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Abstract 

The Late Devonian extinctions at the Frasnian-Famennian (F-F) boundary and the 

Devonian-Carboniferous (D-C) boundary were investigated in the Woodford Shale of south-

central Oklahoma with organic geochemical, bulk geochemical, petrographic, and paleontologic 

techniques. Three sections were collected, two outcrop sections in the Arbuckle Mountains, and 

one measured core section from the western Arkoma basin. The ratios of extractable biomarkers 

including steranes, indicative of differing eukaryote input, and pristane/phytane, indicative of 

oxic or anoxic depositional conditions, display different responses to the F-F boundary and the 

D-C boundary, as do the abundances of isorenieratane, indicative of photic zone anoxia, and 

gammacerane, indicative of water column stratification. The ratio of C29 steranes to C27 and C28 

steranes are higher in abundance around the F-F boundary and lower in abundance around the D-

C boundary, indicating different algal communities at each extinction.  High concentrations of 

isorenieratane and gammacerane at the F-F boundary indicate periods of anoxia, while the 

absence of isorenieratane at the D-C boundary indicates oxic deposition. Similarly, microfossils 

from the two extinction horizons show different patterns. At the F-F boundary the abundances of 

the algal cyst Tasmanites are elevated, while the fossils recovered from the upper Woodford 

Shale by this study and previous authors show an increase in diversity of brown-algae-type 

microfossils and low diversity benthic faunas dominated by scolecodonts and agglutinated 

foraminifera. These combined microfossil data and biomarker data suggest a top-down mode of 

anoxia maintenance during F-F extinctions and a period oxygen-poor waters caused by 

upwelling during the Hangenburg event. Thus, unlike previous scenarios explaining the F-F and 

D-C extinctions as a result of a single cause these data suggest that the extinctions are likely 

results of different processes. Fourier transform infrared (FTIR) microspectroscopy is a chemical 



4 

 

characterization technique that can be applied to fossils. In this study, select scolecodont and 

conodont microfossils from the Woodford Shale were analyzed with FTIR microspectroscopy to 

reveal different characteristic chemical structure and composition. Conodont FTIR spectra show 

a predominance of phosphate and carbonate stretching modes with minor aliphatic, olefinic, and 

carbonyl stretching modes. Scolecodont FTIR spectra are dominated by organic stretching and 

deformation modes with prominent aliphatic, olefinic, carbonyl, and ether bands with little 

evidence for inorganic minerals, and also show similarities to modern chitin, albeit with a noted 

absence of amide bonds. Considering that not a single analysis of extant polychaete jaws has 

returned significant values of chitin, scolecodont FTIR spectra are probably representative of a 

scleroprotein material. These data reveal that scolecodont elements can easily be distinguished 

from conodont elements with FTIR microspectroscopy as scolecodonts are often nearly to 

completely organic and conodont spectra display weak aliphatic carbon bands, and are 

dominated by a strong phosphate and carbonate stretching and overtone bands. This provides 

future fossil workers with a viable method to independently identify enigmatic tooth like 

microfossils that cannot be confidently assigned to either scolecodont or conodont groups by 

morphology alone particularly in basal assemblages. 
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Chapter 1: Introduction 

 

The Extinction Events 

 

Two significant extinction events occurred during the Late Devonian. The first, the 

Frasnian-Famennian (F-F) boundary (also known as the upper Kellwasser) extinction event, is 

heralded as one of the five largest mass extinctions of the Phanerozoic (Raup and Sepkoski, 

1982), while the second, the Hangenburg event, is thought to have reached its climax slightly 

before the Devonian-Carboniferous (D-C) boundary (Caplan and Bustin, 1999). Both of these 

extinctions were almost exclusively restricted to the marine realm, although not all animal 

extinctions occurred simultaneously. In each extinction interval, conodonts, trilobites and 

ammonites were sharply reduced where others like corals, brachiopods, foraminifera and 

ostrocods were gradually reduced (Caplan and Bustin, 1999). The main phase of the Hangenburg 

event is considered to be 300 k.y. to 800 k.y. before the D-C boundary (Caplan and Bustin, 

1999), and the F-F extinctions (Lower and Upper Kellwasser) are thought to take place over 

approximately 2 upper Frasnian conodont zones (rhenana and linguiformis as in Bond and 

Wignall, 2008). The duration of Devonian conodont zones are considered to be on average 0.5 

m.y. (Johnson et al., 1985 and references therein). This suggests that the various extinctions 

before and at the F-F boundary took place over roughly 1 m.y.  

 

The cause(s) of these mass extinctions are uncertain, and have been variously attributed 

to extraterrestrial impacts (McLaren, 1985; Claeys et al., 1992), climate change and sea level rise 
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(Bond and Wignall, 2008), and eutrophication and anoxia (Murphy et al., 2000; Yiming et al., 

2002). Impacts have been used to explain various mass extinctions including the Permian-

Triassic extinction (e.g, Kaiho et al, 2001) and the Cretaceous-Tertiary extinction (e.g. Alvarez, 

1980). While there is not a global Ir anomaly across the F-F boundary, as would be consistent 

with an asteroid impact (McGhee and Gilmore, 1984, McGhee et al., 1986), Ir anomalies have 

been found in the Late Devonian of isolated basins.  For instance, McLaren (1985) described an 

Ir anomaly from iron-oxide-enriched stromatolite beds in the Late Devonian of the Canning 

Basin, Australia, where the precise position of the F-F boundary was uncertain (Playford et al., 

1984; McLaren, 1985). However, this anomaly seems to have no other time equivalents around 

the world, suggesting that it was formed by a smaller event with local effects (McGhee and 

Gilmore, 1984, McGhee et al., 1986). Additionally, beds of stromatolites are usually thought to 

be representative of an opportunistic-post-disaster flora (Whalen et al., 2002). If this is true the 

alleged impact would have occurred well after the full force of the extinction.  Furthermore, 

while microtektites have been recovered from Late Devonian rocks in Belgium (Claeys et al., 

1992), they were found in a thin layer 7 m above the F-F boundary.  Thus, it is unlikely that the 

associated impact would be the cause of the first series of Late Devonian extinctions.  

Within the Hangenburg event, there are globally correlated Ir anomalies, but as these 

occur at sharp redox change horizons, they have been ascribed to geochemical processes instead 

of extraterrestrial influence (Wang and Attrep, 1993).   While it has been proposed that the mode 

of extinction in the Late Devonian could be credited to multiple impacts of asteroids or comets 

spaced out over several million years (e.g. McGhee, 1994), the idea was mainly based on the 

protracted nature of the late Devonian mass extinctions and the general cooling trend towards the 

end of the period. The idea of impact as the cause of the Late Devonian extinctions was 
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ultimately abandoned owing to lack of physical evidence of impact such as shocked quartz and 

microtektites at time-significant stratigraphic horizons (McGhee, 2001).  

Currently, most believe that the Late Devonian extinctions were caused by the movement 

of anoxic water from the deep pelagic environment to the shelf, although the proposed causes of 

this movement differ. Some think that increased ocean mixing and equatorial cooling caused 

upwelling as a result of severe thermal gradients between high and low latitudes (e.g. Parrish and 

Curtis, 1982; Pedersen and Calvert, 1990).  Devonian-Carboniferous diamictites in Africa are 

thought by some to be evidence for global cooling (Caputo and Crowell, 1985; Streel, 1986; 

Veevers and Powell, 1987). Oxygen isotope evidence also suggests cooling events at the F-F 

boundary at low latitudes (Joachimski and Buggisch, 2002). However, it is known that salinity 

can affect oxygen isotope fractionation (Lecuyer et al., 2009), thus it is unclear as to whether 

these oxygen isotope values are reflecting changes in surface water temperature, salinity, or a 

combination of both parameters. Additional evidence for global cooling in the Late Devonian 

also include positive shifts in 
13

C values, and are cited as evidence for increased ocean mixing, 

since positive excursions may indicate increased light carbon sequestration in buried organic 

matter (Joachimski et al., 2002). Others speculate that the spread of anoxic water was due to 

increased in weathering brought on by the evolution of large-rooting plants and pedogenesis, that 

may have increased the total nutrient load to the sea and ocean basins, resulting in nutrification 

and the development of long term anoxia (Algeo et al., 1995, Algeo et al, 1998; Copper, 2002; 

Turgeon et al., 2007,). 
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Biomarkers 

 

Part of the reason that the mechanism(s) of eutrophication is uncertain is that the response 

of the entire biosphere to the extinctions is not well constrained.  While the fossil record 

preserves the macro- and microfaunal response, it does not preserve intact microbial organisms.  

However, the broad effect of these extinctions on the entire biosphere can be ascertained by 

examining the lipid biomarker record preserved across these extinction horizons in conjunction 

with the fossil record.   

Biomarkers are membrane lipids of organisms and can be preserved in rocks billions of 

years old (e.g. Olcott et al., 2005, 2006; Olcott, 2007; Olcott Marshall et al., 2009). Certain 

biomarkers contain specific information regarding taxonomic affinities of organic-matter 

contributors and occasionally source age (e.g., Moldowan et al., 1985). Chain lengths of n-

alkanes which are preserved fatty acids made by bacteria and eukaryotes, bacterial hopane 

polyols, and steranes, preserved eukaryotic steroids, are commonly used to delineate organic 

matter source (terrestrial organic matter as opposed to marine organic matter), as different groups 

of organisms produce different chain lengths within these classes of compounds (e.g., Moldowan 

et al., 1986).  

Biomarkers are extractable organic matter preserved in rocks that can be removed for 

analysis. Once samples have been reacted with organic solvents the resulting mixture can be 

analyzed with a gas chromatogram/mass spectrometer (GC/MS). This instrument first separates 

compounds by mass in the GC and then fragments them by electron bombardment in the MS. As 

biomarkers fragment in known and characteristic ways (e.g. Gallegos, 1971; see Figure 1), it is 

possible to identify the chemical structures present in the rock by analyzing their retention time 
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in the GC as well as their fragmentation pattern in the MS. The GC/MS also allows the 

identification of different suites of biomarkers by looking for their characteristic ion-mass to ion-

charge (m/z) number. For instance terpanes are explored for using the mass ion 191 (m/z 191). 

Almost all terpanes produce a 191 mass fragment as they break up in the mass spectrometer 

(Figure 1).  

Terpanes (m/z 191), are thought to be produced mainly by the membrane lipids of 

prokaryotic organisms (Ourisson et al., 1982). Tricylic terpanes (C19 to C54) are compounds that 

are biodegradable and thermally resistant, and are variously sourced to prokaryotes and 

eukaryotes like terrestrial plants as well as marine algae such as Tasmanites (Barnes and Barnes, 

1983; Ourisson et al., 1982; Volkman et al., 1989; Azevedo et al., 1992; Dutta et al., 2006). 

Chemical precursors of tricyclic terpanes <C30 are thought to be regular C30 isoprenoids (Aquino 

Neto et al., 1983), and C19-C20 tricyclic terpanes are thought to be derived from terrestrial plant 

acids, diterpenoids (Barnes and Barnes, 1983).  

Hopanes are pentacylic triterpanes that are derived from the cell walls of prokaryotic 

organisms (Ourisson et al., 1987).  Hopanes range in chain length from C27 to C35 molecules and 

are divided into normal hopanes (C27-C30) and extended hopanes (C31-C35), homohopanes (Peters 

et al., 2005 p.566). Gammacerane, a C30 triterpane, is frequently used as an indicator of water 

column stratification (e.g. Sinninghe Damsté et al. 1995). It is currently believed that 

gammacerane is formed by the reduction of tetrahymanol, a lipid that replaces steroids in the 

membranes of select protozoa and potentially other organisms (e.g. Ourisson et al., 1987). 

Tetrahymanol is common in sediments of stratified environments like the Santa Barbara basin, 

Santa Monica Basin, and the Peru upwelling region (Peters et al., 2005, p. 576). The organisms 

that are thought to produce the bulk of tetrahymanol are eukaryotic ciliates that prey upon 
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prokaryotic organisms living within the interface between oxidizing and reducing zones in 

stratified water columns (Peters et al., 2005, p. 576).  

Within Devonian rocks, derivatives of eukaryote-cell-wall steroids called steranes (m/z 

217), are represented by C27, C28, and C29 molecules. It is generally thought that in marine 

settings red algae are the primary producers of C27 steranes, brown algae (modern algae) are the 

primary producers of C28 steranes, and primitive-green algae are the primary producers of C29 

steranes (e.g. Schwark and Empt, 2006). Thus C28/C29 sterane ratio can provide information on 

relative proportions of modern brown algae to primitive green algae during deposition and 

subsequently environment type.    

Ratios of chain lengths and/or carbon numbers within compound groups and across 

compound groups can be useful in determining relative input from various source organisms, and 

consequently, biomarkers and biomarker ratios can also be used to establish depositional 

conditions. For example isorenieratane, a carotenoid, has been found to be a reliable indicator of 

photic-zone anoxia (e.g. Koopmans et al., 1996a; Summons et al., 2006). Also pristane and 

phytane, diagenetic derivatives of the phytal chain of chlorophyll a, can be used to delineate 

reducing conditions in depositional environments (e.g. Li, 1999). Pristane and phytane can also 

be derived from bacteriochlorophyll a and b in purple sulfur bacteria (e.g. Powell and McKirdy, 

1973). Pristane and phytane are both isoprenoids of C19 and C20 carbon numbers respectively, 

and the proportions of these molecules reflect the reducing conditions of host sediment. Anoxic 

conditions promote the conversion of the cleavage product of the chlorophyll‘s phytal side chain 

phytol, to phytane, and oxidizing conditions will favor the production of pristane from phytol 

(Peters et al., 2005, p. 499). Thus, pristane to phytane ratios less than 1 indicate anoxic 

conditions, and ratios greater than 1 indicate oxic conditions.  
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Chain length can also be a function of thermal maturity (e.g., Shi et al., 1982). However, 

carbon preference values (CPI) do not necessarily indicate a rock as being mature or immature as 

organic matter input also affects chain length (Peters et al., 2005, p.641). Complementary bulk 

geochemical data is required to help discern whether biomarker ratios are reflecting changes in 

source or thermal maturity.      

While there have been a few organic geochemical studies conducted across these 

extinction intervals, they have all been done on relatively shallow, or even near-shore, 

paleoenvironments, and have often been done without stratigraphic control (Copper, 2002; Gong 

et al., 2002, Brown and Kenig, 2004, Hartkopf-Froder et al., 2007).  It would therefore be of 

paleontological, geological and geochemical utility to discuss oriented biomarker data in terms 

of both extinction events and normal marine conditions encompassed by the Woodford Shale. 

Here we present results of an investigation of deep-water sections of the Woodford Shale, a unit 

that spans both extinctions horizons. By observing a variety of biomarker, fossil, and 

petrographic parameters in the pelagic environment preserved by the Woodford Shale, we are 

able to test the hypotheses regarding ocean-upwelling and water-column anoxia in the Late 

Devonian.  

 

Chemotaxonomy 

 

Due to morphological conservation, and lack of similar extant taxa, affinities of 

microfossils can sometimes be ambiguous (Martin, 1993). Chemical characterization techniques 

such as Fourier transform infrared microspectroscopy (FTIR microspectroscopy) have been used 

to establish biological affinity of both modern and microfossil biopolymers, indirectly 
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establishing their biological affinity (e.g. Kokinos et al., 1998; Gelin et al., 1999; Arouri et al., 

2000; Talyzina et al., 2000; Versteegh and Blokker, 2004; Marshall et al., 2005).                    

