ports have been used to create the proper edges in

the graph.

Unlike the LFSR facet, the explicit graph canonicalization anddiscovery phase does not change

the graph representation of the facet. Thus, figure 4.8 represents the results of both the second

phase and the third phase of hardware synthesis.

Fourth Phase of Hardware Synthesis

The last phase in hardware synthesis is the production of VHDL for the hardware circuits. For

this example, two VHDL files are created, one for the LFSR hardware circuit and another for

the PRNG hardware circuit. The content of these two VHDL files can be seen in appendix

C. The LFSR VHDL file contains a simple VHDL entity declaration with one generic port,

three input ports, and a single output port. The architecture definition for the LFSR VHDL

entity contains the behavioral implementation of the facet. The PRNG VHDL file contains

a VHDL entity declaration with three input parameters and a single output parameter. The

architecture definition for the entity is composed mainly of the three LFSR instantiations.
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Listing 4.6: Rosetta Software Synthesis Example� �
1 facet macc :: state_based is
2 xr,yr::bit; x,y,acc::word(32);
3 begin
4 xr’ = fslcanread(0);
5 yr’ = fslcanread(1);
6

7 x’ = if (xr == 1) and (yr == 1) then fslread(0) else x end if;
8 y’ = if (xr == 1) and (yr == 1) then fslread(1) else y end if;
9

10 acc’ = if (xr == 1) and (yr == 1) then
11 if (x == x”00000000”) and (y == x”00000000”)
12 then x”00000000”
13 else acc + x*y
14 end if
15 else acc end if;
16

17 if (xr == 1) and (yr == 1) then
18 fslwrite(2, acc)
19 else true end if;
20 end facet;�

Software Synthesis

Listing 4.6 gives the specification of a simple, software-based multiply-accumulate compo-

nent. Since this components is designed for synthesis into a software program, the facet has

no I/O parameters. Instead, all communication between the component and other compo-

nents that may exist in a larger system is done using FSL communication primitives.

The specification of this facet relies on the informal top-down synthesis semantics of RST.

Thus, the first two steps done by the software program are to determine if there is any data

available on FSL ports 0 and 1 of the MicroBlaze processor. The program then updates the

internal state variables x and y to read the new values from the FSL ports if they are available.

If data is not available on the FSL ports then the state is not changed.

Likewise, the accumulator state is updated only if data is available on the FSL ports. If data is

available then the accumulator is either reset to 0 or is updated by adding the multiplication
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Listing 4.7: Rosetta MACC LLVM Intermediate Representation� �
1 define void @main() noreturn {
2 _L0: br label %_L1.o
3 _L1.o: %macc_state.4.0.ph = phi i32 [ 0, %_L0 ], [ %11, %_L9.i ]
4 br label %_L1
5 _L1: %0 = tail call i32 @llvm.mblaze.fsl.tnget(i32 0)
6 %1 = tail call i1 asm sideeffect ”addc $0, r0, r0\0A”, ”=r”()
7 %2 = tail call i32 @llvm.mblaze.fsl.tnget(i32 1)
8 %3 = tail call i1 asm sideeffect ”addc $0, r0, r0\0A”, ”=r”()
9 %4 = and i1 %1, %3
10 br i1 %4, label %_L1, label %_L4.i
11 _L4.i: %5 = tail call i32 @llvm.mblaze.fsl.nget(i32 0)
12 %6 = tail call i32 @llvm.mblaze.fsl.nget(i32 1)
13 %7 = or i32 %6, %5
14 %8 = icmp eq i32 %7, 0
15 %9 = mul i32 %6, %5
16 %10 = add i32 %9, %macc_state.4.0.ph
17 %11 = select i1 %8, i32 0, i32 %10
18 br label %_L9.i
19 _L9.i: tail call void @llvm.mblaze.fsl.put(i32 %11, i32 2)
20 %12 = tail call i1 asm sideeffect ”addc $0, r0, r0\0A”, ”=r”()
21 br i1 %12, label %_L9.i, label %_L1.o
22 }�

of x and y to the accumulated value. Finally, if data is available on the FSL ports then the new

value of the accumulator is written into FSL port 2.

LLVM Intermediate Representation

The LLVM-IR that is created by RST is shown in listing 4.7. For simplicity, the LLVM-IR

shown has been highly optimized by LLVM’s optimization framework. The raw LLVM-IR pro-

duced by RST can be seen in appendix D. The state representation of the facet, that is clearer

in the raw LLVM-IR, is two boolean values and three 32-bit integer values and correspond

directly to the declarations on line 2 of the specification. In the LLVM-IR, the state for the

acc declaration is maintained on line 3 of result. Lines 6, 8, 11, and 12 correspond to the other

four declarations.
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The two fslcanread functions are implemented as lines 5-6 and 7-8. The values resulting

from these two instruction sequences are booleans that indicatewhether there is data available

on FSL ports 0 and 1.

The conditional branch on line 10 is used to implement the guard statements that wrap all of

the other terms in the macc facet’s specification. In this case, if there is nothing available on

the FSL ports then the branch goes back to label _L1, causing the program to continue to wait

on data from the FSL ports. If data is available then the branch goes to label _L4.i.

Lines 11-12 in the LLVM-IR implement the fslread functions from the facet’s specification

and correspond to the expressions inside of the then clause on lines 7 and8 of the specification.

Lines 13-17 are the implementation of the accumulator from the then clause starting on line

11. Finally, lines 19-21 in the LLVM-IR provide the implementation of the fslwrite function.

Once the FSL put instruction has finished successfully, the entire process happens again so

that the next input is processed.

MicroBlaze Instruction Stream

After the LLVM-IR has been formed, a MicroBlaze instruction stream is created using the

LLVM framework. The resulting MicroBlaze instruction stream can be seen in appendix D.

The instruction stream follows the LLVM-IR closely with most operation having directly cor-

responding instructions on the MicroBlaze. The most major difference is that the 32-bit mul-

tiply on line 15 of the LLVM-IR has been turned into a function call in the instruction stream.

This is because the multiply instruction on the MicroBlaze microprocessor is optional and the

LLVM frameworkwas told not tomake use of the instruction. The resulting instruction stream

has lower performance but the MicroBlaze takes up less area in this configuration.
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5 HW/SW Co-Design of Top-Level Designs
The primary goal of the Rosetta Refinement Tool (RRT) is to provide a rapid prototyping envi-

ronment for system-level, hardware/software co-design using the Rosetta language. As such,

RRT is designed so that implementation decisions can be delayed as long as possible during

the specification, design, and implementation process. When designing systems using RRT,

the goal is to specify all facets in the most implementation agnostic manner while still main-

taining an ability to refine that specification into an implementation. These facets can then

be instantiated and refined using declarative refinements that are exposed in the Rosetta lan-

guage.

Ideally, all refinements would be located in the top-level design, although this is not a require-

ment enforced by RRT. If this is the case then we have essentially built an implementation

agnostic specification all the way up to the top-level. The design is then transformed, from

the top-level down, into an implementation. If done correctly, the refinements applied at the

top-level can be changed to generate different kinds of implementations. This provides the

basis for rapid prototyping.

The final output from RRT is a hardware/software co-designed implementation. Currently,

RRT supports refinement into Xilinx FPGA based hardware/software co-design implementa-

tions, but the refinement mechanisms used by RRT should extend easily to other platforms.

RRT takes implementation agnostics specifications written in Rosetta and augments them

with implementation details in the form of declarative refinements. The current set of refine-

ments provide the implementation details required for hardware/software co-design imple-

mentation on FPGA platforms but other platforms could be supported by providing additional

refinements to support any additional implementation details required by that platform.

To produce a system implementation, RRT requires that three pieces of information be de-

scribed by a system engineer in the form of a top-level design. First, a logical system is created

to describe the required behavior of the system. This description is created by structurally

instantiating Rosetta facets inside of the top-level design and connecting these facets via their
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I/O parameters. Behavioral terms are not allowed as part of the logical system description

because it is difficult to describe the mapping from a behavioral term to a physical resource1.

This constraint is not viewed as a limitation because the same effect can be achieve by placing

the behavioral term into a Rosetta facet that can then be instantiated inside of the top-level

design.

Second, a physical system is created to describe the physical layout of the implementation ar-

chitecture. This description is created just like the description of the logical system, by struc-

turally instantiating Rosetta facets and connecting them together. The only difference is that

facets that make up the physical system are defined in one of the three domains RRT defines

for describing physical resources. These physical resource domains are described in section

5.2.

Third, a systempartitioning description is created bymapping the components and communi-

cations in the logical system to the components and communications in the physical system.

This mapping must define a physical component for every logical component but does not

necessarily need to define a logical component for every physical component.

The top-level design produced by the system engineer must meet several requirements. These

requirements are enforced by RRT with an error being generated when the requirements are

not met. First, the top-level design must not have any parameters. The implementations cur-

rently produced by RRT target Xilinx FPGAs. As such, the implementations produced are

system-on-chip designs with the chip boundary containing the entire implementation. Off-

chip communication in these systems is achieved by routing signals from input pins or to out-

put pins. It was decided that an explicit representation of this in the Rosetta language would

be better than the implicit representation using Rosetta parameters. Thus, off-chip commu-

nication is achieved by creating a declaration in the top-level design and then routing that

declaration to an implementation-level I/O pin using one or more of the synthesis attributes

described in appendix A.

1This is difficult because structural terms in Rosetta are given names but behavioral terms are not.
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Second, the top-level design must be composed only of resource instantiations, component

instantiations, declarations, declarative refinements, component mappings, and synthesis at-

tributes.2 This requirement ensures that the top-level design contains only the description

of the logical system, the description of the physical system, and the description of the sys-

tem partitioning. The component instantiations and some of the declarations are part of the

logical system description while the resource instantiations, synthesis attributes, and other

declarations are part of the physical system description. The component mappings describe

the system partitioning. Finally, the declarative refinements are eliminated by RRT during the

implementation of the system and are used to refine high-level components into synthesizable

components. The declarative refinements provide the rapid-prototyping capability of RRT.

Third, every component in the top-level design must be synthesizable to its target physical

resource, as described by the system partitioning. While refining the top-level design into

its implementation, RRT processes each component in the logical system description using

either RST’s hardware generation capabilities or its software generation capabilities so each

component must meet RST’s synthesis requirements. This constraint is not enforced by RRT

but an error will be generated either by RST or by the Xilinx synthesis tool during the synthesis

process if this is not followed.

If the top-level design contains a valid logical system description, a valid physical system de-

scription, and a valid system partitioning, then RRT is capable of refining the Rosetta specifi-

cation defined by the top-level design into a hardware/software co-designed implementation

in the form of a Xilinx Platform Studio project. This Xilinx project can then be synthesized,

using the Xilinx synthesis tools, into a bit-stream that can be loaded onto a Xilinx FPGA for

execution.

The resulting system is capable of refining high-level Rosetta specifications all theway down to

executable bitstreams for Xilinx FPGAs. This system supports rapid-prototyping in the form

of easy to modify andmechanically performed declarative refinements and can produce hard-

2The synthesis attributes are used to provide additional details to the Xilinx tools that can be used to
guide the final synthesis process. These attributes are described in appendix A.
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ware/software co-designs in the form of system-on-chip implementations containing both

VHDL circuits and MicroBlaze software programs.

The complete flow of RRT, after validating that the top-level design meets all of the require-

ments, is as follows:

1. Perform all refinements that exist in the design in the order that they appear in the de-

sign. The transformations in each facet are processed separately and the order that facets

are processed is undefined.

2. Determine all of the physical resources that have been defined and classify them as tar-

gets, bridges, or memory resources.

3. Determine the system partitioning by examining the mapping of logical components to

physical components and ensure that every logical component has a definedmapping to

a physical resource.

4. For every physical target, implement the logical components that are partitioned onto

that target using RST.

5. Generate a Xilinx project that includes all of the defined resources and all of the imple-

mented components.

5.1 Processing Refinements

The first step in the process of refining a top-level design into an implementation is to discover

and mechanically apply all of the refinements declared in the specification. At a basic level,

RRT visits each of the facets in the specification one at a time in no defined order. For each

facet, RRT locates the next declarative refinement and then performs the required transforma-

tions. These transformationsmay change one ormore facets in the specification. This process

repeats until there are no more refinements left in the specification. Full details on how re-

finements are processed are given in section 6. This section give mores explicit details about

the mechanisms used to discover and perform refinements and gives detailed descriptions of

all of the refinements supported by RRT.

68



Listing 5.1: Shared Facet Definitions� �
1 facet ex1(a :: input bit; b :: output bit) :: state_based is
2 begin
3 b’ = a;
4 end facet;
5

6 facet tld :: system is
7 a1, b1, a2, b3 :: bit;
8 begin
9 i1: ex1(a1, b1); i2: ex2(a2, b2);
10 end facet;�

Listing 5.2: Specialized Facet Definitions� �
1 facet ex1(a :: input bit; b :: output bit) :: state_based is
2 begin
3 b’ = a;
4 end facet;
5

6 facet i1_ex1(a :: input bit; b :: output bit) :: state_based is
7 begin
8 b’ = a;
9 end facet;
10

11 facet i2_ex1(a :: input bit; b :: output bit) :: state_based is
12 begin
13 b’ = a;
14 end facet;
15

16 facet tld :: system is
17 a1, b1, a2, b3 :: bit;
18 begin
19 i1: i1_ex1(a1, b1); i2: i2_ex2(a2, b2);
20 end facet;�
Before discovery and application of refinements begins, specialization is done to prepare the

specification for refinement. During this processes every facet in the specification is visited

one at a time and every structural instantiation in that facet is given a unique facet definition,

generating a unique facet definition for every structural instantiation in the specification.

For example, listing 5.1 shows a system where two instantiations, i1 and i2, share a single

facet definition, ex1, for their behavioral description. The specialization process produces the
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system shown in 5.2. The ex1 facet has been duplicated twice, once for each instance, and

the structural instances in tld have been updated to use the new facet definitions. Duplicat-

ing facet definitions like this for each structural instance allows the facet definition for each

instance to be refined separately.

Specialization is completed by applying a partial evaluator to the specification as an initial

simplification step. High-level specifications often define facets with many design and I/O

parameters for flexibility and many times these design and I/O parameters are instantiated

with constant values. After this step has been completed, every structural instantiation in the

specification has been given a unique facet definition and this definition has been specialized

to that instantiation’s applied arguments.

The partial evaluator used by RRT is currently capable of:

1. Removing constant value arguments from an instantiation and replacing that argument

in the facet definition with its constant value.

2. Replacing named constants in a facet definition with their defined values, including lo-

cals constants, package defined constants, and globally defined constants.

3. Replacing all function applications with the given definition of the function, ensuring

that parameters are replaced by their arguments.3

4. Replacing case expressions with equivalent if expressions as case expressions are not

synthesizable but if expressions can be synthesized.4

5. Simplifying expressions involving constant values, including all arithmetic expressions,

all boolean expressions, if expressions, and concatenation.

After the specification has been specialized, all declarative refinements are mechanically ap-

plied to the specification as described in 6. After this process completes, RRT performs partial

evaluation a second time to cleanup any constructs generated during themechanical transfor-

mation of the specification. Additionally, a set of default data type refinements are applied

to ensure that all data types are removed from the specification. The default refinements are

3Recursive functions are not processed by the partial evaluator to avoid infinite recursion.
4Support for pattern matching is limited to un-nested data constructors and variable bindings.
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specified by the system engineer, using the encoding and alignment attributes, when defin-

ing a data type. These data type refinements are performed by the data type refinement logic

described in section 6.3.

5.2 Implementation Resources

The second step performed by RRT is to identify all physical resources defined in the top-level

design. In the top-level design, both the logical system being implemented and the physical

system that is being used for the implementation are defined by structurally instantiating and

connectingRosetta facets defined outside of the top-level design. In effect, the second step is to

determine what facet instantiations are part of the logical system andwhat facet instantiations

are part of the physical system.

To simplify this step, RRT defines three Rosetta domains that must be used to describe facets

that describe physical resources:

target: Physical resources in the target domain are used to define target fabrics that

can be used to implement the behavior of the logical components that are

partitioned onto them. The target domain is described fully in section 5.2.1.

bridge: Physical resources in the bridge domain are used to define communication

pathways between two or more physical resources. The bridge domain is

described fully in section 5.2.2.

memory: Physical resources in the memory domain are used to defined storage that can

be connected to one or more physical resources. The memory domain is de-

scribed fully in section 5.2.3.

Facets defined in one of these three domains can be structurally instantiated in the top-level

design to define the physical resources available in that design. Listings 5.4, 5.5, and 5.6 give

examples of the three kinds of physical resources. Listing 5.3 shows how these facets can be

instantiated inside of a top-level design to define the physical resources available in the de-

sign. In this case, the top-level design is instantiating two target fabrics, fpga and mbl1, along
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Listing 5.3: Top-Level Design Resource Instantiation� �
1 facet tld :: system is
2 begin
3 fpga: genesys(sys_clk,sys_rst,rx,tx);
4 mbl1: mblaze(clk0,rst);
5 mbl1_bram: bram_memory(8192);
6 mbl1_imem: lmb_v10(clk0,rst);
7 mbl1_dmem: lmb_v10(clk0,rst);
8 fsl0: fsl_v20(1,0,0,0,32,1,0,clk0,rst,_,clk0,fsl0_m_data,
9 fsl0_m_ctl,fsl0_m_wr,fsl0_m_full,clk0,fsl0_s_data,
10 fsl0_s_ctl,fsl0_s_rd,fsl0_s_exists,_,_,_);
11 mbl1’target = fpga;
12 ...
13 end facet;�

with onememory, mbl1_bram, and three communication bridges, mbl1_imem, mbl1_dmem, and

fsl0.

Physical resources defined in one of the three supported domains do not directly describe the

logic required to create an implementation of that resource. This logic is contained within

RRT and RST. Instead, physical resource facets simply represent the link between the Rosetta

language and RRT. As such, behavioral terms and structural terms are not allowed in physical

resource facets and so these facets tend to be implemented as facet interfaces. One exception

is that physical resource facets are allowed to contain synthesis attributes as these are related

to the physical system being described.

Because physical resources are a link between the Rosetta language and RRT, each resource

is essentially a container that describes the information necessary for RRT to create an im-

plementation of that facet. This information is encoded as declarations that RRT examines

to determine the type of physical resource being described. As a consequence, the set of sup-

ported physical resources is limited to those physical resources understood by RRT, i.e. new

physical resources are exposed by modifying RRT not by modifying the specification being

implemented.
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Listing 5.4: Rosetta Implementation Target� �
1 facet genesys( sys_clk :: input bit;
2 sys_rst :: input bit;
3 sys_rs232_rx :: input bit;
4 sys_rs232_tx :: output bit )
5 :: target is
6 language :: string is ”vhdl”;
7 device :: string is ”xc5vlx50tff1136-1”;
8 begin
9 sys_clk’io_pin = ”AG18”;
10 sys_clk’io_std = ”LVCMOS33”;
11 sys_clk’period = 10 * ns;
12 sys_clk’sigis = ”CLK”;
13 ...
14 end facet;�
Target Physical Resources

Physical resources in the target domain are used to define target fabrics that can be used to

implement the logical components instantiated in the top-level design. As such, target fabrics

capture the notion of computation in the physical system described in the top-level design.

Listing 5.4 shows, as an example, the target fabric genesys defined as a Rosetta facet in the

target domain.

As shown, target physical resources can have parameters, declarations, and terms just like

normal Rosetta facets. The parameters are combined with the synthesis attribute terms in the

facet’s body to determine the I/O pins associated with target fabric. For instance, the genesys

facet that is shown describes a sys_clk parameter that is given an I/O pin, an I/O standard, a

clock period, and a signal interface using several synthesis attributes. The top-level refinement

uses this information to create a corresponding physical pin in the Xilinx project.

The declarations in the facet are examined to determine several pieces of information required

to create implementations for logical components that are mapped onto the described target

fabric. Every target fabric must contain a declaration named language. This declarationmust

be of type string and must have a constant value that is either “vhdl” or “mblaze”. If the
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language is “vhdl” thenRRTwill implement all logical componentsmapped to the target fabric

using RST’s hardware circuit generation capabilities. Likewise, if the language is “mblaze”

RRT will use RST’s software generation capabilities to create implementations. Currently,

these are the only two supported output languages but, with additional support in RRT, other

languages could be supported as well. If the language is defined as “vhdl” then the target

fabric must also contain a declaration named device that is of type string with a constant

value. This string is used byRRT to determine theXilinx device that the target fabric describes.

Currently, it is simply passed on to the Xilinx tools via the generated Xilinx project.

In addition to the required language and device declarations, an optional set of port decla-

rations can be contained in the facet. Port declarations capture the notion of physical com-

munication end-points. Connections between target fabrics and communication bridges are

formed by connecting their declared ports together. The target facet shown in listing 5.4 does

not contain any port declarations but an example can be seen in section 5.6.

Currently, RRT requires that there only be one “root” target fabric with roots defined as target

fabrics that have not been included in any another target fabric. The root target fabric must be

an FPGA device with a “vhdl” language declaration. Conversely, some target fabrics require

implementation using another fabric. For instance, the MicroBlaze microprocessor fabric is

a configurable soft-processor that must be implemented inside of an FPGA, meaning that the

MicroBlaze target fabricmust be included inside of an FPGA target fabric. The inclusion of one

target fabric inside of another target fabric is described by the system engineer in the top-level

design using a target attribute that is attached to the included target fabric’s instantiation.

As an example, line 11 of listing 5.3, shows how the mbl1 target fabric is included inside of the

fpga target fabric.

Bridge Physical Resources

Physical resources in the bridge domain are used to to define communication links between

two or more physical resources. As such, bridges capture the notion of communication in
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Listing 5.5: Rosetta Communication Bridge� �
1 facet interface fsl_v20(
2 C_EXT_RESET_HIGH,C_ASYNC_CLKS,C_IMPL_STYLE,
3 C_USE_CONTROL, C_FSL_DWIDTH,C_FSL_DEPTH,
4 C_FSL_READ_CLOCK_PERIOD :: design integer;
5 FSL_Clk, SYS_Rst :: input bit;
6 FSL_Rst :: output bit; FSL_M_Clk :: input bit;
7 FSL_M_Data :: input word(C_FSL_DWIDTH);
8 FSL_M_Control, FSL_M_Write :: input bit;
9 FSL_M_Full :: output bit; FSL_S_Clk :: input bit;
10 FSL_S_Data :: output word(C_FSL_DWIDTH);
11 FSL_S_Control :: output bit; FSL_S_Read :: input bit;
12 FSL_S_Exists,FSL_Full,FSL_Has_Data,
13 FSL_Control_IRQ :: output bit
14 ) :: bridge is
15 implementation :: string is ”fsl”;
16 master :: port(”fsl”, ”master”);
17 slave :: port(”fsl”, ”slave”);
18 end facet interface;�
the physical system described in the top-level design. Listing 5.5 shows, as an example, the

communication bridge fsl_v20 defined as a Rosetta facet in the bridge domain.

Like target fabrics, communication bridges are allowed to have parameters, declarations, and

terms. In this case, the parameters represent the physical wires that are used to perform the

physical communication. Similar to the language declaration in target fabrics, bridge fab-

rics must contain a implementation declaration that is of type string and that has a con-

stant value of “plb”, “lmb”, “fsl”, or “mdm”. These values correspond to the Processor Local

Bus (PLB) communication primitive, the LocalMemory Bus (LMB) communication primitive,

the Fast Simplex Link (FSL) communication primitive, and the MicroBlaze Debug Module

(MDM) communication primitive. These communication primitives represent the communi-

cation protocols that can be implemented by RRT.

Like target fabrics, communication bridges can also optionally declare a set of ports to describe

the communication end-points. These ports are connected to other ports in the top-level de-

sign to form communication links in the physical system. Listing 5.5 shows the definition of
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Listing 5.6: Rosetta Memory Resource� �
1 facet interface bram_memory(MEMSIZE :: design integer) :: memory is
2 implementation :: string is ”bram”;
3 plba :: port(”plb”, ”slave”);
4 plbb :: port(”plb”, ”slave”);
5 lmba :: port(”lmb”, ”slave”);
6 lmbb :: port(”lmb”, ”slave”);
7 end facet interface;�

two ports, master and slave. These two ports model the physical FSL primitive which im-

plements a unidirectional, point-to-point communication topology with one master and one

slave.

RRT allows ports to be declared as single end-points as shown, as a finite set of end-points

using a declaration of type array, or as an infinite set of end-points using a declaration of type

sequence. Ports are defined using two parameters that describe the end-point type, “fsl” in

the example shown, and the end-point direction, “master” or “slave” in the example shown.

Currently, all bridges that can be implemented by RRT require an implementation inside of

an FPGA because all of the supported bridges correspond to Xilinx IP cores. As such, bridges

must be included inside of an FPGA target fabric using a target attribute attached to the

bridge instantiation inside of the top-level design, much like the MicroBlaze microprocessor.

Memory Physical Resources

Physical resources in the memory domain are used to defined storage that can be connected

to one or more physical resources. Memories capture the notion of data storage in the phys-

ical system described in the top-level design. Listing 5.6 shows, as an example, the memory

bram_memory defined as a Rosetta facet in the memory domain.

Like target fabrics and communication bridges, parameters, declarations, and terms are sup-

ported for physical memories. Parameters are examine by RRT and are used to determine

how to implement the physical memory. Memories must have a declaration named imple-
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mentation. In the case of memories, the value of this declaration must be either “mpmc” or

“bram”. These correspond to the Multiport Memory Controller (MPMC) primitive and Block

RAM (BRAM) primitive respectively and represent the two types of physicalmemory that RRT

can create.

Additionally, an optional set of ports can be declared for thememory just like for target fabrics

and communication bridges. These ports are used to connect the memory to other physical

resources. In the example shown, there are four ports allowing the memory to be connected

either to a PLB communication bridge or to a LMB communication bridge. Like bridges, all

of the memories that can be implemented by RRT correspond to Xilinx IP cores and must be

included inside of an FPGA target fabric using a target attribute in the top-level design.

5.3 System Partitioning

Once RRT has identified all physical resources, the system partition mapping logical compo-

nents to physical resources is identified by examining the target attributes and I/O connec-

tions present in the top-level design. As part of this, RRT validates the system partitioning by

ensuring each logical component has an associated physical resource.

Target Attributes

In a top-level design, target attributes are used to specify the system partitioning of facet in-

stantiations onto physical resources. As stated, target attributes applied to physical resources

are part of the physical system description, as such, they are not considered part of the system

partitioning. To be identified as a system partitioning, the target attribute must be applied

to a logical component and the specified target must be a physical resource. Listing 5.7 shows

an example top-level design with target attributes on lines 7, 16, 19, and 22.

