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ABSTRACT 

 

The loss factors and coupling loss factors of a 2-plate, coupled system were estimated 

using the Statistical Energy Analysis methodology. In particular the Power Input Method 

(P.I.M.) and the Transient Statistical Energy Analysis Method (T.S.E.A.) were applied to both 

steady state and transient excitation cases. The effects of various process parameters such as 

frequency resolution, frequency bandwidths, type of hammer tip and measurement points on the 

estimated loss factors were also investigated for 3 different levels of damping. Possible reasons 

for the occurrence of negative coupling loss factor estimations using the T.S.E.A. method have 

been discovered to be the flexibility of the joint between the plates and the frequency resolution 

of the measured data. 

The effect of frequency resolution and damping on the estimated loss factors was 

examined both numerically and experimentally. First, a two degree of freedom (2-DOF) system 

was numerically simulated with varying model loss factors of 0.1%, 7.5% and 75% and 

frequency resolutions of 0.05 Hz, 0.2Hz and 1 Hz. The estimated loss factors were found to be 

highly dependent on the frequency resolution only in the lightly damped case. Experiments were 

then performed on 2 Aluminum plates coupled at a point, varying both the damping (by adding 

constrained layer damping) and the frequency resolution. It was seen that the coupling loss 

factors were not dependent on the damping levels, whereas the loss factors increased as the 

damping increased as expected. As the frequency resolution was decreased the loss factors in 

some frequency bands, especially the lower frequency bands, tended to negative values. The loss 

factors estimated, using the power input method, were in good agreement with both shaker and 

hammer excitations.  
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Modal density and modes in band were also calculated and compared with the theoretical 

results. Significant variation between the theoretical values and the experimental values was seen 

only in the ‘No damping’ case and only in the lower frequency bands. 

The main aims of using the T.S.E.A. method were to interpret the results from the 

dissertation by M. L. Lai, to find out the practical limitations of the method and to establish the 

degree of agreement of the asymptotic loss factor estimations with respect to the P.I.M. A 

numerical simulation was run on a 2-DOF system to show how the loss factor varies with time 

for a transient hit. It also showed that the theoretical coupling coefficients were off by more than 

150% when a double hit occurs. Experiments were conducted to check for the effects of 

frequency resolution and frequency bandwidth on the estimated coupling loss factors. An 

increase in the damping levels of the plates caused the number of negativities in the “apparent 

time varying coupling loss factor” estimates to decrease while simultaneously decreasing the 

time taken to reach an asymptotic value. Possible reasons for the occurrence of negative coupling 

loss factors were discussed. 
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1.0 INTRODUCTION 

 

Any structural deformation that repeats itself after an interval is called vibration or 

oscillation [2]. Engineered structures contain components which possess finite levels of stiffness, 

mass and dissipative energy transfer characteristics due to inherent damping. Imposition of 

alternating external loads on such structures can result in very high amplitude vibrations at 

numerous distinct resonant frequencies [3]. Any structure undergoing vibration stores both 

kinetic energy (on account of its mass) and potential energy (due to stiffness) and a means to 

dissipate energy (damping) [2]. Any structure vibrating at a resonant frequency with insufficient 

damping tends to vibrate at high amplitudes which tend to radiate sound and which might 

ultimately lead to structural failure. Hence it is of utmost importance to predict these resonant 

frequencies and prevent high amplitude vibrations via adequate structural damping [3]. 

Damping in a structure is defined as any effect which tends to reduce the amplitude of 

oscillation. Several types of damping are inherently present in any structure[4]. They can be 

classified into two types. They are internal damping of the structure and structural damping at the 

various joints. If any structure has low inherent damping, additional damping can be added to a 

structure which can be classified into active damping and passive damping. 

Active damping is achieved by actuators which control the motion of the structure 

whereas passive damping is achieved by adding a layer of visco-elastic material which, in 

constrained layer damping, is covered by a layer of constraining material to the structure. 

Constrained layer damping dissipates the energy of the structure as heat because of the shearing 

deformation of the visco-elastic material. Under the influence of dynamic loads, the visco-elastic 

material dissipates energy by disrupting the bonds of its long-chain molecules to convert the 

kinetic energy to dissipative thermal energy (heat).[5] 
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There are several notations which describe the damping level of a structure, namely the 

equivalent modal damping ratio, ξ , loss factor, η, and quality factor Q. For loss factors ranging 

from 0 to 0.3 the relationship between them is given by the following equation[5].  

1
2

C

m Q
η ξ

ω
= = =  (1.1)

The actual relationship between η  and ξ is given by 22 1η ξ ξ= − which is within 5% of 

equation (1.1) when 0.3η < . [5] 

 

1.1 LOSS FACTOR 

 

The loss factor (η) is defined as the ratio of the dissipated power (Dπ ) per radian to the total 

energy of the plate (TotalE ) [6].  

D

TotalE

πη
ω

=  (1.2)

Under steady state conditions, since the stored energy in a structure remains constant, the 

power input to a structure is dissipated by the structure itself. Thus the dissipated power can be 

replaced with power input (inπ ) to give the following equation. 

in in

Total Total

E

E

πη
ω ωε

= =  (1.3)

Here, inE is the energy input to the structure and Totalε is the integrated total energy. 

The integrated total energy is the sum of the integrated potential energy and the integrated 

kinetic energy of the system. 

2Total k P kε ε ε ε= + =  (1.4)
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We assume that the integrated total energy is twice the integrated kinetic energy, which for an 

idealized single degree of freedom system causes no more than a 0.5 % error for 0.1η >  and a 3 

% for 0.2η > [7]. This assumption is used throughout this thesis. 

 

1.2 EXPERIMENTAL METHODS TO ESTIMATE LOSS FACTORS 

 

The experimental methods to estimate loss factors can be broadly classified into  

1. Time domain decay-rate methods. 

2. Frequency domain modal analysis curve fitting methods. 

3. Methods based on the flow of energy and power.[8] 

 

1.2.1 TIME DOMAIN DECAY RATE METHODS 

 

Decay rate methods, as the name suggests, compute the loss factors from the decay 

response of the free decay of structures. This decaying response of the structure can be generated 

by either an impulse, used in Random Decrement Technique [9], or by an interrupted steady–

state excitation, used in Reverberation Decay Method [10] or by clever processing of input 

output measurements, used in Impulse Response Decay Method [11] .  

For the above three techniques, the procedure to evaluate loss factors is the same. That is, 

the loss factor is proportional to the logarithm of the assumed exponential decay of response, 

irrespective of whether the response is acceleration, velocity or displacement. 
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1.2.2 HALF POWER BANDWIDTH METHOD 

 

The ‘half power bandwidth method’ is an example of frequency domain based method. 

The ‘half power bandwidth method’ or the ‘peak picking method’ is the simplest method for the 

estimation of modal parameters. The method treats each distinct peak in the frequency response 

function (FRF) as an individual system and finds out the apparent equivalent modal viscous 

damping level. [12]. 

The procedure of using the peak-picking method is: 

(1) Picking the natural frequency 

(2) Estimating the equivalent viscous modal damping 

For estimating the damping, the half power points have to be first identified. The half power 

points are the frequencies which have amplitude of half the squared amplitude of the deflection 

(or velocity or acceleration) FRF “peak” and are given by max

2

V
, as shown in Figure 1. 

The loss factor can then be estimated using the equation (1.5) 

b a

i

ω ωη
ω
−=  (1.5)

The half power bandwidth method can only be used on a structure in the lower frequency 

ranges where the natural frequencies are widely spaced and it cannot be used in higher frequency 

ranges where the structure is modally dense and the “peaks” of the FRF might be so “close” that 

the response does not decrease to “half power” levels in the vicinity of a peak. The use of the 

half power bandwidth method also requires a high frequency resolution so that the peak point 

and half power points can be measured accurately. This method is also dependent on a high 

quality FRF which typically requires the time domain input and output signals to be averaged 
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multiple times. Hence, the half power bandwidth method can be used for lightly damped 

structures with well separated modes as long as an appropriate frequency resolution is used.  

 

Figure 1: Mobility FRF of a single degree of freedom system as used to measure damping 
using half power bandwidth method 

 

1.2.3 POWER INPUT METHOD 

 

The Power Input Method (P.I.M) is based on a comparison of the dissipated energy of a 

system to the total energy of the system under steady state vibration. Since P.I.M. is based on the 

definition of the loss factor, theoretically it is unbiased and it is applicable at all frequencies. At 

higher frequencies, where the modes overlap, the P.I.M is used to calculate loss factors over 

broad frequency ranges. These band averaged loss factors are used in models based on Finite 

Element Method (FEM) and Statistical Energy Analysis (SEA) [13]. 
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Since the power input into a system is dissipated by the system under steady state 

conditions, we can replace the dissipated power with the power input. 

in in

Total Total

E

E

πη
ω ωε

= =  (1.6)

 

Here, η is the loss factor, ω is the frequency, inπ  is the input power, inE  is the input energy, TotalE

is the total energy of the structure and Totalε is the integrated total energy. The formulae to 

calculate the values of the total power input into the structure and the energy of the structure are 

given by equations (2.35). 

  

1.2.4 TRANSIENT STATISTICAL ENERGY ANALYSIS METHOD  

 

 This method was proposed by M. L. Lai and A. Soom in their paper ‘Prediction of 

Transient Vibrations Envelopes using Statistical Energy Analysis Techniques’ [14]. This method 

was proposed as an alternative to the Power Input Method under transient excitations using the 

basic S.E.A relationship of the energy transferred between the subsystems to calculate the 

coupling loss factors between them. The power input method for transient excitations uses the 

steady state loss factors for estimating the power flow between subsystems of the structure 

whereas the T.S.E.A. method on the other hand uses a new ‘apparent time varying coupling 

coefficient’ to characterize the power flow between subsystems.  

 The basic T.S.E.A. relationship between 2 subsystems is given by 

12 12 1 2( ) 2 ( )( ( ) ( ))tr k kE t C t t tε ε= −  (1.7)

Here, 

C12 (t)  is the apparent time varying coupling coefficient between subsystems 1 and 2. 
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12( )trE t   is the time varying energy transferred from subsystem 1 to subsystem 2. 

( )k
i tε   is the integrated kinetic energy of subsystem i . 

Equation (1.7) is the basis for the T.S.E.A method. Making an assumption that the energy 

stored in the coupling is very small when compared to the energy transferred between the 

subsystems leads us to the relationship between the coupling coefficients which then leads to the 

formulation of the T.S.E.A Method as stated by the equation (2.49) 

12 21( ) ( )C t C t=  (1.8)

Both C12 (t) and C21 (t) will asymptotically approach a constant value C which is the steady state 

coupling coefficient. 

 

1.3 TYPES OF EXCITATION 

1.3.1 SINUSOIDAL EXCITATION 

 

Sinusoidal excitation is one of the oldest methods for exciting a structure for modal 

testing and is still widely used [12]. As shown in Figure 2 below, the force input consists of a 

sinusoidal wave of a particular frequency, here 159 Hz, thus exciting the structure only at that 

frequency. 

Since the response characteristics of a structure are dependent on the frequency at which 

it is excited, this type of excitation can be used for direct parameter identification, because of the 

satisfactory signal to noise ratio, with the half power bandwidth method. The downside to this 

type of excitation is that it is very time-consuming to excite the structure at multiple natural 

frequencies. 
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Figure 2 : Time plot, FFT and auto spectrum of a sinusoidal excitation with frequency 1000 
radians/sec  

 

1.3.2 RANDOM FORCE EXCITATION  

 

The force signal for random excitation is a stationary random signal with Gaussian 

distribution having a constant spectral density. It is generated by using a random number 

generator and is a non-repeating sequence of numbers. As seen in Figure 3, the random force has 

“frequency content” over a broad frequency range and thus it excites all the natural frequencies 

of a structure in any large frequency band. For a structure that behaves nonlinearly, random 
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excitation has the tendency to linearize the behavior from the measurement data. It correctly 

models the amount of energy dissipation of the structure during vibration [12]. Hence random 

force excitation is preferred while using the power input method. 

 

Figure 3 : Time plot, FFT and auto spectrum of a simulated random force excitation with 
no noise 

 

For a structure excited with a random force, since neither the force input nor the response 

is periodic, leakage errors might occur. For the signal to be transformed into frequency domain 
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value, preferably equal to zero. This leakage can be minimized by using a Hanning window. A 

Hanning window is a raised cosine function which zeros out the signal and its first derivative, at 

the beginning and at the end of the time record of a time domain signal. 

 

1.3.3 TRANSIENT EXCITATION  

 

The time domain signal of an impact excitation is a pulse of limited duration. The 

frequency band that an impact force excites is directly related to the impact duration as 

1
F

t
=

∆
 (1.9)

Here, F is the highest frequency excited by the impact and t∆ is the duration of the impact. As 

seen in Figure 4 the maximum frequency excited by the impact force of duration 0.001 second is 

about 1000 Hz. 

Transient excitation is a relatively simple, cheap, convenient and portable excitation 

technique which requires minimum hardware. Since there is no physical connection between the 

excitation source and the structure there are no errors involved because of the loading of the test 

structure due to the mass of the shaker. Examples of transient forces include shock loading, 

impacts, for example is using an impact hammer with a calibrated force gauge, earthquakes and 

wind gusts. 

To minimize leakage errors the measured input force from the impact must always 

include a nascent (pre impact) time interval at the beginning of the time record thus satisfying the 

Dirchlet condition. The main disadvantage of impact excitation is that it is difficult to control 

either the force level or the frequency range of the impact which could affect the signal to noise 
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ratio, resulting in poor quality data. Repetitiveness is another issue with transient excitation. In 

addition, some structures are too delicate to be hammered upon.[12] 

 

 

Figure 4 : Time plot, FFT and auto spectrum of an impact hit of duration 0.001 seconds 
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2.0 THEORY OF STATISTICAL ENERGY ANALYSIS 

2.1 LITERATURE REVIEW 

 

Statistical Energy Analysis was developed at a time when estimation of damping and other 

modal parameters were limited by the lack of computational resources and limitations of existing 

techniques. Estimation of damping and other modal parameters by classical methods, used 

widely then, were limited to well-defined and widely-spaced modes particularly at low 

frequencies. Even the computational models used then only predicted the modal parameters of 

the lower order modes of rather idealized (simplified) models of structures [15]. 