Chemotaxonomy is often performed on fossil plants (e.g. Swain et al., 1967a; Swain et al., 

1967b; Swain et al., 1968 and references therein; Niklas and Chaloner, 1976; Niklas 1976a, 

1976b; Tegelaar et al., 1991; Lyons et al., 1995; Zodrow et al., 2000; Zodrow and Mastalerz, 

2001; Zodrow et al., 2002; D‘Angelo et al., 2010) and fossil algae, and acritarchs (e.g. Arouri et 

al., 2000; Talyzina et al., 2000; Marshall et al., 2005; Javaux and Marshall, 2006), fossils of 

unknown affinity without sufficient unique morphological characteristics to allow them to be 

classified by traditional means  (e.g. Martin, 1993). While mass spectrometry has been applied to 

assess the molecular components of animal fossils (Briggs et al., 2000; Gupta et al., 2008), 

chemical techniques have not been used to differentiate between unknown animal fossils. Here, 

the utility of chemotaxonomic analyses to discriminate between animal fossils of similar 

morphology is shown, by comparing scolecodont elements to a conodont. 

In the early days of chemotaxonomy, reported chemical contents of fossils were restricted 

to carbohydrate molecules such as glucoses and pentoses (Swain et al., 1967a; Swain et al., 

1967b; Swain et al., 1968 and references therein). One of the first modern attempts at 

chemotaxonomic analysis was done by Niklas and Chaloner (1976a) where X-ray diffraction, 

chemical extraction and gas chromatography were used to analyze the structure and composition 

of a variety of different fossil and extant organisms ranging from microscopic acritarchs to fossil 

plant cuticle and modern algae like Botryococcus. Niklas and Chaloner (1976) were able to 

divide their fossils into groups of plant like, animal like and algae like affinity on the basis of 

nitrogenous compounds, abundance of lignin and/or cutin, and waxes by the presence of hydroxy 

and monohydroxy acids. Niklas also used a similar suite of methods on two morphologically 
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distinct Devonian thalloid plants Parka decipens and Prototaxites, and was able to identify 

derivatives of cellulose in Parka decipens and cutin and suberin in Prototaxites effectively 

separating them from an algal affinity and demonstrating their chemical adaptations to a 

terrestrial desiccating environment (Niklas, 1976a; 1976b).  

Curie point pyrolysis-gas chromatography-mass spectroscopy (py-GC/MS) was used by 

Tegelaar et al. (1991) to analyze the distribution of cutin and cutan in fossil gymnosperms, but it 

was not until Lyons et al. (1995) that FTIR microspectroscopy was applied to supplement 

analysis of fossil plant cuticles. Lyons et al. (1995) ultimately found that the cuticle of the fossil 

gymnosperm species Neuropteris and Alethopteris could be distinguished by looking at the 1750 

to 800 cm
-1

 region of FTIR microspectroscopy spectra. Cuticular material in particular has been 

an object of focus with FTIR microspectroscopy in fossil plant chemotaxonomy as FTIR 

microspectroscopy can be used to analyze material in situ and cuticle is reportedly difficult to 

separate from a coal matrix (Lyons et al., 1995; Zodrow et al., 2000; Zodrow and Mastalerz, 

2001; Zodrow et al., 2002; D‘Angelo et al., 2010).  

Biopolymer characterization of modern algal cysts and fossil acritarchs has been 

attempted by authors using a variety of chemical characterization methods including FTIR 

microspectroscopy (e.g. Kokinos et al., 1998; Gelin et al., 1999; Arouri et al., 2000; Talyzina et 

al., 2000; Versteegh and Blokker, 2004; Marshall et al., 2005). Kokinos et al. (1998) 

characterized the resting cysts of the modern dinoflagellate Lingulodinium polyedrum  through 

chemical extraction, saponification and acid hydrolysis as well as direct temperature resolved 

mass spectrometry, FTIR microspectroscopy and py-GC/MS; it was found that the cyst 

composition was typified by highly bound aromatic rings making it structurally distinct from 

sporopollinin or aliphatic algaenan, molecules that had been previously thought to be the main 
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biopolymers in dinoflagellate cysts. Similarly, Gelin et al. (1999) analyzed a suite of modern 

marine micro-algae through chemical extraction and acid hydrolysis, py-GC/MS, and 

transmission electron microscopy (TEM) for the presence of algaenan type molecules. Gelin et 

al. (1999) found that although nearly every class of micro-algae that was analyzed contained one 

or two species that produces aliphatic algaenan like molecules, the Eustigmatophyceae (non-

motile, unicellular, coccoid, green colored algae lacking chlorophyll c) produced algaenans from 

every species analyzed. Comparative studies on fossil Neoproterozoic and Cambrian acritarchs 

have discovered that through complementary use of techniques described above, problematic 

organic walled microfossils can be demonstrated to have affinity with green algae or 

dinoflagellates based on composition and aromaticity of cell wall biopolymers (Arouri et al., 

2000; Talyzina et al, 2000; Marshall et al., 2005).  Obviously, the taxonomic resolution 

regarding chemical techniques applied to acritarchs is very broad. However, even general 

information on class level affinity is very helpful in quelling controversies in the taxonomy of 

problematic fossil groups, and as knowledge of the varieties of algaenans and dinosporin in 

modern algae grows and is linked to fossil equivalents, taxonomic assignments will become 

more specific (Versteegh and Blokker, 2004).    

Conodonts are tooth-like microfossils that range from Late Cambrian to Late Triassic, 

and although most conodont workers accept them as primitive members of chordates, they have 

been attributed to chaetognaths, primitive vertebrates, and agnathan fish (Marshall et al., 2001). 

Within conodonts are protoconodonts, paraconodonts and euconodonts with protoconodonts and 

paraconodonts being ancestral to true derived conodonts, the euconodonts (Donoghue et al., 

2000). While euconodonts are almost exclusively composed of apatite, protoconodonts and 

paraconodonts are much more organic rich with varying degrees of phosphate mineral 
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contributions (Donoghue et al., 2000).  As a single conodont-bearing animal contains multiple 

elements are arranged in what is presumed to be a feeding apparatus, multi-element taxonomy is 

the preferred method of classifying conodonts. However, very few basal multi-element genera 

have been established with the majority of multi-element groups being highly derived 

euconodonts (Donoghue et al., 2000). 

  While bearing superficial similarity to conodonts, scolecodonts are thought to be the 

fossil jaw parts of polychaete annelid worms and range from early Middle Ordovician to the 

present (e.g., Eller, 1936; Jansonius and Craig, 1971; Eriksson and Bergman, 2003). As with 

conodonts, within a single polychaete animal, multiple scolecodont elements make up a complete 

jaw apparatus (Jansonius and Craig, 1971; Szaniawski and Wrona, 1973). However, unlike 

conodonts, the relationships of scolecodonts exist in a parataxonomic framework with both 

multi-element and dispersed element systems of nomenclature (Jansonius and Craig, 1971; 

Eriksson and Bergman, 1998). This hinders the resolution of scolecodont taxonomy, and often 

prevents the confident assignment of dispersed scolecodont elements to a single multi-element 

genera and species.   

Classically, scolecodonts have been distinguished from conodonts on the basis of 

morphological character, specifically the presence of a muscle cavity in scolecodont elements, 

termed myocoele (Jansonius and Craig, 1971). However, while the two types of fossils are from 

different organisms, it can often be difficult to classify a fossil as one or the other, especially if 

morphology is poorly preserved, or the morphological characters that are used to separate 

conodonts from scolecodonts are not present. This is especially true in Cambrian and Ordovician 

systems during early stages of conodont evolution where fully mineralized tissues have not been 

developed. However, their chemical composition is distinct from one another, as modern 
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polychaete worms synthesize their jaw parts from composites of scleroprotein and either 

carbonate and phosphate (e.g., Voss-Foucart, 1973; Colbath, 1987; Paxton, 2005), or 

scleroprotein enriched in trace metals and halogen elements (Colbath, 1986; Birkedal et al., 

2006; Dutta et al., 2010) while conodont elements are almost exclusively composed of apatite 

and carbonate minerals with minor amount of organic matter (Bustin et al., 1992; Mastalerz et 

al., 1992; Marshall et al., 1999; Marshall et al., 2001). 

Here a comparison of FTIR microspectroscopy on various scolecodont and conodont 

elements recovered from the Devonian of the Woodford Shale in presented. While scolecodonts 

have previously been distinguished from conodonts strictly by morphology, this is the first time 

that they have been independently differentiated by element chemistry, demonstrating the utility 

of chemotaxonomy in discriminating between morphologically similar paleontological 

specimens. 

 

Previous Chemical Analysis of conodonts and scolecodonts 

 

The chemistry of conodont elements and their behavior as they are thermally matured has 

been evaluated by a variety of authors (Nöth et al., 1991; Bustin et al., 1992; Nöth and Richter, 

1992; Mastalerz et al., 1992; Marshall et al., 1999; Marshall et al., 2001). Nöth et al (1991) found 

that the conodont alteration index (CAI by Epstein et al., 1977; Rejebian et al., 1987) showed a 

strong positive correlation with vitrinite reflectance suggesting that similar organic processes 

contributing to vitrinite reflectance also operate within conodont elements. Bustin et al. (1992) 

and Mastalerz et al. (1992) demonstrated through the use of fluorescence microscopy, py-

GC/MS and GC/MS that conodonts indeed contain small amounts of organic matter (55-1250 
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ppm) and that the amount of organic matter decreases, along with fluorescence under blue and 

ultraviolet light, with increasing thermal maturity. Mastalerz et al. (1992) went on to develop a 

fluorescence scale (CAI 1-4) to evaluate conodont thermal maturity based on this data. Nöth and 

Richter (1992) determined by FTIR microspectroscopy that the color change in conodont 

elements due to thermal maturation is caused by a decrease in carbonization with increasing 

CAI, calling attention to spectroscopic evidence of carbon dioxide presumably derived from 

decomposing carbonate ions within conodont apatite. After Nöth and Richter (1992), studies by 

Marshall and others focused on the organic matter within conodont elements using FTIR micro-

spectroscopy, laser Raman spectroscopy and py-GC/MS, and show that the CAI is sensitive to 

oxidizing conditions and the variety of organic matter types contained within conodont elements 

(Marshall et al., 1999; Marshall et al., 2001). Marshall et al. (2001) also revealed, contrary to 

Nöth and Richter (1992) that the color change in conodont elements associated with thermal 

maturation is due to the migration of carbon and nitrogen compounds to the surface of the 

elements during heating.  

Compared to conodonts, there is lack of attention directed to the chemistry of scolecodont 

elements with only one modern chemical study that applied FTIR microspectroscopy and py-

GC/MS to scolecodonts from the Devonian of Germany, the Ordovician of Ohio, U.S.A., and the 

Silurian of Sweden (Dutta et al., 2010).  Dutta et al. (2010) found that his scolecodont samples 

did not contain signatures of chitin, but contain both aliphatic and aromatic components with a 

noted absence of carbonyl vibrational modes. Dutta also concluded that the kerogen contained 

within these scolecodonts are more akin to terrigenous plant matter, and observed that although 

his scolecodont samples were well preserved in terms of morphology, the primary chemistry of 

the elements had been stripped away by diagenesis. 
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Geological Context  

 

The Arkoma basin is an east-west striking basin in eastern Oklahoma and western 

Arkansas, and the Anadarko basin strikes northwest-southeast and runs through western 

Oklahoma, the panhandle of Texas and into western Kansas and eastern Colorado (Figure 2). 

The Arbuckle Mountains lie between the eastern Anadarko Basin and the western Arkoma basin 

and are composed of two major anticlines, the Hunton-Tishomingo arch and the Arbuckle 

anticline; both of these structures formed during the Pennsylvanian period (Dott, 1934). The 

Hunton-Tishomingo arch is Early Pennsylvanian in age while the Arbuckle anticline formed 

during the Late Pennsylvanian; thus, the Arbuckle Mountains were formed by at least two 

different episodes of uplift (Dott, 1934). These anticlines are significantly modified by brittle 

deformation in the form of thrust faults that offset these anticlines in a south to north 

displacement, roughly perpendicular to the trend of the fold hinge lines (e.g. Dott, 1934; Saxton, 

2010). 

In the Devonian, the Anadarko and Arkoma basins were part of a broad marine shelf 

dominated by carbonate sedimentation in the Early Devonian, and fine-grained siliciclastic 

deposition in the Late Devonian and Early Carboniferous. The Woodford Shale records this latter 

period of sedimentation, and sits unconformably on Lower Devonian and Silurian carbonate 

rocks (Figure 3). The Woodford Shale is a fine-grained siliciclastic system from 30 to over 60 m 

thick, and very organic rich with cyclic chert beds throughout the lower and middle portion of 

the formation (Roberts and Mitterer, 1992).  Cyclic brown, black, and grey mudstone and shale 

beds are a dominant pattern of sedimentation throughout the formation, and the upper Woodford 
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Shale is prominently marked by abundant phosphate nodules (Kirkland et al., 1992). The 

conodont biostratigraphy of the Woodford Shale has been studied in detail by Over (1991), and 

significant time boundaries (F-F, D-C) were established in various measured sections throughout 

south-central Oklahoma including the two measured sections on the Arbuckle uplift used in this 

study (I-35, Classen Lake). The Woodford Shale has a variety of time-equivalent formations 

(e.g. New Albany Shale, Ohio Shale, and Antrim Shale), but its geographically closest time-

equivalent formation is the Chattanooga Shale, a 1.5-15 m thick, carbonaceous, and uniformly-

fissile black to brown shale that is in places underlain by a basal sandstone called the Misener 

sand that sits unconformably above Silurian carbonate rocks (Leatherock and Bass, 1936). In the 

Anadarko Basin, the Woodford Shale is thermally mature to post-mature. The burial history of 

the Arkoma basin is similar in many respects to the Anadarko basin that experienced significant 

erosion (between 2 and 3 kilometers of sediment eroded) of Cenozoic and Mesozoic sediments 

(Lee et al., 1999). One of the first investigations into thermal influence on the Woodford shale 

used vitrinite reflectance to characterize maturity (Cardott and Lambert, 1985).  They found that 

within the Anadarko Basin, the average vitrinite reflectance gradient is 0.02 R0/100 ft. However, 

vitrinite gradients vary with depth, and thus the relationship between depth and vitrinite 

reflectance in the Anadarko Basin is an exponential function. Cardott and Lambert (1985) 

discovered that reflectance values in the deep basin are higher than expected for the current level 

of overburden, and estimated 1515 m of over-burden removal since the early Tertiary. Carter et 

al. (1998) arrived at a similar over burden removal estimate using apatite fission track dating 

with basin modeling utilizing thermal conductivity analysis. Carter et al. (1998) also determined 

that the heat flow in the Anadarko basin generally decreases from north to south and attributed 

this to the difference between basement rock compositions. Heat flow estimates generated by 
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Carter et al. (1998) were refined by Lee and Dehming (1999) but their estimates for total 

overburden removed were essentially equal in magnitude. 

 

There have been a number of biomarker studies of the oils in the Anadarko basin 

attempting to classify them and correlate them back to their source rocks (Philp et al. 1989; 

Burruss and Hatch, 1989; Jones and Philp, 1990; Kirkland et al., 1992; Comer, 1992). However, 

these studies do not present biomarker data in stratigraphic context. Additionally, these data are 

most often collected with the goal of oil-to-source-rock fingerprinting rather than depositional 

environmental interpretation. While these studies demonstrated that the Woodford Shale is the 

dominant source rock in the Anadarko Basin, little information about changes in Devonian 

paleoenvironment were recovered. For example, Wang et al., (2001) demonstrated that due to 

lack of waxy material in the Woodford Shale, this unit is most likely the product of a deep, mid-

sea environment where organic influx was dominated by unspecified algae, plankton and 

bacteria. Additionally, these biomarker data are without orientation to the F-F or the D-C 

boundaries.  