The target attribute on line 7 is not a system partitioning5, but is part of the physical resource

description. This leaves lines 16, 19, and 22 as the three system partitioning attributes in the

top-level design . These attributes map the three logical components in the system, lcomp0,

5This is determined by examining the domain of the target facet.
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Listing 5.7: System Partitioning in a Top-Level Design� �
1 facet tld :: system is
2 clk, rx, tx, wr1, wr2, rd1 :: bit;
3 idat, odat, dat1, dat2, dat3 :: word(8);
4 ...
5 begin
6 fpga: genesys(...); mbl1: mblaze(...);
7 mbl1’target = fpga;
8

9 fsl0: fsl_v20(...,wr1,dat1,...); fsl1: fsl_v20(...,wr2,dat2,...);
10 fsl2: fsl_v20(...,rd1,dat3,...);
11

12 fsl0.slave = mbl1.sfsl0; fsl1.slave = mbl1.sfsl1;
13 fsl2.master = mbl1.mfsl0;
14

15 lcomp0: uart(clk,rx,tx,idat,odat);
16 lcomp0’target = fpga;
17

18 lcomp1: comm(clk,idat,odat,wr1,dat1,wr2,dat2,rd1,dat3);
19 lcomp1’target = fpga;
20

21 lcomp2: macc();
22 lcomp2’target = mbl1;
23

24 ...
25 end facet;�
lcomp1, and lcomp2, to the physical resources that implement them. In this case, a hardware/-

software partitioning is performed that maps the first two components to hardware circuits

implemented inside of fpga and the third component to a software program running on mbl1.

I/O Parameters

The second method of partitioning logical components onto physical resources is to connect

physical I/O parameters and logical I/O parameters together using a declaration in the top-

level design using normal Rosetta structural design techniques. This method is used to map

logical components in the top-level design to communication bridges for implementation.

As an example, listing 5.7 shows several declarations on lines 2 and 3. These declarations are

used on lines 9, 10, 15, and 18 in the top-level design to connect several instantiated compo-
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nents together using the normal Rosetta structural design mechanisms. Just like the target

attribute, not all of the declarations are used to perform system partitioning. In this case, idat

and odat represent a communication requirement in the logical system being implemented,

not a system partitioning. The declarations wr1, wr2, rd1, dat1, dat2, and dat3 represent

system partitionings.6

RRT differentiates between declarations used to perform system partitioning and other dec-

larations by examining the domains of the facets using the declaration as an argument. If

one domain is a physical resource and the other domain is not a physical resource then the

declaration is being used to partition a logical communication requirement onto a communi-

cation bridge. Otherwise, the declaration is being used either to describe a communications

requirement in the logical system or to describe a physical communications link in the physi-

cal resource description. Currently, RRT requires all systempartitionings involve only a single

physical resource and a single logical component. Declarations not being used to describe the

system partitioning can have more than two facets involved, as normal.

I/O Partitioning for Software

The method of describing the system partitioning for communication described above seems

to prohibit logical component partitioned onto software target fabrics from communicating

with the rest of the logical system because logical components targeted as software fabrics

cannot have I/O parameters as per RST’s requirements. The partitioning of logical communi-

cation onto physical communication bridges was designed this way on purpose.

For components implemented as hardware circuits, I/O parameters model communication

requirements because this matches closely with the abstractions present in hardware. Any

implementation of these components must provide a physical implementation that meet the

requirements. In the case described above an engineer is explicitly stating that the logical com-

munication requirement can be met in implementation by respecting the system partitioning.

6Other declarations would probably be partitionings as well but this is not shown in the example.
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Communication requirements are notmodeled in the same way for components implemented

as software because the communication abstractions present in processors is different. Com-

munication abstractions for software are in the form ofmicroprocessor instructions that cause

physical communication when executed.

Communication requirements for software bound components are described using the soft-

ware synthesizable I/O instructions described in section 4.2. These instructions need not be

partitioned onto a physical resource in the top-level design because the logical component’s

implementation, in the form of a MicroBlaze instruction stream, is executing on a MicroB-

laze and thus the I/O instructions are executed on that MicroBlaze The partitioning of a logi-

cal component onto a MicroBlaze implies that all of the communication requirements in that

logical component can be satisfied in the physical implementation using the processor’s I/O

instructions.

For correct implementation of the logical system, however, the physical I/O on theMicroBlaze

must be connected correctly in the physical system description. A correct example is shown in

listing 5.7. As described early, this system is partitioned into a hardware/software co-design

with the first two logical components implemented as hardware circuits and the third compo-

nent implemented as a software program. Hardware/software communication is achieved by

partitioning the communication requirements of the first two logical components onto the

three FSL communication bridges. As described, the communication requirements of the

third logical component is satisfied by the MicroBlaze that the component has been parti-

tioned onto. Hardware/software communication is accomplished in the implementation by

connecting the MicroBlaze to the FSLs, on lines 12 and 13, in the physical system description.

These mechanisms for system partitioning of communication requirements onto physical re-

sources make it difficult to understand the communication in the logical system because not

all communication is explicit in the top-level design. They were chosen because theymap onto

the abstractions provided by hardware and software implementation fabrics. The communi-
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cation refinements presented in section 6 ease this difficulty by mechanically deriving these

system partitionings.

Default Partitionings

Examining listing 5.7 shows that not all of the communication requirements have beenmapped

to physical resources for implementation. RRT does not require all communication in the log-

ical system to be partitioned onto a physical resource for implementation because this would

be needlessly complicated. Large systems will have hundreds or thousands of communication

links and mapping each one of these onto a physical resource would be extremely tedious.

If a communication requirement in the logical system is not explicitly partitioned onto a physi-

cal communication bridge thenRRT relies onRST to provide a reasonable physical implemen-

tation. For software programs this has already been described, communication in software

bound logical components must be represented using software synthesizable I/O instructions

and are implemented as such. For hardware components, unpartitioned communication is

transformed into wires. This is accomplished simply by refining any unpartitioned I/O pa-

rameters into VHDL signals. When the Xilinx synthesis tools are used to process this VHDL

they will implement these signals as wires on the FPGA.

5.4 Component Implementation

After RRT has identified and validated the system partitioning the process of creating imple-

mentations for each logical component in the top-level design begins. This process is relatively

simple asRST creates the actual implementations. RRT simply needs to useRSTon the correct

logical components.

RRT accomplishes this by visiting each target fabric in the top-level design one at a time. For

each target fabric, RRT consults the system partitioning identified in the previous step to de-

termine what logical components to implement on the target fabric. If the language decla-

ration in the target fabric is “vhdl” then RRT will use RST to generate hardware circuits for
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each logical component with the result being a single VHDL implementation for each logical

component.

If the language declaration is “mblaze” thenRST is used to generate LLVM for all of the logical

components to form a single software program that will execute on the processor. Currently,

RST does not take care to prevent the execution of one logical component from blocking an-

other logical component. For example, communication instruction on the MicroBlaze can

block if there is no data available. Care must be taken by the system engineer to prevent star-

vation when targeting multiple logical components at a single MicroBlaze.

5.5 Project Generation

The final step in the process of refining a top-level design into ahardware/software co-designed

implementation is the generation of a Xilinx Platform Studio (XPS) project. This project in-

cludes all of the physical resources defined in the top-level design with each resource imple-

menting the appropriate logical components as per the top-level design’s system partitioning.

Most of the files generated during this process are simple templates that contain the same

information for all projects generated by RST. Examples of these template output files are

contained in appendix F. As an example, the Makefile generated for every project is identical

while the XMP file generated for each project differs only in the Xilinx device number and

number of MicroBlaze programs.

The exceptions are the user constraints file (UCF), the microprocessor hardware specification

(MHS), and the IP core generated to implement the logical components targeted at the root

target fabric in the top-level design. The constraints file is generated by gathering all of the

synthesis attributes from the physical system description and then combining those with con-

straints generated by RRT during the processing of each physical resource7. These final set of

constraints are then converted into the appropriate format for the Xilinx synthesis tools. An

example constraints file is shown in appendix F.

7For example, RRT will create constraints to ensure the correct operation of DDR memories.
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The MHS file describes all of the physical resources defined in the top-level design in the for-

mat required by the Xilinx synthesis tool. Every component declared in the MHS file, with

one exception, corresponds directly to one of the target fabrics, communication bridges, or

storage memories defined in the top-level design. RRT generates the definitions contained in

the MHS file by examining each physical resource in the top-level design one at a time. RRT

processes each resource with logic that is specific to that resource, this is why each resource

has a language or implementation declaration. This logic gathers the information necessary

to implement the physical resource using the Xilinx synthesis tools and forms a definition for

the MHS file as appropriate. An example MHS file is shown in appendix F.

The one exception to the direct correspondence between physical resources in the top-level

design and definitions in the MHS file is the IP core generated by RRT as to implement the

hardware circuits targeted on the root target fabric. During the process of implementing all

of the logical components in the top-level design all of the components targeted at the root

target fabric were implemented as VHDL. These VHDL files represent the bulk of the IP core.

In addition to the VHDL implementations, a Peripheral Analyze Order (PAO) file is created,

a Microprocessor Peripheral Definition is created, and a top-level IP core VHDL file is gen-

erated. The PAO file and the MPD file are required by the Xilinx tool so that the IP core can

be included in the generated MHS file for inclusion in the final implementation. The PAO file

simply lists all of the VHDL and Verilog files that form the definition of the IP core and RRT

simply copies that information into the file. The MPD file give several pieces of information

about the IP core, most importantly the top-level I/O ports exposed by the core. RRT gener-

ates this file based on the top-level VHDL file that it creates. An example of both of these files

can be found in appendix F.

The top-level VHDL file is formed by examining all declarations that represent communica-

tion between a logical component in the root target fabric and logical component in a different

target fabric. These declarations become the I/O interface of the top-level VHDL file. Each

logical component targeted at the root target fabric is then instantiated in the top-level VHDL
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file and connected, as appropriate, to the other logical components in the root target fabric.

The top-level VHDL file now contains implementations of all of the logical components tar-

geted at the root target fabric, implementations of all of the communications in the root target

fabric, and implementations of all of the communications leaving or entering the root target

fabric from another target fabric.

The processing performed by RRT is complete once all of the Xilinx project files have been

generated. At this point the user can process the project into an actual implementation us-

ing the Xilinx synthesis tool via the generated Makefile. The Xilinx synthesis tool may fail

to implement the design even if RRT does not issue an error because the RRT does not vali-

date the synthesis constraints and only partially validates the physical system description. If

the Xilinx synthesis tool successfully implements the design then the it can be loaded onto an

appropriate FPGA device for execution.

5.6 Top-Level Design Example

As an example of a complete top-level design, listing 5.8 shows a simple hardware/software

co-designed system specified in Rosetta using the synthesizable subset of the language. This

system implements a multiply-accumulator that receives two values in over a RS-232 UART,

multiplies those two values, and then adds the results to an accumulator. The Xilinx project

resulting from refining this top-level design into an implementation is shown in appendix F.

As described earlier, the top-level design must contain a description of the physical resources

available for the implementation, a description of the logical system behavior, and a descrip-

tion of the system partitioning. Figure 5.1 shows the physical resource description given in the

tld top-level design. In this design there are two target fabrics, five communication bridges,

and one storage memory. The fpga instantiation defines the root FPGA target fabric for the

design with mbl1 being aMicroBlaze target fabric included within that FPGA. These two phys-

ical resources provide the hardware computational resources and software computational re-

sources that will be used to implement the logical design.
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Listing 5.8: Full Top-Level Design Example� �
1 facet tld :: system is
2 sys_clk,sys_rst,rx,tx,clk0,rst,ren,ten,rrdy,trdy, f0m_ct,f0m_fl,
3 f0m_wr,f0s_ct,f0s_ex,f0s_rd,f1m_ct,f1m_fl,f1m_wr, f1s_ct,f1s_ex,
4 f1s_rd,f2m_ct,f2m_fl,f2m_wr,f2s_ct,f2s_ex,f2s_rd::bit;
5 rdat,tdat::word(8);
6 f0m_dt,f0s_dt,f1m_dt,f1s_dt,f2m_dt,f2s_dt::word(32);
7 begin
8 fpga: genesys(sys_clk,sys_rst,rx,tx);
9

10 mbl1: mblaze(clk0,rst); mbl1’target=fpga;
11 mbl1b: bram_memory(8192); mbl1b’target=fpga;
12 mbl1i: lmb_v10(clk0,rst); mbl1i’target=fpga;
13 mbl1d: lmb_v10(clk0,rst); mbl1d’target=fpga;
14

15 mbl1i.master = [mbl1.ilmb]; mbl1d.master = [mbl1.dlmb];
16 mbl1i.slave = [mmport(mbl1b.lmba,x”00000000”,x”00007FFF”)];
17 mbl1d.slave = [mmport(mbl1b.lmbb,x”00000000”,x”00007FFF”)];
18

19 f0: fsl_v20(1,0,0,0,32,1,0,clk0,rst,_,clk0,f0m_dt,f0m_ct,f0m_wr,
20 f0m_fl,clk0,f0s_dt,f0s_ct,f0s_rd,f0s_ex,_,_,_);
21 f1: fsl_v20(1,0,0,0,32,1,0,clk0,rst,_,clk0,f1m_dt,f1m_ct,f1m_wr,
22 f1m_fl,clk0,f1s_dt, f1s_ct,f1s_rd,f1s_ex,_,_,_);
23 f2: fsl_v20(1,0,0,0,32,1,0,clk0,rst,_,clk0,f2m_dt,f2m_ct,f2m_wr,
24 f2m_fl,clk0,f2s_dt,f2s_ct,f2s_rd,f2s_ex,_,_,_);
25 f0’target=fpga; f1’target=fpga; f2’target=fpga;
26 f0.slave=mbl1.sfsl0; f1.slave=mbl1.sfsl1; f2.master=mbl1.mfsl0;
27

28 clks: clockgen(3,2,2.0,sys_clk,sys_rst,clk0,_,_,_,_,_,_,_,_,rst);
29 clks’target = fpga;
30

31 clk0’sigis = ”CLK”;
32 clk0’clk_inport = sys_clk;
33 rst’sigis = ”RST”;
34

35 iuart: uart(clk0,rst,ten,trdy,tdat,tx,ren,rrdy,rdat,rx);
36 iuart’target = fpga;
37

38 hlpr: helper(clk0,rst,ten,tdat,rrdy,rdat,f0m_dt,f0m_ct,f0m_wr,
39 f0m_fl,f1m_dt,f1m_ct,f1m_wr,f1m_fl,f2s_dt,f2s_ct,
40 f2s_rd,f2s_ex);
41 hlpr’target = fpga;
42

43 mcc: macc(); mcc’target = mbl1;
44 end facet;�
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Figure 5.1: Physical Description
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Communication is provided in the design us-

ing f0, f1, and f2. Each of these is an

FSL with one end-point connected to the

MicroBlaze processor and the other end-

point left available for connecting to a hard-

ware circuit. Two additional communica-

tions bridges, mbl1i and mbl1d are also phys-

ical resources in the design, they connect

the MicroBlaze to its storage memory mbl1b

forming the instruction and data memory communication channels. Off-chip physical I/O is

present in the design in the form of sys_clk, sys_rst, rx, and tx, though this is not shown in

listing 5.8. The genesys target resource description, as given in appendix E, identifies these

as physical resources using several synthesis attributes.

Figure 5.2: Logical Description

clks

iuart hlpr

mcc

Figure 5.2 shows the logical description of

the system. In this example, the logical sys-

tem contains four components. Three of the

components, clks, iuart, and hlpr are con-

nected together directly using declarations

within tld. The fourth component, mcc,

is not connected directly to any other com-

ponent. The important details in this fig-

ure are unconnected I/O parameters. These

represent places in the logical design where

there is an unmet communication require-

ment. This requirementmust be satisfied us-

ing one of the physical communication resources. The three unconnected I/O parameters on

mcc are not described in the top-level design but are software I/O instructions contained in

the definition of the macc facet.
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Figure 5.3: Resulting Implementation
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The system partitioning is defined by several target attributes along with the declarations

that interconnect physical resources and logical components. In this case, the top-level de-

sign describes a partitioning where three logical facets, clks, iuart, and hlpr, are partitioned

onto fpga to be implemented as hardware circuits. The fourth logical component, mcc, is par-

titioned onto mbl1 to be implemented as a software program.

As described earlier, the three unconnected communication ports on mcc are implemented as

MicroBlaze instructions, thus, they are partitioned onto the MicroBlaze. In this case the Mi-

croBlaze has been connected to three FSLs so the these three ports are partitioned onto the

FSL communication bridges. The unconnected sides of the three FSL communication bridges

are connected to the hlpr logical component to complete the communications links. Viewed as

a whole, we have effectively formed a communications link that can cross the hardware/soft-

ware boundary. The remaining four unconnected communication ports in the logical design

are connected to the four I/O pins and provide off-chip communication using fpga.

Figure 5.3 shows the implementation that is produced for this top-level design. This figure

shows that the resulting implementation is an amalgamation of the physical system and the
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logical system. All of the logical component in the top-level design have been implemented

on their target fabrics according to the system partitioning. Additionally, all communication

in the system has been correctly wired together, with no unconnected ports appearing in the

implementation. Of particular interest are the FSL communication links. These links provide

hardware/software communication support in the system and are responsible for bridging the

gap between the hardware domain and the software domain in this hardware/software co-

designed implementation. We see in this figure that the FSL instructions used on theMicroB-

laze processor to perform I/O correspond to the FSL links that are connected to the hardware

circuitry running in the FPGA.

This example shows the low-level hardware/software co-design support provided by RRT. A

synthesizable specification was created containing four logical components. The computa-

tion and communication requirements present in this logical designwere partitioned onto two

fabrics and three communication links for implementation. In the example, each of the four

logical components is specified using synthesizable Rosetta constructs specific to each logical

component’s target fabric. For instance, the mcc logical component makes use of fslread and

fslwrite instructions to specify communication requirements. Specifying components using

target fabric specific constructs conflates the specification of functional behavior with the im-

plementation details needed to implement that functional behavior. This makes it difficult to

modify the implementation of a logical component and prohibits rapid prototyping. To solve

this problem, rapid prototyping refinements can be used to refine implementation agnostic

specifications into implementation specific specifications.
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6 Rapid Prototyping Refinements
As stated earlier, the chief goal of RRT is to provide a rapid prototyping environment for

system-level, hardware/software co-design using the Rosetta language. The top-level design

refinement just described supports the notion of system-level, hardware/software co-design,

leaving a need for an accompanying rapid prototyping capability. The refinements described

in this section are all designed to support rapid prototyping by allowing high-level, implemen-

tation agnostic, unsynthesizable specifications in the Rosetta language to be refinements into

low-level, implementation specific, synthesizable specifications by inserting simple, declara-

tive refinements into the specification. These refinements are then used tomechanically trans-

form the Rosetta specification as appropriate. As described in section 5, the process of discov-

ering and mechanically applying rapid prototyping refinements is the first step performed by

the top-level design refinement when a top-level design is being refined into an implementa-

tion.

RRT supports mechanically applying several different declarative refinements , each of these

refinements is described in detail below. Each refinement can be classified into one of the

following categories based on the Rosetta language elements that are being processed:

Behavior Refinements

The rapid prototyping capability supported byRRT is designed to allowhigh-levelRosetta

specifications to be refinement into efficient, specialized representations for the target

fabrics that they are partitioned onto for implementation. Behavioral refinements can

be used by a system engineer to refine a specification into a more efficient representa-

tion for implementation by intentionally changing the behavior of the specification in

suitable ways. These refinements are described in detail in section 6.2.

Data Refinements

Data refinements lower unsynthesizable data representations in a Rosetta specification

into data representations that are synthesizable. Using these refinements allows a system

engineer to develop a specification using high-level Rosetta data types and helps prevent

implementation details from seeping into the functional behavior of the system being
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specified. The data refinements supported by the RRT can then be used to mechanically

derive an efficient, specialized representation of that data type for implementation on a

specific target fabric.

Data refinements are applied to data types and refine any declaration or parameter of

that data type inside a specific structural instantiation. Data type refinements do not

materially change the functional behavior of a specification but immaterial differences

maybe causeddue to different data access patterns. All of the data refinements supported

by RRT are described in detail in section 6.3.

Communication Refinements

Communication refinements lower unsynthesizable communication constructs from the

Rosetta language into representations that can be synthesized. Like data refinement,

communication refinement allows specifications to be developed using easier to work

with, high-level constructs and helps prevent implementation details from seeping into

the behavioral requirements being described in the specification. Efficient and special-

ized communication constructs can then be mechanically derived for a specific target

fabric using the declarative communication refinements.

Communication refinements are applied to declarations that link two difference struc-

tural instantiations via their parameters. High-level Rosetta communication expres-

sions involving those parameters are refined into a lower-level communication protocols.

Like data refinements, communication refinements only produce immaterial behavioral

changes in the specification because difference protocols are accessed differently. All of

the communication refinements supported by RRT are described in detail in section 6.4.

6.1 Refinement Discovery and Application

RRT discovers and applies refinements in a specification one facet at a time with all refine-

ments applied to the specification before processing the next facet. The order that facets are

visited during this stage is undefined. Care is taken by RRT to ensure that this does not lead

to non-deterministic results. For instance, in listing 6.1 facets ex2 and tld both have refine-
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Listing 6.1: Refinement Discovery Example� �
1 facet ex1(a :: input bit; b :: input bit) :: state_based is
2 begin
3 b’ = a;
4 end facet;
5

6 facet ex2(a, b :: input bit; c :: output bit) :: state_based is
7 rst :: bit;
8 begin
9 i: ex1(a or b, c);
10 active_high_reset(i, rst);
11 end facet;
12

13 facet tld :: system is
14 a, b, c, clk :: bit;
15 begin
16 i: ex2(a, b, c);
17 rising_edge_clock(i, clk);
18 end facet;�
ments that must be eliminated, but the order that they are eliminated is undefined. Addition-

ally, both refinements affect facet ex1 so RRT must ensure both refinements are applied in a

deterministic order to that facet. This is done by ensuring that any refinements applied to an

instance of a facet are applied after the refinements declared in that facet’s definition.

In the example, if ex2 is refined first then reset logicwill be added to facet ex1 first and clocking

logic will be added after, when tld is processed. If tld is refined first then clocking logic is

added to ex2 first and, as part of this, a new clock refinement is added to that facet. This new

refinement is added as the last term in the facet, ensuring that the refinement will happen

last. Thus, when ex2 is processed, the reset logic is added first and the clocking logic is added

second and the results produced are identical.

As alluded to, processing of refinements within a single facet happens top-down. This gives

control over the application of refinements to the system engineer and allows different results

to be obtained by varying the order of application. For instance, synchronous reset versus

asynchronous reset can be achieved by varying the order of applying reset logic and clocking

logic.
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Listing 6.2: Hardware Clock Refinement� �
1 facet ex(a :: input bit; b :: output bit) :: state_based is
2 x, y :: bit;
3 begin
4 x’ = a;
5 y = a;
6 z: other(x xor y, b);
7 end facet;
8

9 facet tld :: system is
10 clk, a, b :: bit;
11 begin
12 i: ex(a, b);
13 rising_edge_clock(i, clk);
14 end facet;�

6.2 Behavior Refinement

Each of the behavioral refinements supported by RRT are described below. Currently, all of

these refinements are designed to help with the process of refining the behavior of Rosetta

specifications so that they can be efficiently implemented as hardware circuits. There are no

behavioral refinements for software bound component specifications.

Hardware Clocks via Refinement

Efficient hardware circuit implementations rely on hardware clocks to synchronize the opera-

tion of the circuit. Large pieces of combinatorial circuitry are inefficient because the propaga-

tion delay through that circuit becomes prohibitively large, especially in FPGAs because they

are designed to support synchronous logic efficiently. In hardware circuits, large propagation

delays result in slow clock speeds and low performance.

When developing a system specification a system engineer does not want to get bogged down

with the tedious process of specifying the behavior of synchronous elements in the design,

especially since all synchronous elements follow a basic pattern. The hardware clock refine-

ments supported by RRT captures this basic pattern and allow system engineers to apply this

pattern to a specification after the specification has been completed.
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Listing 6.3: Refined Hardware Clock� �
1 facet ex(clk, a :: input bit; b :: output bit) :: state_based is
2 x, y :: bit;
3 begin
4 x’ = if clk’event and clk=1 then a else x end if;
5 y = a;
6 z: other(x xor y, b);
7 rising_edge_clock(z, clk);
8 end facet;
9

10 facet tld :: system is
11 clk, a, b :: bit;
12 begin
13 i: ex(clk, a, b);
14 end facet;�
The benefit over hand coding is the ease in describing synchronous behavior onmany elements

at once using a single declarative refinement. This supports the rapid prototyping capabilities

of the refinement tool because the amount of work required to change the synchronous be-

havior is substantially less than if it had been hand coded.

As an example of the transformation performed by a hardware clock refinement, consider the

specification given in listing 6.2. In this specification, the behavior of the facet ex has been

fully specified without introducing any notion of clocks. The facet does, however, describe a

stateful nature bymaking use of the high-level Rosetta support for state transitions in the form

of the next state operation (the tick operator). The specification states that in the next state

x is equivalent to a and that y is equivalent to a in the current state. Additionally, part of the

facet’s behavior is specified via structural instantiation.

The rising edge clock refinement in facet tld is applied to an instance of the ex facet and is used

by the system engineer to declare that stateful transitions in ex should only happen on when

the supplied clock is a rising edge. The effect, is that the behavior described in the original

specification is changed, slightly, so that the facet can be implemented more efficiently.

The result of applying this transformation to the specification shown in listing 6.2 is shown in

listing 6.3. The refinement has been eliminated from the specification and in its place three
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changes have been mechanically applied. First, a clock parameter clk has been added to the

target facet. This clock parameter is connected to the clk declaration in the tld facet via the

corresponding argument in the instantiation. The name of the clock to use for the refinement

is given as part of the declarative refinement term. The desired behavioral change is imple-

mented with an if expression guarding the state transition. Instead of changing during every

state transition, as was the original behavior, the refined facet now specifies that changes only

happen during rising edges of clk. Finally, the clock refinement is propagated to all instanti-

ations inside of the facet being transformed by adding a new clock refinement term to the end

of the facet being transformed.

One important thing to notice is that the behavioral specification of the x declaration is up-

dated by the refinement but the behavioral specification of y remains unchanged. All of the

behavioral refinements performed byRRT, including the clock refinement, are concernedwith

behavioral refinement of stateful elements in a specification. RRT considers x to be a stateful

element because of the presence of the next state operator.

Allowing a system engineer to distinguish stateful and non-stateful parts of a specification

is important for efficient implementation of hardware circuits. Stateful behaviors correspond

directly to implementation using sequential circuitry while non-stateful behaviors correspond

directly to implementation using combinational circuitry. The distinction between stateful

and non-stateful behaviors can be exploited by a system engineer for efficient implementation

of specifications as hardware circuits.

