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ABSTRACT  

 

Coupling of neurons by electrical synapses (gap junctions) transiently increases during 

embryonic and/or early postnatal development of the mammalian central nervous system and 

plays an important role in a number of developmental events. A previous study revealed the 

mechanisms that control the developmental uncoupling of neuronal gap junctions, however, 

developmental regulation of neuronal gap junction coupling is largely unknown and is addressed 

in this dissertation. The current study revealed that the developmental increase in neuronal gap 

junction coupling is regulated by the interplay between the activity of group II metabotropic 

glutamate receptors (mGluR) and GABAA receptors (GABAAR). Specifically, the experiments 

including dye coupling, electrotonic coupling, western blots and siRNA technology in the rat and 

mouse hypothalamus and cortex in vivo and in vitro demonstrated that activation of group II 

mGluRs augments, and inactivation prevents, the developmental increase in neuronal gap 

junction coupling and connexin36 (Cx36, neuronal gap junction protein) expression. In contrast, 

changes in GABAA receptor activity have the opposite effects. The regulation by group II 

mGluRs is through cyclic AMP/protein kinase A-dependent signaling, while the GABAAR-

dependent regulation is via influx of Ca2+ through L-type voltage-gated Ca2+ channels and 

activation of protein kinase C-dependent signaling. Further, the receptor mediated up-regulation 

of Cx36 requires a neuron-restrictive silencer element in the Cx36 gene promoter and the down-

regulation involves the 3’ untranslated region of the Cx36 mRNA, as shown using real-time 

quantitative polymerase chain reaction and luciferase reporter activity analysis. In addition, the 

methyl thiazolyl tetrazolium analysis indicates that mechanism for the developmental increase in 

neuronal gap junction coupling directly control the death/survival mechanisms in developing 
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neurons. Altogether, the results suggest a multi-tiered strategy for chemical synapses in 

developmental regulation of electrical synapses.  
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1. Gap junctions – structure and function  
 

1.1 Connexins 

While, in the mature central nervous system (CNS), most neurons communicate with one 

another primarily by chemical synapses, a large subset of neurons also relies on electrical 

synapses for the purpose of fast and synchronous synaptic transmission (Benett, 1977). The 

structural correlates of electrical synapses are gap junctions which are illustrated in Fig. 1. Gap 

junctions are intercellular connections that contain two hemichannels (also known as connexons) 

composed of six transmembrane proteins called connexins (Kumar and Gilula, 1996). At least 

20 isoforms encoding connexins in human and rodent genomes have been identified to date 

(Willecke et al., 2002; Mathias et al., 2010). This family of proteins has been generally named 

according to their approximate molecular weight (e.g., connexin36, Cx36 is ~36 kDa in mass). 

Since expression of connexins is tissue- and cell- specific, Cx26, Cx30, Cx32, Cx33, Cx36, 

Cx37, Cx40, Cx43, Cx45, Cx46, and Cx57 have all been reported to be present in the nervous 

system. Among them, Cx43 is the most abundantly expressed in astrocytes (Nagy and Rash, 

2000). Cx36 is an exclusive component of neuronal gap junction, and Cx45 or Cx57 also can 

form neuronal gap junctions (Söhl et al., 2005). This dissertation primarily focuses on gap 

junctions in mammalian neurons, which are often synonymous with electrical synapses, with 

particular emphasis on Cx36 containing-gap junctions. 

 

1.2 Gap junction channels 

Connexins are integral membrane proteins containing four transmembrane-spanning 

domains, characterized by two extracellular loop domains, and cytoplasmic carboxy- and amino-

terminal domains as well (Kumar and Gilula, 1996). The extracelluar regions are crucial for the 
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Figure 1. Diagram of gap junctions and their connexin constituents. (A) Connexin protein. (B) 

Single gap junction channel, formed by the apposition of two hemichannels also know as 

connexons. (C) Gap juncion plaque, assembled with tens to thousands of individual channel 

units. (Diagram is modified from Meier and Dermietzel, 2006).  
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docking between connexons on neighboring cells. The cytoplasmic domains have profound 

effects on characteristics of individual channel activity via association with a variety of partners, 

e.g., tight and adherens junctional proteins, protein kinases and phosphatases, and cytoskeletal 

elements (Dbouk et al., 2009). One connexon is located in the membrane of one cell and is 

attached to the connexon of the neighboring cell, forming a continuous aqueous pathway, a 

single gap junction channel, with an extremely low electrical resistance (Goodenough et al., 

1996; Martin and Evans, 2002). In general, gap junction channels often cluster together to form 

gap junctional plaques containing tens to thousands of individual channel units (Söhl et al., 

2005).  

Connexons may have only one type of connexins (homomeric connexons), or more 

(heteromeric connexons), and the gap junction channels can be composed by two identical 

(homotypic channels) or different (heterotypic channels) types of connexons (Fig. 2). Most cells 

in the body and brain, thus, can have multiple connexins depending on their molecular 

compositions and selective interactions, resulting in diverse physiological characteristics. Cx36 

has been reported to form homomeric/homotypic channels (Li et al., 2008). 

 

1.3 Gap junctional intercellular communication 

Gap junction channels can perform very unique functions in neuronal circuits by directly 

connecting the cytoplasmic compartments of two adjacent cells. In addition to the ability to pass 

electrical current, by Na+ and K+ ions, gap junction channels can also propagate various 

cytoplasmic molecules through the wide pores (12-14 Å). The intercellular exchange of Ca2+, 

IP3, cAMP, glucose, and small molecules (less than 1 kDa) through gap junction channels is 

mediated by passive diffusion. Nonbiological tracer molecules, such as Lucifer yellow, 

neurobiotin, ethidium bromide, and fluorescein derivatives, can also permeate. This trait makes 
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Figure 2. Multiple types of connexons and gap junction channels. (Diagram is modified from 

Bloomfield and Völgyi, 2009).  
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the method of “dye coupling” a powerful tool to evaluate the incidences and extents of gap 

junction connection between neurons (Vaney, 2002; Arumugam et al., 2005). Gap junction 

channels display different selectivity and permeability to the passing molecules based upon 

connexin subtype compositions (Evans et al., 2006).  

 

2. Regulation of gap junctional communication 

Obviously, a variety of factors affect gap junctional intercellular communication at 

multiple and diverse levels. The effects of them can contribute to both short- and long-term 

regulation of gap junctional intercellular communication. Short-term regulation, which occurs 

rapidly within minutes to hours, mediates changes in the opening probability and/or unitary 

conductance of a single channel already in place at gap junctions. Long-term regulation (i.e. 

over hours or days or even longer periods) influences the number of junctional plaques and/or 

channels present in the membrane. It occurs at the transcriptional, translational, and post-

translational levels by altering rates of synthesis, assembly, trafficking, and turnover for gap 

junction channels (Goodenough et al., 1996).  

 

2.1 Regulation of the channel gating 

The conductances of gap junction channels can be regulated by gating mechanisms, 

which can be affected by changes in transjunctional voltage, cytoplasmic pH, and intracellular 

Ca2+ concentration (Spray et al., 1985). Many gap junction channels are voltage gated and can 

display multiple voltage-dependent conductance states (Goodenough and Paul, 2009). For most 

gap junction channels, conductance is maximal when the membrane voltage is equal between 

the interconnected cells and it declines symmetrically with deviations in either direction. Cx36 
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channels show the least voltage dependence of all connexin channels (Connors and Long, 

2004).  

The cytoplasmic pH is also involved in changes in gap junctional conductance. The 

conductance of many gap junction channels is sensitive to the pH of the cytoplasm and nearly 

insensitive to extracellular pH. Cytoplasmic acidification leads to closure of channels by 

protonation of amino acid side chains in the cytoplasmic domains of connexins (Duffy et al., 

2002). However, Cx36 channels undergo unique regulation by cytoplasmic pH since their 

conductance is reduced by alkalosis rather than acidosis (Gonzalez-Nieto et al., 2008).  

Ca2+ plays a much less potent role in regulating gap junctional conductance than proton 

ion does. Intracellular Ca2+ levels must rise to high levels, as seen under pathological conditions, 

in order to close gap junction channels (Connors and Long, 2004). 

 

2.2 Regulation by chemical neurotransmitters 

 Chemical neurotransmitters are certainly important modulators of gap junction 

conductance. The responsible mechanism in most cases is via intracellular second messenger 

pathways rather than by a direct effect on channel properties. Phosphorylation in the 

intracellular domains of gap junction channels is the best characterized regulatory mechanism 

to alter the gating activity. In fact, most connexin subtypes have multiple phosphorylation sites 

for a broad range of protein kinases, such as protein kinase A (PKA), protein kinase C (PKC), 

mitogen-activated protein kinase (MAPK), and pp60 tyrosine kinase, each of which responds to 

different stimuli (Lampe and Lau, 2000; Solan and Lampe, 2005). The role of dopaminergic 

receptors in modulation of gap junctions has been well described in the neocortex. For example, 

domaminergic activations via D1 and D2 receptors reduced gap junction conductance by a PKA-

dependant phosphorylation process in developing rat neocortical neurons (Rörig et al., 1995). 
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The effects of the other two monoaminergic neurotransmitters, noradrenaline and serotonin, on 

gap junction conductance have been also investigated in the mammalian brain. Both 

noradrenaline and serotonin produce a reduction of gap junction coupling (Rörig and Sutor, 

1996; Zsiros and Maccaferri, 2008). Additionally, γ-aminobutyric acid (GABA) has been shown 

to reduce the extent and strength of gap junction coupling in the rat suprachiasmatic nucleus 

(Shinohara et al., 2000). On the contrary, GABAergic inactivation in the retina shows a 

decreased permeability of gap junctions connecting horizontal cells, implying a positive 

regulatory role of inhibitory neurotransmitter in gap junctional communication (Piccolino et al., 

1982). Glutamate-mediated modulation of electrical synapses via different types of glutamate 

receptors has been also reported. For example, N–methyl–D–aspartate receptor (NMDAR) 

activations contribute to developmental gap junction uncoupling in the rat hypothalamus 

(Arumugam et al., 2005) and group I/II metabotropic glutamate receptor (mGluR) activation 

causes a long-lasting reduction of electrical synapse strength between the inhibitory neurons of 

the rat thalamic reticular nucleus (Landisman and Connors, 2005).  

 

2.3 Regulation by molecular mechanisms 

 

2.3.1 Transcriptional regulation 

Like other genes, the expression of connexin genes is intricately regulated at many 

different levels involving transcription, post-transcriptional RNA processing, transcript stability 

and localization, and translation. The first level of connexin gene regulation is at the level of 

transcription where genes are differentially transcribed during development or in response to 

(patho) physiological signals. Connexins are encoded by single gene copies, which are found in 

many different chromosomes. The general genomic structure of connexin genes is well 
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conserved. Most connexin genes contain two exons separated by a large intron. The first exon 

has 5’ untranslated region (5’UTR) and the second exon includes the complete open reading 

frame (ORF) of connexin gene and the subsequent 3’ untranslated region (3’UTR). Unlike the 

vast majority of mammalian connexin genes, the coding region of Cx36 gene has been shown 

to be interrupted by a single intron featuring a small part (the first 71 bp starting with ATG) of the 

reading frame on exon 1 and the rest on exon 2 (Fig. 3). Having suggested the coding region 

has to be spliced correctly to undergo proper translation, alternative splicing may lead to 

expression of different forms and/or properties of Cx36 via a robust modification in the Cx36 

coding region (Teubner et al., 2000).  

In principle, the total transcriptional expression profile of genes is controlled by the 

interaction of transcription factors with their target elements present in the regulatory region of a 

gene. For most connexin genes, the basal promoter is located within 300 bp upstream of the 

transcriptional initiation site. This region contains binding sites for numerous transcription factors 

which help initiate a program of enhanced or suppressed gene transcription. In addition to the 

basal expression of connexin genes by the ubiquitous transcription factors such as TATA box 

binding proteins, Sp1, and AP-1, the presence of additional elements within the promoter region 

is also crucial for the exclusive regulation of connexin gene expression in a cell type-specific 

manner.  

For example, the promoter region of Cx36 comprises a neuron-restrictive silencer 

element (NRSE) that binds the transcriptional repressor, RE1-silencing transcription factor 

(REST) in order to control neuron-specific expression of Cx36. Repressing role in Cx36 

transcription by REST is mediated by the recruitment of histone deacetylase, a key regulator of 

transcription, to the promoter (Martin et al., 2003). In additional to NRSE, the presence of a 

highly conserved cAMP responsive element (CRE) within Cx36 promoter is also functionally 
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Figure 3. Structure of connexin36 gene. The coding region of Cx36 is interrupted by an intron. 

Untranslated and translated regions are depicted as boxes in white and gray, respectively. 
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related to glucose-induced Cx36 downregulation. CREs are targets of a large family of PKA-

activated basic leucine-zipper CRE-binding factors including cAMP responsive element 

modulator and cAMP responsive element binding protein (CREB) which may  function as 

transcription suppressors of Cx36 gene according to extracellular stimuli (Allagnat et al., 2005; 

Arumugam et al., 2005).  

