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Abstract

There is a growing need for developers to be able to specify programming models for an
application, in order to: increase efficiency, system reliability, system security, and to allow
applications with different semantics to coexist on the same system. Only specifying the
scheduling semantics for an application is not sufficient because concurrency control also
significantly affects the behavior of the application. This work demonstrates the integration
of the Hierarchical Group Scheduling and Proxy Management frameworks to provide the
ability to developers to configure scheduling and concurrency control semantics for a wide
range of applications. This work targets the Linux platform to be useful to a large audience
of developers. Additionally, an environment for verifying the correctness of this integration
and other concurrent applications using deterministic testing is discussed.
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Chapter 1

Introduction

There is a growing need for applications, coexisting on the same system, to have different

scheduling semantics. Reasons for this include: (1) economic pressures to combine applica-

tions on a single computer rather than using separate computers, (2) a desire for more precise

control of application behavior on the part of many developers, and (3) a desire for more

precise control of system and application behavior to increase efficiency, system reliability,

and system security.

Many projects address scheduling in one form or another but the problem is hard enough

that in most cases the approach is not sufficiently comprehensive to be effective outside a

restricted application domain. Most people do not have sufficient expertise, or it is not

reasonable, for them to change the operating system and so most approaches to specialized

scheduling use concurrency control to achieve desired effects. This can be effective in some

cases but in many cases it is not as accurate nor as efficient as desired. For instance, the vast

majority of systems only provide priority based scheduling semantics and developers must

use priority manipulation and concurrency control to adapt these semantics to produce the

desired application behavior.

Scheduling parameter manipulation alone is insufficient because concurrency control has

such a strong effect on application behavior. Indeed, one aspect of this fact is the frequency
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with which concurrency control is used in applications for scheduling effects rather than to

protect critical sections. Thus, even though it is extremely difficult, any effective approach

to flexibly configurable scheduling semantics must include full integration of scheduling and

concurrency control.

Mainline Linux is predominantly concerned with support for applications which perform

adequately under conventional priority based scheduling, under concurrency control using

FIFO semantics, and which emphasizes average case performance of the system as a whole.

However, there are an increasing number of growing user communities for which conventional

scheduling and concurrency control semantics are not adequate. Among the most obvious

examples of this are the several categories of real-time systems in which the standard se-

mantics for both scheduling and concurrency control are unacceptable. In the scheduling

domain, standard Linux provides simple real-time scheduling in the form of round-robin

and FIFO, but provides only FIFO concurrency control semantics. Unfortunately, rate-

monotonic analysis, among the most popular of real-time scheduling approaches, requires

Priority Inheritance support in concurrency control. For this reason, the PREEMPT-RT

patch provides Priority Inheritance for kernel mutexes and user-level PI-futexes [17].

Other approaches to real-time do not necessarily want to use priority scheduling or Prior-

ity Inheritance and thus require additional modifications beyond those of the PREEMPT-RT

patch. In addition, any modification to scheduling semantics must also modify concurrency

control semantics if FIFO concurrency control is not appropriate. There are several ongoing

attempts to add different scheduling semantics to Linux [9] [4]. These are all heavyweight

modifications because they require extensive modification to core operating system software.

There is no support for dynamically adding new scheduling semantics to the system under

standard Linux or PREEMPT-RT. A reasonable definition for dynamic is that the schedul-

ing semantics can be changed under kernel and program control at runtime according to user

specified configuration.

There are other important application areas in addition to real-time that either currently
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desire or would benefit from flexibly configurable application semantics. Large scale scientific

computing, various varieties of embedded systems, frameworks for testing concurrent soft-

ware, and different types of multimedia systems all have semantics that could benefit from the

ability to flexibly configure the control semantics of their computations. While many efforts

have existed over the years to improve program behavior semantics in various ways, most

have suffered from the handicap of being partial solutions [1] [16] [4]. Some change schedul-

ing without affecting concurrency control and others change concurrency control without

affecting scheduling. Others have tried to integrate concurrency control and scheduling but

virtually none provided a feasible way to flexibly configure application semantics across as

wide a range as the method presented in this thesis.

We believe that the combination of Hierarchical Group Scheduling (HGS) and Proxy

Management (PMGT) represents the first sufficient approach to the problem of flexibly con-

figurable application control semantics. PMGT provides an accounting method independent

of scheduling semantics which is used by mutex concurrency control and which can support

the system scheduling layer with a configurable interface. This thesis demonstrates that the

PMGT interface can be used to support both the scheduling layer in PREEMPT-RT and to

support more directly specified and customized application semantics in HGS.

HGS supports a hierarchical representation of system scheduling semantics. This allows

applications with different semantics to co-exist on the same system because the scheduling

hierarchy for the system describes how conflicts among applications should be resolved. In

addition, no permanent modifications to the system are required for an application to create

new semantics. Instead, the application can define a customized programming model by

creating a customized scheduler, creating customized application libraries, or by creating

customized concurrency control policies. The configuration of the system is then modified

to include the application of these customized policies to specific sets of applications. HGS

also allows an application to manipulate its own semantics at runtime. The combination of

HGS and PMGT thus provides a much broader range of configurable behavior beyond what
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is possible with the current selection of specialized heavyweight solutions.

This thesis also presents a customized programming model called Guided Execution

which was developed as an environment within which the correctness of PMGT and HGS

implementations could be tested. Guided Execution implements a customized scheduler and

controls the threads implementing the tests under the HGS framework just as any other

application would specify and use a customized semantics. Guided Execution provides an

environment in which deterministically testing the correctness of PMGT and HGS using a

set of over 400 scenarios involving concurrent execution of multiple threads is possible.

1.1 Contributions of this Thesis

The work presented in this thesis was based on a large body of work, some of which was

already partially done when the work described here began. The primary contribution of

this thesis was to fully realize the integration of mutex concurrency control with scheduling.

This thesis also demonstrates that the integration of concurrency control and scheduling is

complete and correct in several ways.

The major contributions of this thesis include:

1. Significantly restructured the original PMGT implementation to improve performance

and reliability.

2. Creation of the ability for PMGT to support scheduling layers other than HGS and

separation of the scheduler API from the mutex API.

3. Creation of a Priority Inheritance implementation that utilizes PMGT which demon-

strates that the new framework can reproduce the previous semantics correctly.

4. Creation of the Exclusive Control Scheduling class to properly integrate HGS into the

existing Linux scheduling framework, eliminating instability and incorrectness plaguing

the previous implementation.

4



5. Extension of basic HGS mechanisms from the uniprocessor to the multiprocessor do-

main.

6. Creation of a method for managing proxy relations that cross the boundaries of all

scheduling classes in Linux: HGS, real-time, and the completely fair scheduler.

7. Realization of the Guided Execution scheduler for deterministic testing of scenarios

involving concurrency. Specifically, this was used to implement the 31 tests required

to demonstrate proxy accounting correctness and more than 400 tests to demonstrate

HGS correctness.

The rest of this thesis first discusses various approaches to scheduling and the testing

of concurrent software that are related to the contributions of this thesis in Chapter 2.

Chapter 3 discusses background necessary to understand the framework within which the

contributions of the thesis were implemented, the PMGT and HGS implementations, and

then discusses the Guided Execution programming model and its use in demonstrating the

correctness of the PMGT and HGS implementations. Chapter 4 first discusses the basic

design and methods used for the evaluation experiments and then presents experiments

evaluating the performance of PMGT and HGS in various ways. Finally, Chapter 5 presents

conclusions and discusses future work.
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Chapter 2

Related Work

The work presented in this thesis primarily deals with two issues: the integration of

scheduling and concurrency control and the testing of that integration. The first half of

this section presents an overview of several different scheduling implementations and their

treatment of the integration of scheduling and concurrency control. The second half of this

section examines several different methods that might be applied to test concurrent programs

that utilize the integration of scheduling and concurrency control.

2.1 A General View of Scheduling Layers

A scheduling algorithm provides the method by which application behavior can be spec-

ified and by which that behavior can be produced as it executes. A scheduler is an im-

plementation of an algorithm and executes in the system as the controller of application

execution.

The behavior produced by a particular execution of a scheduler depends on the set

of entities controlled by the scheduler and the state data associated with those entities.

Generally, a group is the set of entities, either groups or tasks, controlled by a scheduler and

the state data associated with those entities. A scheduler is associated with each group and

makes use of the group’s state data in making its decisions.
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A scheduling layer provides a set of standard capabilities to make writing a scheduler

easier and more reliable. A scheduling layer which permits more than one scheduler to

be used concurrently must also provide ways for the developer to specify which tasks are

controlled by which schedulers and to resolve conflicts among the various schedulers. The

scheduling layer must ultimately provide a way to combine the semantics of the various

schedulers to produce a unified scheduling semantics for the system.

With respect to the issues addressed in this thesis, there are four important characteristics

of scheduling layers: (1) support of common requirements of most or all schedulers, (2) the

ability to organize a set of schedulers, (3) dynamic configuration, and (4) integration with

concurrency control.

Support of Common Scheduler Requirements

Each scheduling layer assumes a set of requirements that are common to all schedulers.

Most scheduling layers implement their treatment of the common requirements as a frame-

work using a set of function pointers to represent components of a generic scheduler. This

both requires and allows all schedulers implemented under the framework to have a similar

structural decomposition as a set of functions. Each function pointer represents a component

of the common model invoked in situations where that component function of the scheduler

is required to act, in the view of the common scheduling layer.

While each scheduling layer differs from others in detail, the function pointers used to

implement a model can be broken into a number of common categories: those invoked at

scheduling time, those that change the state of a task, those involved in load balancing,

those invoked in the context of the system timer tick, and those supporting integration of

scheduling and concurrency control. Note that a given scheduling layer may not implement

function pointers in every category.
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Organizing Multiple Schedulers

Multiple scheduling algorithms may be required to specify the behavior of a system.

Each scheduling algorithm can be simplified if the algorithm does not have to specify its

interaction with every other algorithm. Therefore, the scheduling layer is often used to

implement a unifying supervisor that specifies how the scheduling algorithms interact. Such

a unifying supervisor is a reasonable addition to a scheduling layer because it is obvious

that portions of the system controlled under different scheduling semantics may come into

conflict. If a scheduling layer does not explicitly represent how such conflicts are managed

then the semantics are left implicit because every scheduling layer must ultimately choose a

single thread to run on a given CPU at any given time.

Dynamic Configuration

If the set of schedulers can be modified and organized dynamically at runtime then the

system can better support application-specific scheduling semantics by permitting applica-

tions to implement their own scheduler. Otherwise, the system must know beforehand every

set of control semantics that will be required. On a general purpose system, where the appli-

cations on the system may change constantly, this is very difficult to know. On an embedded

system, configuration of the set of schedulers at system generation time could be feasible.

Integration with Concurrency Control

Currently, on most general purpose systems, applications must use a combination of prior-

ity assignment and concurrency control primitives to implement desired behavior semantics.

This is often less precise, more difficult to implement, and more difficult to understand than

the explicit specification of the behavior semantics as a scheduler.

Integration of scheduling with concurrency control is important because the concurrency

control affects the runnability of a thread. If the semantics of the concurrency control are

at odds with the semantics of the scheduler then the application behavior produced may
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diverge significantly from that intended. There are two obvious types of integration: (1)

waiter selection and (2) influence of the waiters on owner scheduling. The first refers to how

a task waiting for a mutex is selected when the mutex is released by its owner. The second

refers to whether the scheduling semantics of the waiters should influence how the owner is

treated by the scheduling layer.

As an example of the need for waiter selection integration, imagine a system using priority

scheduling but FIFO semantics for mutexes. The task chosen to receive ownership of a

mutex might not be the task with the best priority which would be contradictory to what

the scheduler would choose. In contrast, if priority is used to choose a waiter then the

concurrency control and scheduling semantics are integrated.

The original form of Rate Monotonic Analysis (RMA) and its subsequent extension il-

lustrate the need for the integration of concurrency control and scheduling.

Originally, RMA did not consider the effects of resource use, simply assigning priority

according to the frequency with which periodic tasks were executed [14]. However, under this

approach, a task with a better priority could wait an arbitrary period of time while tasks with

worse priorities executed because of a lack of mutex ownership and scheduling integration.

This is commonly known as the Priority Inversion problem. While it was originally identified

in the context of RMA, it is applicable to any priority based scheduling. Priority Inheritance

is the most widely accepted solution which influences the scheduling semantics of the mutex

owner by making its dynamic priority the maximum of its own and its waiters [18].

It is interesting to consider the possibility that under a framework where any concurrency

control semantics can be specified then using concurrency control primitives for scheduling

effects could in principle no longer be required.

Summary

Any scheduling layer will be based on some view of what the fundamental aspects of

scheduling are and this view will strongly influence the basic architecture and semantics of
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the framework. To illustrate this we consider five scheduling frameworks: (1) the “scheduling

stack” in current standard Linux, (2) the Hierarchical Loadable Scheduler, (3) the original

form of HGS which was called Group Scheduling at the time, (4) the PREEMPT-RT patch

for Linux, and (5) Litmus-RT.

2.1.1 Linux Scheduling Stack

The standard Linux Scheduling Stack(LSS) implements several different scheduling classes.

A scheduling class is the implementation of one or more scheduling algorithms. In Linux,

each scheduling algorithm is referred to as a policy. Conceptually, a policy is the same as a

scheduler and the term scheduler will be used here for consistency.

The LSS partially fulfills the first criteria of an effective scheduling layer by providing a

set of twenty callbacks that can be used to implement a scheduling algorithm. Most of these

callbacks would be useful to schedulers with a wide range of semantics. However, Linux relies

on the sched setparam and nice system calls for changing the scheduling parameters of a

task and these have no support for non-priority based scheduling parameters. The LSS also

does not provide callbacks for integrating scheduling with concurrency control.

The LSS organizes the scheduling classes into a stack that determines the order in which

the classes are evaluated. Each scheduling class determines the ordering of its schedulers.

As a result, the order of the classes in the stack and the order of the schedulers within the

classes determines a total order on all schedulers in the system and thus a unified semantics

for the system.

In mainline Linux, there are three scheduling classes: Real-Time, the Completely Fair

Scheduler (CFS), and Idle. This is the order of the evaluation of these classes in the Linux

scheduling stack. The Real-Time class implements First-In-First-Out (SCHED FIFO) and

Round Robin (SCHED RR) static priority schedulers. The CFS class is the class used by

most threads under Linux. It implements the Other scheduler (SCHED OTHER) that is

priority based but adjusts dynamic priority in response to recent CPU consumption. CFS
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also implements the Batch scheduler (SCHED BATCH) for low priority, long running tasks.

The Idle class implements only the Idle (SCHED IDLE) scheduler that provides the a CPU

with busy work when there is nothing else to do.

The set of scheduling classes in the stack and their order is static but Linux has some

support for dynamic configuration of groups. A hierarchy of groups can be created within

each of the scheduling classes called Cgroups [6]. A scheduling class uses the same scheduling

algorithm for all of the groups in its hierarchy and a task can only be a member of a single

group. Primarily, the hierarchies are used to specify how CPU resources are divided for each

class. While this model provides considerable range for configuring hierarchies of resource

related scheduling constraints, it fails to provide the range of configurability for scheduling

semantics provided by other frameworks such as HLS or HGS which are discussed later in

this section.

Recently, Linux has added the ability to create groups of tasks under Cgroups based on

their login session (TTY) [7]. This has improved the responsiveness of the Linux desktop

because all desktop tasks can be made more important than background processes. This new

feature also makes the LSS more dynamically configurable without going so far to support

dynamically changing sets of schedulers.

The LSS exclusively cares about priority scheduling and so some of the features that

might be useful to a scheduling layer that allows a wider range of scheduling semantics are

less important in achieving its desired system semantics. The lack of support for dynamically

changing the set of schedulers and organizing the order in which schedulers are applied does

not significantly hinder the goals of the LSS.

Finally, Linux does not provide any integration with concurrency control. All Linux

concurrency control uses FIFO semantics. Clearly this limits the range of available semantics

and some extension in this area is desirable. The PREEMPT-RT patch and HGS discussed

later in this section address extension in this area in different ways.
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2.1.2 Hierarchical Loadable Scheduler

The Hierarchical Loadable Scheduler(HLS) was developed as a scheduling layer for Win-

dows 2000 [16]. In many ways, HLS is similar to HGS. The primary difference and disadvan-

tage of HLS compared to HGS is the lack of integration between scheduling and concurrency

control.

Scheduling algorithms are implemented in HLS using a set of callbacks. However, HLS

uses callbacks only invoked at scheduling time and to set the scheduling parameters of a task.

Since this was a research project, Reghr chose to concentrate on composition of scheduling

semantics and did not include more programmatic aspects of other frameworks such as timer

tick or load balancing callbacks.

A central theme of HLS is that the system behavior is specified by a hierarchy that com-

poses different scheduling semantics. Under HLS, groups are called “scheduler instances”.

For consistency, the term group will continue to be used here.

An HLS hierarchy consists of groups, tasks, and virtual processors. Under HLS, a task can

only be a member of a single group but it is still possible to compose scheduling semantics.

A “Join” HLS scheduler exists that enables a task to be influenced by multiple groups. A

group assigned to the Join scheduler contains a single entity, either a task or a group, and

always schedules that entity whenever it is asked to make a decision. Scheduling semantics

can be composed by placing a task under the control of an instance of the Join scheduler

and placing that instance under the control of multiple groups.

In an HLS hierarchy, all connections between groups are made through virtual processors.

When a scheduling decision needs to be made for a particular physical processor then the

top group in the hierarchy assigns the physical processor to a virtual processor it controls.

The assignment of a physical processor to a virtual processor gives processor time to the

groups connected to that virtual processor. The virtual processor scheme makes scheduling

involving processor resources explicitly configured in the HLS hierarchy.

HLS allows the set of schedulers to be modified dynamically and the hierarchy can be
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re-organized. Therefore, HLS is well suited for general purpose systems that have many ap-

plications with different scheduling semantics because the system does not have to implement

the full set of schedulers for these scheduling semantics at build time.

HLS does not provide any integration with concurrency control. Instead, it is recom-

mended that threads should avoid situations that would require concurrency control support,

such as priority inversion. Avoidance, when possible, requires more effort by application de-

velopers than the direct concurrency control integration provided by HGS. Additionally,

avoidance may not always be possible.

Time-sharing, fixed priority, and CPU reservation scheduling algorithms have been im-

plemented using HLS.

2.1.3 Group Scheduling Without Concurrency Control Integration

The original implementation of HGS was simply called Group Scheduling(GS) and im-

plemented only the scheduling aspects of HGS without concurrency control integration [1].

One of the primary contributions of this thesis was to complete the addition of support for

the integration of concurrency control and scheduling.

GS provided common support for schedulers by establishing a set of callbacks imple-

mented by all schedulers which included getting and setting arbitrary scheduling parameters.

However, it did not provide a load balancing callback, a timer tick callback, or callbacks used

to integrate with concurrency control.

GS uses a hierarchy consisting of tasks and groups to specify system behavior. Both tasks

and groups can be a member of one or more groups. A scheduler is associated with each

group and chooses among group members when invoked. A given scheduler can be associated

with more than one group but since each group’s member data is used separately, this is best

viewed as multiple instances of the same algorithm being associated with different groups.

At scheduling time, the scheduler associated with the top group of the GS hierarchy is

invoked. It may choose to query a group which is one of its members. This query takes the
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form of a nested call to the subordinate group’s scheduler. At the level of a given group

several queries to subordinate groups may be required. As a result, the pattern of execution

within the scheduling hierarchy is one of a recursive search through a decision tree until a

task is picked.

While both GS and HLS use a similar hierarchical description, there are a few practi-

calities that differentiate the two. One of the significant differences is related to the idea

of virtual processors and is related to the difference in target platforms for GS (Linux) and

HLS (Windows). Under HLS, tasks associated with a virtual processor must be executable

on any physical processor assigned to the virtual processor. However, under Linux, tasks

can only be executed on a specific assigned processor and changing the processor assignment

involves significant overhead. Thus, the virtual processor approach of HLS would be too

expensive under Linux and GS used a different approach. An additional difference is the use

of the Join scheduler by HLS as a mechanism used to permit tasks to be controlled by more

than one group. Under GS, tasks are simply permitted to be members of multiple groups

and therefore these semantics are represented directly.

GS provided dynamic configuration. Schedulers could be added and removed from the

system at runtime and the association between schedulers and groups could also be dynam-

ically adjusted. Thus, GS is easily applied to general purpose systems with a dynamic set

of applications that desire a wide range of behavior.

The desirability of using application-specific customized scheduling under this framework

was demonstrated for a simulated video processing application that used multi-threaded

pipelines for each video stream and wanted to maintain balanced progress of the processing

for multiple streams [1]. However, this application did not involve uses of concurrency control

where integration with scheduling was relevant to the performance metrics. Therefore, the

results were excellent even though the framework had a significant limitation. Recognition of

the need for the integration of concurrency control and scheduling motivated the development

of HGS.
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2.1.4 Real-Time Preemption Patch

The Real-Time Preemption Patch (PREEMPT-RT) improves on the LSS by providing

integration of scheduling and concurrency control [17]. PREEMPT-RT also improves the

overall control in the system by providing a thread context for hard-irqs and soft-irqs, thus

including essentially all system computation activities in a unified scheduling framework.

In most respects, PREEMPT-RT has the same characteristics as the LSS: (1) it is ex-

clusively interested in priority scheduling, (2) it provides a set of function pointers that are

used by schedulers to implement scheduling algorithms but PREEMPT-RT assumes only

priority based schedulers will be implemented, (3) the set of schedulers for the system are

organized in a static stack, and (4) there is limited dynamic configuration.

PREEMPT-RT addresses the fourth criterion for an effective scheduling layer, the inte-

gration of scheduling and concurrency control, by providing support for Priority Inheritance.

This approach to integration is limited to schedulers using priority semantics. Nonetheless,

it is an important milestone because it makes it possible to support a number of popular

real-time and other priority based scheduling semantics in standard Linux. PREEMPT-RT

addresses the waiter selection issue by replacing the FIFO waiter selection policy with a

priority based one. Its implementation of Priority Inheritance permits the set of waiters for

a mutex to influence the scheduling semantics of the mutex owner.

PREEMPT-RT is an appealing platform for non-priority based scheduling due its im-

proved control over all system computation activities. However, in most cases, some ex-

tension is necessary to overcome the limitations of the LSS upon which PREEMPT-RT is

based and also to generalize the concurrency control semantics provided by PREEMPT-RT

to work with a wider range of scheduling semantics. Litmus-RT, HGS, and efforts to imple-

ment deadline scheduling [9] are examples of work based on the PREEMPT-RT patch but

attempting to extend it in various ways.
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2.1.5 Litmus-RT

Litmus-RT is a scheduling framework specifically targeting real-time scheduling algo-

rithms [4]. Litmus-RT is a modification to PREEMPT-RT. It provides a new scheduling

class that is placed at the top of the LSS. Litmus-RT is placed at the top of the LSS to make

it the scheduling class consulted first when making a scheduling decision. This technique is

also used by HGS.

The Litmus-RT scheduling class provides a plugin framework within which a variety of

real-time schedulers can be implemented. It provides its own API which is somewhat simpler

than that of the LSS API. While Litmus-RT is a scheduling class from the LSS’s point of

view, it is probably more accurate to consider it a scheduling layer.

Litmus-RT, like most scheduling layers, assumes a common model for schedulers used

to implement each scheduler. The Litmus-RT plugin framework provides function pointers

invoked (1) at scheduling time, (2) when a timer tick occurs, (3) when scheduling parameters

are changed, and (4) for a limited form of concurrency control integration. The scheduling

parameter function pointers allow non-priority parameters to be specified.

The second criterion for an effective scheduling layer, the ability to organize a set of

schedulers, is not addressed by Litmus-RT, because it only permits a single scheduler to be

active at any time. It does, however, provide some dynamic configuration by permitting

several schedulers to be included at compile time and allowing the active scheduler to be

switched at run time. Also, Litmus-RT does not allow addition of new schedulers at runtime.

Several Litmus-RT schedulers implement scheduling algorithms that require different

strategies for resource use. Litmus-RT specifies a basic strategy for resource use called the

Flexible Locking Multiprocessor Protocol (FMLP) which is modified for each scheduling

algorithm [2]. The implementation of FMLP shares the basic strategy among the schedulers

and integrates scheduling with concurrency control by calling into the active scheduler to

allow modifications to the basic strategy to be made.

FMLP classifies resources into resource groups. A resource group is either “short” or
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“long” and each resource group is protected by a resource group lock. A short resource group

is controlled by a FIFO busy-wait lock that requires that the owner be non-preemptable while

the lock is held. The locks for short resource groups are not integrated with scheduling for

the obvious reason that they are non-blocking. A long resource group is controlled by a

Litmus-RT semaphore implementation which has a FIFO queue for waiters. The owner of

the semaphore inherits the best priority of the waiters, creating a strange hybrid of FIFO

and PI semantics. Another notable aspect of the PI implementation is that it appears

to only consider those tasks directly waiting on the semaphore and not those indirectly

waiting through other semaphores when determining the inherited priority. Additionally,

this implementation calls into the active scheduler when (1) a task blocks on the semaphore,

(2) the owner inherits a priority, and (3) the semaphore is released to allow the scheduling

plugin to update scheduling data. These callbacks seem to be used to effect preemptability

and to adjust priority of threads but precisely why this would be useful in a particular

situation was not clear [2].

Though FMLP is still restricted to specific concurrency control semantics, it demon-

strates an approach to the integration of concurrency control and scheduling that commu-

nicates more information to the scheduling layer than the simple priority values used in the

PREEMPT-RT implementation of PI.

HGS integrates with the system’s concurrency control using a similar strategy to Litmus-

RT by placing callbacks in the modified mutex implementation provided by PMGT. However,

unlike Litmus-RT, HGS makes few assumptions about the scheduling semantics of the tasks

using a mutex by making waiter selection semantics configurable on a per mutex basis and

generalizing the influence of waiters on the scheduling of the mutex owner. Additionally,

the concurrency control semantics configured by HGS apply to all of the system resources in

order to provide greater control over system behavior. The intent is to permit an application

to create specialized concurrency control semantics for an application just as it can create a

specialized scheduler for controlling application execution.
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2.2 Testing of Concurrent Software

The increasing popularity of multi-core processors has made multi-threaded concurrent

software ever more important. However, concurrent software is difficult to develop. Part of

the difficulty lies in testing the correctness of the software because, under most programming

models, the execution interleaving of threads in concurrent software is non-deterministic.

In testing concurrent software, the primary concern is the order of synchronization op-

erations performed by the threads executing the software. Synchronization operations are

those operations that interact with another thread, such as: reading from a communication

channel, writing to a communication channel, a lock operation on a semaphore, or an unlock

operation on a semaphore [13]. The sequence of synchronization operations is known as a

SYN-Sequence [13].

To adequately test a concurrent piece of software, every possible SYN-Sequence must

be considered. The set of SYN-Sequences can sometimes be reduced by removing similar

sequences in order to simplify testing. Therefore, a testing framework must be able to

insure that a desired set of SYN-Sequence has been tested by either observing that each

SYN-Sequence has executed or by forcing every SYN-Sequence to execute.

Some tools that are generally useful for testing are not useful for concurrent testing. Code

Coverage Analysis is one method that is helpful for testing software in general but gives little

insight into the concurrent aspects of the software. This method can provide information

about which sections of the software have been executed and which branches were taken [3].

However, this information is not of much use for testing concurrency because it does not

indicate which threads executed which synchronization operations and does not provide the

order in which the synchronization operations occurred.

Four ways of testing concurrent software are (1) non-deterministic testing, (2) determin-

istic testing, (3) reachability testing, and (4) model checking.
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2.2.1 Non-deterministic Testing

Non-deterministic testing executes the same program many times with a fixed input in an

attempt to cause all of the SYN-Sequences to occur [8] [19]. In this type of testing, there is

no control over which SYN-Sequence is executed. Instead, the testing narrates which SYN-

Sequence was executed. In addition, non-deterministic testing can generate SYN-Sequences

without the SYN-Sequence first being specified. Thus, it can serve as a good starting point

to determine which SYN-Sequences are possible.

In practice, not all test suites have a way to know which SYN-Sequence occurred and it

is assumed that if a large number of tests ran successfully then all SYN-Sequences occurred.

However, this form of testing is dangerous because there is no way to guarantee that all of

the SYN-Sequences have in fact occurred.

Often, non-deterministic testing relies on adding random noise to a program in order to

cause a sequence to occur but this is not precise and it does not guarantee that a given

sequence will occur. It thus provides no guarantee how long it might take for a give non-

deterministic test suite to cover every required SYN-Sequence.

2.2.2 Deterministic Testing

Deterministic Testing forces a program to execute a specific SYN-Sequence [5]. Using

Deterministic testing, any given SYN-Sequence is easy to execute. In this respect, it is has a

significant advantage over non-deterministic testing. However, every SYN-Sequence must be

explicitly specified. Often, in order to insure that every SYN-Sequence has been specified, a

static model must be constructed. The primary disadvantage of deterministic testing is that

the model that is constructed may be complicated.