 The aerospace and automotive industries have been the primary contributors to the 

development of new methods based on statistical averaging, both temporally and spatially, of 

response functions. Increasing complexity of structures, better damping predictions and the 

demand to predict parameters over a wide frequency range while simultaneously reducing the 

computational effort required lead to the development of Statistical Energy Analysis. The 

fundamental principle involved in S.E.A is the conservation of energy. Complex structures like 

aircraft wings and automobiles are described in S.E.A by a set of simple structures like plates 

and beams and by S.E.A parameters like loss factors and coupling loss factors.  

The first paper on Statistical Energy Analysis was written by Lyon and Maidanik [16] who 

considered two linearly coupled oscillators. They reported that the power flow is directly 

proportional to the difference in the modal energy in the two oscillators and the direction of the 

power flow is dependent on the sign of the difference. Further developing it, they applied the 

idea to 2 multimodal systems which were randomly excited. They divided the structure into 

groups of modes in narrow frequency bands and enforced an energy balance in each frequency 

band independently. 
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The basic power flow equation given in reference [16] is 

12 21 12 1 2( )j j g θ θ= − = −  (2.1)

 

Here,  

12 21,j j  are the power flows between oscillators 1 and 2. 

1 2,θ θ  are the modal energies (defined as temperatures in the paper). 

12g  is the coupling constant of proportionality which is dependent on the system parameters. 

Modal energy is defined as the ratio between the total energy ( iE ) in a frequency band to the 

number of modes (in ) in that band. 

i
i

i

E

n
θ =  (2.2)

Assumptions made in the formulation of Statistical Energy Analysis are as follows: 

1. The structure of interest is divided into simple subsystems and an energy balance 

enforced in multiple frequency bands such that the modes in a particular band have 

the same energy.[16] 

2. Since the energies are concentrated near natural frequencies, to get a better statistical 

estimate each frequency band should have a large number of modes. 

3. The frequency band should not be so huge such that the modal energies vary 

significantly in a frequency band of interest. 

4. The structure is assumed to be under a reverberant field, which is defined as a sound 

field which is dominated by reflected sound waves in which the flow of energy in all 

directions is equally probable.[17]  
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Initial work in S.E.A assumed a weak coupling between sub-systems. Ungar [18] applied 

S.E.A to a strongly coupled case. Gresch in 1968 [19] applied S.E.A to a system of 3 oscillators 

with non- conservative coupling between them. 

The S.E.A method assumes the presence of steady state conditions, but Manning and Lee in 

[20] applied Statistical Energy Analysis to a transient case by adding an additional energy term 

to the basic SEA equation describing the power input into the system. Because of the time-

varying nature of the transient problem, the energy of the system also changes with time. The 

time rate of change of energy term addresses this particular aspect of the transient case. 

in

dE
E

dt
π ωη= +  (2.3)

Here, inπ is the input power and is given by equation (2.8) and Eωη  is the dissipated energy 

described by equation (2.12). Equation (2.3) is called the quasi-transient equation because of the 

addition of an additional energy term while simultaneously retaining steady state coefficients. 

Equation (2.1), which is applicable under steady-state conditions, is also assumed to be 

applicable in the transient case [21]. 

For a system with 2 oscillators, described by Figure 6, combining equations (2.3) and (2.1) 

we get, 

1 1 12 2 21( ) ( )in

dE
E E

dt
π ω η η ω η= + + −  (2.4)

The above equation (2.4) describes the power flow in a structure having 2 sub-systems under 

a transient force. 

Mercer [22] in 1971 developed an expression using perturbation analysis describing the 

energy flow between 2 oscillators connected by a weak coupling and under a transient load. He 
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concluded that the energy flow between the 2 oscillators is directly proportional to the energy 

difference and also the magnitude of the transient impact force. 

Pinnington and Lednik [23] studied and compared the exact transient energy response of a 2 

oscillator system with the results from quasi transient statistical energy analysis of a 2 oscillator 

system. They compared and reported that the peak levels, integral of the transmitted energy and 

the decay rates are similar for both the methods but the time taken to reach the peak level is less 

in the case of the quasi- transient statistical energy analysis (T.S.E.A) method. 

Another approach to solve transient problems using the statistical energy analysis method 

was proposed by Lai and Soom [14]. They further improved equation (2.1) by using new 

“apparent time varying coupling loss factors” instead of steady state loss factors to describe the 

energy flow between any 2 oscillators so that all the parameters involved vary with time. 

21 21 2 12 1( , ) 2 ( ( , ) ( , ) ( , ) ( , ))tr k k
c c c c c cE t t t t tω ω η ω ε ω η ω ε ω= −  (2.5)

Here, 

21( , )tr
cE t ω  is the energy transferred from oscillator 2 to oscillator 1 and is a function of the time 

and frequency band. 

cω  is the center frequency of the frequency band. 

kε  is the integrated kinetic energy. 

( , )ij ctη ω  is the apparent time varying coupling loss factor. 

 

2.2 BASIC CONCEPTS 

Statistical Energy Analysis deals with the flow on energy in a structure. It is based on the 

principle of conservation of energy which is “Energy can neither be created nor destroyed it can 

only be transformed from one state to another”. Hence the energy imparted into a structure can 
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either be stored in it or has to be dissipated as heat. For example under transient conditions 

energy stored in the system varies but once steady state conditions are reached the energy stored 

in a system remains constant and all the energy imparted into the structure is dissipated. 

 

2.2.1 STRUCTURE CONTAINING A SINGLE OSCILLATOR 

Consider a single oscillator structure having a mass M, stiffness K and damping coefficient 

C. Under an applied random force( )f t , the equation of motion for a 1-DOF system is given by  

( )Mx Cx Kx f t+ + =ɺɺ ɺ  (2.6)

 

 

 

 

 

 

 

 

 

For a random force f (t), the time averaged power input is given by [24] as: 

1
lim ( ) ( )

2

T

in
T

T

f t v t dt
T

π
→∞

−

= ∫  (2.7)

Here, ( )v t is the velocity of the oscillator. Applying Parseval’s theorem and transforming to the 

frequency domain, we get 

*1
( ) ( )

2in F V dπ ω ω ω
π

∞

−∞

= ∫  (2.8)

Figure 5 : Single degree of freedom oscillator 
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Here * denotes the complex conjugate of the force. Since power is a real quantity, equation (2.8) 

can be further reduced to: 

1
Re( )

2in FFS Y dπ ω
π

∞

−∞

= ∫  (2.9)

Here, Y is the mobility frequency response function (FRF). FFS  is the auto-spectrum of the force 

and is given by: 

* ( ) ( )FFS F Fω ω=  (2.10)

On further simplification, we get 

2

0

in FF

C
Y S dπ ω

π

∞

= ∫  (2.11)

Equation (2.8) is used to calculate the experimental power input into the system from the 

measured data. The time-averaged power dissipated is given by the definition of loss factor given 

by (1.2) as 

diss TotalEπ ηω=  (2.12)

Assuming the kinetic energy is twice the total energy, we get the total energy as 

22 lim ( )
2

T

Total k
T

T

M
E E v t dt

T→∞
−

= = ∫  (2.13)

The relationship between the loss factor and damping coefficient given by 

C

M
η

ω
=  (2.14)

Substituting equations (2.13) and (2.14) in equation (2.12), we get 

2lim ( )
2

T

diss
T

T

C
v t dt

T
π

→∞
−

= ∫  (2.15)

Applying Parseval’s theorem on equation (2.15) and transforming into frequency domain we get 
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* ( ) ( )
2diss

C
V V dπ ω ω ω

π

∞

−∞

= ∫  (2.16)

Equation (2.16) can be further simplified by using the following definition of Frequency 

Response Function (FRF), Y  

*
2

*

( ) ( )

( ) ( )
vv

FF

S V V
Y

S F F

ω ω
ω ω

= =  (2.17)

2

0

diss FF

C
Y S dπ ω

π

∞

= ∫  (2.18)

Equations (2.11) and (2.18) prove the relationship between the power input and power dissipated 

to be 

in diss Eπ π ηω= =  (2.19)

 

2.2.2 STRUCTURE CONTAINING TWO OSCILLATORS 

For a structure with two distinct sub-systems or oscillators, the energy balance equation 

consists of an additional term of the dissipated power at the junction of the two subsystems.  
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Consider the structure in Figure 6. Oscillator 1 is excited by a force which imparts power π1
in 

into the structure. Oscillator 2 is not excited by any external force and hence the power input into 

it is 0. At the intersection of the 2 oscillators there is a net energy flow from subsystem 1 to 2. 

The formula for the transferred power is given by Powell [21] as 

12
12 1 2( )tr E Eπ ωη= −  (2.20)

For a simple case of spring coupling between the oscillators, the equation of motion for a 2-

degree of freedom system is given by 

11 1 1 1 1

22 2 2 2 2

0 0

0 0 0
g g

g g

K K KM x C x x F

K K KM x C x x

+ −          
+ + =            − +          

ɺɺ ɺ

ɺɺ ɺ
 (2.21)

From the above equation, the force transferred can be represented by 

12
1tr gF K x=  (2.22)

The power transferred can be calculated from the equation (2.22) as  

12 2
2 1 2

1 1

2 2tr g vv dissK x x C Sπ π= = =ɺ  (2.23)

Thus, the power balance equations of the above structure can be represented as 

1 1 12

2 12

in diss tr

diss tr

π π π
π π

= +

=
 (2.24)

 

2.2.3 SYSTEM OF 2 MULTIMODAL OSCILLATORS 

For a system of multimodal oscillators, modal energy, which is defined as the total 

energy in a band divided by the number of modes in a band, instead of total energy, is the 

primary parameter of the energy balance equations. The power transferred depends on the 

difference between the modal energy and not the difference in the total energy. The formula to 
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calculate the modal energy from the total energy is given by equation (2.2) stated in the previous 

section. 

Experimentally, measuring the total energy of the oscillator is difficult so the difference 

between the total energies can be substituted by twice the difference in the kinetic energies of the 

oscillators. This assumption is used in all works related to Statistical Energy Analysis. 

Re-writing the equation (2.1) for multimodal structures, we get the total transferred energy as 

1 2
12

1, 2,
1 1

( )
N N

tr mn n m
n m

Cπ θ θ
= =

= −∑∑  (2.25)

Upon simplifying the equation (2.25), we get the equation for the total power transferred as 

12 1 2
12 1 2

1 2

2 ( )
k k

tr

E E
C N N

N N
π = −  (2.26)

In multimodal oscillators, loss factors and coupling loss factors are generally calculated 

in specific frequency bands having a finite number of modes. The bandwidth of a frequency band 

is selected such that all the modes in a band have almost equal modal energies. The coupling 

coefficients of all the modal interactions in a frequency band are of similar magnitude. 

 Since S.E.A is based on the assumption of the presence of a large number of modes, 

frequency bands having high modal densities give better results than bands at lower frequencies 

where the modes are sparsely populated. Hence S.E.A is better suited at higher frequency ranges. 

Defining the coupling loss factors as 2
12

( )c

c

CN ωη
ω

=  and 2
12

( )c

c

CN ωη
ω

=  , we get the 

relationship between the transferred power, the kinetic energies of the oscillators and the 

coupling loss factors12η  and 21η  in a frequency band of bandwidth ω∆ and center frequencycω  as 

12
12 1 21 2( ) 2 ( ( ) ( ) ( ) ( ))k k

tr c c c c c cE Eπ ω ω η ω ω η ω ω= −  (2.27)

Here, ( )k
cE ω is the kinetic energy in a frequency band centered at cω . 
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The coupling loss factors 12η  and 21η  are related to each other by the consistency relation given in 

[25]. Fori j≠ , we have 

i ij ji jn nη η=  (2.28)

Where, in and jn are the modal densities of subsystems i and j respectively. 

2.3 DEVELOPMENT OF THE POWER INPUT METHOD (TRADITIONAL SEA) 

 

As defined in Chapter 1, the Power Input Method is based on the very definition of loss 

factor. For a structure with a single oscillator, the equation for the P.I.M can be derived from 

equation (2.19) as 

2 2
in in in in

k k
Total Total

E E

E E

π πη
ω ωε ω ωε

= = = =  (2.29)

 

The power input to a structure can be calculated from experimental data using equation (2.8). 

The kinetic energy of the system can be from the velocity data calculated as  

1 

2 
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1 

2 

N2 

Figure 7 : Interaction of modes in multi-modal sub-systems from 
reference[1] 
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2
k

vv

M
E S dω

π

∞

−∞

= ∫  (2.30)

 

Combining equations (2.29), (2.30), (2.9) we get 

Re( )FF

vv

S Y dw

M S d

η
ω ω

∞

−∞
∞

−∞

=
∫

∫
 (2.31)

Similarly, for a system with two oscillators the formula to estimate the loss factors and 

coupling loss factors can be derived from equation (2.24) stated in the previous section. 

Combining equations (2.12), (2.24), (2.20) and (2.28) we get the formula for the power 

input method for a 2 oscillator system as 

1
1 1 12 1 21 2

2
2 2 21 2 12 1

2

2

k k k
in

k k k
in

E E E

E E E

π η ω ωη ωη

π η ω ωη ωη

 = + − 

 = + − 
 (2.32)

Equation (2.32) can be represented in matrix form by 

1
1 12 21 1

2
12 2 21 2

2
k

in
k

in

E

E

η η ηπ ω
η η ηπ
+ −    

=    − +    
 (2.33)

 

For multimodal systems, where the frequency range of interest is divided into bands, and 

for the ease in calculation of the loss factors, i.e. directly using matrix inversion techniques, the 

equation (2.33) can be modified to include power input to both systems as 

1,
1 12 21 1, 1,

2,
12 2 21 2, 2,

0
2

0

k kI
I IIin

c k kII
I IIin

E E

E E

η η ηπ ω
η η ηπ

 + −   
=     − +    

 (2.34)
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The Roman numeral I denotes that the power input is supplied to the subsystem 1and no 

power is imparted into subsystem 2.Similarly, II denotes the power input is supplied only to the 

subsystem 2. cω is the center frequency of the frequency band of width ω∆ . 