 

Chapter 2: Methods 

 

Sample collection 

 

Two different types of samples, field and core, were collected for this study.   

Western Arkoma Basin core (Ranch 2-20, Sec. 20 11N 15E; drilled by Chesapeake Energy) at 

the Chesapeake Energy core lab facility Oklahoma City, OK, and two outcrop sections were 
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measured and collected for geochemical and paleontologic analyses (Figure 2).  One outcrop 

section, in Carter county, OK along Interstate 35 (I-35) between mile markers 43 and 44 in the 

southern Arbuckle Mountains, was taken at 34
o
 21' 14.9" N; 97

o
 8' 56.4"W on the west side of 

the highway, where 26 m of the Upper Woodford Shale was described and collected.  The 

second outcrop section comprised the Lower Woodford Shale and was collected in Murray 

county, OK from a YMCA campground in the northern Arbuckle Mountains at 34
o
 27' 44"N; 97

o
 

9' 8.23"W; this section is exposed in a valley incised by the primary outlet stream from Classen 

Lake, where 44 m of the Woodford Shale were described and collected. 

 

Microfossil preparation 

 

Fossils were obtained by crushing 500 g to 1 kg samples to an average size of 3 cm and 

acid digested in 20% acetic acid, hydrofluoric acid, bleach or mineral spirit solutions depending 

on lithology and degree of induration. Residues were sieved and the size fractions are picked 

with a fine-tipped paintbrush under a dissecting microscope. The sieve stack consists of six 

different sizes: 850 µm, 500 µm, 300 µm, 180 µm, 125 µm, and 63 µm. Recovered fossil were 

stored in 5 mL vials immersed in 100% ethanol.  

 

Fossil Samples for FTIR micro-spectroscopy 

 

Samples were collected from an outcrop section, in Carter county, OK along Interstate 35 (I-35) 

between mile markers 43 and 44 in the southern Arbuckle Mountains, taken at 34
o
 21' 14.9" N; 

97
o
 8' 56.4"W on the west side of the highway (Figure 4). Core samples from Burleson 1-1 (Sec. 
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1 5N 12E) were collected from the Chesapeake core lab, Oklahoma City, OK. Fossils were 

obtained by crushing 500 g to 1 kg samples to an average size of 3 cm and acid digesting in 20% 

acetic acid, hydrofluoric acid, bleach or mineral spirit solutions depending on lithology and 

degree of induration. Residues were then sieved and the size fractions picked with a fine-tipped 

paintbrush under a dissecting microscope. The sieve stack consists of six different sizes: 850 µm, 

500 µm, 300 µm, 180 µm, 125 µm, and 63 µm. Recovered fossils were stored in 5 mL vials 

immersed in 100% ethanol.  

Crushed scolecodonts were analyzed using an IlluminatIR II Smiths Detection coupled to 

a Leica DM 2500 microscope with an AROx15 lense of numerical aperture 0.88 mm. 

Microfossils were pulverized with an agate motor and pestle, and the resulting powder smeared 

across IR transparent glass slides.  Spectra were collected at 256 to 2000 scans over a spectral 

region from 4000-650 cm
-1

 at 4 cm
-1

 spectral resolution. Crushed scolecodont samples were also 

analyzed by a FTIR/ attenuated total reflection (ATR) Perkin Elmer Spectrum 400 FTIR 

spectrometer with a NBMCT liquid nitrogen cooled detector. The ATR accessory used was a 

pike heated diamond GladiATR. 2000 scans were collected over a spectral region 4000-650 cm
-1

 

with a 4 cm
-1

 spectral resolution.  

 

 

Biomarker Analysis 

 

For biomarker extraction, 15 to 30 g samples of rock were crushed to a particle size of 3 

cm then vortexed in 25 ml of 9:1 dichloromethane (DCM) to methanol. The solvent was 

decanted and stored, the samples dried then crushed until the particles were on average <1cm. 



26 

 

The samples were vortexed in 25 ml of 9:1 DCM to methanol and the solvent decanted and 

stored. The samples were dried, crushed to a powder and 15 to 30 g  were loaded into teflon 

tubes with 30 ml of 9:1 DCM: methanol solution and placed in a Microwave Assisted Reaction 

System (MARS) for 15 min at 100°C. Residues were filtered, and then blown down to dryness 

with N2 (g) and brought up with 20 ml of pentane. Samples were allowed to sit overnight at 0°C to 

precipitate asphaltenes. Pentane solutions were decanted and centrifuged for 5 min at 3000 rpm. 

Pentane was decanted and evaporated under N2 (g), and the samples brought up in 3 ml of DCM. 

Samples were then allowed to sit with activated and cleaned copper beads for 2-3 h to remove 

sulfur after which they were decanted, blown down with N2 (g)and roughly 1 ml of extract 

removed and placed in a pipette filled ¾ full of deactivated silica (2% DI) flushed with hexane. 

The saturated fraction of the extract was obtained by passing 0.5 ml of hexane through the 

pipette. The unsaturated fraction of the extract was acquired by passing 3.25 ml of a 4:1 hexane: 

DCM solution the pipette, and finally the aromatic fraction by passing roughly 3 ml of a 7:3 

DCM to methanol solution through the pipette.1.5 ml of each respective fraction were decanted 

into separate GC (gas chromatography) vials and blown down to 0.5 ml. These were run on the 

GCMS (Trace GC Ultra Thermo Scientific, DSQ II Thermo Scientific) and injected by auto 

sampler (AI/AS 3000) at 40°C and ramped to 130°C at 20°C/min then ramped to 320°C at 

5°C/min and held at 320°C for 3 min. The total run time was 45 min, and the carrier gas helium.  

 

Bulk Geochemistry and Thin sections 

 

Bulk geochemistry was acquired from Weatherford Laboratories and thin sections were 

acquired from Burnham Petrographics. Weatherford Laboratories provided total organic carbon 
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(TOC), pyrolysis and hydrogen index and oxygen index measurements. Bulk geochemical data 

was processed with respect to kerogen typing, thermal maturity and oil generation potential for 

thirty samples. Fifteen standard thin sections were prepared by Burnham Petrographics and 

stained for carbonate. The thin sections were analyzed for textural properties, fossil content 

under an Olympus BX51 microscope.  

 

 

Chapter 3: Results 

  

Measured Sections 

 

Classen Lake YMCA Campground 

 

The entire thickness measured in the Classen Lake section is 44 m. The base of the 

section starts with the contact between the Henryhouse Formation and the Woodford Shale (see 

Figures 5-6). The first 10 m of the shale are heavily weathered due the effects of a flowing 

stream, and consequently sample quality is low. Bleaching diminishes significantly after the 10 

m and organic matter is preserved. The Woodford Shale is alternately bedded with black and 

brown mudrock (4 to 6 cm) and interbedded with very thin beds of fissile black shale. Through 

the middle of the section (13-32m) there is an appreciable amount of chert in the form of thin 

beds and bedsets. The uppermost (32-40 m) portion of the section does not contain these chert 

interbeds. The location of the F-F (between the 11
th
 and 12

th
 meter) boundary is taken from Over 

(1991). 
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I-35 Section 

 

The base of the section is composed of alternating black and brown mudrock bedded at 4 

to 6 cm with scattered very thin, fissile beds of black shale (Figures 5-6). From 4.5 to 7.3 m the 

bedding in the Woodford Shale thins to approximately 3 to 4 cm. Between this bedset and 17.8 

m the bedding thickens back to the previous 4 to 6 cm, and the rock is siliceous. The uppermost 

Woodford Shale is represented by thinly bedded black mudrock and shale, brown mudrock, chert 

as well as syndepositional phosphate nodules. A single 15 cm carbonaceous bed of limestone 

was noted at 22.2 m. The measured section terminates with the contact between the Woodford 

shale and the overlying Sycamore Formation. The location of the D-C boundary (22
nd

 meter of 

the I-35 Section) is taken from Over (1991).  

 

 

Ranch 2-20 

 

The base of the Ranch 2-20 core is thinly bedded mudrock with framboidal pyrite (Figure 

7). Intermittent beds display wavy lamination that may indicate turbidites. Benthic 

macroinvertebrates are represented by brachiopod and gastropod tests.  A 0.9 m carbonaceous 

limestone bed is present directly above a bedset of black shale displaying wavy lamination. 

Overlying the limestone is about 3.0 m of fossiliferous shale and mudrock with intermittent thin 

cherty beds. The core is disrupted between 2898.1‘ (878.2 m) MD (measured depth) and 2869.0‘ 

(869.4 m) MD. The shale at 2869.0‘ (869.4 m) is very finely bedded with wavy lamination, and 
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at 2864.0‘ (867.9 m) brachiopod and gastropod shells persist for 4.3 m. The section terminates 

with thinly bedded black mudrock.    

 

Petrology and Fossils 

 

Arbuckle Mountains 

 

In the lower Woodford Shale there is very poor preservation of micro-scale lamination. 

Compressed Tasmanites cysts and agglutinated foraminifera are the most common fossils 

(Figure 8a). Tasmanites cysts are flattened by compaction where they have not been internally 

mineralized with either silica or pyrite (Figure 8b). Non-compacted Tasmanites cysts have 

conformable bedding surrounding them indicating syn-depositional mineralization. Silica 

mineralization is the dominant mode of infill for the cysts, with pyrite mineralization accounting 

for less than 30% of total infill cases.  

Agglutinated foraminifera are preserved as multi-chambered tests (Figure 8b); although 

-silica-silt particles (Schieber, 2009). 

Framboidal pyrite is present in almost all the samples and constitutes roughly 3 to 5% of the total 

rock volume throughout the section. Silt sized grains and sand sized grains of silica are 

interpreted as sediment transported by normal marine currents, as laminations indicating 

turbidites are not observed. However, some of these grains are excised silica mineralization from 

Tasmanites cysts (Schieber, 1996). Fine grained to framboidal pyrite is usually found in very thin 

grouping throughout the rock (Figure 8c). Dolomite was also found in the upper Woodford shale 

as it was by previous authors (e.g. Kirkland et al., 1992) (Figure 8d). In the upper Woodford 
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Shale, phosphate nodules have little internal structure but contain foraminiferal tests, and other 

small fragmentary shell and spore material (see Appendix II).   

The microfaunal assemblage is dominated by Tasmanites cysts. Recovered conodonts are 

sparse, and in general, quality conodont material is rare in the Woodford Shale due to acidic 

weathering conditions (Over, 1991). For example, due to conodont dissolution, Over (1991) 

acquired many of his specimens as casts from bedding plane molds. Scolecodonts, the mouth-

parts of polychaete worms, were recovered from the upper Woodford Shale and most were 

assigned to the family Nercidae under the genera Pronerietes and Anisocerasites. Thin sections 

have revealed agglutinated foraminifera as another component of the benthic community, and 

pelagic foraminifera are preserved in a sectioned phosphate nodule in the upper Woodford shale 

at I-35. 

 

Western Arkoma Basin  

 

Burrowing, compaction and thermal alteration have removed much of the primary 

lamination in these more deeply buried rocks. Microscale laminations are rare in thin sections, 

and are dominated by organic-rich, clay and mud matrix that surrounds silica spheres, silt, sand 

grains and fossils. There is less detectable pyrite through transmitted light than in the Arbuckle 

Mountain samples, and framboidal pyrite can be detected through the use of reflected light.  

Shells are abundant in certain samples, and brachiopod and gastropod fragments 

dominate this material (Figure 9a,d). Also, compressed Tasmanites cysts and foraminifera are 

abundant in most samples (Figure 9a). Tasmanites cysts that are not in-filled with either pyrite or 

silica are compressed; silica in-fill predominates in Tasmanites cysts. Perfectly preserved multi-



31 

 

chambered foraminifera are not uncommon (Figure 9b). Thin quartz and calcite veins are present 

both in macro-scale and on the micro-scale.  As in certain horizons in the Arbuckle Mountain 

sections, silt-sized and sand-sized dolomite crystals are present (Figure 9d). 

 

FTIR microspectroscopy 

 

Scolecodont elements analyzed belong to both Pronereites, and Anisocerasites (Figure 10 

a-b and c-d).  FTIR spectra collected from the crushed scolecodont elements display a large 

broad band centered at 3400 cm
-1

 assigned to OH, abundant and strong aliphatic carbon-

hydrogen (C-Hx) modes (νasCH2 at 2943 cm
-1

, νsCH2 at 2870 cm
-1

, δCH3+CH2 at 1430, 1378, 

1337 and 1236 cm
-1

 and 1350 cm
-1

) and poorly defined to weak carbonyl (C=O) and 

aromatic/olefinic (C=C) stretching modes at 1720 and 1600 cm
-1

 respectively (Figure 11). These 

spectra also display strong bands between 1132-1005 cm
-1

 due to ether (C-O-C) stretching 

modes and weak δCH aromatic out of plane modes at 908, 880, 808, 750,  and 666 cm
-1

 (Figure 

11). FTIR spectra collected from a whole conodont ramiform element display weak aliphatic 

carbon-hydrogen (C-Hx) modes (Figure 11).  

The dominant bands in the conodont spectra are the two phosphate overtone vibrational 

modes (213) at 2080 and 2000 cm
-1

 and the broad strong phosphate stretching mode from 1100 

to 1000 cm
-1

 (Figure 11). Conodont spectra also display weak aliphatic carbon-hydrogen (C-Hx) 

modes at 2960 and 2870 cm
-1 

and an absence of a carbonyl (C=O) stretching mode, a weak 

aromatic/olefinic (C=C) stretching mode at 1650 cm
-1

, and a CO2 vibrational mode at 2340 cm
-1

 

(Figure 11). Carbonate ion (CO2
-3

) 3C-O stretching mode and a 4C-O bending mode are also 

present at 1450-1420 cm
-1

 and 860 cm
-1

 respectively. 
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Microfossil Abundances 

 

Tasmanites cysts were counted in the Classen Lake section. Tasmanites are dense 1-3 m 

above the F-F boundary (10-50 Tasmanites cysts/gram of rock). From the meter 16 and upward 

Tasmanites cyst abundances rarely exceed 5 cysts/g (Figure 5). Data from Urban (1960) show 

that in the lower Woodford Shale microfaunal diversity is largely dominated by Tasmanites, 

while in the upper portions approaching the D-C boundary, plant spores and brown algae cysts 

constitute significant proportions of diversity (Figure 12). 

 

Bulk Geochemistry 

 

Arbuckle Mountains 

 

The organic matter within the majority of Arbuckle samples is characterized by hydrogen 

indexes between 300 mg HC/g TOC and 600 mg HC/g TOC and pyrolysis T-max between 

415°Cand 435°C as type 2 kerogen (Figure 13).Other samples have hydrogen indexes between 0 

mg HC/g TOC and 100 mg HC/g TOC, and these anomalous values are due to heavy weathering 

and bleaching of organic matter. Low T-max values and low oxygen indexes suggest immaturity 

to low maturity (e.g. Tissot et al., 1974). The burial history of the Anadarko and Arkoma Basins 

account for the thermal alteration of the outcrop samples as Carboniferous sedimentation buried 
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these Devonian sediments before they were uplifted in the Late Pennsylvanian by the Ouachita 

orogeny (Lee and Dehming, 1999). 