 

2.3.2 Post-transcriptional regulation 

Although transcriptional control is expected to play a major role in determining the 

specific expression pattern of connexin genes, many other mechanisms can also contribute to 

gene expression regulation. After being transcribed, the abundance of transcripts can be 

changed by promoting either rapid mRNA decay or mRNA stabilization. Thus, the interactions 

between regulatory elements within mRNA and RNA-binding proteins or small, non-coding 

RNAs determine proper processes, such as RNA processing, translation, and decay. The 5’ 

untranslated region (5’UTR) of Cx43 mRNA contains a strong internal ribosome entry site (IRES) 

which is sufficiently potent to permit connexin translation under stressful conditions (Schiavi et 

al., 1999). Cx32 mRNA also includes IRES which is important for the selective expression of 

this gene in cells of the nervous system, such as Schwann cells. The loss of IRES-mediated 

translation regulation has been implicated in Charcot-Marie-Tooth Disease, hereditary motor 

and sensory neuropathy (Hudder and Werner, 2000). 

Another type of translational control is mediated by one or more short upstream open 

reading frames (uORFs) that appear in the 5’UTR of the mRNA preceding the main ORF. They 

are usually shorter than the main ORF and inhibit translation initiation of the downstream gene 

mainly by stalling a scanning ribosome initiation complex. For example, the 5’UTR of Cx41 

mRNA contains three uORFs, playing an important role in the regulation of Cx41 translation 
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(Meijer and Thomas, 2003). The first uORF strongly inhibits translation, because mutation of the 

upstream AUG (uAUG) 1 enhanced translation, suggesting a ribosome scanning an mRNA with 

multiple uORFs translates a short peptide and dissociates prematurely after termination at 

uORF1. Therefore, translation of the main ORF depends on the availability of ribosomes that 

bypassed the uAUGs to reach the downstream main ORF (Meijer and Thomas, 2003). In the 

case of Cx43, there are various transcripts which exhibit different translational efficiencies. The 

5’UTRs with higher translation efficiencies lack uAUGs, whereas those with lowest translational 

activities contain uAUGs with adequate Kozak consensus sequences (Pfeifer et al., 2004). In 

addition, the presence of uORFs in a sbubset of the transcripts for Cx31, Cx45, Cx46, and Cx47 

has also been reported (Anderson et al., 2005). Curiously, the 5’UTR nucleotide sequence and 

arrangement of the uAUG in Cx36 genes are remarkably conserved across multiple species, 

implying functional roles in translation regulation.  

Lastly, a class of small and non-coding transcripts called microRNAs (miRNAs) plays a 

major role in post-transcriptional gene regulation. miRNAs are important negative regulators of 

target gene expression by translational repression or mRNA cleavage by base pairing to 

complementary mRNA sequences that are frequently located in the 3’ untranslated region 

(3’UTR). They are particularly enriched in the brain, where they play key roles in development 

as well as in adulthood (Vo et al., 2010; Hébert et al., 2010). Genomic analysis has revealed 

multiple miRNA binding sequences in 3’UTRs of Cx36, Cx43, and Cx45 genes, consistent with 

cell type-specific post-transcriptional repression of connexin synthesis (Rash et al., 2005). This 

report can be reconciled with previous data about the discrepancy between detection of mRNAs 

and the lack of detection of the corresponding proteins for several connexins in different brain 

regions, suggesting the possibility of inhibition of connexin translation by miRNAs (Rash et al., 

2005). However, the functional study of miRNAs and their regulatory mechanisms in the 



17 

 

regulation of connexin expression during neural network development remains to be conducted 

in the future. miRNA-mediated translational regulation of Cx43 during muscle differentiation has 

been well studied. Two miRNAs, miR-206 and miR-1, have been implicated to inhibit translation 

without targeting the message for degradation (Anderson et al. 2006).  

 

2.3.3 Post-translational regulation 

A connexin protein after its translation undergoes a chemical modification called post-

translational modification, chiefly phosphorylation. Many connexins (e.g., Cx31, Cx32, Cx36, 

Cx37, Cx40, Cx43, Cx45, Cx46, Cx50, and Cx56) have been shown to be phosphoproteins. 

Connexins do not seem to be glycosylated, but a few reports suggest other alterations, such as 

prenylation and acylation of Cx32 (Locke et al., 2006). In many connexins, the carboxy-terminal 

domain that is located in the cytoplasm seems to be the major region for phosphorylation. Cx36 

and Cx56 can be additionally phosphorylated at the cytoplasmic loop domain (Solan and Lampe, 

2009). Cx36 has been known to be phosphorylated by PKA (Urschel et al., 2006), PKC 

(Yevseyenkov et al., 2005), and calcium/calmodulin-dependent kinase II (CaMKII) (Alev et al, 

2008). However, Cx26 with a relatively short carboxy-terminal domain is the only connexin that 

has been reported not to be phosphorylated (Traub et al., 1989). Since Cx26 can form 

functional channels, connexin phosphorylation is not exclusively required for the formation of 

gap junctions. Nevertheless, connexin phosphorylation by several kinase pathways clearly has 

been implicated in the regulation of gap junctional communication at several stages throughout 

its life cycle, not only channel gating, but also the rates of connexin trafficking, gap junction 

assembly, and turnover (Laird, 2005).   
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2.4 Gap junction assembly and degradation  

The dynamic regulation of gap junction formation and degradation, like other membrane 

proteins, starts in the endoplasmic reticulum (ER). The ER is not only the site for connexin 

protein synthesis and processing but also functions as quality control center for newly 

synthesized proteins. When connexin proteins fail to fold correctly, degradation of misfolded 

connexins at the ER (i.e., ER-associated degradation) occurs via the ubiquitin/proteosomal 

system (Kelly et al., 2007). Connexins are post-translationally assembled into hemichannels in 

an intracellular compartment prior to transport to the plasma membrane. The location of 

connexin oligomerization depends on the type of connexin involved. For example, Cx32 

assembles either in the ER or between the ER and Golgi, while Cx43 assembles in the trans-

Golgi network. Once at the cell surface, a successfully assembled hemichannel in the plasma 

membrane of one cell aligns and docks with another from a neighboring cell to form an 

intercellular gap junction channel. After formation of a single gap junction is completed, the two 

hemichannels do not separate under physiological conditions. This gap junction may be laterally 

mobile through lipid rafts where it is clustered into a gap junction plaque. Growth of gap 

junctions occur by incorporation of additional gap junction channels to the plasma membrane 

followed by their incorporation to the periphery of existing gap junction plaques. Thus, small gap 

junction plaques can coalesce into larger plaques to function as electrical synapses (Saez et al., 

2003). 

Connexins turn over in the plasma membrane with a half-life of 1.5-5 h, which is much 

faster than most other membrane proteins (Musil et al, 2000). Gap junctions can be removed 

from the plasma membrane by the invagination, restriction, pinching off, and transport of entire 

junctions into the cytoplasm of one of the two adjacent cells. Once internalized, further 

degradation of gap junction channels occurs through lysosomal as well as proteosomal 
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pathways. Degradation may be regulated by ubiquininylation and phosphorylation (Segretain 

and Falk, 2004).   

 

3. Connexin hemichannels and non-connexin gap junction channels 

 

3.1 Connexin hemichannels 

Recent studies have shown that hemichannels can be also active in an unopposed form 

on the single plasma membrane, presumably to have alternative functional roles to gap 

junctional communication (Goodenough and Paul, 2003). Although hemichannels can be 

opened to experimental manipulation, in general they are primarily closed to prevent metabolic 

stress and death caused by the collapse of ionic gradients, loss of small metabolites, and influx 

of Ca2+ (Contreras et al., 2002). However, it has been demonstrated that activation of Cx43 

hemichannels in the astrocyte plasma membrane causes the release of ATP into extracellular 

space (Goodenough and Paul, 2003). The subsequent activation of purinergic receptors on 

adjacent cells initiates and propagates Ca2+ wave (Kang et al., 2008). In addition, hemichannels 

are also involved in release of signaling molecules other than ATP, i.e. nicotinamide adenine 

dinucleotide (Bruzzone et al., 2001), MAPK signaling in anti-apoptotic protection (Plotkin et al., 

2002) and ephaptic neuronal communication in retina (Kamermans et al., 2001). Cx36 is 

unlikely to form functional hemichannels, but Cx35, the fish ortholog of the mammalian Cx36, 

has been shown to display voltage-gated hemichannel activity (Valiunas et al., 2004).  

 

3.2 Non-connexin gap junction channels 

Besides the connexin proteins, pannexins represent another family of gap junction  
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proteins in vertebrates. Pannexins form large-pore non-selective channels in the plasma 

membrane and appear to form gap junctions only rarely. Pannexin channel properties are more 

suited for transmembrane transport of Ca2+ and ATP in response to physiological and 

pathological stimuli (Shestopalov and Panchin, 2008). Among identified 3 pannexins, pannexin1 

and 2 constitute neuronal gap junctions mainly in pyramidal neurons in the cortex and 

hippocampus (Bruzzone et al., 2003). The channels function by releasing large signaling 

molecules, such as ATP and arachidonic acid derivatives. Pannexin1 may contribute to 

ischemic neuronal death, while pannexin coupling with purinergic receptors triggers initiation of 

inflammatory response (MacVicar and Thompson, 2010).    

 

4. Distribution of gap junctions in the mature brain  

 

4.1 Hippocampus 

Dendrodentritic gap junctions between subpopulation of GABAergic interneurons are 

found in the various layers of CA1, CA3, and dentate gyrus of the hippocampus (Kosaka and 

Hama, 1985). Functional and molecular evidence suggested that electrically coupled pairs of 

interneurons express Cx36 mRNA (Venance et al, 2000). The role of electrical synapses 

between hippocampal interneurons is likely in generation of synchronized oscillatory activity 

(Bartos et al., 2002). Pyramidal neurons also express Cx36 in CA3 region and may be 

electrotonically coupled through axoaxonal gap junctions to mediate the generation of oscillation 

(Connors and Long, 2004). However, the degree of coupling between pyramidal neurons is 

believed to be much lower than that between interneurons (Venance et al, 2000; Traub et al., 

2003). The role of electrical synapses within the dorsal hippocampus is recently suggested to be 
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linked to context-dependent fear learning and memory associated with theta rhythms (Bissiere 

et al, 2011).  

 

4.2 Inferior olive 

The inferior olive, which forms the sole source of climbing fiber input to Purkinje cell in 

the cerebellum, has shown strong electrical coupling (Long et al., 2002). The abundant gap 

junctions between olivary neurons express Cx36 (Rash et al., 2000). Cx36 deficient animals 

show a robust reduction in both the prevalence and the strength of electrical synapses, thus 

they represent no synchrony among knock-out cells. However, spontaneous subthreshold 

rhythmic activity is sustained in the Cx36 knock-out mouse, implying that electrical synapses are 

required for the synchronization of olivary rhythms rather than the generation (De Zeeuw et al., 

2003).  

 

4.3 Hypothalamus  

The vast majority of neuronal groups in the hypothalamus express Cx36, which is 

observed in the paraventricular nucleus (PVN), anterior hypothalamic nucleus, supraoptic 

nucleus (SON), arcuate nucleus, and mammaillary region (Condorelli et al., 2000; Arumugam et 

al., 2005). The presence and functional significance of gap junction coupling in the SON and 

PVN have been well demonstrated: the gap junction coupling between neuroendocrine cells 

increases in response to dehydration, gestation and lactation suggesting an important role in the 

secretion of oxytocin and vasopressin via synchronization of neuroendocrine cells to the blood 

(Hatton, 1998). Moreover, many neurons in the suprachiasmatic nucleus communicate via 
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Cx36-containing electrical synapses to synchronize spiking activity for the purposes of 

regulation of normal circadian behavior (Long et al., 2005). 

 

4.4 Neocortex  

Similar to the hippocampus, in the mature neocortex, electrical synapses between 

interneurons are more prevalent than between excitatory pyramidal neurons (Galarreta and 

Hestrin, 2001). Both morphological and physiological studies have established the exclusive 

presence of electrical synapses between GABAergic interneurons of the same type. There are 

at least five different classes of electrically coupled networks of GABAergic neurons in the 

neocortex. These networks are extensive and nearly independent of each other type of coupled 

interneuron network suggesting distinct roles in coordinating cortical activity (Hestrin and 

Galarreta, 2005). The possible role of electrical synapses is to allow signaling among inhibitory 

neurons and promote their synchronous spiking within networks of inhibitory neurons (Galarreta 

and Hestrin, 1999). Cx36 is necessary for the network of dendritic (dendro-dendritic or dendro-

somatic) gap junctions between cortical GABAergic interneurons (Fukuda et al., 2006). Cx36-

containing electrical synapses in inhibitory neurons are responsible for the synchrony of 

oscillatory rhythmic activity in the theta and gamma frequency in the neocortex (Deans et al., 

2001). Excitatory neurons (i.e., pyramidal neurons or spiny stellate neurons), on the other hand, 

do not use electrical synapses for communication except during the early postnatal period 

(Fukuda et al., 2007). Excitatory and inhibitory neurons do not show electrical synapses 

between each other, although Cx36 is involved in the rare electrical coupling between 

interneuron and pyramidal neuron in the immature cortex (Galarreta et al, 1999; Venance et al., 

2000). 
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5. Function of gap junctional communication 

 

5.1 Role of gap junctions during CNS development 

The embryonic development of the mammalian brain and the subsequent maturation of 

the specific brain areas are complex processes. They involve a wide diversity of molecular and 

cellular mechanisms including gap junction-dependent communication between developing 

neurons as well as developing glial cells. In general, gap junction coupling contributes to the 

generation of spontaneous electrical activity and the passage of small signaling molecules for 

biochemical interactions between cells. It serves prominent roles during the developmental 

process of almost all regions of the brain, including neurogenesis, neuronal migration, cellular 

differentiation, and synapse formation (Elias and Kriegstein, 2008).  