RRT supports three different clock refinements. The rising edge clock refinement shown is

one of them with the other two supported refinements being falling edge clock and double

data rate clock variations. The implementation of these two refinements is nearly identical to

the rising edge clock refinement. The falling edge clock implementation differs by using clk=0

as part of the if guard and the double data rate clock implementation omits the extra guard

condition altogether.
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Listing 6.4: Hardware Reset Refinement� �
1 facet ex(a :: input bit; b :: output bit) :: state_based is
2 x :: bit initial is 1; y :: bit;
3 begin
4 x’ = a;
5 y = a;
6 z: other(x xor y, b);
7 end facet;
8

9 facet tld :: system is
10 rst, a, b :: bit;
11 begin
12 i: ex(a, b);
13 active_high_reset(i, rst);
14 end facet;�
Hardware Resets via Refinement

Reset circuitry is required in the implementation of a hardware circuit to ensure that the circuit

enters into a known state before nominal behavior begins. However, specification of reset

behavior is tedious and, like clocking circuitry, follows a basic pattern. Ideally, the initial state

could be specified declaratively with reset behavior derived. Listing 6.4 gives an example of

a specification showing how RRT allows the initial state to be declaratively stated. RRT can

mechanically transform these declarative statements into the functional behavior specified in

listing 6.5.

In the original specification, the initial state of the ex facet is specified declaratively using

the initial attribute. In this case, the system engineer has specified an initial value of 1.

The initial value of y has not been specified, because the system engineer knows that this

declaration is not stateful as there are no state transitions defined for the declaration. In the

top-level design, the system engineer declares that the behavior of the ‘i’ instantiation should

be changed so that the initial state is enforced by implementing active high reset functional

behavior with rst representing the reset signal.

In the new specification the initial state declarations are still present but new reset logic has

been added. In the original specification, the value of x in the next state was always equivalent
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Listing 6.5: Refined Hardware Reset� �
1 facet ex(rst, a :: input bit; b :: output bit) :: state_based is
2 x :: bit initial is 1; y :: bit;
3 begin
4 x’ = if rst=1 then 1 else a end if;
5 y = a;
6 z: other(x xor y, b);
7 active_high_reset(z, rst);
8 end facet;
9

10 facet tld :: system is
11 rst, a, b :: bit;
12 begin
13 i: ex(rst, a, b);
14 end facet;�

to the parameter a. In the refined specification, the behavior is changed so that the value of x in

the next state is the declared initial value if the reset signal is active and a otherwise. Just like

the clock refinement, this behavioral change is implemented by guarding the transition with

an additional if expression, but in this case the if expression is choosing between two values

rather than limiting when state changes are allowed. Note that, like the clock refinement,

y is not updated because it is not a stateful declaration. Additionally, the active high reset

logic is propagated to all instantiations inside of the refined facet ex by appending a new reset

refinement declaration to the end of the facet’s specification.

RRT supports refining initial state declarations into both active high reset logic and active

low reset logic. The only difference is the implementation of the guard expression used in the

additional if expression.

Hardware Enables via Refinement

Like clocking and reset signals, enable signals are a common design element in hardware cir-

cuits. Unlike clocks and resets, enable signals do not always have a common pattern used to

specify when functionality is enabled and when it is not enabled. Additionally, often times

different pieces of logic in a specification will be enabled or disabled at different times, mak-
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Listing 6.6: Hardware Enable Refinement� �
1 facet ex(a :: input bit; b :: output bit) :: state_based is
2 x, y :: bit;
3 begin
4 x’ = a;
5 y = a;
6 z: other(x xor y, b);
7 end facet;
8

9 facet tld :: system is
10 ena, a, b :: bit;
11 begin
12 i: ex(a, b);
13 active_high_enable(i, ena);
14 end facet;�

ing it impossible to mechanically add enable behavior to that specification. Because of these

complexities, enable logic is often manually specified by a system engineer.

RRT is capable of adding enable logic to a specification in the case where all specified state

transition should be inhibited by a single enable signal. If there are no manually specified

enable signals in the specification then this represents typical enable behavior. If manual en-

able signals already exist in the specification then the additional logic acts as a “global” enable

ensuring no transitions when not enabled but allowing normal transition logic otherwise.

Listing 6.6 gives an example specification showing a facet ex that does not restrict when the

value of x is allow to transition. In the top-level design, the system engineer uses the active

high enable refinement to declare that the behavior of the instantiation ‘i’ should be modified

so that no state transitions occur unless the ena parameter is high.

Listing 6.7 shows how RRT processes the declarative enable refinement into new functional

behavior. In the refined specification, the ex facet now contains an additional if expression.

Similar to the clock and reset refinements, this if expressionmodifies the behavior of the facet

by specifying that state transitions are only allowed when ena is high. In addition to the if

expression, the active high enable logic is propagated to all instantiations inside of the refined
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Listing 6.7: Refined Hardware Enable� �
1 facet ex(ena, a :: input bit; b :: output bit) :: state_based is
2 x, y :: bit;
3 begin
4 x’ = if ena=1 then a else x end if;
5 y = a;
6 z: other(x xor y, b);
7 active_high_enable(z, ena);
8 end facet;
9

10 facet tld :: system is
11 ena, a, b :: bit;
12 begin
13 i: ex(ena, a, b);
14 end facet;�
facet ex by appending a new enable refinement declaration to the end of the facet’s specifica-

tion.

RRT supports refining specifications to insert both active high enable logic and active low

enable logic. The only difference is the implementation of the guard expression used for the

added if expression.

6.3 Data Refinement

Data representation at the implementation level is an important concern with respect to ef-

ficiency in both the hardware domain and the software domain. Importantly, efficient data

representation in hardware is often orthogonal to efficient data representation in software.

Consider, for example, the specification of a counter as shown in listing 6.8. This specification

is high-level in the sense that the data types used in the specification are abstract, mathemat-

ical types. The integer type used in this specification does not mean “a value of some bit-

width” as in languages like C or Java but instead has the mathematical meaning “an element

of the infinite set Z”.

A truly infinite set of values cannot be represented in either hardware or software implemen-

tations. To create an implementation, the system engineer must refine the data type. If the
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Listing 6.8: Data Representation in a Counter� �
1 facet cntr(tick :: input bool; o :: output integer) :: state_based is
2 value :: integer initial is 0;
3 begin
4 value’ = if tick then value + 1 else value end if;
5 o = value;
6 end facet;�
specification is going to be implemented using a 32-bit processor then it would be reasonable

to implement this counter using a 32-bit two’s-complement representation to match the pro-

cessor’s direct support for this representation. If implemented as a hardware circuit, a 3-bit

two’s-complement representation might be better, for example, if the counter only needs to

count up to eight.

To create the implementation the system engineer would need to manually modify the spec-

ification to use the newly chosen data representation. There are several problems with this

approach. First, manually modifying the specification could be extremely difficult. In the

example given the change from integer to a 32-bit value would be quick, but in a larger spec-

ification it would take much longer. Some synthesis tools side step this problem by allowing

unsynthesizable data types to be synthesized with the understanding that the resulting im-

plementation is not faithful to the data type contained in the specification. For example, a

synthesis tool might allow the integer data type above to be synthesized by stipulating that it

is always implemented using a 32-bit two’s-complement representation.

The second problem is that structural design techniques allow specifications to be built up

into larger specifications by including the smaller specification via instantiation and the sys-

tem engineer may want different instantiations to use different data representations. There

are two traditional solutions to this problem. First, the specification can be duplicated for each

instantiation with so that each instantiation can make use of the desired data representation.

This approach is tedious and error prone. Second, the data representation can be parameter-

ized by a design time parameter so that the data type can be refined at the instantiation site.

Effectively, a set of data types is described by the specification and one element of this set can
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Listing 6.9: Data Refinement of Integer� �
1 facet cntr(tick :: input bool; o :: output integer) :: state_based is
2 value :: integer initial is 0;
3 begin
4 value’ = if tick then value + 1 else value end if;
5 o = value;
6 end facet;
7

8 facet tld :: system is
9 tick :: bit; o :: word(8);
10 begin
11 i: cntr(tick, asinteger(o));
12 end facet;�

be chosen for use at the instantiation site. This approach is common in languages like VHDL

and Verilog, allowing some flexibility. This approach cannot always provide the desired level

of flexibility. For instance, this approach would not allow data representation to change from

a two’s-complement representation to a gray-code representation.1

RRT alleviates these two problems by providing data type refinement as a mechanised trans-

formation. The refinement to be applied to the specification is described by the system engi-

neer so that control over the final representation is maintained but the refinement is applied

mechanically byRRT so that the tedious and error prone process ofmodifying the specification

is eliminated.

Refinement of Integer Types

RRT supports the refinement of integer data types into two’s-complement representation as

a demonstration of data refinement of unsynthesizable primitive data types. Listing 6.9 is an

example system specification that includes the refinement of an integer data type into an 8-

bit, two’s-complement representation. The refinement is declared by the system engineer by

using asiniteger function on o, an 8-bit, two’s complement value.

1Technically this would be possible, but only by duplicating all of the logic for the two representations
and then choosing between them based on a design time parameter.

100



Listing 6.10: Refined Integer Data Type� �
1 facet cntr(tick :: input bool; o :: output word(8)) :: state_based is
2 value :: integer initial is 0;
3 begin
4 value’ = if tick then value + 1 else value end if;
5 o = value;
6 end facet;
7

8 facet tld :: system is
9 tick :: bit; o :: word(8);
10 begin
11 i: cntr(tick, o);
12 end facet;�
The resulting specification is shown in listing 6.10. RRT has transformed the original spec-

ification to remove the function application and has implemented the data type refinement,

ensuring that the argument types in the application match the parameter types in the facet

definition.

Nothing else has been changed by the transformation, including the value declaration in the

cntr facet that remains of type integer. The integer data type refinement performed by RRT

relies on the RST’s elastic bit-width support to figure out that value can be implemented as

an 8-bit value because only eight bits are ever used as part of the output value o.

Currently, the usefulness of the integer data type refinement is limited by the simplicity of the

transformation that is performed. As described earlier, this transformation can be achieved

at the language level simply using design parameters to parameterize a bit-vector length. It

is believed that refinement of primitive types would be useful with better support from RRT.

For instance, refining the integer counter in this example into a gray-code counter would be

an interesting and useful refinement but these more interesting refinements are currently not

supported.

Refinement of Algebraic Data Types

More useful data refinement support is supplied by RRT in the form of algebraic data type

refinement. The Rosetta language provides support for algebraic data types in the form of
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Listing 6.11: Algebraic Data Type in Rosetta� �
1 machine_instr :: type is data
2 SPush(push_value :: word(8)) :: isSPush | SAdd :: isSAdd |
3 SSub :: isSSub | SHalt :: isSHalt
4 end data;�
data declarations. For instance, listing 6.11 shows an algebraic data type that models instruc-

tions for a simple stack machine. Algebraic data types are not directly representable in either

hardware or software implementations and so this data type would need to be refined into a

synthesizable representation if a stack machine were to be implemented.

There are several parts to this algebraic data type that must be considered when performing

data type refinement. First, data values are defined by applying the constructors to their re-

quired arguments. For instance, a push value canbedefinedwith an expression like SPush(x”FF”).

Second, the constructor used to defined a value can be observed by applying recognizers to a

value. The expression isSPush(val), for instance, could be used as a guard in an if expression

to determine if a value was defined using the SPush constructor. Lastly, arguments supplied

to constructors when defining a value can be retrieved using the data type’s observers. This

could be done, in this case, using an expression such as push_value(val), the result of which

would be an 8-bit value. The constructors, recognizers, and observers defined for an algebraic

data type must all be refined along with the data type representation.

Guided Refinement of Algebraic Data Types

To refine this unsynthesizable algebraic data type into a synthesizable representation the sys-

tem engineer must describe the new representation to RRT. Currently there are two ways to

provide this description: guided and definitional. In the guided approach, RRT generates au-

tomatic representations that meet high-level goals that are described by the system engineer.

Facet tld in listing 6.12 showshow thehigh-level goals are described toRRT. The refine_type

declaration describes toRRT that a data type refinement should be performed and, in this case,

the system engineer has specified that the refinement is to be applied to the inst instance and
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Listing 6.12: Guided Algebraic Data Type Refinement� �
1 facet tld :: system is
2 begin
3 inst: example( ... );
4 refine_type(inst, machine_instr, ”binary”, ”packed”);
5 end facet;�
that the machine_instr algebraic data type is being refined. The final two parameters describe

the high-level goals.

The second to last argument, “binary”, describes how the different constructors in the alge-

braic data type should be represented. In this case RRT is being told to generate a simple,

incrementing binary value for each tag. In this example, a 2-bit tag would be generated for

each constructor with SPush having tag 00 and SHalt having tag 11. Valid values for this argu-

ment are “binary”, “graycode”, and “onehot”. Binary representations are simple and typically

used when refining algebraic data types for software implementation. Gray-code and one-

hot encodings are useful representations in hardware as these encodings can reduce signal

glitches, reduce transition logic, and simplify decoding logic.

The last argument, “packed”, describes how the constructor tag and constructor arguments are

aligned in the new data representation. In this case the tag and all arguments are bit-packed

as closely as possible in the new representation. For instance, the value SPush(x”FF”) would

be represented as b”0011111111” in the example given with the tag and argument packed

together. Bit-packing is an efficient representation for hardware because no bits are wasted

and unpacking can be performed with no efficiency loss. For software, however, additional

instruction are required to unpack the encoding. The alignment can also be “aligned” in which

case the tag and constructor arguments are aligned to byte boundaries for efficient unpacking

in software implementations.

103



Table 6.1: Guided Data Type Refinement Representations
Binary/Packed

Data Type → machine_instr::type is word(10);
Constructors → SPush(a::word(8))::word(10) is b”00”& a;

SAdd()::word(10) is b”01”& x”00”;
SSub()::word(10) is b”10”& x”00”;
SHalt()::word(10) is b”11”& x”00”;

Recognizers → isSPush(v::word(10))::boolean is (v sub [9,..8])==b”00”;
isSAdd(v::word(10))::boolean is (v sub [9,..8])==b”01”;
isSSub(v::word(10))::boolean is (v sub [9,..8])==b”10”;
isSHalt(v::word(10))::boolean is (v sub [9,..8])==b”11”;

Observers → push_value(v::word(10))::word(8) is v sub [7,..0];

Binary/Aligned
Data Type → machine_instr::type is word(16);
Constructors → SPush(a::word(8))::word(16) is b”00”& b”000000”& a;

SAdd()::word(16) is b”01”& b”000000”& x”00”;
SSub()::word(16) is b”10”& b”000000”& x”00”;
SHalt()::word(16) is b”11”& b”000000”& x”00”;

Recognizers → isSPush(v::word(16))::boolean is (v sub [15,..14])==b”00”;
isSAdd(v::word(16))::boolean is (v sub [15,..14])==b”01”;
isSSub(v::word(16))::boolean is (v sub [15,..14])==b”10”;
isSHalt(v::word(16))::boolean is (v sub [15,..14])==b”11”;

Observers → push_value(v::word(16))::word(8) is v sub [7,..0];

Gray-Code/Packed
Data Type → machine_instr::type is word(10);
Constructors → SPush(a::word(8))::word(10) is b”00”& a;

SAdd()::word(10) is b”01”& x”00”;
SSub()::word(10) is b”11”& x”00”;
SHalt()::word(10) is b”10”& x”00”;

Recognizers → isSPush(v::word(10))::boolean is (v sub [9,..8])==b”00”;
isSAdd(v::word(10))::boolean is (v sub [9,..8])==b”01”;
isSSub(v::word(10))::boolean is (v sub [9,..8])==b”11”;
isSHalt(v::word(10))::boolean is (v sub [9,..8])==b”10”;

Observers → push_value(v::word(10))::word(8) is v sub [7,..0];

Gray-Code/Aligned
Data Type → machine_instr::type is word(16);
Constructors → SPush(a::word(8))::word(16) is b”00”& b”000000”& a;

SAdd()::word(16) is b”01”& b”000000”& x”00”;
SSub()::word(16) is b”11”& b”000000”& x”00”;
SHalt()::word(16) is b”10”& b”000000”& x”00”;

continued on next page
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Table 6.1: Guided Data Type Refinement Representations (continued)
Recognizers → isSPush(v::word(16))::boolean is (v sub [15,..14])==b”00”;

isSAdd(v::word(16))::boolean is (v sub [15,..14])==b”01”;
isSSub(v::word(16))::boolean is (v sub [15,..14])==b”11”;
isSHalt(v::word(16))::boolean is (v sub [15,..14])==b”10”;

Observers → push_value(v::word(16))::word(8) is v sub [7,..0];

One-Hot/Packed
Data Type → machine_instr::type is word(12);
Constructors → SPush(a::word(8))::word(12) is b”0001”& a;

SAdd()::word(12) is b”0010”& x”00”
SSub()::word(12) is b”0100”& x”00”
SHalt()::word(12) is b”1000”& x”00”

Recognizers → isSPush(v::word(12))::boolean is (v sub [11,..8])==b”0001”;
isSAdd(v::word(12))::boolean is (v sub [11,..8])==b”0010”;
isSSub(v::word(12))::boolean is (v sub [11,..8])==b”0100”;
isSHalt(v::word(12))::boolean is (v sub [11,..8])==b”1000”;

Observers → push_value(v::word(10))::word(8) is v sub [7,..0];

One-Hot/Aligned
Data Type → machine_instr::type is word(16);
Constructors → SPush(a::word(8))::word(16) is b”0001”& x”0”& a;

SAdd()::word(16) is b”0010”& x”0”& x”00”;
SSub()::word(16) is b”0100”& x”0”& x”00”;
SHalt()::word(16) is b”1000”& x”0”& x”00”;

Recognizers → isSPush(v::word(16))::boolean is (v sub [15,..12])==b”0001”;
isSAdd(v::word(16))::boolean is (v sub [15,..12])==b”0010”;
isSSub(v::word(16))::boolean is (v sub [15,..12])==b”0100”;
isSHalt(v::word(16))::boolean is (v sub [15,..12])==b”1000”;

Observers → push_value(v::word(16))::word(8) is v sub [7,..0];

The data type, constructor, recognizer, and observer definitions generated for guided data type

refinements are shown in table 6.1. These definitions are placed into the declarations section

of theRosetta facet that is being refined and then the partial evaluator, described in section 5.1,

is used to ensure that the data type, constructors, recognizers, and observers are eliminated

from that facet and replaced with their new definitions.

Definitional Refinement of Algebraic Data Types

The definitional approach requires more work by the system engineer but allows greater flex-

ibility in defining the refinement. Facet tld in listing 6.13 shows an example of this method.

The body of this facet is very similar to the previous example, the only difference being that

105



Listing 6.13: Definitional Algebraic Data Type Refinement� �
1 facet tld :: state_based is
2 mi2bits(mi :: machine_instr) :: (word(8),word(16),word(8)) is
3 case mi is
4 SPush(v) -> (x”00”, x”1000”, v)
5 | SAdd -> (x”01”, x”0100”, x”00”)
6 | SSub -> (x”02”, x”0010”, x”00”)
7 | SHalt -> (x”03”, x”0001”, x”00”)
8 end case;
9 begin
10 inst: example( ... );
11 refine_type(inst, machine_instr, mi2bits);
12 end facet;�

the description of the data type refinement is given by the function mi2bits rather than being

high-level goals given by name.

When using this method to refine an algebraic data type to a synthesizable representation the

system engineer creates a special function, in this case mi2bits, that maps constructed values

from the algebraic data type into the synthesizable representation. This function must meet

several requirements or RRT will fail to apply the refinement:

1. The function’s domain must be the algebraic data type being refined.
2. The function’s co-domain must be a tuple and each element must be synthesizable.
3. The function’s body must be a case expression that destructs the algebraic data type.
4. The case expression must match all constructors of the algebraic data type.
5. Each tuple value must include only constants and constructor arguments.
6. Each tuple value must include exactly one instances of each constructor argument.
7. Each tuple value must include at least one constant value.

If these requirements aremet thenRRTwill refine the given algebraic data type into a concate-

nation of the synthesizable tuple elements. For instance, the constructed value SPush(x”FF”)

would be refined in the example given into x”001000FF”.

Table 6.2 shows the representation generated from the mi2bits function in listing 6.13. The

data type generated for this data type refinement is a bit-vector with a length equal to the

summation of individual elements in mi2bits’s co-domain. The generated constructors sim-
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Table 6.2: Definitional Data Type Refinement Representation
Data Type → machine_instr :: type is word(32);
Constructors → SPush(a :: word(8)) :: word(10) is x”00”& x”1000”& a;

SAdd() :: word(32) is x”01”& x”0100”& x”00”;
SSub() :: word(32) is x”02”& x”0010”& x”00”;
SHalt() :: word(32) is x”03”& x”0001”& x”00”;

Recognizers → isSPush(v :: word(32)) :: boolean is
((v sub [31,..24]) == x”00”) and
((v sub [23,..8]) == x”1000”);

isSAdd(v :: word(32)) :: boolean is
((v sub [31,..24]) == x”01”) and
((v sub [23,..8]) == x”0100”) and
((v sub [7,..0]) == x”00”);

isSSub(v :: word(32)) :: boolean is
((v sub [31,..24]) == x”02”) and
((v sub [23,..8]) == x”0010”) and
((v sub [7,..0]) == x”00”);

isSHalt(v :: word(32)) :: boolean is
((v sub [31,..24]) == x”03”) and
((v sub [23,..8]) == x”0001”) and
((v sub [7,..0]) == x”00”);

Observers → push_value(v :: word(32)) :: word(8) is v sub [7,..0];

ply concatenate together all of the elements of the co-domain and the observers simply bit-slice

the constructor arguments from the correct location in the new representation.

The recognizers are generated by matching against all of the constant values in the co-domain

of the function. Recall that RRT requires at least one constant value to appear in the result.

This assures that we have something to match in the recognizer definitions. Currently, RRT

does not validate uniqueness of constructor representations in the refined representation. If

the data type refinement functionmaps different constructors to the same representation then

the recognizers generated for one constructor will match values defined by the other construc-

tor. It is the responsibility of the system engineer applying the data type refinement to avoid

this situation.

Refinement of Declarations

In addition to performing algebraic data type refinement to structural instantiations, RRT can

also perform refinement on declarations within a facet. For example, listing 6.14 shows a top-

level design that refines the declaration ex using a data type refinement. Refinement of dec-
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Listing 6.14: Data Type Refinement of Declarations� �
1 facet tld :: system is
2 ex :: machine_instr;
3 begin
4 refine_type(ex, machine_instr, ”binary”, ”packed”);
5 end facet;�

Listing 6.15: Incorrect Application of Data Type Refinement� �
1 facet tld :: system is
2 comm :: machine_instr;
3 begin
4 inst1: example1( comm, ... );
5 refine_type(inst1, machine_instr, ”binary”, ”packed”);
6

7 inst2: example2( comm, ... );
8 refine_type(inst1, machine_instr, ”graycode”, ”packed”);
9

10 refine_type(comm, machine_instr, ”onehot”, ”packed”);
11 end facet;�
larations works the same as refinement of instantiations but modifies the facet specification

containing the declarative refinement rather than an instantiation inside of that facet.

Data Type Refinement Limitations

Currently RRT does not validate or correct situations where a common data type is refined

into incompatible representations in different parts of the specification. Listing 6.15 shows

a specification where machine_instr is refined into three incompatible representations even

though the data type is used to connect the different parts of the specification. In this specifi-

cation machine_instr uses binary tag representation in inst1, gray-code tag representation

in inst2, and one-hot tag representation in the top-level design. This incompatibility may or

may not be detected during the synthesis process but will probably result in run-time errors.

It is the responsibility of the system engineer to prevent incompatible data type refinement.

Note that if a data type is used independently in different parts of the specification then it is

perfectly correct, and often desirable, to refined that data type into different representations

for implementation.
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Listing 6.16: Abstract Communication in Rosetta� �
1 facet sndr(ena::input bit; val::output word(32)) :: state_based is
2 begin
3 if ena=1 then val’send(x”00000000”) else true end if;
4 end facet;
5

6 facet rcvr(val::input word(32); isz::output bit) :: state_based is
7 begin
8 isz’ = if val’receive then (val == x”00000000”) else 0 end if;
9 end facet;�
Additionally, when refining data types all of the constructor parametersmust be synthesizable

when the refinement is performed. This restriction does not prevent nesting algebraic data

types but does require that nested types be refined to synthesizable representations before the

containing algebraic data type can be refined. Currently, RRT does not support recursive or

mutually recursive data types.

6.4 Communication Refinement

Rapid prototyping of hardware/software co-designs via refinement requires the ability to rep-

resent communication between components abstractly and the ability to refine the abstract

communication into physical representations at the implementation level. Listing 6.16 shows

how communication between two components can be represented abstractly in the Rosetta

language.

In this example the Rosetta communication synchronization attributes send and receive are

applied to the output and input parameters used to perform the abstract communication. The

semantics of these operations can be understood by viewing val as an abstract communication

channel. The semantics of send are that it results in the value true only when the given value

is placed into the channel. The semantics of receive are that it results in the value true only

when data has been retrieved from the channel.

Essentially, send allows data to be placed into the channel and the result indicates whether or

not the data was accepted for transmission. Receive allows us to determine when new data
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has arrived over the communication channel. In the receiving facet, the value of parameter

representing the communication channel is defined as the last value received over the channel.

In the example given, the system specified has a sender that places the value x”00000000” into

the communication channel as quickly as possible whenever ena is high. The receiver output

isz indicates whether the value just received was a x”00000000”.

Communication Refinement in the Top-Level Design

RRT allows abstract communication in Rosetta specifications to be refined to one of two phys-

ical implementations. Currently, these refinements must be placed in the top-level design be-

cause RRT generates physical bridge resources to implement the communication and physical

resource instantiations are only allowed in the top-level design.

Listing 6.17 shows an example top-level design that contains instantiations of the sndr and

rcvr facets shown previously along with an FPGA target and a Fast Simplex Link (FSL) com-

munication refinement denoted by communications_link. The arguments to the communica-

tion refinement are used by the system engineer to describe the type of refinement to perform,

and, thus, describe the type of communication to use in the physical implementation.

The first argument, in this case “fsl”, describes the communications protocol to use for the

physical implementation. Valid values for this argument are either “fsl” to select a Fast Sim-

plex Link protocol or “go/done” to select a Go/Done signaling protocol. The second argument

identifies the top-level declaration that represents the high-level communication channel to

be refined, in this case val. The number and meaning of the remaining arguments depends

on the selected refinement and are discussed below.

RRT ensures that the declaration selected for refinement is used as an output parameter from

a single instantiation and as an input parameter to a single instantiation. This ensures that the

high-level communication channel identified by the declaration is describing a point-to-point

topology, the only currently supported communication topology. It is believed that support

for other communication topologies could be provided with some additional work.
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Listing 6.17: Fast-Simplex Link Communication Refinement� �
1 facet tld :: system is
2 isz :: bit; val :: word(32);
3 clk, rst, ena :: bit;
4 begin
5 fpga: genesys( sys_clk, sys_rst, rx, tx );
6

7 isnd: sndr(ena, val);
8 isnd’target = fpga;
9

10 ircv: rcvr(val, isz);
11 ircv’target = fpga;
12

13 communications_link(”fsl”, val, clk, rst);
14 end facet;�

Fast Simplex Link Protocol

FSL communication refinements can be described using one of two forms:

1. communications_link(”fsl”, comm, clk, rst, size)
2. communications_link(”fsl”, comm, mclk, sclk, rst, size)

The first form describes a synchronous FSL communication bridge. The third argument, clk,

is used as the clock signal for the new FSL bridge and rst is used as the reset signal. The

final argument, size, is used to determine the FIFO depth of the FSL bridge. The width of

the FSL communication links is determine by the bit-width of the declarations being refined,

in this case the width would be 32 because val is a 32-bit wide bit-vector. The rst and size

arguments are both optional with size defaulting to 1.