Deterministic testing is either implementation based or language based [5]. Implemen-

tation based testing modifies the compiler, middleware, operating system, or hardware [5].

Middleware modification is the most popular approach.

Deterministic testing relies on controlling the interleaving of the threads that are exe-
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cuting the software. Compiler modifications do not directly influence or effect how the set

of threads executing are interleaved. Thus, while compiler modifications may be useful in

a particular approach by permitting enhanced instrumentation or modifying the semantics

of concurrency control to aid testing on their own they are unlikely to support a complete

solution.

Middleware modifications may be the most popular because it is the most accessible

for modification by those creating the test framework rather than being the best place to

accomplish specific purposes, necessarily. In testing that uses middleware, the middleware

layer re-implements all the synchronization operations involved in the tests [13]. The new

synchronization operations constrain task execution to adhere to a specified SYN-Sequence

using concurrency control. A major advantage of modifying the middleware is that no

modifications to the operating system are required. Modifications to the operating system

often require greater expertise, more effort, and access than the test framework developers

possess.

Hardware support has also been used to provide support for deterministic testing. How-

ever, often, specialized hardware is expensive in terms of both money and development time.

An approach that works on general purpose systems is preferable. One such hardware ap-

proach is called SMILE [12]. SMILE uses hardware monitoring to intercept memory accesses,

queue the memory accesses in a transaction pool, and then execute the memory accesses in

a specific order. Thus, SMILE is good for executing SYN-Sequences if the synchronization

operations are all accesses to shared memory. This approach is limited as a general testing

approach because no other types of synchronization operations can be tested.

Other deterministic testing methods use a language based approach. Language based

approaches translate a non-deterministic program into a deterministic program [5]. Language

based approaches provide more portability because the middleware does not have to be

ported to a separate platform but some programs are too complex to be translated.

Operating system modifications are rare due to their increased complexity and a lack of
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access available to most developers. Guided Execution (GE) provides a means to perform

deterministic testing using a combination of operating system modifications and program

translation. GE is based on directly scheduling task execution order instead of indirectly

influencing it through concurrency control.

To test a program using GE, a program is translated to provide information to the system

scheduler related to which task should execute at any time by adding control points to the

program where context switching among threads may be required to implement a specific

scenario. These control points are called waypoints and are implemented as calls from the

application into the GE scheduler informing it that a specific task has reached a specific

point in the application code.

GE provides direct control of which task is executing at any given moment by modifying

how the system scheduler controls execution of test scenario threads. Specifically, the GE

scheduler follows a specified test scenario schedule expressed in the form of a sequence of

waypoints reached by specific threads.

The specific use of Guided Execution discussed in this thesis presents a special set of

problems for traditional approaches which use concurrency control primitives in the testing

framework. Specifically, we describe how we test both the user level PI-futexes and the

system level mutex primitives. The two are closely related because whenever contention arises

at the user level a system call is made which creates a system level mutex to represent the

user level PI-futex. The problem with middleware based deterministic testing for this specific

problem is that it would require using concurrency control primitives to test themselves.

Guided Execution provides a control method outside the concurrency control primitives

and thus is a significantly better approach for testing the concurrency control primitives

themselves.

However, some system modifications are required for GE and GE is restricted to Linux.

Middleware requires no system modifications which is clearly desirable when considering

only the implementation of a testing framework. One limitation of the middleware approach
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is that it must be possible to achieve the desired semantics through only modifying the

concurrency control primitives involved. This assumes that the existing API provided by

the system is sufficient to the task. Additionally, a purely translation based approach has

the advantage of being essentially platform independent with the exception of relying on

the concurrency control available on the platform to be sufficient for producing the desired

SYN-Sequences.

GE is thus an example of deterministic testing which provides few if any new capabilities.

However, it is interesting for 3 other reasons. First, it illustrates that a programming model

with highly specialized semantics can be produced under the HGS framework in a straight-

forward way. Second, the GE model can be used to test the correctness of concurrency

control primitives which might not be possible in a framework that depends on concurrency

control primitives to implement the testing. Third, it illustrates that the presence of the HGS

framework greatly decreases the effort of implementing operating system based methods of

implementing deterministic concurrency testing. We believe that direct implementation at

the system level is clearer and thus preferable to indirect methods using concurrency control

for scheduling effects but that is arguably more a point of preference than capability.

2.2.3 Reachability Testing

Reachability testing is a combination of deterministic and non-deterministic testing.

Reachability testing uses non-deterministic testing to find new SYN-Sequences and deter-

ministic testing to execute specific SYN-Sequences that have been found [13]. Reachability

testing aims to alleviate the need for the user to generate all SYN-Sequences as is required

in deterministic testing.

In reachability testing, a program is first executed with a given input to generate a

random SYN-Sequence. New SYN-Sequences are generated from this one. All prefixes of

the original SYN-Sequence are then generated by removing operations from the end of the

sequence. For every prefix generated, prefix-based replay is performed to generate a new
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SYN-Sequence.

In prefix-based replay, a program is deterministically guided to the end of the prefix and

allowed to execute non-deterministically thereafter. The SYN-Sequence generated during

non-deterministic execution is recorded and appended to the prefix to create a new SYN-

Sequence. The new sequence created can be used to generate other sequences using the same

prefix generation and non-deterministic execution method. A dictionary is kept to prevent

using a prefix more than once [13].

GE has not yet been used to perform reachability testing. However, GE is capable

of performing prefix-based replay and it provides a narrative that could be used to indicate

which synchronization operations occurred during the non-deterministic portion of the replay.

Therefore, the basic tools necessary to implement Reachability Testing are present because

new SYN-Sequences could be generated from existing sequences by performing prefix-based

replay.

2.2.4 Model Checkers

Model checkers require a model of the software to be built and then the model is tested

instead of the software itself.

One such model checker is called SPIN. To use SPIN, software semantics must be de-

scribed using SPIN’s modeling language PROMELA [11]. PROMELA can be used to fully

specify an algorithm. It goes beyond considering just the synchronization operations. SPIN

builds a state based model from the PROMELA specification and tests combinations of

model states.

In addition to examining model states, SPIN can perform some basic safety checks of

the model. The safety checks are similar to Code Coverage Analysis. SPIN also allows

specific execution and algorithmic conditions to be specified that should never occur in the

model [11]. If one of the conditions does occur then SPIN provides a report of the set of

operations that led to that condition.
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Model checkers such as SPIN provide additional flexibility. However, care must be taken

to specify a correct description of the software semantics as a model. This can be difficult

for large or complex software. Additionally, it may be difficult to know all of the conditions

to specify that should not occur in the model. Finally, SPIN can create very large models

that are expensive to evaluate [11].

In comparison, GE does not provide the automatic safety checks of a model checker. It

also cannot check for the absence of specific conditions. However, by testing the implemen-

tation instead of the model, GE insures that nothing has been lost in the creation of the

model and, thus, using model checkers in combination with GE may be beneficial.
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Chapter 3

Implementation

This first half of this chapter discusses the background context that is necessary to

understand the work presented in this thesis. Datastreams, an instrumentation framework,

is discussed first in Section 3.1. It is used to verify and evaluate the work presented in this

thesis. Next, the Computation Component Set Manager (CCSM) is discussed in Section

3.2. CCSM provides facilities for identifying and grouping tasks. Finally, the fundamentals

of Proxy Management and Hierarchical Group Scheduling are discussed in Section 3.3 and

Section 3.4, respectively.

The second half of this chapter explains the extensions made to Proxy Management

and Hierarchical Group Scheduling as the main contributions of this thesis in Section 3.5

and Section 3.7, respectively. Finally, the creation of a programming model, called Guided

Execution, for testing concurrent software and its use to create a test suite for PMGT and

HGS are discussed in Section 3.8.

3.1 Datastreams

Datastreams provides flexible, unobtrusive instrumentation that can record arbitrary

data. The kernel (DSKI) and user-side (DSUI) implementations have uniform interfaces to

make the instrumentation clear and easy to use. Events are recorded in a binary format that
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is later interpreted by a Python based post-processing. A post-processing phase is superior

to formatting the data before recording the event because it decreases the instrumentation

effect by requiring less processing during the experiment.

DSUI automatically spawns additional threads that write events to the data store. There-

fore, events have less impact on the thread that is issuing the event because the thread does

not have to wait for the relatively slow writing out of the event. This is one way in which

Datastreams tries to minimize the instrumentation effect.

The work presented in this thesis uses data collected using DSKI and DSUI to verify the

correctness of system components and to evaluate the overhead of those components.

3.2 Computation Component Set Manager

Under standard Linux, components are identified in a wide range of ways that do not

necessarily have anything to do with specifying computation level control, scheduling se-

mantics, nor measuring the performance of computations. For example, a set of process

identifiers and thread identifiers are maintained by the system but the identifiers given are

different under every execution of a given application. This presents a challenge both for

measurement and for computation control because the precise control and measurement that

we want needs a namespace that can be used to refer to different threads. Most important

is that our way of describing measurement and scheduler configuration must use names that

can be used effectively across all invocations of an application.

The Computation Component Set Manager allows an application component to declare

itself to the system using an identifier which is the same across all instances of that ap-

plication. The application component can then be referred to by outside subsystems. In

addition, CCSM allows components to be grouped into sets that can also be referred to

across instances of an application.
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3.3 Proxy Management

Concurrency control semantics are an important part of the behavior of a system. If the

concurrency control semantics are not coordinated with the scheduling layer semantics then

the scheduling layer semantics may be compromised or overridden. For every set of scheduling

semantics, it is difficult and impractical to implement an independent concurrency control

layer. A configurable concurrency control layer reduces the effort to implement customized

concurrency control semantics. The approach presented here permits the generalized tracking

of the tasks awaiting a mutex and the optional customization of the selection semantics for

the next owner when a mutex is released.

Proxy Management (PMGT) is a configurable concurrency control layer that serves as

the essential core of the integration of concurrency control and scheduling semantics. It can

be viewed as achieving the same goal as Priority Inheritance while generalizing the approach

to make as few assumptions as possible about the scheduling semantics under which the set of

threads using the concurrency control are managed. The essential task of Proxy Management

is, like Priority Inheritance, to minimize the time during which a task holding a mutex can

block the progress of a task the system would prefer to run.

PMGT was started by Noah Watkins and contributed to by Jared Straub but its com-

pletion was part of the work presented in this thesis [20]. In the implementation at the

start (IAS) of the work described in this thesis, the proxy for a task was tracked by Proxy

Management but several aspects of generalization remained. Additions and refinements to

generalizing the Proxy Management semantics presented as part of this thesis fall into several

categories. First, the ability to configure the semantics of the selection of the next owner of

a mutex from the set of tasks waiting for it was added. Second, the relationship of PMGT to

scheduling was generalized by creating a set of function calls that can be instantiated for any

scheduling layer. Third, the accuracy of the information provided to the scheduling layer

was improved. Fourth, support for deadlock detection was added to the Proxy Management

algorithms and data structures.
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This section first presents the basic design of PMGT and then gives an overview of the

algorithms used by PMGT.

PMGT implements concurrency control that is not dependent on any particular schedul-

ing semantics by recording a graph representation of the relationships among mutexes, the

tasks that own the mutexes, and the tasks that are awaiting each mutex. We call this graph

representation an m-blocking chain. All but one of the tasks in an m-blocking chain are

awaiting a mutex under normal conditions. One task, the proxy, will not be awaiting a

mutex. All of the other tasks in the chain are waiters because they are awaiting a mutex

and they are blocked due to the proxy task. The proxy task must release one of the mutexes

it holds for any other tasks in the m-blocking chain to make progress.

It is important for the scheduling layer to know who the proxy is for any task because

the proxy determines what task should be run for a given task to eventually make progress.

Therefore, if an important task is waiting on a mutex then its proxy should be scheduled.

However, it is important to note that the proxy may not be runnable because proxies can

block for other standard reasons under the process model. Thus, it is not always possible to

reduce the blocking time of an important task by running the proxy.

The purpose of both PI and PMGT is to identify a task which can be run to minimize

the blocking time of more important tasks. PI does this directly by using the priority of the

tasks involved, essentially causing the owner of a mutex to inherit the scheduling criteria

of its most important waiter. In effect, under priority scheduling this ensures that the task

owning the mutex will be chosen whenever its most important waiter would be chosen to run.

In contrast, PMGT directly tracks the proxy of each waiting task and permits the scheduler

to choose the task it wishes to run directly and then to run its proxy instead if appropriate.

PI and PMGT thus make the same choices under priority scheduling semantics but do so

using different mechanisms. In addition, the PMGT semantics work under an extremely

wide range of scheduling semantics since PMGT essentially ignores scheduling criteria.

The semantic generality of Proxy Management does come at a cost. PI does not change
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the method by which the scheduler chooses the next thread to run as much as PMGT does.

The reason for this is part of why PMGT is more general than PI. In effect, each task that

has a proxy can be chosen by the scheduler but the proxy may or may not be runnable

at that moment. Thus, the scheduler may have to check more than one candidate when

choosing the next task to run.

Under this model, the overhead added to a scheduling decision by PMGT depends on

the time required to examine the proxy for a task and the number of times that a proxy

is examined. Therefore, the overhead is a function of the number of tasks m-blocked on

the system because the proxy for some subset of these tasks will be considered during a

scheduling decision. In theory, the PMGT overhead of a scheduling decision is unbounded.

However, in practice, the number of m-blocked tasks and the number of those whose proxies

are not runnable is likely to be bounded. Further, the current approach could be optimized

by making an m-blocked task selectable only if its proxy is runnable.

The m-blocking chains recorded by PMGT can be described using a small set of defini-

tions. These definitions can also be used to express how the m-blocking chains change as a

result of mutex operations.

T1T3 T2 M1
W L LW

M2

Figure 3.1. A Simple Blocking Chain

Figure 3.1 depicts a simple m-blocking chain. Tasks are prefixed with T and mutexes are

prefixed with M . In this chain, an arrow denotes a relation. An L above an arrow indicates

that a task owns a mutex and a W indicates that a task is awaiting a mutex.

To describe an m-blocking chain, it will be useful to be able to discuss the sets of tasks

and mutexes on the system. We denote the set of tasks in the system ST , as shown in

Definition 3.1. We denote the set of mutexes on the system as SM , as shown in Definition

3.2.
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Definition 3.1 Set of Tasks on the System

ST = {t | t is a task on the system}

Definition 3.2 Set of Mutexes on the System

SM = {m | m is a mutex on the system}

We denote the ownership of mutex m by a task o as Owns(o,m) and we denote that a

task w is directly awaiting a mutex m as DAwaits(w,m). A task w is directly awaiting a

mutex m when w has made a request to lock m but has been blocked because some other

task has already locked m. The ownership relation is defined in Definition 3.3 and the direct

waiting relation is defined in Definition 3.4.

Definition 3.3 Ownership Relation

Owns(o,m) = {(o,m) | o ∈ ST ∧m ∈ SM ∧
o is the owner of m}

In Figure 3.1, there are two “Owner” relations: Owns(T1,M1) andOwns(T2,M2). Also,

in the figure, there are two “DAwaits” relations: DAwaits(T2,M1) and DAwaits(T3,M2).

There are three other relations that are not depicted in Figure 3.1 by arrows because

these relations are derived from the Owns and DAwaits relations. The first derived relation

is the indirect waiting relation. A task w that is directly awaiting a mutex m2 with owner o

is also indirectly awaiting a mutex m if o is directly awaiting on m. Additionally, any task

that is indirectly awaiting m2 is also indirectly waiting m. We define the indirect waiting

relation in Definition 3.5.

In Figure 3.1, T3 is indirectly awaiting M1. Often, distinguishing between directly and

indirectly waiting is unnecessary and we simply say that a task t is awaiting a mutex m. We

define the Awaits relation in Definition 3.6.
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Definition 3.4 Direct Waiting Relation

DAwaits(w,m) = {(w,m) | w ∈ ST ∧m ∈ SM ∧
w is blocked in a mutex lock operation on m}

Definition 3.5 Indirect Waiting Relation

IAwaits(w,m) = {(w,m) | ∃m2, o (w, o ∈ ST ∧m,m2 ∈ SM ∧
Owns(o,m2) ∧DAwaits(o,m) ∧ ¬Owns(w,m) ∧
(DAwaits(w,m2) ∨ IAwaits(w,m2)))}

In Figure 3.1, for example, task T3 has the waiting relation Awaits(T3,M2) because of

a direct waiting relation and Awaits(T3,M1) because of an indirect relation.

The second derived relation is the “m-blocked” relation. Most operating systems use a

“blocked” state to indicate when a task is not runnable. PMGT effectively creates a new

“m-blocked” state that indicates when a task is awaiting a mutex. Consequently, the blocked

state now refers to any other reason for a task not being runnable. A task w awaiting a

mutex m is m-blocked on the owner of m, task o, because o is one of the reasons because of

which t cannot run. We define the m-blocked relation in Definition 3.7.

In Figure 3.1, there are thus two m-blocking relations for task T3: MBlocked(T3, T2)

and MBlocked(T3, T1). If a task A is awaiting a mutex M then A is blocked on the owner

of M .

The proxy relation is the final derived relation. For a task t and a task u, we assert that

t is the proxy for u when u is m-blocked on t and t is not m-blocked, as shown in Definition

Definition 3.6 Awaits Relation

Awaits(w,m) = {(w,m) | w ∈ ST ∧m ∈ SM ∧
(DAwaits(w,m) ∨ IAwaits(w,m))}
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Definition 3.7 The MBlocked Relation

MBlocked(w, o) = {(w, o) | ∃m (w, o ∈ ST ∧m ∈ SM ∧
Owns(o,m) ∧ Awaits(w,m))}

3.8. Task t is not awaiting a mutex and, if t is runnable, the scheduler can run t in place of

u. T1 is the task in Figure 3.1 that satisfies Definition 3.8, and, thus, T1 is the proxy for all

of the other tasks in the chain: Proxy(T1, T2) and Proxy(T1, T3).

In general, knowledge of the proxy relation is useful only when a proxy is runnable. If

the proxy is blocked for any of a number of reasons then the proxy is not of interest to the

scheduler. When the proxy task is runnable, the scheduler may pick a task that is m-blocked

on the proxy and the proxy can be run in its place. By running the proxy, the system is

potentially reducing the blocking time of the task.

Definition 3.8 The Proxy Relation

Proxy(t, u) = {(t, u) | ∀v (t, u, v ∈ ST ∧MBlocked(u, t) ∧
¬MBlocked(t, v))}

Mutex operations change the structure of an m-blocking chain and, thus, change which

waiting, m-blocking, and proxy relations exist. PMGT tracks the set of waiting relations

and the set of proxy relations on the system and modifies these sets when mutex operations

occur. We denote the set of waiting relations as SWR and the set of proxy relations as

SPR, as shown in Definition 3.9. Initially, these sets are empty because no mutexes are

held by tasks on the system. The goal of PMGT is to represent these sets accurately at any

given moment. When an operation on a mutex is performed, updates to the set contents are

required and there are periods during execution when the representation is being updated.

The set of m-blocking relations is not considered here because this set is not tracked by

PMGT.
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Definition 3.9 System Waiting and Proxy Relations

SWR = {(t,m) | t ∈ ST ∧m ∈ SM ∧ Awaits(t,m)}
SPR = {(t, u) | t, u ∈ ST ∧ Proxy(t, u)}

The next part of this section considers what happens to these sets during four different

scenarios: (1) when a task m-blocks, (2) when a task aborts an attempt to lock a mutex, (3)

when a task unlocks a mutex, and (4) when a task steals a mutex.

When A Task M-Blocks

A task T1 that tries to lock a mutex M , held by a task T2, will m-block on T2 until T2

releases the mutex. When T1 m-blocks on T2, it merges the m-blocking chain associated

with T1 into the m-blocking chain associated with T2. New waiting and proxy relations must

be created for the tasks in the m-blocking chain associated with T1 because these tasks are

now related to the tasks in the m-blocking chain associated with T2.

ET1 M T2
L B

ET1 M T2
LW BS B

S

Lock(T1)

B

A

A
W

W

Figure 3.2. A Task M-Blocking

For example, Figure 3.2 depicts a task T1 trying to lock a mutex M that is owned by

another task T2. In the figure, S represents the blocking chain associated with T1 at the

start of the locking operation. The tasks in S are the set of tasks for which T1 is the proxy

and the mutexes in S are the mutexes owned by any of the tasks in S or T1. We denote the

33



set of tasks in S as Stask and the set of mutexes in S as Smutex. For the situation in Figure

3.2, Stask and Smutex are:

Stask = {t | t ∈ ST ∧MBlocked(t, T1)}

Smutex = {m | ∃t (t ∈ (Stask ∪ {T1}) ∧m ∈ SM ∧Owns(t,m))}

E, in the figure, represents the portion of the blocking chain located after T2. The set E

will be empty if T2 is not m-blocked. If E is not empty, the set of tasks in E, denoted Etask,

contains the tasks on which T2 is m-blocked and the set of mutexes in E, denoted Emutex,

contains the mutexes that T2 awaits. Etask and Emutex are:

Etask = {t | t ∈ ST ∧MBlocked(T2, t)}

Emutex = {m | m ∈ SM ∧ Awaits(T2,m)}

A is the portion of the m-blocking chain that is awaiting M at the start of the locking

operation. Atask contains the tasks awaiting M and which are thus m-blocked on T2 at the

time T1 attempts to lock M . Amutex contains all of the mutexes owned by the tasks in Atask.

Atask and Amutex are:

Atask = {t | t ∈ ST ∧ Awaits(t,M) ∧ ¬MBlocked(t, T1) ∧ t 6= T1}

Amutex = {m | ∃t (t ∈ Atask ∧m ∈ SM ∧Owns(t,m))}

Figure 3.2 thus depicts the m-blocking chain associated with T1 merging into the m-

blocking chain associated with T2 because of the lock operation performed by T1. PMGT

creates new waiting and proxy relations to represent the merging of the two m-blocking

chains. T1 moves from a runnable state to an m-blocked state once the chains have been

merged. The set S is depicted with a “B arrow” between it and T1 to indicate that all of

its tasks are m-blocked on T1. Likewise, there is a “B arrow” from T2 to E to indicate that
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T2 is m-blocked on all tasks in E. The set A is depicted with a “W arrow” that points to

M because the tasks in A are awaiting M .

After the lock operation, T1 is directly waiting on M and all of the tasks in S are

indirectly waiting on M . Also, the tasks in S and T1 are indirectly awaiting any mutexes in

E. The change in waiting relations as a result of T1 trying to lock M is described by:

SWR′ = SWR ∪ {(s,m) | s ∈ (Stask ∪ {T1}) ∧ (3.1)

m ∈ ({M} ∪ Emutex)}

Initially, T1 is the proxy for every task in S. However, T1 is m-blocking and therefore

can no longer be a proxy. If E is empty then T2 will be the new proxy for T1 and all of the

tasks in S. Otherwise, the proxy will be the task in E that is not m-blocked on any other

task. Note that the waiting and proxy relations for Atask are unaffected by T1 m-blocking

on M . The update of the proxy is described by:

SPR′ = (SPR− {(T1, s) | s ∈ Stask}) ∪ (3.2)

{(e, s) | e ∈ ({T2} ∪ Etask) ∧

s ∈ (Stask ∪ {T1}) ∧ Proxy(e, s)}

When A Task Aborts an Attempt to Lock a Mutex

When a task T1 aborts an attempt to lock a mutex M then the m-blocking chain associ-

ated with T1 is split into two blocking chains. One chain is associated with T1 and the other

chain is associated with the owner of M , T2. Some waiting and proxy relations must be

removed from the tasks in the m-blocking chain associated with T1 because the m-blocking

chain associated with T2 is no longer part of the same chain. Additionally, T1 becomes the

proxy for all of the tasks in the blocking chain associated with it. The abort operation is

essentially the locking operation in reverse.
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Figure 3.3. A Task Aborting an Attempt to Lock a Mutex

Figure 3.3 depicts a task T1 aborting an attempt to lock mutex M which is owned by

task T2. This figure uses S to represent the portion of the m-blocking chain that contains

tasks m-blocked on T1. A represents the portion of the blocking chain that contains tasks,

other than those in S and T1, that are awaiting M . E is the portion of the m-blocking chain

containing tasks on which T2 is m-blocked. The waiting and proxy relations for the tasks in

A do not change because these tasks have the same relations to the tasks in E at the end of

the abort.

When T1 aborts, it becomes runnable and it no longer has any waiting or proxy relations.

Additionally, the tasks in S are no longer waiting on M or any of the mutexes in E. The

change in waiting relations is described by:

SWR′ = SWR− {(s,m) | s ∈ (Stask ∪ {T1}) ∧ (3.3)

m ∈ ({M} ∪ Emutex)}

The set of proxy relations is updated as described in Equation 3.4. The relations for Stask

and T1 are removed and new relations with T1 as the proxy are added.

SPR′ = (SPR− {(t, s) | t ∈ ST ∧ s ∈ (Stask ∪ {T1})}) ∪ (3.4)

{(T1, s) | s ∈ Stask}
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When A Task Unlocks a Mutex

A task T2 that is releasing a mutex M is leaving the m-blocking chain associated with

T2. T2 is initially the proxy for all of the tasks in this m-blocking chain because T2 is not

m-blocked. During the release operation, the best waiter on the mutex must be selected

to receive pending ownership of M and this task is the new proxy for the chain. PMGT

has no knowledge about how to select the best waiter because the best waiter is determined

using the scheduling semantics of the set of tasks awaiting M and PMGT does not assume

any particular scheduling semantics. Therefore, we define a “Best” function which must be

specified to PMGT to enable PMGT to determine the best task among a set of tasks using

the scheduling semantics associated with the tasks. This function is given in 3.10.

Definition 3.10 The Best Function

Best({T}) = the best task where t ∈ T

In this case, the Best function is used to choose among the tasks awaitingM by evaluating

Best({t | t ∈ ST ∧DAwaits(t,M)}). PMGT updates the SWR and SPR during the release

operation to reflect the implications of T2 releasing M .

T1M

T2

P

T1 M T2
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W
A

Figure 3.4. A Task Unlocking a Mutex

Figure 3.4 depicts a release operation. In this figure, task T2 is performing the unlock

operation. When task T2 releases mutex M , the best direct waiter as determined by the Best

function, T1, is granted pending ownership of the mutex. When this occurs, T1 becomes
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runnable and it is no longer m-blocked on T2. However, under the Linux mutex model, T1 is

a “pending owner” because the mutex is not officially owned by T1 until T1 runs and takes

ownership. During the period before T1 takes ownership, a better task is allowed to steal

the mutex. If M is stolen then T1 will become m-blocked on the stealing task when it runs

to try and make its pending ownership official. This figure uses S to represent the portion

of the m-blocking chain that contains tasks m-blocked on T1 and A to represent the portion

of the blocking chain that contains tasks, other than those in S and T1, that are awaiting

N .

At the end of the release operation, task T1 is no longer awaiting any mutexes when it

becomes the pending owner of M and, thus, its waiting relations are removed. Additionally,

recall that the set S contains tasks that are blocked on T1. When T1 is granted pending

ownership of M , the tasks in S are no longer awaiting M . Note that the set of waiting

relations for the tasks in A does not change because these tasks are unrelated to T1 at the

start of the unlock operation. The change in waiting relations is described by:

SWR′ = SWR− {(s,M) | s ∈ (S ∪ {T1})} (3.5)

At the end of the unlock operation, task T1, the pending owner of mutex M , is the proxy

for every task in Atask and Stask because T1 is not m-blocked. The change in proxy relations

is described by:

SPR′ = (SPR− {(T2, t) | t ∈ (Stask ∪ Atask ∪ {T1})}) ∪ (3.6)

{(T1, s) | s ∈ (Stask ∪ Atask)}

When A Task Steals a Mutex

A task, T1, may steal a mutex, M , from a pending owner, T2, if T1 is better than

T2. The Best function associated with the is used to determine if T1 is better than T2 by
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Figure 3.5. A Task Stealing a Mutex

checking if T1 = Best({T1, T2}). Figure 3.5 depicts a successful stealing scenario where the

stealing task is T1, the mutex is M , and the pending owner is T2. S and A in the figure

represent portions of the m-blocking chain whose waiting and proxy relations may change

as a result of the stealing operation. When M is stolen, the same steps used to update the

SWR and SPR sets for the mutex unlock operation are applied with T1 receiving M and

T2 releasing it. When T2 eventually runs, it will discover that it is no longer the pending

owner of M and it will become one of M ’s waiters and thus have T1 as its proxy.

In the figure, a dotted “W arrow” indicates that T1 could be awaiting M when it tries

to steal M . This circumstance arises when a waiting task is unexpectedly awaken and

tries to steal the mutex. In this case, some extra accounting is necessary if T1 manages to

successfully steal M because the SWR and SPR sets must be updated to reflect that T1 is

no longer a waiter by removing any relations related to its previous status as a waiter. This

change is described by:

SWR′ = SWR− {(T1,M)} (3.7)

SPR′ = SPR− {(T2, T1)} (3.8)

PMGT provides configurable concurrency control by tracking waiting and proxy relations.