In the neocortex, gap junction coupling is particularly extensive during embryonic and 

early postnatal development (Lo Turco and Kreigstein, 1991; Peinado et al., 1993). Cx26, Cx36, 

Cx37, Cx43, and Cx45 have been found in the rodent neocortex during embryonic development. 

The expression of these connexins appears to be differentially regulated in a spatial and 

temporal fashion, which might have functional significance because each connexin subtype has 

different permeability and regulation properties (Cina et al., 2007). Gap junctions are expressed 

in almost every cell type of the neocortex, such as astrocytes, oligodendrocytes, pyramidal 

neurons, inhibitory interneurons, and progenitor cells. An early study suggested that gap 

junction-coupled neuroblasts with clusters of up to 90 cells in the ventricular zone can act as 

precursors for the functional columns found in the matured neocortex (Lo Turco and Kreigstein, 

1991). Gap junction coupling can also influence the proliferation of neuronal progenitor cells by 

the synchronization of the cell cycle of closely located cells, which may play an important role in 

controlling the pattern of cortical neurogenesis (Bittman et al., 1997). Furthermore, gap junctions 



24 

 

contribute to the formation of neuronal cortical circuits in neonatal rodents by mediating 

synchronized oscillatory network activity (Khazipov and Luhmann, 2006).  

On the other hand, the formation of gap junctions between adjacent cells can serve as 

dynamic adhesive contact points rather than intercellular channels for the direct communication. 

Gap junctions composed of Cx26 and Cx43 mediate glial-guided radial migration of newborn 

neurons in the cortex due to the adhesive property of connexins, perhaps interacting with the 

internal cytoskeletal elements (Elias et al., 2007). Hemichannel-mediated spread of Ca2+ waves 

across progenitor cell populations, associated with purinergic receptors, also helps to fine-tune 

the establishment of neural networks during late neurogenesis (Weissman et al., 2004). Another 

important role of gap junctions in cell death communication during development has been also 

suggested. Gap junctions contribute to neuronal cell death that is caused by either increased or 

decreased NMDA receptor (NMDAR) activity in the developing rat hypothalamic neurons (de 

Rivero Vaccari et al., 2007). Taken together, connexin-composed gap junction channels, 

hemichannels, and adhesion molecules act in distinct ways to mediate radial glial division, 

neuronal migration, neuronal differentiation, and apoptosis.  

The expression of connexins shows a highly dynamic pattern during neural development. 

The expression of Cx36 in the developing rodent brain shows two peaks; one at the end of 

embryogenesis followed by a decrease at birth and another at about postnatal day 14 (Gulisano 

et al., 2000). Almost all brain areas express Cx36 in the early postnatal life. The first peak of 

Cx36 expression coincides with the time of the greatest neurogenesis of the cortical cells, 

suggesting the regulatory role in both defining properties of morphogenetic boundaries 

(Gulisano et al., 2000) and influencing neural differentiation positively (Hartfiled et al., 2010). 

The role of the second, postnatal peak, which corresponds to the time of highest incidence of 
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neuronal coupling, has been suggested to be involved in the experience-dependent maturation 

of neuronal circuits (Maher et al., 2009).  

 

5.2 Role of gap junctions during CNS injury 

In addition to the crucial role in developing nervous system, many studies also have 

suggested the role of gap junctions in many neurological disorders, including epilepsy (Rouach 

et al., 2002), ischemia (Talhouk et al., 2008), brain trauma (Frantseva et al., 2002), 

demyelinating neuropathies (Herrmann, 2008), and hearing loss (Hoang et al., 2009). Several 

pathological conditions change the pattern of connexin expression, which leads to changes in 

cellular response to CNS injury.  

Of 20 connexins, changes in both spatial and temporal Cx43 protein expression have 

been observed following various types of CNS injuries such as ischemia and traumatic brain 

injury (Rouach et al., 2002). Cx43 has been long considered as an important mediator of CNS 

injury since astrocytic Cx43-containing gap junctions are the most ubiquitously present and 

involved in maintaining the homeostasis of the extracellular milieu of neurons (Cronin et al., 

2008). The response of Cx43 varies with severity of injury. For instance mild to moderate 

ischemic injury seems to induce Cx43 over-expression in injured region while severe injury 

appears to reduce Cx43 expression within the insulted site probably due to cell death in that 

region (Orellana et al., 2009). In animal models of ischemia, altered Cx43 protein levels have 

been shown in many brain areas, particularly in the hippocampus with an increased Cx43 

expression level after transient forebrain ischemia (Rami et al., 2001). An elevated Cx43 

expression can be also detected in striatum after mild to moderate global cerebral ischemia 

induced by bilateral carotid artery occlusion in rats (Hossain et al., 1994). Another model of focal 

cerebral ischemia using photothrombosis shows enhanced level of Cx43 expression in cortex as 
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well (Haupt et al., 2007). A similar increase in Cx43 expression is found in the ischemic 

penumbra in post-mortem human brain samples following focal brain ischemia (Nakase et al., 

2006). In a model of in vitro ischemia, astrocytic Cx43 gap junctions and hemichannels remain 

functionally open enabling intercellular transfer of ions and metabolites between damaged and 

healthy cells (Cotrina et al., 1998). The increased probability of Cx43 hemichannel opening may 

involve cytoplasmic Ca2+ changes, reactive oxygen species, and reductions in the concentration 

of extracellular Ca2+ associated with global ischemia (Retamal et al., 2007; Decrock et al., 2009). 

In addition to astrocytic hemichannel opening, ischemic conditions also open neuronal gap 

junction hemichannels composed of pannexin1 (Thompson et al, 2006). 

Similar changes are detected after the traumatic insult. Acute compression injury to the 

spinal cord leads to decrease in Cx43 expression in the white and gray matter area of spinal 

cord (Theriault et al., 1997). Enhanced Cx43 expression also can be seen in activated microglia 

in a brain stab wound injury model, which might be triggered by inflammatory mediators 

(Eugenin at al., 2001). Another animal model of traumatic brain injury using lateral fluid 

percussion shows an increase in Cx43 expression in the cortex and hippocampus (Ohsumi et 

al., 2006).  

In addition to glial connexins, neuronal connexins also undergo spatiotemporal changes 

after specific insults. Global ischemia induced by temporary bilateral occlusion of common 

carotid arteries in adult male mice leads to a selective increase in Cx32 and Cx36 but not Cx43 

proteins in the CA1 hippocampal region before the onset of neuronal death (Oguro et al., 2001). 

The induction of Cx36 immunoreactivity is also found in CA3 pyramidal neurons 1 hour after 

traumatic brain injury, and then Cx36 gradually decreases to control levels (Ohsumi et al., 2006). 

In addition, another traumatic injury model with the use of laser lesioning in the mouse retina 

shows an increased expression of Cx36 in the inner and outer plexiform layers in the penumbra 
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area without changes in mRNA expression (Striedinger et al., 2005). However, Cx36 mRNA and 

protein levels progressively decrease in the hippocampus, but not in other brain regions, of the 

epileptic model induced by systemic administration of 4-aminopyridine (Zappala et al., 2006).   

Although the contribution of gap junctions to CNS injuries is likely, it is still surrounded by 

some controversy depending on the severity of the insult. For example, Cx36 may have dual 

roles, either beneficial or detrimental, since the presence of Cx36 can promote either survival or 

damage after injury (Striedinger et al., 2005; Wang et al., 2010). The spread of apoptotic or 

necrotic signals through gap junctions has been suggested to propagate cell death from 

stressed to neighboring cells thus the blockade of gap junctions can be potently neuroprotective 

(Thompson et al., 2006). However, a ‘good samaritan’ role by passing cell survival promoting 

factors such as metabolites or genetic materials between cells is also possible (Jäderstad et al., 

2010). Gap junction channels may help to buffer harmful levels of substances by allowing 

diffusion of ions and molecules to less injured cells, which in turn may counteract cytotoxicity 

and contribute to cell survival in the initially affected cells (Nakase et al., 2006).  

 

5.3 Cx36 knockout animal studies 

Recently, the mechanisms underlying the behavioral phenotypes of Cx36-deficient 

animals have been addressed. The Cx36 knock-out mice have the relatively benign behavioral 

phenotype in spite of a loss of electrotonic coupling and changes in subthreshold activities in 

many areas including retina, neocortex, hippocampus, thalamic reticular nucleus, and inferior 

olivary nucleus (Connors and Long, 2004; Frisch et al., 2005; van der Giessen et al., 2008). 

They experience impaired function in retina and reproductive system (Bennett and Zukin, 2004). 

The retina of Cx36 knock-out mouse shows the normally developed cellular organization of the 

rod pathway, but the functional coupling between AII amacrine cells and bipolar cells is 
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disrupted leading to impaired scotopic vision (Guldenagel et al., 2001). Electrical coupling 

between suprachiasmatic nucleus neurons is also lost in Cx36 knock-out mice showing 

abnormal circadian behavior (Long et al., 2005). In addition, Cx36 knock-out mice exhibit a 

remarkable resistance to neuronal death caused by NMDAR dysfunction (de Rivero Vaccari et 

al., 2007) or focal cerebral ischemia (Wang et al., 2010). A number of Cx36 mutant studies 

support the significant physiological roles of neuronal gap junction coupling in learning and 

memory, although Cx36 deficient animals show the mild relatively normal behavioral 

phenotypes (Frisch et al., 2005; van der Giessen et al., 2008). However, to compensate for 

Cx36 loss, individual neurons presumably undergo changes in cytological and electroresponsive 

properties rather than upregulation of other connexins (De Zeeuw, et al., 2003).  

 

6. Chemical synaptic transmission  

 

6.1 GABA-dependent synaptic transmission 

GABA is the major inhibitory neurotransmitter in the mammalian CNS, which generates 

hyperpolarizing response. GABA activates three pharmacologically distinct receptor families, 

classified as ionotropic GABAA receptor (GABAAR) and GABAC receptor and metabotropic 

GABAB receptors. These receptors have different characteristics, each of which is linked to a 

different signaling pathway. The GABAAR and GABAC receptors are transmitter-gated Cl- 

channels that mediate fast synaptic transmission. Upon binding of GABA, GABAAR and GABAC 

receptor undergo conformational changes to allow Cl- to pass through its pore which inhibits the 

firing of new action potentials. By contrast, metabotropic GABAB receptors are coupled to G-

proteins to influence K+ and Ca2+ channels via second messenger systems, thus producing slow 

and prolonged inhibitory signals to modulate neurotransmitter release (Luján et al., 2004).  
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During early neuronal development, GABA acting via GABAARs initially functions as an 

excitatory neurotransmitter in a wide range of brain structures as a result of a high intracellular 

concentration of Cl-. It leads to generation of sodium action potentials, elevation of intracellular 

Ca2+ concentration, and interaction with NMDAR by removing the voltage-dependent 

magnesium block in immature neurons (Ben-Ari et al., 2007). However, during later stages of 

development, excitatory GABAergic activity becomes inhibitory due to the shift in the Cl- 

equilibrium potential (Liu et al., 2006).   

The activity of GABA receptors develops earlier than that of glutamate receptors, 

suggesting that GABA is the principal excitatory transmitter during early development (Ben-Ari 

et al., 2007). In addition, GABA-mediated signaling has been implicated in many developmental 

processes like neuronal proliferation, migration, differentiation, synapse maturation and network 

formation (Owens and Kriegstein, 2002).   

 

6.2 Glutamate-dependent synaptic transmission 

Glutamate is the major excitatory neurotransmitter in the CNS and acts on two classes 

 of glutamate receptors: ionotropic and metabotropic receptors. Ionotropic glutamate receptors, 

including NMDA, AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid), and Kainate, 

are ligand-gated nonselective cation channels that mediate fast excitatory synaptic transmission 

via flow of K+, Na+, and sometimes Ca2+. They mediate excitatory communication between 

neurons, but the speed and duration of the current is different for each type (Luján et al., 2004). 

Metabotropic glutamate receptors are divided into three groups, group I (mGluR1 and mGluR5), 

group II (mGluR2 and mGluR3), and group III (mGluR4, mGluR6, mGluR7, and mGluR8) based 

on receptor structure and physiological activity (Fig. 4). Unlike ionotropic receptors, they activate 

various biochemical cascades, leading to the modulation of a variety of target molecules. This  
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Figure 4. Classification and chemical signaling pathways of mGluRs. The different splice 

variants are grouped by sequence homology and the vertically represented transmembrane 

domains separate the amino- and carboxy-termini. The right panel shows the changes in 

chemical signals upon the activation of the corresponding mGluR subtypes. (Diagram is from 

Coutinho and Knöpfel, 2002).  
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can lead to changes in the synapse’s excitability, for example by presynaptic inhibition of 

neurotransmission, or modulation and even induction of postsynaptic responses (Luján et al., 

2004). Group II mGluRs (mGluR2 and mGluR3) negatively regulate cAMP signaling. They have 

modulatory roles to influence other receptor function, for example, they are known to reduce the 

activity of NMDAR (Ghose et al, 2009).  