The second form describes an asynchronous FSL communication bridge. In this case there are

two clocks, the master clock mclk for the sender and the slave clock sclk for the receiver. The

reset and size arguments are the same as for the first form. Asynchronous FSL communication

bridges can be used to communicate between twohardware bound logical components that are

placed in different clock domains in the final implementation.
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Listing 6.18: Refined FSL Communication Link� �
1 facet tld :: system is
2 clk,ena,f0m_ct,f0m_fl,f0m_wr,f0s_ct,f0s_ex,f0s_rd,isz,rst::bit;
3 f0m_dt,f0s_dt,val::word(32);
4 begin
5 fpga: genesys(sys_clk, sys_rst, rx, tx);
6 f0: fsl_v20(1,0,0,0,32,1,0,clk,rst,_,clk,f0m_dt,f0m_ct,f0m_wr,
7 f0m_fl,clk,f0s_dt,f0s_ct,f0s_rd,f0s_ex,_,_,_);
8 isnd: sndr(ena,f0m_dt,f0m_ct,f0m_wr,f0m_fl);
9 ircv: rcvr(f0s_dt,f0s_ct,f0s_rd,f0s_ex,isz);
10

11 f0’target = fpga;
12 isnd’target = fpga;
13 ircv’target = fpga;
14 end facet;
15

16 facet sndr(ena :: input bit; f0m_dt :: output word(32);
17 f0m_ct :: output bit; f0m_wr :: output bit;
18 f0m_fl :: input bit) :: state_based is
19 val :: word(32);
20 begin
21 f0m_ct = 0;
22 f0m_wr = %(ena == 1);
23 f0m_dt = x”00000000”;
24 end facet;
25

26 facet rcvr(f0s_dt :: input word(32); f0s_ct :: input bit;
27 f0s_rd :: output bit; f0s_ex :: input bit;
28 isz :: output bit) :: state_based is
29 val :: word(32);
30 begin
31 isz’ = if f0s_ex == 1 then %(val == x”00000000”) else 0 end if;
32 val = f0s_dt;
33 f0s_rd = f0s_ex;
34 end facet;�
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Example FSL Refinement

Listing 6.18 shows the specification that results from the refinement of the specification shown

in listing 6.17. In the top-level design a newFSLbridge, f0, was added using the clock and reset

signals described in the refinement. Additionally, the val parameter in both sndr and rcvr

has been replaced by the physical FSL signals.

In the sndr facet, the val parameter was replaced by parameters used to represent the FSL

signals and the abstract send communication primitive was replaced by assignments to the

FSL signals. In this case, the refinement determined that the communication was guarded by

the ena signal and changed this into an appropriate implementation via the f0m_wr signal.

Likewise, in the rcvr facet, the val parameter was replaced by the appropriate FSL signals and

the abstract receive communication primitive was replaced by the FSL’s data exists signal

f0s_ex. The val parameter shows up in the refined specification as a declaration so that the

uses of val to read the current data value of the channel do not need to be changed. In the new

specification, val is simply defined as equivalent to the FSL communication channel’s current

data, f0s_dt. Finally, the new specification ensures that new data arriving over the FSL link

is made available by making the FSL read signal, f0s_rd, equivalent to the FSL exists signal,

f0s_ex.

The communication refinement performed hasmapped the unsynthesizable abstract commu-

nication in the original logical design into a synthesizable representation. It then instantiated

a bridge resource to describe the required communication link in the physical design and de-

scribed the system partitioning required to map the communication in the logic design to the

communication in the physical design.

Refinement of Abstract Communication into FSL Hardware Signaling

The abstract receive communication primitive in the Rosetta language can easily be refined

into FSL signaling constructs in amanner that preserves the semantics of the operation. Recall

that the semantics of the receive operation are that the channel variable refers to the last value
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Table 6.3: Refinement of Communication into FSL Link Signaling
Rosetta Term FSL Signaling
comm’send(val); → f0m_ct = 0;

f0m_wr = 1;
f0m_dt = val;

if grd then comm’send(val) → f0m_ct = 0;
else true end if; f0m_wr = %(grd);

f0m_dt = val;
if comm’send(val) then thn → f0m_ct = 0;
else els end if; f0m_wr = not f0m_fl;

f0m_dt = val;
if (f0m_fl == 0) then thn else els end if;

if grd then → f0m_ct = 0;
if comm’send(val) then thn f0m_wr = grd and (f0m_fl == 0);
else els end if f0m_dt = val;

else true end if; if grd and (f0m_fl == 0) then thn
else els end if;

received on the channel and the receive operation results in true when a new value has been

received on the channel. These semantics are implemented during refinement by specifying

that the channel variable and the FSL’s data signal are equivalent, meaning that the channel

variable is always equal to the current FSL data value. The receive operation is refined into

the FSL’s data exists signal, specifying when new data has been received over the channel. To

finalize the FSL signaling, the FSL’s data read signal is specified as equivalent to the FSL’s

exists signal, which means that the data is read out of the channel whenever available.

The semantics of the Rosetta send operation do notmap as directly to the FSL’s write signaling

as the receive operation. Because of this, RRT currently only recognizes and refines send

operations that occur in the term patterns shown in table 6.3. These patterns represent the

abstract send protocols that RRT knows how to implement. Abstract send operations in terms

not matching those given in the table are not refined and will cause an error during synthesis.

The valid terms, however, represent a large collection of different communication protocols.

In the first refinement shown, the semantics of the abstract send term is that an attempt to

put a new value into the channel is always made and that this attempt is specified as always

successful2. This send operation is refined into the FSL signaling shown. The semantics are

2Rosetta specifications assert terms are valid, meaning all terms must have a true value. As such, for
this specification to be valid sendmust result in true and we must refine the specification to ensure this.
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preserved by always attempting to write an appropriate value into the FSL communication

link.

The second refinement shown adds an if-expression around the abstract send operation. This

if-expression specifies that the semantics described for the first refinement hold only when

the guard expression has a true value. This send operation is refined similarly to the first

refinement with the only different being that the FSLwrite signal is active only when the guard

expression is true.

The third refinement shown specifies that an attempt to put a new value into the channel is

always made, but unlike the first refinement, the operation is not specified as always success-

ful. With this form the FSL’s write signal is active only when the FSL is not full, meaning that

we only write into the FSL if we know that this write will be successful. The original semantics

are preserved because we write into the FSL only when the FSL communication channel is not

full, ensuring that the write will be successful.

The fourth form is a simple combination of the second and third refinements. The semantics

of the abstract send operation and refinements performed are a combination these two other

forms. The refined specification states that the FSL is only written to when the guard is true

and the FSL is not full. The generated if-expression is guarded similarly.

Refinement of Abstract Communication into FSL Software Instructions

The refinement of abstract send and receive communication into software instructions is

simpler than the refinement for hardware because the refinements can be mapped directly

onto supported FSL instructions on the MicroBlaze processor. The receive operation is re-

fined into a combination of fslcanread and fslread and is synthesized into a non-blocking

FSL read instruction. The semantics of the operation are preserved because the non-blocking

FSL instruction will retrieve new data from the FSL if available and indicate whether new data

was available, just like the semantics of the receive operation.
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Listing 6.19: Go/Done Communication Refinement� �
1 facet tld :: system is
2 isz :: bit; val :: word(32);
3 clk, rst, ena :: bit;
4 begin
5 fpga: genesys( sys_clk, sys_rst, rx, tx );
6

7 isnd: sndr(ena, val);
8 isnd’target = fpga;
9

10 ircv: rcvr(val, isz);
11 ircv’target = fpga;
12

13 communications_link(”go/done”, val);
14 end facet;�

The send operation is refined into fslwrite and is synthesized into a blocking FSL write in-

struction. This refinementmatches the semantics of the send instruction because the blocking

FSL write instruction ensures that the write can be performed successfully before proceeding.

Go/Done Protocol

Unlike the FSL communication refinement, theGo/Done refinement can only refine structural

instantiations targeted at hardware. Go/Done communication refinements are described us-

ing the declarative refinement communications_link(”go/done”, comm) where comm is the

declaration representing the communication channel to refine.

Example Go/Done Refinement

Listing 6.19 the same top-level design as the FSL communication refinement example except

the FSL refinement has been changed into a Go/Done refinement. The results of applying this

refinement are shown in listing 6.20. In the refined specification the two facet instantiations

have an additional argument, gd, that represents the done signal from the sender and the go

signal to the receiver. A system partitioning is not defined for this signal so gd will eventually

synthesize into a wire connecting the two communication end-points.
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Listing 6.20: Refined Go/Done Communication Link� �
1 facet tld :: system is
2 isz, clk, rst, ena, gd :: bit;
3 val :: word(32);
4 begin
5 fpga: genesys(sys_clk, sys_rst, rx, tx);
6 isnd: sndr(ena, gd, val);
7 ircv: rcvr(gd, val, iszero);
8

9 isnd’target = fpga;
10 ircv’target = fpga;
11 end facet;
12

13 facet sndr(ena :: input bit; done :: output bit;
14 val :: output word(32)) :: state_based is
15 begin
16 val = x”00000000”;
17 done = %(ena == 1);
18 end facet;
19

20 facet rcvr( go :: input bit; val :: input word(32);
21 isz :: output bit) :: state_based is
22 val :: word(32);
23 begin
24 isz’ = if go==1 then (val == x”00000000”) else 0 end if;
25 end facet;�
The sndr facet was refined to include the required additional parameter and the abstract send

operation was refined into a go/done protocol specification. The guard expression controlling

the send operation in the original specification is used to generate the done signal. The rcvr

facet is refined similarly by transforming the receive operation into the go signal.

Refinement of Abstract Communication into Go/Done Hardware Signaling

When refining a communication channel into a Go/Done protocol the receive operation is

refined into the expression go == 1 and the communication channel continues to name the

last data received on the channel. Table 6.4 shows how terms involving the send operation are

refined. If the send operation is specified as “always successful” in the original specification

then the done signal is always asserted and the communication channel is specified as equiv-
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Table 6.4: Refinement of Abstract Communication into Go/Done Signaling

Rosetta Term Go/Done Signaling
comm’send(val); → done = 1; comm = val;
if grd then comm’send(val) → done = %(grd); comm = val;
else true end if;

alent to the value being transmitted. If the send operation is specified as successful whenever

a predicate is true then that predicate is used to assert the done signal. The semantics of the

original specification are preserved in either case.

Unlike the FSL communication refinement, the Go/Done refinement currently does not sup-

port examining the success of the send operationbyusing send as the guard in an if-expression.

This restriction could be lifted by implementing a ready/wait signal in addition to theGo/Done

signal.

The rapid prototyping capability of RRT, in the form of declarative refinements, can be com-

bined with the hardware/software co-design capability to form a tool capable of rapid explo-

ration of the hardware/software co-design space. Functional behavior in the specification can

be described in an architecture independent manner and refinements can be used to provide

the implementation details required to form an architecture specific implementation. Using

this approach provides for effective rapid prototyping because the specification of functional

behavior is kept orthogonal to the specification of implementation details.
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7 Evaluation
Evaluation of RRT was done by constructing and synthesizing several example specifications.

These specifications where then refined into implementations running on a Xilinx Virtex-5

FPGA.1 Each implementation was then verified for correct operation by loading the imple-

mentation onto the FPGA and then evaluating the correctness using custom software running

on a standard computer and interacting with the implementation via a RS-232 communica-

tions link.

Implementation metrics for each refined design were gathered by examining the synthesis

diagnostic logs generated by the Xilinx synthesis tool when synthesizing the implementation

into an FPGA bitstream. These diagnostic logs contain information about the FPGA resources

used by the implementation and the maximum frequency at which the implementation can

operate. These metrics are used to evaluate the effectiveness of RRT with respect to hard-

ware/software co-design efficiency.

No run-time performance measurement was done because the RS-232 communication link

used in the designs is the limiting factor with respect to performance. In circuit performance

measurement was not done because it is costly in terms of implementation time, because ad-

ditional circuitry inserted into the design to measure performance would skew the results,

and because the Xilinx area and timing diagnostics produced by the Xilinx synthesis tools are

highly accurate[38].

The effectiveness of RRT’s rapid prototyping capability is evaluated by tracking the amount of

time involved in refining specifications into different hardware/software co-designed imple-

mentations and by determining the number of changes required to produce the new imple-

mentation.
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Listing 7.1: RS-232 Loop-Back Specification� �
1 facet echo(tdat::output word(8); rdat::input word(8)) :: state_based is
2 begin
3 if rdat’receive then tdat’send(rdat) else true end if;
4 end facet;
5

6 facet tld :: system is
7 sys_clk,sys_rst,clk,rst,tx,rx::bit;
8 tdat,rdat::word(8);
9 begin
10 fpga: genesys(sys_clk,sys_rst,rx,tx);
11

12 clks: clockgen(3,2,2.0,sys_clk,sys_rst,clk,_,_,_, _,_,_,_,_,rst);
13 clks’target = fpga;
14

15 iuart: uart(tdat, tx, rdat, rx);
16 active_high_reset(iuart, rst);
17 rising_edge_clock(iuart, clk);
18 iuart’target = fpga;
19

20 iecho: echo(tdat, rdat);
21 active_high_reset(iecho, rst);
22 rising_edge_clock(iecho, clk);
23 iecho’target = fpga;
24

25 communications_link(”fsl”, tdat, clk, rst);
26 communications_link(”fsl”, rdat, clk, rst);
27

28 clk’sigis = ”CLK”;
29 clk’clk_inport = sys_clk;
30 rst’sigis = ”RST”;
31 end facet;�
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7.1 RS-232 Loop-Back Example

An RS-232 loop-back example is the first specification used to to evaluate the effectiveness of

RRT and is shown in listing 7.1. The echo facet specifies that whatever is received over the rdat

communication channel is simply echoed back out on the tdat communication channel. The

top-level design combines this with a clock generator and RS-232 UART to form the logical

system that will be implemented. The RS-232 UART and clock generator specifications can

be found in appendix G.2

The physical system described by the top-level design consists of one target resource, fpga,

and two communication bridges. Nomemory resources are used in the initial physical system.

The initial systempartitioning described in the designmaps the echo facet, the clock generator.

and theUART facet onto fpga for implementation. Additionally, the communication channels

tdat and rdat are mapped onto the FSL bridges for implementation.

There are six rapid prototyping refinements applied in this design. The first four, lines 16,

17, 21 and 22, are behavioral refinements used to prepare the logic inside of the echo and

UART facets for implementation as hardware circuits. In this case, a rising edge clock and an

active high reset are inserted into the logic in the facets enabling them to be synthesized into

hardware. The other two refinements, lines 25 and 26, are communication refinements that

add the FSL bridges to the physical system, replace the abstract communication primitives

in the echo and UART facets with synthesizable FSL logic, and map the FSL signals onto the

physical FSL bridges as appropriate.

Effectiveness of Rapid Prototyping Tools

The initial specification in listing 7.1 represents the starting point where design space explo-

ration begins. At this point the rapid prototyping features and hardware/software co-design

support of RRT can be exploited to generate varied implementations. These implementations

1AGenesys development board, available throughDigilent Inc., containing a LX50TVirtex-5 FPGAwith a
-1 speed grade was used for implementation and run-time evaluation of all designs described in this section.

2The RS-232 UART specification from the TPM specification was changed, slightly, to use Rosetta’s ab-
stract communication channel primitives for the transmit and receive data.
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Table 7.1: Rapid Prototyping Changes
FSL Hardware to Go/Done Hardware Conversion

communications_link(”fsl”,tdat,...) → communications_link(”gd”,tdat)
communications_link(”fsl”,rdat,...) communications_link(”gd”,rdat)

FSL Hardware to Software Conversion
tdat,rdat::word(8) → tdat,rdat::word(32)
iecho’target = fpga → iecho’target = mbl1

can then be compared by synthesizing FPGA bitstreams for each implementation using the

Xilinx synthesis tools.

Design space exploration starts with an examination of the initial specification to select places

where the implementation can be meaningfully changed. In this example, the mapping of

logical components onto physical resources and the selection of communication protocol are

the two most interesting implementation details. Three total implementations were created

from the initial specification:

1. The specification refined into two hardware circuits using FSL protocols.
2. The specification refined into two hardware circuits using go/done protocols.
3. The specification refined into hardware and software using FSL protocols

Table 7.1 shows the changes to the initial specification required to create the two alternative

implementations. In the first case only two lines are changed. The declarative communica-

tion refinements are changed to indicate that communication channels should be refined into

go/done protocols instead of FSL protocols. The refinement of the initial specification into

this alternative implementation took, at most, a minute to complete.

In the second case, the most interesting change is the conversion of the communication chan-

nels into 32-bit channels instead of 8-bit channels3 and the conversion of the echo facet’s

target mapping. The addition of the MicroBlaze target and the changes to the echo and UART

facet specifications are not shown for brevity. In total 25 lines in the initial specification were

3Currently, RRT and RST are not capable of FSL communication links in any width other than 32-bits
due to restrictions present in the Xilinx synthesis tools. Additional work could be done on RST and RRT so
that this step would not be required.
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Table 7.2: Implementation Efficiency
High Performance Implementation

# o f REGs # o f LUT s # o f Slices # FF Pairs Max Frequency*

FSL 64 (1%) 49 (1%) 21 (1%) 72 (1%) 120.019 MHz
Go/Done 45 (1%) 44 (1%) 17 (1%) 53 (1%) 120.019 MHz
HW/SW 1327 (4%) 1533 (5%) 568 (7%) 1989 (7%) 7.426 MHz

Low Area Implementation
# o f REGs # o f LUT s # o f Slices # FF Pairs Max Frequency*

FSL 64 (1%) 47 (1%) 21 (1%) 73 (1%) 120.019 MHz
Go/Done 45 (1%) 46 (1%) 16 (1%) 55 (1%) 120.019 MHz
HW/SW 822 (2%) 1236 (4%) 427 (5%) 1447 (5%) 7.287 MHz

* The MicroBlaze in the design synthesized to a maximum frequency of 111.383 MHz and
109.302 MHz respectively for the high-performance and low-area implementations.

changed to create the second alternative implementation, these changes were implemented in

approximately five minutes.

For this simple example, RRT provides a highly effective rapid prototyping platform. Two

alternative implementations where generated from the initial specification in minutes with

less than 30 lines of code changes. The three resulting implementations cover a large gamut

of the design space for this specification and provide a basis for empirical evaluation of several

non-functional requirements.

Effectiveness of Hardware/Software Co-Design

The effectiveness of RRT in generating hardware/software co-designed systemswas evaluated

by synthesizing the resulting implementations using the Xilinx synthesis tool. The functional

correctness of each implementationwas verified by loading the resulting FPGA bitstream onto

the Xilinx device and performing a simple validation test. Afterwards, empirical evidence as to

the efficiency of each implementationwas gathered by examining the diagnostic logs produced

by the Xilinx tools during synthesis. These logs provide very accurate area and performance

metrics.
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Table 7.2 shows the area and performance metrics gathered for each design. There are two

sets of metrics shown in this table. The first set is the area and performancemetrics generated

when the Xilinx synthesis tool is instructed to generate a high performance implementation

while the second set is the area and performance when the Xilinx synthesis tool is instructed

to generate a low area implementation.4

The area metrics gathered from the Xilinx synthesis tool show the number of registers used,

the number of six-input lookup tables used, the number of slices used, and the number of

flip-flop pairs used. These four metrics give a general idea of the amount of combinational,

sequential, and macro resources used in the implementation. The performance metrics are

presented in the form ofmaximum operating frequency. For hardware circuits this represents

the maximum speed at which the circuit can operate in the device. For software components

this number is generated by taking themaximum frequency of theMicroBlaze processor, as re-

ported in the diagnostics log, and dividing that by the approximate number of cycles required

by the software implementation. This value represents the maximum frequency at which the

software implementation is capable of transforming inputs into outputs. The number of cy-

cles required is estimated by counting the number of instructions generated for the software

implementation on the longest execution path. This estimate assumes that instructions take a

single cycle to execute on theMicroBlaze, which is the case for themajority of the instructions.

At this point, the metrics for the three implementations can be compared and the system en-

gineer can decide on a final implementation path based on some non-function requirements

not formally expressed in the design. For instance, if a high-speed, low-latency design was

required the full hardware implementation using go/done signaling would be a good choice

because the implementation has the highestmaximum frequency and the lowest latency.5 This

design would also be appropriate for a low-area implementation as it also uses the least num-

ber of resources.

4These are the most commonly used implementation strategies supported by the Xilinx synthesis tool.
5FSL protocols have a minimum one-cycle latency.
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If the system engineer desires implementation flexibility and the ability to perform field up-

dates6 then the hardware/software implementation might be chosen because it can still pro-

cess several million characters per second albeit with a higher area and latency cost.

RRT is effective as a hardware/software co-design tool for this example. The resources used

by the two hardware examples are consistent with hand-coded equivalents in terms of both

area and performance. The hardware/software implementation suffers only from a slightly

inefficient implementation of FSL I/O on the MicroBlaze processor. A hand-coded example

could used just three instructions, get, put, and brwhile the generated version uses 15. In this

case the inefficiency is due to the fact that software generated for theMicroBlaze always uses a

non-blocking I/O implementationwhile in this case a blocking implementationwould bemore

appropriate. The inefficiency is also exaggerated by the simplicity of the example because the

resulting implementation is entirely I/O based. If computation were mixed in with the I/O

then the inefficiency would not be as great.

7.2 State Machine Example

The second specification created to evaluated RRT is shown in listing 7.2. This specification

contains a simple algebraic data type, state, that defines a set of states for a state machine.

The state machine transition and output rules are specified in the stm facet. The state ma-

chine transition rules are designed to match either “variables” consisting of all lower-case,

alphabetic characters, or “integers” consisting of a sequence of digits between zero and nine.

The specification of the transition rules uses the space character to separate variables and in-

tegers from one another.7 If a variable is matched then the output “v” is produced and if an

integer is matched then an output “i” is produced. The output “e” is produced whenever an

input is supplied that does not match either a variable or an integer.

6In an FPGA the hardware circuit implementation could be field upgraded as well, but if the final imple-
mentation were an ASIC then this would not be possible.

7RST currently does not implement characters or string data types so the characters are represented using
their binary equivalents via the ASCII table. In this table 0x61 is ‘a’, 0x7A is ‘z’, 0x30 is ‘0’, 0x39 is ‘9’, 0x20
is a space, 0x76 is ‘v’, 0x65 is ‘e’, and 0x69 is ‘i’.
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Listing 7.2: State Machine Specification� �
1 state :: type is data IDLE|VARS|INTS|DONE(done_value::word(8)) end data;
2

3 facet stm(tdata :: output word(8); rdata :: input word(8)) :: state_based is
4 st :: state initial is IDLE;
5 begin
6 st’ = case st is
7 IDLE -> if rdata’receive then
8 if ((rdata >= x”61”) and (rdata <= x”7A”)) then VARS
9 elseif ((rdata >= x”30”) and (rdata <= x”39”)) then INTS
10 else DONE(x”65”) end if
11 else IDLE end if
12 | VARS -> if rdata’receive then
13 if ((rdata >= x”61”) and (rdata <= x”7A”)) then VARS
14 elseif (rdata == x”20”) then DONE(x”76”)
15 else DONE(x”65”) end if
16 else VARS end if
17 | INTS -> if rdata’receive then
18 if ((rdata >= x”30”) and (rdata <= x”39”)) then INTS
19 elseif (rdata == x”20”) then DONE(x”69”)
20 else DONE(x”65”) end if
21 else INTS end if
22 | DONE(_) -> IDLE
23 | _ -> IDLE
24 end case;
25

26 if (isDONE(st)) then tdata’send(done_value(st)) else true end if;
27 end facet;
28

29 facet tld :: system is
30 sys_clk,sys_rst,clk,rst,tx,rx::bit; tdat,rdat::word(8);
31 begin
32 fpga: genesys(sys_clk,sys_rst,rx,tx);
33

34 communications_link(”fsl”, tdat, clk, rst);
35 communications_link(”fsl”, rdat, clk, rst);
36

37 clks: clockgen(3,2,2.0,sys_clk,sys_rst,clk,_,_,_, _,_,_,_,_,rst);
38 iuart: uart(tdat, tx, rdat, rx);
39 istm: stm(tdat, rdat);
40

41 active_high_reset(iuart, rst); rising_edge_clock(iuart, clk);
42 active_high_reset(istm, rst); rising_edge_clock(istm, clk);
43 refine_type(istm, state, ”binary”, ”aligned”);
44

45 clks’target = fpga; iuart’target = fpga; istm’target = fpga;
46 end facet;�
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Like the RS-232 loop-back example, the stm facet is combined in the top-level design with a

UART and a clock generator to form the logical system to be implemented. The initial physical

system consists of a single target, fpga, and two FSL communication bridges. All facets in the

logical system are mapped to fpga for implementation and the two communication channels

are mapped to the FSL bridges.

There are seven rapid prototyping refinements used in the top-level design. Like the RS-232

example, four of them are used to refine the UART and stm facets into hardware synthesizable

versions and two of them are used to implement synthesizable communication in the system.

The final refinement, line 43, is a data type refinement that is used to remove the unsynthe-

sizable algebraic data type from the specification, replacing it in the implementation with a

synthesizable representation. In this case, an automatic representation is chosen with con-

structors represented using a binary sequence and constructor arguments bit-packed in the

representation.

Effectiveness of Rapid Prototyping Tools

Again, rapid prototyping starts with an examination of the specification to determine what

parts of the design space should be explored. For this example, the design space is explored

with respect to data representation and system partitioning. In total 11 alternative implemen-

tations were refined from the initial specification to form the 12 implementations used for

comparison.