The tracked waiting and proxy relations are updated during the blocking, abort, release, and
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stealing scenarios to reflect the structure of the resulting m-blocking chains.

3.4 Hierarchical Group Scheduling

On a general purpose system, applications with quite different semantics can be present.

Virtually all conventional operating systems provide a programming model with a single

semantics. Specifically, priority driven preemptive scheduling which controls each thread

individually. Some particularly advanced or special purpose system may provide deadline

scheduling or minor variations on priority scheduling.

Unfortunately, developers often find it difficult to map the desired application semantics

on to the priority based semantics the system makes available. This difficulty often arises

because priorities are simply not appropriate but it can also arise because controlling each

thread on the system individually prevents the collaborative semantics a multithreaded ap-

plication may desire. In response to this gap, developers often use concurrency control to

achieve specific application behavior effects. However, in a system which permitted develop-

ers to directly implement the application behavior they desired in the form of a customized

scheduler, no such use of concurrency control for scheduling effects would be necessary.

Hierarchical Group Scheduling (HGS) resolves this conflict by providing the developer

with the ability to flexibly configure and precisely control behavior at all levels from the

individual application to the system as a whole. HGS does this by permitting developers to

(1) choose among a range of standard schedulers, by permitting developers to (2) write a

custom scheduler, by permitting developers to (3) create scheduling hierarchies to describe

how different aspects of the system are controlled and by (4) integrating scheduling with

concurrency control.

The rest of this section will provide an overview of the set of standard schedulers, the

framework in which custom schedulers can be written, and how the scheduling hierarchy for

the system is specified to provide context that helps in understanding the work presented

in this thesis. This thesis focuses on completing the work done by previous students on the
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integration of scheduling and concurrency control which had many important capabilities

but also several important deficits. The completion and testing of this work is discussed in

greater detail in Section 3.5 and Section 3.8, respectively.

There are several familiar schedulers that have already been written or should be rela-

tively easy to write, including: static priority, dynamic priority, round robin, and earliest

deadline first. However, the set of schedulers on the system is not fixed. HGS provides a

framework that allows developers to write a custom scheduler and configure the system to

use the scheduler with relative ease. The methods for writing custom schedulers are dis-

cussed in the documentation for HGS [15]. One example of a custom scheduler that has

already been written controls multiple pipeline computations in a way that ensures balanced

progress among the pipelines [1]. Additionally, as part of testing the completed integration

of scheduling and concurrency control, another example of a custom scheduler is presented

in Section 3.8.

HGS uses a hierarchy consisting of tasks and groups to specify system behavior. Both

tasks and groups can be a member of one or more groups. A scheduler is associated with

each group and chooses among group members when invoked. A given scheduler can be

associated with more than one group but since each group’s member data is used separately,

so this is best viewed as multiple instances of the same algorithm being associated with

different groups. The hierarchical design is discussed more fully in [20].

At scheduling time, the scheduler associated with the top group of the HGS hierarchy

is invoked. It may choose to query a group which is one of its members. This query takes

the form of a nested call to the subordinate group’s scheduler. At the level of a given group

several queries to subordinate groups may be required. As a result, the pattern of execution

within the scheduling hierarchy is one of a recursive search through a decision tree until a

task is picked.

HGS tries to impose few restrictions on scheduler semantics in order to allow a wide

range of schedulers to be implemented. In support of this goal, HGS relies on PMGT to
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permit developers to configure concurrency control semantics that match the scheduling

semantics implemented by the HGS scheduling hierarchy. The precision of computation

behavior control is maximized when the semantics of the schedulers and concurrency control

affecting a set of threads match one another.

In Section 3.7.2, this work presents a new approach to the integration of HGS and PMGT

which provides support for multiprocessor systems and allows schedulers to explicitly specify

concurrency control semantics.

3.5 Proxy Management Extensions

The specification of the concurrency control semantics for a system consists of two parts:

the mutex policy associated with each mutex and the proxy policy of the system. A mutex

policy defines how the tasks that are directly awaiting the release of a mutex are handled,

including: which waiter is selected to receive ownership of the mutex when it is released by

the owner and when a task is allowed to steal the mutex. A proxy policy determines how

the tasks that are m-blocked on a proxy influence the scheduling criteria of the proxy. To

be effective as a configurable concurrency control layer, PMGT must allow both mutex and

proxy policies to be configured.

In the IAS, PMGT implemented the generalized algorithms necessary to support the

configuration of mutex and proxy policies but it did not actually allow these policies to be

configured. Instead, in the IAS, PMGT assumed a basic FIFO mutex policy for all mutexes

and relied on HGS exclusively to provide the proxy policy for the system.

A set of callbacks now exists to allow different mutex policies to be defined and each

mutex can be associated with a different mutex policy. FIFO and priority based mutex

policies have been implemented using these callbacks. A second set of callbacks exists to

allow the scheduling layer to specify the proxy policy for the system. These callbacks have

been used to implement a PI proxy policy for the PREEMPT-RT scheduling layer and to

implement an SMP aware proxy policy for HGS. This section further discusses the details of
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the mutex and proxy policy callbacks.

3.5.1 Mutex Policy Configuration

To fully specify system concurrency control semantics, a policy must be specified to

determine how the tasks directly awaiting the release of a mutex are handled. PMGT

addresses this issue by providing a set of callbacks that allow developers to implement a

wide range of mutex policies. Additionally, PMGT allows an individually customized mutex

policy to be specified for one or more mutexes.

PMGT assumes little about the concurrency control semantics of the system in order to

allow a wide range of concurrency control semantics to be configured. As a result, there are

some decisions that PMGT cannot make. For example, when the owner of a mutex releases

the mutex, the best waiter on the mutex receives pending owner status for the mutex. PMGT

has no way to know what criteria should be applied to the waiters to determine which is the

best. Similarly, if a task attempts to steal a mutex, PMGT does not know if the stealing

task should be allowed to steal the mutex.

Choosing the best waiter when a mutex is released obviously interacts with the scheduling

semantics because the waiter that the system scheduling semantics would most like to run,

if it were runnable, ought to be the one that is given the mutex and would thus become

runnable. Additionally, the scheduling semantics determine if a task is allowed to steal a

mutex because the scheduling semantics must prefer the stealing task to the pending owner.

What component should make a decision when PMGT cannot? In the case where all

tasks are managed under a uniform system scheduling semantics the scheduling algorithm

involved is sufficient to choose the best waiter. For example, if priority semantics are being

used by the system to schedule tasks then the best waiter on a mutex is the task with

the best priority. However, we do not wish to assume that all system configurations will

involve uniform scheduling semantics for all tasks. For example, under HGS different sets

of tasks may be controlled under different scheduling semantics. In the case where the
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system scheduling semantics is known at build time the system developer can, in theory,

write a routine for choosing the best waiter that can take into account the mix of scheduling

semantics under which the various waiting tasks may be controlled. This can obviously be

a very difficult problem to solve but it is the responsibility of the developer configuring the

system to be able to solve it. Otherwise, the developer’s desired system semantics are not

feasible.

A further complication is that HGS permits schedulers to be developed as part of appli-

cations and thus to be loaded dynamically. This implies that the mix of scheduling semantics

represented by a set of waiters can not even be predicted at system compile time under all

circumstances. Therefore, in creating this framework for the integration of scheduling and

concurrency control, we do not attempt to solve every possible problem. Instead, we allow

a developer to supply a set of callbacks called a mutex policy that is associated with one or

more mutexes.

Different sets of mutexes in the system may be used by different sets of tasks. The set

of mutexes used to implement basic Linux services can be used by any task on the system.

However, mutexes used within a specialized module might be used by a set of tasks restricted

to a single application.

Our system currently only addresses OS level mutexes but extension to user level mutexes

is a fairly obvious next step. User level mutexes used by a single application could be

attractive targets for specialized semantics including waiter selection. User-level PI-mutexes

dynamically create OS level mutexes when the first waiter m-blocks, so the extension of

PMGT to include PI-mutexes would be a relatively simple extension of the capabilities

described in this thesis.

In the case of a mutex used by a kernel module or single application, we can imagine that

the developer might like to provide a waiter selection algorithm with specialized semantics.

Thus, the system supports configuring the waiter selection routine on a per-mutex basis.

However, since specifying the waiter selection semantics for each mutex in the Linux OS
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individually is completely infeasible the scheduling layer configured in the system can choose

any routine as the default policy used for all mutexes unless overridden.

There are two mutex policy callbacks that determine mutex semantics: top and can steal.

The top callback is invoked to choose the best waiter to become the pending owner when the

mutex is released. Conceptually, top is responsible for evaluating the Best function specified

for the mutex. This callback is called top instead of best because PREEMPT-RT uses the

word top. Obviously, FIFO and priority based algorithms will be popular choices and thus

we provide them as conveniences. The can steal callback decides if a mutex can be stolen.

Though sufficient to decide the best waiter, a policy that selects among an unordered

set of waiters is likely to be computationally more expensive than a policy that orders the

waiters and selects the waiters in order. To reduce overhead, facilities are provided to allow

a mutex policy to order the waiters on a mutex.

The mutex data structure contains a union of data structures, called waiters, that can

be used to order the mutex’s waiters. The use of a union limits the available data structures

to compile time configuration but this is not an issue because there are only a small number

of data structures that are suitable for this task and currently there is no need for a mutex

policy to specify a new data structure at runtime. However, if a developer wanted a new

data structure then it could be added to the union.

There are four mutex policy callbacks that maintain the waiters union: init, insert,

remove and has waiters. The init callback initializes the data structure in the waiters union

which should be used. Insert inserts waiters into the initialized data structure and remove

deletes hem. Finally, has waiters queries the initialized data structure to see if there are any

waiters.

PMGT provides FIFO and priority mutex policies that demonstrate the use of these

callbacks because FIFO serves as a simple example and priority is the most commonly used

form of scheduling semantics. The FIFO policy uses a linked list as a queue to order the

waiters on the mutex. When the best waiter for the mutex is requested, the head of the
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queue is removed. The priority policy uses a linked list that orders waiters by priority. It

returns the waiter with the best priority when the best waiter is requested. This policy

produces the priority semantics used by the PREEMPT-RT scheduling layer.

3.5.2 Proxy Policy Configuration

Although PMGT independently performs most of the accounting about proxy relations,

the scheduling layer must also be aware of the proxy relations because the proxy relations

affect the scheduling criteria for the threads involved in the relation. Proxy relations are

thus information used by the scheduling layer to make a scheduling decision. PMGT allows

developers to implement a set of callbacks, called a proxy policy, which determines how the

scheduling layer handles proxy relations.

The algorithms used by PMGT do not make any assumptions about how the scheduling

layer handles proxy relations. However, in the IAS, PMGT was tightly bound to HGS and

this coupling prevented PMGT from being used with other scheduling layers. The proxy

policy callbacks were created to present generic notifications about proxy relations to the

scheduling layer without assuming any particular scheduling layer is present in order for

PMGT to be useful to many scheduling layers. These callbacks are invoked when proxy

relations are created and destroyed.

In addition to being tightly bound to HGS, the IAS often incorrectly identified tasks as

proxy tasks. In an m-blocking chain, every task in the interior of the chain, between an

m-blocked task and its proxy, was temporarily identified as the proxy in the iterative process

of finding the real proxy. The proxy policy callbacks eliminate these incorrect interim states

by only notifying the scheduling layer when the real proxy is found.

We assume that the scheduling layer does not change at runtime because we are primarily

interested in changing the set of schedulers on the system and not how those schedulers are

managed. Therefore, the scheduling layer notified by PMGT can only be configured at kernel

compile time. Additionally, kernel compile time configuration of the scheduling layer reduces
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the overhead of PMGT by eliminating the need for additional concurrency control required

in order to handle runtime changes to the scheduling layer configuration.

Ideally, a scheduling layer would not need to make any modifications to PMGT data

structures in order to react to proxy relation changes. This would provide a clean separation

of PMGT and scheduling data structures. However, if the PMGT and scheduling data

structures are completely separate then, when proxy policy callbacks occur, the scheduling

layer may need to hold the concurrency control for both sets of data structures in order to

react to a proxy relation and this would likely create a greater constraint on concurrency

than necessary.

In an effort to constrain concurrency less, PMGT allows the scheduling layer to store

arbitrary data about waiters and proxies that is accessed using PMGT’s internal concurrency

control. Essentially, a scheduling layer is able to copy information that it would like to use

during mutex operations into designated sections of PMGT data structures and then the

scheduling layer can access this data while holding only PMGT concurrency control during

mutex operations when notifications about proxy relations occur. The waiter and proxy data

is opaque to PMGT and chosen as appropriate to the scheduling semantics. This approach

reduces the number of data structures that must be accessed during mutex operations but

when scheduling data structures are changed the data stored in the PMGT data structures

may need to be updated to reflect those changes. Therefore, this trade-off is generally

beneficial when the scheduling data needed during mutex operations changes much less

frequently than mutex operations occur.

There are several proxy policy callbacks that the scheduling layer may implement to

maintain data about waiters and proxies. A task init callback can be specified to initialize

data maintained about a proxy. Additionally, the scheduling layer can specify a waiter init

callback to initialize data maintained for each waiter. The structures available to these

routines are specified by the scheduling layer by defining the PMGT SCHED PROXY and

PMGT SCHED WAITER preprocessor constants, respectively. The waiter update callback
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can be provided by the scheduling layer to update the data stored on a waiter and its proxy

when scheduling layer data changes. When scheduling layer data is updated, the scheduling

layer is responsible for executing pmgt update which invokes waiter update with the correct

concurrency control to access the waiter and proxy data structures held.

There are four callbacks that can be implemented by the scheduling layer to receive

notifications about changes to the system’s set of proxy relations: waiter move prepare,

waiter move, task finalize, and waiter destroy. An invocation of waiter move prepare indi-

cates that PMGT is searching for a new proxy for a waiter. This callback refers to movement

because waiters are associated with a proxy and, when the proxy for a waiter changes, we

say the waiter is moved from the old proxy to the new proxy. The waiter move callback

indicates a new proxy for a waiter has been discovered. Finally, task finalize is an optimiza-

tion that allows scheduling criteria of a proxy to be modified after several waiters have been

associated with that proxy, through multiple invocations of waiter move, instead of these

modifications being performed for each invocation of waiter move. Waiter destroy tells the

scheduling layer that a task is no longer a waiter.

Section 3.7.2 presents an example of how to implement a proxy policy, for HGS, to

handle proxy relations between many different schedulers. This example is important because

it demonstrates how a scheduling layer can mediate between multiple schedulers without

knowing the scheduling algorithm of each scheduler. Additionally, Section 3.6 presents an

example of how to create a proxy policy which implements Priority Inheritance.

3.5.3 Deadlock Detection

Deadlock is a common pitfall in concurrent software and a concurrency control imple-

mentation that is unprepared for deadlock to occur is a risk to the stability of the system.

This section presents the deadlock detection and handling in PMGT.

The PREEMPT-RT patch has two approaches to deadlock. One detects it and then

relies on a signal reception or a timeout among one or more of the deadlocked tasks to

48



resolve it. The other detects it during the mutex lock operation that would complete the

cycle and aborts the lock operation with an error return. The PMGT approach to deadlock

provides the same two choices. The basic approach of PMGT is quite similar to that of

PREEMPT-RT but since the PMGT data structures are somewhat more complex there are

some differences and additional subtleties.

If the proxy of an m-blocking chain tries to acquire a mutex that is owned by a task

that is m-blocked on the proxy then a cycle will be created and, thus, deadlock occurs. In

this scenario, the task that was the proxy can no longer be a proxy because it is m-blocked.

Therefore, every task in the chain is m-blocked and no task is the proxy. Effectively, every

task in a cycle is awaiting every mutex involved in the cycle. PMGT does not record that

a task is awaiting a mutex it owns because representing this relation requires extra memory

and this relation is not necessary for the deadlock detection used in PMGT. Instead, these

relations are deduced from other relations.

Definition 3.11 A Task In a Cycle Involving a Mutex

InCycle(t,m) = ∃o(t, o ∈ ST ∧m ∈ SM ∧
Owns(o,m) ∧ Awaits(t,m) ∧
MBlocked(o, t))

Often it is useful to know if a task t is part of a cycle as a result of awaiting a mutex m.

If the owner of m, task o, is m-blocked on t then a cycle exists because o is also m-blocked

on itself. Definition 3.11 describes when a task t is part of a cycle involving a mutex m.

Additionally, a task may enter a deadlock if the task tries to acquire a mutex that is

part of a cycle that already exists. Definition 3.12 states that a task t is connected to a

cycle involving a mutex m when it is awaiting m and there is some task u that is in a cycle

involving m.

PMGT represents the waiting relations for all m-blocked tasks and when deadlock occurs

it must ensure that the appropriate waiting relations have been created for each task involved
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Definition 3.12 A Task Connected to a Cycle Involving a Mutex

ConnectedCycle(t,m) = ∃u (t, u ∈ ST ∧m ∈ SM ∧
Awaits(t,m) ∧ ¬InCycle(t,m) ∧
InCycle(u,m))

with a cycle. Recall that every task in a cycle is awaiting every mutex in the cycle and every

task connected to a cycle is also awaiting every mutex in the cycle. This assertion is described

by Equation 3.9.

SWR ⊇ {(t,m) | t ∈ ST ∧m ∈ SM ∧ (3.9)

(InCycle(t,m) ∨ ConnectedCycle(t,m))}

PMGT performs deadlock detection when searching an m-blocking chain to find a proxy

for a set of tasks, NP . When a task m-blocks, NP includes the m-blocking task and any

tasks for which that task is a proxy. At each link in the chain, PMGT performs deadlock

detection for every task T where T ∈ NP . Deadlock is detected if: (1) T is the same as

the next task in the chain or (2) T is directly awaiting the next mutex in the chain. These

conditions check if a task is in a cycle and if is connected to a cycle, respectively.

However, PMGT cannot always immediately stop when deadlock is detected. If NP is

not empty then Equation 3.9 must still be satisfied because waiting relations still need to

be recorded for some tasks. The task T for which deadlock was detected is removed from

NP and the search continues until NP is empty. The search terminates when NP becomes

empty because there is no work left to do and Equation 3.9 is satisfied because waiting

relations have been created at each link in the cyclic chain for all of the tasks in NP .

At the end of the search, none of the tasks in a cycle is a proxy because all of the tasks are

awaiting a mutex. Therefore, if deadlock is detected, no proxy is reported to the scheduling

layer for any of the tasks involved in the deadlock. The tasks are marked as “searching for
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a proxy” until the deadlock is resolved.

Figure 3.6 depicts the tasks, mutexes, and waiting relations of a deadlock scenario. Tasks

T1, T2, and T3 are in a cycle. Task T4 is connected to the cycle. In the figure, Nx,y denotes

a record of a waiting relation between a task x and a mutex y. Note that every task is

awaiting every mutex. Additionally, in this figure, Wz is placed at certain locations of the

chain to indicate where PMGT stopped searching for a new proxy for a task z. All of the

tasks are in the searching state because there is no proxy.
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Figure 3.6. A Deadlock Scenario

In a deadlock scenario, deadlock handling starts after the appropriate waiting relations

created by the deadlock have been recorded. Under Linux, users of the mutex API determine

if a locking attempt should abort due to a deadlock by specifying options in the API. If

the deadlock abort option is used then PMGT returns an error value when deadlock is

detected. If the deadlock is permitted to occur then only reception of a signal or timeout of

a participating task will resolve it. If a task in the cycle aborts a locking operation then that

task will become the proxy for every other task in the m-blocking chain that results from

breaking a link in the cycle.

3.5.4 PMGT Algorithms Supporting Mutexes

This section discusses the algorithms used by PMGT to implement a concurrency control

layer with configurable semantics. Five algorithms are presented: (1) the task blocks on rt mutex

algorithm, (2) the wakeup next waiter algorithm, (3) the try to steal algorithm, (4) the re-

move waiter algorithm, (5), and the move waiters algorithm. PMGT combines these al-
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gorithms to implement support for the four scenarios presented in Section 3.3: (1) a task

m-blocking, (2) a task releasing a mutex, (3) a task stealing a mutex, and (4) a task abort-

ing a mutex lock operation. PMGT modifies the PREEMPT-RT mutex implementation

in order to leverage some of the already established code and reduce the size of the PMGT

patch. All of the algorithms presented here are called from within the PREEMPT-RT mutex

implementation.

The PMGT algorithms use non-preemptable spin-locks for all concurrency control. The

“lock” and “unlock” operations in these algorithms refer to non-preemptable spin-locks.

They do not represent mutex operations. For each algorithm, the calling context holds the

mutex.lock spin-lock that controls access to the data structures of the mutex that record the

owner of the mutex.

Task blocks on rt mutex

The PREEMPT-RT mutex implementation calls the task blocks on rt mutex function

when a task is m-blocking as a result of trying to acquire a mutex that is owned by another

task. Figure 3.7 illustrates an example of this situation where T1 is trying to acquire M and

is m-blocking on T2, the owner of M . PMGT provides a replacement for the PREEMPT-RT

version of task blocks on rt mutex that sets up PMGT data structures instead of performing

PI operations. The goal of task blocks on rt mutex is to update SWR and SPR as specified

by Equations 3.1 and 3.2. Program 3.1 presents pseudo-code describing the semantics of the

PMGT version of task blocks on rt mutex.

The calling context for task blocks on rt mutex provides a waiter data structure used to

represent the task while it is m-blocked. The waiter data structure is used by PMGT and

by the scheduling layer in various situations.

At line 1, the find proxy set is initialized to track waiters for which a new proxy needs

to be found, which are those in Stask ∪ {T1} in the figure. In theory, the proxy for T1 could

be instantly known by looking at the proxy for T2. However, before this proxy relation can
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Program 3.1 Task blocks on rt mutex
task_blocks_on_rt_mutex(task, waiter, mutex)

deadlock := false

1 find_proxy := empty set

2 lock(task.pi_lock)

3 init_waiter(waiter, task, mutex)

4 mutex.insert(waiter)

5 set_add(find_proxy, waiter)

6 for each waiter in task.waiters do
sched_move_prepare(waiter, task)

end_for
if task.waiters is not empty then
sl.task_finalize(task)

end_if

7 if prepare_waiters(task, mutex, find_proxy) then
deadlock := true

end_if

8 unlock(task.pi_lock)

9 if adjust_chain(task, mutex, find_proxy) then
deadlock := true

end_if

10 return deadlock

end_func
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Figure 3.7. A Task M-Blocking

be recorded, PMGT must also update the SWR to reflect that T1 is blocking as specified

by Equation 3.1 on page 35. This update adds waiting relations between Stask ∪ {T1} and

{M} ∪ Emutex.

Line 2 acquires the task.pi lock that protects the PMGT data structures associated with

a task. The name of this lock indicates that it would be used for PI but this is not the

case. Rather, this lock is re-used from the PREEMPT-RT mutex implementation to make

PMGT a smaller patch. Holding the task.pi lock allows the algorithm to initialize the waiter

structure at line 3 to indicate that the task is directly awaiting the mutex. Init waiter is

described separately in Program 3.2. The Init waiter function updates SWR according to

Equation 3.1 by setting up the waiting relation between task and mutex.

Line 4 inserts the waiter structure in the data structure used to store the waiter structures

for tasks that directly await the mutex (M). Note that the data structure and the insert

routine can be configured per-mutex to support arbitrary semantics and the data structure

tracking the waiters is opaque to PMGT. Line 5 adds the waiter (T1) to the find proxy set

because we have to find the proxy for the waiter.

The steps at 6 tell the scheduling layer, by calling sched move prepare, that a new proxy

needs to be found for all of the tasks in S. The sl.task finalize scheduling layer callback gives

the scheduling layer a chance to modify the scheduling criteria of the old proxy, T1, after all

of the waiters for the tasks in S have been marked as searching.
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The steps at 7 call prepare waiters to record the waiting relations that relate the tasks

in S to mutex in order to to update SWR according to Equation 3.1. Also, prepare waiters

removes the proxy relations for the tasks in S and adds these tasks to the find proxy set

because a new proxy for these tasks must be found. Prepare waiters also performs deadlock

detection and we record that a deadlock has occurred if deadlock was detected. Note,

however, that the deadlock algorithm performs deadlock detection on a per-waiter basis.

When a deadlock is detected, PMGT may need to continue searching for a proxy on behalf

of some waiters in order to record additional waiting relations to fully update SWR. In this

case, we know that we need to find the proxy for the waiter created to represent T1 and,

thus, we know the find proxy set will not be empty.

Line 8 releases the pi lock of T1 because the algorithm has finished modifying its PMGT

data structures.

Adjust chain is called by the steps at 9 to search for the new proxy for all of the waiters in

the find proxy set. Adjust chain also performs deadlock detection and deadlock is recorded

when it is detected in order to communicate deadlock to the calling context. The adjust chain

function completes the updates to SWR and SPR according to Equations 3.1 and 3.2. At

line 10, task blocks on rt mutex informs the calling context if deadlock was detected. On

receipt of a deadlock return value, the calling context will abort the locking operation if the

blocking task has specified the deadlock abort option to the RT mutex API.

The init waiter function in Program 3.2 is responsible for: initializing a waiter data

structure, allowing the scheduling layer to initialize scheduling data stored in the waiter

structure, and creating a representation of a waiting relation that records that a task is m-

blocking due to trying to acquire a mutex. PMGT uses a node structure to record waiting

relations. Normally, to access the waiter, the waiter.lock must be held. However, at this

point, the waiter structure is not visible to any other tasks and, thus, it can be accessed

without holding the waiter.lock. For the scenario in Figure 3.7, init waiter is used to record

the direct waiting relation (T1,M).
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Program 3.2 Init waiter
init_waiter(waiter, task, mutex)

1 task.waiter := waiter
waiter.task := task
waiter.mutex := mutex

2 new_node(waiter, NULL, mutex)

3 sl.init_waiter(waiter, task)
waiter.state := PROXY_SEARCH

4 waiter.proxy_candidate := mutex.owner

end_func

The steps at 1 in init waiter perform basic initialization to give the task structure access

to the waiter structure and the waiter structure access to the task structure. The mutex

that task is m-blocking on is recorded. The direct waiting relation between task (T1) and

mutex (M) is recorded at Line 2 by calling new node. The arguments to this function are the

waiter, the via task and the via mutex. The via mutex field indicates the mutex involved

in the waiting relation, M . For an indirect waiting relation, the via task field indicates the

waiter that was traversed immediately before reaching via mutex. Here, via task is NULL

because this node represents a direct waiting relation.

The steps at 3 allow the scheduling layer to initialize the waiter data structure and record

that a proxy has not yet been found for waiter by marking it as searching. In the IAS, the

state of the waiter as reported to the scheduling layer was not tracked. As a result, many

unnecessary calls were made to the scheduling layer during a single mutex operation and the

unnecessary calls presented incorrect proxy information.

Line 4 sets the proxy candidate for the waiter. The proxy candidate is the task most

recently examined during the search of an m-blocking chain. If the search has finished then

proxy candidate identifies the proxy.

Lines 1-8 of Program 3.1 determine the waiters for which a new proxy must be found and
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Program 3.3 Adjust chain
adjust_chain(mutex, find_proxy)

1 deadlock := false
start_mutex := mutex

2 move:
task := mutex.owner
lock(task.pi_lock)

3 set_union(task.waiters, find_proxy)

4 unlock(task.pi_lock)
unlock(mutex.lock)
# preemptable here
lock(task.pi_lock)

5 if task.waiter is NULL then
for each waiter in task.waiters do
sched_move(waiter, task)

end_for
sl.task_finalize(task)
goto out

end_if

6 mutex := task.waiter.mutex
lock(mutex.lock)

7 find_proxy := empty set

8 if prepare_waiters(task, mutex,
find_proxy) then

deadlock := true
end_if

9 if find_proxy is empty then
unlock(mutex.lock)
goto out

end_if

10 unlock(task.pi_lock)
goto move

11 out:
unlock(task.pi_lock)
lock(start_mutex.lock)
return deadlock

end_func

line 9 calls the adjust chain function, Program 3.3, to create waiting and proxy relations.

For the scenario in Figure 3.7, adjust chain creates the waiting and proxy relations between

S ∪ {T1} and E that are specified by Equations 3.1 and 3.2.

In Program 3.3, the steps at 1 initialize a deadlock flag which records deadlock so that

it can be communicated to the caller at the end of the function. Additionally, recall that

mutex.lock is held by the calling context, task blocks on rt mutex. Thus, the steps at 1 store

mutex in order to reacquire mutex.lock before exiting. In Figure 3.7 on page 54, mutex is

M .

The steps at 2 indicate that the task that is the owner of mutex is the next location in

the chain. The pi lock for the owner of mutex is acquired to allow this function to modify

its PMGT data structures.