Equations (2.30), (2.8) calculate the kinetic energy and the power input for the whole 

frequency range. The power input and kinetic energy for in a frequency band of width ω∆ and 

center frequency cω are given by 

2
*

2

2

2

1
( ) ( )

2

c

c

c

c

in

k
vv

F V d

M
E S d

ωω

ωω

ωω

ωω

π ω ω ω
π

ω
π

∆+

∆−

∆+

∆−

=

=

∫

∫
 (2.35)

Generalizing the power input method to include N Multimodal Systems, the power 

balance equations [26] become  

1 1 21 1
1 11,

1, 1, 1,

2,
12 2 2 2 2, 2, 2,

2 1

,
, , ,

1 2
1

0 0

0 0
2

0 0

N

i N
i i k k kI

I II Nin N
k k kII

i N I II Nin
i ic

k k kN N
N I N II N Nin N

N N N Ni
i Ni

E E E

E E E

E E E

η η η η
π

η η η ηπ ω

π
η η η η

≠ =

≠ =

≠ =

 + − − 
  
   − + −  =
  
  

    
 − − +
  

∑

∑

∑

⋯

⋯…

⋯ ⋯…

⋮ ⋮ ⋱ ⋮⋮ ⋮ ⋱ ⋮
⋮ ⋮ ⋱ ⋮

⋯⋯

⋯

 
 
 
 
 
  

 (2.36)

The above equation can be written in a compact form as 

[ ] [ ]2 k
in c Eπ ω η  =    (2.37)

Or, in terms of the loss factor matrix, equation (2.37) can be written as 
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[ ] [ ] 11

2
k

in
c

Eη π
ω

−
 =    (2.38)

Here,η  is the Loss Factor Matrix, cω is the center frequency, inπ  is the input power matrix and 

kE is the Kinetic energy matrix. 

The power input method has been successfully used to predict the loss factors and the 

coupling loss factors of several systems throughout the years. Bies and Hamid [27] in 1980 

applied the power input method to calculate the in situ coupling loss factors and loss factors 

between two rectangular plates with non parallel edges. They concluded that good agreement 

was obtained between measured values and predicted values. 

Carfagni and Pierini [28] applied the power input method to various plates of different 

sizes with constrained layer damping. The plate was excited with an impact hammer. They noted 

that to achieve good results using the power input method the following guidelines have to be 

followed. 

1.  The input point mobility should be measured with utmost precision because errors in its 

measurement lead to incorrect loss factors, which was also noted by [29]. 

2.  Multiple taps must be avoided. Taps must be made perpendicularly and always at the 

same point on the plate. 

3. The excitation point should not be along a node line or along the edges of the plate to 

avoid local edge effects. 

Carfagni et al. [30] also conducted the same experiments using a shaker to simulate 

steady state conditions and to reduce the errors due to hammer excitation. References [30] and 

[28] concluded that loss factors are dependent more on the damping added than on the size of the 

plates. They also noted that the quality of loss factor measured can be improved by increasing 

the number of measurement points. 



 
 

25 
 

Liu and Ewing [8] recommended that errors due to specimen /excitation source 

interaction can be decreased by using long stingers, light weight and small shakers, and high 

spatial discretization. 

Panuszka et al. in their paper [31] presented the effect of joints on the coupling loss factor 

measured. They showed that the measured coupling loss factors depend on both the position and 

the number of point joints. The measured coupling loss factors increase with an increase in the 

number of point joints. They also showed that the measured coupling loss factors depend on the 

thicknesses of the plates. 

 

2.3.1 PRACTICAL LIMITATIONS 

Even though the Power Input Method (P.I.M) has no theoretical limitations it is 

practically limited to the range of 0.1<η<0.001 [32]. 

The reasons given were 

a) For high damping levels, a large number of measurement points are required to correctly 

capture the reverberant field in the structure. 

b) For low damping levels, minute phase errors in the measured data lead to negative loss 

factors. 

It has been shown in [5] that Power input method can be used for increasingly heavily damped 

structures by considering the response of increasingly more points on the structure. 

Minute phase errors lead to an incorrect input cross spectrum, which is given in terms of the 

Fourier transform of the force and velocity by 

* ( ) ( )FVS F Vω ω=  (2.39)
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As shown in Figure 8, phase errors result in negative power input in certain frequency 

bands which result in negative (or incorrect) loss factors. Phase changes occur rapidly as a 

structure undergoes resonance and the phase changes occur over a very small frequency range in 

lightly damped structures which are difficult to resolve well [1]. Phase errors can be eliminated 

by minimizing measurement noise and by improving the frequency resolution. It is shown in this 

thesis that selecting the correct frequency resolution is directly related to the quality of the loss 

factor estimated. 

The power input method is also not suitable for systems having many subsystems 

because of the complexity in inverting the large kinetic energy matrix given by equation 

(2.36)[29]. 

 

  

Figure 8 : Changes in input cross spectrum because of phase errors 
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2.4 DEVELOPMENT OF THE TRANSIENT STATISTICAL ENERGY ANA LYSIS 
(LAI AND SOOM) METHOD 

 

Statistical Energy Analysis was first applied to the transient case by Manning and Lee. 

They investigated a transient problem by adding a time varying energy term to the power balance 

equations. Even though the power input and the energy of the sub-systems change with time they 

used steady state coupling loss factors to relate the two terms. Manning and Lee’s formulation to 

solve for the S.E.A parameters for a single oscillator case is given by equation (2.3) and is 

restated here. 

in

dE
E

dt
π ωη= +  (2.40)

The term 
dE

dt
is the instantaneous change in total energy of the oscillator. 

For the 2-oscillator case, as described by Figure 6, the power balance equations for the transient 

case can be given as 

1 1 121

2 2 122

in diss tr

in diss tr

dE

dt
dE

dt

π π π

π π π

= − +

= − +
 (2.41)

Here, 1E  is the total energy of oscillator 1, 1inπ  is the power input into oscillator 1, 1dissπ is the 

power dissipated by oscillator 1 and 12
trπ  is the power transferred from oscillator 1 to oscillator 2. 

Integrating the equations (2.41) with respect to time gives us the energy balance relationship 

between the oscillators. 

1 1 121

2 2 122

( )
( ) ( ) ( )

( )
( ) ( ) ( )

in diss tr

in diss tr

d t
E t E t E t

dt
d t

E t E t E t
dt

ε

ε

= − +

= − +
 (2.42)
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Here, 1( )tε  is the integrated total energy of oscillator 1, 1 ( )inE t  is the energy input into oscillator 

1, 1 ( )dissE t is the energy dissipated by oscillator 1 and 12( )trE t  is the energy transferred from 

oscillator 1 to oscillator 2. 

The energy transferred between the oscillators is related to the difference between the 

integrated kinetic energy of 2 oscillators by a coupling coefficient. Manning and Lee used the 

steady state coupling coefficient to describe the energy transferred. In the T.S.E.A method, 

proposed by Lai and Soom, because of the time varying nature of the energy terms, a new 

coupling coefficient termed as the-“apparent time varying coupling coefficient” is used[26]:  

( )12
12 1 2( ) 2 ( ) ( ) ( )k k

trE t C t t tε ε= −  (2.43)

Here, 12( )C t is the “apparent time varying coupling coefficient” and 1 ( )k tε is the integrated kinetic 

energy of oscillator 1. 12( )C t  will asymptotically approach a constant value denoted by C which 

is the coupling coefficient used by Manning and Lee. 

 

2.4.1 MULTIMODAL SYSTEMS 

For multimodal systems as described by Figure 7, the energy balance equations in a 

frequency band of width ω∆ and center frequency cω are given by 

1 1 121

2 2 122

( , )
( , ) ( , ) ( , )

( , )
( , ) ( , ) ( , )

c
in c diss c tr c

c
in c diss c tr c

d t
E t E t E t

dt
d t

E t E t E t
dt

ε ω ω ω ω

ε ω ω ω ω

= − +

= − +
 (2.44)

For multimodal systems, every mode interacts with every other mode. Hence to calculate 

the energy transferred in a frequency band the energy transferred between the individual modes 

can be directly summed. This leads to an expression which is similar to the power transferred 

given by equation (2.25). 
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1 2
12

1, 2,
1 1

( , ) ( )( ( ) ( ))
N N

tr c mn n m
n m

E t C t t tω ε ε
= =

= −∑∑  (2.45)

Here, 1, ( )n tε  is the integrated modal energy of the mode n of the oscillator1. 

A couple of assumptions are made to further simplify equation (2.45). They are 

1. Integrated modal energies up to time t in a band with bandwidth ω∆  and center 

frequency cω are assumed to be equal.[26] 

2. The energy stored in the physical coupling, for example a series of rivets or a bolted joint, 

is small when compared to the total energy transferred from one oscillator to the other. 

This assumption leads us to the relationship between the coupling coefficients as 

( ) ( )mn nmC t C t=  (2.46)

By using the above 2 assumptions and using the value for the kinetic energy in the band instead 

of the total energy we have 

12 1 2
1 2

1 2

( , ) ( , )
( , ) 2 ( , ) ( )

k k
c c

tr c c

t t
E t C t N N

N N

ε ω ε ωω ω= < > −  (2.47)

Here, ( , )cC t ω< >  is the statistical mean of the “apparent time varying coupling coefficient”. 1N  

and 2N are the number of modes in a given band. 

Defining the “apparent time varying coupling loss factors” 12( , )ctη ω  and 21( , )ctη ω as 

2
12

1
21

( , )
( , )

( , )
( , )

c
c

c

c
c

c

C t N
t

C t N
t

ωη ω
ω
ωη ω
ω

< >=

< >=
 (2.48)

Equation (2.47) reduces to the form 

12
12 1 21 1( , ) 2 ( ( , ) ( , ) ( , ) ( , ))k k

tr c c c c c cE t t t t tω ω η ω ε ω η ω ε ω= −  (2.49)
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The “apparent time varying coupling loss factors” are related by the compatibility relationship, 

which is similar to the compatibility relationship between steady state loss factors given by 

(2.28), as 

1 12 2 21( , ) ( , )c cn t n tη ω η ω=  (2.50)

Here, 1
1

N
n

ω
=

∆
 is the modal density of oscillator 1 in a frequency band of width ω∆ . 

The energy dissipated is also similar to equation (2.12) and can be given as 

2 ( , )k
diss cE tηωε ω=  (2.51)

 

Combining equations (2.44), (2.49), (2.51) we get the instantaneous response, or rate of change 

of the kinetic energy, as 

11
1 1 12 1 21 1

( , )
( , ) 2 ( , ) 2 ( ( , ) ( , ) ( , ) ( , ))k k kc

in c c c c c c c c

d t
E t t t t t t

dt

ε ω ω η ω ε ω ω η ω ε ω η ω ε ω= − + −  (2.52)

 

The “apparent time varying coupling loss factor” can calculated from equation (2.49). In 

a 2-oscillator system, a transient force is first applied only to oscillator 1 and the energy stored in 

both of the oscillators and the transferred energies are measured. Then the transient force is 

applied to oscillator 2 and the energies are measured in a similar fashion. The transferred 

energies thus measured in both the above cases, coupled with the relationship given in (2.45) can 

be used to calculate the coupling loss factors as 

12,
121, 2,

12,
211, 2,

( , )( , ) ( , )
2

( , )( , ) ( , )

k k I
cI c I c tr

c k k II
cII c II c tr

tt t E

tt t E

η ωε ω ε ω
ω

η ωε ω ε ω
 −   

=    −     
 (2.53)

Or, in compact form equation (2.53) can be represented as 
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{ } { }2 k
c trEω ε η  =   (2.54)

Here, 

{ }η  is the apparent time varying coupling loss factor matrix. 

{ }trE is the transferred energy matrix. 

kε    is the integrated kinetic energy matrix. 

Lai and Soom[14] have shown that the time varying loss factors asymptotically approach the 

values computed in a steady state SEA.  

 

2.4.2 CALCULATION OF ENERGY TERMS FROM EXPERIMENTAL DATA 

 

The energy terms used in the T.S.E.A. method are functions of both time and frequency. 

To calculate the energy of an oscillator up to a time t, only the experimental data up to time t has 

to be involved in the calculations and the remaining data has to be converted into zeros. (This is 

called zero padding the data) 

The formula to calculate the integrated kinetic energy in the time domain is 

( ) ( ) ( )
2

k
t

M
t v v dε τ τ τ

∞

−∞

= ∫  (2.55)

Where, ( ) ( )tv vτ τ=  when tτ ≤  and ( ) 0tv τ =  when tτ ≥  

Applying Parsevals theorem and transforming into the frequency domain, and calculating the 

kinetic energy in a frequency band ω∆  centered at cω we have the kinetic energy as 

{ }
2

*

2

( , ) Re ( ) ( )
2

c

c

k
c t

M
t v v d

ωω

ωω

ε ω ω ω ω
π

∆+

∆−

= ∫  (2.56)
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When the experimental data is in acceleration terms then equation (2.56) has to be changed into 

acceleration terms as 

{ }*2

2

2

Re ( ) ( )
( , )

2

c

c

tk
c

A AM
t d

ωω

ωω

ω ω
ε ω ω

π ω

∆+

∆−

= ∫  (2.57)

Similarly the energy transferred can be calculated as 

{ }
2

*

2

*2

2

1
( , ) Re ( ) ( )

1 ( )
( , ) Im ( )

c

c

c

c

tr c t

tr c t

t F v d

A
t F d

ωω

ωω

ωω

ωω

ε ω ω ω ω
π

ωε ω ω ω
π ω

∆+

∆−

∆+

∆−

=

 
=  

 

∫

∫

 (2.58)

 

2.4.3 PRACTICAL LIMITATIONS 

The T.S.E.A. Method proposed by Lai and Soom [14] can theoretically be used in all 

frequency ranges and for a variety of fixtures, but the practical usage of this method is limited. 

Since the energy transferred between 2 subsystems is the core measurement used in the 

estimation of loss factors, the method is practically limited to only those junctions where the 

energy transferred can be explicitly measured. In particular it can be used at point junctions 

where a force transducer can be placed to measure the force transferred but cannot be used at line 

junctions. 