 

Western Arkoma Basin 

 

Organic matter of the Woodford Shale in the western Arkoma Basin is of high thermal 

maturity. The majority of the Ranch 2-20 section falls in the wet gas zone (late oil window). The 

Ranch 2-20 organic matter seems to belong to the type 2 kerogen, like the Arbuckle samples, 

although it is a more tenuous correlation since they are much more mature than the Arbuckle 

samples (Figure 13).  

 

 

Biomarkers 

 

n-alkanes in the Woodford Shale at both the Classen Lake measured section and the I-35 

measured section in general display a very slight odd-number-carbon-chain preference with 

carbon preference index (CPI) values ranging between 0.98-1.20 (Figure 5,Table 1). The 

exception to this is the Classen Lake samples (11 and 12) at and above the F-F boundary, where 

the predominance of the odd number carbons decreases (Figure 5, Table 1). Since the Woodford 

Shale has low n-alkane carbon chain lengths (C14-C23), CPI was calculated by dividing the total 

peak area of C15-C23 odd n-alkanes by total peak area of C14-C22 even n-alkanes. CPI in the I-35 

section shows a very slight increase from the base of the section to the top; in general 

calculations are slightly greater than 1 (Figure 5, Table 1).  
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Pristane/phytane ratio values also fluctuate within the first 4-5 m above the F-F boundary 

(Figure 5, Table 1). After the 15
th
 meter in the Classen Lake section, Pristane/Phytane ratios are 

all greater than 1 (Figure 5, Table 1). Pristane/phytane ratios in the I-35 section range between 

0.5 and 1.5, and are low at the 9
th
 meter (0.92) in the I-35 section, and above this horizon they 

are close to or over 1 (Figure 5, Table 1). 

Hopanes indentified in the Classen Lake and I-35 range through C29-C32, but the vastly 

dominant carbon chains are C29 and C30. Homohopanes are identifiable in a few of the samples, 

but even when detectable they are in very low abundance. In the Classen Lake section, the 

dominance of C30 terpanes decreases steadily up section, the highest values (0.56) being 1-2 m 

above the F-F boundary (Figure 5, Table 1). C30 terpanes become slightly more prevalent with 

respect to overall terpane content from the base of the I-35 section to the top of the section, while 

C29 hopanes decrease systematically with the rise in C30 hopanes (Figure 5, Table 1). 

Gammacerane, a C30 triterpane, is found in most samples and is in high relative abundance to 

total hopanes at and up to 5 m above the F-F boundary in Classen Lake. In the I-35 section 

gammacerane is high at two horizons: the 2
nd

 m and the 22
nd

 m (Figure 5, Table 1).  

 The diagenetic derivatives of the carotenoid isorenieratane were identified in both the I-

35 and Classen Lake sections. In Classen Lake isorenieratane levels are relatively high 

immediately preceding the F-F boundary, drop precipitously to near zero above the boundary, 

then spike sharply 4 m up section from the F-F boundary (Figure 5, Table 1). After this brief 

spike levels drop and maintain a low abundance through the rest of the Classen Lake section. 

The I-35 section shows high abundance of isorenieratane in the base samples, but decreases 

below detection limit at the 9
th

 m. Isorenieratane is largely absent in the upper 15 m of the I-35 

section expect for a small spike at the 14
th
 m (Figure 5, Table 1). 
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Steranes in the Classen Lake section are represented by C27-C29 steranes. The ratio of C28 

to C29 steranes is moderately high at the Over (1991) F-F boundary (0.30-0.35), low after the 

boundary (0.10-0.25) and then rise to relatively high values (0.44) towards the top of the Classen 

Lake section (Figure 6, Table 1). The relative abundance of C27 steranes to total steranes 

abundance does not vary as markedly as the relative abundances of C28 and C29 steranes (Figure 

6, Table 1). Instead, with the exception of relatively low values at the F-F boundary (0.31), C27 

steranes gradually increase up section relative to the rest of the steranes (0.30-0.50). C28/C29 

sterane ratios start to increase above the 10-11 m marks and around 22-23 m at the D-C 

boundary as delineated by Over (1991) (Figure 6, Table 1). From the base of the I-35 section, C29 

steranes tend to decrease in relative abundance to overall steranes content, and are lowest (0.19) 

1.5 m above the D-C boundary (Figure 6, Table 1). C27 steranes also show a slight decrease in 

relative abundance from the base of the section to the top of the section (Figure 6, Table 1). 

Tricylic terpanes identified in the 191 mass fraction range in carbon number from C23-

C25. Tricylic terpanes are in low abundance compared to 17α-hopanes, but are consistently 

identified through samples. C23/C24 terpane ratios are dominated by C24 chains, with C23 

decreasing markedly (26 to <1) above the F-F boundary (Figure 6, Table 1).  17α-hopanes 

dominate the 191 saturate mass fraction, and tricyclic terpanes decrease relative to 17α-hopanes 

as samples move up section, away from the F-F boundary (Figure 6, Table 1).  Steranes also 

decrease (slowly) with respect to 17α-hopanes away from the F-F boundary, but then increases 

(3.17-4.89) at the 17
th 

measured m (Figure 6, Table 1). Tricyclic terpanes are also indentified in 

I-35 samples and their abundance relative to 17α-hopanes decreases from the base of section 

upward towards the D-C boundary. C23 tricyclic terpane abundance relative to C24 tricyclic 

terpanes fluctuates through the I-35 section; however, the C23/C24 tricyclic terpane ratio displays 
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a positive trend from the base of the I-35 section to the top of this section (Figure 6, Table 1). 

Much like the abundance of tricyclic terpanes to 17α-hopanes, steranes also decrease relative to 

17α-hopanes from the base of the I-35 section to the top of the section (Figure 6, Table 1). 

 

Ranch 2-20 samples did not yield quality biomarker data with the exception of n-alkanes. 

CPI values tend to be close to or over 1 except in one sample (2934) that was taken on the top 

boundary of a shell rich horizon. The pristane/phytane ratios are also close to or over 1 with the 

exception of a single sample (2903) taken slightly above a shell bearing horizon (Figure 7, Table 

1). Pristane/phytane values are well over 1 in samples taken in horizons of the core where 

abundant shelly-benthic macro-fossils and micro-fossils were present (Figure 7, Table 1).  

 

Chapter 4: Discussion 

 

FTIR microspectroscopy of scolecodont and conodont material 

 

FTIR spectra of conodonts are easily distinguishable from those of scolecodonts by a lack 

of δCH3 modes and δCH aromatic out of plane modes, a strong broad phosphate tetrahedral ion 

(PO
4-

3) consisting of a combination of 1P-O and 3P-O stretching modes between 1100 to 1000 

cm
-1

 and a phosphate P-O 21,3 overtone vibrational modes between 2080 and 2000 cm
-1

. Also, 

the carbonate ion (CO2
-3

) 3C-O stretching mode and 4C-O bending modes present at 1450-

1420 cm
-1

 and 860 cm
-1

 in the conodont spectra are not present in scolecodont spectra (Figure 

11). The amount of organic matter in conodont elements is minor, in concurrence with Marshall 

et al. (2001), and apatite minerals are shown to the dominant material present.  
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In contrast to the scolecodont FTIR spectra produced by Dutta et al. (2010), scolecodont FTIR 

spectra in this study do consistently express a carbonyl vibrational mode (νsC=O) at 1720 cm
-1

. 

Aside from the presence of a carbonyl group vibrational mode, spectra of Woodford Shale 

scolecodonts are devoid of a νCH aromatic mode at 3055 cm
-1

 that was found by Dutta et al. 

(2010). Also, the intensities of the νCH aromatic out of plane deformational modes that are well 

defined in the scolecodont spectra of Dutta et al. (2010) are either not present in Woodford Shale 

scolecodont spectra or weakly defined. These differences indicate that the Woodford Shale 

scolecodonts are more dominantly aliphatic, potentially better preserved chemically, and perhaps 

more representative of the primary element chemistry than the fossils used by Dutta et al. (2010). 

The strong aliphatic responses from the scolecodont material suggest that these Woodford Shale 

elements are moderately well preserved chemically and are representative of a chitinous or 

scleroprotein composition. Early authors have reported that scolecodonts are chitinous in 

composition (references within Dutta et al., 2010). However, chitin is highly degradable and only 

preserved in anoxic settings, or when the residence time of material in an oxic zone is small (Van 

Waveren, 1994), and while this creates skepticism regarding chitins preservation potential on the 

order of hundreds of millions of years, fossil chitin has been identified in fossil Silurian and 

Pennsylvanian arthropods (Cody et al., 2011). The carbonyl and aromatic/olefinic stretching 

modes of scolecodonts are poorly defined or very weak. While the FTIR microspectroscopy in 

this study is semi-quantitative, the intensity and character of the carbonyl and aromatic/olefinic 

stretching modes suggests that the scolecodont material possess relatively small amounts of 

carbonyl and aromatic/olefinic bonding; in this character, scolecodont spectra seem similar to 

chitin, as chitin is highly aliphatic and has only one carbonyl group per molecule (chitin structure 

after Baas et al., 1995).  Chitin also contains appreciable N, and while there is not a great deal 
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spectroscopic evidence for preserved C-N and N-H bonding in this study, these kinds of bonds 

do not survive well over geologic time scales due to thermal instability (Engel and Macko, 1993, 

p. 212), and nitrogen bonds are also difficult to preserve as nitrogen is readily scavenged by 

microorganisms (Morris, 1975; Dungworth et al., 1977; Whelan, 1977; Gonzalez et al., 1983).  

Extant polychaete worm teeth are dominantly scleroprotein with varying amounts of phosphate 

or carbonate (e.g. Paxton, 2005).  Scleroprotein is a term used for insoluble noncollagenous 

proteins (Houck, 1962), and in the jaw parts of modern polychaete worms scleroproteins are 

typically enriched in trace metals (e.g. Zn) and halogens (Cl and Br)  around areas of high stress 

use like the tips and the serrated, grasping inner edge of the mandible (Colbath, 1986; Birkedal et 

al., 2006). There has not been a tremendous amount of work concerning the amino acid 

composition of extant polychaete scleroprotein. However, Voss-Foucart (1973) demonstrated 

that the proteins within polychaetes of different genera and different orders possess a variety of 

combinations and proportions of amino acids. She also demonstrated that extant polychaete teeth 

do not contain detectable amounts of chitin, and noted that previous authors had found evidence 

that some extant polychaetes scleritize their jaws by joining proteins with quinonoid links 

(Michel, 1971 in Voss-Foucart, 1973).  

 

Woodford Shale Bulk Geochemistry, Biomarkers, Petrography and Paleontology 

 

Assuming a maximum thickness of 60 m for the Woodford Shale (Roberts and Mitterer, 

1992) 45 m can be said to fall within the Famennian by subtracting the 15 m of Frasnian section 

measured at Classen Lake. The Famennian age is approximately 15 m.y. in duration (Walker and 

Geissman, 2009) and assuming relatively constant deposition through that time, 1 m of 
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Famennian Woodford Shale is equivalent to approximately 330 k.y. (15 m.y. / 46 m). As 

discussed above, the Lower Kellwasser event started at least 1 m.y. before the F-F boundary; 

thus, it is assumed that biomarker values within 3-3.5 m above or below the F-F are considered 

to represent material preserved during abnormal marine conditions. Similarly, as the main phase 

of the Hangenburg event lasted 500 k.y., starting 800 k.y. before the D-C transition, 2 to 2.5 m of 

Woodford shale below or above the D-C are considered to be deposited in relatively abnormal 

marine conditions. The assumption of abnormal marine conditions during these faunal crises is 

made in light of the extinctions being exclusively restricted to the marine realms and intimately 

related to eutrophication (Caplan and Bustin, 1999). The equal amount of time given after the 

boundary is to account for the initial recovery of the system. This is fairly conservative since it is 

documented that recovery periods can be on the order of tens of millions of years (e.g. Fuqua et 

al., 2008).  

There is a distinct difference in the values of the C28/C29 sterane ratios in the lower 

Woodford Shale (Classen Lake) and the upper Woodford Shale (I-35) (Figure 6).  Steranes are 

lipids derived from the cell walls of eukaryotes, and in a marine setting C28 and C29 steranes are 

attributed to modern-type-brown algae and primitive-green algae respectively (Schwark and 

Empt, 2006). Above the F-F boundary C28 values are low with respect to C29 values suggesting 

that conditions at and immediately above the F-F boundary were favorable to more primitive 

types of green algae. Tasmanites cyst counts in samples traversing the Classen Lake section 

reveal that prasinophytes were indeed elevated in density within the first 5 m above the F-F 

boundary (Figure 5). The opposite phenomenon occurs at the top of the I-35 section where C28 

markedly increases relative to C29 between 2-3 m before (Hangenburg event), and at the D-C 

boundary (Figure 6). Additionally, the data of Urban (1960) demonstrate a shift from a 
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prasinophyte-green-algae-dominated planktonic community, to a community dominated by 

brown-algae-type cysts with appreciable plant spore groups (Figure 9). The C28/C29 sterane 

trends are in agreement with the literature as they have been found by previous authors in other 

black shales (e.g., Ohio Shale) and in carbonate sections around the world (Schwark and Empt, 

2006 and references therein). In general, tricylic terpane/17α-hopanes ratios track the trend of the 

sterane/17α-hopane ratios (Figure 6). Previous authors have acknowledged that tricyclic terpanes 

can be derived from both prokaryotic and eukaryotic sources (e.g. Dutta et al., 2006 and 

references therein). The fact that tricyclic abundance relative 17α-hopanes display a trend, 

loosely similar to the sterane/17α-hopane ratio suggests that tricyclic terpanes in the Classen 

Lake and I-35 sections could be partially eukaryote derived. 

The carbon numbers of measurable terpanes (between C27-C31) in this study are C29 and 

C30 terpanes. In the Classen Lake section C30 terpanes generally decrease in abundance relative 

to C29 hopanes from the F-F boundary towards the top of the section (Figure 5). Gammacerane, 

thought to be indicative of water column stratification, is also relatively high in proportion to 

total terpanes at the F-F boundary and gradually decreases up-section (Figure 5). This may 

indicate that during the last stages of the upper Kellwasser event, the Woodford Shale 

depositional setting was characterized by water column stratification, implying anoxia-low 

oxygen in bottom waters. There are other organic geochemical parameters to support this 

interpretation. Pristane/phytane, an indicator of oxic and anoxic deposition, variably indicates 

both oxic and anoxic conditions within 5 m of the F-F boundary by values both <1 and >1, 

before stabilizing and consistently indicating oxic (values >1) deposition after the 15
th
 m of the 

Classen Lake section (Figure 5). Also, isorenieratane is most abundant at the F-F boundary 

indicating photic-zone anoxia, a phenomenon that often occurs in marine settings when water 
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column stratification, is present (Figure 5). The use of isorenieratane as a marker of photic zone 

anoxia is well documented (e.g. Grice et al., 1996; Koopmans et al., 1996a; 1996b; Summons et 

al., 2006). 