Line 3 adds all of the waiters for which a new proxy needs to be found to the set of
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waiters associated with the owner of the mutex. However, the owner of the mutex is not

necessarily the proxy because it could itself be waiting for a different mutex. Therefore, no

information is yet sent to the scheduling layer. In Figure 3.7, a new proxy needs to be found

for all of the tasks in S.

PMGT does not know how long it will take to search for a proxy. Therefore, between

the links of the blocking chain, PMGT enables preemption to allow more important work to

take place on the CPU. The steps at 4 unlock all of the spin-locks that are held to enable

preemption. After the preemptable section, pi lock for the owner of mutex is again acquired

because we may need to prepare waiters for the search to proceed to the next link in the

chain. Note that a KUSP kernel configuration option exists to make the process of stepping

down an m-blocking chain non-interruptible and non-preemptable. However, it is not clear

which choice is best in different situations. Making the traversal of the m-blocking chain

interruptible tends to reduce event response latency of the system because an interrupt can

be serviced, which may cause a context switch, at each step of the traversal. This seems

to obviously decrease the time an important task can be kept from running, and is why

the interruptibility option is on by default. However, making the traversal non-interruptible

tends to minimize the time during which a task’s proxy is not known, and thus minimizes

the time during which it is not possible to select the important process and thus run its

proxy. This tends to increase the delay of important process which is blocking on a mutex.

The two approaches both have an argument in their favor although the first seems dominant

when considering behavior in the abstract. The configuration option is provided to permit

developers to choose whichever is most important in their particular situation.

The steps at 5 check if the owner of the mutex is eligible as a proxy by checking if

task.waiter is NULL. The task.waiter element is non-null if a task is m-blocked. If a

proxy has been found then the scheduling layer is informed, by calling sched move for each

of the waiters in the task.waiters set, that a proxy has been found for each of the waiters.

Note that another task may have already informed the scheduling layer about some or all
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of the waiters in the task.waiters set and, thus, sched move does nothing if the scheduling

layer has already been informed about a waiter. Additionally, if any waiters were moved,

task finalize is called to give the scheduling layer an additional chance to update scheduling

criteria based on the full set of waiters. This is an optimization that allows most of the work

to be performed after all of the waiters have been assigned instead of for each waiter. For

instance, task finalize performs priority adjustment under the PMGT based version of PI.

If the task at the current location in the chain is m-blocked then, in the steps at 6, we look

at the waiter representing the task and retrieve the mutex on which the task is m-blocked.

Thus, the search proceeds to the next mutex in the m-blocking chain.

At line 7, find proxy is initialized to an empty set. PMGT may perform multiple searches

simultaneously on behalf of different sets of tasks. Therefore, it is not possible to use the

find proxy set that was originally passed to adjust chain because the proxy search for some

or all of those waiters may have been performed by another search while T1 was preemptable.

In Figure 3.7, find proxy will always contain S because a single search is in progress. The

steps at line 8 identify a new set of waiters for which a proxy needs to be found. If deadlock

is detected by prepare waiters then we record that a deadlock occurred.

The steps at 9 check to see if their are still waiters for whom a new proxy must be found.

There may not be any waiters if another task took over searching on behalf of the waiters

provided at the start of adjust chain or the waiters were abandoned due to deadlock. If there

are no more waiters for which we must search then the search is finished. The steps at 10

iterate the loop by returning to the move label to allow the search to proceed to the next

link of the m-blocking chain. Essentially, this loop is searching through the tasks in E in

Figure 3.7.

All points of exit from adjust chain hold the pi lock of the current task being examined

for the search. The steps at 11 prepare to return to the calling context by dropping the

pi lock and then reacquiring the start mutex.lock held by the calling context at the start of

adjust chain.

59



Ultimately, adjust chain searches an m-blocking chain until a proxy is found or deadlock

is detected. If a proxy is found then the tasks for which a proxy needs to be found are

associated with the proxy and a success value is returned to Program 3.1. Otherwise, when

deadlock is detected, a deadlock value is returned after SWR has been fully updated.

Program 3.4 Prepare waiters
prepare_waiters(task, mutex, find_proxy)

1 deadlock := false

2 for each waiter in task.waiters do
lock(waiter.lock)

3 if waiter.task is mutex.owner or
waiter.mutex is mutex then
deadlock := true

else

4 set_remove(task.waiters, waiter)

5 new_node(waiter, task, mutex)

6 set_add(find_proxy, waiter)

7 waiter.proxy_candidate := mutex.owner

end_if

8 unlock(waiter.lock)
end_for

9 return deadlock

end_func

Program 3.4 presents the prepare waiters function which determines, for a given location

in a blocking chain, the set of waiters for which a new proxy must be found. This function

assists Program 3.3 in updating SWR as specified by Equation 3.1 on page 35.

Line 1 initializes a deadlock variable to track if deadlock was detected for any waiters

at this link of the m-blocking chain. The steps at line 2 loop over the set of waiters at this
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location in the chain and acquire the spin lock that controls each waiter so that the waiter

can be modified.

The steps at 3 perform deadlock detection by checking if the entire chain has been

searched on behalf of a waiter. If a deadlock is detected then the waiter is not included in

the find proxy set and remains at its current location in the blocking chain in a searching

state. At this point, there is obviously not a proxy for any of the waiters in the chain but it

is necessary for the search to continue for some waiters in order to update SWR to satisfy

Equation 3.9.

Line 4 removes the waiter from the task at the current location because the waiter is

about to be moved to the next location in the chain.

Step 5 records the indirect waiting relation between waiter and mutex by creating a

new node. The arguments to new node are the waiter representing the task involved in the

relation, the via task, and the mutex involved in the relation. Here, the via task argument

to new node is task because the chain is being traversed through task.

At line 6 the waiter is added to the find proxy set to identify to the calling context,

Program 3.3, that a new proxy needs to be found for this waiter. Line 7 identifies that the

owner of the mutex is the current candidate for the proxy for this waiter. The waiter.lock

is released at line 8 to allow the next waiter to be considered. Finally, line 10 notifies the

calling context if deadlock was detected. The calling context may decide to ignore this value

and allow deadlock to occur or it may abort the mutex lock operation.

The sched move prepare, sched move, and sched destroy functions, in Program 3.5, are

responsible for informing the scheduling layer about waiter state changes. The calling context

for these functions must hold the pi lock of the proxy candidate for the waiter because this

lock protects the waiter’s state and serializes callbacks involving the waiter.

Sched move prepare records a search state for a waiter and informs the scheduling layer.

If a proxy has not already been found for a waiter then Sched move records that a proxy has

been found for a waiter and informs the scheduling layer. The state check in sched move is
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Program 3.5 Scheduling Layer Notifications
sched_move_prepare(waiter, old_proxy)

waiter.state := PROXY_SEARCH
sl.move_prepare(waiter, old_proxy)

end_func

sched_move(waiter, new_proxy)

if waiter.state = WAITER_FINAL then
return

end_if

waiter.state := PROXY_FOUND
sl.move(waiter, new_proxy)

end_func

sched_destroy(waiter)

if waiter.state is PROXY_FOUND then
proxy := waiter.proxy_candidate

else
proxy := NULL

end if

sl.destroy(waiter, proxy)

end_func

necessary for line 5 of Program 3.3 to operate correctly.

Sched destroy informs the scheduling layer that a waiter is no longer in use because its

task has acquired a mutex or aborted an attempt to acquire one. The scheduling layer only

cares about the actual proxy for a waiter and not its proxy candidate. Therefore, we do not

tell the scheduling layer about the proxy candidate if a proxy was not found for the waiter.

The new node function, in Program 3.6, is responsible for recording a waiting relation

for a task. The steps at 1 retrieve a free node structure from a pool of free nodes. PMGT

uses a pool of nodes instead of allocating a node using kmalloc because it is not possible
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Program 3.6 Node Management
new_node(waiter, via_task, via_mutex)

1 lock(node_pool_lock)
node := dequeue(node_pool)
unlock(node_pool_lock)

2 node.via_task := via_task
node.via_mutex := via_mutex
node.waiter := waiter

3 push(waiter.nodes, node)

4 set_add(via_mutex.nodes, node)

end_func

free_node(node)

lock(node_pool_lock)
enqueue(node_pool, node)
unlock(node_pool_lock)

end_func

to block in the context of a mutex operation because non-preemptable spin-locks are held.

The node pool lock protects the pool of nodes. We currently have the kernel configured to

panic if the node pool is exhausted and cannot allocate a new node. However, as discussed

in Chapter 4 which considers the memory use of PMGT, showing that even under heavy

load, the system uses at most a few thousand bytes worth of node structures. Further, the

management of the pool could be extended to increase the pool size if a system exhibits a

pattern of behavior using a significant portion of the available nodes.

The steps at 2 initialize the fields of the node. The via mutex is the mutex involved

in the waiting relation. The via task is the waiter directly awaiting via mutex which was

traversed to reach via mutex.

The waiting relations for each waiter are recorded in waiter.nodes. The relations are

stored in a stack where the top of the stack is the waiting relation that involves the last
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mutex encountered during searching the blocking chain. Nodes are only created as a proxy

is searched for by a waiter and, thus, we know that the newly created node is the node

closest to the proxy when this function is called. Therefore, line 3 pushes the newly created

node on to the top of the stack.

Line 4 adds the node to the set of nodes associated with the mutex. This set allows

PMGT to know, for a given mutex, all of the waiting relations involving that mutex.

The free node function, in Program 3.6, puts a node in the pool of free nodes.

This completes the discussion of what happens and what algorithms are used when a

task blocks on a mutex. Next we will consider what happens when a mutex is released by a

task and a new owner must be selected from its waiters.

Wakeup next waiter

The wakeup next waiter function, in Program 3.7, is called by the PREEMPT-RT mutex

implementation when a mutex is being released and a pending owner for the mutex must be

selected and awakened. The pending owner is selected to receive the mutex but it does not

actually take ownership until it starts to run and actually acquires the mutex. In the scenario

depicted by Figure 3.8, task T2 is releasing mutex M and T1 is selected to be the pending

owner for M . Wakeup next waiter is always executed by the owner of the mutex that is

performing the mutex unlock operation. In the figure, T2 executes wakeup next waiter as

current to release M .

Inside the Linux kernel code the current pointer refers to the task structure of the thread

currently executing on the current CPU. In this scenario, the currently running process is

the one releasing the mutex. Line 1 thus acquires current.pi lock because, since current is

releasing the mutex, current is no longer the proxy for any waiter and the waiters for which

current is recorded as the proxy must be disassociated from current. Waiters currently

associated with current must be moved to the pending owner. In the figure, T1 becomes the

proxy for the tasks in S and A.
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Figure 3.8. A Task Unlocking a Mutex

The steps at 2 find the best waiter on the mutex and remove that waiter from the mutex

data structure. Recall that there is a Best function which is associated with every mutex to

determine who the best task among a set of tasks is. The mutex.top callback of the mutex

policy is responsible for applying the Best function to the set of waiters on the mutex and

returning the best waiter. Additionally, the mutex policy determines how the data structures

for the mutex are updated in the mutex.remove callback when the best waiter is removed.

In the figure, T1 is the best waiter.

The best waiter on the mutex becomes the pending owner. A pending owner is the next

task that will receive the mutex if a better task does not try to acquire the mutex before the

pending owner does. If a better task does try to acquire the mutex before the pending owner

then the mutex has been “stolen”. The steps at 3 identify the pending owner and wake up

the pending owner to cause the pending owner to try to take ownership of the mutex.

The steps at 4 destroy the waiter structure for the pending owner because the pending

owner is no longer waiting on the mutex. First, the waiter.lock is acquired to allow ma-

nipulation of the waiter data structure. Second, the waiter must be removed from the set

of tasks waiting on the proxy thread. We know that current, the owner of the mutex, is

the proxy because current is performing a mutex operation and is obviously not blocked on

a mutex at the same time. Thus, waiter is removed from the current.waiters set. Third,

the scheduling layer is given a chance to perform cleanup of any data structures stored in

the waiter structure by calling sched destroy. Fourth, the waiter structure representing the
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Program 3.7 Wakeup next waiter
wakeup_next_waiter(mutex)

1 lock(current.pi_lock)

2 waiter := mutex.top()
mutex.remove(waiter)

3 pendowner := waiter.task
wakeup(pendowner)
mutex.owner := pendowner
mutex.state := PENDING

4 lock(waiter.lock)
set_remove(current.waiters, waiter)
sched_destroy(waiter)
top_node := pop(waiter.nodes)
set_remove(mutex.nodes, top_node)
free_node(node)
unlock(waiter.lock)

5 for each node in mutex.nodes do
waiter := node.waiter
set_remove(current.waiters, waiter)
sched_move_prepare(waiter, current)

end_for

6 sl.task_finalize(current)

7 unlock(current.pi_lock)
lock(pendowner.pi_lock)

8 pendowner.waiter := NULL

9 for each node in
mutex.nodes do

waiter := node.waiter
lock(waiter.lock)

10 if node.via_task is
pendowner then

pop(waiter.nodes)
set_remove(mutex.nodes,
node)

free_node(node)
end_if

11 waiter.proxy_candidate
:= pendowner

set_add(pendowner.waiters,
waiter)

sched_move(waiter,
pendowner)

unlock(waiter.lock)
end_for

12 sl.task_finalize(pendowner)
unlock(pendowner.pi_lock)

end_func

pending owner has exactly one node to represent its direct waiting relation with mutex.

This node is removed from waiter.nodes and mutex.nodes and then disposed of by calling

free node. These steps contribute to the update of SWR and SPR in Equations 3.5 and

3.6. In the figure, the waiting relation (T1,M) is removed.

The steps at 5 disassociate the set of waiters m-blocked on current from current because

current is no longer part of the same chain as the waiters. These steps contribute to the

update of SPR as described by Equation 3.6. They are examining the Stask and Atask portions

of the blocking chain in Figure 3.8.

Line 6 tells the scheduling layer that we have finished modifying the set of waiters asso-
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ciated with current. The steps at 7 drop the pi lock for current and acquire the pi lock for

the pending owner because the waiters previously m-blocked on current are now m-blocked

on the pending owner and these waiters need to be associated with the pending owner.

Line 8 clears the pendowner.waiter field because the pending owner is no longer waiting.

This field could not be cleared earlier because it is protected by the pendowner.pi lock. The

steps at 9 iterate over all of the waiters that are being associated with the pending owner

and acquire the lock for that waiter in order to modify it.

The waiters that are now m-blocked on the pending owner can be separated into two

classes: waiters that were m-blocked on the pending owner before the mutex unlock oper-

ation, depicted by Stask, and those that were not, depicted by Atask. The set of waiting

relations for each waiter which was m-blocked on the pending owner must be updated.

PMGT identifies Stask by checking the node.via task field to see which nodes reached the

mutex by traversing the chain through pendowner. In Figure 3.8, M no longer lies between

the tasks in Stask and their proxy, which is now T1. Therefore, the node at the top of the

node stack for each element of Stask represents an invalid waiting relation and these invalid

relations are removed by the steps at 10. Atask does not require any extra consideration

because these tasks are still awaiting M since M is still between the tasks and their proxy.

These steps satisfy Equation 3.5 which specifies the update to SWR.

The steps at 11 indicate that the pending owner is now the proxy for each of the waiters

formerly m-blocked on current. These steps satisfy Equation 3.6 which specifies the update

to SPR. The steps at 12 inform the scheduling layer that we modified the set of waiters

associated with the pending owner and release the pi lock of the pending owner to complete

the transference of the mutex and cleanup.

Try to steal

Program 3.8 presents the try to steal function which is invoked when a task tries to steal

a mutex. This function is called by the PREEMPT-RT mutex implementation during a
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mutex lock operation before a task m-blocks on a mutex because the mutex has an owner.

Try to steal returns true if the mutex was successfully stolen and the calling context assigns

ownership of the mutex to the stealing task. Figure 3.9 depicts a task T1 stealing a mutex M

whose pending owner is task T2. There is a dotted “W arrow” between T1 and M because

T1 may be awaiting M when it tries to steal if it is unexpectedly awakened.

Program 3.8 Try to steal
try_to_steal(stealer, mutex)

1 if mutex.state is not PENDING then
return false

end_if
if mutex.owner is stealer then
return true

end_if

2 pendowner := mutex.owner
lock(pendowner.pi_lock)

3 if not mutex.can_steal(mutex, stealer,
pendowner) then

return false
end_if

4 for each node in mutex.nodes do
waiter := node.waiter
set_remove(pendowner.waiters, waiter)
sched_move_prepare(waiter, pendowner)

end_for

5 sl.task_finalize(pendowner)

6 unlock(pendowner.pi_lock)
lock(stealer.pi_lock)

7 for each node in mutex.nodes do
waiter := node.waiter
lock(waiter.lock)

8 if node.via_task is
task then

pop(waiter.nodes)
set_remove(mutex.nodes, node)
free_node(node)

end_if

9 waiter.proxy_candidate
:= stealer

set_add(pendowner.waiters, waiter)
sched_move(waiter, stealer)

unlock(stealer.lock)
end_for

10 sl.task_finalize(task)
unlock(task.pi_lock)

11 return true

end_func

The steps at 1 check if stealing is actually possible. Stealing can only occur if the mutex

has a pending owner and if the stealer is not already the pending owner. Stealing is always

attempted by a waiter that is awakened and, therefore, when a waiter becomes the pending

owner and is awakened it will try to steal the mutex. In this case, try to steal returns true

immediately because the pending owner does not need to perform stealing. In Figure 3.9,

T2 is a pending owner, indicated by the “P arrow”, and the mutex is potentially steal-able
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by all tasks other than T2.

The steps at 2 identify the pending owner and acquire the pi lock for the pending owner

to allow access to the PMGT data structures associated with it.

T1M T2L

T1 M T2
PS B

S B

A W

W
A

Steal(T1)

W

Figure 3.9. A Task Stealing a Mutex

Next, the algorithm must decide at 3 if stealer is allowed to steal the mutex. A mutex

can only be stolen if stealer is better than the pending owner. However, PMGT does not

know how to make this decision, and, instead, it asks the mutex policy to make the decision

using the mutex.can steal callback. The mutex.can steal callback is responsible for checking

if stealer = Best(stealer, pendowner). In the scenario in the figure, it is assumed that T1

is better than T2 and, thus, that T1 is allowed to steal M .

If stealer is allowed to steal the mutex then it is necessary to make the stealer the new

proxy for the chain. The steps at 4 disassociate all of the waiters on the mutex from the

pending owner in preparation for assigning a new proxy to the waiters. At this point, the

pending owner is no longer part of the m-blocking chain until it tries to acquire the mutex

and m-blocks again. In the figure, the proxy for the tasks in S and the tasks in A must be

changed.

At line 5, the scheduling layer is notified that PMGT has finished changing the set of

waiters associated with the pending owner. The steps at 6 exchange the pi lock of the

pending owner for the pi lock of the stealer to allow the waiters from the pending owner to

be associated with the stealer.

The steps in 7-10 set the proxy for the waiters to be the stealer and inform the scheduling
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layer of these changes. Additionally, any invalid waiting relations that result from the mutex

being stolen are removed. These steps are equivalent to steps 9-12 of wakeup next waiter.

See Program 3.7 for further details. In the figure, T1 is recorded as the proxy for the tasks

in S and the tasks in A.

Line 11 returns true because the mutex was successfully stolen.

Remove waiter

The remove waiter function, in Program 3.9, is called by the PREEMPT-RT mutex

implementation to remove a waiter from a mutex. There are two conditions under which

this can occur: (1) the task represented by the waiter has aborted an attempt to acquire

the mutex or (2) the task represented by the waiter unexpectedly woke up and stole the

mutex and, since the task now owns the mutex, it is no longer a waiter. The first scenario is

pictured in Figure 3.10 and the second scenario is pictured in Figure 3.9, if we assume that

the waiting relation between T1 and M exists. In this function, The task represented by

the waiter is denoted as current because it is the task that executes this function. In both

figures, T1 is the task for which the waiter must be removed.

The steps at 1 remove the waiter from the set of waiters on the mutex by telling the

mutex policy to remove the waiter using the mutex.remove callback. The data structure

used to store waiters on a mutex is opaque to PMGT.

ET1 M T2
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ET1 M T2
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S

Abort(T1)

B

A
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W

Figure 3.10. A Task Aborting an Attempt to Lock a Mutex
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Program 3.9 Remove waiter
remove_waiter(mutex, waiter)

1 lock(current.pi_lock)
mutex.remove(waiter)
unlock(current.pi_lock)

2 retry:

3 lock(waiter.lock)
proxy_candidate := waiter.proxy_candidate

4 if not trylock(proxy_candidate.pi_lock) then
unlock(waiter.lock)
goto retry

end_if

5 node := peek(waiter.nodes)
via_mutex := node.via_mutex
if via_mutex is not mutex and
not trylock(via_mutex.lock) then
unlock(proxy_candidate.pi_lock)
unlock(waiter.lock)
goto retry

end_if

6 set_remove(proxy_candidate.waiters, waiter)
sched_destroy(waiter, proxy_candidate)

7 pop(waiter.nodes)
while node is not NULL do
lock(node.lock)
node.waiter := NULL
unlock(node.lock)
node := pop(waiter.nodes)

end_while

8 if via_mutex is not mutex then
unlock(via_mutex.lock)

end_if
unlock(proxy_candidate.pi_lock)
unlock(waiter.lock)

9 if mutex.owner is not current then
move_waiters(mutex)

end_if

end_func
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After the waiter is removed from the mutex it has to be unlinked from all PMGT data

structures and destroyed. Unfortunately, in order to do that, spin-locks must be acquired out

of order. A locking order is used throughout the OS to prevent the circular-wait condition

for deadlock. To acquire spin-locks out of order, a locking transaction must be used instead

to prevent the hold and wait condition. Therefore, the necessary spin-locks here are only

acquired if they are all available. The retry label at line 2 indicates where the transaction

begins.

First, the waiter needs to be removed from the set of waiters associated with its proxy candidate.

However, in order to find out who the proxy candidate is, we have to lock the waiter struc-

ture itself in the steps at 3. The steps at 4 acquire the proxy candidate.pi lock because this

lock allows PMGT to access the PMGT data structures for proxy candidate to remove the

waiter.

In Programs 3.1, 3.3, 3.7, and 3.8 waiters are transferred from one proxy candidate to

a better candidate. The waiter.lock ensures that the proxy candidate field of the waiter

structure can be safely accessed. However, it does not insure that the waiter has been added

to the data structures of the proxy candidate. The steps at 5 ensure that the waiter is fully

associated with its proxy candidate by acquiring the controlling lock for the mutex m for

which Owns(proxy candidate,m) and Awaits(current,m) hold. Mutex m is identified by

the via mutex field of the top node of the waiter’s node stack.

In Figure 3.10, if E is empty then m will be M . However, the calling context of re-

move waiter holds the lock controlling M and, thus, this lock is not acquired again. If E is

not empty then m will be the mutex in E that is owned by proxy candidate and the the lock

controlling m will be acquired. In Figure 3.9, m is always M and no locking occurs because

the lock for M is held by the calling context.

The steps at 6 remove the waiter (T1) from the set of waiters associated with the

proxy candidate and tell the scheduling layer that any data structures associated with that

waiter should be cleaned up because it is going to be destroyed.
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The nodes on the node stack of the waiter must be freed in order to completely destroy

the record of T1 as a waiter and its relations. However, immediately freeing the nodes is

difficult because each node is associated with a mutex and for each of these mutexes the

lock controlling the mutex would have to be acquired in order to remove the node. Instead,

the steps at 7 remove all of the nodes from the node stack and mark them as no longer

being associated with a waiter. These “dead” nodes are still associated with their respective

mutexes. The dead nodes for a mutex are cleaned up at the start of any mutex lock or mutex

unlock operation on that mutex. Clean up consists of scanning the list of nodes on the mutex

and returning any with a NULL node.waiter to the pool of free nodes. In Figure 3.10, the

algorithm removes all of the nodes representing waiting relations of the form (T1,m) where

m ∈ ({M} ∪ Emutex). In Figure 3.9, the node representing (T1,M) is removed.

The steps at 8 drop all of the spin locks because the waiter has been removed. If the waiter

for current is being removed because current woke up unexpectedly and stole the mutex,

as in Figure 3.9, then the function is finished because try to steal will have performed all

other necessary updates. However, if the waiter for current is being removed because current

is aborting a mutex lock operation, as in Figure 3.10, then current becomes the proxy for

any waiters that are m-blocked on it. The waiters m-blocked on current are updated by

move waiters in the steps at 9. In Figure 3.10, T1 is recorded as the proxy for the tasks in

S.

Move waiters

When a task aborts a mutex lock operation it splits a blocking chain into two components:

the blocking chain now associated with the task and the blocking chain associated with the

mutex. The aborting task becomes the proxy for all of the tasks that are m-blocked on the

aborting task and these tasks are no longer related to any of the tasks in the m-blocking

chain associated with the mutex. The move waiters function, in Program 3.10, updates the

PMGT data structures to reflect these changes. The mutex argument to this function is
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Program 3.10 Move waiters
move_waiters(mutex)

1 move_proxy := empty set

2 for each node in mutex.nodes do

3 retry:

4 lock(node.lock)
if not node.waiter then
unlock(node.lock)
continue

end_if
if node.via_task is not current then
unlock(node.lock)
continue

end_if

5 waiter := node.waiter
if not trylock(waiter.lock) then
unlock(node.lock)
goto retry

end_if
proxy_candidate
:= waiter.proxy_candidate

if not
trylock(proxy_candidate.
pi_lock) then

unlock(waiter.lock)
unlock(node.lock)
goto retry

end_if

6 top_node := peek(waiter.nodes)
via_mutex := top_node.via_mutex
if via_mutex is not mutex and

not trylock(via_mutex.
lock) then

unlock(proxy_candidate.pi_lock)
unlock(waiter.lock)
unlock(node.lock)
goto retry

end_if

/* All required mutexes are locked */

7 set_remove(proxy_candidate.waiters,
waiter)

waiter.proxy_candidate := current
set_add(move_proxy, waiter)

8 if waiter.state is PROXY_FOUND then
sched_move_prepare(waiter,

proxy_candidate)
sl.task_finalize(proxy_candidate)

end_if

9 do
stale_node := pop(waiter.nodes)
lock(stale_node.lock)
stale_node.waiter := NULL
unlock(stale_node.lock)

while(stale_node is
not node)

10 if via_mutex is not mutex then
unlock(via_mutex.lock)

end_if
unlock(proxy_candidate.
pi_lock)

unlock(waiter.lock)
unlock(node.lock)

end_for

11 lock(current.pi_lock)
for each waiter in move_proxy do
set_add(current.waiters, waiter)
sched_move(waiter, current)

end_for
sl.task_finalize(current)
unlock(current.pi_lock)

end_func
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the mutex on which the mutex lock operation was performed. The task aborting the mutex

lock operation executes this function and it is denoted as current. Figure 3.10, on page 70,

depicts an abort scenario where the aborting task T1 becomes the proxy for the tasks in S.

Line 1 initializes a move proxy set that stores the waiters for which current (T1) should

become the proxy. At line 2, the algorithm iterates through all of the nodes that represent

waiting relations that involve mutex. A subset of these nodes are associated with waiters

that are m-blocked on current at the start of the abort. In the figure, the tasks in S are

m-blocked on T1 at the start of the abort.

As in Program 3.9, spin locks are acquired out of order and as a result a locking trans-

action is used. The locks involved are: node.lock, waiter.lock, and proxy candidate.pi lock.

Line 3 marks the start of the transaction, which is completed by line 7.

The steps at 4 examine the node to determine if it is associated with a waiter that is

m-blocked on current. First, the node.lock is acquired to grant access to the node. Second,

if the node is dead, as indicated by a null value in node.waiter, then it is ignored. Third, the

node is skipped if via task is not current because this indicates that the waiter associated

with the node is not m-blocked on current. A waiter that is not m-blocked on current will

still be part of the m-blocking chain associated with mutex and won’t be affected by the

abort. In Figure 3.10, nodes representing waiting relations of the form (s, T1) where s ∈ S

will be processed. Those relations for tasks in Atask will not be via T1 and so be skipped.

The steps at 5 identify the waiter associated with the node. Additionally, they acquire

the waiter.lock and the proxy candidate.pi lock in order to disassociate the waiter from

its current proxy candidate. If either of these locks cannot be acquired then the locking

transaction is restarted. The via mutex.lock is acquired by the steps at 6 to ensure that the

proxy candidate field of the waiter structure is consistent with the set of waiters stored on

the proxy candidate.

The steps at 7 remove the waiter from its proxy candidate and change the proxy candidate

to current because current is no longer blocked on a mutex. Additionally, the waiter is placed
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in the move proxy set for further updating.

If a proxy had been found for the waiter then the steps at 8 tell the scheduling layer

that the proxy is changing. It is necessary to call the sl.task finalize callback immediately

because the waiters m-blocked on current could have different proxy candidates if multiple

proxy searches are ongoing.