 Another limitation to this method is that the method is overly dependent on the junction 

properties. Any flexibility at the point junction might cause the assumption of zero coupling 

energy which can cause the energy transferred, given by the equation (1.7), to be negative 

leading to estimation of negative coupling loss factors at those frequencies. 
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3.0 EXPERIMENTAL SETUP 

 

The Experimental setup is as shown in the figures below. The test setup consists of 

1. Data acquisition unit – An 8 channel Data Physics Signalcalc Mobilyzer Model -70502. 

2. Work station with Data Physics SignalCalc 730 Dynamic Signal Analyzer software. 

3. Shaker – Ling Model number V203. 

4. Power Amplifier – LDS Model number PA25E. 

5. Modally Tuned Hammer – PCB Model number 086C03. 

6. 7 Accelerometers – PCB Model number 352A71. 

7. 2 Force Transducers – PCB Model number 208A02, PCB 708A50. 

8. Signal conditioner – 16 channel PCB ICP Model number 584. 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 9 : Experimental setup – Persistent excitation 
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The test article is excited either using a hammer to induce transient conditions or by a shaker 

with a pseudo random excitation to induce steady state conditions. The workstation is loaded 

with the Data Physics SignalCalc 730 Dynamic Signal Analyzer software which controls the 

Data Physics Signalcalc Mobilyzer unit. The Data Physics Signalcalc Mobilyzer has both input 

channels for data acquisition and output channels through which it can send a drive signal to the 

shaker. This signal is passed through a power amplifier so that the test article is sufficiently 

excited at all the frequencies. The shaker is connected to the test article using a thin stinger and a 

force transducer, which measures the force input into the system. Accelerometers are placed on 

the other side of the test article to measure the accelerations of the plate. A force transducer is 

used to connect the 2 plates and since it is in the load path it measures the force transferred 

Figure 10 : Experimental setup – Transient excitation 
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between the 2 subsystems. These measurements are filtered to ensure that no aliasing takes place. 

To maintain consistency in the units involved, the data measured is converted into and saved in 

SI units. 

To simulate transient conditions the test article is excited with a hammer. The hammer is 

directly connected to the signal conditioner and does not require any input signals. The tip of the 

hammer can be changed depending on the frequencies that are to be excited. The plates are 

suspended from a stiff frame with two steel strings per plate, giving essentially “free” boundary 

conditions with regard to out of plane vibrations [33]. 

To test the effect of damping on the estimation of loss factors and coupling loss factors, 

visco-elastic damping (3M-F9469PC) is added to the test articles. A constraining layer, in this 

case a brass sheet with thickness between 0.005 inches and 0.010 inches, is rolled over the visco-

elastic layer to create an efficient constrained layer damping treatment. The excitation point is 

then chosen away from the axes of symmetry and anti-symmetry of the plate to be sure that all 

the high energy (low frequency) modes are sufficiently excited. As a matter of practicality the 

excitation point is not located on a visco-elastic layer to provide loading directly to the plates. 

 

3.1 EXPERIMENTAL PLATES 

The test articles are two aluminum plates (see Table 2) joined at a point by a force transducer. 

The force transducer is bolted to both the plates thus forming a physical bond between the 2 

plates. These plates are called as the “Lai and Soom Plates” in this thesis as these plates were 

constructed to be as similar as possible to the plates used by Lai and Soom. Constrained layer 

damping is added on the back side of the plates and measurements are taken on the front side. 

The placement of the damping layers is described in Appendix B. 



 

 

Figure 11 : Experimental p
 

TABLE 1 : PROPERTIES OF THE EX

CASES 
DAMPING LAYER

THICKNESS (cm)

NO DAMPING 

ADDED 

DAMPING NOT 

ADDED

2 SHEETS OF 

DAMPING 

3M F9469 PC

2 x 0.0127 

6 SHEETS OF 

DAMPING 

3M F9469 PC

6 x 0.0127 
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plate setup – Plates joined at a point, No Damping added

PROPERTIES OF THE EXPERIMENTAL PLATES

DAMPING LAYER 

THICKNESS (cm) 

CONSTRAINING LAYER 

VOLUME (cm3) 

DAMPING NOT 

ADDED 

CONSTRANING NOT 

ADDED 

Plate1 : 

Plate2 : 

3M F9469 PC 

2 x 0.0127  

BRASS SHEET 

2 x 25.4 x 4.95 x 0.254  

Plate1 : 

Plate2 : 

3M F9469 PC 

6 x 0.0127  

BRASS SHEET 

6 x 25.4 x4.95 x 0.254  

Plate1 : 

Plate2

 

 

oint, No Damping added 

PERIMENTAL PLATES  

MASS 

(g) 

Plate1 : 4808 

Plate2 : 3628 

Plate1 : 4844 

Plate2 : 3670 

Plate1 : 4925 

Plate2 : 3752 



 

 

                         (a) 2 sheets of damping                                   (b) 

Figure 12 : Aluminum 

TABLE 2 : SPECIFICATIONS

PLATE 

1 

2 
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of damping                                   (b) 6 sheets of damping

: Aluminum plates with partial damping added 
 

SPECIFICATIONS  FOR THE EXPERIMENTA L PLATES

MATERIAL DIMENSIONS (m

ALUMINUM 

AL CLAD 2024-T3 

Thickness = 0.64 cm 

Elastic Modulus = 70 GPa 

Density = 2.7e3 Kg/m3 

0.61 x 0.47 x 0.00635

0.53 x 0.38 x 0.0065

 

 

 

   

sheets of damping 

 

L PLATES 

DIMENSIONS (m3) 

0.61 x 0.47 x 0.00635 

0.53 x 0.38 x 0.0065 
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4.0 ESTIMATION OF LOSS FACTORS USING THE POWER INPUT ME THOD  

4.1 NUMERICAL SIMULATION OF A SIMPLE 2-DOF SYSTEM 

 

Consider a simple 2-DOF system as shown in Figure 13 below. The system consists of 2 

oscillators joined together by a spring coupling Kc. This configuration is one of the simplest 

examples of a multiple degree of freedom system. Oscillator 1 consists of the mass M1, spring 

with stiffness K1 and a damper with coefficient C1. Oscillator 2 consists of the mass M2, spring 

with stiffness K2 and a damper with coefficient C2. The two masses M1 and M2 are free to move 

in only one direction, x, as shown in the figure. If a force is applied on any one of the oscillators, 

energy flows to the other through the spring coupling between them.  

 

 

 

 

 

 

 

 

Summing the forces acting in the x direction, the equation of motion for the above system is 

given by equation (2.21) and restated here. 

11 1 1 1 1

22 2 2 2 2

0 0

0 0 0
c c

c c

K K KM x C x x f

K K KM x C x x

+ −          
+ + =            − +          

ɺɺ ɺ

ɺɺ ɺ
 (4.1)

Figure 13 : Two degree of freedom oscillator 
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In matrix form the above equation (4.1) can be written as 

[ ]{ } [ ]{ } [ ]{ } { }M x C x K x F+ + =ɺɺ ɺ  (4.2)

This system of ordinary differential equations can be solved to give the velocities and 

displacements of the two oscillators. The system of ODE’s can be solved either directly as a 

system of ODE’s or by using the state matrix method described in [34]. 

A sample problem with given input loss factors is numerically solved with the power 

input method to estimate the loss factors and check for the differences between the estimated and 

the loss factors used to develop the model described by equation (4.2). The properties of the 

sample 2-DOF system are as follows.  The masses M1 and M2 are 1 Kg each. The natural 

frequencies ωn1 and ωn2 are 149.8 radians/s and 200.1 radians/s respectively. The spring coupling 

Kc is 1000N/m. The spring stiffness K1 and K2 are 22500N/m and 40000N/m respectively. The 

blocked natural frequencies of the oscillators are ω1=150 radians/s and ω2=200 radians/s 

respectively. As there is no damping coupling involved at the junction of the two oscillators and 

since the spring coupling is an order of magnitude lower than the stiffness of the oscillators the 

junction is an example of a weak conservative coupling. The relationship between the K11 and 

the K22 terms of the stiffness matrix and the natural frequencies of the oscillators is given by 

2
1 1 1c nK K Mω+ =  (4.3)

The oscillator loss factors,1η  and 2η , are the variables in this numerical simulation and 

are equal to 0.75, 0.075, 0.001 for three different cases. The oscillators are excited by rectangular 

pulse force of magnitude 
( )( ) ( )t t t

t

δ δ− − ∆
∆

with duration of 0.001 second to simulate transient 

conditions. Here, δ  is the Dirac-delta function. To simulate steady state conditions the system is 



 
 

40 
 

excited by a random force (force with a constant spectral density and random phase) as shown in 

Figure 3.  

The 2-DOF system is solved for the deflections x1 and x2 using the built-in ODE45 solver 

in Matlab. The formula to estimate the loss factors of the above simple system is given by 

equation (2.34). The force is first applied only on the oscillator 1 and the system response is 

calculated and saved. The force is then applied only on the second oscillator and the response of 

the whole system is calculated and saved. The procedure to solve for the system characteristics is 

as follows.  

Consider the equation (2.8), which is the equation of motion of the any 2-DOF system. 

Pre-multiplying the equation (2.41) by [ ] 1
M

−
 yields  

{ } [ ] [ ]{ } [ ] [ ]{ } [ ] { }1 1 1
x M C x M K x M F

− − −+ + =ɺɺ ɺ  (4.4)

This system of second order differential equations can be converted into an equivalent system of 

four first-order ODE’s by substituting the following equation (2.45) into equation (2.8). 

{ } { }
{ } { }

1

2

y x

y x

=

=

ɺ ɺ

ɺ ɺɺ

 (4.5)

Here, { } { } { }1 2, ,y y x are all 2 x 1 matrices. The relationship between { } { }1 2,y y is given by 

{ } { } { }1 1 20y y I y= +ɺ  (4.6)

Rearranging the terms in the equation (4.4) and combining the equations (4.6) and (4.4) results in 
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[ ] [ ]
[ ] [ ] [ ] [ ]

{ }
[ ] { }

1 1
11 1

2 2

00 Iy y

y y M FM K M C
−− −

        = +      
− −        

ɺ

ɺ
 (4.7)

This approach is called the state- matrix approach [34]. Solving equation (4.7) results in 

the calculation of displacements and velocities of both the oscillators. Substituting the calculated 

velocity into the equations (2.34), (2.35) leads us to the estimated loss factors using the power 

input method. As the loss factor of an oscillator can be correctly estimated only near a natural 

frequency the power input method can be applied to above system only at 2 natural frequencies 

of the oscillators to estimate the correct value of the loss factor that is used to model the system. 

The main aim of this numerical simulation is to check for the relationship between the 

frequency resolution f∆ and the ability to correctly estimate the loss factor. This process of 

solving for the response characteristics of the 2-DOF system and the calculation of the loss factor 

is repeated for various input loss factors, different frequency resolutions f∆ and different input 

forces - both a transient rectangular pulse force and a steady state excitation in the form of a 

random force. 

 

4.1.1 PERSISTENT EXCITATION 

 

The two oscillators of the sample 2-DOF system are excited by a random force and the 

system response characteristics are computed. The loss factors are then estimated using the 

power input method. The estimated loss factors and the input loss factors of the 2 oscillators are 

plotted in Figure 14 and Figure 15.  
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Figure 14 : Simulated ηηηη1 with persistent excitation, varying model loss factors and f∆ . 
 

 

 

Figure 15 : Simulated ηηηη2 with persistent excitation, varying model loss factors and f∆ . 
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It is clear from the figures above that the loss factor range in which the power input method 

can be applied is very wide. It can successfully estimate an improbably high loss factor of 0.75 

and also a very low damping loss factor value of 0.001. The above figures also convey that the 

quality of the estimated loss factor depends a lot on the frequency resolution f∆ chosen.  

f∆ is inversely proportional to the sampling time (data capture duration), ‘T’. So, a higher 

frequency resolution (lower numerical value off∆ ) means a higher sampling time and more data 

points. Oscillators with low damping need a longer time for the vibrations to die down and hence 

need a higher frequency resolution (lower numerical value of f∆ ). This is also seen in the figures 

above. In particular insufficient frequency resolution (higher value of f∆ ) for lightly damped 

oscillators does not capture enough data points and as seen in the figures above the estimated 

loss factors are overestimated and are off by almost an order of magnitude.  

On the other hand, oscillators with high input loss factors are less dependent on the value of 

f∆ chosen. As seen, frequency resolutions of 0.2 Hz and 1 Hz result in estimated loss factors of 

0.075 and 0.75. The loss factors estimated by a frequency resolution of 0.05 Hz are slightly off 

by a factor of about 2-3. However it has to be noted that the natural frequencies of the oscillators 

are 24, 32 Hz and hence we need such high sampling frequencies to estimate the loss factors. 

 

4.1.2 TRANSIENT EXCITATION 

 

The two oscillators of the sample 2-DOF system are excited by a rectangular pulse force 

generated by using 2 Heaviside step functions and the system response characteristics are 

computed. The loss factors are then estimated using the power input method. The estimated loss 

factors and the model loss factors of the 2 oscillators are plotted in Figure 16 and Figure 17.  



 
 

44 
 

 

Figure 16 : Simulated ηηηη1 with transient excitation, varying model loss factors and f∆ . 
 

 

Figure 17 : Simulated ηηηη2222 with transient excitation, varying model loss factors and f∆ . 
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The magnitude of the loss factor estimated by the power input method with the transient case 

is dependent on the frequency resolution, as it is with the persistent case, and this effect is seen 

much more clearly at lower damping levels. At high damping levels, the loss factor estimated is 

less dependent on the frequency resolution chosen and different levels of frequency resolution 

give loss factors which are close to the model loss factor. A frequency resolution f∆ of 0.05 Hz 

at high damping levels estimates loss factors which are off by a factor of 1-2. 

At lower damping levels, on the other hand, the effect of frequency resolution on the loss 

factor estimations is very clear. The estimated loss factor with a frequency resolution, ∆f, of 1 Hz 

and a model loss factor of 0.001 is a negative value (-0.06 for oscillator 1). The exact 

mathematical relationship between estimated loss factor and frequency resolution is beyond the 

scope of this thesis and can be worked on in the future. However it is clear that, up to a point, 

increasing the frequency resolution solves the problem of negative loss factors. 