 In the I-35 section a different scenario is presented when examining the trend of 

gammacerane, pristane/phytane ratios, and abundance of isorenieratane. The relative abundance 

of gammacerane relative to total hopanes in the I-35 section is noticeably elevated at two levels; 

the first at about the 2
nd

 m and the second at the 22
nd

 m below but close to the D-C boundary 

(Figure 5). Pristane/phytane ratios are varied in the I-35 section but fluctuation between oxic and 

anoxic deposition is not indicated at horizons with elevated gammacerane (Figure 5). Also, 

isorenieratane is low to absent in much of the I-35 section, and there are no high values 

associated with elevated gammacerane; this combined with the shift in algal community 

represented by C28/C29 sterane ratios in the vicinity of the Hangenburg event, and across the D-C 

boundary, suggest that the processes maintaining low oxygen bottom waters differ between the 

F-F boundary extinctions and Hangenburg biotic crises (Figure 4 and 5 respectively).   

Pristane/phytane seems to be a reliable oxic/anoxic-depositional-setting parameter in the 

Woodford Shale since, in the Ranch 2-20 core, representing the most thermally mature samples, 

the ratio responds well to horizons where oxic conditions were conceivably present (Figure 7). 

Pristane/phytane ratios markedly greater than 1 are present at horizons containing shelly, benthic 

fossils representing organisms that generally require oxygen to respire, and generally lower 

where fossils of aerobic organisms are not present (Figure 7). However, the CPI does not seem to 

be responding to changes in algal community or the presence or absence of plant spores in any of 

the sections, as all values are close to or slightly above 1 (Table 1). Consequently, since the 
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samples in this study have undergone at least low thermal alteration (Figure 13), the CPI may be 

thermally overprinted in this case and not representative of organic matter input.  

In order to differentiate between mechanisms of anoxia-low oxygen maintenance in the 

upper Devonian of south-central Oklahoma, it is helpful to examine the causes and biota of 

modern anoxic marine environments. The causes of bottom water anoxia on the continental shelf 

include cold, oxygen-poor water upwelling from ocean basins, and enhanced bioproductivity 

ultimately outpacing the effects of filter feeders to recycle inert organic matter. Enhanced 

bioproductivity resulting in high rates of deposited biomass has been demonstrated to be a 

common cause of bottom water anoxia (Bailey, 1991; Malone et al., 1991; Oschmann et al., 

1991). This enhancement of bioproductivity can come from upwelling bottom waters in the case 

of the Peruvian shelf and the Namibian shelf (Bailey, 1991; Arntz et al., 1991), or it can be 

driven by nutrification from (terrestrial) river input (Malone, 1991). In Chesapeake Bay 

development of anoxia is largely a late spring and early summer phenomenon (Malone, 1991). In 

the winter and early spring the estuary is loaded with river-born nutrients that are derived from 

dominantly anthropogenic sources. In the spring the phytoplankton bloom, and produce large 

amounts of biomass (Malone, 1991), and at the end of spring as the water temperature rises, the 

phytoplankton bloom ends and the inert biomass is incorporated into the estuarine sediment 

(Malone, 1991). As the summer begins this phytoplankton biomass starts to decay, drawing 

down the oxygen levels in the bottom waters.  In this way anoxia is produced and maintained 

throughout the summer until biomass is exhausted (Malone, 1991).  

Anoxia on wide continental shelves (New York Bight, Gulf of Mexico, and the Adriatic 

Sea) is usually created by thermal stratification in cold temperate latitudes and the decomposition 

of phytoplankton bloom biomass (Boesch and Rabalais, 1991; Faganelli et al., 1991; Harper et 
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al., 1991; Justic, 1991; Rabalais et al., 1991; Stachowitsch, 1991). Modern anoxia on wide 

continental shelves (New York Bight, Gulf of Mexico, and Adriatic Sea) is often exacerbated by 

excess nutrient input from anthropogenic sources (Justic, 1991), and consequently, restricted 

eperic basins have been used as modern analogues to widespread ancient black shale deposition 

(e.g. Degens and Stoffers, 1976).                

 Areas of oceanic upwelling are currently some of the most productive marine realms in 

the world (Arntz et al., 1991) with extremely high biomass values being recorded in the pelagic 

zones and shallow water benthic zones of areas like the Peruvian and Chilean coasts (Arntz et al., 

1991) and those of the Namibian coast (Bailey, 1991). Anoxic bottom waters (defined in 

Demaison and Moore (1980), as waters with <0.5 ml/l O2) in the deep continental shelf (50-500 

m) have been reported in upwelling areas around the world (Arntz et al., 1991; Bailey, 1991; 

Emeis, 1991; Malone, 1991; Oschmann, 1991). It is a general observation by many workers that 

anoxic bottom waters yield low macrofaunal diversity and biomass (Arntz et al., 1991), and 

bottom water prokaryotic communities are thought to be dominated by sulfur bacteria, although 

their physical remains have only been reported intermittently by workers (Arntz et al., 1991). Off 

the coast of Chile and Peru the sulfur bacteria genera Thioploca dominates the biomass (85% - 

90%) of the benthic community below 50 m water depth (Arntz et al., 1991; Gallardo, 1977). 

Thioploca requires low oxygen conditions (<1 ml/l O2) in order to be the dominant prokaryote in 

the deep bottom waters. This is demonstrated by a sharp decrease in Thioploca biomass (30% - 

40%) during El Niño years when oxygen concentration in deep bottom waters in the continental 

shelf of Peru and Chile rises markedly (Arntz et al., 1991); these high oxygen conditions allow 

heterotrophic bacteria to thrive in the bottom waters and out-compete species of Thioploca. The 
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competitive dominance of heterotrophic bacteria over species of Thioploca is supported by the 

laboratory experiments of Maier, (1986).  

According to Arntz et al. (1991) the dominant eukaryotic contribution to the biomass off 

of the Peruvian shelf is provided by polychaete worms (although foraminiferal abundance was 

not taken into account). In normal years with low oxygen conditions polychaetes constitute 

between 15% and 20% of the total biomass; they are followed by various crustaceans and 

mollusks, both of which contribute less than 1% of the total biomass (Arntz et al., 1991). In El 

Niño years, when bottom water oxygen concentrations are much higher than normal, crustaceans 

and mollusks make significant contributions to the total biomass at 3% and 10% respectively 

(Arntz et al 1991). Polychaete biomass also balloons with an increase in oxygen from 15% and 

20%, to between 50% and 60% of the total biomass (Arntz et al., 1991).  

In restricted basins where strong upwelling regimens are not present anoxia develops 

through different processes; for instance, anoxia development in the Black Sea has been 

attributed to density stratification due to saline water incursion from the Mediterranean Sea 

through the Bosporus (Arthur and Dean, 1998). A large difference between Black Sea deposition 

and the deposition of the Woodford Shale is that the organic carbon of the Black Sea is diluted 

by substantial deposition of carbonate (Arthur and Dean, 1998). In contrast the Woodford Shale 

is dominated by clastic deposition with few (1 sometimes 2) carbonate layers and isolated 

microtextures of dolomite in the upper Woodford Shale. Due the differences in character 

between the lithology of the Woodford Shale and the sediments of the Black Sea, the 

depositional setting of the Woodford Shale may be closest approximated by the modern day 

Santa Barbara basin in California. The Santa Barbara Basin is a California borderlands basin that 

has permanently anoxic bottom waters where sediment-bottom water O2 concentrations rarely 
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exceed 2 ml O2 /L (Bernhard et al., 1999; Bernhard and Bowser, 2003; Bernhard et al., 2004; 

Reimers 1996). Central basin waters possess bottom waters of such low dissolved O2 

concentration it cannot support burrowing organisms, and consequently, sediments are finely 

laminated (Bernhard, 2003). There are however, instances where eukaryotes (foraminifera, 

polychaete worms and nematodes) form symbiotic relationships with sulfate reducing bacteria, 

and are able to persist in the most oxygen lean bottom waters in the basin (Bernhard, 2004).   

After comparing the biotic data of the Woodford Shale to the biotic character in modern 

examples of: upwelling zone anoxia, bloom induced anoxia and restricted-basin anoxia, the 

character of the Woodford Shale close to (0-4 m above) the F-F can be inferred to be most 

similar to a restricted basin. In the lower Woodford Shale, particularly within the first 4-5 m 

above the F-F boundary, the organic geochemistry, fossils described by this study and the fossil 

assemblages described by previous authors (Urban, 1960; Over, 1991; Kirkland et al., 1992) are 

suggestive of a restricted basin with periodically maintained anoxic bottom-waters and photic-

zone anoxia.  

There are certain similarities between the type of invertebrate and microbial faunas that 

are present in modern upwelling environments, and those that were present in the depositional 

setting of the upper Woodford Shale. The paucity of shelly-benthic, fossil assemblages in the 

Woodford Shale has been documented in the geologic literature (Kirkland et al., 1992). The 

fossils of pelagic life forms like green algae, conodonts and ammonoids are present within the 

Woodford Shale along with spores (Urban, 1960), sponge spicules, radiolarians (Kirkland et al., 

1992). Early authors (Kirkland et al., 1992, others) state that there is an absence of bioturbation 

in the Woodford Shale. However, while scolecodonts have not been reported from the Woodford 

Shale until this study their remains provide proof of burrowing organisms during deposition. 
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Also, in concurrence with Schieber (1996), agglutinated foraminifera have been identified. 

Sparse shell-rich benthic faunas with scolecodont and agglutinated foraminifera remains in the 

upper Woodford Shale are a parallel to the benthic faunas described in deep water zones along 

the Peruvian-Chilean and the Namibian-South African coasts. Additionally, the composition of 

the algal community shifts towards the predominance of C28-sterane-producing-algae 2-3 m 

below the D-C boundary approximately where the main phase of the Hangenburg event is 

expected. C28-sterane-producing-brown algae are commonly much more prevalent in upwelling 

environments than C29-sterane-producing-green algae (e.g. Avaria and Muñoz, 1987; Morales et 

al., 1996 and references therein).  

The biomarker profiles of Classen Lake do not indicate decay of terrestrial organic matter 

as the driving force behind the eutrophication of the F-F shelf, as there are no clear biomarker 

signals indicating terrestrial-organic-matter input (e.g. cadinanes, abundant sequiterpanes, C19-

C20 tricyclic terpanes), and data indicate that plant spores make up a small proportion of the 

kerogen (Urban, 1960; Figure 9). Biomarkers also do not indicate sequential blooms of red algae 

as C27 steranes reflect a sterane minority close to the F-F boundary. Rather, at the F-F boundary 

in south-central Oklahoma, steady productivity of green algae overwhelming a small filter 

feeding community is more likely the cause. The behavior of C28/C29 steranes, pristane/phytane, 

relative abundance of gammacerane, and abundance of isorenieratane suggest that in F-F time 

the depositional setting of the Woodford Shale was that of a restricted, stratified basin where 

anoxia was maintained by the productivity of green algae and the sequestration of their inert 

biomass in anoxic bottom waters. 
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Conversely, in the Hangenburg event of the upper Woodford Shale (I-35), biomarker data 

point to a different process. Ocean upwelling with periodic thermal stratification is the most 

likely explanation. A shift in from the predominance of C29-sterane-producing algae to C28-

sterane-producing algae, the absence of detectable isorenieratane, and pristane/phytane values 

indicating oxic bottom water supports the interpretation of a basin free from stagnation and 

permanent density/thermal stratification. This, coupled with end-Devonian low global 

temperatures suggest that the most likely cause of waters of low dissolved oxygen during the 

Hangenburg event is ocean upwelling similar to the modern upwelling systems of Peru-Chile and 

Namibia-South Africa. 

During Frasnian time the world wide reef complexes reached their largest extent in the 

Phanerozoic extending from the equator to at least 45
o
 S and 60

o
 N (Copper, 2002). World-wide, 

at or around the F-F boundary, reef environments were greatly reduced in diversity and 

geographic extent, being replaced by organic rich mudrocks and shales (Copper, 2002 and 

references therein). The reduction of the reef framework in the Late Devonian shallow marine 

ecosystem was followed by an unprecedented number of shallow-marine organism extinctions. 

However, there is some debate as to whether the F-F extinctions affected only marine organisms, 

or if land plants were also negatively impacted. Raymond and Metz (1995) performed various 

analyses on mid-Silurian to upper Devonian spore assemblages, and concluded that although 

various sampling techniques induced some form of bias, it was clear that spore diversity drops at 

F-F horizons and continues to be low until late Famennian time; these results imply that 

whatever mechanism(s) led to the demise of various shallow marine organisms at and around the 

F-F boundary also had an effect on the terrestrial flora at that time. This diversity trend is also 

seen in the data of Urban (1960), where spore diversity is very low in the lower to middle 
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Woodford Shale compared to the high diversity that was recorded in upper Woodford Shale 

(Figure 12). Global cooling at the end of the Frasnian may have brought the demise of various 

plant groups making up the Frasnian terrestrial flora, and the contemporaneous regressions 

(Copper, 2002; Bond and Wignall, 2008) could have restricted various eperic seas cutting them 

off from ocean circulation, leaving them vulnerable to long periods of stratification and 

eutrophication.  

The Hangenburg event was a biotic crisis that seems completely restricted to the marine 

realm as spores increased or remained static in diversity during this time (Urban, 1960; Raymond 

and Metz, 1995). This event is recognized all over the world as being marked by extensive black 

shale deposition presumably through the spread of anoxic waters (Caplan and Bustin, 1999). The 

biomarker and paleontologic data from the upper Woodford Shale in south-central Oklahoma do 

not necessarily indicate completely anoxic deposition, but low oxygen conditions were definitely 

present considering the low diversity of Woodford Shale benthic faunas. It has been suggested 

that global cooling through the Late Devonian, continuing until culmination in a small ice age 

around the D-C boundary, was the stimulus for enhanced ocean mixing in the latest Devonian 

(Caplan and Bustin, 1999; Joachimski et al., 2002). It has also been established that world-wide a 

series of transgressions took place towards the end of the Famennian suggesting that this 

combination of ocean mixing and transgression forced nutrient rich waters onto the continental 

shelves (e.g. Bond and Wignall, 2008). The results of this study are in agreement with this 

assessment.  
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Chapter 5: Conclusions 

 

FTIR microspectroscopy of scolecodont and conodont material 

 

It is clear that scolecodont elements are easy to distinguish from conodont elements 

through analysis with FTIR micro-spectroscopy. Scolecodont element spectra show the material 

is composed of a largely aliphatic biopolymer that could potentially be degraded chitin. 

However, it is unclear as to whether spectroscopic evidence of nitrogen bonding is absent due to 

diagenesis, or if it was simply not a significant presence in the primary material. Consequently, 

the most conservative interpretation is that these analyzed scolecodont elements are composed of 

a scleroprotein material similar to that generated by modern polychaete worms.  

FTIR microspectroscopy of scolecodont and conodont elements shows promise for use in 

animal microfossils as the organic signature of scolecodonts is a sharp contrast to the phosphate 

and carbonate dominated spectra of the conodont. FTIR microspectroscopy also suggests that 

scolecodonts also have potential in paleoenvironmental geochemistry. Scolecodonts are large 

microfossils relative to fossil plant spores and marine plankton cysts, and in this case, appear to 

retain the integrity of their primary material fairly well over hundreds of millions of years; this 

may make them favorable samples for carbon isotope studies. While there was no detectable 

difference in composition between Pronereites and Anisocerasites, more comprehensive 

investigations may reveal, much like modern polychaete worms, chemical differences in 

mandibles between orders and genera from systems of similar diagenetic history and thermal 

maturity. The application of FTIR microspectroscopy in the distinction of scolecodonts and 

conodonts may prove most useful in Ordovician protoconodont and paraconodont assemblages 
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where dispersed element affinities may be uncertain, and the extent of tissue mineralization is 

difficult to ascertain with traditional methods. 