Every node representing a waiting relation involving mutex or a mutex that is between

proxy candidate and mutex is invalid because the m-blocking chain has been split. In the

figure, the tasks in S are no longer related to M or any of the mutexes in E. Therefore,

these nodes are removed from the node stack in the steps at 9. The nodes that are removed

from the node stack are marked as dead because freeing the node requires a lot of additional

concurrency control usage. These steps satisfy Equation 3.3 which specifies the update to

SWR.

The steps at 10 release all of the spin locks acquired in the loop so that the next node

can be processed and the steps at 11 make current the proxy for all of the waiters in the

move proxy set and inform the scheduling layer of these changes. These steps satisfy Equa-

tion 3.4 which specifies the update to SPR.

This brings the discussion of the PMGT algorithms supporting mutex operations, and

thus Section 3.5.4, to an end. The algorithms presented fully implement the proxy accounting

required to track waiter and proxy relations on the system, and to support the scheduling

layer in the system which will use that information. The next section discusses how the

PMGT layer can be used to implement the PI semantics in the PREEMPT-RT patch.

3.6 Priority Inheritance Implemented using PMGT

One way of demonstrating the correctness and feasibility of PMGT is to show that it can

be used to implement the current system semantics. With that in mind, this section describes

how PMGT can be added to the PREEMPT-RT patch and a configuration supporting the

priority inheritance of its mutexes created.
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The PI implementation in the PREEMPT-RT patch analyzes and tracks the set of waiters

on a mutex in a way that is very similar to PMGT. A significant difference in the two

approaches, however, is that the PI implementation does this analysis at m-blocking time

as a way of determining what the priority of the proxy process ought to be but does not

represent the proxy relations as such to the scheduling layer. The reason for this is that the

priority scheduler only pays attention to priority values and so a proxy inheriting the best

priority of itself and its waiters is sufficient.

Implementing PI semantics as a PMGT configuration involves using the proxy relations

to have the proxy inherit the best priority of its waiters in the same way. Obviously, both

the original PI and the PMGT-PI implementations must update the inherited priority when

the set of waiters changes. When a proxy releases a mutex, its priority is adjusted back to

its original value and the new proxy inherits the best priority of the waiters if that priority

is better than its own.

The PMGT-PI implementation uses the priority mutex policy as the default mutex policy

for the system in order to match the PREEMPT-RT PI mutex implementation which is

priority based.

The PI and PMGT-PI implementations produce the same system behavior but differ

slightly in the mechanisms they use. This difference in mechanisms means that the priori-

ties of the waiting tasks are different under the two approaches because the PREEMPT-RT

implementation updates the priorities of all tasks involved in a chain and the PMGT im-

plementation updates the priority of only the proxy. The difference in the priorities of

the waiters does not affect which tasks are run on the system because the waiters are not

runnable in any case. However, it does affect the data observed by the instrumentation used

by various tests of the PREEMPT-RT mutex implementation.

The correctness of the PMGT-PI implementation has been demonstrated by its correctly

executing all RT mutex tests that come with the PREEMPT-RT patch. In most cases, the

results of the tests are identical under both implementations. In a small number of cases,
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we slightly modified the tests because the priority of the waiting tasks was different under

the PMGT-PI implementation than expected but as already discussed this was not an error

because the PMGT-PI implementation produces exactly the same set of scheduling decisions.

This demonstrates that PMGT can be used under a scheduling layer other than HGS. It

also demonstrates that the PMGT implementation is correct for this purpose.

In theory, one could consider changing the Linux schedulers, real-time and CFS, to di-

rectly use the proxy relations represented by the PMGT layer. This would be interesting on

grounds of creating symmetry between the HGS and the PREEMPT-RT use of PMGT. It

would also shift some of the use of the proxy information from blocking time to scheduling

time which has implications for overhead. This overhead is necessary in the HGS context

because HGS assumes arbitrary scheduling semantics. It is not necessary in the context

of Linux’s priority scheduling because update of priorities can be done at blocking time.

Therefore, this thesis does not further consider these issues.

3.7 HGS Extensions

The fundamentals of HGS were well established in the IAS [20] [1]. However, there were

a number of issues that had to be dealt with to enable HGS to be used for anything but

the simplest of applications. First, the IAS mechanism for integration of HGS with Linux

scheduling caused system instability. While specific reasons for the instability were not

identified, the restructuring and expansion of the code described here has produced a system

that is stable and robust when passing the existing 400 functional tests. Second, HGS did

not correctly understand proxy relations involving threads executing on more than one CPU.

HGS must operate correctly on SMP systems because they are now very common. Third,

HGS failed to provide the PI concurrency control semantics assumed under PREEMPT-

RT for all threads controlled by Linux schedulers. Solutions to these issues are part of the

contributions of this thesis and are presented in this section. Finally, a proxy policy is

discussed that incorporates all of the solutions to these issues when handling changes to the
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system’s set of proxy relations.

3.7.1 HGS Linux Integration

HGS provides a scheduling layer, with configurable schedulers, that aims to replace the

priority based Linux scheduling layer. However, completely replacing the existing scheduling

layer would be a very large change and the Linux community strongly prefers modifications

presented in a more gradual manner. Further, re-implementing all of the priority scheduling

semantics in Linux under HGS would be difficult. Therefore, we have taken an approach

that re-uses significant aspects of the existing Linux scheduling layer by essentially wrapping

HGS around the Linux model.

The Linux scheduling layer uses a stack model where different scheduling classes are

consulted in a specific order for scheduling decisions. The stack consists of the real-time

class on top, the CFS class in the middle, and the idle class on the bottom. Each scheduling

class contains one or more schedulers to which tasks are assigned.

We adopt the scheduling semantics that HGS is always consulted before Linux when a

scheduling decision is being made because many of the example applications that we have

used with HGS require preferential scheduling. Additionally, HGS is consulted first because

Linux always picks a task to schedule but HGS may not. Therefore, a lack of decision from

HGS indicates that the Linux scheduling stack should be invoked. Finally, HGS is placed

outside of the Linux scheduling stack to allow HGS to choose tasks that are also controlled

by any Linux scheduler. This behavior is sometimes useful to give a system task, such as an

interrupt handler, a reasonable priority based default behavior while also allowing the task

to be scheduled on demand by HGS.

Unfortunately, the Linux scheduling layer assumes that all tasks on the system are as-

signed to a Linux scheduler. Therefore, it is not possible to indicate to the Linux scheduling

layer, without modification, that a task should only be controlled by HGS. This constraint

is problematic because, for some tasks, the HGS scheduler controlling the task assumes that
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the task will not be scheduled by another scheduler.

Therefore, we now have an Exclusive Control (EC) Linux scheduling class that represents

tasks under the exclusive control of HGS. The EC scheduling class provides HGS tasks with a

Linux scheduler assignment that does not interfere with the schedulers in the HGS hierarchy.

Usually, the EC scheduling class does not select tasks to be scheduled because HGS will

schedule EC tasks as specified by the HGS hierarchy.

While tasks assigned to the EC class are handled by HGS outside the scope of the Linux

scheduling stack most of the time, there are brief periods when this is not true. Tasks being

added to or removed from the HGS hierarchy often have some administrative actions that

must be completed even though the hierarchy data structures do not show them as the

member of a group. In the case of a task being added to the hierarchy, often there is a

small section of code that must be completed after the task is in the EC scheduling class

but before the hierarchy can choose the task. Similarly, when a task is exiting, the task is

removed from the hierarchy but it must continue to run for a few instructions in order to

completely exit. The EC scheduling class is placed at the top of the Linux Scheduling Stack

to give HGS tasks preference during these periods.

Since HGS tasks are generally preferred over Linux tasks, the EC scheduling class is

placed at the top of the Linux Scheduling Stack to give EC tasks in an administrative period

a chance to run before other Linux tasks. The EC scheduling class uses FIFO to choose

tasks in administrative periods because administrative periods are generally short and, thus,

a simple scheduler is sufficient.

Figure 3.11 depicts the organization of the HGS scheduling layer with the introduction

of the EC scheduling class. At scheduling time, the HGS hierarchy is first evaluated and, if

no decision is made, then the LSS is evaluated starting with the EC class.

Using the EC scheduler minimizes the number of changes required in the Linux scheduler

layer in order for HGS to work cooperatively with the Linux scheduling layer. Therefore,

the HGS patch size is smaller than it would be under other approaches, thus making it more
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Figure 3.11. Integration of the LSS with HGS

acceptable to the Linux community.

3.7.2 SMP Proxy Selection

HGS uses an algorithm called Proxy Selection to handle proxy relations involving tasks

with a wide range of scheduling semantics without having to consider the scheduling se-

mantics involved. The version of Proxy Selection implemented in the IAS, was sufficient for
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uniprocessor systems but it made it difficult for HGS schedulers to use data structures seg-

regated on a per-CPU basis. This section discusses the extensions made to Proxy Selection

to encourage the use of per-CPU data structures by HGS schedulers in an effort to increase

scheduler parallelism.

Under HGS, multiple schedulers with widely different scheduling semantics can exist on

a system at the same time. Consequently, at any given time, a proxy could have waiters

controlled by schedulers with several different semantics. As the scheduling layer for the

system, it is the responsibility of HGS to decide how a proxy’s waiters effect the scheduling

criteria of the proxy, even if the waiters have different semantics. The scheduling semantics

of the proxy are partially derived from the scheduling semantics of its waiters. However,

since the set of scheduling semantics that apply to the set of waiters can be arbitrary, the

decision cannot be as simple as that used by PI since the waiters could be controlled by

several different kinds of semantics. Instead, the Proxy Selection algorithm uses knowledge

of the proxy relationships at scheduling time in a way that works for all situations.

Proxy Selection primarily consists of two components: the recording of proxy information

about a task at locking time and the automatic substitution of the proxy for a task when

the task is selected at scheduling time.

HGS implements a proxy policy, using the callbacks provided by PMGT, to update

the proxy information about a task at locking time when proxy relations are created and

destroyed. When a new proxy relation is created, the HGS Proxy Policy records the proxy in

the HGS data structures that represent the task that is m-blocked on the proxy. Similarly,

the proxy information for the task that was formerly m-blocked on the proxy is cleared when

a proxy relation is destroyed.

There is one representation of a task for each group in which the task is a member.

We call each representation of a task’s membership in a group an avatar of the task. In

addition to recording proxy information, avatars also record the scheduling criteria for a

task as specified by the HGS scheduler associated with the group.
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HGS schedulers select avatars at scheduling time from the group that they are associated

with. An important part of how HGS can handle arbitrary sets of scheduling semantics is

that a scheduler associated with a group can select an avatar which is m-blocked but which

has a runnable proxy. When such an avatar is selected by a scheduler, HGS runs the proxy

instead of the task the avatar represents. Thus, the m-blocking time for a task that the

hierarchy wants to run is reduced because its proxy makes progress and thus removes the

condition blocking the thread as quickly as possible.

It is not possible for a Linux scheduler to select a task that is m-blocked. Instead, PI has

the proxy inherit the best priority of the waiters. However, this is possible only because all

tasks use a common priority scheduling semantics, and one whose semantics permit inheriting

the scheduling parameter of the “best” of the waiters. Other scheduling semantics, such as

CPU share, explicit plan, or those using application state do not which is why the more

general proxy accounting is required.

HGS does not allow an avatar to be selected on an arbitrary CPU. Under Linux, at a

given instant, all tasks are assigned to a specific CPU and they can only run on that CPU.

CPU assignment of a task can be changed, but the task cannot run on the new CPU until the

change of assignment is complete. HGS also assigns each avatar to a specific CPU and each

avatar can only be selected on that CPU. CPU assignment is beneficial because it allows

per-CPU data structures to be utilized by schedulers to increase parallelism of scheduler

invocations across CPUs.

Proxy Selection requires the CPU assignment of avatars to be modified based on the

proxy for the avatar. If a task is not m-blocked then its avatars are assigned to the same

CPU as the task because the avatar does not have a proxy. On the other hand, if a task

m-blocks then the CPU assignment of its avatars may need to change. The task’s avatars

must be assigned to the CPU of the task’s proxy in order for the proxy to be scheduled when

any of the avatars are selected at scheduling time.

HGS tells the schedulers controlling the task’s avatars to change the CPU assignment of
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each avatar at locking time in order to assign the avatars to the CPU of the task’s proxy and,

thus, the schedulers are able to update their per-CPU data structures to reflect the change

in CPU assignment. Similarly, the CPU assignment of a task’s avatars can change when

the proxy for a task changes or when a task no longer has a proxy because it has received

ownership of a mutex on which it was previously m-blocked. The HGS Proxy Policy is

responsible for coordinating avatar CPU assignment changes as a result of mutex operations

and it is discussed further in Section 3.7.4.

An avatar is selectable by the CPU of the proxy immediately after its CPU assignment

is changed. However, the CPU of the proxy is not obligated to select the avatar because

the avatar maintains the same scheduling criteria that it had on the CPU of the waiter it

represents. It is important that the avatar retain its scheduling criteria because, even though

the avatar might be the best choice on the CPU of the waiter, the avatar may not be the

best choice on the CPU of the proxy. Therefore, the proxy recorded by the avatar should

not necessarily be immediately scheduled.

Avatar CPU assignments may also need to be changed due to: (1) the CPU assignment

of a task being changed, (2) the CPU assignment of a proxy being changed, (3) a task’s

PMGT administrative period ending.

If the CPU assignment of a task is changed and the task is not m-blocked then the

avatars for the task need to be assigned to the new CPU. If the task is m-blocked when

its CPU assignment is changed then it’s avatars do not change CPU assignment because

they are assigned to the CPU of the task’s proxy in order for HGS to be able to run the

proxy in place of the task. Similarly, if a task is m-blocked and the CPU assignment of

the task’s proxy is changed then the task’s avatars need to be assigned to the proxy’s new

CPU to guarantee that the proxy can still be run on behalf of the avatars. Finally, there

are administrative periods in the PMGT code in which a task must run to update PMGT

data structures when it has a proxy. At the end of the administrative period, the CPU

assignments of the avatars for a task may need to be modified to reflect the changes made
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to the PMGT data structures.

It is useful to keep some extra state information about each avatar to account for which

CPU the avatar is assigned to. An active state and a blocked state are recorded for each

avatar. The active state is the state that an avatar is currently in. This state determines

if an avatar is selectable. The blocked state determines which state will become the active

state when the avatar blocks.

The active state has four possible values: RUNNABLE, BLOCKED, PROXY SEARCH,

or PROXY FOUND. The RUNNABLE state indicates that the avatar can be selected and

the task that the avatar represents will be run. The BLOCKED state indicates that the

avatar is blocked but it is not awaiting a mutex. In this state, the avatar cannot be selected.

The PROXY SEARCH state indicates that the avatar is awaiting a mutex but the proxy

for the avatar has not yet been identified. An avatar in the PROXY SEARCH state is not

selectable. The PROXY FOUND state indicates that a proxy has been identified for the

avatar and the avatar can be selected. If the avatar is selected then the proxy for the avatar

will be run.

Program 3.11 Hgs cpu
func hgs_cpu(avatar)

if avatar.state is RUNNABLE or avatar.state is BLOCKED then
return avatar.task_cpu

else
return avatar.proxy_cpu

end_func

The blocked state has three possible values which have the same meaning as the corre-

sponding active state values: BLOCKED, PROXY SEARCH, or PROXY FOUND. However,

while these values have the same meaning as the corresponding active values, they do not

influence selectability.

The hgs cpu function, in Program 3.11, determines which CPU an avatar is assigned
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to. The avatar.state field indicates the active state of the avatar. If an avatar is in the

RUNNABLE or BLOCKED state then the avatar is assigned to the CPU of the task it

represents. Otherwise, the avatar is m-blocked because it is in the PROXY SEARCH or

PROXY FOUND state. If an avatar is m-blocked then it is assigned to the CPU of its last

known proxy. In the PROXY FOUND state this CPU will be the CPU of the proxy for the

avatar since the proxy is currently known. The avatar.proxy cpu defaults to the task cpu so

when a task first blocks, but before its proxy is found, the avatar will remain on the CPU

of the task it represents until the CPU of the proxy is known.

Using the CPU of the last known proxy for the PROXY SEARCH state is an optimiza-

tion. If the proxy for a task is changing, and the tasks avatar’s are thus temporarily entering

the PROXY SEARCH state, then the avatars for the task remain on the CPU of the old

proxy until the new proxy has been found instead of needlessly moving back to the CPU of

the task. The avatar is not selectable in the PROXY SEARCH state and, thus, its CPU

assignment isn’t really of interest to a scheduler anyway.

Program 3.12 presents the pseudo-code for the hgs enqueue task function which is called

by Linux when a task is becoming runnable. A task becomes runnable when it stops blocking

on a resource, such as a mutex. Additionally, a task is temporarily not runnable while its

CPU assignment or scheduling class assignment is modified and then becomes runnable again

when the modification is finished. This function is responsible for ensuring that the avatars

representing a task or related to a task are assigned to the appropriate CPU.

Linux uses a data structure called a “runqueue” to indicate which tasks are runnable.

The name of the hgs enqueue task function refers to enqueuing because this function is called

when the task is being placed on the runqueue to indicate that it is runnable. There is one

runqueue for each CPU and each runqueue is protected by a non-preemptable spin-lock. The

calling context of hgs enqueue task holds the runqueue lock for the CPU that the task is

assigned to. The purpose of hgs enqueue task is to ensure that the avatars representing the

task being enqueued and any avatars for which the enqueued task is the proxy are assigned
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Program 3.12 Hgs enqueue task
func hgs_enqueue_task(cpu, task, wake)

1 for each avatar in task.avatars do
lock(avatar.ingroup.lock)

2 old_cpu := hgs_cpu(avatar)
avatar.state := RUNNABLE
avatar.task_cpu := cpu
if old_cpu is not avatar.task_cpu then

avatar.ingroup.scheduler.move(avatar, old_cpu, avatar.task_cpu)
end_if
unlock(avatar.ingroup.lock)

end_for

3 for each avatar in task.blocked_avatars do
lock(avatar.ingroup.lock)
if avatar.proxy_cpu is not cpu then

avatar.ingroup.scheduler.move(avatar, avatar.proxy_cpu, cpu)
avatar.proxy_cpu := cpu

end_if
unlock(avatar.ingroup.lock)

end_for

end_func

to the correct CPU.

The hgs enqueue task function is provided with three arguments: the CPU on which the

task is assigned, the task itself, and a Boolean variable wake that indicates if the task is

waking up because it is no longer blocked. The wake argument is not currently used but it

remains for the purpose of future changes and debugging purposes.

The steps at 1 look at each avatar that represents the task by iterating over task.avatars,

the list of avatars for the task. Every group in HGS has a non-preemptable spin-lock associ-

ated with it and these spin-locks also control access to the avatars controlled by the group.

The group controlling an avatar is identified by the avatar.ingroup field. Thus, the spin-lock

for each group controlling the avatar is acquired in order to access the avatar’s data.

The steps at 2 record the current CPU of the avatar’s task, change the avatar’s variables
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to reflect that the task it represents is now runnable on cpu, and move the avatar to the task’s

CPU if the avatar is located on a different CPU. First, the CPU of the avatar is recorded by

calling hgs cpu. Next, the avatar’s state is changed to RUNNABLE to reflect that the task it

represents can now be scheduled. Additionally, the avatar.task cpu is set to cpu to indicate

which CPU the task it represents is assigned to. In order to cause the task to be scheduled,

the avatar must be on the same CPU as the task. If it is not already then it is assigned to the

CPU of the task. The avatar.ingroup.scheduler field points to the scheduler associated with

the group controlling the avatar and the avatar.ingroup.scheduler.move callback tells the

scheduler to change the CPU assignment of the avatar. Finally, the ingroup.lock is released

in preparation for examining the next avatar.

If the CPU assignment of task changes and task is a proxy then the steps at 3 change

the CPU assignment of the avatars for which it is a proxy. The task.blocked avatars set

contains all of the avatars that represent a task for which task is the proxy and the avatars

in this set are moved to the CPU of the proxy if they are not already assigned to that CPU.

The hgs dequeue task function, in Program 3.13, is called when a task is no longer

runnable and Linux is taking the task off of the runqueue for the CPU to which it is as-

signed. The calling context for hgs dequeue task holds the runqueue lock for the CPU.

Hgs dequeue task accepts three arguments: the CPU assignment of the task, the task itself,

and a Boolean variable sleep that indicates if the task is no longer schedulable because it is

blocking on a resource. The primary goal of hgs dequeue task is to transition a task’s avatars

from the RUNNABLE state to one of BLOCKED, PROXY SEARCH, or PROXY FOUND

when the task is blocking.

The hgs dequeue task function does nothing if a task is not blocking on a resource be-

cause, in this case, a task is only temporarily not runnable while its CPU assignment or

scheduling class assignment is changed. The task will shortly become runnable again. The

steps at 1 return immediately if the task is not blocking. If the task is blocking, the algo-

rithm examines each avatar for the task and acquires the avatar.ingroup.lock that allows the
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Program 3.13 Hgs dequeue task
func hgs_dequeue_task(cpu, task, sleep)

1 if not sleep then
return

end_if

2 for each avatar of task do
lock(avatar.ingroup.lock)

3 avatar.state := avatar.blocked_state

4 new_cpu := hgs_cpu(avatar)
if cpu is not new_cpu then

avatar.ingroup.scheduler.move(avatar, cpu, new_cpu)
end_if

5 unlock(avatar.ingroup.lock)
end_for

end_func

avatar’s data to be accessed in the steps at 2.

The line at 3 transitions the avatar into its blocked state. The blocked state is stored

by the HGS Proxy Policy at locking time. The blocked state is stored because deducing the

blocked state requires accessing PMGT data structures and that would further constrain

concurrency.

Sometimes, when the avatar transitions to its blocked state then the CPU assignment

of the avatar will also need to be changed. The steps at 4 tell the scheduler of the group

controlling the avatar to change the CPU assignment of the avatar, if necessary. The CPU

assignment of the avatar will only change if the avatar has a proxy and the avatar needs to

move to the CPU of the proxy since the avatar’s task is no longer schedulable. Primarily,

this scenario occurs at the end of a PMGT administrative code execution period. The steps

at 5 unlock the avatar.ingroup.lock because the loop is examining the next avatar.

The hgs enqueue task and hgs dequeue task functions cover all of the scenarios where

the CPU assignment of an avatar must change outside of the HGS Proxy Policy callbacks
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that occur at locking time.

It should now be clear that while the basic approach to PMGT was already established

in the IAS for single processor systems, the work in this section was necessary to restructure

and generalize it for use in SMP systems. Although it is now possible to segregate HGS

scheduler data structures on a per-CPU basis, some constraint on concurrent execution of

schedulers on each CPU remains and the system must be extended further to achieve full

parallelism.

3.7.3 PI Compatibility

HGS must provide flexible concurrency control semantics to support the wide variety

of scheduling semantics that can be implemented by HGS schedulers. However, at the

same time, as the scheduling layer controlling the system, HGS is also responsible for the

concurrency control semantics of the tasks controlled by the priority-based Linux schedulers

because the Linux scheduling layer is re-used by HGS.

Section 3.7.2 discusses how HGS uses Proxy Selection to reduce the m-blocking time of

waiters by scheduling the proxy for the waiter instead of the waiter. Proxy Selection could,

in theory, produce behavior identical to PI for the Linux schedulers. However, adapting

these schedulers to use Proxy Selection would require extensive modification because Linux

schedulers do not allow threads that are blocked on a mutex to be selected.

Therefore, HGS uses a PI approximation at locking time to reproduces PI behavior with-

out any modifications to the internal Linux scheduling API. This is only an approximation

because the presence of non-priority based tasks that are exclusively controlled by HGS

forces some compromises to be made. HGS implements a proxy policy that incorporates the

PI approximation. Additionally, HGS provides a default system mutex policy that produces

standard priority semantics for selecting the next owner of a mutex when the waiters for a

mutex are all controlled by a priority-based Linux scheduler. If EC tasks are involved then

the HGS Mutex Policy gives preference to the EC tasks.

90



At locking time, when a new proxy relation is created for a waiter and a proxy, HGS

considers the Linux scheduling class that the waiter is assigned to. If the waiter is assigned

to a Linux scheduling class other than the EC scheduling class then the waiter is added to

a priority sorted list stored on the proxy. The proxy inherits the best priority of the waiters

on that list. Later, when the waiter is no longer waiting, the waiter is removed from the list

and PI is again performed for the proxy.

The Linux scheduling class that the proxy is assigned to must also be considered because

if the proxy is under the control of the EC scheduling class then inheriting a priority from a

task controlled by Linux’s priority schedulers will have no effect because the EC scheduling

class and the HGS hierarchy do not look at priorities. In this case, a proxy assigned to the EC

scheduling class is temporarily re-assigned to either the real-time or CFS Linux scheduling

classes, depending on the inherited priority. Thus, the proxy becomes selectable by the

priority schedulers using the inherited priority and the m-blocking time of priority-based

Linux waiters may be reduced. During this period, the proxy is still selectable by HGS.

Another scenario of interest occurs when an EC task has a non-EC proxy. In this case,

the non-EC proxy cannot inherit a priority from the EC task because the EC task doesn’t

have a priority to inherit. However, since we allow the HGS hierarchy to select a task from

any scheduling class, the non-EC task will be scheduled by the HGS hierarchy when the EC

task is selected by an HGS scheduler and, thus, the m-blocking time of the EC task may be

reduced.

The hgs pmgt adjust function is invoked by HGS at locking time, during several HGS

Proxy Policy callbacks, to adjust the scheduling criteria of a task because the set of tasks

for which the task is a proxy has changed. The pseudo-code for this function is presented in

Program 3.14. The calling context for this function must hold the runqueue lock for the CPU

that the task is assigned to because this lock controls the Linux scheduling data modified by

this function.

The steps at 1 perform PI for the task. The HGS Proxy Policy maintains a sorted list of
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Program 3.14 Hgs pmgt adjust
func hgs_pmgt_adjust(task)

1 if task.sched_policy is EC then
if proxy.ppd.pi_waiters is not empty then

task.prio := priority of the first waiter on
proxy.ppd.pi_waiters

end_if
else
task.prio := min(

priority of the first waiter on proxy.ppd.pi_waiters,
task.normal_prio)

end_if

2 if task.ppd.pi_waiters is empty and
task.sched_policy is EC then
task.sched_class := EC

else
if task.prio is a real-time priority then

task.sched_class := RT
else

task.sched_class := CFS
end_if

end_if

end_func

priority-based Linux tasks that are m-blocked on a proxy. The waiter with the best priority

is the first element on the list and the priority of this waiter is the priority that the task

may need to inherit. This list is easily accessible at locking time because it is stored in the

PMGT data structures associated with the proxy. Recall that PMGT allows the system’s

proxy policy to store arbitrary proxy policy data in the PMGT data structures associated

with the proxy for this purpose. The proxy.ppd field is the location of the proxy policy data

and the proxy.ppd.pi waiters field is the list of priority-based Linux tasks for which task is

the proxy.

A task’s sched policy field indicates the Linux scheduling class that the task should be

controlled by when it is not m-blocked. If a task’s sched policy is EC then the task inherits
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the best priority of its waiters. Note that an EC task does not use priorities and, thus, it

does not have a priority to consider in the PI calculation. If a task is not controlled by the

EC scheduling class then it is assigned the minimum value of its normal priority, which is

not influenced by inheritance, and the best priority of its waiters. The minimum value is

used because lower priorities are better under Linux.

The steps at 2 consider the scheduling class of the task. If it is an EC task and it does

not have any priority-based waiters then it remains controlled by the EC scheduling class.

Otherwise, if the task is not an EC task, then the task is placed in the scheduling class to

which its inherited priority belongs. Thus, an EC task will be placed under the control of

a priority-based scheduling class if it inherits a priority and the priority-based scheduling

class can schedule the task and indirectly reduce the m-blocking time of tasks with better

priorities.

The PI approximation used by the HGS Proxy Policy provides handling of proxy relations

involving EC tasks and non-EC tasks. However, it is also vital to consider how EC tasks

and non-EC tasks interact when they are awaiting the same mutex. HGS specifies a default

system mutex policy called the HGS Mutex Policy which adheres to the priority semantics

of the non-EC tasks while also considering the often more important EC tasks.

The default HGS Mutex Policy orders the tasks awaiting a mutex it controls in order to

optimize the selection of the next owner. Waiters are stored in a priority sorted list in which

waiters with the same priority are stored in FIFO order. EC waiters are associated with a

single priority that is better than all of the priorities within the allowed Linux priority range.

The special priority assigned to EC tasks is stored in the PMGT data structure for the waiter

and so it does not effect scheduling because it is only visible to the HGS Mutex Policy. EC

tasks appear first in the list in FIFO order because they have better priorities than all non-

EC tasks and they are all assigned the same priority. Non-EC tasks are inserted in the list

using their actual priority. When a mutex is unlocked the HGS Mutex Policy simply picks

the first waiter on the list to receive the mutex.
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The PI approximation used by HGS helps to maintain behavior similar to standard Linux

scheduling semantics under PREEMPT-RT while also allowing HGS to cooperate with the

Linux Scheduling Stack.