Consistent with high sequence homology between mGluR2 and mGluR3, both receptors 

have similar signal transduction characteristics and agonist selectivity. However, separate 

mGluR2 and mGluR3 knockout mouse studies revealed the individual contributions of the 

mGluR2 versus mGluR3 in regulation of brain functions (Woolley et al., 2008; Pöschel et al., 

2005). Furthermore, the postnatal expression of mGluR subtypes is differentially regulated in an 

age-dependent manner. In the brain, mGluR2 expression is low at birth and increases during 

postnatal development, whereas mGluR3 is highly expressed at birth and subsequently 

decreases during maturation to adult levels (Catania et al., 1994). The expression of mGluR2 

and Cx36 shows parallel changes of the increasing pattern during early stages of postnatal 

period; they are low at birth and increase progressively later (Belluardo et al., 2000).  

 

7. Aim of the study 

Transient coupling of large groups of neurons by electrical synapses has been observed 

in a wide variety of regions in the developing mammalian nervous system (Bennet and Zukin, 

2004). Gap junction-mediated interneuronal communication is prevalent during embryonic 

and/or early postnatal phase playing an important role in a number of developmental events; 

subsequently, it declines back to low level and persists only in restricted brain areas in 

adulthood. Apparently, during the early postnatal period, both gap junctions and developing 

chemical synaptic connections coexist, although gap junction expression seems to be 
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prerequisite for chemical synapses formation in specific spatiotemporal settings (Todd et al., 

2010). Previous studies on the interactions between these two modes of communication 

focused mainly on the short time scale regulations such as gating and permeability of gap 

junction channels (Rörig et al., 1995; Rörig and Sutor, 1996). The long time scale mechanisms 

involved in changes in the level of Cx36-containing gap junction channel expression have not 

been investigated, and are of particular interest in this study. One recent study described that, 

during later stages of development, neuronal gap junction coupling decreases and this 

uncoupling event is regulated by the increasing glutamatergic synaptic transmission via 

ionotropic Ca2+-permeable NMDAR and CREB signaling pathway (Arumugam et al., 2005). 

However, the mechanisms for regulation of the developmental increase in neuronal gap junction 

coupling at earlier stages have not been studied (Fig. 5). In addition, the issue whether gap 

junctions, during development, contribute to either cell death or survival still is not understood.   

Therefore, the goal of this dissertation is to advance the understanding of the 

developmental regulation in Cx36-containing gap junction by exploring what and how certain 

physiological cues affect the developmental increase in electrical synapses and by further 

elucidating the functional implications of that developmental event. Specifically this study is 

designed to test the role of glutamate receptors and GABA receptors in the developmental 

increase in neuronal gap junction coupling and Cx36 expression as well as the developmental 

role of gap junctions in neuronal death/survival mechanisms. Evidently, some reports indicate 

that neuronal gap junction expression and communication may also increase in the adult 

nervous system after specific types of injuries or insults (Oguro et al., 2001; Chang et al., 2000). 

Furthermore, it is plausible to assume that developmental gap junction mechanisms are 

recapitulated during brain injury incidence. Therefore, the present studies will serve as a 

foundation for future studies to understand whether the developmental and injury-related 
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Figure 5. Developmental changes in neuronal gap junction coupling and Cx36 expression in the 

rat hypothalamus. Cx36-mediated gap junction coupling is colored blue. The developmental 

increase in NMDAR-mediated glutamatergic synaptic activity is in green. The unknown 

developmental mechanism in neuronal gap junction coupling at an earlier postnatal age is 

colored red. GJ, gap junction. 
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increases in gap junction coupling employ the same cellular and molecular mechanisms. They 

will eventually benefit the novel strategies for gap junction-associated pharmaceutical 

development.  

Experimental approaches included Western blot analysis, dye coupling, electrotonic 

coupling, real time quantitative polymerase chain reaction (RT-qPCR), small interfering RNA 

(siRNA) transfection, and luciferase reporter assay. The preparation used to study the 

developmental mechanisms in electrical synapses was the hypothalamus, which expresses gap 

junctions and is critical for homeostatic regulation and coordination of cardiovascular, nervous 

and endocrine functions (Hatton and Li, 1998). In particular, the hypothalamus plays an 

important variety of roles that include the regulation of heart rate, body temperature, feeding 

behavior, emotional behavior, circadian rhythms, and the endocrine system. Recent Cx36 

knockout studies shed the light on the specific role of Cx36 containing-gap junctions in circadian 

behavior through hypothalamic intercellular synchronization (Long et al., 2005).  

The dissertation consists of three parts in total: the general introduction (Chapter one), 

the research findings report entitled as “Interplay of Chemical Neurotransmitters Regulates 

Developmental Increase in Electrical Synapses” published in The Journal of Neuroscience (Park 

et al., 2011) (Chapter two), and conclusion and discussion of the further lines of research 

(Chapter three).   
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1. Introduction 

Transient coupling of large groups of neurons by electrical synapses (gap junctions) is a 

general phenomenon in the developing mammalian CNS: it has been documented in different 

regions of the CNS (neocortex, hippocampus, hypothalamus, striatum, locus coeruleus, spinal 

cord, etc.) and in different species (rat, mouse, ferret, opossum, etc.) (Bennett and Zukin, 2004). 

Neuronal gap junction coupling increases during embryonic and/or early postnatal development 

and plays an important role in a number of developmental events, including neuronal 

differentiation, cell death, cell migration, synaptogenesis, and neural circuit formation (Allen and 

Warner, 1991; Walton and Navarrete, 1991; Peinado et al., 1993; Lin et al., 1998; Bani-

Yaghoub et al., 1999; Personius et al., 2001; de Rivero Vaccari et al., 2007). It is believed that 

the contributions of gap junctions are via the passage of Ca2+, IP3, cAMP, and small molecules 

between the cells and coordination of metabolic and transcriptional activities in developing 

neurons (Kandler and Katz, 1998). In addition, gap junctions contribute to the generation of the 

highly synchronized excitatory electrical activity that is a hallmark of the developing brain (Feller 

et al., 1996; Ben-Ari, 2001). During later stages of development, neuronal gap junction coupling 

decreases (Arumugam et al., 2005). However, it increases in the mature CNS during neuronal 

injuries, such as ischemia, traumatic brain injury, inflammation, and epilepsy (Chang et al., 

2000; Frantseva et al., 2002; de Pina-Benabou et al., 2005; Nemani and Binder, 2005; Thalakoti 

et al., 2007). 

The developmental uncoupling of neuronal gap junctions occurs in response to 

increasing chemical synaptic (glutamatergic) transmission and activation of NMDARs 

(Arumugam et al., 2005). In addition, acute modulation of neuronal gap junction coupling by a 

number of neurotransmitter receptors in the developing and mature CNS has been reported 

(Hatton, 1998). However, whether chemical neurotransmitter receptors also regulate the 
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increases in neuronal gap junction coupling that occur during development and injuries is not 

known. Here we studied the cellular and molecular mechanisms for the developmental increase 

in neuronal gap junction coupling. The model system for the present study is the hypothalamus, 

which expresses gap junctions and is critical for homeostatic regulation and coordination of 

cardiovascular, nervous, and endocrine functions (Saper, 2004). We demonstrate that the 

developmental increase in neuronal gap junction coupling and expression of Cx36, neuronal 

gap junction protein are regulated by an interplay between the activity of group II mGluRs and 

GABAARs. We also show that this regulation is via NRSE in the Cx36 gene promoter and post-

transcriptional control of Cx36 mRNA. Finally, our data suggest that the mechanisms for the 

developmental increase in neuronal gap junction coupling contribute to the regulation of 

neuronal death/survival mechanisms in developing neurons. 

 

2. Materials and Methods 

 

Animal care 

The use of animal subjects in these experiments was approved by the University of 

Kansas Medical Center Animal Care and Use Committee. The experiments were conducted in 

accordance with NIH guidelines. Sprague-Dawley rats, Cx36 knockout mice (C57bl/6 

background strain) and wild-type mice (C57bl/6) of either sex were used. The Cx36 knockout 

was originally created by Dr. David Paul (Harvard Medical School). Mice were genotyped as 

described (de Rivero Vaccari et al., 2007).  

 

 

 



40 

 

Pharmacological treatments of animals 

Rat pups of either sex received daily subcutaneous injections of drugs in 3 increasing 

sets of concentrations: LY379268 - 3, 5, and 7 mg/kg; LY341495 - 1.5, 2, and 2.5 mg/kg; 

muscimol - 0.25, 0.5, and 0.75 mg/kg; bicuculline - 1, 1.25, and 1.5 mg/kg; administered, 

respectively, on postnatal days 1-5 (P1-5; dissolved in 20 μl of sterile saline), P6-10 (40 μl), and 

P11-15 (60 μl). Control animals received the corresponding volumes of sterile saline. The 

forebrain was dissected and weighted on P15 and only animals that received muscimol 

administrations demonstrated slightly reduced forebrain weight (not shown). However, because 

the loading of protein in all western blots was normalized (i.e., 50 μg of protein per lane) and the 

expression of tubulin and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in the 

hypothalamus was not different between the control and muscimol-treated animals (not shown), 

we concluded that a decrease in Cx36 expression in muscimol-treated rats was rather specific, 

i.e., it reflected the GABAAR dependent down-regulation of Cx36 and was not due to a 

nonspecific decrease in the amount of protein (e.g., because of decrease in the size of the 

forebrain). 

 

Brain slice and culture preparations and culture treatments 

To prepare brain slices, rats were anesthetized (nembutal; 70 mg/kg; intraperitoneal 

injection, i.p.), sacrificed, the brain was removed, and 400 μm-thick coronal hypothalamic slices 

were prepared (at 2-4°C) and kept (at 20-22°C) in artificial cerebrospinal fluid as described 

(Belousov and van den Pol, 1997). Cultures were prepared as reported previously (Belousov et 

al., 2001) from the medial hypothalamus or somatosensory cortex obtained from day 18-19 (rat) 

or 16-17 (mouse) embryos. Pregnant animals were anesthetized (nembutal; 70 mg/kg; i.p.) 

before embryos were removed. After disaggregation using papain, neurons were plated on 
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glass coverslips and raised in Neurobasal medium (Invitrogen, Carlsbad, CA, USA, cat.# 

21103), in which the percentage of neurons reaches ~95% (Wang et al., 2008). The medium 

was supplemented with B-27 (Invitrogen, cat.# 17504) and 0.5 mM L-glutamine. The culture 

medium was changed twice a week. Drug and siRNA treatments and luciferase construct 

transfections were performed using sister cultures. Cell survival was estimated by analyzing the 

number of live neurons as described (Belousov et al., 2001) and none of the chronic treatments 

reduced neuronal survival as compared to the control (only luciferase construct transfections 

and siRNA treatments induced neurodegeneration in cultures after, respectively, 5 and 7 days; 

therefore, in those experiments cells were exposed to the agents for not more than 4 and 6 

days, respectively). Dendritic processes were analyzed using calcein AM staining and were only 

affected by activation of GABAARs (slight increase) and inactivation of GABAARs (slight 

decrease). However, because these changes were opposite to those in Cx36 expression and 

dye coupling, we concluded that the changes in dendrites were not responsible for alterations in 

the expression of gap junctions. For chronic GABAAR blockade in vitro, we followed a previously 

proposed protocol (Muller et al., 1993), where for maximal effect the use of both bicuculline and 

picrotoxin was proposed. 

 

Dye coupling 

Dye coupling in slices and cultures was performed as described in detail (Arumugam et 

al., 2005). The pipette solution contained (mM): 145 KMeSO4, 10 HEPES, 2 MgCl2, 0.1 CaCl2, 

1.1 EGTA, 2 Na-ATP, and 0.3 Na-GTP, 0.2% neurobiotin (Vector Laboratories, Burlingame, CA, 

USA, cat.# SP-1120; MW323; gap junction permeable dye), and 0.04% dextran Alexa Fluor 594 

(Invitrogen, cat.# D22913; MW10,000; gap junction-impermeable dye) (pH 7.2, 3-7 

MΩ electrode resistance). Cells were patched using Multiclamp 700-B amplifier and pCLAMP10 
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software (Molecular Devices, Sunnyvale, CA, USA). In slices: On the day of preparation, slices 

were randomly numbered and the number and condition (a drug treatment) were documented in 

a database (Access) for later identification. Magnocellular neurons in the hypothalamic PVN and 

SON were labeled after initial identification based on their location, size, and 

electrophysiological properties (Arumugam et al., 2005). Only one neuron per slice was labeled 

as reported (Arumugam et al., 2005). After labeling, the slices were fixed, processed, and 

stained with fluorescein avidin D (FITC, 1:200, Vector Laboratories). Alexa 594 fluorescence 

and neurobiotin staining were visualized using, respectively, Texas Red and FITC filters in 

Nikon 80i fluorescent microscope, PHOTOMETRICS ES2 camera and OpenLab Software 

(Improvision, Lexington, MA, USA). The incidence of gap junction coupling was analyzed blindly 

for experimental groups as described (Arumugam et al., 2005). In cultures: Because different 

cell types are morphologically indistinguishable and electrophysiological characterization of cell 

types is not elaborated, neurons in cultures were chosen randomly. Neurons were labeled, 

stained, and analyzed as described above for slices. This experiment was conducted by Dr. 

Youngfu Wang. 

 

Electrotonic coupling 

To determine electrotonic coupling, dual whole-cell current clamp recordings were 

conducted in cultures from pairs of randomly-chosen neurons. Test current steps (500 ms, -100 

pA) were applied to cell 2 (injected cell) and electrotonic responses were detected in cell 1 (non-

injected cell). Recordings were done at a holding potential of -65 mV. Data were monitored 

using an electrophysiology approach (see above) and analyzed off-line with Clampfit 10 

(Molecular Devices). The coupling coefficient was calculated as the response amplitude in the 

non-injected cell (cell 1) divided by the amplitude in the injected cell (cell 2). Cells were 
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considered as coupled if the coupling coefficient was above 1.6%. This experiment was 

conducted by Dr. Youngfu Wang. 