 

 Woodford Shale Bulk Geochemistry, Biomarkers, Petrology and Paleontology 

 

Eutrophication clearly played a dominant role in marine extinction events in the Late 

Devonian. However, biological signatures around the two events differ in fundamental ways. 

These data suggest that, during the Late Devonian in south-central Oklahoma, the F-F boundary 

extinction and the Hangenburg events‘ mechanism of bottom water anoxia-low oxygen 

maintenance differ. 

In south-central Oklahoma, the Woodford Shale close to the F-F boundary is enriched in 

C29 steranes with respect to C28 steranes. Plant spores and brown-algae cysts have low diversity 

and abundance, and Tasmanites cysts dominate the microfauna, relatively high levels of 

gammacerane imply density and/or thermal stratification, and photic-zone anoxia is present at 

the boundary as evidenced by high isorenieratane levels. These data suggest at the F-F boundary 

the depositional environment of the Woodford Shale was characterized by a stagnant, restricted 

basin where anoxia was maintained through the productivity of green algae outpacing the efforts 

of a small filter feeding community.  The productivity of green algae may have been exacerbated 

by terrestrial nutrification derived from accelerated weathering of continental material recently 

denuded of its Frasnian rainforest biome. 

In south-central Oklahoma, the Hangenburg event appears to have been accompanied by 

a period of oceanic upwelling. The upper Woodford Shale is characterized by a high diversity of 

brown algae cysts, a couple of plant spore groups and Tasmanites cysts (Urban, 1960), and there 
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is a relative decrease in the amount of C29 steranes relative to C27 and C28 steranes showing a 

decrease in prasinophyte contribution of overall eukaryotic input. There is little evidence for 

photic-zone anoxia as isorenieratane is below detection limit, as well as bottom-water anoxia, as 

pristane/phytane ratios are all greater than one. As African diamictites present tenable proof of 

global cooling, the marine realm during the Hangenburg event was experiencing lowering 

temperatures. These data combined with benthic faunas dominated by scolecodonts and 

agglutinated foraminifera support oceanic upwelling as the cause of low oxygen-anoxic bottom 

water during the Hangenburg event and across the D-C boundary. While bottom waters of the 

Hangenburg event do not appear to have been completely anoxic in south-central Oklahoma, by 

evidence of stratification (gammacerane) and the limited types of organisms that were able to 

live there, the waters must have had low dissolved oxygen concentrations (0.5 ml O2/l – 2.0 ml 

O2/l) much like modern upwelling zones. The spread of low oxygen waters onto the shelf during 

upwelling and marine transgression in the latest Devonian appear to have caused the demise of 

many of the marine organisms that went extinct during the main phase of the Hangenburg event.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



52 

 

References 

 

 

Algeo, T.J., Berner, R.A., Maynard, J.B., Scheckler, S.E., 1995. Late Devonian oceanic 

anoxic events and biotic crises; ‗rooted‘ in the evolution of vascular land plants. GSA Today 5, 

45, 64-66.  

 

Algeo, T.J., Scheckler, S.E., 1998. Terrestrial-Marine teleconnections in the Devonian; 

links between the evolution of land plants, weathering process, and marine anoxic events. 

Philosophical Transactions-Royal Society of London 353, 113-130.  

 

Alvarez, L.W., Alvarez, W., Asaro, F., Michel, H.V., 1980. Extraterrestrial cause for the 

Cretaceous Tertiary extinction. Science 208, 1095-1108. 

 

Aquito Neto, F.R., Trendel, J.M., Restle, A., Connan, J., Albrecht, P.A., 1983. 

Occurrence and formation of tricyclic and tetracyclic terpanes in sediments and petroleums. 

Advances in Organic Geochemistry 1981, John Wiley & Sons, New York, 659-676. 

 

Arntz, W.E., Tarazona, J., Gallardo, V.A., Flores, L.A., Salzwedel, H., 1991. Benthos 

communities in oxygen deficient shelf and upper slope areas or the Peruvian and Chilean Pacific 

coast, and changes caused by El Nino. Modern and Ancient Continental Shelf Anoxia Geological 

Society Special Publication 58, 131-154.  

 



53 

 

Arouri, K., Greenwood, P.F., Walter, M.R., 2000. Biological affinities of Neoproterozoic 

acritarchs from Australia: microscopic and chemical characterization. Organic Geochemistry 31, 

75-89. 

 

Arthur, M.A., Dean, W.E., 1998. Organic-matter production and preservation and 

evolution of anoxia in the Holocene Black Sea. Palaeoceanography 13, 395-411. 

 

Avaria, S., Muñoz, P., 1987. Effects of the 1982-1983 El Niño on the Marine 

Phytoplankton off Northern Chile. Journal of Geophysical Research 92, 14369-14382. 

 

Azevedo, D.A, Aquino Neto, F.R., Simoneit, B.R.T., Pinto, A.C., 1992. Novel series of tricyclic 

aromatic terpanes characterized in Tasmanian tasmanite. Organic Geochemistry 18, 9-16.  

 

Baas, M., Briggs, D.E.G., van Heemst, J.D.H., Kear, A.J., De Leeuw, J.W., 1995. Selective 

preservation of chitin during the decay of shrimp. Geochimica et Cosmochimica Acta 59, 945-

951. 

 

Bailey G.W., 1991. Organic Carbon Flux and development of oxygen deficiency on the 

modern Bengula continental shelf south of 22 S: spatial and temporary variability. Modern and 

Ancient Continental Shelf Anoxia Geological Society Special Publication 58, 171-183. 

 

Barnes, M.A., Barnes, W.C., 1983. Oxic and anoxic diagenesis of diterpenes in lacustrine 

sediments. Advances in Organic Geochemistry 1981, John Wiley & Sons, New York, 289-298.   



54 

 

Berkedal, H., Khan, R.K., Slack, N., Broomell, C., Lichtenegger, H.C., Zok, F., Stucky, 

G.D., Waite, J.H., 2006. Halogenated veneers: protein cross-linking and halogenations in the 

jaws of Nereis, a marine polychaete worm. ChemBioChem 7, 1392-1399.  

 

Bernhard, J.M., Bowser, S.S., 1999. Benthic Foraminifera of dysoxic sediments; 

chloroplast sequestration and functional morphology. Earth-Science Reviews 46, 149-165.  

 

Bernhard, J.M., Visscher, P.T., Bowser, S.S., 2003. Submillimeter life positions of 

bacteria, protists, and metazoans in laminated sediments of the Santa Barbara Basin. Limnology 

and Oceanography 48, 813-828.  

 

Bernhard, J.M., Buck, K.R., 2004. Eukaryotes of the Cariaco, Soledad, and Santa Barbara 

Basins; protists and metazoans associated with deep-water marine sulfide-oxidizing microbial 

mats and their possible effects on the geologic record. Geologic Society of America 379, 35-47. 

 

Boesch, D.F., Rabalais, N.N., 1991. Effects of hypoxia on continental shelf benthos: 

comparisons between the New York Bight and the Northern Gulf of Mexico. Modern and 

Ancient Continental Shelf Anoxia Geological Society Special Publication 58, pp 27-44. 

 

Bond, D.P.G., Wignall, P.B., 2009. Abstract of ―The role of sea-level change and marine 

anoxia in the Frasnian-Famennian (Late Devonian) mass extinction‖. Palaeogeography, 

Palaeoclimatology, Palaeoecology 273, 365-367. 

 



55 

 

Bond, D.P.G., Wignall, P.B., 2008. The role of sea-level change and marine anoxia in the 

Frasnian-Famennian (Late Devonian) mass extinction. Palaeogeography, Palaeoclimatology, 

Palaeoecology 263, 107-118.  

 

Briggs, D.E.G., Evershed, R.P., Lockheart, M.J., 2000. The biomolecular paleontology of 

continental fossils. Paleobiology 26, 169-193.  

 

Brown, T.C., Kenig, F., 2004. Water column structure during deposition of Middle 

Devonian-Lower Mississippian black and green/gray shales of the Illinois and Michigan Basins; 

a biomarker approach. Palaeogeography, Palaeoclimatology, Palaeoecology 215, 59-85 

 

Burruss, R.C., Hatch, J.R., 1989. Geochemistry of oils and hydrocarbon source rocks, 

greater Anadarko Basin; evidence for multiple sources of oils and long-distance oil migration. 

Oklahoma Geological Survey 90, 53-64.  

 

Bustin, R.M., Orchard, M., Mastalerz, M., 1992, Petrology and preliminary organic 

geochemistry of conodonts: implications for analyses of organic maturation. International 

Journal of Coal Geology 21, 261-28 2.  

 

Caplan, M.L., Bustin, R.M., 1999. Devonian-Carboniferous Hangenburg mass extinction 

event, widespread organic-rich mudrock and anoxia: causes and consequences. Palaeogeography, 

Palaeoclimatology, Palaeoecology 148, 187-207. 

 



56 

 

Caputo, M.V., Crowell, J.C., Migration of glacial centers across Gondwana during 

Paleozoic Era. Geological Society of America Bulletin 96, 1020-1036. 

 

Cardott, B.J., Lambert, M.W., 1985. Thermal Maturation by Vitrinite Reflectance of 

Woodford Shale, Anadarko Basin, Oklahoma. AAPG Bulletin 69, 1982-1999. 

 

Carter, L.S., Kelley, S.A., Blackwell, D.D., Naesar, N.D., 1998. Heat Flow and Thermal 

History of the Anadarko Basin, Oklahoma. AAPG Bulletin 82, 291-316.  

 

Claeys, P., Casier, J-G., Margolis, S.V., 1992. Microtektites and Mass Extinctions: 

Evidence for a late Devonian Asteroid Impact. Science 257, 1102-1104.  

 

Cody, G.D., Gupta, N.S., Briggs, D.E.G., Kilcoyne, A.L.D., Summons, A.E., Kenig, F., 

Plotnick, R.E., Scott, A.C., 2011. Molecular signature of chitin-protein complex in Paleozoic 

arthropods. Geology 39, 255-258.  

 

Colbath, G.K., 1986. Jaw mineralogy in Eunicean Polychaetes (Annelida). 

Micropaleontology, 32, 186-189. 

 

Colbath, G.K., 1987. Evidence for shedding of maxillary jaws in eunicoid polychaetes. Journal 

of Natural History 21, 443-447. 



57 

 

Colbath, G.K., Grenfell, H.R., 1995. Review of biological affinities of Paleozoic acid-

resistant, organic walled eukaryotic algal microfossils (including acritarchs). Review of 

Palaeobotany and Palynology 86, 287-314. 

 

Comer, J.B., 1992. Potential for producing oil and gas from the Woodford Shale 

(Devonian-Mississippian) in the southern Mid-Continent, USA. AAPG Bulletin 76, 574. 

 

Comer, J.B., Hinch, H.H., 1987. Recognizing and Quantifying Expulsion of Oil from the 

Woodford Formation and Age-Equivalent Rocks in Oklahoma and Arkansas. AAPG Bulletin 71, 

844-858.  

 

Copper, P., 2002. Reef development at the Frasnian-Famennian mass extinction 

boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 181, 27-65. 

 

D‘Angelo, J.A., Zodrow, E.L., Camargo, A., 2010. Chemometric study of functional 

groups in Pennsylvanian gymnosperm plant organs (Sydney Coal Field, Canada): Implications 

for Chemotaxonomy and assessment of kerogen formation. Organic Geochemistry 41, 1312-

1325.  

 

Degens, E.T., Stoffers, P., 1976. Stratified waters as a key to the past. Nature 263, 22-27. 

 

Demaison, G.J., Moore, G.T., 1980. Anoxic environments and oil source bed genesis. Organic 

Geochemistry 2, 9-31.  



58 

 

Donoghue, P.C.J., Forey, P.L., Aldridge, R.J., 2000. Conodont affinity and chordate 

phylogeny. Biological review 75, 191-251.  

 

Dott, R.H., 1934. Overthrusting in the Arbuckle Mountains, Oklahoma. AAPG Bulletin 18, 567-

602. 

 

 Dungworth, G., Thijssen, M., Zuurveld, J., Van Der Velden, W., Schwartz, A.W., 1977. 

Distribution of amino acids, amino sugars, purines and pyrimidines in a Lake Ontario Sediment 

Core. Chemical Geology 19, 295-308. 

 

Dutta, S., Greenwood, P.F., Brocke, R., Schaefer, R.G., Mann, U., 2006. New insights 

into the relationship of Tasmanites and tricyclic terpenoids. Organic Geochemistry 37, 117-127.  

 

Dutta, S., Hartkopf-Fröder, C., Mann, U., Wilkes, H., Brocke, R., Bertram, N., 2010. 

Macromolecular composition of Paleozoic scolecodonts: insights into the taphonomy of 

zoomorphs. Lethaia, 43, 334-343.  

 

Eller, E.R., 1933, An articulated annelid jaw from the Devonian of New York: American 

Midland Naturalist, 14, 186-187.  

 

Eller, E.R., 1934a. annelid jaws from the upper Devonian of New York. Annals of the 

Carnegie Museum 22, 303-317. 



59 

 

Eller, E.R., 1934b. annelid jaws of the Hamilton Group of the Ontario County, New 

York. Annals of the Carnegie Museum, 24, 51-57. 

 

Eller, E.R., 1936. A new scolecodont genus, Ildraites, from the Upper Devonian of New 

York. Annals of the Carnegie Museum 25, 73-77. 

 

Eller, E.R., 1938. Scolecodonts from the Potter Farm Formation of the Devonian of 

Michigan, Annals of the Carnegie Museum 27, 275-285.  

 

Eller, E.R., 1941. Scolecodonts from the Windom, Middle Devonian, of Western New 

York. Annals of the Carnegie Museum 28, 323-340. 

 

Eller, E.R., 1942. Scolecodonts from the Erindale, Upper Ordovician, at Streetville, 

Ontario. Annals of the Carnegie Museum 29, 241-270.  

 

Eller, E.R., 1945. Scolecodonts from the Trenton Series (Ordovician) of Ontario, Quebec 

and New York. Annals of the Carnegie Museum 30, 119-212.  

 

Eller, E.R., 1955. Additional scolecodonts from the Potter Farm Formation of the 

Devonian of Michigan: Annals of the Carnegie Museum 33, 347-385.  

 

Eller, E.R., 1963a. Scolecodonts from well samples of Dundee, Devonian of Michigan: 

Annals of the Carnegie Museum 36, 29-48.  



60 

 

 

Eller, E.R., 1963b. Scolecodonts from the Sheffield shale, Upper Devonian of Iowa. 

Annals of the Carnegie Museum 36, 159-172. 

 

Eller, E.R., 1963c. Scolecodonts from the Dundee, Devonian of Michigan. Annals of the 

Carnegie Museum 36, 173-180.  

 

Eller, E.R., 1964. Scolecodonts of the Delaware Limestone, Devonian of Ohio and 

Ontario: Annals of the Carnegie Museum 36, 229-275. 

 

Engel, M.H., Macko, S.A., 1993. Organic Geochemistry Principles and Applications. 

Plenum Press, New York, 861.  

 

Epstein, A.G., Epstein, J.B., Harris, L.D., 1977. Conodont color alteration – an index to 

organic metamorphism. U.S. Geological Survey Professional Paper 995, 27. 

 

Emeis, K-C., Whelan, J.K., Tarafa, M., 1991. Sedimentary and geochemical expressions 

of oxic and anoxic conditions on the Peru Shelf. Modern and Ancient Continental Shelf Anoxia 

Geological Society Special Publication 58, 155-170. 