The first five alternative implementations leave the initial systempartitioning intact but change

the data representation for the state algebraic data type. Table 7.3 shows the changes re-

quired to the initial specification to form these five alternative implementations. In each of

the first five cases only a single change is required to form the new implementation with each

of the six hardware designs implementing the six automatic data representations supported

by RRT.
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Table 7.3: Rapid Prototyping Changes
Hardware Conversion 1

refine_type(istm,state,”bin”,”pck”) → refine_type(istm,state,”bin”,”alg”)

Hardware Conversion 2
refine_type(istm,state,”bin”,”pck”) → refine_type(istm,state,”gry”,”pck”)

Hardware Conversion 3
refine_type(istm,state,”bin”,”pck”) → refine_type(istm,state,”gry”,”alg”)

Hardware Conversion 4
refine_type(istm,state,”bin”,”pck”) → refine_type(istm,state,”oht”,”pck”)

Hardware Conversion 5
refine_type(istm,state,”bin”,”pck”) → refine_type(istm,state,”oht”,”alg”)

Hardware to Software Conversion
active_high_reset(istm,rst) → istm’target = mbl1
rising_edge_clock(istm,clk)
istm’target = fpga

The final set of changes shown in table 7.3 show the interesting changes needed to transform

each of the six hardware implementations into hardware/software co-designed implementa-

tions. Not shown for brevity are the changes required to add the MicroBlaze to the design8

and the changes required to change the 8-bit communication channel into a 32-bit commu-

nication channel. The result is six hardware/software co-design implementations using the

same six automatic data representations as the hardware only implementations.

For this example RRT is effective at exploring the design space due to the automated data re-

finement support. In total 25 lines of changeswhere required, 15 to change the initial hardware

only specification into a hardware/software co-design implementation and 10 additional lines

of changes to explore the five alternative data representations. All 12 implementations were

created in approximately half of an hour. Most of this time was ensuring that the hardware/-

8Adding a MicroBlaze to a top-level design is matter of copying an existing template and placing it into
the design. There are approximately 15 lines of code that need to be added to complete this addition.
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Table 7.4: Implementation Efficiency

HW Packed/Aligned - High Performance Implementation
# o f REGs # o f LUT s # o f Slices # FF Pairs Max Frequency

Binary 7 (0%) 14 (0%) 6 (1%) 15 (1%) 705.219 MHz
Gray−Code 7 (0%) 16 (0%) 6 (1%) 16 (1%) 848.176 MHz
One−Hot 8 (0%) 22 (0%) 10 (1%) 23 (1%) 431.593 MHz

HWPacked/Aligned - Low Area Implementation
# o f REGs # o f LUT s # o f Slices # FF Pairs Max Frequency

Binary 2 (0%) 14 (0%) 8 (1%) 15 (1%) 702.247 MHz
Gray−Code 2 (0%) 15 (1%) 8 (1%) 15 (1%) 475.285 MHz
One−Hot 4 (0%) 20 (0%) 8 (1%) 22 (1%) 429.553 MHz

SW Packed Implementation
# o f REGs # o f LUT s # o f Slices # FF Pairs Max Frequency*

Binary 964 (3%) 1356 (4%) 406 (6%) 1616 (6%) 1.579 MHz
Gray−Code 964 (3%) 1356 (4%) 406 (6%) 1616 (6%) 1.579 MHz
One−Hot 964 (3%) 1356 (4%) 406 (6%) 1616 (6%) 1.596 MHz

SW Aligned Implementation
# o f REGs # o f LUT s # o f Slices # FF Pairs Max Frequency*

Binary 964 (3%) 1356 (4%) 406 (6%) 1616 (6%) 1.487 MHz
Gray−Code 964 (3%) 1356 (4%) 406 (6%) 1616 (6%) 1.487 MHz
One−Hot 964 (3%) 1356 (4%) 406 (6%) 1616 (6%) 1.563 MHz

* The MicroBlaze in the design synthesized to a maximum frequency of 151.630 MHz.

software representation operated correctly before creating the five other hardware/software

implementations.

Effectiveness of Hardware/Software Co-Design

For this example, empirical evaluation of the resulting implementation concentrates on the

implementation characteristics of the stm facet because this facet contains the majority of the

implementationdetails. Like the previous example, results are shown for bothhigh-performance

oriented synthesis and low-area oriented synthesis. For hardware implementations, the bit-

packed representation and the aligned representations synthesized to the same results, so the

results have been grouped together. This was because the Xilinx synthesis tool determined
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that the aligned representation had unused bits and then eliminated those bits from the de-

sign. In a more complex design,9 determining the unused bits would be impossible and so

bit-packed representations would use less resources than aligned representations.

The results in this table show several interesting alternatives that could be used for a final sys-

tem implementation. First, the fastest implementation is embodied by the high-performance,

hardware only implementation using the gray-code data representation for the state machine.

This implementation can operate at almost 850MHz and is approximately 20% faster than the

second highest performing implementation. The system engineer could also chose an imple-

mentation that balances performance and area through the low-area implementation of the

hardware only design using the binary data representation. This design is only 20% slower

than the fastest design but uses much less area.10 In this example, the one-hot data represen-

tation is not desirable. In other designs this data representation might be more useful.

The software implementations of the state machine represent the slowest and highest area

solutions. Software is typically slower than corresponding hardware implementation so this

is expected. The large area of the software implementation compared to the hardware imple-

mentation is because the MicroBlaze processor being instantiated is heavily underutilized be-

cause of the simplicity of the statemachine implemented. Larger specifications, specifications

with heavy memory access patterns, or specifications using unbounded or dynamic resources

would all be a better fit for software implementation. Currently, RRT lacks support for these

types of specifications because recursive functions, recursive data types, and dynamic resource

allocation is not supported byRST. Adding support for these constructs would be possible with

extra engineering effort and would provide better use cases for software components.

Even with these drawbacks, the software representation still represents the most flexible and

easily upgradable implementation. The empirical evidence shows that the one-hot, bit-backed

data representation is themost efficient representation for software. This resultwas surprising

9Typically, communicating data over an I/O channel would prevent bits from being optimized out.
10The number of slices used is greater than some other designs. This is because the Xilinx synthesis tool

is not packing logic into the slices at tightly as it could because the design is much smaller than the size of
the FPGA being used for implementation.
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at first because aligned data can be accessed faster than packed data on a microprocessor.

The reason that packed representation is faster is that both representations use a single 32-bit

value to represent the state so only a single memory access is required to fetch the state value

frommemory. Furthermore, the aligned data representation requires larger immediate values

to encode the bit-position of the data constructors in the representation. As such, more imm

instructions are required to encode the values in the instruction stream.

For this design, RRT is effective in generating hardware/software co-design implementations.

The hardware generated by RRT is consistent with the expected results, attaining very high

performance and utilizing a very small amount of logic. The software implementations use

between 95 and 105 instructions to implement the state machine. This was compared to a

hand-coded C version of the program that required approximately 65 instructions. The main

inefficiency in the generated software was due to constructor tags and the constructor data

being packed into a single 32-bit value11 while in the hand coded version these were imple-

mented using two different 32-bit values. This allowed more efficient access to the separate

pieces of data. It is believed that RRT could be updated to support alignment of data on word

boundaries, instead of just byte boundaries, to support the more efficient data representation

in this example.

7.3 Trusted PlatformModule Design

The final example constructed to evaluate RRT is the specification of a small subset of the

Trusted Platform Module[34], with several minor additions. This specification is the largest

specification used for evaluation, using about 2200 lines of Rosetta12 and containing 35 facet

definitions, 7 packages, and 14 algebraic data types. The specification is paired with an addi-

tional 312 lines of Verilog code that help implement the SHA-1 calculation. In total, 26 compo-

nents are instantiated from the top-level design to form the logical system. These components

11In the aligned version data is aligned to byte boundaries not word boundaries.
12Including comments and whitespace.
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range in complexity from a simple multiply-accumulate calculation up to a SHA-1 calculation.

Due to the size, the complete specification has been placed in appendix G.

The logical system described in the top-level design supports processing nine different com-

mands, seven commands from the TPM specification and two additional commands used dur-

ing initial correctness testing of the communications subsystem. The nine commands are:

PCR Read:
Given a PCR index, return the 160-bit SHA-1 hash contained in the PCR register file
at the given index.

PCR Extend:
Given a PCR index and a 160-bit SHA-1 hash, extend the PCR register at the given
index by concatenating the existing 160-bit hash with the given 160-bit hash, per-
forming a SHA-1 calculation on the resulting 320-bit value, and then storing the final
160-bit hash back into the PCR register file at the given index.

SHA-1 Start:
Clear out the existing SHA-1 state and initialize the state for new data.

SHA-1 Continue:
Given a 512-bit block of data, extend the existing SHA-1 state with the new data block.

SHA-1 Finish:
Given a block of data 512-bits or less, extend the existing SHA-1 state with the new
data block and then return the final SHA-1 calculation.

RNG READ:
Calculate the next random number using the random number generator and return
the random value.

STIR RNG:
Given a block of data, use that block to add entropy to the random number generator
by mixing the data into the current state.

MUL ACC:
Given two 32-bit values, multiply the two values and add the resulting number to the
current accumulator state. Return the final accumulator value as the result.

FINDMAX:
Given a 32-bit value, update the maximum value state with the maximum of the new
value and the current state. Return the final value as the result.

In addition to the logic required by the commands themselves, the TPM specification con-

tains a RS-232 UART communications subsystem that receives and decodes commands and

then encodes and transmits the response, a 16x160-bit register file used to store the PCR reg-

ister digests, and a pseudo-random number generator designed using linear feedback shift

registers. This logic is combined in the top-level design and used as the logical system to be
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implemented. The initial physical system is composed of one FPGA target, one MicroBlaze

target, one BRAM memory, and eight FSL communication bridges. The initial implementa-

tion partitions all of the logical components onto the FPGA for implementation except for the

multiply-accumulate facet which is partitioned onto the MicroBlaze. The FSLs are used for

both hardware-to-hardware and hardware-to-software communication.

In the initial top-level design there are 40 refinement declarations used to prepare the logi-

cal system for implementation. Eight of these are used to create the FSL bridges and refine

the abstract communication logic in the design into FSL logic for implementation. Of the re-

maining refinements, 12 behavioral refinements are used to prepare parts of the design for

implementation as hardware circuitry and 20 are data type refinements used to replace the

algebraic data types in the design with their chosen representation in the implementation.

Effectiveness of Rapid Prototyping Tools

Like the previous two examples, evaluation of the rapid prototyping capabilities starts with

an examination of the initial specification to determine where the design space should be ex-

plored. In this example, the design space was explored with respect to communication proto-

cols and the partitioning of components onto physical resources.

Three alternative implementationswere created from the initial specification to form four total

implementations for comparison. The changes required to create these alternative implemen-

tations are shown in table 7.6. The first alternative implementation uses a singleMicroBlaze to

implement the random number generator component, the find maximum value component,

and the multiply-accumulator component. To create this alternative four behavioral refine-

ments where removed and two partitionings were modified, totaling six lines. The changes

were completed in under one minute.

The second alternative implementation removes theMicroBlaze, implementing all logical com-

ponents as hardware circuits on the FPGA. As shown in the table, the interesting changes are

partitioningmodifications, used to change the implementation target, and themodification of
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Table 7.5: Rapid Prototyping Changes
Converting SW 1 Implementation into SW 3 Implementation

active_high_reset(rng, rst); → rng’target = mbl1
rising_edge_clock(rng, clk)
rng’target = fpga
active_high_reset(fmax, rst) → fmax’target = mbl1
rising_edge_clock(fmax, clk)
fmax’target = fpga

Converting SW 3 Implementation into MB 3 Implementation
mcc’target = mbl1 → mcc’target = mbl2
fmax’target = mbl1 → fmax’target = mbl3

Converting SW 1 Implementation into HW Implementation
communications_link(”fsl”,macc_a,...) → communications_link(”gd”,macc_a)
communications_link(”fsl”,macc_b,...) communications_link(”gd”,macc_b)
communications_link(”fsl”,macc_acc,...) communications_link(”gd”,macc_acc)
communications_link(”fsl”,prng_en,...) communications_link(”gd”,prng_en)
communications_link(”fsl”,prng_sv,...) communications_link(”gd”,prng_sv)
communications_link(”fsl”,prng_val,...) communications_link(”gd”,prng_val)
mcc’target = mbl1 → active_high_reset(mcc, rst)

rising_edge_clock(mcc, clk)
mcc’target = fpga

the communication protocol to go/done. In addition, 15 lines were removed from the specifi-

cation to remove theMicroBlaze target and BRAMmemory13 from the physical system. In all,

24 lines of code changed and only a couple of minutes were required to perform the changes.

The third alternative implementation adds two additional MicroBlaze targets to the physical

system and partitions the multiply-accumulate component, the find maximum component,

and the random number generator component onto the three MicroBlaze processors. This

implementation is derived from the first alternative implementation instead of the initial im-

plementation because the changes necessary for software implementation of the three logical

components were already present. From there, the most interesting change was the partition-

ing modification to make use of the additional processors. In addition, 30 lines of code were

13The BRAMmemory is used as the instruction and data memory for the MicroBlaze.
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Table 7.6: Implementation Efficiency
High Performance Implementation

# o f REGs # o f LUT s # o f Slices # FF Pairs Max Frequency
SW 1 5167 (17%) 4466 (15%) 1818 (25%) 6670 (23%) 100.321 MHz
HW 3988 (13%) 2948 (10%) 1218 (16%) 4752 (17%) 98.270 MHz
SW 3 5222 (18%) 4626 (16%) 1893 (26%) 6934 (24%) 100.301 MHz
MB 3 7727 (26%) 7616 (26%) 2987 (41%) 10823 (38%) 100.776 MHz

Low Area Implementation
# o f REGs # o f LUT s # o f Slices # FF Pairs Max Frequency

SW 1 4563 (15%) 4158 (14%) 1641 (22%) 6075 (21%) 101.245 MHz
HW 3774 (13%) 3103 (10%) 1199 (16%) 4650 (16%) 97.876 MHz
SW 3 4575 (15%) 4260 (14%) 1730 (24%) 6323 (22%) 101.605 MHz
MB 3 5908 (20%) 6285 (21%) 2159 (29%) 7929 (28%) 100.725 MHz

Software Instruction Count
MUL ACC FIND MAX GET RNG ST IR RNG

SW 1 29 - - -
SW 3 100 113 139 94
MB 3 29 47 119 74

added to create the two additionalMicroBlaze processor and two additional BRAMmemories.

These changes took several minutes to complete.

Even for this large example, RRT is effective for exploring the design space. Four implementa-

tions were generated from the specification in a very short amount of time and the implemen-

tations cover a good amount of the design space. For large designs, the time spent synthesizing

implementations into bitstreams for Xilinx FPGAs far outweighs the time spent exploring the

design space. For these examples, the Xilinx synthesis tool takes well over an hour to synthesis

each implementation.

Effectiveness of Hardware/Software Co-Design

The empirical measurements gathered for the four implementations are shown in table 7.6.

Unlike the previous two examples, themaximum frequency of the designs containingMicroB-

laze software have not been normalized in the table to account for the number of instructions
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required by the software implementation because the some of the processing is still done in

hardware in these designs.

Like previous examples, there are several possibilities that could be used for a final system

implementation. The highest performance design is not as clear cut as in previous examples.

The full hardware implementation suffers froma slightly lowermaximumoperating frequency

because the multiplier required by the multiply-accumulate command has a long delay path.

Because of this, the highest performance design depends on the relative frequency of the com-

mands being issued to the TPM. If multiply-accumulate is a very common operation then it

would be best to use the full hardware implementation. If multiply-accumulate is not a very

common operation then it would be best to use the one of the hardware/software co-design

implementation as the hardware circuitry containing the more common commands would be

faster due to the removal of the multiply from the critical path.

If the smallest area design were desired then the full hardware implementation is clearly the

best. In all of the examples given so far the amount of logic moved into software is smaller

than the amount of logic required to place aMicroBlaze into the design. As mentioned before,

specification more suited to software implementation such as large designs or ones using dy-

namic resources would make the use of microprocessors more attractive. Additionally, some

Xilinx FPGAs contain existing PowerPC 405 or PowerPC 440 processors that require no FPGA

resources for their use. Using software on a platformwith an existing, no-cost processorwould

also make software more attractive for low-area implementations.

If flexibility and upgradability are important concerns then one of the three implementations

containing processors would be used. The design containing three processors representsmost

flexible solution because it has the most unused processing power, the implementation con-

taining one processor and implementing one logical component represents amedium amount

of flexibility, and the implementation with one processor implementing three logical compo-

nents represents the least amount of flexibility. The best solution would depend on the exact

requirements of the system engineer.
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Due to the complexity of this example, evaluation of the effectiveness of RRT with respect to

hardware/software co-design is difficult because equivalent hand-coded version do not exist

and it would be infeasible to construct them for comparison purposes. However, the amount

of resources consumed in these implementations and the operating frequency of the circuits

seems reasonable considering the complexity of the design. The communication component

in the design requires a minimum of 2048 flip-flops due to the 1024-bit shift registers used to

buffer command being received and results being transmitted. Additionally, the SHA-1 com-

ponent requires several 160-bit and 512-bit registers to buffer hashes and data blocks during

the SHA-1 calculation. These requirement alone represent a substantial portion of the imple-

mentation area.

Results from implementation of logic using software also seem to be consistent with the ef-

ficiency that could be expected from a hand-coded implementation. Implementation of the

multiply-accumulate and find-maximum commands using software required 29 and 47 in-

structions respectively when implemented on their own processor. A substantial portion of

both of these is related to performing non-blocking I/O using FSLs. The random number gen-

erator is implemented using 134 instruction, with 119 in the code path for generating random

numbers and 74 in the code path for stirring the random state. The overlapping instructions

are mostly I/O related. This is reasonable considering the implementation of the random

number generator as three linear feedback shift registers with four taps used for each shift

register.

7.4 Evaluation Summary

Overall, RRT is effective as a rapid prototyping system and as a hardware/software co-design

tool. The data, communication, and behavioral refinements exposed can be leveraged effec-

tively allowing a wide gamut of a specification’s design space to be explored and abstractions

present in high-level specifications can be removed with little to no impact on the resulting

implementation’s efficiency.
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Currently, themainweakness in RRT is lack of additional support for software-like constructs.

Software synthesis supports only the constructs supported for hardware synthesis, limiting

the effectiveness of microprocessors in hardware/software co-designs. Expanding software

synthesis to allow recursive functions, recursive data-types, and dynamic resource allocation

would go a long way towards eliminating this weakness and would make processors a much

more attractive option in hardware/software co-design implementations.

Limited support for these constructs could also be implemented for hardware components in

the form of a defunctionalization transformation. Support for this would extend flexibility to

system engineers and would allow even higher-level Rosetta specifications to be synthesized

into hardware/software co-designed implementations.
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8 FutureWork
This work builds on the work of many others and should provide a platform for others to build

upon. Several extensions of this work, of interest to both the research community and the

engineering community, are discussed in this section.

Additional Program Transformations

The refinements implemented by RRT were chosen as examples of the three different classes

of refinements described. However, the usefulness of a refinement tool is directly correlated

to the number of refinements that are supported by the tool. To this end, RRT could be made

muchmore useful by the implementation of additional transformations or by making existing

transformations more flexible.

Leveraging Rosetta’s Reflective Language Features

Currently, the refinements supported by RRT are implemented via a Haskell program that

modifies a specification’s AST. The Rosetta language, however, allows a specification to de-

scribemodifications to its own AST in the form of Reflective language constructs. Implement-

ing refinements using reflection inside of the Rosetta language would bring more formalism

to the refinements and would allow system engineers to develop their own refinements.

Formalizing Refinements

Many of the refinements supported by RRT change the semantics of the target specification

under the direction of the system engineer. Currently, the onus of correctness is left to the

engineer. This burden could be lessened if refinements not only mechanically changed the

semantics of the specification but also generated additional correctness assumptions and im-

plications. These assumptions and implications could then be used to discharge correctness

proofs using automated proof tools. This would be similar in spirit to the type-check condi-

tions generated by the PVS proof tool.
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Extended Software Synthesis

Currently, support for synthesizing software programs fromRosetta specifications has several

limitations that could be eliminated to better support software implementations. Structural

instantiations, recursive functions, and recursive algebraic data-types are all commonly used

Rosetta constructs that are not currently supported byRST for software synthesis. Implement-

ing these features would provide make the Rosetta language far more applicable to software

implementation.

Marshalling of Data Representations

Currently, any data representation used for communication must be identical on both sides of

a communications link, for obvious correctness reasons. This restriction could be lifted if RRT

could automatically marshall data correctly between different representations on each side

of a communications link. Support for this would be beneficial in designs where processing

dominates communication so separate, specialized representations for software and hardware

would provide performance benefits even in the face of data marshalling.

Expansion of Supported Targets

The current implementation of RRTmakes the basic assumption that specifications are being

implemented as system-on-chip designs for embedded devices. The physical targets, commu-

nication bridges, and memories are all tailored for this kind of implementation. I believe that

the approach taken by this work could be expanded to support other kinds of implementation

strategies aswell. Typical high-performance clusters, multi-threaded systems, and cloud com-

puting applications could all be described using the concept of mapping logical components

onto physical computing resources, physical communication resources, and physical storage

resources.
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9 Conclusion
This work resulted in two major contributions. First, the Rosetta Synthesis Tool was con-

structed to support synthesizing low-level Rosetta specifications into either hardware circuits

via VHDL or software programs via LLVM. The low-level Rosetta subset supported by this tool

is predictable, ensuring system engineers can understand the results that will be produced,

and efficient, ensuring that system engineers can construct hardware circuits and software

programs using the Rosetta language that meet their requirements.

Second, the Rosetta Refinement Tool was constructed to provide a rapid prototyping envi-

ronment for the Rosetta specification language. This tool helps system engineers push high-

level, architecture independent, unsynthesizable Rosetta specifications into low-level, archi-

tecture specific, synthesizable implementations by allowing them to describe implementation

details as declarative specification refinements. These refinements are mechanically applied

to the specification by theRosetta Refinement Tool. Rapid prototyping is achieved because the

declarative refinements can be easily changed and re-ordered to produce different implemen-

tations with much less work than would be required to manually change the implementation.

The two contributions can be used together to perform rapid prototyping of hardware/soft-

ware co-designed implementations. Evaluation of this capabilitywas done by constructing, re-

fining, and synthesizing several example specifications, including the specification of aTrusted

PlatformModule subset that can be refined into one of many different hardware/software co-

designed implementations. This evaluation verified that the two contributions are effective at

pushing high-level specifications into low-level implementations via specification refinement.
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A Synthesis Constraints
Most of the synthesis constraints supported by the Rosetta Synthesis Tool correspond to
the constraints supported by the Xilinx Synthesis Tool [37]. The supported Rosetta con-
straint attributes are:

add_library: Add a library definition to the generated VHDL output.
add_use: Add a library use to the generated VHDL output.
async_reg: Mark a signal as an asynchronous register.
bel: Lock a signal to a given BEL site in a slice.
blknm: Assign a block name to a signal.
bufg: Map a signal to a global net.
clock_dedicated_route: Follow clock placement rules for a signal.
collapse: Collapse a combinatorial signal into all of its fanouts.
cool_clk: Save power by combining clock division and dual edge circuitry on a signal.
config_mode: Select a configuration for a dual purpose pin.
data_gate: Save power by gating a data signal.
dci_cascade: Cascade two DCI banks together.
dci_value: Set the buffer behavioral models associated with an IOB.
disable: Disable path tracing controls on a signal.
drive: Set the drive amperage of an output signal.
drop_spec: Drop timing constraints for a signal from the timing analysis.
enable: Enable path tracing controls on a signal.
enable_suspend: Set the behavior of the SUSPEND power mode on a signal.
fast: Increase the speed of an IOB on a signal.
feedback: Define a signal as a DCM feedback delay.
file: Set a file name to use for a block box instantiation.
float: Allow a tri-state signal to float.
hblknm: Assign a hierarchical block name to a signal.
hlutnm: Assign a hierarchical LUT name to a signal.
huset: Assign a HUSET name to a signal.
ibuf_delay: Add additional static delay to a signal.
ifd_delay: Add additional static delay to a signal.
inreg: Enable fast input optimization on a signal.
iob: Map a signal to an IOB.
iob_delay: Specify an IOB input path delay.
io_std: Assign an I/O standard to a signal.
keep: Prevent a signal from being merged into other elements.
keeper: Retain the value of an output net that a signal is attached to.
keep_hierarchy: Maintain the structural hierarchy throughout synthesis.
io_pin: Assign an absolute placement for an element.
lock_pins: Prevent the swapping of LUT pins.
lutnm: Assign a LUT name to an element.
map: Enable pin swapping and other merging operations.
max_delay: Set the maximum allowable delay on a signal.
max_pt: Set the maximum number of product terms on an element.
max_skew: Set the maximum allowable skew on a signal.
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no_delay: Eliminate the delay built into IOB flip-flops.
no_reduce: Prevent minimization of logic terms.
open_drain: Implement an output signal as an open drain.
opt_effort: Set the optimization effort used during synthesis.
optimize: Perform optimization on an element.
period: Define the clock period for a signal.
pulldown: Pull a tri-state signal to low when not driven.
pullup: Pull a tri-state signal to high when not driven.
pwr_mode: Set an element to lower power or high power mode.
reg: Set a register implementation for a signal.
save: Prevent the removal of an unused signal.
schmitt_trigger: Configure an input signal with a Schmitt Trigger.
sigis: Set the signal interface standard of a signal.
slew: Set the slew rate of an input signal.
slow: Use slew rate limit control on a signal.
suspend: Use the SUSPEND power reduction mode on a signal.
system_jitter: Set the system jitter of an element.
tig: Ignore timing on all paths that go through a signal.
uset: Group design elements with an attached RLOC.
use_rloc: Use the attach RLOC for an element.
use_lowskewlines: Use low skew routing resources for a signal.
wire_and: Implement an element using a wired AND function.
xblk_name: Assign a block name to an element.
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B MicroBlaze LLVM Backend
MicroBlaze programs are produced by the Rosetta Synthesis Tool in the form of Low-Level

Virtual Machine (LLVM) assembly that is then processed by the LLVM tools into MicroB-

laze assembly. Support for the MicroBlaze architecture was added to the LLVM tool-suite

as part of this work. These additions to the LLVM tool-suite were contributed to the LLVM

project on February 24, 2010 and are available in LLVM version 2.7 and later.

Most of the work in compiling LLVM assembly into MicroBlaze assembly is performed

in the architecture independent portion of the tool-suite. The LLVM assembly is parsed,

heavily optimized, and canonicalized for the target architecture before it is compiled into

architecture specific assembly. The LLVM optimization framework is largely responsible

for the efficiency of the MicroBlaze software programs generated by the Rosetta Synthesis

Tool.

MicroBlaze architecture support was added to LLVMby creating a new target architecture

definition in the LLVM source code. Currently, this architecture definition supports v4.00

and higher of theMicroBlaze processor. All of the registers andmachine instructions sup-

ported by theMicroBlaze are modeled by the architecture, including optional instructions

supported by the soft-processor. During code generation, the use of optional instructions

is controlled by command line arguments. In addition, the LLVMMicroBlaze architecture

models both the 3-stage and the 5-stage pipelinemodel to enhance instruction scheduling.