 

Western blots 

Experiments were performed as reported in detail (Arumugam et al., 2005).  

Hypothalamic tissue or cultured cells were homogenized in a lysis buffer and total protein was 

determined using the Bio-Rad DC protein assay method. Fifty μg of protein was loaded in each 

lane, transferred to 0.45 μm Polyvinylidene difluoride membrane and processed with a blocking 

solution and antibodies. Rabbit anti-Cx36 (0.5μg/ml; Zymed, San Francisco CA, USA, cat.# 51-

6300), rabbit anti-Cx43 (0.2 μg/ml; Zymed, cat.# 71-0700), rabbit anti-mGluR2 (0.5μg/ml; 

Millipore, Billerica, MA, USA, cat.# AB9209), rabbit anti-mGluR3 (0.5μg/ml; Sigma, St. Louis, 

MO, USA, cat.# G1545), mouse anti-Tubulin (1:10,000; Sigma, cat.# T6793), and rabbit anti-

GAPDH (1:10,000; Cell Signaling Technology, Danvers, MA, USA, cat.# 2118) were used as 

the primary antibodies and they were visualized with horseradish peroxidase conjugated anti-

rabbit (1:10,000, Zymed, cat.# G21234) or anti-mouse (1:10,000, Zymed, cat.# G21040) 

antibodies. Signals were enhanced using ECL detection reagents (Amersham Biosciences, 

Piscataway, NJ, USA). Band optical density was determined by using Quantity One 

quantification analysis software 4.5.2 (Bio-Rad, Hercules, CA, USA). All optical density signals 

were normalized relative to tubulin or GAPDH, and experimental samples were compared to 

controls (set at 1.0). Tubulin and GAPDH levels per unit of total protein did not vary significantly 

among samples used in this study. 

 

 

 



44 

 

siRNA  

The mGluR2, mGluR3, and Cx36 siRNAs were purchased from Dharmacon RNAi 

Technologies (Lafayette, CO, USA; cat.# M-080176-00, L-094437-01 and L-090683-00, 

respectively). Each siRNA consisted of four pooled 19-nucleotide duplexes and was used in a 

final concentration of 50 nM. mGluR2 and mGluR3 siRNA transfections were performed on day 

in vitro 3 (DIV3) by using Lipofectamine 2000 (Invitrogen) and cells were processed on DIV7 for 

western blot analysis. Cx36 siRNA transfections were conducted on DIV10 and dye coupling 

was analyzed on DIV15. All transfections effectively reduced protein levels. Scrambled siRNAs 

were used as controls and were ineffective. 

 

Real time-quantitative polymerase chain reaction (RT-qPCR)  

Experiments were performed as reported (Al-Kandari et al., 2007). Total RNA was 

isolated from cultures using Trizol method (Invitrogen). Total RNA (1 μg) was reverse 

transcribed with oligo-dT primers and the SuperScript II kit (Invitrogen) according to the 

manufacturer’s instructions. One μl of the reverse transcription reaction material was used as 

template for RT-qPCR using a Bio-Rad iCycler in a total volume of 20 μl with SYBR Green PCR 

Master Mix (Applied Biosystems, Foster City, CA, USA) and amplified for 40 cycles for 15 sec at 

95°C and for 20 sec at 60°C. The following primer pairs were used: rat Cx36, 5'-

CTATGTGTGAAAGGGCAGGTT-3' (sense) and 5'-AGCACTACGCAAATGAGGGCAA-3' 

(antisense); rat GAPDH, 5'CAAGGCTGTGGGCAAGGTCAT-3' (sense) and 5'-

GCAGGTTTCTCCAGGCGGCAT-3' (antisense). RT-qPCR was performed using at least 4 

separately prepared sets of culture samples. For each sample set, Cx36 mRNA signals were 

normalized to GAPDH mRNA signals, and normalized values were compared to controls (set at 

1.0). 
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Luciferase reporter activity analysis  

Rat Cx36 gene promoter fragments were PCR amplified from -984 to +115 relative to the 

transcription start site of the Cx36 gene (GeneID 50564, official name Gjd2) from a rat bacterial 

artificial chromosome containing the gene. Primers used were as follows: 5'-

GCGAGATCTCGCTGTGCATCCGGAGGCAGC-3' for the antisense primer, 5'-

GCGGCTAGCCCCTGGTTCGCTGCTAGGCAC-3' for the sense primer. The PCR products 

digested with NheI and BglII were cloned into the luciferase reporter plasmid pGL3basic 

(Promega, Madison, WI, USA). Site-directed mutagenesis was performed to produce an NRSE 

deleted plasmid using the Transformer Site Directed Mutagenesis Kit (Clontech Inc. Palo Alto, 

CA) and the following primers: 5'- TAAAATCGATAAGGGTCCGTCGACCGATGC-3' for 

selection primer and 5'- GAGACTGCGGGAGTCCGAGGTGCTGTCCAG-3' for mutagenic 

primer (the mutated nucleotide is underlined). The full length 3’UTR of the rat Cx36 mRNA 

(accession number NM 019281) was PCR-amplified using sense primer, 5'- 

TCGAGGATCCAAAGGGCAGGTTTGGGGAAG-3' and antisense primer, 5'- 

GTTAGTCGACCAGGCCAAATGTCTGTCCAG-3'. The BamHI-SalI-digested products were 

cloned into the Cx36 promoter-containing pGL3basic vector replacing the SV40 poly A signal. 

All plasmid constructs were verified by sequencing. Cells were transfected on DIV3 using 

Lipofectamine 2000 reagent (Invitrogen) according to manufacturer’s instructions. Some 

cultures were incubated (DIV4-DIV7) in the constant presence of receptor agonists and 

antagonists; cultures incubated in the absence of drugs served as a control. On DIV7, cell 

lysates were harvested and luciferase assay was performed with the DLR-Dual Luciferase kit 

(Promega) and Turner TD-20/20 Luminometer as described previously (Al- Kandari et al., 

2007). All transfections for luciferase assay included an expression plasmid for Renilla 



46 

 

luciferase. The firefly luciferase activity was normalized to Renilla luciferase activity, to account 

for variation in transfection efficiency. 

 

Methyl thiazolyl tetrazolium (MTT) assay 

Neuronal viability in cultures was quantitatively evaluated by MTT assay. Cultures were 

raised in 24-well plates. In all NMDA tests, NMDA was added to the culture medium on DIV14 

(100 μM for 60 min in hypothalamic cultures or 10 μM for 30 min in cortical cultures) and then 

washed-out. LY341495- and LY379268-treated cultures were chronically (on DIV3-DIV15) 

incubated in the presence of these agents. Carbenoxolone was added to the culture medium on 

DIV14 (alone or together with NMDA) and remained in the medium until the end of the 

experiment (on DIV15). On DIV15, 24 hrs after NMDA wash-out, neurons were incubated with 

MTT (MTT cell Viability Assay Kit, Biotium, Inc.; Hayward, CA, USA; 40 μM, 400 μl per well) at 

37°C for 4 hrs. Then the medium was carefully aspirated and 400 μl of DMSO per well was 

added to dissolve the blue formazan product. To measure the absorbance, 200 μl of the 

medium from each well in 24-well plate were transferred into an independent well in a 96- well 

plate. The values of absorbance at 570 nm were measured using a microplate reader (μQuant, 

BioTek, Winooski, VT, USA). Further, as indicated above, cultures that are raised in Neurobasal 

medium contain mostly neurons (up to 95%). However, to control specifically for neuronal cell 

death, a separate group of cultures (n = 6) was subjected to a high concentration of glutamate 

(500 μM) starting from DIV14 for 24 hrs that killed all neurons, but did not affect glial cell 

survival. The absorbance in these purified glial cultures was measured, averaged, and the result 

was subtracted from the individual absorbance data in neuronal culture groups so that the final 

result would represent only neuronal death/survival. Finally, the absorbance results in 
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experimental groups were normalized to control groups. This experiment was conducted by 

Janna V. Denisova. 

 

Drugs and reagents 

All drugs were obtained from Sigma or Tocris (Ellisville, MO, USA) unless otherwise 

specified. 

 

Statistical analysis 

Data were analyzed using the two-tailed Student's t-test (paired, when possible), 

ANOVA or Fisher's exact probability test and InStat software (GraphPad Software, San Diego, 

CA, USA). Data are reported as mean ± SEM for the number of samples indicated. Each date 

point represents indicated day ± 1, except for siRNA and luciferase reporter activity 

experiments, where all dates are as indicated. 

 

3. Results 

 

Developmental increase in neuronal gap junction coupling in vivo 

Developmental changes in neuronal gap junction coupling were determined in 

magnocellular neurons in acute slices of the PVN and SON of the rat hypothalamus. We utilized 

a dye coupling method (Arumugam et al., 2005) that included the use of two dyes: neurobiotin, 

which passes through gap junctions (coupling tracer), and dextran Alexa Fluor 594, which is gap 

junction impermeable (Fig. 6A-C). We also performed western analysis on dissected  
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Figure 6. Developmental increase in neuronal gap junction coupling in the rat hypothalamus in 

vivo is regulated by an interplay between the activity of group II mGluRs and GABAARs. A-C, 

Images of neurobiotin (A, green) and dextran Alexa 594 (B, red) staining in an SON slice (P15; 

bicuculline-treated rat) are superimposed in C (shown at higher magnification). Yellow indicates 

dye colocalization in the primary-labeled neuron. Arrow indicates the secondary-labeled neuron. 

D, E, Incidence of dye coupling. Statistical significance was calculated using the Fisher's exact 

probability test (19-22 primary-labeled neurons per data point; data for SON and PVN are 

combined; also see Table 1). F-I, Expression of Cx36 protein in the hypothalamus. Optical 

density signals are normalized relative to tubulin and P15 saline-treated controls are set at 1.0. 

Statistical analysis (H, I): Student’s t-test; mean ± SEM; n = 10 in each group. In all graphs, 

statistical difference is shown relative to: (a), P1; (b), P15 saline; (c), LY379268; (d) bicuculline. 

A-E, Data were obtained by Dr. Yougfu Wang. 
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hypothalamus to confirm the dye coupling observations by measuring developmental changes 

in the expression of Cx36, a gap junction protein that is neuron specific and is essential for 

functional gap junctions in the hypothalamus (Belluardo et al., 2000; Rash et al., 2000; Long et 

al., 2005) (Fig. 6F,G). The incidence of dye coupling, i.e. the percentage of primary-labeled 

neurons coupled to one or more secondary-labeled neurons, and the expression of Cx36 both 

increased between P1 and P15 (Fig. 6). This indicates a developmental increase in neuronal 

gap junction coupling in the hypothalamus. Daily (on P1-P15) subcutaneous administration of 

the group II mGluR agonist LY379268 augmented, and group II mGluR antagonist LY341495 

prevented, these developmental increases in gap junction coupling and Cx36 expression (Fig. 

6D,F,H, and Table 1). In contrast, daily administration of the GABAAR agonist muscimol 

prevented, and GABAAR antagonist bicuculline augmented, the developmental increases in gap 

junction coupling and expression of Cx36 (Fig. 6E,G,I, and Table 1) (see Materials and Methods 

for drug concentrations). 

 

Developmental increase in neuronal gap junction coupling in vitro 

A previous study in primary rat hypothalamic cultures indicated (Arumugam et al., 

2005) that a developmental increase in neuronal gap junction coupling occurs during the 

first two weeks of in vitro development. This increase was prevented by blockade of action 

potentials (with 2 μM tetrodotoxin, a voltage-gated sodium channel blocker), and was not 

affected by inactivation of NMDARs (with 100 μM AP5). These results suggested that the 

developmental increase in neuronal gap junction coupling is regulated via action potential-

dependent (synaptic) release of neurotransmitters, but NMDARs are not involved in this 

regulation.  



Table 1. Neuronal dye coupling in the hypothalamus in vivo and in vitro.  