 

Eriksson, M.E., Bergman, C.F., 1998. Scolecodont systematics exemplified by the 

polychaete Hadoprion cervicornis (Hinde, 1879). Journal of Paleontology 72, 477-485.  

 



61 

 

Eriksson, M.E., Bergman, C.F., 2003. Late Ordovician jawed polychaete faunas of the 

Cincinnatian region, USA. Journal of Paleontology 77, 509-523.  

 

Eriksson, M.E., Leslie, S.A., Bergman, C.F., 2005. Jawed Polychaetes from the upper 

Sylvan shale (Upper Ordovician), Oklahoma, USA.  Journal of Paleontology 79, 486-496.  

 

Faganeli, J., Pezdic, J., Ogorelec, B., Herndl, G.H., Dolenec, T., 1991. The role of 

sedimentary biogeochemistry in the formation of hypoxia in the shallow coastal waters (Gulf of 

Trieste, northern Adriatic Sea). Modern and Ancient Continental Shelf Anoxia Geological 

Society Special Publication 58, 107-117.  

 

Fuqua, L.M., Bralower, T.J., Arthur, M.A., Patzkowsky, M.E., 2008. Evolution of 

calcareous nanoplankton and the recovery of the marine food webs after the Cretaceous-

Paleogene mass extinction, Palaios 23, 185-194.  

 

Gallardo, V.A., 1977, Large benthic communities in sulfide biota under Peru-Chile 

subsurface countercurrent. Nature 268, 331-332.  

 

Grice, K., Schaeffer, P., Schwark, L., Maxwell, J.R., 1996. Molecular indicators of 

palaeoenvironmental conditions in an immature Permian shale (Kupferschiefer, Lower Rhine 

Basin, north-west Germany) from free and S bound lipids. Organic Geochemistry 25, 131-147.  

 



62 

 

Gallegos, E.J., 1971. Identification of new steranes, terpanes, and branched paraffins in 

Green River Shale by combined capillary gas chromatography and mass spectrometry. 

Analytical Chemistry 43, 1151-1160.  

 

Gelin, F., Volkman, J.K., Largeau, C., Derenne, S., Sinninghe Damste, J.S., De Leeuw, 

J.W., 1999. Distribution of aliphatic, nonhydrolyzable biopolymers in marine microalgae. 

Organic Geochemistry 30, 147-159. 

 

Gong, Y., Li, B., Si, Y., Wu, Y., 2002. Late Devonian red tide and mass extinction. 

Chinese Science Bulletin 47, 1138-1144. 

 

  Gonzalez, J.M., Grimalt, J., Albaigés, 1983. Amino acid composition of sediments from a 

deltaic environment. Marine Chemistry 14, 61-71. 

 

Gupta, N.S., Briggs, D.E.G., Landman, N.H., Tanabe, K., Summons, R.E., 2008. 

Molecular structure of organic components in cephalopods; evidence for oxidative cross linking 

in fossil marine invertebrates. Organic Geochemistry 39, 1405-1414.  

 

Harper, JR, D.E., McKinney, L.D., Nance, J.M., Salzer, R.R., 1991. Recovery responses 

of two benthic assemblages following an acute hypoxic event on the Texas continental shelf, 

northwestern Gulf of Mexico. Modern and Ancient Continental Shelf Anoxia Geological Society 

Special Publication 58, 49-64. 

 



63 

 

Hartkopf-Froder, C., Kloppisch, M., Mann, U., Neumann-Mahlkau, Schaefer, R.G., 

Wilkes, H., 2007. The End Frasnian mass extinction in the Eifel Mountains, Germany: new 

insights from organic matter composition and preservation. Geological Society, London, Special 

Publication 278, 173-196.  

 

Houck, J.C., 1962. The resorption of sodium dilantin-produced dermal collagen, Journal of 

Clinical Investigation 41, 179-184.  

 

Jansonius, J., Craig, J.H., 1971. Scolecodonts: I. descriptive terminology and revision of 

systematic nomenclature; II. Lecotypes, new names for homonyms, index of species. Bulletin of 

Canadian Petroleum Geology 19, 251-302.  

 

Jansonius, J., Craig, J.H., 1974. Some scolecodonts in organic association from Devonian 

strata of western Canada. Geoscience and Man 9, 15-26. 

 

Javaux, E.J., Marshall, C.P., 2006. A new approach in deciphering early protist 

paleobiology and evolution: Combined microscopy and microchemistry of single Proterozoic 

acritarchs. Review of Palaeobotany and Palynology 139, 1-15. 

 

Joachimski, M.M., Buggisch, W., 2002. Conodont apatite δ
18

O signatures indicate 

climatic cooling as a trigger of the Late Devonian mass extinction. Geology 30, 711-714.  

 



64 

 

Joachimski, M.M., Pancost, R.D., Freeman, K.H., Ostertag-Henning, C., Buggish, W., 

2002. Carbon isotope geochemistry of the Frasnian-Famennian transition. Palaeogeography, 

Palaeoclimatology, Paleoecology 181, 91-109. 

 

Joans, P.J., Philp, R.P., 1990. Oils and source rocks from Pauls Valley, Anadarko Basin, 

Oklahoma, U.S.A. Applied Geochemistry 5, 429-448.  

 

Johnson, J.G., Klapper, G., Sandberg, C.A., 1985. Devonian eustatic fluctuations in 

Euramerica. Geological Society of America Bulletin 96, 567-587. 

 

Justic, D., 1991. Hypoxic conditions in the Northern Adriatic Sea: historical development 

and ecological significance. Modern and Ancient Continental Shelf Anoxia Geological Society 

Special Publication 58, 95-105. 

 

Kaiho, K., Karjiwara, Y., Nakano, T., Miura, Y., Kawahata, H., Tazaki, K., Ueshima, M., 

Chen, Z., Shi, G.R., 2001. End-Permian catastrophe by a bolide impact: Evidence of a gigantic 

release of sulfur from the mantle. Geology 29, 815-818.  

 

Kirkland, D.W., Denison, R.E., Summers, D.M., Gormly, J.R., 1992. Geology and 

organic geochemistry of the Woodford Shale in the Criner Hills and western Arbuckle 

Mountains, Oklahoma. Oklahoma Geological Survey Circular, 38-69. 



65 

 

Kokinos, J.P., Eglington, T.I., Goni, M.A., Boon, J.J., Martoglio, P.A., Anderson, D.M., 

1998. Characterization of a highly resistant biomacromolecular material in the cell wall of a 

marine dinoflagellate resting cyst. Organic Geochemistry 28, 265-288. 

 

Koopmans, M.P., Köster, J., van Kam-Peters, H.M.E., Kenig, F., Scouten, S., Hartgers, 

W.A., De Leeuw, J.W., Sinninghe Damsté, J.S., 1996a, Diagenetic and catagenetic products of 

isorenieratane: Molecular indicators of photic zone anoxia. Geochimica et Cosmochimica Acta 

60, 4467-4496. 

 

Koopmans, M.P. Schouten, S., Kohnen, M.E.L., Sinninghe Damsté, J.S., 1996b. 

Restricted utility of aryl isoprenoids as indicators of photic zone anoxia. Geochimica et 

Cosmochimica Acta 60, 4873-4876.  

 

Leatherock, C., Bass, N.W., 1936. Chattanooga Shale in Osage County Oklahoma and 

Adjacent Areas. AAPG Bulletin 20, 91-101. 

 

Lecuyer, C., Gardien, V., Rigaudier, T., Fourel, F., Martineau, F., Cros, A., 2009.Oxygen 

isotope fractionation and equilibration kinetics between CO2 and H2O as a function of salinity of 

aqueous solutions. Chemical Geology 264, 122-126.  

 

Lee, Y., Deming, D., 1999. Heat Flow and thermal history of the Anadarko Basin and the 

western Oklahoma Platform. Tectonophysics 313, 399-410. 

 



66 

 

Li, S., 1999. Sedimentary environmental significance of normal alkanes and the ratio of 

pristane and phytane; the example of the lower Tertiary Jiyang Depression, Shandong, China. 

Journal of the University of Petroleum, China 23, 14-16. 

 

Lyons, P.C., Orem, W.H., Mastalerz, M., Zodrow, E.L., Vieth-Redemann, A., Bustin, 

R.M., 1995. 
13

C NMR, FTIR microspectroscopy and fluorescence spectra, and pyrolysis-gas 

chromatograms of coalified foliage or late Carboniferous medullosan seed ferns, Nova Scotia, 

Canada: Implications for coalification and chemotaxonomy. International Journal of Coal 

Geology 27, 227-248. 

 

Malone, T.C., 1991. River Flow, phytoplankton production and oxygen depletion in 

Chesapeake Bay. Modern and Ancient Continental Shelf Anoxia Geological Society Special 

Publication 58, 83-93.  

 

Maier, S., 1986. Unusual microorganisms: Diversity and ecology of the Thioploca group of 

aquatic bacteria. International Committee and Microbial Ecology Conference, Ljubljana, 

Yugoslavia, August 24-29.  

 

Marshall, C.P., Leong Mar, G., Nicoll, R.S., Wilson, M.A., 2001. Organic geochemistry 

of artificially matured conodonts. Organic Geochemistry 32, 1055-1071.  

 



67 

 

Marshall, C.P., Javaux, E.J., Knoll, A.H., Walter, M.R., 2005. Combined micro-Fourier 

transform infrared (FTIR) spectroscopy and micro-Raman spectroscopy of Proterozoic 

acritarchs: A new approach to Palaeobiology. Precambrian Research 138, 208-224. 

 

Marshall, C.P., Carter, E.A., Leuko, S., Javaux, E.J., 2006. Vibrational spectroscopy of 

extant and fossil microbes: Relevance for the astrobiological exploration of Mars. Vibrational 

Spectroscopy 41, 182-189.  

 

Martin, F., 1993. Acritarchs: a review. Biological Review 68, 475-538.  

 

Mastalerz, M., Bustin, R.M., Orchard, M., Forster, P.J.L., Fluorescence of conodonts: 

implications for organic maturation analyses. Organic geochemistry 18, 93-101. 

   

Mcghee JR., G.R., 2001. The ‗multiple impacts hypothesis‘ for mass extinction: a 

comparison of the Late Devonian and the Late Eocene. Palaeogeography, Palaeoclimatology, 

Palaeoecology 176, 47-58.  

 

Mcghee JR., G.R., 1994. Comets, asteroids, and the Late Devonian Mass extinction. 

Palaios 9, 513-515.  

 

Mcghee JR., G.R., Orth, C.J., Quintana, L.R., Gilmore, J.S., Olsen, E.J., 1986. Late 

Devonian ―Kellwasser Event‖ mass-extinction horizon in Germany: No geochemical evidence 

for a large body impact. Geology 14, 776-779. 



68 

 

 

Mcghee JR., G.R., Gilmore, J.S., Orth, C.J., Olsen, E., 1984. No geochemical evidence 

for an asteroidal impact at Late Devonian mass extinction horizon. Nature 308, 629-631. 

 

McLaren, D.J., 1985. Mass extinction and iridium anomaly in the Upper Devonian of 

Western Australia: A commentary. Geology 13, 170-172. 

 

Michel, C., 1971. Mise en evidence d‘un systeme de tannage qui-nonique au niveau des 

machoires dc [sic] Nephthys hombergii (annelide polychaete). Annals Histochim. 16, 273-282 

 

Moldowan, J.M., Seifert, W.K., Gallegos, E.J., 1985. Relationship between petroleum 

composition and depositional environment of petroleum source rocks. AAPG Bulletin 69, 1255-

1268.  

Morris, R.J., 1975. The amino acid composition of a deep-water marine sediment from 

the upwelling region northwest of Africa. Geochimica et Cosmochimica Acta 39, 381-388. 

 

Moldowan, J.M., Sundararaman, P., Schoell, M., 1986. Sensitivity of biomarker 

properties to depositional environment and/or source input in the Lower Toarcian of S.W. 

Germany. Organic Geochemistry 10, 915-926. 

 

Morales, C.E., Blanco, J.L., Mauricio, B., Hernan, R., Nelson, S., 1996. Chlorophyll-a 

distribution and associated oceanographic conditions in the upwelling region off northern Chile 

during the winter and spring 1993. Deep-Sea Research 1 43, 267-289.  



69 

 

 

Murphy, A.E., Sageman, B.B., Hollander, D.J., 2000. Eutrophication by decoupling of 

the marine biogeochemical cycles of C, N, and P: A mechanism for the Late Devonian mass 

extinction. Geology 28, 427-430. 

 

Niklas, K.J., Chaloner, W.G., 1976. Chemotaxonomy of some problematic Paleozoic 

plants. Review of Palaeobotany and Palynology 22, 81-104. 

 

Niklas, K.J., 1976a. The chemotaxonomy of Parka decipens from the Lower Old Red 

Sandstone; Scotland (U.K.). Review of Palaeobotany and Palynology 21, 205-217.   

 

Niklas, K.J., 1976b. Chemotaxonomy of Prototaxites and evidence for possible terrestrial 

adaptation. Review of Palaeobotany and Palynology 22, 1-17.  

 

Nöth, S., Bruchschen, P., Richter, D.K., 1991. Conodont color alteration and 

microdolomite composition-implications to the Muschelkalk limestones (Upper Triassic) 

overlying the Upper Cretaceous intrusive body of the Vlotho Massif (Weserbergland, Northwest 

Germany). Geologie en Mijnbouw 70, 265-273.  

 

Nöth, S., Richter, D.K., 1992. Infrared spectroscopy of Triassic conodonts: a new tool for 

assessing conodont diagenesis. Terra Nova 4, 668-675.  

 



70 

 

Olcott, A.N., Sessions, A.L., Corsetti, F.A., Kaufman, A.J., de Oliviera, T.F., 2005. 

Biomarker evidence for photosynthesis during Neoproterozoic glaciations. Science 310, 471-

474.   

 

Olcott, A.N., Li, C., Sessions, A.L., Corsetti, F.A., Peng, P., 2006. Biogeochemistry of 

Neoproterozoic low latitude glaciations. Geochimica et Cosmochimica Acta 70. A456.  

 

 

Olcott, A.N., 2007. The utility of lipid biomarkers as paleoenvironmental indicators. 

Palaios 22, 111-113.  

 

Olcott Marshall, A., Corsetti, F.A., Sessions, A.L., Marshall, C.P., 2009, Raman 

spectroscopy and biomarker analysis reveal multiple carbon inputs to a Precambrian glacial 

sediment, Organic Geochemistry 40, 1115-1123.   

 

Oschmann, W., 1991. Distribution, dynamics and paleoecology of Kimmeridgian (Upper 

Jurassic) shelf anoxia in Western Europe. Modern and Ancient Continental Shelf Anoxia 

Geological Society Special Publication 58, 381-395. 

 

Over, J.D., 1990. Conodont biostratigraphy of the Woodford Shale (Late Devonian-Early 

Carboniferous) in the Arbuckle Mountains, south-central Oklahoma. Ph.D. Dissertation, Texas 

Tech University. 

 



71 

 

Ourisson, G., Rohmer, M., Poralla, K., 1987. Prokaryotic hopanoids and other 

polyterpenoid sterol surrogates. Annual Review of Microbiology 41, 301-333. 

 

Ourisson, G., Rohmer, M., Poralla, K., 1982. Predictive microbial biochemistry – from 

molecular fossils to prokaryotic membranes. Trends in Biochemical Sciences 7, 44-51.  

 

Painter, P.C., Snyder, R.W., Starsinic, M., Coleman, M.M., Kuehn, D.W., Davis, A., 1985. 