The MicroBlaze architecture is currently considered experimental because extensive test-

ing has not been completed to verify the correctness of the generated assembly. The as-

sembly was generated correctly for all of the examples in this work.
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C Hardware Example VHDL Output
PRNG Output� �
1 library IEEE; use IEEE.STD_LOGIC_1164.ALL; use IEEE.STD_LOGIC_UNSIGNED.ALL; use IEEE.NUMERIC_STD.ALL;
2

3 entity prng is
4 port(clk:in std_logic; rst:in std_logic; ena:in std_logic; o:out std_logic_vector(7 downto 0));
5 end entity prng;
6

7 architecture str of prng is
8 signal and23:std_logic; signal and33:std_logic; signal idx22:std_logic; signal idx31:std_logic;
9 signal idx7:std_logic; signal not32:std_logic; signal idx8:std_logic_vector(7 downto 0);
10 signal idx9:std_logic_vector(7 downto 0); signal lfsr16:std_logic_vector(8 downto 0);
11 signal lfsr25:std_logic_vector(8 downto 0); signal lfsr35:std_logic_vector(8 downto 0);
12 signal mux10:std_logic_vector(7 downto 0);
13 begin
14 idx22 <= lfsr16(0);
15 and23 <= ’1’ when (ena = ’1’ and idx22 = ’1’) else ’0’;
16 idx31 <= lfsr16(0);
17 not32 <= not idx31;
18 and33 <= ’1’ when (ena = ’1’ and not32 = ’1’) else ’0’;
19 idx7 <= lfsr16(0);
20 idx8 <= lfsr25(7 downto 0);
21 idx9 <= lfsr35(7 downto 0);
22 mux10 <= idx8 when (idx7 = ’1’) else idx9;
23 o <= mux10;
24

25 lfsr16_inst : entity work.lfsr
26 generic map(IV => o”265”)
27 port map(clk=>clk, rst=>rst, ena=>ena, o=>lfsr16);
28

29 lfsr25_inst : entity work.lfsr
30 generic map (IV => o”654”)
31 port map(clk=>clk, rst=>rst, ena=>and23, o=>lfsr25);
32

33 lfsr35_inst : entity work.lfsr
34 generic map (IV => o”271”)
35 port map(clk=>clk, rst=>rst, ena=>and33, o=>lfsr35);
36 end architecture str;�
LFSR Output� �
1 library IEEE; use IEEE.STD_LOGIC_1164.ALL;
2 use IEEE.STD_LOGIC_UNSIGNED.ALL; use IEEE.NUMERIC_STD.ALL;
3

4 entity lfsr is
5 generic(IV:std_logic_vector(8 downto 0) := ”000000000”);
6 port(clk:in std_logic; rst:in std_logic; ena:in std_logic; o:out std_logic_vector(8 downto 0));
7 end entity lfsr;
8

9 architecture str of lfsr is
10 signal con14:std_logic_vector(8 downto 0); signal fb:std_logic; signal idx10:std_logic;
11 signal idx9:std_logic; signal s16_0:std_logic_vector(8 downto 0);
12 signal s16_0_e:std_logic_vector(8 downto 0); signal s16_0_v:std_logic_vector(8 downto 0);
13 signal sh:std_logic_vector(7 downto 0); signal sr:std_logic_vector(8 downto 0);
14 begin
15 s16_0_v <= IV when (rst = ’1’) else s16_0_e;
16 s16_0_e <= con14 when (ena = ’1’) else s16_0;
17 s16_0 <= s16_0_v when (rising_edge(clk)) else s16_0;
18 sr <= s16_0;
19 idx9 <= sr(4);
20 idx10 <= sr(0);
21 fb <= ’1’ when (idx9 = ’1’ xnor idx10 = ’1’) else ’0’;
22 sh <= sr(7 downto 0);
23 con14 <= sh & fb;
24 o <= sr;
25 end architecture str;�
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D Software Example MicroBlaze Output
Optimized MicroBlaze Output� �
1 .text
2 .globl main
3 .align 2
4 .type main,@function
5 .ent main
6 main:
7 .frame r1,16,r15
8 .mask 0x708000
9 addik r1, r1, -16
10 swi r15, r1, 0
11 swi r20, r1, 12
12 swi r21, r1, 8
13 swi r22, r1, 4
14 addk r20, r0, r0
15 $BB0_1: tnget r3, rfsl0
16 addc r3, r0, r0
17 addk r4, r0, r0
18 andi r5, r3, 1
19 tnget r3, rfsl1
20 addc r3, r0, r0
21 cmp r4, r4, r5
22 beqid r4, ($BB0_3)
23 nop
24 andi r3, r3, 1
25 bneid r3, ($BB0_1)
26 nop
27 $BB0_3: nget r6, rfsl0
28 nget r5, rfsl1
29 addk r21, r0, r0
30 brlid r15, __mulsi3
31 or r22, r5, r6
32 addik r4, r0, 1
33 cmp r5, r21, r22
34 beqid r5, ($BB0_5)
35 nop
36 addik r4, r0, 0
37 $BB0_5: bneid r4, ($BB0_7)
38 nop
39 addk r21, r3, r20
40 $BB0_7: put r21, rfsl2
41 addc r3, r0, r0
42 andi r3, r3, 1
43 bneid r3, ($BB0_7)
44 nop
45 brid ($BB0_1)
46 addk r20, r21, r0
47 .end main
48 $tmp0: .size main, ($tmp0)-main�
Unoptimized LLVM-IR Representation� �
1 @macc_state = internal global {i1,i1,i32,i32,i32} zeroinitializer
2 define internal void @macc({i1,i1,i32,i32,i32}*) {
3 _L0: %1 = call i32 @llvm.mblaze.fsl.tnget(i32 0)
4 %2 = call i1 asm sideeffect alignstack ”addc $0, r0, r0\0A”, ”=r”()
5 %3 = getelementptr inbounds {i1,i1,i32,i32,i32}* %0, i32 0, i32 0
6 store i1 %2, i1* %3
7 %4 = call i32 @llvm.mblaze.fsl.tnget(i32 1)
8 %5 = call i1 asm sideeffect alignstack ”addc $0, r0, r0\0A”, ”=r”()
9 %6 = getelementptr inbounds {i1,i1,i32,i32,i32}* %0, i32 0, i32 1
10 store i1 %5, i1* %6
11 %7 = getelementptr inbounds {i1,i1,i32,i32,i32}* %0, i32 0, i32 0
12 %8 = load i1* %7
13 %9 = icmp eq i1 %8, true
14 %10 = getelementptr inbounds {i1,i1,i32,i32,i32}* %0, i32 0, i32 1
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15 %11 = load i1* %10
16 %12 = icmp eq i1 %11, true
17 %13 = and i1 %9, %12
18 br i1 %13, label %_L2, label %_L1
19 _L1: %14 = call i32 @llvm.mblaze.fsl.nget(i32 0)
20 %15 = getelementptr inbounds {i1,i1,i32,i32,i32}* %0, i32 0, i32 2
21 store i32 %14, i32* %15
22 br label %_L2
23 _L2: %16 = getelementptr inbounds {i1,i1,i32,i32,i32}* %0, i32 0, i32 0
24 %17 = load i1* %16
25 %18 = icmp eq i1 %17, true
26 %19 = getelementptr inbounds {i1,i1,i32,i32,i32}* %0, i32 0, i32 1
27 %20 = load i1* %19
28 %21 = icmp eq i1 %20, true
29 %22 = and i1 %18, %21
30 br i1 %22, label %_L4, label %_L3
31 _L3: %23 = call i32 @llvm.mblaze.fsl.nget(i32 1)
32 %24 = getelementptr inbounds {i1,i1,i32,i32,i32}* %0, i32 0, i32 3
33 store i32 %23, i32* %24
34 br label %_L4
35 _L4: %25 = getelementptr inbounds {i1,i1,i32,i32,i32}* %0, i32 0, i32 0
36 %26 = load i1* %25
37 %27 = icmp eq i1 %26, true
38 %28 = getelementptr inbounds {i1,i1,i32,i32,i32}* %0, i32 0, i32 1
39 %29 = load i1* %28
40 %30 = icmp eq i1 %29, true
41 %31 = and i1 %27, %30
42 br i1 %31, label %_L6, label %_L5
43 _L5: %32 = getelementptr inbounds {i1,i1,i32,i32,i32}* %0, i32 0, i32 2
44 %33 = load i32* %32
45 %34 = icmp eq i32 %33, 0
46 %35 = getelementptr inbounds {i1,i1,i32,i32,i32}* %0, i32 0, i32 3
47 %36 = load i32* %35
48 %37 = icmp eq i32 %36, 0
49 %38 = and i1 %34, %37
50 %39 = getelementptr inbounds {i1,i1,i32,i32,i32}* %0, i32 0, i32 4
51 %40 = load i32* %39
52 %41 = getelementptr inbounds {i1,i1,i32,i32,i32}* %0, i32 0, i32 2
53 %42 = load i32* %41
54 %43 = getelementptr inbounds {i1,i1,i32,i32,i32}* %0, i32 0, i32 3
55 %44 = load i32* %43
56 %45 = mul i32 %42, %44
57 %46 = add i32 %40, %45
58 %47 = select i1 %38, i32 0, i32 %46
59 %48 = getelementptr inbounds {i1,i1,i32,i32,i32}* %0, i32 0, i32 4
60 store i32 %47, i32* %48
61 br label %_L6
62 _L6: %49 = getelementptr inbounds {i1,i1,i32,i32,i32}* %0, i32 0, i32 0
63 %50 = load i1* %49
64 %51 = icmp eq i1 %50, true
65 %52 = getelementptr inbounds {i1,i1,i32,i32,i32}* %0, i32 0, i32 1
66 %53 = load i1* %52
67 %54 = icmp eq i1 %53, true
68 %55 = and i1 %51, %54
69 br i1 %55, label %_L7, label %_L8
70 _L7: ret void
71 _L8: %56 = getelementptr inbounds {i1,i1,i32,i32,i32}* %0, i32 0, i32 4
72 %57 = load i32* %56
73 br label %_L9
74 _L9: call void @llvm.mblaze.fsl.put(i32 %57, i32 2)
75 %58 = call i1 asm sideeffect ”addc $0, r0, r0\0A”, ”=r”()
76 br i1 %58, label %_L9, label %_L10
77 _L10: ret void }
78 define void @main() {
79 _L0: br label %_L1
80 _L1: call void @macc({ i1, i1, i32, i32, i32 }* @macc_state)
81 br label %_L1 }�
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E Top-Level Design Resource Definitions
Genesys - Xilinx FPGA Target� �
1 facet genesys(sys_clk,sys_rst,sys_rs232_rx1::input bit; sys_rs232_tx1::output bit) :: target is
2 language :: string is ”vhdl”;
3 device :: string is ”xc5vlx50tff1136-1”;
4 begin
5 sys_clk’io_pin=”AG18”; sys_clk’io_std=”LVCMOS33”; sys_clk’period=10*ns; sys_clk’sigis=”CLK”;
6 sys_rst’io_pin=”E7”;sys_rst’io_std=”LVCMOS25”; sys_rst’tig=true; sys_rst’sigis=”RST”;
7 sys_rs232_rx1’io_pin=”AG15”; sys_rs232_rx1’io_std=”LVCMOS33”;
8 sys_rs232_tx1’io_pin=”AF19”; sys_rs232_tx1’io_std=”LVCMOS33”;
9 end facet;�
MBlaze - Xilinx MicroBlaze Target� �
1 facet interface mblaze( mb_clk :: input bit;
2 mb_rst :: input bit)
3 :: target is
4 language :: string is ”mblaze”;
5 mfsl0,mfsl1,mfsl2,mfsl3,mfsl4,mfsl5,mfsl6,mfsl7::port(”fsl”,”master”);
6 mfsl8,mfsl9,mfsl10,mfsl11,mfsl12,mfsl13,mfsl14,mfsl15::port(”fsl”,”master”);
7 sfsl0,sfsl1,sfsl2,sfsl3,sfsl4,sfsl5,sfsl6,sfsl7::port(”fsl”,”slave”);
8 sfsl8,sfsl9,sfsl10,sfsl11,sfsl12,sfsl13,sfsl14,sfsl15::port(”fsl”,”slave”);
9 dplb,iplb::port(”plb”,”master”);
10 dlmb,ilmb::port(”lmb”,”master”);
11 debug :: port(”mdm”,”master”);
12 end facet interface;�
FSL_v20 - Fast Simplex Link Bridge� �
1 facet interface fsl_v20(
2 C_EXT_RESET_HIGH :: design integer; C_ASYNC_CLKS :: design integer; C_IMPL_STYLE :: design integer;
3 C_USE_CONTROL :: design integer; C_FSL_DWIDTH :: design integer; C_FSL_DEPTH :: design integer;
4 C_FSL_READ_CLOCK_PERIOD :: design integer;
5 FSL_Clk,SYS_Rst :: input bit; FSL_Rst :: output bit; FSL_M_Clk :: input bit;
6 FSL_M_Data :: input word(C_FSL_DWIDTH); FSL_M_Control,FSL_M_Write :: input bit;
7 FSL_M_Full :: output bit; FSL_S_Clk :: input bit; FSL_S_Data :: output word(C_FSL_DWIDTH);
8 FSL_S_Control :: output bit; FSL_S_Read :: input bit;
9 FSL_S_Exists,FSL_Full,FSL_Has_Data,FSL_Control_IRQ :: output bit) :: bridge is
10 implementation :: string is ”fsl”;
11 master :: port(”fsl”,”master”);
12 slave :: port(”fsl”,”slave”);
13 end facet interface;�
LMB_v10 - Local Memory Bus Bridge� �
1 facet interface lmb_v10(clk,rst::input bit) :: bridge is
2 implementation :: string is ”lmb”;
3 master :: sequence(port(”lmb”,”master”));
4 slave :: sequence(mmport(”lmb”,”slave”));
5 end facet interface;�
PLB_v46 - Processor Local Bus Bridge� �
1 facet interface plb_v46(clk,rst::input bit) :: bridge is
2 implementation :: string is ”plb”;
3 master :: sequence(port(”plb”,”master”));
4 slave :: sequence(mmport(”plb”,”slave”));
5 end facet interface;�
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MDM - MicroBlaze Debug Module Bridge� �
1 facet interface mdm( rst :: input bit ) :: bridge is
2 implementation :: string is ”mdm”;
3 master :: array(8,port(”mdm”,”master”));
4 splb :: port(”plb”,”slave”);
5 end facet interface;�
BRAM - Block RAMMemory� �
1 facet interface bram_memory(MEMSIZE :: design integer) :: memory is
2 implementation :: string is ”bram”;
3 plba,plbb::port(”plb”,”slave”);
4 lmba,lmbb::port(”lmb”,”slave”);
5 end facet interface;�
DDR - MultiPort Memory Controller DDRMemory� �
1 facet interface ddr_memory(clk0,clkdv,clk90,clk2x,rst::input bit) :: memory is
2 implementation :: string is ”mpmc”;
3 splb0,splb1,splb2,splb3,splb4,splb5,splb6,splb7::port(”plb”,”slave”);
4 end facet interface;�
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F Xilinx Platform Studio Project Files
Example Project Makefile - “Makefile”� �
TARGETS=all
TARGETS+=netlist
TARGETS+=bits
TARGETS+=exporttosdk
TARGETS+=init_bram
TARGETS+=ace
TARGETS+=download
TARGETS+=sim
TARGETS+=simmodel
TARGETS+=netlistclean
TARGETS+=bitsclean
TARGETS+=hwclean
TARGETS+=simclean

$(TARGETS): system.make
@$(MAKE) -f system.make $@

system.make: data/system.tcl
@echo ”Building system.make, please wait...”
@xps -nw -scr data/system.tcl 2>&1 1>/dev/null

data/system.tcl: system.xmp
@echo ”xload xmp system.xmp” > data/system.tcl
@echo ”exit” >> data/system.tcl

clean:
@$(MAKE) -f system.make clean
$(RM) data/system.tcl

.PHONY: clean $(TARGETS)�
Example Project UCF File - “data/system.ucf”� �
NET ”sys_clk_pin” IOSTANDARD = ”LVCMOS33”;
NET ”sys_clk_pin” LOC = ”AG18”;
NET ”sys_clk_pin” PERIOD = 10000 ps;
NET ”sys_rst_pin” IOSTANDARD = ”LVCMOS25”;
NET ”sys_rst_pin” LOC = ”E7”;
NET ”sys_rst_pin” PULLUP;
NET ”sys_rst_pin” TIG;
NET ”sys_rs232_rx1_pin” IOSTANDARD = ”LVCMOS33”;
NET ”sys_rs232_rx1_pin” LOC = ”AG15”;
NET ”sys_rs232_tx1_pin” IOSTANDARD = ”LVCMOS33”;
NET ”sys_rs232_tx1_pin” LOC = ”AF19”;�
XPS Impact File - “etc/download.cmd”� �
setMode -bscan
setCable -p auto
identify
assignfile -p 1 -file implementation/download.bit
program -p 1
quit�
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Example IP Core PAO - “pcores/system_tld_v1_00_a/data/system_tld_v2_1_0.pao”� �
lib system_tld_v1_00_a system_tld vhdl
lib system_tld_v1_00_a tld_clks vhdl
lib system_tld_v1_00_a uart vhdl
lib system_tld_v1_00_a uartrx vhdl
lib system_tld_v1_00_a uarttx vhdl
lib system_tld_v1_00_a helper vhdl�
Example XPS Project - “system.xmp”� �
#Please do not modify this file by hand
XmpVersion: 13.1
VerMgmt: 13.1
IntStyle: default
ModuleSearchPath: pcores
MHS File: system.mhs
Architecture: virtex5
Device: xc5vlx50t
Package: ff1136
SpeedGrade: -1
UserCmd1:
UserCmd1Type: 0
UserCmd2:
UserCmd2Type: 0
GenSimTB: 0
SdkExportBmmBit: 1
SdkExportDir: SDK/SDK_Export
InsertNoPads: 0
WarnForEAArch: 1
HdlLang: VHDL
SimModel: BEHAVIORAL
UcfFile: data/system.ucf
EnableParTimingError: 0
ShowLicenseDialog: 1
Processor: mbl1_microblaze
ElfImp: mbl1/main.elf
ElfSim:�
XPS Bitgen File - “etc/bitgen.ut”� �
-g TdoPin:PULLNONE
-g DriveDone:No
-g StartUpClk:JTAGCLK
-g DONE_cycle:4
-g GTS_cycle:5
-g TckPin:PULLUP
-g TdiPin:PULLUP
-g TmsPin:PULLUP
-g DonePipe:No
-g GWE_cycle:6
-g LCK_cycle:NoWait
-g Security:NONE
-g Persist:No�
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Example IP Core MPD - “pcores/system_tld_v1_00_a/data/system_tld_v2_1_0.mpd”� �
BEGIN system_tld
OPTION IPTYPE = PERIPHERAL
OPTION IMP_NETLIST = TRUE
OPTION HDL = VHDL
OPTION DESC = Top-level System Design
OPTION LONG_DESC = Top-level System Design
OPTION RUN_NGCBUILD = FALSE
OPTION STYLE = HDL
BUS_INTERFACE BUS = MFSL_f0, BUS_STD = FSL, BUS_TYPE = MASTER
BUS_INTERFACE BUS = MFSL_f1, BUS_STD = FSL, BUS_TYPE = MASTER
BUS_INTERFACE BUS = SFSL_f2, BUS_STD = FSL, BUS_TYPE = SLAVE

PORT sys_clk = ””, DIR = I, SIGIS = CLK, CLK_FREQ = 100000000
PORT sys_rst = ””, DIR = I, SIGIS = RST
PORT sys_rs232_rx1 = ””, DIR = I
PORT sys_rs232_tx1 = ””, DIR = O
PORT mbl1i_clk = ””, DIR = O, SIGIS = CLK, CLK_INPORT = sys_clk
PORT mbl1i_rst = ””, DIR = O, SIGIS = RST
PORT mbl1d_clk = ””, DIR = O, SIGIS = CLK, CLK_INPORT = sys_clk
PORT mbl1d_rst = ””, DIR = O, SIGIS = RST
PORT f0_fsl_clk = ””, DIR = O, SIGIS = CLK, CLK_INPORT = sys_clk
PORT f0_sys_rst = ””, DIR = O, SIGIS = RST
PORT f0_fsl_rst = ””, DIR = I
PORT f0_fsl_m_clk = FSL_M_CLK, DIR = O, BUS = MFSL_f0
PORT f0_fsl_m_data = FSL_M_DATA, DIR = O, BUS = MFSL_f0, VEC = [31:0]
PORT f0_fsl_m_control = FSL_M_CONTROL, DIR = O, BUS = MFSL_f0
PORT f0_fsl_m_write = FSL_M_WRITE, DIR = O, BUS = MFSL_f0
PORT f0_fsl_m_full = FSL_M_FULL, DIR = I, BUS = MFSL_f0
PORT f0_full = ””, DIR = I
PORT f0_has_data = ””, DIR = I
PORT f0_control_irq = ””, DIR = I
PORT f1_fsl_clk = ””, DIR = O, SIGIS = CLK, CLK_INPORT = sys_clk
PORT f1_sys_rst = ””, DIR = O, SIGIS = RST
PORT f1_fsl_rst = ””, DIR = I
PORT f1_fsl_m_clk = FSL_M_CLK, DIR = O, BUS = MFSL_f1
PORT f1_fsl_m_data = FSL_M_DATA, DIR = O, BUS = MFSL_f1, VEC = [31:0]
PORT f1_fsl_m_control = FSL_M_CONTROL, DIR = O, BUS = MFSL_f1
PORT f1_fsl_m_write = FSL_M_WRITE, DIR = O, BUS = MFSL_f1
PORT f1_fsl_m_full = FSL_M_FULL, DIR = I, BUS = MFSL_f1
PORT f1_full = ””, DIR = I
PORT f1_has_data = ””, DIR = I
PORT f1_control_irq = ””, DIR = I
PORT f2_fsl_clk = ””, DIR = O, SIGIS = CLK, CLK_INPORT = sys_clk
PORT f2_sys_rst = ””, DIR = O, SIGIS = RST
PORT f2_fsl_rst = ””, DIR = I
PORT f2_fsl_s_clk = FSL_S_CLK, DIR = O, BUS = SFSL_f2
PORT f2_fsl_s_data = FSL_S_DATA, DIR = I, BUS = SFSL_f2, VEC = [31:0]
PORT f2_fsl_s_control = FSL_S_CONTROL, DIR = I, BUS = SFSL_f2
PORT f2_fsl_s_read = FSL_S_READ, DIR = O, BUS = SFSL_f2
PORT f2_fsl_s_exists = FSL_S_EXISTS, DIR = I, BUS = SFSL_f2
PORT f2_full = ””, DIR = I
PORT f2_has_data = ””, DIR = I
PORT f2_control_irq = ””, DIR = I
PORT mbl1_clk = ””, DIR = O, SIGIS = CLK, CLK_INPORT = sys_clk
PORT mbl1_rst = ””, DIR = O, SIGIS = RST
END�
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XPS Synthesis Options - “etc/fast_runtime.opt”� �
FLOWTYPE = FPGA;
Program ngdbuild
-p <partname>;
-nt timestamp;
-bm <design>.bmm
<userdesign>;
-uc <design>.ucf;
<design>.ngd;
End Program ngdbuild
Program map
-o <design>_map.ncd;
-w;
-pr b;
-cm speed;
-global_opt speed;
-logic_opt on;
-lc auto;
-mt on;
-ol high;
-timing;
-detail;
<inputdir><design>.ngd;
<inputdir><design>.pcf;
END Program map
Program post_map_trce
-e 3;
-xml <design>_map.twx;
<inputdir><design>_map.ncd;
<inputdir><design>.pcf;
END Program post_map_trce
Program par
-w;
-ol high;
-mt 4;
<inputdir><design>_map.ncd;
<design>.ncd;
<inputdir><design>.pcf;
END Program par
Program post_par_trce
-e 3;
-xml <design>.twx;
<inputdir><design>.ncd;
<inputdir><design>.pcf;
END Program post_par_trce�
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XPS Resource Descriptions - “system.mhs”� �
PARAMETER VERSION = 2.1.0
PORT sys_clk_pin=sys_clk_pin, DIR=I, SIGIS=CLK, CLK_FREQ=100000000
PORT sys_rst_pin=sys_rst_pin, DIR=I, SIGIS=RST
PORT sys_rs232_rx1_pin=sys_rs232_rx1_pin, DIR=I
PORT sys_rs232_tx1_pin=sys_rs232_tx1_pin, DIR=O
BEGIN system_tld

PARAMETER INSTANCE = tld
PARAMETER HW_VER = 1.00.a
PORT sys_clk = sys_clk_pin
PORT sys_rst = sys_rst_pin
PORT sys_rs232_rx1 = sys_rs232_rx1_pin
PORT sys_rs232_tx1 = sys_rs232_tx1_pin
PORT mbl1i_clk = mbl1i_clk
PORT mbl1i_rst = mbl1i_rst
PORT mbl1d_clk = mbl1d_clk
PORT mbl1d_rst = mbl1d_rst
PORT f0_fsl_clk = f0_fsl_clk
PORT f0_sys_rst = f0_sys_rst
PORT f0_fsl_rst = f0_fsl_rst
PORT f0_full = f0_full
PORT f0_has_data = f0_has_data
PORT f0_control_irq = f0_control_irq
BUS_INTERFACE MFSL_f0 = f0_fsl
PORT f1_fsl_clk = f1_fsl_clk
PORT f1_sys_rst = f1_sys_rst
PORT f1_fsl_rst = f1_fsl_rst
PORT f1_full = f1_full
PORT f1_has_data = f1_has_data
PORT f1_control_irq = f1_control_irq
BUS_INTERFACE MFSL_f1 = f1_fsl
PORT f2_fsl_clk = f2_fsl_clk
PORT f2_sys_rst = f2_sys_rst
PORT f2_fsl_rst = f2_fsl_rst
PORT f2_full = f2_full
PORT f2_has_data = f2_has_data
PORT f2_control_irq = f2_control_irq
BUS_INTERFACE SFSL_f2 = f2_fsl
PORT mbl1_clk = mbl1_clk
PORT mbl1_rst = mbl1_rst

END
BEGIN lmb_v10

PARAMETER INSTANCE = mbl1i_lmb
PARAMETER HW_VER = 2.00.a
PORT LMB_Clk = mbl1i_clk
PORT SYS_Rst = mbl1i_rst

END
BEGIN lmb_v10

PARAMETER INSTANCE = mbl1d_lmb
PARAMETER HW_VER = 2.00.a
PORT LMB_Clk = mbl1d_clk
PORT SYS_Rst = mbl1d_rst

END
BEGIN fsl_v20

PARAMETER INSTANCE = f0_fsl
PARAMETER HW_VER = 2.11.d
PARAMETER C_EXT_RESET_HIGH = 1
PARAMETER C_IMPL_STYLE = 0
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 1
PARAMETER C_READ_CLOCK_PERIOD = 0
PORT FSL_Clk = f0_fsl_clk
PORT SYS_Rst = f0_sys_rst
PORT FSL_Rst = f0_fsl_rst
PORT FSL_Full = f0_full
PORT FSL_Has_Data = f0_has_data
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PORT FSL_Control_IRQ = f0_control_irq
END
BEGIN fsl_v20