                                                         Total
                                                          number  

Number of dye-

Coupling indexi 

Conditions  
of
primary- 

coupled primary-
labeled neurons,  

1  2  3 4 
 labeled (%)   

 neurons   
Slice, ratii   

P1  19 0 (0), P = 0.049 - - - - 
P15, saline  21 5 (23.8) 3  - 1 1 
P15, bicuculline  21 10 (47.6), P = 0.197 6  3  1 - 
P15, muscimol  19 0 (0), P = 0.049 - - - - 
P15, LY341495  22 0 (0), P = 0.021 - - - - 
P15, LY379268  21 9 (42.9), P = 0.326 6  3  - -

Culture, ratiii  
 

DIV3, control  32 0 (0), P = 0.024 - - - - 
DIV15, control  32 6 (18.8) 5  1  - - 
DIV15, Bic/PiTX+A/C  25 11 (44.0), P = 0.047 10  1  - - 
DIV15, muscimol  35 1 (2.9), P = 0.048 1  - - - 
DIV15, LY341495  24 0 (0), P = 0.032 - - - - 
DIV15, LY379268  20 6 (33.3), P = 0.500 4  2  - - 
DIV15, Cx36 siRNA  25 0 (0), P = 0.029 - - - - 
DIV15, SCR siRNA  21  4 (19.0), P = 1.0iii

2  1  1  - 
               P = 0.037iv  

Culture, wild-type mouseiii  
 

DIV15, control  26 3 (11.5) 2  1  - - 
DIV15, Bic/PiTX+A/C  21 8 (38.1), P = 0.043  5  2  1 - 
DIV15, LY379268  24 9 (37.5), P = 0.047  6  1  1 1 

Culture, Cx36 knockout mouseiii  
 

DIV15, control  20 0 (0) - - - - 
DIV15, Bic/PiTX+A/C  21 0 (0)v

- - - - 
DIV15, LY379268  21  1 (4.8), P = 1.0  1  - - - 
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i
Coupling index is the number of secondary-labeled neurons coupled to the primary labeled 

neuron. 
ii-iii

Statistical significance was calculated using the Fisher's exact probability test relative 

to P15 saline
ii
 and the corresponding DIV15 controls

iii
. Statistical significance for SCR siRNA 

(scrambled siRNA) group is shown relative to the control
iii
 and Cx36 siRNA

iv
. 

v
P value cannot be 

calculated. Bic/PiTX+A/C, culture treated with bicuculline, picrotoxin, AP5, and CNQX. For drug 

concentrations, see the text. All data were obtained by Dr. Yougfu Wang. 
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In the present study, using neurobiotin with dextran Alexa Fluor 594 and western 

analysis we observed increases in neuronal dye coupling and Cx36 expression in 

developing rat hypothalamic neuronal cultures between DIV3 and DIV15 (Fig. 7 and 

Table1). In cultures, as in the hypothalamus in vivo, the developmental increases in dye 

coupling and Cx36 expression were augmented by the chronic (on DIV3-DIV15) activation 

of group II mGluRs with LY379268 (2 μM) or DCG-IV (10 μM; another group II mGluR 

agonist) and were prevented by inactivation of group II mGluRs with LY341495 (2 μM) or 

EGLU (100 μM; another group II mGluR antagonist) (Fig. 7D,F,H,and Table 1; also see 

below Fig. 10A). 

Further, the developmental increases in gap junction coupling and the expression of 

Cx36 were prevented by activation of GABAARs with muscimol (25 μM) or GABA (100 μM) 

and were augmented by GABAAR inactivation with bicuculline plus picrotoxin (100 μM + 500 

μM; in these tests, ionotropic glutamate receptor antagonists, 100 μM AP5 and 10 μM 

CNQX, were co-administered with the GABAAR antagonists to prevent an increase in 

glutamate-dependent activity) (Fig. 7E,G,I, and Table 1; also see below Fig. 10B). Similar 

results were obtained in cultures using electrotonic coupling analysis (Fig. 8). However, no 

difference in Cx36 expression was observed between the controls and cultures that were 

chronically treated (on DIV3-DIV15) with AP5 plus CNQX (100 μM and 10 μM), DHPG (10 

μM; group I mGluR agonist), AIDA (100 μM; group I mGluR antagonist), PPG (10 μM; group 

III mGluR agonist), MSOP (100 μM; group III mGluR antagonist), nicotine (100 μM; nicotinic 

acetylcholine receptor agonist), atropine plus mecamylamine (100 μM each; muscarinic and 

nicotinic acetylcholine receptor antagonists), baclofen (20 μM; GABAB receptor agonist) or 

phaclofen (100 μM; GABAB receptor antagonist) (Fig. 9).  
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Figure 7. Developmental increase in neuronal gap junction coupling in the rat hypothalamus in 

vitro is regulated by an interplay between the activity of group II mGluRs and GABAARs. A-C, 

Images of neurobiotin (A) and dextran Alexa 594 (B) staining and their overlap (C) are shown 

(DIV15; culture treated with bicuculline, picrotoxin, AP5, and CNQX; Bic/PiTX+A/C). Yellow 

indicates dye colocalization in the primary-labeled neuron. Arrows indicate the secondary-

labeled neurons. D, E, Incidence of dye coupling. Statistical significance was calculated using 

the Fisher's exact probability test (20-35 primary-labeled neurons per data point, also see Table 

1). F-I, Expression of Cx36 protein. Optical density signals are normalized relative to tubulin and 

DIV15 controls are set at 1.0. Statistical analysis (H, I): Student’s t-test; mean ± SEM; n = 6 in 

each group. In all graphs, statistical difference is shown relative to: (a), DIV3; (b), DIV15 control; 

(c), LY379268; (d) Bic/PiTX+A/C. A-E, Data were obtained by Dr. Yougfu Wang.  
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Figure 8. Developmental increase in neuronal gap junction coupling is regulated by an interplay 

between the activity of group II mGluRs and GABAARs. Data from electrotonic coupling 

experiments in rat hypothalamic cultures are presented. The coupling was determined as 

described in Materials and Methods. The number of coupled pairs was as follows: DIV3, 0 of 21; 

DIV15: Control, 6 of 28; LY379268, 8 of 15; LY341495, 1 of 32; muscimol, 0 of 22; 

Bic/PiTX+A/C, 10 of 19. A, B, Incidence of electrotonic coupling represents the percentage of 

neuronal pairs that demonstrated the coupling. Statistical significance: Fisher's exact probability 

test; (a) relative to DIV3; (b) relative to DIV15 control. C, Representative traces of electrotonic 

responses are shown (each trace is the average voltage response from 5 sequential steps). D, 

Statistical analysis of the coupling coefficient (see Materials and Methods): Students t-test 

relative to DIV15 control; mean ± SEM (responses from all of the tested pairs are included in the 

analysis). Note, that on DIV15, the incidence of electrotonic coupling and the coupling 

coefficient both are higher (relative to the control) in cultures subjected to chronic activation of 

group II mGluRs and inactivation of GABAARs and are lower in cultures subjected to inactivation 

of group II mGluRs and activation of GABAARs. Data were obtained by Dr. Yougfu Wang. 
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Figure 9. Ionotropic glutamate receptors, group I mGluRs, group III mGluRs, acetylcholine 

receptors and GABAB receptors are not involved in the regulation of developmental increase in 

neuronal gap junction coupling. Pharmacological manipulations (see text for details and 

concentrations) were performed in rat hypothalamic cultures on DIV3-15 followed by 

assessment of Cx36 protein expression on DIV15. Optical density signals are normalized 

relative to tubulin, and normalized values are compared to the control (set at 1.0). Statistical 

data are presented: paired Student’s t-test relative to control; mean ± SEM; n = 6 in each group. 

No significant difference between the control and indicated treatments was found. A/C, AP5 plus 

CNQX; Atr/Mec, atropine plus mecamylamine.  
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Taken together, our in vivo and in vitro data suggest that the developmental increase 

in gap junction coupling in hypothalamic neurons is regulated by an interplay between the 

activity of group II mGluRs and GABAARs. In addition, group I mGluR, group III mGluR, 

NMDA, non-NMDA, acetylcholine and GABAB receptors are not involved in these regulatory 

mechanisms.  

 

Cellular mechanisms for developmental increase in gap junction coupling 

Signaling pathways for group II mGluRs and GABAARs are well-characterized. 

Group II mGluRs (that include mGluR2 and mGluR3) negatively regulate cAMP/PKA 

(cAMP-dependent protein kinase)-dependent signaling (De Blasi et al., 2001; Conn et al., 

2005). GABAAR is a Cl--permeable ion channel. In mature neurons, an activation of 

GABAARs causes Cl- influx and cell hyperpolarization; in developing neurons, an activation 

of GABAARs causes an efflux of Cl- ions and cell depolarization that results in a Ca2+ influx 

through voltage-gated Ca2+ channels (VGCC) and activation of Ca2+-dependent protein kinases 

(Stein and Nicoll, 2003). In primary rat hypothalamic cultures, GABAAR-mediated responses are 

excitatory during the first 1-2 weeks of development and then the excitation is replaced by 

inhibitory responses (Obrietan and van den Pol, 1995). 

To determine whether group II mGluRs and GABAARs regulate the developmental 

increase in neuronal gap junction coupling via, respectively, cAMP/PKA- and Ca2+- dependent 

signaling pathways, we performed additional pharmacological manipulations in rat hypothalamic 

cultures on DIV3-DIV15 and detected Cx36 expression by western analysis (Fig. 10). An 

increase in cytoplasmic levels of cAMP (by 8-Br-cAMP plus IBMX; 100 μM + 50 μM; a cell-

permeable analog of cAMP that activates PKA and a non specific phosphodiesterase inhibitor 
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Figure 10. Signal transduction pathways. Pharmacological manipulations (see text for details) 

were performed in rat hypothalamic cultures on DIV3-DIV15 followed by assessment of Cx36 

protein expression on DIV15. A, The regulation of Cx36 by group II mGluRs is through 

cAMP/PKA-dependent signaling. B, The regulation of Cx36 by GABAARs is through Ca2+/L-type 

VGCC/PKC-dependent signaling. CaMKII is not involved in the developmental regulation of 

Cx36. In both figures: above, statistical data; below, representative blots for cAMP/PKA- (A) and 

Ca2+/PKC-dependent (B) signaling are shown. Statistical analysis: paired Student’s t-test; mean 

± SEM; n = 6 in each group. Optical density values are normalized to tubulin and compared to 

controls (set at 1.0). cAMP, 8-BrcAMP plus IBMX; GFX, GF 109203X; NS, non-significant.  
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that increases intracellular cAMP levels) reduced, and the blockade of PKA (by H89; 1 μM; PKA 

antagonist) augmented, the developmental increase in Cx36 expression (Fig. 10A). Further, the 

effects of group II mGluR agonist and antagonist in the developmental regulation of Cx36 (see 

Fig. 7) were prevented, respectively, by the increase in cAMP levels and inactivation of PKA 

(Fig. 10A).  

The developmental increase in Cx36 expression also was prevented by KCl {1-5 mM; 

that causes cell depolarization and Ca2+ influx through L-type VGCCs (Bessho et al., 1994)} and 

was augmented by the blockade of PKC (with GF 109203X; 0.5-1 μM) (Fig. 10B). Further, the 

effect of the GABAAR agonist, muscimol (25 μM), was prevented by blockade of L-type VGCCs 

with nifedipine (10 μM) or PKC inactivation (Fig. 10B), while the effect of GABAAR antagonists 

(see Fig. 7) was prevented by activation of PKC (with phorbol 12-myristate 13-acetate, PMA; 1 

μM) (Fig. 10B). However, the developmental increase in Cx36 expression  was not affected by 

inactivation of another calcium-regulated protein kinase, CaMKII (with KN-62; 2.5 μM; Fig. 10B). 

These data suggest that the developmental regulation of Cx36 by group II mGluRs is via 

cAMP/PKA-dependent signaling; by GABAARs is via Ca2+/L-type VGCC/PKC-dependent 

signaling; and that CaMKII is not involved in control of the developmental increase in Cx36 

expression. 

 

The roles of mGluR2 vs. mGluR3 and group II mGluRs vs. GABAARs 

We used an siRNA approach in rat hypothalamic cultures to determine the importance of 

mGluR2 vs. mGluR3 in the developmental increase in expression of Cx36 (Fig. 11A,B). The 

genetic suppression of both mGluR2 and mGluR3 (on DIV3-DIV7) decreased Cx36 protein 

levels, suggesting that both receptors are important for the developmental increase in neuronal 

gap junction coupling.  
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Figure 11. Characterization of the mechanisms for developmental increase in neuronal gap 

junction coupling. Western blot (A-C) and dye coupling (D) tests were performed in neuronal 

cultures prepared from the rat (A-C) and mouse (D) hypothalamus. A, B, siRNA suppression 

(on DIV3-DIV7) of mGluR2 (A) and mGluR3 (B) decreases both the receptor and Cx36 protein 

levels. Representative images (above) and statistical data (below; paired Student’s t-test 

relative to control; mean ± SEM) are shown. Stainings were done sequentially on one 

membrane. SCR, scrambled siRNA. C, A combined activation (on DIV3-DIV15) of group II 

mGluRs and GABAARs (with LY379268 plus muscimol) does not affect significantly the 

developmental up-regulation of Cx36 expression. Statistical analysis: ANOVA with post hoc 

Tukey; (a), relative to DIV15 control; (b), relative to LY379268 plus muscimol; mean ± SEM. D, 

In wild-type cultures, dye coupling increases between DIV3 (not shown) and DIV15 (Control) 

and this increase is augmented by inactivation of GABAARs (Bic/PiTX+A/C) and by activation of 

group II mGluRs (LY379268). In Cx36 knockout cultures, neither the developmental nor the 

treatment-mediated increases occur. The number of dye-coupled primary-labeled neurons of 

the total number of primary-labeled neurons and statistical significance (Fisher's exact 

probability test; relative to the corresponding control) on DIV15 are shown. P
i
, P value cannot be 

calculated. D, Data were obtained by Dr. Youngfu Wang. 
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We also tested the importance of group II mGluRs vs. GABAARs (Fig. 11C). Rat 

hypothalamic cultures were chronically treated (on DIV3-DIV15) with LY379268 (2 μM) and 

muscimol (25 μM). A combined activation of group II mGluRs and GABAARs did not affect 

significantly the developmental up-regulation of Cx36. However, the effect of activating 

GABAARs dominated the effect of activating group II mGluRs: on DIV15, the expression of Cx36 

was not different between muscimol-treated and LY379268 plus muscimol-treated cultures, but 

it was significantly different between LY379268-treated and LY379268 plus muscimol-treated 

cells (Fig. 11C). These data are in agreement with the observation that, in cell cultures on DIV3- 

DIV15, blockade of GABAARs increases Cx36 expression to a higher level than activation of 

group II mGluRs (2.64±0.35 vs. 1.81+0.20 normalized optical density; P = 0.045; unpaired 

Student’s t-test; n = 6 in each group; see Fig. 7H,I). 