The primary responsibility of a mutex policy is selecting the next owner of the mutex,

from its current set of waiters, when the current owner unlocks the mutex. When all waiters

on the mutex are controlled by priority semantics, this it is easy to see that the best waiter

is the one with the best priority. However, under HGS the set of semantics under which the

set of waiters is controlled can be an arbitrary mix of all semantics used to control tasks on

the system since any tasks can use mutexes associated with Linux services. This is why the

default mutex waiter selection policy under HGS is two-tiered. First, it gives preference to

tasks controlled by HGS, which are those in the EC class. Among those tasks, it implements

a FIFO policy since choosing any other is impossible without some idea of the HGS SDF

semantics being used in the HGS hierarchy. If no EC tasks, those controlled by HGS, are

waiting for the mutex, then selection is by Linux priority.

It is important to note that system implementers are in complete control of the scheduling

semantics that can be configured into the HGS hierarchy. If the developers know enough,

perhaps by limiting the set of schedulers used, then it is perfectly possible to implement a

mutex waiter selection policy that is far more subtle. For example, if deadline scheduling

is used in the HGS hierarchy, then it would be simple to create a policy giving preference

to those with deadlines, those under HGS control, and to select by deadline among the

HGS waiters. It is important to note that PMGT and HGS are frameworks permitting the

implementation and configuration of a wide range of scheduling and concurrency control

semantics, but it is the responsibility of the system architects to ensure that the semantics

they select are feasible.
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3.7.4 The HGS Proxy Policy

SMP Proxy Selection and PI compatibility are dependent on taking actions in response

to changes to the system’s set of proxy relations. HGS implements a proxy policy, called

the HGS Proxy Policy, that incorporates these features. This section discusses the algo-

rithms used by the HGS Proxy Policy: (1) hgs pmgt task init, (2) hgs pmgt waiter init, (3)

hgs pmgt move prepare, (4) hgs pmgt move, (5) hgs pmgt task finalize, and (5) hgs pmgt destroy.

Recall that PMGT provides two initialization callbacks that a proxy policy can imple-

ment: task init and waiter init. The task init callback allows a proxy policy to initialize data

structures that are used to store information about a task when it is a proxy. This callback

is invoked when a task is created. The waiter init callback allows a proxy policy to initialize

data maintained about a task when it is m-blocking. This data is stored in the waiter data

structure that PMGT uses to represent m-blocked tasks in order to make it easily accessible

during PMGT callbacks.

Hgs pmgt task init

The HGS Proxy Policy uses the hgs pmgt task init function in Program 3.15 for its

task init callback. This function initializes a priority sorted list of waiters, task.ppd.pi waiters,

that is used for PI compatibility to determine the scheduling class and priority of the task

when it is a proxy. The algorithm used to change the scheduling class and priority of the

proxy is discussed in Program 3.14. Hgs pmgt task init also initializes a set of avatars that

tracks which avatars are m-blocked on the task because the CPU assignment of these avatars

may need to change in response to a change in the CPU assignment of the proxy. More details

about this change in CPU assignment are provided in Program 3.12.

Program 3.15 Hgs pmgt task init
func hgs_pmgt_task_init(task)
task.ppd.pi_waiters := empty set
task.blocked_avatars := empty set

end_func
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PMGT allows a proxy policy to store proxy policy data in PMGT data structures be-

cause these data structures can be easily accessed during PMGT callbacks. The algorithms

presented here use ppd to indicate that proxy policy data is being accessed. HGS stores

the priority-based waiters list, identified as task.ppd.pi waiters, in the proxy policy data

because the list is only accessed during PMGT callbacks. The set of avatars for which the

task is a proxy, identified as task.blocked avatars, is stored directly in the task structure

because it is accessed outside of PMGT callbacks and PMGT data structures are difficult

to access from outside of the concurrency control context provided by the PMGT callbacks.

As a result, some concurrency control for scheduling data structures must be utilized within

PMGT callbacks to update this set but this is generally easier than accessing PMGT data

structures from outside of the context provided by the PMGT callbacks.

Hgs pmgt waiter init

The HGS Proxy Policy uses the hgs pmgt waiter init function, in Program 3.16, for its

waiter init callback. This function copies data into the proxy policy data for the waiter

that is needed for the PI compatibility and SMP Proxy Selection features during PMGT

callbacks.

Program 3.16 Hgs pmgt waiter init
func hgs_pmgt_waiter_init(waiter, task)

1 waiter.ppd.prio := task.prio
waiter.ppd.sched_policy := task.sched_policy

2 task_rq_lock(task)
for each avatar in task.avatars do
set_add(waiter.ppd.avatars, avatar)
avatar.state := PROXY_SEARCH
avatar.proxy_cpu := avatar.task_cpu

end_of
task_rq_unlock(task))

end_func

The steps at 1 store the priority, task.prio, of the task and the Linux scheduler that
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controls the task when it is not a proxy, task.sched policy, on the waiter because these

variables determine if the waiter should be listed on the pi waiters list of the proxy and

where in the list it should be located.

The steps at 2 create a list of the avatars for the m-blocking task in the proxy policy

data for the waiter, waiter.ppd.avatars, to make the avatars easily accessible during PMGT

callbacks. Additionally, the steps at 2 mark each of the task’s avatars as searching for

a proxy by setting avatar.state to PROXY SEARCH and indicate that the avatar is per-

forming the search from its current location on the CPU of the m-blocking task by setting

avatar.proxy cpu. Note that the list of avatars for a task is protected by the runqueue lock

of the runqueue for the CPU that the task is assigned to. Therefore, the runqueue for the

task is locked during these steps using the task rq lock function provided by Linux.

Hgs pmgt move prepare

After a waiter is initialized because the task it represents is m-blocking, PMGT will

search for a proxy for the waiter. The proxy policy views the search through invocations of

the move prepare and move callbacks. The move prepare callback indicates that a waiter

is no longer blocked on its current proxy and that a new proxy must be found. The move

callback indicates that a proxy has been found for a waiter.

Program 3.17 presents the pseudo-code of the hgs pmgt move prepare function used by

the HGS Proxy Policy for the move prepare callback. This function updates the avatars for

the task represented by the waiter to reflect that they no longer have a proxy and that a new

proxy is being searched for. The waiter and the previous proxy for the waiter, old proxy,

are provided as arguments.

The steps at 1 remove the waiter from the old proxy.pi waiters list if it represents a non-

EC task because the task is no longer m-blocked on old proxy and no longer contributes to

the inherited priority of old proxy. Line 2 acquires the runqueue for old proxy to allow the

avatars associated with the waiter to be safely removed from the old proxy.blocked avatars
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Program 3.17 Hgs pmgt move prepare
func hgs_pmgt_move_prepare(waiter, old_proxy)

1 if waiter.ppd.sched_policy is not EC then
set_remove(old_proxy.ppd.pi_waiters, waiter)

end_if

2 task_rq_lock(old_proxy)

3 for each avatar in waiter.ppd.avatars do
lock(avatar.ingroup.lock)
avatar.blocked_state := PROXY_SEARCH
if avatar.state is not RUNNABLE then

avatar.state := avatar.blocked_state
end_if
unlock(avatar.ingroup.lock)

4 set_remove(old_proxy.blocked_avatars, avatar)
end_for

5 task_rq_unlock(old_proxy)

end_func

set.

The steps at 3 transition all of the avatars associated with the waiter to a searching

state by iterating over waiter.ppd.avatars. The lock for the group that the avatar is in,

avatar.ingroup.lock, is held while each avatar is modified because this lock controls access to

the avatar. The blocked state for each avatar is recorded as PROXY SEARCH because a

new proxy is being searched for on behalf of the waiter. The actual active state of the avatar

is only changed to match the blocked state if the task is not runnable because a task may be

running as it searches for its own proxy. If the active state of the avatars for a searching task

was changed to the PROXY SEARCH state then the task would be stuck in the middle of a

search because HGS would think that the task could not be scheduled. Line 4 disassociates

each avatar from old proxy by removing it from old proxy.blocked avatars.

Finally, line 5 cleans up by unlocking the runqueue lock that was earlier acquired.
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Hgs pmgt move

The hgs pmgt move function in Program 3.18 is used by the HGS Proxy Policy for the

move callback. It is provided two arguments: the waiter for whom a new proxy has been

found and the new proxy that was found. This function is responsible for recording the

proxy for each avatar and, if the task represented by the avatar is not runnable, assigning

the waiter’s avatars to the CPU of the proxy. This is a crucial step in SMP Proxy Selection

that allows an avatar to be selected on the CPU of the proxy so that the proxy can be run

in place of the avatar.

The steps at 1 add the waiter to the new proxy.pi waiters list if it represents a non-EC

task because the task now contributes to the inherited priority of new proxy. EC tasks are

treated differently. Their avatars are later placed on the new proxy.blocked avatars list to

identify to the proxy the set of avatars for which it is the proxy.

The runqueue lock for new proxy is acquired by the steps at 2 to enable the set of blocked

avatars, represented by new proxy.blocked avatars to later be modified. Additionally, this

lock ensures that the CPU assignment of the proxy does not change while we are examining

the avatars. The steps at 3 look at each of the avatars and acquire the group lock that

controls each avatar in order to modify it.

The steps at 4 assign the PROXY FOUND state to each avatar’s blocked state because

the proxy for these avatars has been found. The active state of the avatar is only changed

to the PROXY FOUND state if the avatar is not runnable because the task represented by

the avatar may be executing administrative actions that must be completed. If the active

state of the avatars is changed to PROXY FOUND then, at scheduling time, the proxy for

the avatar will be run in place of the avatar’s task and the task will not make progress.

The CPU of the proxy is also recorded because the avatar will be assigned to the CPU

of the proxy if the task it represents is not runnable. Finally, the avatar is placed in the

new proxy.blocked avatars set because new proxy may need to know the set of avatars for

which it is a proxy.
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Program 3.18 Hgs pmgt move
func hgs_pmgt_move(waiter, new_proxy)

1 if new_proxy.ppd.sched_policy is not EC then
set_add(new_proxy.ppd.pi_waiters, waiter)

end_if

2 task_rq_lock(new_proxy)

3 for each avatar in waiter.ppd.waiters do
lock(avatar.ingroup.lock)

4 old_cpu := hgs_cpu(avatar)
avatar.blocked_state := PROXY_FOUND
if avatar.state is not RUNNABLE then

avatar.state := avatar.blocked_state
end_if
avatar.proxy := new_proxy
avatar.proxy_cpu := task_cpu(new_proxy)
set_add(new_proxy.blocked_avatars, avatar)

5 if old_cpu is not hgs_cpu(avatar) then
avatar.ingroup.scheduler.move(avatar,
old_cpu, avatar.proxy_cpu)

end_if

6 unlock(avatar.ingroup.lock)
end_for

7 task_rq_unlock(new_proxy)

end_func

If the CPU assignment of the avatar must be changed to the CPU of the proxy then the

steps at 5 tell the scheduler of the group that the avatar is in to change the CPU assignment

of the avatar. The steps at 6 unlock the spin-lock that controls access to the avatar and

move on to the next avatar. Line 7 cleans up by unlocking the runqueue lock that was earlier

acquired.
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Hgs pmgt task finalize

PMGT may invoke the move prepare callback several times consecutively to disassociate

waiters from a task which was previously their proxy. Similarly, PMGT may invoke the

move callback several times consecutively to associate multiple waiters with a proxy. PMGT

provides a proxy policy callback called task finalize that enables a proxy policy to change the

scheduling criteria of a task for an entire set of move prepare or move invocations instead

of changing the criteria of the task for each invocation.

Program 3.19 Hgs pmgt task finalize
func hgs_pmgt_task_finalize(task)
task_rq_lock(task)
hgs_pmgt_adjust(task)
task_rq_unlock(task)

end_func

The HGS Proxy Policy uses the hgs pmgt task finalize function in Program 3.19 for its

task finalize callback. This function is responsible for updating the inherited priority and

scheduling class of a task in response to changes to the set of waiters for which the task is

a proxy. It accomplishes this by calling the hgs pmgt adjust function discussed in Program

3.14. The runqueue lock of the CPU that the task is assigned to is held when hgs pmgt adjust

is called because hgs pmgt adjust accesses the task’s Linux scheduling data.

Hgs pmgt destroy

Eventually, every mutex lock operation performed by a task results in the task acquiring

the mutex or aborting the operation. In both cases, the waiter data structure representing

the task must be disposed of. PMGT provides a waiter destroy callback that tells a proxy

policy when a waiter data structure is being disposed of.

Program 3.20 presents the hgs pmgt destroy function which is used by the HGS Proxy

Policy for the waiter destroy callback. This algorithm must ensure that the waiter is no

longer involved in PI and it must assign any avatars for the waiter to the CPU of the task.
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Two arguments are provided to this callback: the waiter to remove and the proxy for the

waiter. The proxy argument is NULL if the waiter is currently searching for a proxy.

Program 3.20 Hgs pmgt destroy
function hgs_pmgt_destroy(waiter, proxy)

1 if proxy is not NULL then

2 if waiter.ppd.sched_policy is not EC then
set_remove(proxy.ppd.pi_waiters, waiter)

end_if

3 task_rq_lock(proxy)
hgs_pmgt_adjust(proxy)

end_if

4 for each avatar in waiter.ppd.avatars do
if proxy is not NULL then

set_remove(proxy.blocked_avatars, avatar)
lock(avatar.ingroup.lock)
avatar.blocked_state := BLOCKED
if avatar.state is not RUNNABLE then
avatar.state := avatar.blocked_state

end_if
if avatar.proxy_cpu is not avatar.task_cpu then
avatar.ingroup.scheduler.move(avatar,

avatar.proxy_cpu, avatar.task_cpu)
end_if
unlock(avatar.ingroup.lock)

end_for

5 if proxy is not NULL then
task_rq_unlock(proxy))

end_if

end_for

At line 1 the algorithm checks if the proxy is NULL. If the waiter does not currently have

a proxy then it cannot be involved in PI. Therefore, no PI calculations are performed. When

the proxy is not NULL and the waiter represents a non-EC task then the waiter is removed

from the list of waiters that contribute to the priority of the proxy in the steps at 2.

The steps at 3 acquire the runqueue lock for the proxy for two reasons: to potentially ad-
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just the priority of the proxy in response to a task being removed from the proxy.ppd.pi waiters

list and to disassociate all of the avatars of the waiter from the proxy. The priority of the

proxy is adjusted by calling hgs pmgt adjust. The avatars of the waiter are disassociated

from the proxy later on by removing all of the avatars from the proxy.blocked avatars set.

Next, hgs pmgt destroy examines each of the waiter’s avatars in the steps at 4. First,

each avatar is removed from the proxy.blocked avatars set because they are no longer as-

sociated with the proxy. Second, the group lock that controls each avatar is acquired to

allow the avatar to be moved to the CPU of the task associated with the waiter. At the

start of hgs pmgt destroy, the avatar will have a blocked state of PROXY SEARCH or

PROXY FOUND which indicates that it is m-blocked. The BLOCKED state is assigned to

avatar.blocked state to indicate that the avatar is no longer m-blocked. If the avatar is not

runnable then avatar.state is also changed. Finally, the scheduler controlling the avatar is

informed if the CPU assignment needs to change.

The steps at 5 clean up by releasing the runqueue lock for the proxy if it was earlier

acquired.

The algorithms in this section demonstrate how to implement a proxy policy that com-

bines PI compatibility with SMP Proxy Selection. Additionally, these algorithms demon-

strate that it is significantly easier to implement a proxy policy than it is to implement

a concurrency control layer with custom semantics. The PI approximation used by these

algorithms to provide PI compatibility is only slightly more complicated than the steps per-

formed by PI at locking time. However, SMP Proxy Selection adds significant complexity

at locking time in exchange for the greater control provided by HGS at scheduling time.

3.8 Guided Execution

We propose that using scheduling to control application behavior by explicitly imple-

menting the scheduling semantics in a customized scheduler is often clearer than trying to

emulate those semantics using a combination of priorities and concurrency control. De-
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terministic testing provides an example domain where directly implementing the desired

semantics in a specialized scheduler is much clearer than using a combination of priorities

and concurrency control.

Testing software that involves concurrency is notoriously difficult because concurrency

creates a situation where many different interleavings may exist and thus different parts of

the code may be executed in many different orders. One of the most common approaches

to testing concurrent software is the “stress” or “soak” approach which executes as many

instances of software use as possible assuming if enough instances are executed then all

possible scenarios will have been covered at least once [10]. A slightly less crude approach

is non-deterministic testing which adds instrumentation so that the set of scenarios covered

can be known and compared to the set of desired scenarios [8] [19]. Deterministic testing

refers to methods that exert control over what scenario executes [5].

Deterministic testing represents the testing problem as one of covering all possible se-

quences of synchronization operations, SYN-Sequences, that can be produced by a set of

application threads executing concurrently. A synchronization operation is any operation

that interacts with another thread. The crucial point in this approach is that the set of

activities between synchronization operations is not constrained, only the way in which the

synchronization operations of each thread are interleaved with those of other threads to

produce the SYN-Sequence of the application.

The particular SYN-Sequence produced by the application depends on a wide range of

system context including: timer interrupt arrivals, other interrupt arrivals, and the pattern

of context switches. As a result, the probability of producing some possible SYN-Sequences

is considerably larger than producing others. Deterministic Testing is particularly useful

for producing rare SYN-Sequences. A limitation of deterministic testing is that all of the

possible SYN-Sequences have to be specified for the testing to be complete and that can be

difficult because there can be a great many of them. Also, it can be difficult to know all of

the possible SYN-Sequences.
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Deterministic testing is our preferred method of testing PMGT and HGS because there

are many rare SYN-Sequences we would like to be able to test and these sequences are difficult

to produce using non-deterministic testing. Many of these rare SYN-Sequences are unlikely

to occur because they depend on: a particular sequence of events that occur randomly, the

reception of a signal, or an interrupt at a specific point in a sequence of actions. For the

PMGT and HGS tests, the mutex lock and unlock are the synchronization operations.

Often, deterministic testing is implemented by using concurrency control or priority ma-

nipulation to constrain thread execution to produce a specific sequence of synchronization

operations. The Guided Execution environment instead uses a scheduler that can follow an

explicitly specified schedule to produce any desired SYN-Sequence.

It is important to note that the Guided Execution approach can produce any SYN-

Sequence but it does not address the implications of all possible thread interleavings within

the synchronization operations themselves.

In the Linux kernel, three kinds of concurrency are present and must be controlled in

various situations: interrupt, thread, and physical. Interrupt concurrency is not relevant

to testing RT mutexes because their use in interrupt context is not permitted. Thread

concurrency refers to arbitrary preemption of one thread by another sharing the same CPU.

The PMGT implementation of RT mutexes disables preemption in all but the case where

an m-blocking thread walks down the m-blocking chain to find its proxy. In that case,

preemption is permitted between links in the chain. The Guided Execution methods used

to control interleavings can in principle be applied to this portion of the RT mutex code in

the kernel but that is not yet part of our testing suite.

Physical concurrency refers to threads executing the same section of code on different

CPUs. RT mutexes are implemented using code sections that are only physically concurrent

and these sections are frequently used. To test these sections, threads would have to execute

the same section at the same time on different CPUs. This sort of testing requires fine grained

control of precisely when two or more threads begin executing that is difficult to achieve
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with scheduling because it is below the time scale of scheduling decisions. Additionally,

Guided Execution would have no control over the interleaving of instructions executed by the

threads during this period because it controls thread concurrency, not physical concurrency.

Therefore, Guided Execution cannot support tests that depend on controlling physically

concurrent execution.

A model checker, such as SPIN [11], might be used to perform analysis of the aspects of

RT mutexes affected by physical concurrency but a model has not yet been developed for

PMGT. A model for PMGT should perhaps be developed towards this purpose.

A GE prototype was discussed in [20]. This section presents a fully featured implemen-

tation of GE and illustrates its use by discussing the PMGT-HGS test suite which consists

of over four hundred tests.

A GE test consists of two parts: a schedule and waypoints inserted into the application

code. A GE schedule consists of a series of elements which pair a waypoint with the thread

that has reached it. Usually, a waypoint is a label placed in an application telling the SDF a

thread’s location. In addition, GE provides a small set of waypoints that are automatically

reached when the state of a thread changes, such as when the thread blocks on a mutex or

receives a signal. These automatic waypoints are called conditions to distinguish them from

normal waypoints. Thus, a GE schedule defines the order in which different threads in an

application should reach different program states.

A GE schedule is similar to a SYN-Sequence in that it defines the order in which threads

should execute. Unlike a SYN-Sequence, a GE schedule is expressed in terms of waypoints

that are completely independent of any particular synchronization operation implementation.

GE can thus in principle be used to implement a wide range of tests unrelated to SYN-

Sequences. A GE schedule can trivially be mapped to a SYN-Sequence by associating each

synchronization operation with a waypoint, which is what we have done for the tests in the

PMGT-HGS test suite.

Threads in an application declare their names when they place themselves under the
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control of GE and the schedules for the PMGT-HGS tests are expressed using those names.

When a thread executes a waypoint, this is the announcement to GE that a waypoint has

been reached. GE then decides, using the schedule, if the thread should continue to execute

or if a different thread should start to execute. When a waypoint is reached and GE decides

to stop executing the current thread, GE forces the system to make a scheduling decision

and the system consults GE about which thread should run. GE then picks the next thread

in the schedule to run.

Figure 3.12 shows an example of a GE schedule. This schedule creates the m-blocking

chain depicted in Figure 3.13. The schedule list specifies the pairings of threads and way-

points that imposes an ordering on the execution of the program. The t1, t2, and t3 lists

specify the operations performed by the threads in the schedule. Section 3.8.1 discusses

tools used by the PMGT-HGS tests to automatically convert these specifications into a test

executable program but GE can be used by applications that do not use these utilities by

directly calling GE.

schedule = [
t1(wp=lock1)
t2(wp=lock2)
t2(cond=block1)
t3(cond=block2)
]

t1 = [
lock(mutex=1)
wp(name=lock1)
]

t2 = [
lock(mutex=2)
wp(name=lock2)
lock(mutex=1)
]

t3 = [
lock(mutex=2)
]

Figure 3.12. An Example PMGT Test Configuration

The first element of the schedule specifies that a thread t1 reaches a waypoint called

wp lock1. The t1 operations list starts with a “lock” operation that acquires mutex 1 and

finishes with a “wp” operation that indicates to GE that the schedule should be advanced to
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Figure 3.13. M-Blocking Chain Produced by GE

the next location. When the “wp” operation is executed, GE transitions to the next location

in the schedule. Similarly, The second element of the schedule specifies that t2 reaches a

waypoint called wp lock2. The t2 operations list starts with corresponding “lock” and “wp”

operations.

The next element of the schedule, t2(cond = block1), has a “lock” operation in the oper-

ations list for t2 but it does not have a “wp” operation because this element of the schedule

specifies a condition that is automatically detected by GE. GE automatically advances the

schedule when t2 m-blocks on mutex 1. Finally, the last element of the schedule indicates

that GE should detect when t3 m-blocks on mutex 2. GE allows the threads to run without

restriction after the last element of the schedule has been fulfilled.

As a testing framework, GE is most useful if it can be applied to many different situations.

The deterministic control performed by GE can be applied to kernel threads as well as user-

space threads because system threads interact with the scheduler in the same way as user

space threads. Sometimes, system threads are necessary to test functionality that is not

exposed to user space. However, user-space tests are preferred, when possible, because in

general they are easier to implement.

Additionally, GE can be used to test threads under the control of any Linux scheduler to

provide a wider range of possible tests. Threads that are not controlled by the EC scheduler

are not selected by GE in order to allow these threads to behave as they would under the

standard Linux schedulers. Some special handling of non-EC threads is necessary because

the standard Linux schedulers could run these threads when it is not their turn to run in the
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schedule. Therefore, GE places all threads that are not supposed to run in a blocked state

and makes them runnable again when it is their turn to run under the GE schedule.

3.8.1 Testing Proxy Management

PMGT is in charge of tracking the waiting relationships among a set of threads holding

or awaiting a set of mutexes. Therefore, the PMGT tests are expressed at the level of RT

mutex operation sequences. These are the SYN-Sequences of Deterministic Testing theory

and are controlled by GE.

Each PMGT test describes a context in which it begins, a mutex operation, and the

context in which it ends. All but the last operation in the SYN-Sequence describing a test is

establishing the beginning context of the test while the last synchronization operation is the

one being tested. The ending context is the state of the test after the last synchronization

operation. The correctness of a given test is evaluated by examining the sequence of actions

performed and the structure of the ending context.

The beginning context of all tests is essentially a m-blocking chain involving a set of

threads and mutexes. This provides the context in which the mutex operation being tested

must execute. The nature of proxy accounting dictates that different contexts for a given

operation can result in quite different sets of actions. There are, therefore, a reasonably large

number of scenarios required to test individual operations in all possible contexts.

The mutex operation evaluates the context in which it starts and chooses which actions

it takes based on that analysis. The actions taken by a mutex operation can differ a lot

depending on the context in which it occurs. In the simplest case, the beginning context

of a thread attempting to lock a free mutex is simply the mutex. In contrast, a thread

attempting to lock a mutex held by another thread which is itself in the middle of a complex

and branching blocking chain can present a vastly different analysis and modification problem

for PMGT.

User-space threads interact with PMGT through the PI mutex implementation in the
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PThreads library, which, in turn, relies on the PI-futex implementation provided by the

futex system call. The futex system call creates a PREEMPT-RT mutex to represent each

user level PI-futex under contention. The set of mutex operations provided by PThreads is

sufficient for most tests but a few scenarios do have to be implemented in a kernel module

rather than user space code.

For example, PThreads does not expose all of the operations necessary to test the dead-

lock support in PMGT. PThreads does not support the return of a deadlock error code from

futex. Thus, it is not possible to write user space tests that abort locking operations when

deadlock is detected and these tests were instead done in a kernel module. Also, futex does

not provide support for aborting attempts to lock a mutex due to a signal. When a signal

occurs during futex, the system call is automatically restarted. Therefore, it was not pos-

sible to implement tests aborting lock operations due to receiving a signal under PThreads

and these were instead done in a kernel module.

There are 31 different PMGT tests in the PMGT-HGS test suite. Only three of these

tests are implemented as a kernel module. Therefore, many tests can be accomplished using

user-space tests despite the limitations imposed by PThreads.

At a practical level, we wanted to create a testing framework which would support it-

erative expansion of the test suite, make it as easy as possible to understand each scenario

and the test code implementing it, and make it as easy as possible to adapt to any future

changes to the RT mutex code. In addition, the testing framework also had to enable us to

create a set of tests corresponding to each scenario to cover all possible execution contexts.

The approach we chose uses a C template for all user tests and another for all kernel

module tests. A configuration file specifies each scenario and a test generation tool is used

to generate the C code implementing a specific test from the relevant template. The config-

uration file specification of the SYN-Sequence for the test consists of: (1) the GE schedule

and (2) a sequence of operations and waypoints for each thread.

Several layers of Python scripts control the generation of code for the set of tests, their
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compilation, their execution, and the evaluation of their output as success or failure.

This approach thus permits iterative expansion and refinement of the tests by modifying

configuration files or generating new ones. The automation of test generation, execution,

and evaluation makes it practical for use as a regression test suite. The completeness of the

test suite is not formally proven in any way but the existing set of tools is well suited to

implementing any set of scenarios. If formal methods were used to generate a complete set

of scenarios [13], this framework could be used to implement them.

3.8.2 HGS Testing

The scenarios used to test PMGT can also be used to test HGS but there are added

parameters that also must be considered for each scenario because HGS has to deal with

a number of factors besides the blocking relations that exist between a set of threads and

mutexes. Each added parameter adds a dimension to the parameter space that exists for

PMGT and, thus, each PMGT scenario becomes several tests in the HGS testing space. In

addition to using the existing PMGT scenarios, some new HGS specific scenarios are also

necessary.

The added parameters are CPU assignment, scheduling class, priority, and the number

of HGS memberships. Each of these values has a set of possible values. For example,

while every thread has a specific CPU assignment, for testing purposes, we generally care

whether two threads are on the same CPU or different CPUs but not which CPUs they

are executing on. Similarly, while there are several scheduling classes in Linux, for testing

purposes we only care whether a given thread is in the EC class supporting HGS or in one of

the Linux classes. With respect to priority we don’t care about the specific values. Instead

the parameter represents how the relative values of the proxy and its waiters affect whether

the proxy’s priority must be adjusted through inheritance, as discussed in Section 3.7.3. In

a given scenario, we want to make sure that our implementation works for threads that

have no HGS memberships, are members of a single HGS group, or are members of multiple
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groups. This is the issue that the HGS memberships parameter addresses.

The total number of tests required to cover the parameter space is a practical concern.

A simplistic approach might define the set of tests as every possible combination of every

parameter for every thread in a scenario. However, a more careful analysis shows that the

size of the parameter space can be constrained in several ways.