PARAMETER INSTANCE = f1_fsl
PARAMETER HW_VER = 2.11.d
PARAMETER C_EXT_RESET_HIGH = 1
PARAMETER C_IMPL_STYLE = 0
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 1
PARAMETER C_READ_CLOCK_PERIOD = 0
PORT FSL_Clk = f1_fsl_clk
PORT SYS_Rst = f1_sys_rst
PORT FSL_Rst = f1_fsl_rst
PORT FSL_Full = f1_full
PORT FSL_Has_Data = f1_has_data
PORT FSL_Control_IRQ = f1_control_irq

END
BEGIN fsl_v20

PARAMETER INSTANCE = f2_fsl
PARAMETER HW_VER = 2.11.d
PARAMETER C_EXT_RESET_HIGH = 1
PARAMETER C_IMPL_STYLE = 0
PARAMETER C_USE_CONTROL = 0
PARAMETER C_FSL_DWIDTH = 32
PARAMETER C_FSL_DEPTH = 1
PARAMETER C_READ_CLOCK_PERIOD = 0
PORT FSL_Clk = f2_fsl_clk
PORT SYS_Rst = f2_sys_rst
PORT FSL_Rst = f2_fsl_rst
PORT FSL_Full = f2_full
PORT FSL_Has_Data = f2_has_data
PORT FSL_Control_IRQ = f2_control_irq

END
BEGIN bram_block

PARAMETER INSTANCE = mbl1b_bram
PARAMETER HW_VER = 1.00.a
BUS_INTERFACE PORTA = mbl1b_lmba
BUS_INTERFACE PORTB = mbl1b_lmbb

END
BEGIN lmb_bram_if_cntlr

PARAMETER INSTANCE = mbl1b_lmba_cntlr
PARAMETER HW_VER = 3.00.a
PARAMETER C_BASEADDR = 0x00000000
PARAMETER C_HIGHADDR = 0x00007fff
BUS_INTERFACE SLMB = mbl1i_lmb
BUS_INTERFACE BRAM_PORT = mbl1b_lmba

END
BEGIN lmb_bram_if_cntlr

PARAMETER INSTANCE = mbl1b_lmbb_cntlr
PARAMETER HW_VER = 3.00.a
PARAMETER C_BASEADDR = 0x00000000
PARAMETER C_HIGHADDR = 0x00007fff
BUS_INTERFACE SLMB = mbl1d_lmb
BUS_INTERFACE BRAM_PORT = mbl1b_lmbb

END
BEGIN microblaze

PARAMETER INSTANCE = mbl1_microblaze
PARAMETER HW_VER = 8.10.a
PORT MB_RESET = mbl1_rst
BUS_INTERFACE ILMB = mbl1i_lmb
BUS_INTERFACE DLMB = mbl1d_lmb
BUS_INTERFACE SFSL0 = f0_fsl
BUS_INTERFACE SFSL1 = f1_fsl
BUS_INTERFACE MFSL0 = f2_fsl
PARAMETER C_FSL_LINKS = 2

END�
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Top-Level VHDL - “pcores/system_tld_v1_00_a/hdl/vhdl/system_tld.vhd”� �
1 library IEEE;
2 use IEEE.STD_LOGIC_1164.ALL;
3 use IEEE.STD_LOGIC_UNSIGNED.ALL;
4 use IEEE.NUMERIC_STD.ALL;
5

6 entity system_tld is
7 port(sys_clk : in std_logic;
8 sys_rst : in std_logic;
9 sys_rs232_rx1 : in std_logic;
10 sys_rs232_tx1 : out std_logic;
11 mbl1i_clk : out std_logic;
12 mbl1i_rst : out std_logic;
13 mbl1d_clk : out std_logic;
14 mbl1d_rst : out std_logic;
15 f0_fsl_clk : out std_logic;
16 f0_sys_rst : out std_logic;
17 f0_fsl_rst : in std_logic;
18 f0_fsl_m_clk : out std_logic;
19 f0_fsl_m_data : out std_logic_vector(31 downto 0);
20 f0_fsl_m_control : out std_logic;
21 f0_fsl_m_write : out std_logic;
22 f0_fsl_m_full : in std_logic;
23 f0_full : in std_logic;
24 f0_has_data : in std_logic;
25 f0_control_irq : in std_logic;
26 f1_fsl_clk : out std_logic;
27 f1_sys_rst : out std_logic;
28 f1_fsl_rst : in std_logic;
29 f1_fsl_m_clk : out std_logic;
30 f1_fsl_m_data : out std_logic_vector(31 downto 0);
31 f1_fsl_m_control : out std_logic;
32 f1_fsl_m_write : out std_logic;
33 f1_fsl_m_full : in std_logic;
34 f1_full : in std_logic;
35 f1_has_data : in std_logic;
36 f1_control_irq : in std_logic;
37 f2_fsl_clk : out std_logic;
38 f2_sys_rst : out std_logic;
39 f2_fsl_rst : in std_logic;
40 f2_fsl_s_clk : out std_logic;
41 f2_fsl_s_data : in std_logic_vector(31 downto 0);
42 f2_fsl_s_control : in std_logic;
43 f2_fsl_s_read : out std_logic;
44 f2_fsl_s_exists : in std_logic;
45 f2_full : in std_logic;
46 f2_has_data : in std_logic;
47 f2_control_irq : in std_logic;
48 mbl1_clk : out std_logic;
49 mbl1_rst : out std_logic);
50 end entity system_tld;
51

52 architecture str of system_tld is
53 signal f0s_ct : std_logic;
54 signal f0s_dt : std_logic_vector(31 downto 0);
55 signal f0s_ex : std_logic;
56 signal f0s_rd : std_logic;
57 signal f1s_ct : std_logic;
58 signal f1s_dt : std_logic_vector(31 downto 0);
59 signal f1s_ex : std_logic;
60 signal f1s_rd : std_logic;
61 signal f2m_ct : std_logic;
62 signal f2m_dt : std_logic_vector(31 downto 0);
63 signal f2m_fl : std_logic;
64 signal f2m_wr : std_logic;
65 signal helper125_0 : std_logic;
66 signal helper125_1 : std_logic_vector(7 downto 0);
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67 signal helper125_2 : std_logic_vector(31 downto 0);
68 signal helper125_3 : std_logic;
69 signal helper125_4 : std_logic;
70 signal helper125_5 : std_logic_vector(31 downto 0);
71 signal helper125_6 : std_logic;
72 signal helper125_7 : std_logic;
73 signal helper125_8 : std_logic;
74 signal ren : std_logic;
75 signal s0 : std_logic;
76 signal s1 : std_logic;
77 signal s2 : std_logic;
78 signal s3 : std_logic;
79 signal s4 : std_logic;
80 signal s5 : std_logic;
81 signal s6 : std_logic;
82 signal s7 : std_logic;
83 signal s8 : std_logic;
84 signal tld_clks81_0 : std_logic;
85 signal tld_clks81_9 : std_logic;
86 signal uart102_1 : std_logic;
87 signal uart102_2 : std_logic;
88 signal uart102_3 : std_logic_vector(7 downto 0);
89 begin
90 mbl1i_clk<=tld_clks81_0; mbl1i_rst<=tld_clks81_9;
91 mbl1d_clk<=tld_clks81_0; mbl1d_rst<=tld_clks81_9;
92 f0_fsl_clk<=tld_clks81_0; f0_sys_rst<=tld_clks81_9;
93 f0_fsl_m_clk<=tld_clks81_0; f1_fsl_clk<=tld_clks81_0;
94 f1_sys_rst<=tld_clks81_9; f1_fsl_m_clk<=tld_clks81_0;
95 f2_fsl_clk<=tld_clks81_0; f2_sys_rst<=tld_clks81_9;
96 f2_fsl_s_clk<=tld_clks81_0; f0_fsl_m_data<=helper125_2;
97 f0_fsl_m_control<=helper125_3; f0_fsl_m_write<=helper125_4;
98 f1_fsl_m_data<=helper125_5; f1_fsl_m_control<=helper125_6;
99 f1_fsl_m_write<=helper125_7; f2_fsl_s_read<=helper125_8;
100 sys_rs232_tx1<=uart102_1; mbl1_clk<=tld_clks81_0;
101 mbl1_rst<=tld_clks81_9;
102

103 tld_clks81_inst : entity system_tld_v1_00_a.tld_clks
104 port map ( sys_clk => sys_clk, sys_rst => sys_rst,
105 clk0 => tld_clks81_0, clk90 => s0,
106 clk180 => s1, clk270 => s2,
107 clkdv => s3, clk2x => s4,
108 clk2x180 => s5, clkfx => s6,
109 clkfx180 => s7, rst => tld_clks81_9 );
110 uart102_inst : entity system_tld_v1_00_a.uart
111 port map ( clk => tld_clks81_0, rst => tld_clks81_9,
112 ten => helper125_0, trdy => s8,
113 tdat => helper125_1, tx => uart102_1,
114 ren => ren, rrdy => uart102_2,
115 rdat => uart102_3, rx => sys_rs232_rx1 );
116 helper125_inst : entity system_tld_v1_00_a.helper
117 port map ( clk => tld_clks81_0, rst => tld_clks81_9,
118 ten => helper125_0, tdat => helper125_1,
119 rrdy => uart102_2, rdat => uart102_3,
120 ifsl0_m_data => helper125_2,
121 ifsl0_m_ctl => helper125_3,
122 ifsl0_m_wr => helper125_4,
123 ifsl0_m_full => f0_fsl_m_full,
124 ifsl1_m_data => helper125_5,
125 ifsl1_m_ctl => helper125_6,
126 ifsl1_m_wr => helper125_7,
127 ifsl1_m_full => f1_fsl_m_full,
128 ifsl2_s_data => f2_fsl_s_data,
129 ifsl2_s_ctl => f2_fsl_s_control,
130 ifsl2_s_rd => helper125_8,
131 ifsl2_s_exists => f2_fsl_s_exists );
132 end architecture str;�
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G TPM Specification
Clock generator for Xilinx Devices� �
1 facet clockgen(CLKFX_MULTIPLY,CLKFX_DIVIDE::design natural;CLKDV_DIVIDE::design real;
2 sys_clk,sys_rst::input bit; clk0,clk90,clk180,clk270,clkdv,clk2x,clk2x180,
3 clkfx,clkfx180,rst::output bit) :: static is
4 irst,clkfb,clk0_dcm,clk90_dcm,clk180_dcm,clk270_dcm,clkdv_dcm,clk2x_dcm,
5 clk2x180_dcm,clkfx_dcm,clkfx180_dcm,sys_buf,locked::bit;
6 begin
7 add_library(”unisim”); add_use(”unisim.vcomponents.all”);
8 dcm1: DCM(”LOW”,”LOW”,TRUE,FALSE,”1X”,”NONE”,”NONE”,”SAFE”,FALSE,0,CLKFX_MULTIPLY,CLKFX_DIVIDE,
9 CLKDV_DIVIDE,10.0,”SYSTEM_SYNCHRONOUS”,x”F0F0”,not irst,sys_buf,clkfb,0,0,0,clk0_dcm,
10 clk90_dcm,clk180_dcm,clk270_dcm,clkdv_dcm,clk2x_dcm,clk2x180_dcm,clkfx_dcm,clkfx180_dcm,
11 _,locked,_);
12

13 bufg_rst: BUFG(sys_rst,irst); bufg_sysclk: BUFG(sys_clk,sys_buf);
14 bufg_clk0: BUFG(clk0_dcm,clkfb); bufg_clk90: BUFG(clk90_dcm,clk90);
15 bufg_clk180: BUFG(clk180_dcm,clk180); bufg_clk270: BUFG(clk270_dcm,clk270);
16 bufg_clkdv: BUFG(clkdv_dcm,clkdv); bufg_clk2x: BUFG(clk2x_dcm,clk2x);
17 bufg_clk2x180: BUFG(clk2x180_dcm,clk2x180); bufg_clkfx: BUFG(clkfx_dcm,clkfx);
18 bufg_clkfx180: BUFG(clkfx180_dcm,clkfx180);
19 clk0 = clkfb; rst = not locked;
20 end facet;�
FSL Helper for Multiply-Accumulate� �
1 use maccpkg;
2 facet helper(macc_cmd::input macc_command; macc_val::output macc_result;
3 a,b::output word(32); c::input word(32)) :: state_based is
4 begin
5 if macc_command_go(macc_cmd) then a’send(macc_command_value1(macc_cmd)) else true end if;
6 if macc_command_go(macc_cmd) then b’send(macc_command_value2(macc_cmd)) else true end if;
7 macc_val = if c’receive then MACCRES(1,c) else MACCRES(0,x”00000000”) end if;
8 end facet;�
Multiply-Accumulate Shared Package� �
1 package maccpkg :: static is
2 macc_command :: type is data
3 MACCCMD(macc_command_go::bit; macc_command_value1::word(32); macc_command_value2::word(32))
4 end data;
5

6 macc_result :: type is data
7 MACCRES(macc_result_done::bit; macc_result_value::word(32))
8 end data;
9 end package;�
Multiply-Accumulate� �
1 facet macc(a,b::input word(32); o::output word(32)) :: state_based is
2 d1 :: bit initial is 0; acc :: word(32) initial is x”0000 0000”;
3 begin
4 acc’ = if a’receive and b’receive then
5 if a = x”0000 0000” and b = x”0000 0000” then x”0000 0000”
6 else acc + (a * b) end if
7 else acc end if;
8 d1’ = (a’receive and b’receive);
9 if d1==1 then o’send(acc) else true end if;
10 end facet;�
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Find Maximum� �
1 use tpm;
2 facet findmax(cmd::input max_command; dout::output word(32)) :: state_based is
3 mx::word(30) initial is 0; dl::bit initial is 0;
4 begin
5 mx’ = if cmd’receive then case cmd is
6 IDLE_MAX -> mx | INIT_MAX(v) -> v | UPDATE_MAX(v) -> if v > mx then v else mx end if
7 end case else mx end if;
8 dl’ = cmd’receive;
9 if (dl==1) then dout’send(b”00” & mx) else true end if;
10 end facet;�
PCR Register File Shared Package� �
1 package pcrpkg :: static is
2 pcr_command :: type is data
3 PCR_READ(pcr_read_addr::word(4)) | PCR_WRITE(pcr_write_addr::word(4);pcr_write_din::word(160))
4 end data encoding is ”binary”, alignment is ”packed”;
5

6 pcr_value :: type is word(160);
7 end package;�
PCR Register File� �
1 use pcrpkg;
2 facet pcrrf(cmd::input pcr_command; dout::output pcr_value; isrst::output bit;
3 rstlc,extlc::output word(8)) :: state_based is
4 orst::bit; addr::word(4); orlc,oelc::word(8); outp::word(160);
5 regs::array(16,word(160));
6 resettable :: array( 16, bit ) is b”1000 0000 0000 0001”;
7 reset_locale :: array( 16, word(8) ) is
8 [x”80”,x”91”,x”B3”,x”A2”,x”E6”,x”F7”,x”D5”,x”C4”,x”4C”,x”5D”,x”7F”,x”6E”,x”2A”,x”3B”,x”19”,x”08”];
9 extend_locale :: array( 16, word(8) ) is
10 [x”00”,x”01”,x”02”,x”03”,x”04”,x”05”,x”06”,x”07”,x”08”,x”09”,x”0A”,x”0B”,x”0C”,x”0D”,x”0E”,x”0F”];
11 begin
12 addr = case cmd is PCR_READ(addr) -> addr | PCR_WRITE(addr,din) -> addr | _ -> 0 end case;
13 regs(addr)’ = case cmd is PCR_WRITE(addr,din) -> din | _ -> regs(addr) end case;
14 outp’ = regs(addr);
15 orst’ = resettable(addr);
16 orlc’ = reset_locale(addr);
17 oelc’ = extend_locale(addr);
18 dout = outp; isrst = orst; rstlc = orlc; extlc = oelc;
19 end facet;�
SHA-1 Engine Shared Package� �
1 package shapkg :: static is
2 sha_command :: type is data
3 SHACMD(sha_command_start::bit; sha_command_continue::bit; sha_command_finish::bit;
4 sha_command_block::word(512); sha_command_size ::word(7) )
5 end data;
6

7 sha_result :: type is data
8 SHARES(sha_result_busy::bit; sha_result_valid::bit; sha_result_hash::word(160))
9 end data;
10 end package;�
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Pseudo Random Number Generator� �
1 facet prng(en,sv::input word(32); rn::output word(32)) :: state_based is
2 lf0 :: word(32) initial is x”B560AAEF”;
3 lf1 :: word(32) initial is x”F9082C6B”;
4 lf2 :: word(32) initial is x”3B0EAC69”;
5 lfb0,lfb1,lfb2,rcvd::bit; oval::word(32);
6 begin
7 lfb0 = not (lf0(31) xor lf0(21) xor lf0(1) xor lf0(0));
8 lfb1 = not (lf1(31) xor lf1(21) xor lf1(1) xor lf1(0));
9 lfb2 = not (lf2(31) xor lf2(21) xor lf2(1) xor lf2(0));
10 lf0’ = if en’receive and (en/=x”00000000”) then (lf0 sub [30,..0]) & lfb0
11 elseif sv’receive then lf0 xor sv
12 else lf0 end if;
13 lf1’ = if en’receive and (en/=x”00000000”) and (lf0(0) == 1) then (lf1 sub [30,..0]) & lfb1
14 elseif sv’receive then lf1 xor sv
15 else lf1 end if;
16 lf2’ = if en’receive and (en/=x”00000000”) and (lf0(0) == 0) then (lf2 sub [30,..0]) & lfb2
17 elseif sv’receive then lf2 xor sv
18 else lf2 end if;
19 oval = if lf0(0) then lf1 else lf2 end if;
20 if en’receive and (en==1) then rn’send(oval) else true end if;
21 end facet;�
SHA-1 Execution Engine Black Box Declaration (Implemented in Verilog)� �
1 facet interface sha1_exec(clk,reset,start::input bit; data_in::input word(32); load_in::input bit;
2 cv::input word(160); use_prev_cv::input bit; busy,out_valid::output bit;
3 cv_next::output word(160)) :: state_based is
4 end facet interface;�
SHA-1 Engine� �
1 use shapkg;
2 facet sha(clk,rst::input bit; cmd::input sha_command; res::output sha_result) :: state_based is
3 done,bsy,run,load,dowait,vld::bit; loadval::word(32); cv,cvout::word(160);
4 begin
5 engine: sha1_exec(clk,rst,run,loadval,load,cv,0,bsy,done,cvout);
6 padder: sha1_pad(clk,rst,sha_command_start(cmd),sha_command_continue(cmd),sha_command_finish(cmd),
7 bsy,done,sha_command_block(cmd),sha_command_size(cmd),dowait,vld,run,load,loadval);
8 res = SHARES(dowait or bsy, vld, cvout);
9 cv’ = if clk’event and clk=1 then
10 if rst=1 or sha_command_start(cmd) then x”67452301EFCDAB8998BADCFE10325476C3D2E1F0”
11 elseif done=1 then cvout else cv end if
12 else cv end if;
13 end facet;�
TPM PCR Read Command� �
1 use tpm, pcrpkg, comms;
2 facet comm_pcrread(hdr :: input comm_header; res :: output comm_result;
3 pcr_cmd :: output pcr_command; pcr_val :: input pcr_value) :: state_based is
4 dena1, dena2 :: bit initial is 0;
5 begin
6 dena1’ = (comm_header_go(hdr) and comm_header_ena(hdr));
7 dena2’ = dena1;
8 pcr_cmd = PCR_READ(comm_header_idat(hdr) sub [915,..912]);
9 res = COMMRES(dena2,TPM_TAG_RSP_COMMAND & x”0000001e” & x”00000000” & pcr_val & x”00000000 00000000
10 00000000 00000000 00000000 00000000 00000000 00000000
11 00000000 00000000 00000000 00000000 00000000 00000000
12 00000000 00000000 00000000 00000000 00000000 00000000
13 00000000 00000000 00000000 00000000 0000”);
14 end facet;�
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TPM Shared Package� �
1 package tpm :: static is
2 tpm_tag :: type is data
3 TPM_TAG_RQU_COMMAND | TPM_TAG_RQU_AUTH1_COMMAND | TPM_TAG_RQU_AUTH2_COMMAND |
4 TPM_TAG_RSP_COMMAND | TPM_TAG_RSP_AUTH1_COMMAND | TPM_TAG_RSP_AUTH2_COMMAND
5 end data;
6 tpm_ord :: type is data
7 TPM_ORD_SHA1COMPLETE | TPM_ORD_SHA1COMPLETEEXTEND | TPM_ORD_SHA1START | TPM_ORD_SHA1UPDATE |
8 TPM_ORD_PCRREAD | TPM_ORD_EXTEND | TPM_ORD_GETRANDOM | TPM_ORD_STIRRANDOM |
9 TPM_ORD_DOMACC | TPM_ORD_DOMAX
10 end data;
11 tpm_err :: type is data
12 TPM_SUCCESS | TPM_AUTHFAIL | TPM_BADINDEX | TPM_BAD_PARAMETER
13 end data;
14 max_command :: type is data
15 IDLE_MAX | INIT_MAX(max_command_init_val::word(30)) | UPDATE_MAX(max_command_update_val::word(30))
16 end data;
17 tpm_command :: type is data
18 TPM_CMD_SHA1START | TPM_CMD_PCRREAD(pcrread_addr :: word(32)) |
19 TPM_CMD_SHA1UPDATE(sha1update_size::word(32); sha1update_data::word(512)) |
20 TPM_CMD_EXTEND(extend_addr :: word(32); extend_digest :: word(160))
21 end data;
22 tpm_size :: type is word(32);
23 end package;�
RS-232 UART Shared Package� �
1 package uartconst() :: static is
2 STOP :: bit is 1; START :: bit is 0; IDLE :: bit is 1;
3 calculateBaud(clk :: integer; rate :: integer) :: integer is clk/(rate*16);
4 end package;�
RS-232 UART� �
1 use uartconst;
2 facet uart(CLKRATE :: design integer; BAUDRATE :: design integer;
3 ten :: input bit; trdy :: output bit; tdat :: input word(8);
4 tx :: output bit; ren :: input bit; rrdy :: output bit;
5 rdat :: output word(8); rx :: input bit ) :: state_based is
6 baud :: bit;
7 begin
8 baud’ = upcounter(calculateBaud(CLKRATE,BAUDRATE));
9 rxinst: uart_rx( baud, ren, rrdy, rdat, rx );
10 txinst: uart_tx( baud, ten, trdy, tdat, tx );
11 end facet;�
RS-232 UART Transmitter� �
1 use uartconst;
2 facet uart_rx(baud :: input bit; ren :: input bit; rrdy :: output bit;
3 dout :: output word(8); rx :: input bit) :: state_based is
4 dosht,dshf,busy,rcvd::bit initial is 0;
5 cntr :: word(8) initial is b”00000000”;
6 shreg :: word(10) initial is b”1111111111”;
7 begin
8 busy’ = if (rx=START and busy=0) then 1 elseif (cntr=159) then 0 else busy end if;
9 cntr’ = named_upcounter(160, (busy or cntr=159) and baud);
10 recvd’ = upcounter(10, dshf); shreg’ = lshiftreg(rx, dosht);
11 dosht = %((cntr sub [3,..0] == b”0111”) and baud);
12 rrdy = %(ren and recvd and (shreg(9) = START) and (shreg(0) = STOP));
13 dshf’ = dosht; dout = shreg sub [1,..8];
14 end facet;�
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RS-232 UART Receiver� �
1 use uartconst;
2 facet uart_tx(baud :: input bit; ena :: input bit; rdy :: output bit;
3 din :: input word(8); tx :: output bit) :: state_based is
4 bitnm :: word(4) initial is b”0000”;
5 shreg :: word(10) initial is b”1111111111”;
6 busy,next::bit;
7 begin
8 next’ = upcounter(16, baud and (ena or busy));
9 bitnm’ = named_upcounter(11, ena or (baud and next and busy));
10 shreg’ = rshiftreg(IDLE, next and baud, busy=0 and ena, STOP & din & START);
11 busy = %(bitnm /= b”0000”);
12 tx = shreg(0);
13 rdy = not busy;
14 end facet;�
TPM Communication Shared Package� �
1 use tpm;
2 package comms :: static is
3 comm_header :: type is data
4 COMMHDR( comm_header_go :: bit; comm_header_ena :: bit; comm_header_tag :: tpm_tag;
5 comm_header_size :: tpm_size; comm_header_idat :: word(1024) )
6 end data encoding is ”binary”, alignment is ”packed”;
7

8 comm_result :: type is data
9 COMMRES( comm_result_done :: bit; comm_result_odat :: word(1024) )
10 end data encoding is ”binary”, alignment is ”packed”;
11 end package;�
TPM Get Random Number Command� �
1 use tpm, comms;
2 facet comm_getrandom( hdr :: input comm_header; res :: output comm_result;
3 en :: output bit; val :: input word(32) ) :: state_based is
4 rsize::word(32); dne::bit;
5 begin
6 rsize = comm_header_idat(hdr) sub [943,..912];
7 en = (comm_header_go(hdr) and comm_header_ena(hdr));
8 dne’ = (comm_header_go(hdr) and comm_header_ena(hdr));
9 res = COMMRES(dne, TPM_TAG_RSP_COMMAND & x”0000 000E 0000 0000 0000 0004” & val & x”0000 0000 0000 0000
10 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
11 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
12 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000”);
13 end facet;�
TPM Stir Random Number Generator Command� �
1 use tpm, comms;
2 facet comm_stirrandom(hdr::input comm_header;res::output comm_result; st::output bit;
3 sv ::output word(32); val::input word(32)) :: state_based is
4 rsize :: word(32);
5 begin
6 rsize = comm_header_idat(hdr) sub [943,..912];
7 st = (comm_header_go(hdr) and comm_header_ena(hdr));
8 sv = comm_header_idat(hdr) sub [911,..880];
9 res = COMMRES(comm_header_go(hdr), TPM_TAG_RSP_COMMAND & x”0000 000a 0000 0000 0000 0000 0000 0000 0000
10 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
11 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
12 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000”);
13 end facet;�
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TPM Find Maximum Auxiliary Command� �
1 use tpm, comms;
2 facet comm_fmax(hdr :: input comm_header; res :: output comm_result; cmd :: output max_command;
3 go :: output bit; done :: input bit; val :: input word(32))
4 :: state_based is
5 ddne :: bit initial is 0;
6 begin
7 cmd = case hdr is
8 COMMHDR(go,ena,tg,sz,idat) -> if go and ena then
9 if (idat sub [943,..912]) = x”00000000” then INIT_MAX(idat sub [911,..882])
10 else UPDATE_MAX(idat sub [911,..882]) end if
11 else IDLE_MAX end if
12 | _ -> IDLE_MAX
13 end case;
14

15 go = case hdr is COMMHDR(g,e,_,_,_) -> g and e | _ -> 0 end case;
16 ddne’ = done;
17