 

4.2 EXPERIMENTAL RESULTS FOR THE LAI AND SOOM PLATES 

The experiments were conducted on the Lai and Soom plates shown in Figure 11 and Figure 

12 using the experimental setup described in Chapter 3. The experiments were conducted with 

both persistent and transient excitations. 

For the persistent excitation case, the accelerometers were placed on the front side of the 

plates and a shaker was attached on the back side. To get a better statistical spatial average of the 

acceleration of the two plates, measurements were taken at 9 points on each plate and were 

distributed uniformly over the whole surface as shown in Figure 18. Plate 1 was first excited 

with a shaker and, since an 8 channel data acquisition unit was used, the experiment was 

repeated 3 times, changing the position of the accelerometers and keeping the excitation point 
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the same. Then, the same procedure was repeated with the shaker connected to plate 2. The 

excitation point was chosen away from known, low frequency node lines and away from the 

added damping sheets as shown in Figure 18. For the persistent excitation case, the experimental 

data was averaged 50 times to compute the required spectra. 

 

Figure 18 : Measurement and excitation points on the Lai and Soom plates 
 

For the transient case, a modal hammer was used to excite the structure. Since the frequency 

range of interest was from 0-4000 Hz, a steel tip was used which could excite up to about 

4500Hz. The hammer hit and the accelerometers were on the front end of the plate as shown in 

Figure 18. To compare results and to maintain consistency with the experiment setup in the 

dissertation[26] by M. L. Lai, the excitation points and the measurements points were replicated 

with those described in the dissertation. That is, three measurement points were chosen on each 

plate and were located along a diagonal of the plates. The plates were excited at the bottom-most 

and the top-most points as shown in Figure 18. The experimental data was averaged only 3 times 

Shaker excitation 
points 

Hammer excitation 
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Accelerometer positions 
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because of the difficulty in getting a good hit with the steel tip: an estimated 90% of the hits 

attempted were double hits for which the responses were not used in the calculations. 

The experimental test settings were as follows 

• Sampling frequency F = 32768 Hz. 

• Frequency resolution f∆ = 1 Hz. 

• Number of samples N = 32768. 

• Sampling time T = 1 s. 

• Sampling resolution t∆  = 30.52 µs. 

Table 3 : Description of the Frequency bands used 

BAND 

STARTING 

FREQUENCY(Hz) 

ENDING 

FREQUENCY(Hz) 

CENTER 

FREQUENCY(Hz) 

1 0 512 256 

2 512 1024 768 

3 1024 1536 1280 

4 1536 2048 1792 

5 2048 2560 2304 

6 2560 3072 2816 

7 3072 3584 3328 

8 3584 4096 2840 

Figure 19-Figure 22 show the results from the experimental tests from the 6 sheets of 

Constrained Layer Damping (CLD) added on the Lai and Soom plates. The figures show and 

compare the loss factors calculated using the power input method with both hammer and shaker 

excitations. They show a general agreement between the calculated loss factors with different 
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excitation sources. Figure 21 and Figure 22 show good agreement between the estimated loss 

factors in most bands, except for bands 2 and 3, centered at 768 Hz and 1280 Hz, in Figure 21 

and bands 1 and 3, centered at 265 Hz and 1280 Hz, in Figure 22 . The coupling loss factors in 

Figure 19 and Figure 20 are also in good agreement with each other except for a few bands like 

band 6, centered at 3072 Hz, in Figure 20 and bands 2 and 3, centered at 768 Hz and 1280 Hz in 

Figure 19.  

The possible reasons for the disagreement are 

• Modes in those bands are not properly excited and hence calculated loss factors are 

different from the actual loss factors. 

• Since the change in energy term, as in equation (2.3), is not included in the calculation of 

loss factor with the transient hit, the formula does not fully describe the physics of the 

problem. 

• A bad hit some times can spoil the averaged data and the averaged estimated loss factor. 
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Figure 19 : Experimental Coupling Loss Factor ηηηη12 - Transient and persistent excitation 
 

 

Figure 20 : Experimental Coupling Loss Factor ηηηη21 - Transient and persistent excitation 
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Figure 21 : Experimental Loss Factor ηηηη1 - Transient and persistent excitation 
 

 

Figure 22 : Experimental Loss Factor ηηηη2 - Transient and persistent excitation 
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4.3 EFFECT OF DAMPING 

 

One of the primary errors involved in the estimation of loss factors are phase errors in the 

processing of data into the frequency domain. These phase errors, which are witnessed in cases 

of low damping, can be minimized by increasing the frequency resolution (decreasingf∆ ). Near 

a natural frequency, phase changes occur rapidly and the rate at which those changes occur is 

directly related to the damping level of the structure involved. The lower the damping of the 

plate the faster the phase changes occur [1]. As a baseline, experiments were conducted with a 

constant frequency resolution ( 1f Hz∆ = ) on the Lai and Soom plates for the 3 damping level 

cases shown in the Table 3. The loss factors (LF) and coupling loss factors (CLF) thus estimated 

are plotted in the figures below. 

4.3.1 PERSISTENT EXCITATION 

 

It can be seen from Figure 25 and Figure 26 that the change in the damping level of the 

plates induces a similar change on the estimated loss factor of the plates. As the number of 

damping sheets attached to the plate increase the loss factor of the plate increases. It can also be 

noticed that in the bands between 0-2000 Hz the loss factors estimated in the 6 sheets case and 

the 2 sheets case are very close to one another and in the bands between 2000-4000 Hz the 

estimated loss factors of the 2 sheets case and the no damping case match. Hence we can deduce 

that partially damped plates need a larger number of measurement points to correctly determine 

the damping levels.  

On the other hand the effect of damping on the coupling loss factor is not straightforward 

as seen in Figure 23 and Figure 24. The value of the coupling loss factor increases slightly with 
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increase in the damping level of the plate. Theoretically speaking, the coupling loss factors 

should not vary with change in damping levels, but by looking at the experimental results we see 

that the coupling loss factors show a variation ranging from 10% to 100%. The variation in the 

experimental coupling loss factors is higher in the lower frequency bands and as the frequency 

increases the variation decreases, as seen in the bands 7 and 8 (centered at 3584 Hz and 4096Hz). 

Also it can be seen that AUTOSEA over predicts the CLFs with a variation ranging from about 

10% to almost 100%. It can also be seen that as the frequency increases, the variation between 

the theoretical (AUTOSEA) results and the experimental results decreases. This variation in the 

results is because the point joint used in AUTOSEA does not correctly describe the physical 

characteristics of the actual joint between the plates. 

 

 

Figure 23 : Effect of damping on the Coupling Loss Factor ηηηη12  
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Figure 24 : Effect of damping on the Coupling Loss Factor ηηηη21  

 

 

Figure 25 : Effect of damping on the Loss Factor ηηηη1  
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Figure 26 : Effect of damping on the Loss Factor ηηηη2 
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Comparing the results, it can be inferred that for plates which have partial damping added to 

them the estimated loss factors can be improved by increasing the number of measurement points 

and distributing the points throughout the plate. 

The estimated coupling loss factors and the estimated loss factors from the “6 sheets” case 

show a variation of more than an order of magnitude in some frequency bands, seen in Figure 28 

and Figure 30. The reason behind the difference probably is that the modes were not properly 

excited in “6 sheets case”. 

 

 

Figure 27 : Effect of damping on the Coupling Loss Factor ηηηη21  
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Figure 28 : Effect of damping on the Coupling Loss Factor ηηηη12 

 

 

Figure 29 : Effect of damping on the Loss Factor ηηηη1  
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Figure 30 : Effect of damping on the Loss Factor ηηηη2  
 

4.4 MODES IN BAND AND MODAL DENSITY 

According to SEA assumptions, each band should have a large (or infinitely many) 

number of modes. Since it is practically impossible, a band with a large number of modes is 

generally thought to give better statistical results than a band with less number of modes. Thus 

both the modes in band and the modal density act as good indicators of the expected quality of 

the loss factor estimated. The formula to estimate the modal density as given in the book by 

Lyon and DeJong [1] is 

,

( )
( )

2c sy

n
G

Mω
π ω< > =  (4.8)

Here, ,c syG ω< > is the conductance or real part of the mobility transfer function in a band with 

center frequency cω and excitation pointsy . M is the mass of the plate and ( )cn ω is the modal 

density of the plate. 
c

Nω is the number of modes in band. 
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The relationship between modal density and modes in band is given by 

( )
c c cN nω ω ω= ∆  (4.9)

The theoretical formula to calculate the modal density of any flat plate is given by [1] as 

( )
4

p

l

A
n

Kc
ω

π
=  (4.10)

2 3
hK =  is radius of gyration of a plate. 

l
m

Ec ρ= is longitudinal wave speed.  

h is the thickness of the plate.  

mρ  is the material density.  

E is Young’s modulus. 

pA is the surface area of the plate 

 

Figure 31 : Modes in band in plate 1 
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Figure 32 : Modal Density of plate 1 
 

 

Figure 33 : Modes in band in plate 2 
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Figure 34 : Modal Density of plate 2 
 

The modes in band and the modal densities are calculated from the experimental FRF’s using 

the formula given by equation (4.8). These values are then compared with the theoretical values 

computed using the equation (4.10) and with the values calculated by the statistical energy 

analysis software AUTOSEATM 2004 sold by the ESI Group. 

From Figure 31, Figure 32, Figure 33 and Figure 34 we see that the experimental values of the 

modes in band and the modal density are in good agreement with both the theoretical values 

computed and AUTOSEATM values. Except for the first band in the no damping treatment case, 

all other bands in all cases match the theoretical values. The first band values can be improved 

by minimizing phase errors (decreasingf∆ ). Each frequency band of the bottom plate has an 

average of 7 modes in it and of the top plate has about 5 modes in it which are statistically 

sufficiently high number of modes in a band to use SEA techniques appropriately. 
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4.5 PROCESS PARAMETERS 

There are several parameters involved in the estimation of loss factors using the power input 

method like the number of measurement points, effect of the hammer tip, effect of the frequency 

resolution and effect of frequency bandwidths to name a few. Experiments were conducted by 

varying some of those parameters. The loss factors were then estimated using the power input 

method to check for the effect of the parameters on the estimated loss factors.  

 

4.5.1 EFFECT OF FREQUENCY RESOLUTION 

As shown by numerical simulation in section 4.1, the estimated loss factor is dependent on 

the frequency resolution. Since frequency resolution and the sampling time are inversely 

proportional, choosing lower frequency resolution (higher numerical value off∆ ) means a fewer 

number of measured data points. This directly affects the quality of the frequency domain data 

and might introduce phase errors. 

Figure 35-Figure 38 show the effect of the frequency resolution on the estimated coupling 

loss factors and loss factors for the “no damping added” case. A change in frequency resolution 

from 4 Hz to 0.25 Hz does not affect the estimated loss factor significantly in the frequency 

bands above 1000 Hz. The effect of the frequency resolution is seen only in the frequency bands 

below 1000 Hz. This is because higher frequencies have more cycles per second and hence die 

down quickly when compared to low frequencies thus requiring lesser sampling time to capture 

the decay. Thus a f∆ of even 4Hz correctly predicts the loss factors at higher frequencies.  

As the frequency resolution decreases from 0.25Hz to 2Hz, the loss factors in the lower bands 

start to deviate and are off by a factor of about 3. As the frequency resolution is further decreased 

the loss factors in the first frequency band become negative and this is consistent with the theory.  
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Figure 35 : Effect of frequency resolution on the Coupling Loss Factors (Persistent 
excitation-No Damping added) 

 

Figure 36 : Effect of frequency resolution on the Loss Factors (Persistent excitation-No 
Damping added) 
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Figure 37 : Effect of frequency resolution on the Coupling Loss Factors (Transient 
excitation-No Damping added) 

 

Figure 38 : Effect of frequency resolution on the Loss Factors (Transient excitation-No 
Damping added) 
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4.5.2 EFFECT OF FREQUENCY BANDWIDTH 

 

In multi modal systems, loss factor is generally estimated in pre-defined frequency bands 

like full octave bands, one third octave bands or bands with constant bandwidths. Since transfer 

of energy and energy losses occur at the natural frequencies the bandwidth should be chosen 

such that the band has at least a few modes in it so that the loss factor estimated is statistically 

relevant. In this present study the loss factors are estimated for 1/3rd octave bands with full 

octave bins and compared with the loss factors estimated with constant bandwidths of 512 Hz.  

The merit in choosing constant bandwidths of 512 Hz over 1/3rd octave bands can be seen in 

Figure 39 to Figure 42 which represent both persistent and transient loading cases with no 

damping added to the aluminum plates. 

 

Figure 39 : Effect of frequency bands on the Coupling Loss Factors (No damping added) -
Persistent excitation 
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Figure 40 : Effect of frequency bands on the Loss Factors (No Damping added) - Persistent 

excitation 
 

 

Figure 41 : Effect of frequency bands on the Coupling Loss Factors (No Damping added) - 
Transient excitation 
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Figure 42 : Effect of frequency bands on the Loss Factors (No Damping added) - Transient 
excitation 

 

At lower frequencies, between 100 Hz and 1000 Hz), the 1/3rd octave bands are very small, 
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low. In the higher frequency ranges, from 2500 to 4000 Hz, the 1/3rd octave bands are very large 

and have a large number of modes. For example the band with center frequency 4000 Hz has a 

bandwidth of almost 1750 Hz. On a side note, these bands, while having a large number of 
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in subplot 2 of Figure 42.  
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The advantage of 1/3rd octave bands over constant bands can be seen in the bands where 

negative loss factors are estimated in constant-width bands. In such a case, the 1/3rd octave bands 

can estimate loss factors which are still a decent approximation of the loss factors at those 

frequencies. The loss factors under such conditions are underestimated because the bands contain 

frequency ranges where negative loss factors are estimated. 