 

Specificity of the mechanisms for increase in gap junction coupling 

We tested whether the regulation by group II mGluRs and GABAARs is specific for 

neuronal Cx36-containing gap junctions. First, we found that the developmental increase in 

neuronal dye coupling in rat hypothalamic cultures is prevented by Cx36 siRNA (transfected on 

DIV10 and tested on DIV15; Table 1). Second, neuronal dye coupling was measured in 

hypothalamic cultures prepared from wild-type and Cx36 knockout mice. As expected, in wild-

type cultures, the coupling was observed on DIV15 and was increased by both LY379268 and 

bicuculline plus picrotoxin (in the presence of AP5 and CNQX; in concentrations as in rat cultures) 

(Fig. 11D; Table 1). However, the coupling was not observed in Cx36 knock-out cultures, 

whether untreated or treated (Fig. 11D; Table 1). Moreover, in the rat hypothalamus in vivo and 

in vitro, the expression of a presumptive astrocytic connexin, Cx43 (Rash et al., 2000), was not 

different between the control and the treatment conditions, including the treatments with group II 
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mGluR and GABAAR agonists and antagonists (Fig. 12). The data suggest that the group II 

mGluR/GABAAR-dependent regulation is specific for neuronal Cx36-containing, but not glial 

Cx43-containing gap junctions. Moreover, this regulation is exclusive for Cx36 as no increase in 

gap junction coupling occurs in Cx36-deficient neurons.  

We also examined whether these developmental mechanisms operate in other CNS 

regions and species and whether they are active in mature neurons. The activity of group II 

mGluRs and GABAARs was pharmacologically modulated (on DIV3-DIV15) in developing 

neuronal cultures prepared from the mouse somatosensory cortex, and western analysis of 

Cx36 expression revealed changes that were similar to those in rat hypothalamic cultures (Fig. 

13). This suggests that the same regulatory mechanisms are employed in the developing 

mouse cortex and rat and mouse hypothalamus. Further, we tested mature cultures prepared 

from the rat hypothalamus. In these cultures, chronic (DIV30-DIV36) activation of group II 

mGluRs (with LY379268), but not inactivation of GABAARs (with bicuculline plus picrotoxin, in 

the presence of AP5 and CNQX; in concentrations as above), increased the expression of Cx36 

(Fig. 14). Similar results were obtained in mature cultures prepared from the mouse cortex (not 

shown). These data suggest that the group II mGluRs may contribute to the up-regulation of 

neuronal gap junction coupling in mature neurons, though GABAARs, that are inhibitory in the 

mature CNS (Obrietan and van den Pol, 1995; Stein and Nicoll, 2003), presumably do not 

regulate the coupling after neuronal maturation. {The receptor-mediated inhibition of Cx36 

expression was not tested as the expression of Cx36 is low in mature neuronal cultures 

(Arumugam et al., 2005)}. 
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 Figure 12. Group II mGluRs and GABAARs are not involved in the developmental regulation of 

hypothalamic expression of glial connexin43. Western blots for Cx43 (A, B, D, E) and statistical 

data (C, F) in the developing rat hypothalamus (A-C) and hypothalamic cultures (D-F) are 

presented. In C and F, statistical analysis is done using the paired Student’s t-test relative to 

P15 saline or DIV15 control; mean ± SEM; n = 6 in each group. Data are normalized and 

analyzed as described in Fig. 6 and 7 for Cx36. Cx43 expression increases during development 

both in vivo and in vitro, however, the increase is not affected by group II mGluR and GABAAR 

agonists or antagonists (i.e., no statistical significance between the saline/control and 

experimental groups on P15 or DIV15 is detected).  
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Figure 13. Developmental increase in neuronal gap junction coupling in the mouse cortex in 

vitro is regulated by an interplay between the activity of group II mGluRs and GABAARs. A, B, 

Expression of Cx36 protein. Data are normalized and analyzed as described in Fig. 7. Statistical 

analysis: Student’s t-test; (a), relative to DIV3; (b), relative to DIV15 control; mean ± SEM; n = 6 

in each group. Drug concentrations are as in experiments in rat hypothalamic cultures shown in 

Fig. 7.  
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Figure 14. Regulation of Cx36 expression in mature neurons. Pharmacological treatments were 

conducted in rat hypothalamic neuronal cultures on DIV30-DIV36 followed by assessment of 

Cx36 protein expression on DIV36. Statistical analysis: paired Student’s t-test relative to control; 

mean ± SEM; n = 7, LY3792688; n = 5, Bic/PiTX+A/C. Data are normalized and analyzed as 

described in Fig. 7.  

  



74 

 

Molecular mechanisms for developmental increase in gap junction coupling 

In response to either group II mGluR activation or GABAAR inactivation Cx36 protein 

levels increase during development and we tested whether this is associated with increased 

Cx36 mRNA. The expression of Cx36 mRNA was evaluated in rat hypothalamic cultures by RT-

qPCR (Fig. 15A). We observed an increase in Cx36 mRNA levels between DIV3 and DIV15. 

Further, this increase was augmented by both activation of group II mGluRs (with LY379268) 

and inactivation of GABAARs (with bicuculline plus picrotoxin in the presence of AP5 and 

CNQX; in concentrations as above). However, the increase was not affected by both 

inactivation of group II mGluRs (with LY341495) and activation of GABAARs (with muscimol). 

The data suggest that the receptor-regulated increase, but not the decrease, in Cx36 

expression during development may be controlled by transcriptional mechanisms. 

Based on RT-qPCR experiments, we set to determine if an element within the Cx36 

proximal promoter is responsible for the developmental increase in Cx36 mRNA levels (Fig. 

15B). Cultures were transfected (on DIV3) with a plasmid containing the rat Cx36 promoter 

linked to the firefly luciferase gene and treated (on DIV4-DIV7) with the group II mGluR and 

GABAAR agonists and antagonists. On DIV7, cells were harvested and luciferase assay was 

performed. The Cx36 proximal promoter (-984/+115) supported robust transcription. As in RT-

qPCR experiments, the Cx36 promoter activity was augmented by activation of group II mGluRs 

and inactivation of GABAARs, and was not affected by LY341495 and muscimol. The increases 

in Cx36 promoter activity were completely abolished by deletion of an NRSE located at 

nucleotide position -164/-144 (Martin et al., 2003). In addition, NRSE deletion increased the 

basal expression of Cx36 promoter (Fig. 15B). The data suggest that NRSE has a repressive 

effect on Cx36 promoter activity and this repression is removed by activation of group II mGluRs 

or inactivation of GABAARs.                               
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Figure 15. Molecular mechanisms for the developmental regulation of connexin36. A, RT-qPCR 

analysis in rat hypothalamic cultures demonstrates that Cx36 mRNA expression increases 

during development and this increase is augmented by activation of group II mGluRs 

(LY379268) and inactivation of GABAARs (Bic/PiTX+A/C). However, it is not affected by 

inactivation of group II mGluRs (LY341495) and activation of GABAARs (muscimol). Relative 

Cx36 transcript levels are normalized to GAPDH and normalized values are compared to DIV15 

controls (set to 1.0). Statistical analysis: paired Student’s t-test relative to control; mean ± SEM. 

B, Dual-luciferase reporter assay. Cells were transfected on DIV3 with the luciferase (LUC) 

reporter plasmids driven by the rat Cx36 promoter (PCx36), incubated in the absence or in the 

presence of indicated agents and then assayed on DIV7. NRSE deleted plasmid was produced 

using site-directed mutagenesis. The plasmid containing Cx36 3’UTR was constructed by 

replacing the original SV40 poly A signal (SV40 pA) in the plasmid containing PCx36 with the 

full length rat Cx36 3’UTR. Firefly luciferase values are normalized relative to Renilla luciferase 

values to control for transfection efficiency and the results are presented as relative activity of 

the promoter constructs compared to the pGL3basic vector (set to 1.0). Statistical analysis: 

paired Student’s t-test relative to the corresponding non-treated control; mean ± SEM. 
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 Next, we conducted experiments to determine whether the mechanism for the receptor-

mediated decrease in Cx36 expression during development involves posttranscriptional 

regulation (Fig. 15B). We constructed the plasmid containing the full length Cx36 3’UTR 

(~1.5kb) and the luciferase reporter driven by the Cx36 promoter (-984/+115). Whereas this 

construct demonstrated reduced luciferase activity (as compared to the plasmid containing the 

Cx36 promoter alone), it showed not only significant increases, but also decreases in response 

to the treatments that, respectively, increase (group II mGluR agonists and GABAAR 

antagonists) or decrease (group II mGluR antagonists and GABAAR agonists) Cx36 protein 

expression (Fig. 15B). Together, the results indicate that the mechanisms that orchestrate the 

developmental changes in Cx36 expression involve both the Cx36 promoter-mediated 

transcriptional regulation through NRSE and regulatory events mediated via the 3’UTR, perhaps 

involving post-transcriptional mechanisms. 

 

Functional implications 

Our previous study demonstrated (de Rivero Vaccari et al., 2007) that neuronal gap junctions 

play a critical role in the mechanisms of neuronal death/survival during development. 

Specifically, in rat and wild-type mouse hypothalamic neuronal cultures, we found that 

hyperactivation or inactivation of NMDARs both induced neuronal death exclusively during the 

peak of developmental gap junction coupling (i.e., on DIV14-17). Further, both types of NMDAR-

dependent neuronal death were completely prevented by pharmacological inactivation of gap 

junctions (with carbenoxolone and 18-α-glycyrrhetinic acid) or genetic knockout of Cx36. In the 

present study, we set to determine whether manipulation of the mechanisms regulating the 

developmental increase in neuronal gap junction coupling affects the death/survival 

mechanisms in developing neurons. We used a model of NMDAR-dependent excitotoxicity. 
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Experiments were conducted in rat hypothalamic cultures, non-treated or chronically treated (on 

DIV3-15) with the group II mGluR agonist (LY379268) or antagonist (LY341495; in 

concentrations as above). Administration of NMDA (100 μM; on DIV14 for 60 min) induced 

significant neuronal death in non-treated cultures that was detected 24 hrs later (on DIV15) 

using MTT assay (Fig. 16A). NMDA-mediated neuronal death was more pronounced in 

LY379268-treated cultures, i.e., in the cultures with high levels of neuronal gap junction coupling 

and Cx36 expression. Further, NMDA-mediated neuronal death was not observed in LY341495- 

treated cultures, i.e., in the cultures that lack neuronal gap junction coupling due to low levels of 

Cx36. NMDA-mediated neuronal death also was prevented by the gap junction blocker 

carbenoxolone (25 μM; Fig. 16B), supporting the notion that gap junctions participate in 

NMDAR-dependent death in developing neurons. Similar results were obtained in wild-type 

mouse cortical neuronal cultures (not shown). The results indicate that the mechanisms for the 

developmental increase in neuronal gap junction coupling play a role in regulation of neuronal 

death/survival during development. 

 

4. Discussion 

We demonstrated here that the developmental increase in neuronal gap junction 

coupling in the rat and mouse hypothalamus and cortex is regulated by an interplay between the 

activity of group II mGluRs and GABAARs. The regulation by group II mGluRs is via cAMP/PKA-

dependent signaling. The regulation by GABAARs, which cause neuronal excitation during 

development (Obrietan and van den Pol, 1995; Stein and Nicoll, 2003), is via Ca2+ influx through 

VGCCs and activation of PKC. We also showed that other glutamate receptors, acetylcholine 

receptors, GABAB receptors and CaMKII are not involved in these regulatory mechanisms. A 

previous study in the rat hypothalamus indicated (Arumugam et al., 2005) that blockade of 
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Figure 16. Mechanisms for the developmental increase in neuronal gap junction coupling play a 

role in regulation of neuronal death/survival during development. Experiments were conducted 

in rat hypothalamic neuronal cultures. NMDA (100 µM) was added to the culture medium on 

DIV14 for 60 min and then washed-out. The MTT analysis of neuronal death was conducted 24 

hrs later (on DIV15). A, NMDA administration induces neuronal death in non-treated cultures. 

NMDA-mediated neuronal death is augmented in cultures chronically treated (on DIV3-DIV15) 

with the group II mGluR agonist (LY379268) and does not occur in cultures chronically treated 

with the group II mGluR antagonist (LY341495). The mGluR agents by themselves do not affect 

cell survival. B, NMDA-mediated neuronal death also is prevented by co-administration of the 

gap junctional blocker carbenoxolone (CBX). In both graphs, statistical data are shown. 

Statistical analysis: ANOVA with post hoc Tukey; (a), relative to control; (b), relative to non-

treated plus NMDA condition; mean ± SEM; n = 6 in each group. All data were obtained by 

Janna V. Denisova. 
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action potentials prevents the developmental increase in neuronal gap junction coupling. 

Together with the results described here, this implicates a role for action potential-dependent 

synaptic release of glutamate and GABA in regulation of the developmental increase in 

neuronal gap junction coupling. 

Group II mGluRs include mGluR2 and mGluR3, and our experiments suggested that 

both of them are important for the developmental increase in neuronal gap junction coupling. 