One way that we can constrain the total number of tests is by observing that the set

of interesting threads in most scenarios is a subset of all of the threads. A proxy is always

of interest because it is the only thread that may be runnable and it is influenced by all of

its waiters. Additionally, if the proxy changes then both the old proxy and the new proxy

are of interest. One or more waiters will also be of interest. This set is determined by the

combination of parameters for the waiters at the start of the scenario and if that combination

changes during the scenario. By limiting the set of tests to only consider the combination

of parameters for the set of interesting threads in such scenarios we considerably reduce the

total number of tests.

Similarly, the total set of tests can be constrained by converting a literal enumeration

for a given parameter value into a smaller number of qualitative values. For example, a

literal interpretation of the CPU assignment parameter would explicitly represent the CPU

on which each thread in a scenario was executing. Instead, we can represent this parameter

with just two values representing whether the threads of interest and the proxy are executing

on the same or different CPUs. CPU assignment of the interesting threads is important

because some scenarios involve avatars moving from one CPU to another during Proxy

Selection, as discussed in Section 3.7.2. This parameter does not have to consider explicit

CPU assignment because movement of an avatar is unnecessary if the waiter(s) are on the

same CPU as the proxy. Similarly, when the waiter(s) and the proxy are on different CPUs

then avatar movement is involved but which CPUs are involved is not important.

Even after every effort to constrain the parameter space, there are still a large number

of tests that must be defined and performed. The large number of tests motivated the
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creation of automated tool support. This was done in two phases. First, the existing test

generation tool was extended to handle the new parameters such as scheduling class and

CPU assignment. Second, a scenario generation tool was created to process basic scenario

configuration files containing set of values for each of the scenario parameters. The new tool

generates a test configuration file from the basic scenario for each combination of parameter

values specified.

Some new basic scenarios are also necessary because, in some contexts, the change of one

thread’s parameter values could effect another thread without any mutex operations taking

place. For example, a call changing the priority of a thread, the scheduling class of a thread,

or the CPU assignment of a thread can require action at the HGS representation level. Thus,

calls changing parameter values are now synchronization operations. The tests for these new

scenarios are still being developed.

There are 417 HGS tests and, like the PMGT tests, these tests are fully automated.

The PMGT-HGS test suite provides significantly more thorough coverage than the test suite

provided with PREEMPT-RT which contains only 28 tests.
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Chapter 4

Evaluation

Both PMGT and PREEMPT-RT have greater execution overhead than the non-preemptable

concurrency control present in standard Linux. The increase in execution overhead of

PREEMPT-RT over standard Linux is generally perceived as reasonable in real-time systems

where the benefits of more precise behavior control justify it. PMGT both adds additional

execution overhead to PREEMPT-RT and shifts some of the overhead from locking time to

scheduling time. The benefit of PMGT is that it generalizes the PREEMPT-RT semantics

to support essentially arbitrary scheduling semantics rather than being limited to priority

scheduling. The key point is how wide the range of applications will be for which the ben-

efit of generalized semantics justifies the increased overhead. In this chapter experiments

are presented that demonstrate the correctness of the PMGT and HGS implementations

described in Chapter 3 and evaluate the performance implications of the methods used to

implement the flexibly configurable PMGT and HGS layers.

PMGT adds representations of the relations between the elements in an m-blocking chain

in order to generalize the integration of scheduling and mutex semantics beyond the Priority

Inheritance of PREEMPT-RT. This also creates more memory overhead than PREEMPT-

RT which only has to arrange for priority to be inherited at locking time. Often, PMGT

requires the relation information to track the identity of the proxy for an m-blocked task
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when the m-blocking chain that the task is part of is being modified. For example, when a

task is m-blocking on a mutex or a mutex is being released.

It is important to make the memory and execution overhead of PMGT small enough to

not significantly limit the range of applications. Memory overhead reduces the amount of

memory available to applications and execution overhead decreases the amount of time that

an application spends actually performing its intended activities.

There are two types of execution overhead of interest: mutex operation overhead and

scheduling overhead. Mutex operation overhead is analyzed in Section 4.1 by measuring

the time a task takes to m-block under various conditions and the time required to unlock

a mutex. Scheduling overhead is examined in Section 4.2 by measuring the time required

to make a scheduling decision for pipeline processing applications with varying numbers of

tasks being controlled.

This chapter is concerned with the execution overhead of three approaches to the in-

tegration of scheduling and concurrency control: PREEMPT-RT, PMGT-PI, and HGS.

PREEMPT-RT provides a reference point for comparison because it is widely accepted and

it is the foundation on which PMGT-PI and HGS are built. PMGT-PI is of interest because

it demonstrates how much overhead is added to the PREEMPT-RT mutex implementation

by PMGT when the same PI semantics are implemented. HGS demonstrates the overhead

of a scheduling layer that uses proxy relations instead of inheriting priority.

Memory overhead is evaluated in Section 4.3 by considering the number of data structures

representing waiting relations maintained by PMGT under PMGT-PI when the system is

under heavy load. Any scheduling layer could be used because an m-blocking chain has the

same PMGT memory overhead under any scheduling layer.

All of the histograms presented in this section use logarithmic vertical scales to ensure

that both buckets with a small number of samples and buckets with a large number of

samples are visible. Some of the histograms are created during the post-processing of exper-

imental data and others are created during the experiment as the data is gathered, in order
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to decrease the instrumentation effect. Exact variance and median values are reported for

histograms created in post-processing. Variance and median values are estimated for his-

tograms gathered during the experiment. The variance and median estimates are calculated

after the experiment is complete by using the bucket data. The median is calculated by

multiplying the count for each bucket by the midpoint of the bucket and accumulating a list

of these values for all buckets. The middle value of the list is the median estimate. Similarly,

the variance is estimated by creating a set of estimated samples for each bucket using the

midpoint of the bucket and the count for the bucket. The difference between each estimated

sample and the mean of the data is used as normal in calculating variance. We could use a

calculation method based on each sample as it is gathered but that would require squaring

the value of each sample during the experiment. Since the whole point of directly gathering

a histogram is to minimize the instrumentation effect, this was considered less desirable than

the approximation method.

4.1 Mutex Operation Overhead

This section discusses experiments which measure mutex operation overhead by gathering

data about the m-blocking time and the time required to release a mutex. Guided Execution

is used to execute two scenarios involving various threads and mutexes that exercise the most

commonly used portions of the mutex lock and mutex unlock operations. Each scenario is

executed 5000 times to gather a distribution of values.

All of the tasks in these experiments are managed by Guided Execution but they are

scheduled by CFS. This means that Guided Execution may block a task to ensure that a

specific scenario unfolds as desired, but it does not function as a scheduler. This configuration

is preferred because the scheduling semantics of the tasks are the same as they would be

under PREEMPT-RT and PMGT-PI without Guided Execution being present.
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4.1.1 M-Blocking Time

This experiment measures the m-blocking time for tasks which we define as the time

between when the task tries to acquire a mutex owned by another task and the time that it

blocks. It is important to note that the mutex lock code disables interrupts and preemption

early in its execution and re-enables them shortly before the blocking thread blocks. Under

PMGT, the blocking tasks looks for its proxy by walking down an m-blocking chain, during

which the implementation provides two options: keep preemption and interrupts disabled or

permit them at each step in the chain. In theory, permitting preemption and interrupts in-

creases concurrency but delays the time to complete PMGT accounting by finding the proxy.

In contrast, disabling preemption and interrupts decreases concurrency but minimizes the

time to find the proxy. Either approach might be preferred under particular circumstances

by a system architect which is why the choice of which to use is a kernel configuration pa-

rameter. However, as discussed later in this section, under the operating conditions we used

for testing the behavior of the system is not significantly different under either option.

For this experiment, Guided Execution is used to execute the scenario in Figure 4.1. In

this figure, task T4 is m-blocking on mutex M3 which is owned by task T3. Task T4 must

traverse the m-blocking chain to determine that T1 is its proxy. This scenario is executed

5000 times for PREEMPT-RT, PMGT-PI, and HGS to measure the difference in overhead

between these implementations. Each of these configurations was tested under three sets

of conditions: (1) on an otherwise idle dual CPU system, (2) on a dual CPU system with

competing load, and (3) on a single CPU system with competing load. A kernel compile

using the “-j4” option to the “make” command was used for competing load.

The data for this experiment is gathered by emitting a Datastream event when T4 tries

to acquire M3 (start) and a second Datastream event is emitted after T4 has found its proxy

and shortly before it blocks (stop). Additionally, Datastream events are gathered that record

the context switch and interrupt activity of T4 in order to determine if T4 is preempted or

interrupted while it is searching for its proxy. In the figure, if preemption or interrupts are
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Figure 4.1. An M-Blocking Scenario

permitted, T4 experiences two intervals during which this could happen as it transitions

from M3 to M2 and from M2 to M1 as it searches for its proxy T1. In post-processing

the elapsed time between the start and stop events was determined by taking the difference

between their time stamps and that datum was inserted into a histogram. Post-processing

can check to see if preemption or interrupts occurred by looking for those events between

start and stop.

4.1.1.1 Idle

Measuring the m-blocking time on an otherwise idle system provides a base line for how

long a task takes to m-block because influences such as interrupts, preemption, and physical

contention are minimized.

Figure 4.2 shows the distribution of m-blocking times for PREEMPT-RT on an otherwise

idle system. This histogram contains the expected 5000 values. It has 100 buckets that have

a size of 0.50. The minimum value seen is 8.03 and the maximum value is 16.04 microseconds.

There are no underflow and overflow values. The average value is 8.47 and the median is

8.40. The standard deviation is 0.42, which indicates that the data are closely clustered

around the average value.

Post-processing indicated that no interrupt or preemption activity occurred between any

two start and stop events and so we did not create a corrected histogram filtering those
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Count 5000
Buckets 100
Bucket Size 0.50
Min 8.03
Max 16.04
Underflow 0
Overflow 0
Average 8.47
σ 0.42
Median 8.40

Figure 4.2. PREEMPT-RT M-Blocking Idle

effects out. Since the system was otherwise idle it is not surprising that no interrupt or

preemption activity occurred.

Figure 4.3 displays the distribution of m-blocking times under PMGT-PI. The mini-

mum and maximum values for this histogram increased to 12.29 and 25.34 microseconds,

respectively. The average increased to 13.56 from 8.47 for PREEMPT-RT, indicating an

increase in overhead resulting from PMGT. The standard deviation increased to 0.90 from

0.42 for PREEMPT-RT indicating that the behavior for PMGT-PI is slightly more variable.

Post-processing indicated that no interrupt or preemption activity contributed to this data.

The results of this experiment when executed under HGS are illustrated by Figure 4.4.

The HGS hierarchy for this experiment was the simple Guided Execution hierarchy which

consists of a top level group with a Guided Execution group as a member. The results thus

represent the overhead of using HGS with minimal scheduler addition. The minimum and

maximum values increased to 16.33 and 32.84 microseconds, respectively. Additionally, an

increased average of 17.93 compared to 13.56 for PMGT-PI is significant. The standard

deviation, in contrast, was essentially unchanged at 0.91 compared to 0.90. There are two

factors that contribute to the increased overhead. First, the increased complexity of the
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Count 5000
Buckets 100
Bucket Size 0.50
Min 12.29
Max 25.34
Underflow 0
Overflow 0
Average 13.56
σ 0.90
Median 13.64

Figure 4.3. PMGT-PI M-Blocking Idle

HGS versions of move prepare and move compared to that of the PMGT-PI. Second, the

HGS versions require more complex concurrency control, the per-CPU runqueue lock and

the HGS group locks, which increases the base level of overhead and increases the probability

of physical contention. No interrupt or scheduling activity was present in this data.

Count 5000
Buckets 100
Bucket Size 0.50
Min 16.33
Max 32.84
Underflow 0
Overflow 0
Average 17.93
σ 0.91
Median 17.97

Figure 4.4. HGS M-Blocking Idle
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4.1.1.2 SMP Load

Since a task can be interrupt-able at times when it is searching an m-blocking chain for

its proxy, it is useful to know how much this is affected by interrupts when there are many

interrupts occurring. When an interrupt occurs, the interval being measured is increased

by the interrupt service time. In addition, some interrupts can result in context switches

which further increase the measured intervals. Thus, experiments using competing load were

added to the study of m-blocking overhead to see how often interrupts and preemption occur

during the searching of the m-blocking chain. When they occur, the events produced during

the experiment make it possible to detect them and correct for the majority of the time that

they add to the measured intervals for finding the proxy.

Adding competing load produces significantly different results. Figure 4.5 depicts the

results of repeatedly executing the m-blocking scenario depicted in Figure 4.1 on a dual

CPU system while simultaneously compiling a kernel. The “-j4” option is specified to the

kernel compile to increase the load of concurrently executing processes. Visually, when

compared to 4.2, this histogram appears to have a greater variance and there are two peaks

instead of one. Physical contention for the spinlocks used internally by the PREEMPT-RT

mutex implementation could cause some variation in the appearance of the histogram but

this does not seem to entirely account for the change when results from later experiments

are considered.

Under load, the minimum remains roughly 8 microseconds but the maximum has in-

creased from 16 to 160. However, this is not surprising when preemption and interrupts are

considered. The data-set contains 9 instances of interrupt and preemption activity, five of

which correspond to the five overflow values for this histogram. When the distribution is

corrected for interrupts and preemption, the maximum is reduced to 24.90. The average

remains essentially constant at about 14 microseconds but the standard deviation is signifi-

cantly reduced from 4.04 to 2.52, which suggests that the intervals during which interrupts

occurred were contributing significantly to the variation in behavior. However, since only
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Count 5000
Buckets 100
Bucket Size 0.50
Min 8.11
Max 160.75
Underflow 0
Overflow 5
Average 14.16
σ 4.04
Median 14.26

Figure 4.5. PREEMPT-RT M-Blocking SMP Load

9 values are actually modified by the correction, the resulting distribution is quite similar

visually.

Clearly, the presence of competing load in a system with two CPUs has significantly mod-

ified the measured behavior but a particularly interesting aspect is that most of the increased

variation in behavior is not a result of interrupt or preemption during the locking operation

because the correction for these intervals has not significantly changed the character of the

distribution. It is possible that contention to access physical memory by the two CPUs or

bus contention for access to the disk or by the disk for DMA have contributed to spreading

the distribution of m-blocking times. However, our current experimental framework does

not permit investigation of such effects because they occur within the hardware and provide

no software in which to place Datastream events.

Under load, PMGT-PI also produces results with a greater variance than the results for

an unloaded system. Figure 4.6 depicts the results. The average for this data-set is 22.36

microseconds which is significantly higher than the average of 14.16 for the histogram in

Figure 4.5 for PREEMPT-RT with the same load. There is about an 8 microsecond difference

in the averages which is significantly larger than the 5 microsecond difference between the
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two configurations on an idle system. This data-set contains 12 instances of interrupts

and preemption with seven of these values being overflow values. Removing interrupt and

preemption activity reduces the overflow and outlier values to yield a maximum value of

40.26 instead of 154.17. Additionally, the average remains stable at 22 microseconds but

the standard deviation is reduced to 5.77 from 6.53. Clearly, the small number of interrupts

suggests that the spread of the distribution, compared to PMGT-PI on an idle system

shown in Figure 4.3, is not a result of preempt and interrupt activity that we measure and

it seems reasonable to believe that the same influences that caused greater variance in the

PREEMPT-RT data are at work in this case and are associated with the higher level of

concurrent activity on the dual CPU machine. It is interesting to note that the distribution

appears to have three peaks, even though the reason for the segregation of behavior is not

clear.

Count 5000
Buckets 100
Bucket Size 0.50
Min 12.67
Max 154.17
Underflow 0
Overflow 7
Average 22.36
σ 6.53
Median 21.46

Figure 4.6. PMGT-PI M-Blocking SMP Load

Figure 4.7 depicts the results of running the experiment on a dual CPU system with

competing load under the HGS configuration. The average of 30.23 is about 8 microseconds

larger than the average of 22.36 for PMGT-PI under the same conditions. This is almost

double the 4.5 microsecond difference between HGS and PMGT-PI on an idle system. There
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were 19 data values affected by interrupts and 9 of these values were overflow values. When

the interrupts and preemption are removed the maximum for the distribution is reduced to

64.88 from 3098.72. The average is reduced slightly to 29.23 and the standard deviation

is reduced to 7.44 from 46.67. However, the resulting distribution is still very similar to

the original since fewer than 1% of the values were modified. As with PREEMPT-RT and

PMGT-PI, the reason for the spreading of the distribution lies outside the preemption and

interrupt effects currently being measured. The three peaks observed in the PMGT-PI

distribution are also present.

Count 5000
Buckets 100
Bucket Size 0.50
Min 16.09
Max 3098.72
Underflow 0
Overflow 9
Average 30.23
σ 46.67
Median 29.89

Figure 4.7. HGS M-Blocking SMP Load

4.1.1.3 Uniprocessor Load

The gathered distributions for the SMP experiments with load had a larger than expected

variance. Further, it was determined that the increased variance was not due to interrupts

because few interrupts occurred as determined by post-processing. It is important to note

that preemption in this context cannot occur unless an interrupt first occurs and so the

absence of interrupts also implies the absence of preemption. One potential cause for the

greater than expected variation in behavior is contention between the two CPUs due to
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physical concurrency control used internally by the mutex implementation. In order to

investigate that possibility, the experiments were repeated using uniprocessor configurations

because physical concurrency control is not present in uniprocessor configurations. Note,

however, that while contention among CPUs is eliminated by this configuration, contention

for access to memory by the CPU and any DMA devices is still present.

Figure 4.8 depicts the distribution of m-blocking times that results from a uniprocessor

PREEMPT-RT configuration under load. Visually, this histogram appears to have a smaller

variance than the distribution for an SMP system with load depicted in Figure 4.5. This

difference suggest that physical contention, at least in part for spinlocks, influenced the SMP

experiment. However, this histogram still indicates more variance than Figure 4.2, so clearly

there is another influence. The average of 12.34 microseconds for this histogram is higher

than the average of 8.47 on an otherwise idle system and lower than average of 14.16 on an

SMP system with load.

The standard deviation on the otherwise idle SMP system was 0.42 microseconds which

rose to 4.04 with load. On a uniprocessor system under load, the standard deviation rose to

5.31. This rise in the standard deviation is unexpected and especially so given the appearance

that Figure 4.8 is a tighter distribution than Figure 4.5. However, these standard deviation

values are not completely representative of the histograms visually because they are greatly

influenced by the presence of large outlier values that result from interrupts and preemption.

Therefore, these histograms are better represented by considering the standard deviations

of the distributions with the interrupt and preemption intervals removed. Under load, the

adjusted SMP distribution has a standard deviation of 2.52 compared to the unadjusted 4.04.

There were 12 data values effected by interrupts in the uniprocessor distribution and when

this activity is removed the standard deviation is reduced from 5.31 to 1.36. The adjusted

standard deviations of 2.52 for the SMP system and 1.36 for the uniprocessor system under

load are far more in keeping with the visible shape of the histograms.

Figure 4.9 depicts the uniprocessor results for the PMGT-PI configuration under load.
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Count 5000
Buckets 100
Bucket Size 0.50
Min 7.54
Max 186.65
Underflow 0
Overflow 12
Average 12.34
σ 5.31
Median 12.29

Figure 4.8. PREEMPT-RT M-Blocking Uniprocessor Load

Again, this distribution appears to have a smaller variance than the SMP distribution in

Figure 4.6 but it also seems to have a higher variance than the idle distribution in Figure

4.3. The average of 20.78 microseconds is higher than the average of 13.56 for an otherwise

idle system and lower than the average of 22.36 for a loaded SMP system. This distribution

contains 31 values effected by interrupts, of which all are overflow values, and when these

data points are adjusted to remove the effects of the interrupts the maximum value for

the distribution is reduced to 39.72 from 634.72. Additionally, the standard deviation is

reduced from 18.59 to 3.68 and the average is reduced from 20.78 to 19.65. Again, as with

the PREEMPT-RT results, this histogram is better represented by computing the standard

deviation after the interrupt and preemption activity has been removed. This histogram has

a lower adjusted standard deviation of 3.68 than the 5.77 microsecond adjusted standard

deviation for a SMP system under load and a higher standard deviation than 0.90 for an

otherwise idle system. From these adjusted numbers and from looking at the histograms it

is apparent that running on a uniprocessor system has eliminated one source of variation

in behavior compared to the unloaded system but others clearly remain. The three peaks

for Figure 4.9 are particularly clear indicating at least two significant sources of variation in

126



behavior.

Count 5000
Buckets 100
Bucket Size 0.50
Min 11.90
Max 634.72
Underflow 0
Overflow 31
Average 20.78
σ 18.59
Median 21.61

Figure 4.9. PMGT-PI M-Blocking Uniprocessor Load Interrupt-able

The PMGT-PI uniprocessor configuration was also examined with interrupts disabled

during proxy searches to investigate whether there is a source of interrupts that are not

recorded by Datastream events. Figure 4.10 depicts the results. This histogram is similar

to the interrupt-able histogram in several ways: they both have a minimum around 12 mi-

croseconds, an average of about 20, and a median of about 21. Visually, there are fewer

values clustered around the minimum value but otherwise the histograms appear quite sim-

ilar. Most importantly, the variance of 3.30 is near the adjusted variance of 3.68 for the

interrupt-able histogram. This suggests that unaccounted for interrupts are not the cause of

the variance of the interrupt-able histogram in Figure 4.9.

Figure 4.11 depicts the results for the uniprocessor HGS configuration. Like the other

uniprocessor configurations, the variance of this histogram appears to be less than the vari-

ance of the distribution for a SMP system under load, depicted by Figure 4.7, and greater

than the distribution for an idle system, depicted by Figure 4.4. The average of 26.45 mi-

croseconds is higher than the average of 17.93 for an otherwise idle system and lower than

the average of 30.23 for an SMP system under load. This distribution contains 31 values
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Count 5000
Buckets 100
Bucket Size 0.50
Min 11.86
Max 28.18
Underflow 0
Overflow 0
Average 20.19
σ 3.30
Median 21.90

Figure 4.10. PMGT-PI M-Blocking Uniprocessor Load Uninterrupt-able

influenced by interrupts, all of which are overflows, and when this influence is removed the

maximum decreases to 48.91 from 707.76. The standard deviation is reduced from 18.80 to

4.35 and the average is reduced from 26.45 to 25.43. The adjusted standard deviation of 4.35

is lower than the adjusted standard deviation of 7.44 for an SMP system under load which

indicates that a source of variance has been removed. However, since the adjusted standard

deviation is larger than the 0.42 for an idle system there is still an unaccounted for source

of variance.

The results for HGS with interrupts disabled during proxy searches are depicted by Figure

4.12. The standard deviation of 4.42 microseconds for this histogram is close to the adjusted

standard deviation of 4.35 for the interrupt-able histogram. There is about a 1 microsecond

difference between the average of 24.65 for this histogram and the average of 25.43 for the

interrupt-able histogram. Though there are a few differences, this histogram looks essentially

identical to the interrupt-able histogram and, thus, it is unlikely that a significant portion

of the variation in behavior of the uniprocessor system under load is due to an unaccounted

for source of interrupts.

Overall, PMGT-PI has been shown to add 5 to 8 microseconds of overhead compared
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Count 5000
Buckets 100
Bucket Size 0.50
Min 15.08
Max 707.76
Underflow 0
Overflow 31
Average 26.45
σ 18.80
Median 27.81

Figure 4.11. HGS M-Blocking Uniprocessor Load Interrupt-able

Count 5000
Buckets 100
Bucket Size 0.50
Min 14.63
Max 37.22
Underflow 0
Overflow 0
Average 24.65
σ 4.42
Median 27.24

Figure 4.12. HGS M-Blocking Uniprocessor Load

to the PREEMPT-RT base configuration and HGS has been shown to add from 6 to 8

microseconds of overhead in addition to the PMGT-PI overhead. When competing load was

added, the distributions for PREEMPT-RT, PMGT-PI, and HGS experienced increased

variance and currently this effect cannot be fully explained by the current experimental

framework. However, since the effect was also present in PREEMPT-RT, it does not suggest

that the effect is due to a property of the PMGT or HGS frameworks.
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4.1.2 Unlocking Time

The experiment discussed in this section measures the time it takes the owner of a mutex

to unlock a mutex with a single direct waiter and two indirect waiters. Unlocking a mutex

involves picking the best waiter, designating it as the pending owner, and waking it up. The

scenario executed using Guided Execution for this experiment is depicted by Figure 4.13.

In this scenario, task T1 is unlocking the mutex M1 and task T2 is selected to become the

pending owner. This scenario is executed 5000 times for PREEMPT-RT, PMGT-PI, and

HGS to evaluate the difference in overhead between these implementations. No load was

placed on the system during the experiment.

M1 T1T3 M2 T2
LW LW

Unlock

M1

T1
T3 M2

T2
L

W

P

(T1)

Figure 4.13. An Unlocking Scenario

The data for this experiment is gathered by emitting a Datastream event when T1 be-

gins the unlock operation and a second Datastream event is emitted when the operation

completes. Additionally, Datastream events are gathered that record the context switch and

interrupt activity of T1 in order to determine if T1 is preempted or interrupted while it

is performing the unlock operation. In post-processing, the elapsed time between the start

and stop events is determined by taking the difference between their time stamps and that

datum was inserted into a histogram.

In general, the unlock operation is not preemptable or interrupt-able but there is a brief

period between the Datastream events and the unlock activity being measured during which

preemption might occur. In this experiment we would thus subtract the preemption time

130



or eliminate the datum completely because it is an artifact of the measurement method and

not a property of the algorithm.

Figure 4.14 shows the distribution of unlocking times for PREEMPT-RT. The high stan-

dard deviation of 6.96 for this histogram indicates that there is a major source of variance,

probably resulting from interrupt and preemption. The histogram has two clearly defined

clusters of data at 10 and 25. Examination of the event data reveals that all elements of the

cluster at 25 experience an interrupt or preemption.

Count 5000
Buckets 100
Bucket Size 0.50
Min 6.74
Max 125.49
Underflow 0
Overflow 1
Average 15.98
σ 6.96
Median 20.36

Figure 4.14. PREEMPT-RT Unlocking

Figure 4.15 is the result of removing the interrupts and preemption intervals from the

data in the cluster at 25 in Figure 4.14. The data in this figure is much more tightly grouped

around an average of 10.29 with a standard deviation of 2.19. The maximum value is 22.22.

Visually, the upper peak has almost merged with the lower but still seems discernible. We

believe this is because subtracting the length of the interrupt service or preemption intervals

leaves a small amount of preemption and interrupt overhead unmeasured.

The results for the PMGT-PI configuration, illustrated by Figure 4.16, also have a large

standard deviation of 6.07 and a bi-modal distribution resulting from interrupts and preemp-

tion. Figure 4.17 results from removing the interrupts and preemption from this data. The
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Count 5000
Buckets 100
Bucket Size 0.50
Min 6.74
Max 22.22
Underflow 0
Overflow 0
Average 10.29
σ 2.19
Median 10.98

Figure 4.15. PREEMPT-RT Derived Unlocking

average of 14.94 is about 5 microseconds higher than the average of 10.29 for the PREEMPT-

RT configuration indicating the increased overhead of PMGT. Visually, the upper peak has

again essentially merged with the lower peak indicating that the majority of the distinction

was due to the interrupts and preemption.

Count 5000
Buckets 100
Bucket Size 0.50
Min 10.89
Max 31.56
Underflow 0
Overflow 0
Average 18.32
σ 6.07
Median 15.11

Figure 4.16. PMGT-PI Unlocking

Figure 4.18 depicts the data for the HGS configuration. Once again, this configuration

also has a high standard deviation of 6.71 which indicates that there are interrupts and
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Count 5000
Buckets 100
Bucket Size 0.50
Min 10.89
Max 24.63
Underflow 0
Overflow 0
Average 14.94
σ 1.82
Median 15.11

Figure 4.17. PMGT-PI Derived Unlocking

preemption occurring. Figure 4.19 illustrates the HGS configuration data with the interrupts

and preemption removed. Again, the upper peak largely merges with the lower indicating

that essentially all of the bi-modal distribution is a result of interrupts and preemption.

However, recall that the HGS support routines must do more complex concurrency control

than the PMGT-PI versions and so some of the increase in variance may be due to the

difference in concurrency control. The maximum for this configuration is the highest at

38.33. The average for this configuration is also the highest at 20.67 indicating the increase

in overhead of the HGS scheduling layer compared to the Linux Scheduling Stack.

4.2 Scheduling Overhead

Scheduling time overhead was examined using two experiments that make use of pipeline

based computations. Pipeline computations were used because they were readily available

and they have been used with HGS in the past. The first experiment compares PREEMPT-

RT to a simple HGS hierarchy and the second experiment examines a more complex HGS

hierarchy under uniprocessor and SMP configurations. The scheduling time of the PMGT-

PI configuration is not of interest because this configuration does not modify the Linux
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Count 5000
Buckets 100
Bucket Size 0.50
Min 16.94
Max 39.63
Underflow 0
Overflow 0
Average 24.01
σ 6.71
Median 20.33

Figure 4.18. HGS Unlocking

Count 5000
Buckets 100
Bucket Size 0.50
Min 16.94
Max 38.33
Underflow 0
Overflow 0
Average 20.67
σ 2.15
Median 20.33

Figure 4.19. HGS Derived Unlocking

Scheduling Stack present in PREEMPT-RT and, thus, it has the same scheduling time

overhead as PREEMPT-RT.