 

4.5.3 EFFECT OF NUMBER OF MEASUREMENT POINTS 

 

For the 9 response point case, the accelerometers were placed in a regular pattern as shown in 

Figure 18. For the 6 points case, 6 accelerometers were distributed arbitrarily over the plate 

while avoiding the damping sheets and lines of symmetry. In this way, node lines for known, low 

frequency nodes were avoided. Response and excitation measurements on such node lines are 

known to bias the loss factor estimations [8].  In the 3 points case, accelerometers situated on the 

plate diagonals are used for the estimations and for the 1 point case the driving point 

accelerometer is used for calculations. Figure 43 and Figure 44 give the estimated loss factors for 

the “No damping added” case with a shaker excitation. It is evident from the figures that there is 

not much variation in the estimated coupling loss factors and loss factors when the measurement 

points are between 3 and 9 points. When the loss factors are estimated by just taking acceleration 

data from a single accelerometer, then the estimated loss factors differ significantly from the 

other cases. 
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Figure 43 : Effect of number of Measurement points on the Coupling Loss Factors (No 
Damping added) - Persistent excitation 

 

 

Figure 44 : Effect of number of Measurement points on the Loss Factors (No Damping 
added case) – Persistent excitation. 
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From the figures in section 4.3 it is seen that the estimated loss factors in the partially damped 

case (2 sheets case), where the damping sheets cover less than 15% of the surface area, are of 

similar magnitude as those from the no damping case. A possible reason might be the low 

discretization of the plates, as only 3 measurement points were chosen. Thus, for partially 

damped cases the number of measurement points has to be increased and distributed over the 

whole plate covering both the damping sheets and exposed areas of the plate. 

 

4.5.4 EFFECT OF HAMMER TIP 

 

For transient excitation, a modally-tuned PCB impact hammer is used to excite the Lai and 

Soom plates. This study concentrates on the effect of the hammer tip on the maximum frequency 

excited in the structure and thus on the loss factor estimated. Three different hammer tips were 

used experimentally – the steel tip, the plastic tip, and the soft tip. The time domain plot of the 

hits with different tips is shown below. The duration of the hit for the steel tip is about 0.4 ms, 

the plastic tip is about 0.6 ms and the soft tip is about 9.0 ms to successfully excite the entire 

structure.  The duration of hit for the soft tip can be decreased to about 1.0 ms but upon doing 

that the magnitude becomes so low that the energy is transferred into the structure does not 

excite the structure and the accelerometers do not pick up any significant motion. 

The maximum frequency excited by a hit can be inferred from auto-spectrum of the input 

force and is the frequency at which the auto-spectrum hits the noise floor. The subplot 1 of 

Figure 46  shows the maximum frequencies excited by the soft, plastic and steel tips to be about 

1250 Hz, 3300 Hz and above 4000 Hz respectively. 
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The hammer tip is chosen based on the frequency range of interest. For low frequencies a 

soft tip is used and for high frequencies a steel tip or a plastic tip can be used. This is because of 

the relative difficulty in getting a good hit while using the steel tip when compared to a soft tip. 

For the steel tip and the plastic tip as the duration of the hit is about 0.5 ms the probability of 

getting a good hit is very low and it depends a lot on the skill of the person handling the hammer. 

Thus choosing the correct tip can save a lot of experimental time. 

 

Figure 45 : Time domain plot of the hammer hit with different tips 
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Figure 46 : Effect of the hammer tip on the estimated loss factors (no damping case) 
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Figure 47 : Effect of the hammer tip on the estimated Coupling Loss Factors (no damping) 
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5.0 ESTIMATION OF LOSS FACTORS USING THE TRANSIENT STAT ISTICAL 
ENERGY ANALYSIS METHOD 

 

The main aim of using the transient statistical energy analysis method to estimate the loss 

factors in this thesis was to interpret the results by M. L. Lai in [26] and [14], to determine the 

practical limitations of the method and to establish the degree of agreement of the asymptotic 

loss factor estimations with respect to the power input method. The numerical simulations 

performed here are similar to the ones performed in reference [26].  

5.1 NUMERICAL SIMULATION OF A SIMPLE 2-DOF SYSTEM 

The main purpose of the numerical simulations is to show that in a transient case the 

damping coefficients, hence the loss factors, vary with time. Substituting a steady state loss 

factor for transient excitations, as done by Manning and Lee [20], might not fully explain the 

physics behind the problem and the new “apparent time varying coupling loss factors” 

introduced by Lai and Soom in [14] correctly represent the energy losses in the system under a 

transient load. These time varying loss factors are then used to develop a new method (TSEA 

method) to analyze transient load cases. 

Consider the 2-DOF system with a spring coupling between the oscillators as shown in 

the Figure 13. The equation of motion for the whole system is given by the equation (2.19). 

Decoupling the matrix form and writing the equations of motion for the individual oscillators 

gives us 

1 1 1 1 1 1 2 1( )g gM x C x K K x K x F+ + + − =ɺɺ ɺ
 

(5.1)

2 2 2 2 2 2 1 2( )g gM x C x K K x K x F+ + + − =ɺɺ ɺ
 

(5.2)
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The above 2 equations are the force balance equations. Multiplying (5.1) by 1xɺ and (5.2) by 2xɺ  

gives us the power balance equations as  

2
1 1 1 1 1 1 1 1 1 2 1 1( )g gM x x C x K K x x K x x F x+ + + − =ɺɺ ɺ ɺ ɺ ɺ

 
(5.3)

2
2 2 2 2 2 2 2 2 2 1 2 2( )g gM x x C x K K x x K x x F x+ + + − =ɺɺ ɺ ɺ ɺ ɺ

 
(5.4)

Using the identities 

2
1

1 1

2
1

1 1

1

2

1

2

dx
x x

dt

dx
x x

dt

=

=

ɺ
ɺɺ ɺ

ɺ

 

(5.5)

Equations (5.3), (5.4) can be reduced to 

2 2 2
1 1 1 1 1 1 1 1 1 2

1 1
( )

2 2 g g

d
M x K K x C x F x K x x

dt
 + + + = + 
 

ɺ ɺ ɺ

 

(5.6)

2 2 2
2 2 2 2 2 2 2 2 2 1

1 1
( )

2 2 g g

d
M x K K x C x F x K x x

dt
 + + + = + 
 

ɺ ɺ ɺ

 

(5.7)

We can further simplify the above equations. The total energy is the sum of potential energy and 

kinetic energy. Hence, 

( )( ) ( )2 2
1 1 1 1 1

1 1

2 2gE K K x M x= + + ɺ

 
(5.8)

The power is dissipated through the inherent damping in the oscillator and hence the term 

containing the damping coefficient is the power dissipated term 

1 2
1 1diss C xπ = ɺ  

(5.9)

Power input is due to the external forces acting on the system, so the power input is given by 



 
 

75 
 

1
1 1in F xπ = ɺ  

(5.10)

The remaining terms in equations (5.7) and (5.6) define the power transferred between the 

oscillators  

12
1 2tr gK x xπ = ɺ

 
(5.11)

Combining the equations (5.6), (5.7), (5.8), (5.9), (5.10), (5.11) we get 

1 1 12
1

2 2 21
2

in diss tr

in diss tr

d
E

dt
d

E
dt

π π π

π π π

= − −

= − −
 

(5.12)

Integrating the above equation (5.12), results in the energy balance equations 

1 1 12
1

2 2 21
2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

in diss tr

in diss tr

d
t E t E t E t

dt
d

t E t E t E t
dt

ε

ε

= − −

= − −
 

(5.13)

Oscillator 2 is excited by a rectangular step force of magnitude 
( )( ) ( )t t t

t

δ δ− − ∆
∆

 and 

duration 0.001 s to simulate transient conditions. δ is the Dirac-delta function.  

A simple 2-DOF problem is numerically solved using the state matrix method shown in 

section 4.1. The properties of the sample 2-DOF system are as follows.  The masses M1 and M2 

are 1 Kg each. The natural frequencies ωn1 and ωn2 are 149.8 radians/s and 200.1 radians/s 

respectively. The spring stiffness K1 and K2 are 22500N/m and 40000N/m respectively. The 

spring coupling Kc is 1000N/m. The blocked natural frequencies of the oscillators are ω1=150 

radians/s and ω2=200 radians/s respectively. The input loss factor of both the oscillators is 0.075. 
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The transferred energies, transferred power, integrated kinetic energies, integrated total 

energies, kinetic energies, total energies can be calculated from the formulae given above. 

The new “apparent time varying coupling coefficient” is given by equation (2.39) and is restated 

here 

( )12
12 1 2( ) 2 ( ) ( ) ( )k k

trE t C t t tε ε= −  (5.14)

The energy input and the blocked period of oscillation are used to non-dimensionalize the energy 

terms. The energy input term is given by 

( ) ( ) ( )in t ftE t F v dτ τ τ
∞

−∞

= ∫  (5.15)

Here,  

tF  is the truncated force up to time t and is defined as  

( ) ( )tF F tτ =  when tτ ≤   

and ( ) 0tF τ =  when tτ >   

( )ftv τ  is the velocity of the oscillator which is excited by the force ( )F t . 

The results are plotted in the figures below. Figure 48 and Figure 49 show the velocities 

of the oscillators 1 and 2 of the simple 2-DOF problem. Since oscillator 2 is directly excited by 

the external rectangular impulse force we can see a nice decay in its response whereas the 

oscillator 1, which is excited by the spring coupling and the energy flowing in it, does not have a 

smooth decay.   
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Figure 48 : Velocity of oscillator 1 of the simple 2-dof system 

 

Figure 49 : Velocity of oscillator 2 of the simple 2-dof system 
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Figure 50: Total energy and Kinetic energy of oscillator 1 

 

Figure 51 : Integrated energy of oscillator 1 
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Figure 52 : Total energy and Kinetic energy of oscillator 2 

 

Figure 53 : Integrated energy in oscillator 2 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Non Dimensionalized Energy of Oscillator 2

E
ne

rg
y 

(jo
ul

e)

time (sec)

 

 

 Kinetic Energy

 Total Energy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5
Non Dimensionalized Integrated Energy of Oscillator 2

E
ne

rg
y 

(jo
ul

e)

time (sec)

 

 

 2 * Kinetic Energy

 Total Energy



 
 

80 
 

 

Figure 54 : Transferred power between the 2 oscillators 

 

Figure 55 : Transferred energy between the 2 oscillators 
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Figure 56 : Apparent time varying coupling coefficient 

 

Figure 57 : Comparison of coupling coefficients  
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 On comparing Figure 48 and Figure 55 we can see that the increase in the velocity of 

oscillator 1 corresponds to the time where energy is transferred from oscillator 2 to oscillator 1 

and the decrease in the velocity corresponds to the time where energy is transferred from 

oscillator 1 to 2. There is no substantial effect on the response of oscillator 2 because of the vast 

(2 orders of magnitude) difference in the magnitude of the velocity and the energy transferred. 

 Figure 53 shows that twice the integrated kinetic energy for oscillator 2 is approximately 

equal to the integrated total energy which proves the assumption used in the derivation of the 

T.S.E.A. method. The slight difference between the integrated energies in Figure 51 occurs at a 

time when the energy is transferred from oscillator 1 to 2 and when the displacement of the 

oscillator 1 reaches a minimum value, from time t=0.1s to 0.15s as marked in the plots. 

Comparing the plots in Figure 51 and Figure 53 it can be noted that the integrated energy curves 

in oscillator 2 have the same magnitude but the integrated energy curves in oscillator 1 have a 

variation of about 10%. This difference can be neglected because of the difference in the energy 

levels of the 2 oscillators is almost 2 orders of magnitude.  

Figure 50 and Figure 52 show the change in energy levels of the 2 oscillators with respect 

to time and the time at which they stop oscillating. Oscillator 2, which is directly excited, shows 

a nice decay in its energy curve whereas the energy curve of the oscillator 1, which is excited by 

the coupling joint, looks like a sinusoidal curve with multiple maximums and minimums. 

 Figure 54 and Figure 55 show the power and energy transfer characteristics between the 2 

oscillators. The energy transferred is always positive and slowly reaches an asymptotic value as 

the vibration decays down. The transferred power on the other hand is an instantaneous quantity 

and is both positive and negative depending on the direction of the energy flow between the 
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oscillators. Once the oscillators come to an equilibrium state we see that both the transferred 

energy and transferred power reach an asymptotic value, which is 0 for transferred power. 

Figure 56 shows the coupling coefficient between the 2 oscillators. The plot actually 

shows that the coupling coefficient is dependent on time and slowly reaches a value which is 

equal to the steady state coupling coefficient. Since, C12 (t) and C12’ (t) are calculated using the 

transferred energy term E12 (t) and C21 (t) is calculated using E21 (t) the variations in the coupling 

coefficient terms are because of the differences in the energy terms. 

The values in Figure 48 to Figure 56 match exactly with the values calculated by M. L. 

Lai in [14], the sole exception being the duration of the hit. Lai stated that the duration of hit was 

0.075 seconds. But upon performing a numerical study with that hit duration it was found that 

the integrated total energy and integrated kinetic energy terms depend on the duration of the hit. 

They were off by about 150% and thus the coupling coefficients estimated were also off by about 

150%. Experimentally such a hit is called a bad hit or a double hit. This is one of the reasons 

why double hits are not acceptable experimentally. 
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5.2 EXPERIMENTAL RESULTS FOR THE LAI AND SOOM PLATES 

 

The experimental setup and test settings used to calculate loss factors using the power 

input method were used to estimate the coupling loss factors using the T.S.E.A method. A force 

transducer is used to connect the 2 plates and it measures the force transferred between the two 

plates. The input force is also measured to filter out double hits and out of range hits.  

Small holes are drilled into the plates at the top right corner on the bottom plate and at the 

bottom right corner on the top plate. The force transducer is then bolted into the two plates and 

this creates a physical point joint between the plates. Any force transfer that happens between the 

2 plates happens through the force transducer. To maintain consistency with and compare results 

with Lai and Soom results the plate dimensions, measurement points and the hit points are 

similar to the ones used in [26]. 

 Figure 58- Figure 63, are the plots of the apparent time varying coupling loss factors in 

the various bands for different levels of damping on the Lai and Soom plates. Comparing the 

band 1 and band 2 results from the below 6 figures it is clear that as the damping level increases 

the number of negative loss factor estimations decrease. 