Data also indicated that the effects of GABAAR agents in modulation of gap junctions are 

stronger than those of group II mGluR agents. This supports a more important role for 

GABAARs than group II mGluRs in these regulatory mechanisms, which may be explained by 

the fact that formation of GABAergic synapses in the CNS precedes the formation of 

glutamatergic synapses (Ben-Ari, 2002). It is possible, however, that the pattern of expression 

of particular neurotransmitter receptors and timing of the switch of GABAARs from excitation to 

inhibition during development determine when the developmental increase in neuronal gap 

junction coupling occurs. Future experiments are needed to evaluate this prediction.  

Cx43 is a presumptive glial connexin (Rash et al., 2000), that also is involved in a 

number of developmental events, including neuronal migration (Elias et al., 2007). Our study 

showed that the expression of Cx43, a presumptive glial connexin, also increases during 

development, however, the increase is not affected by the group II mGluR and GABAAR agents. 

This suggests that the regulation by group II mGluRs and GABAARs is specific for Cx36-

containing, but not Cx43-containing gap junctions. Moreover, this regulation is exclusive for 

Cx36 as no increase in gap junction coupling (either developmental or treatment-mediated) 

occurs in Cx36-deficient neurons (Fig. 11D). NRSE is a DNA sequence element in a promoter 

region of a number of neuronal genes that binds REST and regulates the transcriptional activity 

of these genes. REST activity is influenced by both Ca2+- and cAMP-dependent signaling 
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(Nadeau and Lester, 2002; Somekawa et al., 2009). Rat and mouse Cx36 genes contain 

NRSEs (-164/-144 and +201/+221, respectively) (Cicirata et al., 2000; Martin et al., 2003) and 

occupancy of the Cx36 NRSE by REST is observed in mouse neuronal stem cells (Johnson et 

al., 2008). Further, REST/NRSE-dependent signaling negatively regulates Cx36 mRNA 

expression in insulin-producing cells (Martin et al., 2003). Our study in developing hypothalamic 

neurons agrees with those findings and demonstrates that deletion of the NRSE in Cx36 

promoter region results in both higher basal transcription and loss of responsiveness to the 

group II mGluR agonist and GABAAR antagonists. Thus, the data suggest that the receptor-

mediated increase in Cx36 expression during development is regulated by group II mGluRs and 

GABAARs via removal of the NRSE-dependent repression of Cx36 promoter activity. 

In contrast, the mechanisms for the receptor-mediated decrease in expression of Cx36 

during development may not be due to new mRNA synthesis; rather involving 

posttranscriptional mechanisms dependent upon sequences within the 3’UTR. While we cannot 

totally rule out the presence of a transcriptional regulatory element in the region of 3’UTR, given 

that the Cx36 mRNA levels did not change in response to inactivation of group II mGluRs or 

activation of GABAARs, this possibility seems unlikely. Rather, we suspect that this regulation 

may be via miRNAs, small non-coding RNAs, which bind to complementary sites on 3’UTR of 

target mRNAs and reduce gene expression primarily through translational repression (Bartel, 

2004). Many miRNAs are brain-specific (Sempere et al., 2004) and are involved in the 

regulation of neuronal development, differentiation, and morphogenesis (Smirnova et al., 2005; 

Vo et al., 2005). The 3’UTR of Cx36 mRNA contains binding sites for a number of brain-specific 

miRNAs, including miR-9, miR-128a, and miR-128b (Rash et al., 2005). A focus of future 

studies will be to identify which, if any, of these miRNAs target Cx36 and to determine the 

specific signals that regulate their action. 
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During pharmacological manipulations, changes occur not only in the incidence of dye 

and electrotonic coupling, but also in the coupling coefficient. Together with data demonstrating 

alterations in Cx36 protein expression, these results suggest the possibility of adding/removing 

Cx36 molecules to/from individual neurons. 

We also postulate that group II mGluR and GABAAR agonists and antagonists exert 

specific, physiological effects on neuronal gap junction coupling. First, the agents modulate the 

developmental increases in the coupling and Cx36 expression in a similar way in vivo and in 

vitro. Second, the increases are modulated not only by receptor agonists and antagonists, but 

also by manipulating the corresponding receptor-coupled intracellular signaling. Third, it is 

unlikely that the effects are simply through the regulation of electrical activity as the 

developmental increases in coupling and/or Cx36 expression are prevented both by TTX (that 

reduces the action potential activity)(Arumugam et al., 2005) and by KCl (that depolarizes 

neurons and increases the action potential activity)(Fig. 10B). Finally, the developmental 

increase in Cx36 is affected not only by pharmacological treatments, but also by genetic 

manipulations for the expression of mGluR2 and mGluR3. 

A previous study demonstrated a role for glutamate-dependent synaptic transmission in 

the developmental uncoupling of neuronal gap junctions (that occurs in the hypothalamus 

between days 15 and 30 in vivo and in vitro) (Arumugam et al., 2005). The data indicated that 

developmental uncoupling is due to activation of NMDARs and Ca2+-, CaMKII-, PKC-, and 

CREB- dependent down-regulation of Cx36. Together with the present work, our studies 

strongly suggest that developing chemical synapses regulate electrical synapses. We postulate 

that during early postnatal development, GABAAR-dependent excitation maintains the 

expression of Cx36 in neuronal circuits at a low level (via Ca2+/PKC signaling and 3’UTR of the 

Cx36 mRNA). The subsequent transition from GABAAR excitation to inhibition, in combination 
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with increased activity of the group II mGluRs, result in the developmental up-regulation of Cx36 

(via the NRSE in the Cx36 gene) and increased neuronal gap junction coupling. However, the 

developmental increase in the activity of NMDARs then causes down-regulation of Cx36 (via 

Ca2+-dependent signaling, including CREB) and gap junction uncoupling. If mechanisms for the 

developmental regulation of gap junctions have universal character in the CNS (as we show 

here for the hypothalamus and cortex), the variations among different CNS regions in the timing 

of neuronal gap junction coupling and uncoupling (Bennett and Zukin, 2004) presumably can be 

explained by the interregional differences in the activity of these mechanisms (i.e., receptor and 

synaptic activity and timing of the excitation/inhibition switch for GABAARs). Other additional, 

region-specific factors probably also contribute. 

In the developing and mature CNS, neuronal gap junction coupling also may be 

modulated acutely by changes in the activity of neurotransmitter receptors (Hatton, 1998). We 

believe that acute and developmental alterations in the coupling represent different functional 

aspects of gap junction physiology. The acute modulation of gap junctions by neurotransmitter 

receptors likely involves gating mechanisms and plays a role in rapid modifications in neuronal 

connectivity and signaling in response to changes in chemical synaptic activity (Hatton, 1998). 

In contrast, the developmental changes in gap junctions likely are related to specific genetic 

programs and/or developmental pathways during the period when chemical synapses are still 

being established. It is possible, however, that the acute modulation of coupling may translate 

into a prolonged modification if the changed level of receptor activity sustains. 

In the developing CNS, programmed cell death helps to establish the final number of 

neurons and contributes to distribution of various cell classes and neuronal circuit formation 

(Nijhawan et al., 2000). The activity of NMDARs also is the factor that plays a role in cell 

survival versus death decisions during neuronal development (Scheetz and Constantine- Paton, 
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1994; de Rivero Vaccari et al., 2006). It has been suggested that during development gap 

junctions are involved in the regulation of apoptosis and NMDAR dependent neuronal death 

(Cusato et al., 2003; de Rivero Vaccari et al., 2007). We showed here that the NMDAR-

mediated excitotoxicity is eliminated or augmented if the amount of gap junctional coupling is 

reduced or increased, respectively. This suggests that mechanisms for the developmental 

increase in neuronal gap junction coupling directly regulate death/survival mechanisms in 

developing neurons. This also implies a role for gap junctions in formation of neuronal circuits 

via regulation of neuronal death/survival.  
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1. Conclusion 

New knowledge regarding developmental mechanisms of neuronal gap junction-based 

electrical synapses provides a fundamental understanding of how complex neural networks 

operate during development. This thesis describes novel findings on the mechanism underlying 

the developmental increase in electrical synapses between neurons as well as role of these 

synapses during development.  

1) We conclude that the developmental increase in neuronal gap junction coupling is 

regulated by the interplay between the activity of group II mGluRs and GABAARs. An activation 

of group II mGluRs increases neuronal gap junction coupling via cAMP/PKA dependent 

signaling. In contrast, an activation of GABAARs has the counteracting effects on the 

developmental increase in neuronal gap junction coupling via Ca2+/PKC dependent signaling.  

2) The receptor mediated increase in Cx36 expression occurs at the transcriptional level 

and depends on relief of the NRSE-mediated repression of Cx36 promoter activity. Additionally 

the regulatory sequences in the 3’UTR of the Cx36 mRNA is necessary for neurotransmitter 

receptor-mediated suppression of Cx36 expression. 

3) Finally, the results indicate that the mechanisms for the developmental increase in 

neuronal gap junction coupling serves a critical role in the regulation of NMDAR-dependent 

death in developing neurons. 
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2. Future Perspectives 

Our study showed that during development, GABA and glutamate regulate the decrease 

and increase in neuronal gap junction coupling by the activation of ionotropic (GABAARs) and 

metabotropic (group II mGluRs) receptors, respectively. In addition to the major functional 

difference between two types of receptors, the expression of each receptor is differentially 

regulated during the first two postnatal weeks with distinct spatial and temporal profiles. And 

furthermore, developmental changes in GABAAR-mediated synaptic activity, from depolarizing 

to hyperpolarizing, occur during this time window in the rat hypothalamus (Obrietan and van den 

Pol, 1995). Therefore a more detailed study of how those two receptors work in concert in a 

shorter period of development may reveal that a complex synaptic response plays a critical role 

in the precise modulation of the developmental changes in gap junction based-electrical 

synapses.  

The present study also showed that each receptor acts through the corresponding 

signaling pathway for the developmental regulation of neuronal gap junction coupling i.e., 

cAMP/PKA-dependent signaling is negatively coupled to group II mGluRs and GABAARs 

activation allows intracellular Ca2+ increases and subsequent PKC activation. Although each 

receptor-mediated signaling transduction seems to be functionally preserved, why are two 

different pathways separately needed to regulate neuronal gap junction coupling? In-depth 

studies on the functional interplay of cAMP/PKA- and Ca2+/PKC-dependent signaling 

mechanisms are necessary to better understand mechanisms for the developmental regulation 

of neuronal electrical synapses. Those studies should address the following questions: (i) are 

there central molecules where all complex intracellular signals converge?; (ii) are there other 

levels of regulations?; and (iii) are there the mechanisms of cross-regulation between two 

distinct signaling pathways leading to the final integrated cellular response? 
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Our study with the use of RT-qPCR analysis and luciferase reporter assay indicated that 

the developmental change in Cx36 expression requires both the Cx36 promoter-mediated 

transcriptional regulation through NRSE and post-transcriptional gene regulatory events 

involving the 3’UTR. Namely, the balance between the levels of NRSE-dependent 

transcriptional response and 3’UTR-mediated regulatory response seems to adjust the extent of 

Cx36 expression in the developing neurons. Specific receptor mediated-stimuli can generate 

changes in gene expression by activating intracellular protein kinase cascades that finally can 

carry the integrated signals to the nucleus. The functional contributions of two independent 

protein kinases, PKA and PKC, for Cx36 expression have been observed in the present study, 

but little is known about protein kinase substrates which lie downstream targeting to Cx36 gene 

expression. The leading candidates are transcription factors and/or miRNAs, which can be 

linked to the current findings on molecular mechanisms, suggesting transcriptional regulation 

through REST and post-transcriptional regulation by brain-specific miRANs. Moreover, both 

components have been already implicated in regulating neuronal gene expression and 

mediating neuronal identity (Wu and Xie, 2006).  On the other hand, the regulation of Cx36 

genes also can be at the level of translation and/or degradation rate of the protein.  

What physiological roles might be played by mechanisms for the developmental 

increase in neuronal gap junction coupling? According to our study, it seems likely that neuronal 

gap junctions during development are tightly associated with the regulation of death in 

developing neurons (at least, NMDAR-dependent death). It would be interesting to investigate 

the correlation between Cx36-containing gap junctions and cell death related pathways, such as 

the tumor necrosis factor-induced path or the Fas-Fas ligand-mediated path. Consequently, the 

ultimate question can be to define the nature of cell death signals; what is the cell-killing 

message and how is it delivered through gap junctions? 
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The coupling also increases in the mature CNS during neuronal injuries (Chang et al., 

2000; Frantseva et al., 2002; de Pina-Benabou et al., 2005; Nemani and Binder, 2005; Thalakoti 

et al., 2007), and selective blockade of Cx36- containing gap junctions is neuroprotective (Wang 

et al., 2010). Given that neuronal injuries are characterized by excessive release of glutamate 

(Arundine and Tymianski, 2004) and that activation of group II mGluRs increases Cx36 

expression in mature neurons (present study), it will be interesting to see whether mechanisms 

for the injury-related increases in neuronal gap junction coupling are group II mGluR- dependent 

and whether inactivation of these mechanisms has a neuroprotective effect. 

In closing, the mechanisms for developmental increase in neuronal gap junction coupling 

characterized herein offer key insights how developing chemical synapses influence electrical 

synapses.  Elucidating the complex mechanisms in the development of neuronal gap junction 

coupling will be helpful to understand whether injury-related increases in neuronal gap junction 

coupling employ same mechanisms or not.  
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