18 res = COMMRES(ddne, TPM_TAG_RSP_COMMAND & x”0000 000e 0000 0000” & val & x”0000 0000 0000 0000 0000
19 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
20 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
21 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
22 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
23 0000 0000 0000 0000 0000 0000 0000 0000”);
24 end facet;�
TPM SHA-1 Start Command� �
1 use tpm, comms, shapkg;
2 facet comm_sha1start(hdr :: input comm_header; res :: output comm_result;
3 cmd :: output sha_command; val :: input sha_result) :: state_based is
4 begin
5 cmd = SHACMD(comm_header_go(hdr) and comm_header_ena(hdr), 0, 0, x”0000 0000 0000 0000 0000 0000
6 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
7 0000 0000 0000 0000 0000 0000 0000 0000 0000”, b”0000000”);
8

9 res = COMMRES(comm_header_go(hdr),TPM_TAG_RSP_COMMAND & x”0000000a” & x”00000000” & x”0000 0000
10 0000 0000 0000 0000 0000 0000 0000 0000” & x”00000000 00000000 00000000 00000000
11 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
12 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
13 00000000 00000000 0000”);
14 end facet;�
TPM SHA-1 Continue Command� �
1 use tpm, comms, shapkg;
2 facet comm_sha1contn(hdr :: input comm_header; res :: output comm_result; cmd :: output sha_command;
3 val :: input sha_result) :: state_based is
4 dvalid, rvalid :: bit initial is 0;
5 begin
6 cmd = SHACMD( 0, comm_header_go(hdr) and comm_header_ena(hdr), 0,
7 comm_header_idat(hdr) sub [911,..400], comm_header_idat(hdr) sub [918,..912] );
8

9 dvalid’ = sha_result_valid(val);
10 rvalid = ((sha_result_valid(val) xor dvalid) and sha_result_valid(val));
11

12 res = COMMRES(rvalid, TPM_TAG_RSP_COMMAND & x”0000000a” & x”00000000” & x”0000 0000 0000 0000 0000
13 0000 0000 0000 0000 0000” & x”00000000 00000000 00000000 00000000 00000000 00000000
14 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0000”);
16 end facet;�
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TPMMultiply-Accumulate Auxiliary Command� �
1 use tpm, comms, maccpkg;
2 facet comm_macc(hdr :: input comm_header; res :: output comm_result;
3 macc_cmd :: output macc_command; macc_val :: input macc_result) :: state_based is
4 begin
5 macc_cmd = MACCCMD( comm_header_go(hdr) and comm_header_ena(hdr), comm_header_idat(hdr) sub [943,..912],
6 comm_header_idat(hdr) sub [911,..880] );
7 res = case macc_val is
8 MACCRES(dne,val) -> COMMRES(dne,TPM_TAG_RSP_COMMAND & x”0000 000e 0000 0000” & val & x”0000
9 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
10 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
11 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
12 0000 0000 0000 0000 0000”)
13 | _ -> COMMRES(0,TPM_TAG_RSP_COMMAND & x”0000 000e 0000 0000” & x”0000 0000 0000 0000 0000
14 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
15 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
16 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
17 0000 0000 0000”)
18 end case;
19 end facet;�
TPM Command Receiver� �
1 use tpm;
2 facet comm_recv(ren :: output bit; rrdy :: input bit; rdat :: input word(8);
3 rcvd :: output bit; tag :: output tpm_tag; size :: output tpm_size;
4 ord :: output tpm_ord; ocmd :: output word(1024)) :: state_based is
5 cmd,rcmd::word(1024); cdone,ddone,fdone::bit initial is 0;
6 begin
7 ren = 1; ocmd = rcmd; ddone’ = cdone; fdone’ = ddone; rcvd = fdone;
8 tag = rcmd sub [1023,..1008]; size = rcmd sub [1007,..976]; ord = rcmd sub [975,..944];
9 cmd’ = lshiftreg(rdat, rrdy); cdone’ = upcounter(128, rrdy);
10 rcmd’ = if ddone then cmd else rcmd end if;
11 end facet;�
TPM PCR Extend Command� �
1 use tpm, pcrpkg, shapkg, comms;
2 facet comm_extend(hdr ::input comm_header; res ::output comm_result; pcr_cmd::output pcr_command;
3 pcr_val::input pcr_value; sha_cmd::output sha_command; sha_vl ::input sha_result)
4 :: state_based is
5 stype :: type is data IDLE | RDRF | SHA1 end data;
6 state :: stype initial is IDLE;
7 begin
8 state’ = case state is
9 IDLE -> if comm_header_go(hdr) and comm_header_ena(hdr) then RDRF else IDLE end if
10 | RDRF -> SHA1
11 | SHA1 -> if sha_result_valid(sha_vl) then IDLE else SHA1 end if
12 end case;
13 pcr_cmd = if isSHA1(state) and sha_result_valid(sha_vl)
14 then PCR_WRITE(comm_header_idat(hdr) sub [915,..912],sha_result_hash(sha_vl))
15 else PCR_READ(0) end if;
16 sha_cmd = SHACMD( comm_header_go(hdr), 0, isRDRF(state), pcr_val &
17 (comm_header_idat(hdr) sub [911,..752]) &
18 x”000000000000000000000000000000000000000000000000”, b”0101000” );
19 res = COMMRES(isSHA1(state) and sha_result_valid(sha_vl),TPM_TAG_RSP_COMMAND & x”0000001e” &
20 x”00000000” & sha_result_hash(sha_vl) & x”00000000 00000000 00000000 00000000 00000000
21 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
22 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
23 00000000 0000”);
24 end facet;�
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TPM Response Transmitter� �
1 use tpm;
2 facet comm_tran(ten :: output bit; trdy :: input bit; tdat :: output word(8);
3 send :: input bit; res :: input word(1024)) :: state_based is
4 tcnt::word(8) initial is 0; tshft::word(1024) initial is 0; dtr,drdy,rdy::bit initial is 0;
5 begin
6 tcnt’ = named_upcounter(129, send or rdy);
7 tshft’ = lshiftreg(x”00”, rdy, send, res);
8 drdy’ = trdy;
9 rdy = %((drdy xor trdy) and trdy = 1);
10 dtr’ = %(send or (tcnt/=x”00” and rdy));
11 ten = dtr;
12 tdat = tshft sub [1023,..1016];
13 end facet;�
TPM SHA-1 Finish Command� �
1 use tpm, comms, pcrpkg, shapkg;
2 facet comm_sha1finsh(hdr :: input comm_header; res :: output comm_result; ext :: input bit;
3 cmd :: output sha_command; val :: input sha_result; pcm :: output pcr_command;
4 pvl :: input pcr_value) :: state_based is
5 stype :: type is data IDLE | RDRF | SHA1 end data;
6 state :: stype initial is IDLE;
7

8 shaen::bit; shasz::word(7); shadt::word(512); rsz::word(32); svl,rsh,rpc::word(160);
9 dvalid, evalid, rvalid :: bit initial is 0;
10 begin
11 cmd = SHACMD(evalid, 0, shaen, shadt, shasz );
12 shaen = if isIDLE(state) then comm_header_go(hdr) and comm_header_ena(hdr) else isRDRF(state) end if;
13

14 shadt = if isIDLE(state) then
15 if ext then comm_header_idat(hdr) sub [879,..368]
16 else comm_header_idat(hdr) sub [911,..400] end if
17 else pvl & svl & x”000000000000000000000000000000000000000000000000” end if;
18

19 shasz = if isIDLE(state) then
20 if ext then comm_header_idat(hdr) sub [886,..880]
21 else comm_header_idat(hdr) sub [918,..912] end if
22 else b”0101000” end if;
23

24 svl’ = if isIDLE(state) and ext and evalid then sha_result_hash(val) else svl end if;
25

26 state’ = case state is
27 IDLE -> if comm_header_ena(hdr) and evalid and ext then RDRF else IDLE end if
28 | RDRF -> SHA1
29 | SHA1 -> if sha_result_valid(val) then IDLE else SHA1 end if
30 end case;
31

32 pcm = if isSHA1(state) and sha_result_valid(val)
33 then PCR_WRITE(comm_header_idat(hdr) sub [915,..912],sha_result_hash(val))
34 else PCR_READ(0) end if;
35

36 dvalid’ = sha_result_valid(val);
37 evalid = (comm_header_ena(hdr) and ((sha_result_valid(val) xor dvalid) and sha_result_valid(val)));
38

39 rvalid = if ext then isSHA1(state) and sha_result_valid(val) else evalid end if;
40 rsz = if ext then x”00000032” else x”0000001e” end if;
41 rsh = if ext then svl else sha_result_hash(val) end if;
42 rpc = if ext then sha_result_hash(val) else x”00000000 00000000 00000000 00000000 00000000” end if;
43

44 res = COMMRES(rvalid, TPM_TAG_RSP_COMMAND & rsz & x”00000000” & rsh & rpc &
45 x”00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
46 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
47 00000000 0000”);
48 end facet;�
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TPM Communication� �
1 use tpm, pcrpkg, maccpkg, shapkg, comms;
2 facet comm(macc_cmd :: output macc_command; macc_val :: input macc_result; fmax_cmd :: output max_command;
3 fmax_val :: input word(32); sha_cmd :: output sha_command; sha_val :: input sha_result;
4 pcr_cmd :: output pcr_command; pcr_val :: input pcr_value; pcr_en :: output bit;
5 rng_en :: output word(32); rng_sv :: output word(32); rng_val :: input word(32);
6 ten :: output bit; trdy :: input bit; tdat :: output word(8); ren :: output bit;
7 rrdy :: input bit; rdat :: input word(8)) :: state_based is
8 UNKNOWN::word(1024) is TPM_TAG_RSP_COMMAND & x”0000 000a 0000 000a 0000 0000 0000 0000 0000 0000 0000
9 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
10 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
11 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000”;
12 tag::tpm_tag; size::tpm_size; ord::tpm_ord; rnsv,rnvl,fmvl::word(32); cmd,tres::word(1024);
13 rcvd,tsend,rnen,rnst,fmdn,fmgo::bit; fmcm::max_command;
14 result,macc_res,fmax_res,extend_res,sha1st_res,sha1ct_res,
15 sha1fn_res,pcrread_res,getrn_res,strrn_res::comm_result;
16 pcrread_pcr_cmd,extend_pcr_cmd,sha1fn_pcr_cmd::pcr_command;
17 extend_sha_cmd,sha1st_sha_cmd,sha1ct_sha_cmd,sha1fn_sha_cmd::sha_command;
18 begin
19 recvr: comm_recv(ren,rrdy,rdat,rcvd,tag,size,ord,cmd);
20 tsmtr: comm_tran(ten,trdy,tdat,tsend,tres);
21 pcrrd: comm_pcrread(COMMHDR(rcvd,ord=TPM_ORD_PCRREAD,tag,size,cmd),pcrread_res,pcrread_pcr_cmd,pcr_val);
22 getrn: comm_getrandom(COMMHDR(rcvd,ord=TPM_ORD_GETRANDOM,tag,size,cmd),getrn_res,rnen,rnvl);
23 strrn: comm_stirrandom(COMMHDR(rcvd,ord=TPM_ORD_STIRRANDOM,tag,size,cmd),strrn_res,rnst,rnsv,rnvl);
24 maccc: comm_macc(COMMHDR(rcvd,ord=TPM_ORD_DOMACC,tag,size,cmd),macc_res,macc_cmd,macc_val);
25 fmaxx: comm_fmax(COMMHDR(rcvd,ord=TPM_ORD_DOMAX,tag,size,cmd),fmax_res,fmcm,fmgo,fmdn,fmvl);
26 ext: comm_extend(COMMHDR(rcvd,ord=TPM_ORD_EXTEND,tag,size,cmd),extend_res,
27 extend_pcr_cmd,pcr_val,extend_sha_cmd,sha_val);
28 sha1st: comm_sha1start(COMMHDR(rcvd,ord=TPM_ORD_SHA1START,tag,size,cmd),
29 sha1st_res,sha1st_sha_cmd,sha_val);
30 sha1ct: comm_sha1contn(COMMHDR(rcvd,ord=TPM_ORD_SHA1UPDATE,tag,size,cmd),
31 sha1ct_res,sha1ct_sha_cmd,sha_val );
32 sha1fn: comm_sha1finsh(COMMHDR(rcvd,ord=TPM_ORD_SHA1COMPLETE,tag,size,cmd),sha1fn_res,
33 ord=TPM_ORD_SHA1COMPLETEEXTEND,sha1fn_sha_cmd,sha_val,sha1fn_pcr_cmd,pcr_val);
34

35 fmdn = fmax_val’receive;
36 fmvl’ = if fmax_val’receive then fmax_val else fmvl end if;
37 if fmgo then fmax_cmd’send(fmcm) else true end if;
38 rnvl’ = if rng_val’receive then rng_val else rnvl end if;
39 tsend = comm_result_done(result);
40 tres = comm_result_odat(result);
41

42 if (rcvd==1) and (ord==TPM_ORD_STIRRANDOM) then rng_sv’send(rnsv) else true end if;
43 if (rcvd==1) and (ord==TPM_ORD_GETRANDOM) then rng_en’send(b”00000000 00000000 00000000 0000000”&rnen)
44 else true end if;
45

46 result = if ord=TPM_ORD_PCRREAD then pcrread_res elseif ord=TPM_ORD_EXTEND then extend_res
47 elseif ord=TPM_ORD_SHA1START then sha1st_res elseif ord=TPM_ORD_SHA1UPDATE then sha1ct_res
48 elseif ord=TPM_ORD_GETRANDOM then getrn_res elseif ord=TPM_ORD_STIRRANDOM then strrn_res
49 elseif ord=TPM_ORD_DOMACC then macc_res elseif ord=TPM_ORD_DOMAX then fmax_res
50 elseif ord=TPM_ORD_SHA1COMPLETE then sha1fn_res
51 elseif ord=TPM_ORD_SHA1COMPLETEEXTEND then sha1fn_res
52 else COMMRES(rcvd,UNKNOWN) end if;
53

54 pcr_cmd = if ord=TPM_ORD_PCRREAD then pcrread_pcr_cmd elseif ord=TPM_ORD_EXTEND then extend_pcr_cmd
55 elseif ord=TPM_ORD_SHA1COMPLETE then sha1fn_pcr_cmd
56 elseif ord=TPM_ORD_SHA1COMPLETEEXTEND then sha1fn_pcr_cmd
57 else PCR_READ(0) end if;
58 pcr_en = if ord=TPM_ORD_PCRREAD or ord=TPM_ORD_EXTEND then 1 else 0 end if;
59

60 sha_cmd = if ord=TPM_ORD_EXTEND then extend_sha_cmd elseif ord=TPM_ORD_SHA1START then sha1st_sha_cmd
61 elseif ord=TPM_ORD_SHA1UPDATE then sha1ct_sha_cmd
62 elseif ord=TPM_ORD_SHA1COMPLETE then sha1fn_sha_cmd
63 else SHACMD(0,0,0,x”0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
64 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
65 0000 0000”,b”0000000”) end if;
66 end facet;�
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SHA-1 Padding� �
1 facet sha1_pad(clk,rst,start,continue,finish,busy,done::input bit; blck::input word(512); size::input word(7);
2 dowait,valid,run,load::output bit; loadval::output word(32)) :: state_based is
3 last,padding,rpadding,ipadding,dpadding,firstpad,extra,dbusy,cansend,rdone::bit;
4 rawbytes,padbytes,rembytes::word(7); outshift :: word(512);
5 ldshift,rnshift::word(16); andmask,ormask,outraw::word(32); bitsize,length::word(64);
6 begin
7 load = ldshift(15); run = rnshift(15); dowait = extra; valid = rdone;
8 rdone’ = if clk’event and clk=1 then
9 if rst=1 or start=1 or continue=1 or finish=1 then 0
10 elseif done=1 and extra=0 then 1 else rdone end if
11 else rdone end if;
12 loadval = if ldshift(15) = 1 then (outraw and andmask) or ormask else 0 end if;
13 bitsize = b”000000000000000000000000000000000000000000000000000000” & size & b”000”;
14

15 length’ = if clk’event and clk=1 then
16 if rst=1 or start=1 then 0
17 elseif continue=1 or finish=1 then length + bitsize
18 else length end if
19 else length end if;
20 outshift’ = if clk’event and clk=1 then
21 if continue=1 or finish=1 then blck
22 else (outshift sub [479,..0]) & x”0000 0000” end if
23 else outshift end if;
24 outraw = outshift sub [511,..480];
25

26 cansend = %((busy xor dbusy) and busy=0);
27 dbusy’ = if clk’event and clk=1 then busy else dbusy end if;
28

29 ldshift = if clk’event and clk=1 then
30 if continue=1 or finish=1 or (extra=1 and cansend=1) then b”1111 1111 1111 1111”
31 else (ldshift sub [14,..0]) & b”0” end if
32 else ldshift end if;
33 rnshift = if clk’event and clk=1 then
34 if continue=1 or finish=1 or (extra=1 and cansend=1) then b”0000 0000 0000 0001”
35 else (rnshift sub [14,..0]) & b”0” end if
36 else rnshift end if;
37

38 rembytes = if clk’event and clk=1 then
39 if rst=1 or start=1 then 0
40 elseif continue=1 or finish=1 then size
41 elseif rembytes > 3 then rembytes - 4
42 else 0 end if
43 else rembytes end if;
44 last’ = if clk’event and clk=1 then
45 if start=1 then 0
46 elseif finish=1 then 1
47 else last end if
48 else last end if;
49

50 ipadding = %((ldshift(15)=1 and last=1 and rembytes<4) or (extra=1 and dbusy=1 and rembytes/=0));
51 rpadding’ = if clk’event and clk=1 then
52 if start=1 or continue=1 or finish=1 then 0
53 elseif ipadding=1 then 1
54 else rpadding end if
55 else rpadding end if;
56 padding = %(ipadding or rpadding);
57

58 firstpad = %((padding xor dpadding) and padding=1);
59 dpadding’ = if clk’event and clk=1 then padding else dpadding end if;
60 extra’ = if clk’event and clk=1 then
61 if rst=1 or start=1 or (extra=1 and cansend=1) then 0
62 elseif finish=1 and (size >= 56) then 1
63 else extra end if
64 else extra end if;
65

66 rawbytes = if finish=1 then b”1000000”-(b”0”&(size sub [5,..0]))
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67 else b”1000000”-(b”0”&(length sub [8,..3])) end if;
68 padbytes = if clk’event and clk=1 then
69 if padding=1 and ldshift(15)=1 then padbytes - (4-rembytes)
70 elseif rawbytes<9 and padding=0 then rawbytes + b”1000000”
71 elseif padding=0 then rawbytes
72 else padbytes end if
73 else padbytes end if;
74

75 ormask = if firstpad then
76 if rembytes=0 then b”1000 0000 0000 0000 0000 0000 0000 0000”
77 elseif rembytes=1 then b”0000 0000 1000 0000 0000 0000 0000 0000”
78 elseif rembytes=2 then b”0000 0000 0000 0000 1000 0000 0000 0000”
79 elseif rembytes=3 then b”0000 0000 0000 0000 0000 0000 1000 0000”
80 else b”0000 0000 0000 0000 0000 0000 0000 0000” end if
81 elseif padbytes=8 then length sub [63,..32]
82 elseif padbytes=4 then length sub [31,..0]
83 else b”0000 0000 0000 0000 0000 0000 0000 0000” end if;
84 andmask = if rembytes=0 then b”0000 0000 0000 0000 0000 0000 0000 0000”
85 elseif rembytes=1 then b”1111 1111 0000 0000 0000 0000 0000 0000”
86 elseif rembytes=2 then b”1111 1111 1111 1111 0000 0000 0000 0000”
87 elseif rembytes=3 then b”1111 1111 1111 1111 1111 1111 0000 0000”
88 else b”1111 1111 1111 1111 1111 1111 1111 1111” end if;
89 end facet;�
TPM Top-Level Design� �
1 CLKRATE :: integer is 100000000;
2 BDRATE :: integer is 115200;
3

4 tag2bits(tag :: tpm_tag) :: word(16) is
5 case tag is
6 TPM_TAG_RQU_COMMAND -> x”00C1” | TPM_TAG_RQU_AUTH1_COMMAND -> x”00C2”
7 | TPM_TAG_RQU_AUTH2_COMMAND -> x”00C3” | TPM_TAG_RSP_COMMAND -> x”00C4”
8 | TPM_TAG_RSP_AUTH1_COMMAND -> x”00C5” | TPM_TAG_RSP_AUTH2_COMMAND -> x”00C6”
9 end case;
10

11 ord2bits(ord :: tpm_ord) :: word(32) is
12 case ord is
13 TPM_ORD_SHA1COMPLETE -> x”000000A2” | TPM_ORD_SHA1COMPLETEEXTEND -> x”000000A3”
14 | TPM_ORD_SHA1START -> x”000000A0” | TPM_ORD_SHA1UPDATE -> x”000000A1”
15 | TPM_ORD_PCRREAD -> x”00000015” | TPM_ORD_EXTEND -> x”00000014”
16 | TPM_ORD_GETRANDOM -> x”00000046” | TPM_ORD_STIRRANDOM -> x”00000047”
17 | TPM_ORD_DOMACC -> x”000000FF” | TPM_ORD_DOMAX -> x”000000FE”
18 end case;
19

20 max2bits(mx :: max_command) :: (word(4),word(32),word(32),bit) is
21 case mx is
22 IDLE_MAX -> (x”1”,x”00000000”,x”00000001”,1)
23 | INIT_MAX(a) -> (x”2”,a,x”AAAAAAAA”,0)
24 | UPDATE_MAX(a) -> (x”3”,x”55555555”,a,1)
25 end case;
26

27 use tpm; use pcrpkg; use shapkg; use maccpkg;
28 facet tld :: system is
29 sys_clk,sys_rst,clk,mclk,rst,rx,tx,ren,ten,rrdy,trdy::bit;
30 macc_a,macc_b,macc_acc,mout,prng_en,prng_sv,prng_val::word(32);
31 rdat,tdat::word(8);
32 macc_cmd::macc_command; macc_val::macc_result;
33 pcr_cmd::pcr_command; pcr_val::pcr_value; pcr_en::bit;
34 sha_cmd::sha_command; sha_val::sha_result;
35 mcmd :: max_command;
36 begin
37 fpga: genesys( sys_clk, sys_rst, rx, tx );
38 mbl1: mblaze( mclk, rst );
39 mbl1’target = fpga;
40
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41 mbl1_bram: bram_memory( 8192 );
42 mbl1_imem: lmb_v10(mclk,rst);
43 mbl1_dmem: lmb_v10(mclk,rst);
44 mbl1_imem.master = [mbl1.ilmb];
45 mbl1_dmem.master = [mbl1.dlmb];
46 mbl1_imem.slave = [mmport(mbl1_bram.lmba,x”00000000”,x”00007FFF”)];
47 mbl1_dmem.slave = [mmport(mbl1_bram.lmbb,x”00000000”,x”00007FFF”)];
48 mdm1: mdm(rst); mdm1.master = [mbl1.debug];
49

50 communications_link(”fsl”, macc_a, clk, rst); communications_link(”fsl”, macc_b, clk, rst);
51 communications_link(”fsl”, macc_acc, clk, rst); communications_link(”fsl”, prng_en, clk, rst);
52 communications_link(”fsl”, prng_sv, clk, rst); communications_link(”fsl”, prng_val, clk, rst);
53

54 clks: clockgen(3,2,2.0,sys_clk,sys_rst,clk,_,_,_,_,_,_,_,_,rst); clks’target = fpga;
55 mclks: clockgen(3,2,2.0,sys_clk,sys_rst,mclk,_,_,_, _,_,_,_,_,_); mclks’target = fpga;
56 clk’sigis = ”CLK”; mclk’sigis = ”CLK”; rst’sigis = ”RST”;
57 clk’clk_inport = sys_clk; mclk’clk_inport = sys_clk;
58

59 iuart: uart( CLKRATE, BDRATE, ten, trdy, tdat, tx, ren, rrdy, rdat, rx ); iuart’target = fpga;
60 active_high_reset(iuart, rst);
61 rising_edge_clock(iuart, clk);
62

63 pcrs: pcrrf( pcr_cmd, pcr_val, _, _, _ ); pcrs’target = fpga;
64 refine_type(pcrs, pcr_command, ”binary”, ”packed”);
65 active_high_enable(pcrs, pcr_en);
66 rising_edge_clock(pcrs, clk);
67

68 sha1: sha( clk, rst, sha_cmd, sha_val ); sha1’target = fpga;
69 refine_type(sha1, sha_command, ”binary”, ”packed”);
70 refine_type(sha1, sha_result, ”binary”, ”packed”);
71

72 rng: prng(prng_en,prng_sv,prng_val); rng’target = fpga;
73 active_high_reset(rng, rst);
74 rising_edge_clock(rng, clk);
75

76 icom: comm(macc_cmd,macc_val,mcmd,mout,sha_cmd,sha_val,pcr_cmd,pcr_val,pcr_en,prng_en,prng_sv,
77 prng_val,ten,trdy,tdat,ren,rrdy,rdat); icom’target = fpga;
78 refine_type(icom, max_command, ”binary”, ”packed”);
79 refine_type(icom, tpm_tag, tag2bits);
80 refine_type(icom, tpm_ord, ord2bits);
81 refine_type(icom, pcr_command, ”binary”, ”packed”);
82 refine_type(icom, macc_command, ”binary”, ”packed”);
83 refine_type(icom, macc_result, ”binary”, ”packed”);
84 refine_type(icom, sha_command, ”binary”, ”packed”);
85 refine_type(icom, sha_result, ”binary”, ”packed”);
86 refine_type(pcr_cmd, pcr_command, ”binary”, ”packed”);
87 refine_type(macc_cmd, macc_command, ”binary”, ”packed”);
88 refine_type(macc_val, macc_result, ”binary”, ”packed”);
89 refine_type(sha_cmd, sha_command, ”binary”, ”packed”);
90 refine_type(sha_val, sha_result, ”binary”, ”packed”);
91 active_high_reset(icom, rst);
92 rising_edge_clock(icom, clk);
93

94 hlpr: helper( macc_cmd, macc_val, macc_a, macc_b, macc_acc ); hlpr’target = fpga;
95 refine_type(hlpr, macc_command, ”binary”, ”packed”);
96 refine_type(hlpr, macc_result, ”binary”, ”packed”);
97 active_high_reset(hlpr, rst);
98 rising_edge_clock(hlpr, clk);
99

100 mcc: macc(macc_a, macc_b, macc_acc); mcc’target = mbl1;
101 fmax: findmax( mcmd, mout ); fmax’target = fpga;
102 refine_type(fmax, max_command, ”binary”, ”packed”);
103 refine_type(mcmd, max_command, ”binary”, ”packed”);
104 active_high_reset(fmax, rst);
105 rising_edge_clock(fmax, clk);
106 communications_link(”fsl”, mcmd, clk, rst); communications_link(”fsl”, mout, clk, rst);
107 end facet;�
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