Comparing the individual bands in the figures below, we can also notice that in bands at 

higher frequencies, i.e. band 3 and above, the time varying loss factors converge to an 

asymptotic value quickly when compared to the lower frequency bands, i.e. band 1 and 2. This is 

because at higher frequencies, as the system vibrates with more cycles per second, more energy 

is lost per second and hence reaches a steady state quickly when compared to the lower 

frequency bands. 

 



 
 

85 
 

 

Figure 58 : Apparent Coupling Loss Factor ηηηη12 of the Lai and Soom plates with no 
damping added. 
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Figure 59 : Apparent Coupling Loss Factor ηηηη21 of the Lai and Soom plates with no 
damping added. 
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Figure 60 : Apparent Coupling Loss Factor ηηηη12 of the Lai and Soom plates with 2 sheets of 
damping added 
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Figure 61 : Apparent Coupling Loss Factor ηηηη21 of the Lai and Soom plates with 2 sheets of 
damping added 
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Figure 62 : Apparent Coupling Loss Factor ηηηη12 of the Lai and Soom plates with 6 sheets of 
damping added 
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Figure 63 : Apparent Coupling Loss Factor ηηηη21 of the Lai and Soom plates with 6 sheets of 
damping added 
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Figure 64 : Time varying Coupling Loss Factors from [14] 
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As the damping of the system increases the energy losses per cycle increase hence the 

system reaches a steady state position quickly. This means that the “apparent time varying 

coupling coefficient”, as shown in Figure 56, also reaches the asymptotic value quickly. Since 

the coupling coefficient and the loss factor are related by the equation given below the “apparent 

time varying loss factor” will attain the asymptotic value quickly. From the figures above this 

relationship is also proved experimentally. 

12 2
12

( , )
( , ) c

c
c

C t N
t

ωη ω
ω

=  (5.16)

 

5.2.1 NEGATIVE ASYMPTOTIC COUPLING LOSS FACTORS 

 

In Table 4, which summarizes experimental results using the T.S.E.A. method it can be 

noticed that the asymptotic loss factors are negative in a few bands like the 4th band in the 2 

sheets of damping added case and the 5th band in the 6 sheets of damping added case to name a 

few. Investigations were performed to find out the cause of these negativities.  

 

Table 4 : Table comparing asymptotic coupling loss factor estimations 

  

Bands L&S[26] No Damping 2 Sheets 6 Sheets 

  η12 η21 η12 η21 η12 η21 η12 η21 

1 0.002 0.002 0.000621 0.001509 0.002181 0.001851 0.003389 0.007008 

2 0.001 0.002 0.007178 0.00165 0.006927 0.00268 0.00635 0.003012 

3 0.002 0.0008 0.000365 0.00233 0.000385 0.002469 0.005279 0.002375 

4 0.005 0.006 -0.00217 -0.00177 -0.00066 -0.00025 0.001425 0.000937 

5 0.002 0.003 0.002435 0.000433 0.002072 0.000866 0.006787 -0.00452 

6 0.0002 0.0015 0.003908 0.015416 0.00349 0.007924 0.007509 0.005557 

7 0.001 0.002 0.000935 0.000929 0.000663 0.000848 0.004665 0.003153 

8 0.0005 0.0009 0.001779 0.003638 -0.00031 0.002153 0.006387 0.011483 
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Figure 65 and Figure 66 show the transferred power between plates 2 and 1 when plate 1 is 

excited and when plate 2 is excited respectively in the frequency range of 1500 Hz to 4000 Hz. 

The transferred power P21,1 which has to be negative (as the plate 1 is excited) is positive at 

frequencies 1700 Hz, 3815 Hz and 3870 Hz. Similarly the transferred power P21,2 which has to be 

positive is negative at  1700 Hz, 2000 Hz and 2350 Hz. It is because of these negativities in the 

transferred power that the asymptotic loss factors are negative in band 4 and band 8. 

 

  

Figure 65 : Power transferred P21,1 , Bands 3-8, 2 Sheets of damping case 
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Figure 66 : Power transferred P21, 2, Bands 3-8, 2 Sheets of damping case 
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which measures and saves velocity data from various points in the plates, and a shaker to excite 
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From the figures below it is seen that at the frequencies at which the transferred power is 
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phase motion of the 2 plates makes the force transducer at the junction to measure force contrary 

to the expected direction of power flow. 

 

Figure 67 : Mode shapes at 1700 Hz and 2350 Hz 
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Figure 68 : Mode shapes at 3815 Hz and 3870 Hz 
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Comparing the results generated by Lai in [26] with the experimental results  from this 

thesis we can infer  

• All apparent time varying coupling loss factors are negative for the initial 2-3 ms and this 

is seen in the experimental results both in this thesis and appears to be as well in Lai’s 

dissertation [26]. 

• Apparent time varying coupling loss factors are negative in the lower frequency bands 

and those negativities decrease as the damping level of the plate increases. 

• The negative asymptotic coupling loss factors are due to the flexibility at the joint. The 

type of joint used to join the plates is not mentioned in [26]. Flexibility at the bolted joint 

has caused the negativities in the experimental results. 

 

5.3 INFLUENCE OF LEVEL OF DAMPING ON ESTIMATION 

 

Experiments were conducted on the Lai and Soom plates with damping added in the form 

of constrained layer damping. 3 different levels of damping were tested, No damping added case, 

2 sheets of damping added and 6 sheets of damping added. From the figures below it can be 

noticed that the asymptotic coupling loss factor is not related to the damping level of the plates 

unlike the “apparent time varying coupling loss factor”. It can also be noticed from the figures 

below that the values of the coupling loss factors improves slightly as the damping is increased. 

When compared with the analytical loss factor estimated using AUTOSEATM 2004 it can be 

noticed that the loss factors are under predicted at frequencies below 2000 Hz. For frequencies 

above 2000 Hz the experimental loss factors tend toward the predicted values. 
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Effect of damping on the asymptotic coupling loss factor 

Effect of damping on the asymptotic coupling loss factor 
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5.4 PROCESS PARAMETERS

5.4.1 EFFECT OF FREQUENCY RESOLUT

 

Frequency resolution is an important parameter which affects the quality of the data 

acquired in an experiment especially the resolution of phase in the cross

performed with wrong frequency resolution can resu

experimental time. Since frequency resolution is inversely proportional to the sampling time, any 

changes made to the frequency resolution directly affect the number of data points and thus the 

length of the data record. 

Figure 71 : Effect of frequency 
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PARAMETERS 

OF FREQUENCY RESOLUTION 

Frequency resolution is an important parameter which affects the quality of the data 

acquired in an experiment especially the resolution of phase in the cross-spectrum. Experiments 

performed with wrong frequency resolution can result in incorrect loss factors and a waste of 

experimental time. Since frequency resolution is inversely proportional to the sampling time, any 

changes made to the frequency resolution directly affect the number of data points and thus the 

: Effect of frequency resolution on the Asymptotic Coupling Loss Factor 
Damping added) 
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per second than lower frequencies and hence damp out faster. Hence the effect of the change in 

frequency resolution can be first seen on the lower frequency bands. With a frequency resolution 

of 4 Hz only frequencies below 1000 Hz are affected. As the frequency resolution is lowered the 

loss factors in the first band, centered at 256 Hz, start to devia

is further lowered negative loss factors are estimated. 

Figure 72 : Effect of frequency 
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per second than lower frequencies and hence damp out faster. Hence the effect of the change in 

quency resolution can be first seen on the lower frequency bands. With a frequency resolution 

of 4 Hz only frequencies below 1000 Hz are affected. As the frequency resolution is lowered the 

loss factors in the first band, centered at 256 Hz, start to deviate and as the frequency resolution 

is further lowered negative loss factors are estimated.  

: Effect of frequency resolution on the Asymptotic Coupling Loss Factor 
Damping added) 

EFFECT OF FREQUENCY BANDWIDTH 

hesis all the work presented was calculated in constant bandwidth

The effect of bandwidths on the loss factor is studied by comparing the loss factor estimated with 

octave bands and full octave bins with the loss factor estimated with constant 

Figure 73 and Figure 74 the effect of frequency bands on the los
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ranges as 1/3rd octave bands in the lower frequency ranges, i.e. below 500 Hz

bands in which there may be no natural frequencies at al

Figure 73 : Effect of frequency 

Figure 74 : Effect of frequency 
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octave bands in the lower frequency ranges, i.e. below 500 Hz, are very narrow 

bands in which there may be no natural frequencies at all. 
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6.0 CLOSURE 

6.1 CONCLUSIONS 

6.1.1 POWER INPUT METHOD 

• Numerical Simulations have shown that the loss factors estimated from the power input 

method are dependent on the frequency resolution used. Lightly damped systems need a 

high frequency resolution to avoid negative estimations, whereas high damping level 

estimations are not that dependent on the frequency resolution.  

• Experimental results on lightly damped, coupled plates show that the negativities in the 

estimated loss factors are reduced or removed by increasing the frequency resolution. 

Increased frequency resolution (low ∆f) provides better estimates of the phase of the only 

cross-spectra needed, that is, the cross-spectra between the input force and the driving 

point responses. 

• Experiments on plates with varying levels of damping but with the same coupled junction 

have shown that the coupling loss factor is independent of the damping of the plates. 

• Loss factors estimated using the power input method have shown good agreement 

between the results with both shaker and hammer excitation. 

• Experiments conducted with different hammer tips have shown the importance of 

considering effective bandwidth. This can be seen by computing the auto-spectrum of the 

input force. The estimated loss factors start to become invalid once the input auto-

spectrum hits the noise floor.  

• Experiments conducted by changing the number of measurement points have shown that 

for lightly damped plates a minimum 3 points distributed on the plate are needed to 

estimate loss factors reliably.  
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6.1.2 TRANSIENT STATISTICAL ENERGY ANALYSIS METHOD 

 

• Experiments conducted on plates coupled at a point have shown that the estimated loss 

factors are extremely dependent on the joint flexibility. Flexibility at the joint may lead to 

negative loss factors. 

• Experiments have shown that an increase in the damping of the coupled plates decreases 

the negativities in the “apparent time varying loss factor” curves. 

• An increase in the damping level also results in the “apparent time varying coupling loss 

factor” attaining an asymptotic value quickly. 

• Numerical simulations have shown that if a transient force (example: from an impulse 

hammer) duration is longer than the natural period of the oscillator then the coupling 

coefficients may be off by more than 150%. 

• Experiments have shown that an increase in damping does not have any effect on the 

asymptotic coupling loss factor. 

• Experimental results show that a decrease in the frequency resolution results in negative 

asymptotic coupling loss factors and apparent time varying coupling loss factors. 
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6.2 FUTURE WORK 

 

• The exact relationship between the estimated loss factor and the frequency resolution has 

to be determined. 

• Future work on the Power Input Method can be concentrated on determining the reasons 

for the slight disagreements between the shaker-excited loss factors and hammer-excited 

loss factors. 

• T.S.E.A. method must be applied to plates with different joints like riveted, bonded, and 

bolted to determine the effect of various kinds of point joints on the estimated coupling 

loss factors. 

• The concept of the apparent coupling coefficients must be further developed so that time 

varying loss factors can be estimated even at joints where the transferred energy cannot 

be directly measured. 

• Further work on T.S.E.A method can be concentrated on determining the correct 

damping range where T.S.E.A. method can be applied. 

• The effect of the stiffness of the force gauge (both lateral and rotational inertia) on the 

estimated coupling loss factor using T.S.E.A. method has to be determined. 

• Further work can be directed towards using the Power Input Method in a computational 

sense, that is, based on the finite element model, to characterize the effects of using a 

massive, flexible force gauge at the joint in the experimental investigation to represent 

the theoretical mass-less point junction. 
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APPENDIX A.  CODES 

1 TRUE RANDOM FORCE PROGRAM 

 

%%% Random Force Generator Code  
clc 
clear all  
close all  
FAmplitude=1; % Force Amplitude  
F=5000; % Sampling Frequency  
T=20;  % time of the sample  
N=F*T; % Number of Samples  
df=F/N; % Frequency Resolution  
f_low=1; % Defining limits of the Frequency Band  
f_high=5000; % Highest Freqeuency  
band=f_high-f_low; % Force Band  
f_cutoff_low=ceil(f_low/df);   % generating array indices - lower limit  
f_cutoff_high=ceil(f_high/df);  % generating array indices - upper limit  
So=FAmplitude/band; 
P=zeros(N/2+1,1); 
P(f_cutoff_low:f_cutoff_high,1)=So*ones(f_cutoff_hi gh-f_cutoff_low+1,1); 
N1=length(P); 
level=P/2; 
level=N*(N*df)*level; 
level=sqrt(level); 
phase=2*pi*rand(N1,1); 
Fw=level.*(cos(phase)+1i*sin(phase)); 
Fw(N+1:2*(N-1))=conj(flipud(Fw(2:N-1))); % appending complex conjugate Force  
force=real(ifft(Fw)); % Random Force  
 
 
 

2 SIMULATED ENERGY FLOW PROGRAM FOR A 2 DOF-SYSTEM. 

 