Concerning the application of FTIR to the study of coal: a critical assessment of band 

assignments and the application of spectral analysis programs: Applied Spectroscopy 35, 475-

485.  

 

Parrish, J.T., Curtis, R.L., 1982. Atmospheric circulation, upwelling, and organic rich 

source rocks in the Mesozoic and Cenozoic eras. Palaeogeography, Palaeoclimatology, 

Palaeoecology 40, 31-66.  

 

Parrish, J.T., 1982. Upwelling and Petroleum Source Beds With Reference to Paleozoic. 

AAPG Bulletin 66, 750-774.  

 

Paxton, H., 2005. Molting polychaete jaws—ecdysozoans are not the only molting 

animals. Evolution and Development 7, 337-340. 

 

Pedersen, T.F., Calvert, S.E., 1990. Anoxia vs. productivity; what controls the formation 

of organic-carbon-rich sediments and sedimentary rocks? AAPG Bulletin 74, 454-466.  



72 

 

 

Peters, K.E., Walters, C.C., Moldowan, J.M. The Biomarker Guide, Second Edition 

Volume 2: Biomarkers and Isotopes in Petroleum Exploration and Earth History. Cambridge 

University Press, 2005. 

 

Philp, R.P., Jones, P.J., Lin, L.H., Michael, G.E., Lewis, C.A., 1989. An organic 

geochemical study of oils, source rocks, and tar sands in the Ardmore and Anadarko basins. 

Oklahoma Geological Survey Circular 90, 65-76. 

 

Playford, P.E., McLaren, D.J., Orth, C.J., Gilmore, J.S., Goodfellow, W.D., 1984. Iridium 

anomaly in the Upper Devonian of the Canning Basin, Western Australia. Science 226, 437-439. 

 

Powell, T.G. and McKirdy, D.M., 1973. Relationship between ratio of pristane to 

phytane, crude oil composition and geological environment in Australia. Nature 243, 37-39.  

 

Rabalais, N.N., Turner, R.E., Wiseman JR, W.J., Boesch, D.F., 1991. A brief summary of 

hypoxia on the northern Gulf of Mexico continental shelf: 1985-1988. Modern and Ancient 

Continental Shelf Anoxia Geological Society Special Publication 58, 35-47.  

 

Raup, D.M., Sepkoski, J.J., Jr., 1982. Mass extinctions of the marine fossil record. 

Science 215, 1501-1503. 

 



73 

 

Reimers, C.E., Ruttenberg, K.C., Canfield, D.E., Christiansen, M.B., Martin, J.B., 1996. 

Porewater pH and authentic phases formed in the uppermost sediments of the Santa Barbara 

Basin. Geochimica et Cosmochimica Acta 60, 4037-4057.  

 

Rejebian, V.A., Harris, A.G., Huebner, J.S., 1987. Conodont color and textural alteration: 

An index to regional metamorphism, contact metamorphism and hydrothermal alteration. 

Geological society of America Bulletin 99, 471-479.  

 

Roberts, C.T., Mitterer, R.M., 1992. Laminated black shale-bedded chert cyclicity in the 

Woodford Formation, Southern Oklahoma. Oklahoma Geological Survey Circular, 330-336.  

 

Sarjeant, W.A.S., 1986. Review of Evitt, W.R., 1985. Sporopollenin Dinoflagellate 

Cysts: their morphology and interpretation. Micropaleontology 32, 282-285.  

 

Saxton, C.P., 2010. Fold-Thrust Deformation along Portions of the Arbuckle Thrust 

System and Frontal Wichitas, Southern Oklahoma. AAPG Search and Discovery 91021. 

 

Schieber, J., 1996. Early Silica deposition in algal cysts and spores; a source of sand in 

black shales? Journal of Sedimentary Research 66, 175-183. 

 

Schieber, J., 2009. Discovery of benthic agglutinated foraminifera in Devonian black 

shales and their relevance for the redox state of ancient seas. Palaeogeography, 

Palaeoclimatology, Palaeoecology 271, 292-300. 



74 

 

 

Schwark, L., Empt, P., 2006. Sterane biomarkers as indicators of Paleozoic algal 

evolution and extinction events. Palaeogeography, Palaeoclimatology, Palaeoecology 240, 225-

236. 

 

Shi, J-Y., Mackenzie, A.S., Alexander, R., Eglington, G., Gowar, A.P., Wolff, G.A., 

Maxwell, J.R., 1982. A biological marker investigation of petroleums and shales from the 

Shengli oilfield, the People‘s Republic of China. Chemical Geology 35, 1-31. 

 

Sinninghe Damsté, J.S., de Leeuw, J.W., 1995. Biomarkers or not biomarkers: a new 

hypothesis for the origin of pristane involving derivation from methyltrimethyltridecylchromans 

(MTTCs) formed during diagenesis from chlorophyll and alkylphenols. Comments on Li et al. 

1995 Organic Geochemistry 23, 159-167. Organic Geochemistry 69, 2067-2074.  

 

Stachowitsch, M., 1991. Anoxia in the northern Adriatic Sea: Rapid Death, Slow 

Recovery.  Modern and Ancient Continental Shelf Anoxia Geological Society Special 

Publication 58, 119-129.  

 

Stauffer, C.R., 1933. Middle Ordovician Polychaeta from Minnesota. Bulletin of the 

Geological Society of America 44, 1173-1218.  

 

Stauffer, C.R., 1939. Devonian Polychaeta from the Lake Erie district. Journal of 

Paleontology 13, 500-511.   



75 

 

Streel, M., 1986. Miospore contribution to the upper Fammenian-Strunian event 

stratigraphy. Annals de la Societe Geologique de Belgique 109, 75-92.  

 

Summons, R.E., Love, G.D., Hays, L., Cao, C., Jin, Y., Shen, S.Z., Grice, K., Foster, 

C.B., 2006. Molecular evidence for prolonged photic zone euxinia at the Meishan and East 

Greenland sections of the Permian Triassic boundary. Geochimica et Cosmochimica Acta 70, 

A625. 

 

Swain, F.M., Rogers, M.A., Evans, R.D., and Wolfe, R.W., 1967a. Distribution of 

Carbohydrate residues in some fossil specimens and associated sedimentary matrix and other 

geologic samples. Journal of Sedimentary Petrology 37, 12-24.   

 

Swain, F.M., Bratt, J.M., Kirkwood, S., 1967b. Carbohydrate components of some 

Paleozoic plant fossils: Journal of Paleontology 41, 1549-1554.  

 

Swain, F.M., Bratt, J.M., Kirkwood, S., 1968. Possible biochemical evolution of carbohydrates 

of some Paleozoic plants. Journal of Paleontology 42, 1078-1082.  

 

Sylvester, R.K., 1959. Scolecodonts from Central Missouri. Journal of Paleontology 33, 33-49.  

 

Szaniawski, H., Wrona, R.M., 1973. Polychaete jaw apparatus and scolecodonts from the Upper 

Devonian of Poland. Acta Palaeontologica Polonica 18, 223-274. 

 



76 

 

Talyzina, N.M., Moldowan, J.M., Johannisson, A., Fago, F.J., 2000. Affinities of Early 

Cambrian acritarchs studied by using microscopy, fluorescence flow cytometry and biomarkers. 

Review of Palaeobotany and Palynology 108, 37-53. 

  

Tatomir, J., 2002. A paleontologic analysis of the Middle Devonian Bell Shale of 

Michigan. Michigan Academician 34, 34. 

 

Tissot, B., Durand, B., Espitalié, J., Combaz, A., 1974. Influence and nature and 

diagenesis of organic matter in formation of petroleum. AAPG Bulletin 58, 499-506.  

 

Turgeon, S.C., Creaser, R.A., Algeo, T.J., 2007. Re-Os depositional ages and seawater 

Os estimates for the Frasnian-Famennian boundary; implications for weathering rates, land plant 

evolution, and extinction mechanisms. Earth and Planetary Science Letters 261, 649-661.  

 

Urban, J.B., 1960. Microfossils of the Woodford Shale (Devonian) of Oklahoma. Master 

of Science Thesis, The University of Oklahoma. 

 

Van Waveren, I.M., 1994. Chitinous palynomorphs and palynodebris representing 

crustacean exoskeleton remains from sediments of the Banda Sea (Indonesia). Scripta Geologica 

105, 1-25.  

 

 



77 

 

Veevers, J.J., Powell, M.Mca., 1987. Late Paleozoic glacial episodes in Gondwanaland 

reflected in transgressive-regressive depositional sequences in Euramerica. Geological Society of 

America Bulletin 98, 475-487. 

 

Versteegh, G.J.M., Blokker, P., 2004. Resistant macromolecules of extant and fossil 

microalgae. Phycological Research 52, 325-339.  

 

Volkman, J.K., Banks, M.R., Denwer, K., Aquino Neto, F.R., 1989. Biomarker 

composition and depositional setting of Tasmanite oil shale from northern Tasmania, Australia. 

14
th
 International Meeting on Organic Geochemistry, Paris. 

 

Walker, J.D., Geissman, J.W., 2009. 2009 GSA geologic time scale. GSA Today 19, 60-

61.  

 

Wall, D., 1962. Evidence from recent plankton regarding the biological affinities of 

Tasmanites Newton 1875 and Leiosphaeridia Eisenack. Geological Magazine 99, 353-362.  

 

Wang, K., Attrep, JR, M., Orth, C.J., 1993. Global iridium anomaly, mass extinction, and 

redox change at the Devonian-Carboniferous boundary. Geology 21, 1071-1074.  

 

Whalen, M.T., Day, J., Eberli, G.P., Homewood, P.W., 2002. Microbial carbonates as 

indicators of environmental change and biotic crises in carbonate systems; examples from the 



78 

 

Late Devonian, Alberta Basin, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 

181, 127-151.  

 

Whelan, J.K., 1977. Amino acids in a surface sediment core of the Atlantic abyssal plain: 

Geochemica et Cosmochimica Acta 41, 803-810.  

 

Yiming, G., Baohua, L., Yuanlan, S., Yi, W., 2002. Late Devonian red tide and mass 

extinction. Chinese Science Bulletin 47, 1138-1144. 

 

Zodrow, E.L., Mastalerz, M., Orem, W.H., Šimůnek, Z., Bashforth, A.R., 2000. 

Functional groups and elemental analyses of Cuticular morphotypes of Cordaites principalis 

(Germar) Geinitz Carboniferous Maritime Basin, Canada. International Journal of Coal Geology 

45, 1-19.  

 

Zodrow, E.L., Mastalerz, M., 2001. Chemotaxonomy for naturally macerated tree-fern 

cuticles (Medullosales and Marattiales), Carboniferous Sydney and Mabou Sub-Basins, Nova 

Scotia, Canada. International Journal of Coal Geology 47, 255-275.  

 

Zodrow, E.L., Mastalerz, M., 2002. FTIR and py-GC-MS spectra of true-fern and seed-

fern sphenopterids (Sydney Coalfield, Nova Scotia, Canada, Pennsylvanian). International 

Journal of Coal Geology 51, 111-127. 

 

 



79 

 

Page intentionally left blank 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

 



80 

 

Appendix I 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



81 

 

 

 

F
ig

u
re 1

: C
h
aracteristic m

ass frag
m

en
ts o

f rep
resen

tativ
e h

o
p
an

e (1
7
-

α
-D

iah
o

p
an

e), steran
e (5

-α
-C

h
o
lestan

e), an
d
 tw

o
 n

-alk
an

es (C
1
7
 an

d
 

C
1
6
). 1

7
-α

-D
iah

o
p
an

e as in
 P

eters et al. (2
0
0
5
), 5

-α
-C

h
o
lestan

e as in
 

G
alleg

o
s (1

9
7
1
). n

-alk
an

es fro
m

 P
eters et al. (2

0
0
5
).  



82 

 

 
Figure 2: Location map for I-35 and Classen Lake 

sections and the Ranch 2-20 core section 
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Figure 3: Stratigraphic column for the Lower and Middle 

Paleozoic in southern Oklahoma after Carter et al. (1998) 
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Figure 4: Location and stratigraphic position of 

isolated scolecodonts 
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Figure 7: Ranch 2-20 with CPI calculation and Pristane/Phytane ratios 

with measured depth 
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Figure 8: Representative Arbuckle Mountain thin sections (I-35) a.) picturing partially excised 

silica infill from a Tasmanites cyst b.) common texture with compressed Tasmanites cysts and 

undeformed cysts filled in with pyrite; where infill has been stripped away by preparation it is 

assumed that it was either silica or pyrite c.) showing concentration of pyrite d.) dolomite 

rhombohedrons in the upper Woodford Shale 
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Figure 9: Representative thin sections from Ranch 2-20 a.) showing pyrite and shell fragment 

rich texture, carbonate rich as indicated by red stain b.) foraminifera shell c.) coral and shell 

fragments d.) dolomite rhombohedrons 
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Figure 10: Representative microfossil specimens utilized for IR spectroscopy, 

a MI (scale 500 µm) of Pronereites (Stauffer, 1933), b lateral tooth (850 µm) 

belonging to unknown genera probably Pronereites, c-d MI of morphotype 

(scale bar 500 µm) probably belonging to a variant of Anisocerasites (Eller, 

1964).  
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Figure 11: Representative IR spectra of conodont element in percent absorbance (a,c,e); νOH at 3400 

cm
-1

, νasCH2 at 2960 cm
-1

, νsCH2 at 2870 cm
-1

, two phosphate overtone vibrational modes (2ν1ν3) at 

2080 and 2000 cm
-1

, νC=C 1650 cm
-1

, carbonate stretching at 1450-1420 cm
-1

 and 860 cm
-1

, νPO3
-4

 

1100 to 1000 cm
-1

, ν = stretching; νs = symmetric stretching; νas = antisymmetric stretching; ν1 and ν3 

= stretching overtone modes. Representative spectra of crushed scolecodont material in percent 

absorbance (b,d); νOH at 3400 cm
-1

, νasCH2 at 2943 cm
-1

, νsCH2 at 2870 cm
-1

, νsC=O at 1720 cm
-1

, 

νsC=C 1600cm
-1

, δCH3 + CH2 at 1430, 1378, 1337, 1236, and 1350 cm
-1

, νs C-O-C at 1132, 1102, 

1054, and 1005 cm
-1

, and δCH aromatic out of plane at 908, 880, 750, and 666 cm
-1

, ν = stretching; νs 

= symmetric stretching; νas = antisymmetric stretching; δ = deformation. The difference in the 

wavenumber (1600 and 1650 cm
-1

) between the C=C mode in scolecodont and conodont spectra is due 

to differing chemical bond environments (e.g. Painter et al., 1985). 
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Figure 12: Woodford Shale microspore and cyst diversity from Urban (1960) 

with lower middle and upper portions of the formation indicated. Grey 

represents percent contribution from species of Tasmanites, black represents 

percent contribution from genera of brown algae cysts, and white represents 

percent contribution from genera of terrestrial plant spores 
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 Figure 13: Kerogen type-quality plot showing distributions from I-35, Classen Lake, and 

Ranch 2-20 



94 

 

 

 

Table 1: Biomarker ratio values; Isorenieratane abundance in peak area. TT = Tricyclic 

Terpanes; CPI = Carbon Preference Index, Pr/Ph = Pristane/Phytane, 17αHopanes; G = 

Gammacerane, S = Steranes, N/A = Not Available 
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Appendix II 
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Representative thin section photos from an upper Woodford Shale phosphate nodule: a.) 

pyrite infilled cyst b.) oblique section through a foraminifera shell c.) plant spore d.) 

foraminifera shell 