The metric for both of these experiments is the time that the system takes to make

a decision at scheduling time. In the case of PREEMPT-RT this is the time required to

evaluate the Linux Scheduling Stack. For HGS, the scheduling time is the amount of time

required to evaluate the HGS hierarchy and, if no decision is made by the hierarchy, to
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evaluate the Linux Scheduling Stack.

The scheduling time is measured by recording a time-stamp in a local variable immedi-

ately before a new task is picked and subtracting that time-stamp from a second time-stamp

computed after a task has been picked. The resulting difference is stored in a Datastreams

histogram which records the cumulative data for the entire experiment. The histogram is

output at the end of the experiment. Gathering a histogram directly instead of deriving it

from a set of events for each scheduling decision significantly reduces the instrumentation

effect.

4.2.1 Simple Hierarchy

Scheduling time overhead was first measured using a pipeline consisting of five threads

connected by AF UNIX local socket pairs. These threads consist of a thread that receives

messages, three threads that perform work, and a thread that acknowledges that the message

has reached the end of the pipeline. A sixth thread, in a separate process, generates and

sends messages to the pipeline using a loop-back AF INET socket. Threads closer to the

end of the pipeline are given a better priority. Under PREEMPT-RT the nice system call

is used to set priorities of the pipeline stages relative to the base priority.

There are 10000 messages sent down the pipeline. Messages are sent at random intervals

generated by a normal distribution with a mean of 5 milliseconds and a variance of 20

milliseconds. Each worker thread of the pipeline performs between 6000 and 8000 integer

operations per message to represent work done processing the message. The number of

operations is randomly generated using a uniform distribution. The pipeline is executed

twice: once using PREEMPT-RT and once using a simple HGS hierarchy, on a dual CPU

996 MHz Pentium 3.

The HGS hierarchy used to control the pipeline for this experiment is depicted in Figure

4.20. This hierarchy contains a System group at the top that is controlled by a static priority

scheduler. The System group checks its members in descending order of priority which is
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from left to right in the figure. In this case, the pipeline application is the only one under

HGS control so it is consulted first. If the pipeline application does not choose a thread then

the System group gives the rest of the Linux Scheduling Stack control.

System (SP)

Application (SP)

Source Pipeline (SP)

W3Output W1 ReceiverW2

Linux

Figure 4.20. Pipeline HGS Hierarchy

The Application group has only two members controlled under a static priority scheduler.

The top priority item is the message source and the other item is the group representing the

pipeline. Obviously, this implements a greedy source of messages but could be modified if

different message generation behavior was desired. For example, periodic message generation

with specified variance could be used. The Pipeline group also uses static priority with the

best priority at the end of the pipeline and the worst at the beginning. We refer to these

as “drain semantics” because it encourages messages to move through the pipeline instead

of buffering at the beginning of the pipeline. If we assigned priorities in the other direction

then the first stage of the pipeline would tend to accumulate messages without passing them

on.

Figure 4.21 shows the results for PREEMPT-RT and Figure 4.22 shows the results for

HGS. The 2.78 microseconds average value for HGS is somewhat higher than the 0.34 average

for PREEMPT-RT in absolute terms since the increase is about 2.5 microsecond. In propor-

tional terms, it is nine times the size which is obviously a significant increase. Part of this

overhead occurs because HGS makes more decisions at scheduling time than PREEMPT-

RT. Note however that PREEMPT-RT incurs overhead on every system timer tick to update
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scheduling state which HGS does not. Obviously, timer ticks happen much less frequently

than scheduling invocations but these factors complicate the question of comparing the over-

heads of the two approaches. The total number of scheduler decisions also differs. Under

PREEMPT-RT there are slightly over one million invocations of the scheduler and under

HGS there are fewer than 75% as many. Thus, while the individual decisions by HGS are

more expensive, there are also fewer of them, further complicating the comparison.

Count 1014377
Buckets 100
Bucket Size 0.20
Min 0.09
Max 3.71
Underflow 0
Overflow 0
Average 0.34
∼ σ 0.21
∼Median 0.30

Figure 4.21. Pipeline PREEMPT-RT Scheduler Overhead

Count 728316
Buckets 100
Bucket Size 0.20
Min 0.73
Max 11.39
Underflow 0
Overflow 0
Average 2.78
∼ σ 0.55
∼Median 2.72

Figure 4.22. Pipeline HGS Scheduler Overhead

PREEMPT-RT has a standard deviation of 0.21 and HGS has a standard deviation of
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0.55. This suggests that HGS is slightly more variable than PREEMPT-RT in absolute

terms, but it is interesting to note that when looking at the standard deviation as a fraction

of the average value then HGS is less variable than PREEMPT-RT. However, the larger

absolute deviation is expected since HGS sometimes consults the hierarchy and the Linux

Scheduling Stack instead of only consulting the Linux Scheduling Stack as in PREEMPT-RT.

The maximum value of 11.39 for HGS is much larger than the maximum value of 3.71 for

PREEMPT-RT. This large increase may be due to multiple invocations of the static priority

scheduler associated with the Application and Pipeline groups due to the details of how

proxies are used. Recall that HGS schedulers can select tasks that are m-blocked to cause

the proxy for the task to run. However, if the proxy is blocked then the scheduler is asked

for another selection. Additionally, the static priority scheduler doesn’t monitor when a task

is blocked for reasons other than a mutex. For these reasons, this scheduler can, in theory,

make several unusable selections before picking a task that can actually be run. Since a

significant amount of I/O is performed by this experiment, it is likely that some of the tasks

are blocked due to I/O, which would make the probability of selecting a task that is blocked

or has a blocked proxy somewhat greater. Under PREEMPT-RT, there are fewer reasons

for the decision time to vary because tasks that are not runnable can never be selected and,

since PREEMPT-RT does not use proxy relations at scheduling time, a blocked proxy will

never be considered.

4.2.2 Complex Hierarchy

Scheduling time overhead was also measured using a more complex HGS hierarchy. The

experiment presented in this section uses four pipelines with the same structure as the

pipeline in Section 4.2.1 but the parameters controlling message generation and the amount

of work performed are somewhat different.

Figure 4.23 depicts the hierarchy used to control the pipelines. The goal of this hierarchy

is to balance the progress of the pipelines. The Application group is a static priority group
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that controls the application. The Senders group is a round robin group that alternates

between the different sources for the pipelines. This group is always consulted before the

Pipelines group which controls the pipelines, thus giving preference to the message sources

which insures that all messages which should be generated by the statistical source model are

available to the proper pipeline. The Pipelines group uses a Frame Progress (FP) scheduler

that balances the progress of the pipelines based on the progress reported by each of the

pipelines. Each pipeline is controlled by a static priority group that gives later stages of the

pipeline a better priority. The Output thread of each pipeline informs the Frame Progress

scheduler about the progress of the pipeline in the form of a last-frame-processed state

variable. The worker threads, denoted by a name starting with“W”, perform work on the

messages. Finally, the Receiver thread for each pipeline receives messages from the source

and sends them to the worker threads.

System (SP)

Application (SP)

Sources (RR) Pipelines (FP)

Source1

Source2

Source3

Source4 Pipeline4 (SP)

W3Output W1 ReceiverW2

Pipeline3 (SP)

W3Output W1 ReceiverW2

Pipeline2 (SP)

W3Output W1 ReceiverW2

Pipeline1 (SP)

W3Output W1 ReceiverW2

Linux

Figure 4.23. FP HGS Hierarchy
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The amount of work performed for each message in a pipeline is generated using a uniform

distribution. Pipeline1 sends messages every 33 milliseconds with a variance of 1 drawn from

a normal distribution, while each worker thread performs between 5000 and 7000 integer

operations for each message. Pipeline2 sends messages at an interval based on a normal

distribution with a mean of 5 milliseconds and a variance of 20 milliseconds. Each worker

thread performs between 6000 and 8000 integer operations for each message. Pipeline3 sends

messages at an interval based on a normal distribution with a mean of 20 milliseconds and a

variance of 20 milliseconds. Each worker thread performs between 10000 and 10200 integer

operations for each message. Pipeline4 sends messages at an interval of 33 milliseconds with

a variance of 1 millisecond drawn from a normal distribution and performs between 5000

and 10000 integer operations per messages.

Figure 4.24 depicts the distribution of the amount of time spent processing each message

by the worker pipeline stages. The figure indicates a significant range of processing times for

worker threads which ensures that the scheduling overhead of the system is not affected by

artificial synchronization among computation components that might be produced by similar

processing times. This histogram has the expected 12000 samples that represent 12 worker

threads processing 1000 messages. The 16 overflow values are a result of preemption during

the processing of a message but these aren’t particularly of interest since this experiment is

primarily interested in scheduling time overhead.

This experiment was executed twice, once on a one CPU 996 MHz Pentium 3 and once on

a dual CPU 996 MHz Pentium 3. Figure 4.25 shows the results for the single CPU execution

and Figure 4.26 shows the results for the two CPU execution.

The average of 5.04 microseconds for the SMP configuration is about 1 microsecond

higher than the average of 3.82 for the uniprocessor configuration. The maximum value of

29.08 for the SMP configuration is significantly higher than the maximum value of 19.88

for the uniprocessor configuration. Currently, HGS constrains concurrency during hierarchy

evaluation by permitting only one thread to execute within or under a given group at a time.
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Count 12000
Buckets 100
Bucket Size 4.00
Min 179.82
Max 961618.98
Underflow 0
Overflow 16
Average 449.993
∼ σ 336.20
∼Median 278.00

Figure 4.24. Message Processing Time

Count 133672
Buckets 100
Bucket Size 0.20
Min 0.61
Max 19.88
Underflow 0
Overflow 0
Average 3.82
∼ σ 0.76
∼Median 3.73

Figure 4.25. FP UP HGS Scheduler Overhead

Future development of HGS should be able to relax this constraint. This constraint implies

that a CPU might have to wait for another CPU to finish sub-hierarchy evaluation. The

higher average and maximum values for the SMP configuration suggest that there may be

some physical contention taking place between CPUs.

The standard deviation of 1.29 microseconds for the SMP configuration is substantially

higher than the standard deviation of 0.76 for the uniprocessor experiment indicating that

the values are more spread out. The figures indicate this visually in that the SMP histogram

is much wider than the uniprocessor histogram but many of the buckets contain many fewer
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Count 290724
Buckets 100
Bucket Size 0.20
Min 0.77
Max 29.08
Underflow 0
Overflow 26
Average 5.04
∼ σ 1.29
∼Median 4.74

Figure 4.26. FP SMP HGS Scheduler Overhead

samples than the peaks. Recall that the vertical scale is exponential. The increased variance

also produced 26 overflow values in the SMP histogram that are above 20. These overflows

are not pictured to put the two histograms on the same scale for comparison purposes.

The SMP experiment had 290724 samples which is about twice as many as the unipro-

cessor experiment which had 133672 samples. This appears reasonable because a machine

with two processors must make more scheduling decisions than a machine with a single pro-

cessor that has similar behavior. However, the experiment is processing the same number of

messages with the same set of threads and so the SMP configuration making over twice as

many scheduling decisions during the period of the experiment is somewhat puzzling.

Finally, it is worth mentioning that the average of 5.04 microseconds for the SMP con-

figuration and the average of 3.82 for the uniprocessor configuration are higher than the

average of 2.78 for the simpler hierarchy in Section 4.2.1. Therefore, the overhead added by

this hierarchy is about 1 to 2 microseconds. However, since it is controlling three times as

many threads in a significantly more complex hierarchy, an increase of 2 microseconds is not

particularly surprising.
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4.3 Memory Overhead

PMGT explicitly represents waiting relations using a node structure. For long m-blocking

chains, there may be many nodes because each waiter in the chain has a node for each link

of the chain. Moreover, the fixed pool of nodes used by PMGT could be depleted if there are

many long m-blocking chains. Therefore, the experiment presented in this section examines

the node use on a heavily loaded system where contention for mutexes could be intense.

Various aspects of node structure use are of interest including: the total number of nodes in

use, the total number of waiters on a mutex, and the length of the m-blocking chains since

each waiter has a node for each link in its m-blocking chain.

Five measurements were recorded by the memory overhead experiment: (1) the number

of nodes allocated by PMGT, (2) the number of nodes associated with each mutex, (3) the

number of tasks on the system, (4) the number of m-blocked tasks, and (5) the number of

links in an m-blocking chain traversed by a task that searches for a proxy.

The number of nodes allocated by PMGT is tracked using an atomic counter that is

incremented as nodes are allocated from the node pool and decremented when they are

freed. The value of this counter is added as a sample to a histogram each time a mutex

operation is performed.

A count of the nodes associated with a mutex is tracked using an atomic counter stored

in the mutex data structure. This counter tracks the number of node structures used to

represent the set of waiters on the mutex. The counter is incremented each time a node is

associated with the mutex and decremented each time a node is removed from the mutex.

The value of this counter is added as a sample to a histogram each time a mutex operation

is performed.

The total number of tasks on the system is tracked using an atomic counter which is

incremented each time a new task is forked and decremented each time a task is freed. The

value of this counter is added as a sample to a histogram each time a task is forked.

The number of m-blocked tasks is tracked using an atomic counter which is incremented
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shortly before a task blocks after searching for its proxy due to trying to acquire a mutex

owned by a different task and decremented when the task wakes up. The value of this counter

is added as a sample to a histogram each time a mutex operation is performed.

The number of links in an m-blocking chain searched by an m-blocking task is recorded

by a local variable as it searches the chain for the proxy. The chain length is added as a

sample to a histogram at the end of the search when the proxy is found.

All of the gathered histograms are output at the end of the experiment. The instrumen-

tation effect is significantly reduced by directly gathering histograms rather than deriving

them from a large number of events during post-processing.

The set of tasks in the experiment is generated by simultaneously compiling three Linux

kernels on a KVM virtual machine configured with eight CPUs. The “-j6” option was

specified for all of the kernel compiles in order to ensure that a plentiful number of active

threads was available. The virtual machine ran on a server with eight 2.3 GHz Xeon CPUs

and was configured to use all eight physical CPUs. This experiment was conducted using

the PMGT-PI configuration. It was observed, by running “top” during the experiment, that

CPU utilization for each CPU varied between 75% and 95% indicating that all of the CPUs

for the system were kept reasonably busy and that contention over shared system mutexes

was likely to occur.

Figure 4.27 shows the number of tasks that are m-blocked on the system. This histogram

has over a billion samples because a sample is recorded during each mutex operation and

mutexes are heavily used. Note that this counts the number of tasks in the m-blocked state

but says nothing about how many tasks are waiting on a particular mutex. This histogram

has an average of 11.95 and the data is fairly spread out as indicated by a standard deviation

of 5. The highest values, such as the maximum bucket value of 32, make up a small percentage

(1̃/100,000 of 1%) of the samples.

Figure 4.28 illustrates the total number of tasks on the system. The minimum value

of 307 is the number of tasks present at the start of the experiment. The tasks present
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Count 1.14× 109

Buckets 20
Bucket Size 2
Min 0
Max 32
Underflow 0
Overflow 0
Average 11.95
∼ σ 5.00
∼Median 13.00

Figure 4.27. M-Blocked Tasks

at the start of the experiment are the tasks that Linux uses to maintain the system. Up

to a hundred additional tasks were active at sampling times during the experiment. Many

of these tasks are a result of the kernel compilations generating hundreds of individual file

compilation commands which each create several threads.

Count 17352
Buckets 100
Bucket Size 5
Min 307
Max 407
Underflow 0
Overflow 0
Average 383.85
∼ σ 27.60
∼Median 387.50

Figure 4.28. Tasks

The total number of nodes used by PMGT is illustrated in Figure 4.29. The average

value of 7.48 shows that usually node usage is quite modest. On a 32-bit system, a node has
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a size of 68 bytes. Therefore, given the standard deviation of 5.48, the amount of memory

used for nodes is usually between 136 bytes and 884 bytes. Memory usage is trivial even

at the maximum value of 40 nodes which uses 2.6 KB of memory. Note that the maximum

value is 40 and the last bucket contains values 38 and 39. Therefore, the 11 overflow values

are all for a count of 40 nodes. However, we wanted to make other histograms use the 0 to

40 scale so accepting 11 overflow samples for this one histogram seemed reasonable.

Count 1.14× 109

Buckets 20
Bucket Size 2
Min 0
Max 40
Underflow 0
Overflow 11
Average 7.48
∼ σ 5.48
∼Median 7

Figure 4.29. PMGT Nodes

This experiment also provides some clues about the structure of m-blocking chains that

are created. Figure 4.30 depicts the number of links in an m-blocking chain traversed by

a task that is searching for a proxy because it is locking a mutex owned by another task.

Obviously, this histogram contains samples only gathered at locking time since this is the

only time that this operation takes place. These results show that only searches of length

one or two took place. In the best case, this means that chains of length two, containing at

least three tasks and two mutexes, and chains of length one, containing at least two tasks

and one mutex, were formed. It is possible that a longer chain of length four could form if

a chain of length two joins another chain of length two. In this case, the m-blocking task

would search two links of the chain it is joining. However, chains of this length are likely to
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be rare and short lived because there are no records of the searches of length longer than 2

that would be required for a task to join a chain of length 4.

Count 1.14× 109

Buckets 10
Bucket Size 1
Min 1
Max 2
Underflow 0
Overflow 0
Average 1
∼ σ 1.12
∼Median 1

Figure 4.30. Search Depth

It is also worthwhile to note that this histogram contains only 195151916 samples out

of the 1143527505 mutex operations performed. The primary reasons for this are: (1) only

lock operations are relevant and so we would expect at most one half of the larger sample

count and (2) only lock operations on a mutex that is already owned will walk the chain.

So if the number of lock and unlock operations is essentially equal then there should be

1.14× 109/2 ≈ 5.7× 108 lock operations. Of these, approximately 3.7× 108 were apparently

on free mutexes since only 1.95 × 108 were samples in this histogram. Similarly, the total

number of mutex operations on contested mutexes should be roughly twice the number of

samples in the histogram or approximately 4× 108. This is interesting because PMGT only

performs accounting for contested mutexes.

Figure 4.31 shows the number of nodes associated with a mutex being operated on. The

number of nodes associated with a mutex indicates the number of tasks that are directly

and indirectly awaiting the mutex. The average of 1.55 indicates that the number of waiters

is usually small, however, the earlier analysis also indicates that roughly 3.7 × 108 lock
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operations were performed on free mutexes. In the histogram, the first bucket includes both

values of 0 and 1 so we cannot tell how many of those samples were 0 and how many 1. In

the worst case, a mutex has 31 nodes and, thus, 31 waiters. Given that Figure 4.30 shows

that only short searches of chains are taking place, the m-blocking chain that this mutex is a

part of is wider than it is long. A bushy tree of waiters is advantageous for PMGT because it

requires fewer nodes for each waiter than a set of waiters with longer paths between waiters

and the proxy.

Count 1.14× 109

Buckets 20
Bucket Size 2
Min 0
Max 31
Underflow 0
Overflow 0
Average 1.55
∼ σ 3.98
∼Median 1

Figure 4.31. PMGT Mutex Node Count

Most of the mutex operations associated with a kernel compile on a local disk are likely

related to the file-system and all three simultaneous compiles for this experiment were on

the local disk of the KVM guest OS. Most Linux file-systems use fine-grained concurrency

control which uses separate mutexes for different resources. This type of concurrency control

reduces contention. Therefore, in this case, short chains are to be expected. Coarse-grained

concurrency control, which uses a single mutex for multiple resources, or a single resource

with a lot of contention may produce longer m-blocking chains. However, particularly for

real-time systems, this type of concurrency control is generally a bad design because many

tasks may be m-blocked for a long period of time and this can produce undesirable system
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behavior.

4.3.1 Summary

In summary, PMGT adds significant overhead to mutex operations and HGS demon-

strates that scheduling layers may incur significant additional overhead when handling proxy

relations. In compensation for the increased overhead, however , PMGT and HGS provide

greater control over system behavior. Additionally, both PMGT and HGS have not yet been

fully optimized.

HGS further demonstrates the price paid for greater control by adding modest scheduling

overhead for small hierarchies and greater, more variable overhead for larger hierarchies.

However, significant optimization of how a hierarchy is evaluated still needs to be performed.

The results in this section are all on the order of 10s of microseconds and, therefore,

PMGT and HGS are probably not desirable for system semantics involving timescales smaller

than hundreds of microseconds at present. In the future, PMGT and HGS could possibly

be optimized to provide configurable system semantics using smaller time scales.

PMGT memory overhead is minimal when used with the fine-grain concurrency control

of the Linux kernel because m-blocking chains tend to be wide and short. These types of

chains require only a few node structures for each waiter. The results under the high load of

3 concurrent kernel compilations indicate that the memory overhead of this approach is ex-

tremely unlikely to be problematic under any approach. The memory overhead may increase

for coarse-grained concurrency control, which might be utilized by user applications, but this

type of concurrency control is often undesirable because it greatly constrains concurrency

control.
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Chapter 5

Conclusions and Future Work

Priority scheduling semantics are widely used but often it is difficult or complicated to

map application semantics to priority semantics. Often, it is easier and less complicated to

explicitly specify the semantics of the application to produce the desired application behavior.

Several projects, such as Group Scheduling [1], Litmus-RT [4], and the Hierarchical Loadable

Scheduler [16], have attempted to provide configurable scheduling semantics.

However, configuring the scheduling semantics of an application is not always sufficient

to produce a desired application behavior if the application’s concurrency control seman-

tics are not also configured to produce that behavior. Most projects providing configurable

scheduling semantics do not address configurable concurrency control semantics but there

have been some efforts to implement concurrency control semantics that complement a par-

ticular set of scheduling semantics. For example, the Priority Inheritance implementation

provided by the PREEMPT-RT patch complements the priority based scheduling semantics

used by Linux [17].

The goal of the work presented in this thesis has been to demonstrate a system that allows

complementary scheduling and concurrency control semantics to be configured to produce

the desired application and system behavior. This goal is accomplished by integrating Proxy

Management (PMGT) with the configured scheduling layer. PMGT provides an accounting
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method independent of scheduling semantics used by mutex concurrency control and which

supports the system scheduling layer with a configurable interface. It supports configuration

of both how waiters interact with a proxy and how the next owner of a mutex is selected.

In the work described in this thesis, we have illustrated this approach with two scheduling

layers: the priority based PREEMPT-RT semantics and the configurable Hierarchical Group

Scheduling (HGS). HGS allows an application to specify its own scheduling and concurrency

control semantics at runtime. Additionally, it provides a hierarchical organization of different

applications to allow applications with different semantics to co-exist on the same system.

HGS provides automatic handling of proxy relations that is applicable to a wide range of

scheduling semantics.

The work presented in this thesis adapted HGS to coexist with priority-based Linux

scheduling semantics. First, a Linux scheduling class was created to represent tasks con-

trolled by HGS within the existing Linux scheduling framework. Second, HGS manages

proxy relations between HGS tasks and Linux tasks to allow proper use of the proxy rela-

tion, regardless of the scheduling classes of the waiter and the proxy. Another significant

contribution of this thesis is the extension of the basic handling of proxy relations to support

multi-processor system configurations.

Guided Execution illustrates an example of a highly specialized programming model

whose semantics can be directly implemented as a scheduler under HGS. This was used to

implement a test suite for PMGT of 31 scenarios which cover all of the situations in which

the mutex code can execute that we have generated through extensive review of all possible

paths through the mutex code. Thus, we have considerable confidence in the completeness

of the test suite but a more formalized and tool based approach to generating any missing

scenarios is a reasonable part of future work.

A tool-set using configuration files was created that supports specifying each scenario

and then automatically generating and executing the code for the scenario under the control

of Guided Execution. The Guided Execution framework and scenario tool-set thus make it
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possible to add any scenarios in the future which represent execution situations that have

not yet been covered or which may be necessary due to changes in the mutex code. The

31 PMGT scenarios were then used to generate the HGS test suite which contains over 400

tests. Each scenario at the PMGT level becomes several tests which differ from each with

respect to the scheduling classes, the CPU assignments, and the scheduling parameters of

the tasks involved.

The evaluation presented in this thesis also investigated the overhead of the lock and

unlock mutex operations, the overhead of making a scheduling decision, and the memory

overhead of PMGT.

There is a moderate increase in overhead associated with performing proxy accounting

during the lock and unlock mutex operations compared to the Priority Inheritance algo-

rithm used by PREEMPT-RT. This increase in overhead has two components: that which

is directly related to proxy accounting and that which is related to the notification of the

scheduling layer by PMGT. On a loaded system, both the PREEMPT-RT and PMGT mutex

operations displayed considerably more variance than on an idle system. All of the sources of

this variance could not be accounted for using the experimental framework since significant

variance remained both preemption and interrupts were eliminated from the mutex locking

measurement period.

PMGT can be configured to use Priority Inheritance which does not increase scheduling

decision overhead and it can also be configured to work with scheduling layers that make

direct use of proxy relations to make a scheduling decision. HGS demonstrates a hierarchical

scheduling layer which directly uses proxy relations. It was found that a small HGS hierarchy

adds modest scheduling decision over Priority Inheritance. More complex hierarchies add

additional overhead in exchange for precise control.

PMGT adds an explicit representation to Linux of the relations between tasks and mu-

texes for proxy accounting. This representation requires additional memory to be used by

the system. However, the memory overhead of PMGT for the existing set of Linux mutexes
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was found to be quite modest for a load consisting of multiple kernel compiles. Additional

mutex use could increase the memory overhead but substantial increase would be necessary

before memory use became a significant issue.

The work presented here has demonstrated that proxy accounting is a viable method

of tracking waiting relations for kernel mutexes which can be configured to produce the

currently hardwired semantics of PREEMPT-RT and which can be configured for other

semantics as well. The overhead of this approach is not trivial and whether it is appropriate

for a given system implementation or not will depend on the cost-benefit trade-off between

the increased overhead and the ability to directly implement desired semantics. The use

of Guided Execution to evaluate the correctness of the implementation also illustrated that

some specialized semantics are not sensitive to the increase in overhead.

Much of the work presented in this thesis is focused on the configuration of scheduling

and concurrency control semantics. This work completes the PMGT framework which makes

mutex semantics both integrated with scheduling and considerably configurable but it does

not directly address concurrency control at the user level. However, the extension of config-

urable concurrency control semantics to user-space mutexes, otherwise known as futexes, is

among the most interesting and near term extensions of the work presented here.

A user-level futex could be associated with a system mutex when under contention and it

would be useful for specialized applications to be able to specify what the mutex policy of the

system mutex which is associated with a futex should be. This would allow applications to

configure the concurrency control semantics of the system-level mutex representing the user-

level futex to compliment scheduling semantics specified using HGS. The existing support

for system-level mutexes would thus provide the same support for user-level futexes if such

a relationship was created between user-level mutexes and system-level mutexes.

Some portion of this approach already exists in the form of PI-futexes. Normal futexes in

standard Linux communicate with the kernel when the futex is under contention but the futex

support is completely independent of OS level concurrency control. The PI-futex instead
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uses a system level futex to represent the user-level futex under contention, thus gaining

the priority inheritance capabilities. At the system level, this is essentially what would

be required for user-level futexes with configurable semantics and integration with HGS.

However, creating a user-level interface with sufficient power would still require additional

work.

The user-level interface for configuration could be accomplished by creating a system call

that records the desired mutex policy for a specific futex and then modifying the futex im-

plementation to associate that policy with the appropriate system mutex when the system

mutex is associated with the futex. Additionally, a method for specifying an application

specific mutex policy at runtime would be needed. Obviously, the application specific poli-

cies would have to be implemented and loaded into the kernel as modules, much like HGS

application specific schedulers.

There are several performance improvements for PMGT and HGS which could also be

made. PMGT might be re-organized to manage its representation of m-blocking chains

differently. When a task tries to acquire an already owned mutex it currently searches for

its proxy by traversing the m-blocking chain in order to set up waiting relations with other

mutexes in the m-blocking chain. However, the proxy for the task is obvious because it is also

the proxy for the owner of the mutex. If the PMGT implementation can be re-organized to

use data structures representing relations among waiters and proxies in a more localized way

then overhead of walking the m-blocking chains and acquiring and releasing locks associated

with each step could be eliminated. In this approach, the same relations would be represented

but the data structures would be managed in a way that concentrates on the proxy in its

approach to concurrency control, thus considerably simplifying the concurrency control and

presumably reducing its overhead.

Furthermore, constraints currently placed on physical concurrency by HGS could be re-

laxed. One way to do this would be to transform the HGS group locks into only controlling

the consistency of group level information and maximizing the use of per-CPU concurrency
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control similar to that used by the Linux Scheduling Stack which maximizes physical concur-

rency. This would increase the physical concurrency of scheduling time decisions and make

HGS more appropriate for systems with a large number of CPUs.
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