% Divided by e0 and Non Dimentionalized  
close all   
clear all  
clc 
global  M1 M2 Mc K1 K2 Kc C1 C2 f2 G f1 t2 
M1=input( 'Input the value of M1: ' ); 
M2=input( 'Input the value of M2: ' ); 
Mc=input( 'Input the value of Mc: ' );  % only spring coupling  
w1=input( 'Input the value of w1: ' ); 
w2=input( 'Input the value of w2: ' ); 
K1=w1^2; 
K2=w2^2; 
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Kc=input( 'Input the value of Kc: ' ); 
wn1=input( 'Input the value of wn1: ' ); 
wn2=input( 'Input the value of wn2: ' ); 
C1=0.075*wn1; 
C2=0.075*wn2; 
G=input( 'Input the value of G: ' );  
f1=input( 'Input the value of f1:0 ' ); 
f2=input( 'Input the value of f2:1 ' ); 
t2=input( 'Input the value of t2:duration of the pulse ' ); 
d=input( 'Input the value of d:d is the array in the e0 arra y after the force 
is removed ' ); 
xo=[0;0;0;0]; 
ts=linspace(0,1,10000); 
[xspan,y]=ode45(@f,ts,xo); 
figure(100) 
plot(xspan,y(:,1)); 
grid on 
figure(101) 
plot(xspan,y(:,2), '--' ); 
grid on 
figure(102) 
plot(xspan,y(:,3)); 
title( 'Velocity of Oscillator 1' , 'FontWeight' , 'bold' , 'FontSize' ,14); 
grid on 
ylabel( 'Velocity (m/s^2)' ); 
xlabel( 'time (sec)' ); 
figure(103) 
plot(xspan,y(:,4), '--' ); 
title( 'Velocity of Oscillator 2' , 'FontWeight' , 'bold' , 'FontSize' ,14); 
grid on 
ylabel( 'Velocity (m/s^2)' ); 
xlabel( 'time (sec)' ); 
%% 
w2=200; % Blocked Natural Frequency of Plate 2 
T2=2*pi/w2; 
dt=1/10000; 
step=1:1:length(xspan); 
Matr=zeros(length(step),7); 
e0=zeros(length(step),1); 
F2=zeros(length(step),1); 
for  i=2:1:length(xspan)-1 
    F2(i)=(heaviside(xspan(i))-heaviside(xspan(i)-t 2))/t2; 
    e0(i,1)=e0(i,1)+(F2(i)*y(i,4));                     % e0  
    e0(i+1,1)=e0(i,1); 
end 
e0=e0*dt; 
% INTEGRATION 
for  i=1:1:length(xspan)-1 
    Matr(i,2)=Matr(i,2)+(2*M1*y(i,3)^2/2);                  % Ek1 
    Matr(i,3)=Matr(i,3)+((M1*y(i,3)^2/2)+(K1*y(i,1) ^2/2));  % E1 
    Matr(i,4)=Matr(i,4)+(2*M2*y(i,4)^2/2);                  % Ek2 
    Matr(i,5)=Matr(i,5)+((M2*y(i,4)^2/2)+(K2*y(i,2) ^2/2));  % E2 
    Matr(i,6)=Matr(i,6)+(Kc*y(i,2)*y(i,3));                 % E21 
    Matr(i,7)=Matr(i,7)-(Kc*y(i,1)*y(i,4));                 % E12 
    Matr(i+1,:)=Matr(i,:); 
end  
Matr=Matr*dt; 
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step=step*dt;  
C=zeros(length(step),3); 
for  i=2:1:length(xspan) 
    C(i,1)=-Matr(i,7)/(Matr(i,2)-Matr(i,4));         %C12 
    C(i,2)=Matr(i,6)/(Matr(i,4)-Matr(i,2));          %C21 
    C(i,3)=-Matr(i,7)/(Matr(i,3)-Matr(i,5));         %C12' 
end  
for  i=1:1:length(xspan) 
    Matr(i,2)=Matr(i,2)/(e0(d,1)*T2); 
    Matr(i,3)=Matr(i,3)/(e0(d,1)*T2); 
    Matr(i,4)=Matr(i,4)/(e0(d,1)*T2); 
    Matr(i,5)=Matr(i,5)/(e0(d,1)*T2); 
    Matr(i,6)=Matr(i,6)/e0(d,1); 
    Matr(i,7)=Matr(i,7)/e0(d,1); 
end  
%Plotting  
figure(11) 
hold on  
title( 'Non Dimensionalized Integrated Energy in Oscillato r 
1' , 'FontWeight' , 'bold' , 'FontSize' ,14); 
plot(step,Matr(:,2), ':r' ); 
plot(step,Matr(:,3)); 
grid on 
box on 
ylabel( 'Energy (joule)' ); 
xlabel( 'time (sec)' ); 
legend( ' 2 * Kinetic Energy' , ' Total Energy' ); 
hold off  
figure(12) 
hold on 
title( 'Non Dimensionalized Integrated Energy in Oscillato r 
2' , 'FontWeight' , 'bold' , 'FontSize' ,14); 
plot(step,Matr(:,4), ':r' ); 
plot(step,Matr(:,5)); 
grid on 
box on 
ylabel( 'Energy (joule)' ); 
xlabel( 'time (sec)' ); 
legend( ' 2 * Kinetic Energy' , ' Total Energy' ); 
hold off  
figure(13) 
hold on 
title( 'Non Dimensionalized Transferred Energy 
' , 'FontWeight' , 'bold' , 'FontSize' ,14); 
plot(step,Matr(:,6)); 
plot(step,Matr(:,7), ':r' ); 
grid on 
box on 
ylabel( 'Energy (joule)' ); 
xlabel( 'time (sec)' ); 
legend( ' E21(t)' , ' - E12(t)' ); 
hold off  
figure(110) 
hold on 
title( 'Coupling Coefficient' , 'FontWeight' , 'bold' , 'FontSize' ,14); 
plot(step,C(:,1), ':r' ); 
plot(step,C(:,2), '--k' ); 
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plot(step,C(:,3)); 
grid on 
box on 
ylabel( 'Coupling Coefficient' ); 
xlabel( 'time (sec)' ); 
legend( 'C12' , 'C21' , 'C12''' ); 
hold off  
save( 'hit_plate_2_1.mat' , 'xspan' , 'y' ); 
%  
Matr=zeros(length(step),7); 
for  i=1:1:length(xspan)-1 
    Matr(i,6)=Matr(i,6)+(Kc*y(i,2)*y(i,3));                 % E21 
    Matr(i,7)=Matr(i,7)-(Kc*y(i,1)*y(i,4));                 % E12 
end  
save( 'hit_plate_2_2.mat' , 'xspan' , 'y' , 'Matr' ); 
 
 

3 SIMULATED POWER FLOW PROGRAM FOR A 2 DOF-SYSTEM. 

 

% Divided by e0 and Non Dimentionalized  
close all   
clear all  
clc 
global  M1 M2 Mc K1 K2 Kc C1 C2 f2 G f1 t2 
M1=input( 'Input the value of M1: ' ); 
M2=input( 'Input the value of M2: ' ); 
Mc=input( 'Input the value of Mc: ' );  % only spring coupling  
w1=input( 'Input the value of w1: ' );  
w2=input( 'Input the value of w2: ' ); 
K1=w1^2; 
K2=w2^2; 
Kc=input( 'Input the value of Kc: ' ); 
wn1=input( 'Input the value of wn1: ' ); 
wn2=input( 'Input the value of wn2: ' ); 
C1=0.075*wn1; 
C2=0.075*wn2; 
G=input( 'Input the value of G: ' ); 
f1=input( 'Input the value of f1:0 ' ); 
f2=input( 'Input the value of f2:1 ' ); 
t2=input( 'Input the value of t2:duration of the pulse ' ); 
d=input( 'Input the value of d:d is the array in the e0 arra y after the force 
is removed ' ); 
xo=[0;0;0;0]; 
ts=linspace(0,1,10000); 
[xspan,y]=ode45(@f,ts,xo); 
figure(100) 
plot(xspan,y(:,1),xspan,y(:,2), '--' ); 
figure(101) 
plot(xspan,y(:,3),xspan,y(:,4), '--' ); 
%% 
w2=200; % Blocked Natural Frequency of Plate 2 
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dt=1/10000; 
T2=2*pi/w2; 
step=1:1:length(xspan); 
e0=zeros(length(xspan),1);E1k=zeros(length(xspan),1 );E1=zeros(length(xspan),1
); 
E2k=zeros(length(xspan),1);E2=zeros(length(xspan),1 ); 
P21=zeros(length(xspan),1);P12=zeros(length(xspan), 1); 
F2=zeros(length(step),1); 
for  i=1:1:length(step) 
    F2(i)=(heaviside(xspan(i))-heaviside(xspan(i)-t 2))/t2; 
    e0(i,1)=e0(i,1)+(F2(i)*y(i,2));                 % e0  
    e0(i+1,1)=e0(i,1); 
end 
e0=e0*dt; 
for  i=1:1:length(xspan) 
    E1k(i,1)=E1k(i,1)+(M1*y(i,3)^2/2); 
    E1(i,1)=E1(i,1)+(M1*y(i,3)^2/2)+(K1*y(i,1)^2/2) ; 
    E2k(i,1)=E2k(i,1)+(M2*y(i,4)^2/2); 
    E2(i,1)=E2(i,1)+(M2*y(i,4)^2/2)+(K2*y(i,2)^2/2) ; 
    P21(i,1)=P21(i,1)+(Kc*y(i,2)*y(i,3)); 
    P12(i,1)=P12(i,1)-(Kc*y(i,1)*y(i,4)); 
end  
for  i=1:1:length(step) 
    E1k(i,1)=E1k(i,1)/e0(d,1); 
    E1(i,1)=E1(i,1)/e0(d,1); 
    E2k(i,1)=E2k(i,1)/e0(d,1); 
    E2(i,1)=E2(i,1)/e0(d,1); 
    P21(i,1)=P21(i,1)*T2/e0(d,1); 
    P12(i,1)=P12(i,1)*T2/e0(d,1); 
end  
figure(7) 
hold on  
title( 'Non Dimensionalized Energy in Oscillator 
1' , 'FontWeight' , 'bold' , 'FontSize' ,14); 
plot(xspan,E1k(:,1)); 
plot(xspan,E1(:,1), ':r' ); 
ylabel( 'Energy (joule)' ); 
xlabel( 'time (sec)' ); 
legend( ' Kinetic Energy' , ' Total Energy' ); 
grid on  
box on 
hold off  
figure(8) 
hold on 
title( 'Non Dimensionalized Energy in Oscillator 
2' , 'FontWeight' , 'bold' , 'FontSize' ,14); 
plot(xspan,E2k(:,1)); 
plot(xspan,E2(:,1), ':r' ); 
ylabel( 'Energy (joule)' ); 
xlabel( 'time (sec)' ); 
legend( ' Kinetic Energy' , ' Total Energy' ); 
grid on  
box on 
hold off  
figure(9) 
hold on 
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title( 'Non Dimensionalized Transferred 
Power' , 'FontWeight' , 'bold' , 'FontSize' ,14); 
plot(xspan,P21(:,1)); 
plot(xspan,P12(:,1), ':r' ); 
ylabel( 'Power (Watt)' ); 
xlabel( 'time (sec)' ); 
legend( 'P21(t)' , '-P12(t)' ); 
grid on  
box on 
hold off 
 
ODE SOLVER FUNCTION 
 
function  dy = f(t,y) 
% No Gyroscopic and Mass coupling. Only Spring Coup ling.  
%function to be integrated  
dy = zeros(4,1); 
global  M1 M2 Mc K1 K2 Kc C1 C2 F2 
Mc=0;  % only spring coupling  
F2=(heaviside(t)-heaviside(t-0.075))/0.075;  % Rectangular Step Force  
dy(1)=(-C1*y(1)/M1)+0*y(2)-(K1*y(3)/M1)+(Kc*y(4)/M1 ); 
dy(2)=0*y(1)-(C2*y(2)/M2)+(Kc*y(3)/M2)-(K2*y(4)/M2) +(F2/M2); 
dy(3)=y(1); 
dy(4)=y(2); 
 
 

4 SIMULATED POWER INPUT METHOD PROGRAM FOR A 2 DOF-SY STEM 

 

% The SIMULATED POWER INPUT METHOD 
clear all  
close all  
clc 
load( 'hit_plate_1_1.mat' , 'xspan' , 'y' ); 
yP1=y; 
load( 'hit_plate_2_1.mat' , 'xspan' , 'y' ); 
yP2=y; 
N=length(xspan); 
t2=0.001;   % length of the transient hit in seconds  
force=(heaviside(xspan-0)-heaviside(xspan-t2))/t2; 
autospecd01=(conj(fft(yP1(:,3))).*fft(yP1(:,3))); 
autospecd02=(conj(fft(yP1(:,4))).*fft(yP1(:,4))); 
autospecd03=(conj(fft(yP2(:,3))).*fft(yP2(:,3))); 
autospecd04=(conj(fft(yP2(:,4))).*fft(yP2(:,4))); 
csspecd01=(conj(fft(force(:,1))).*fft(yP1(:,3))); 
csspecd02=(conj(fft(force(:,1))).*fft(yP2(:,4))); 
  
df=0.2; % frequency resolution  
Cfreq=1:1:1000; 
band=1000; 
M1=1;        % Mass of the plate 1 Assumed  
M2=1;        % Mass of the plate 2  
Ek21=zeros(band,1);Ek11=zeros(band,1);Ek22=zeros(ba nd,1); 
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Ek12=zeros(band,1);Pin1=zeros(band,1);Pin2=zeros(ba nd,1); 
k=0; 
for  m=1:1:band 
    k=k+1; 
        Ek21(m,1)=Ek21(m,1)+((M2/(2*pi))*real(autos pecd02(k))); 
        Ek11(m,1)=Ek11(m,1)+((M1/(2*pi))*real(autos pecd01(k))); 
        Ek22(m,1)=Ek22(m,1)+((M2/(2*pi))*real(autos pecd04(k))); 
        Ek12(m,1)=Ek12(m,1)+((M1/(2*pi))*real(autos pecd03(k))); 
        Pin1(m,1)=Pin1(m,1)+((1/pi)*real(csspecd01( k))); 
        Pin2(m,1)=Pin2(m,1)+((1/pi)*real(csspecd02( k))); 
    % Same Multiplication factor - can be removed.  
%     
Ek21(m,1)=Ek21(m,1)*2*pi;Ek11(m,1)=Ek11(m,1)*2*pi;E k22(m,1)=Ek22(m,1)*2*pi;  
%     
Ek12(m,1)=Ek12(m,1)*2*pi;Pin1(m,1)=Pin1(m,1)*2*pi;P in2(m,1)=Pin2(m,1)*2*pi;  
    DE(m,1)=(Ek11(m,1)*Ek22(m,1))-(Ek12(m,1)*Ek21(m ,1)); 
    A1(:,:,m)=[((Pin1(m,1)*Ek22(m,1))-(Pin2(m,1)*Ek 21(m,1))) 
(Pin1(m,1)*Ek12(m,1));(Pin2(m,1)*Ek21(m,1)) ((Pin2( m,1)*Ek11(m,1))-
(Pin1(m,1)*Ek12(m,1)))]; 
    B1(:,:,m)=A1(:,:,m)/(2*DE(m,1)*Cfreq(m)*2*pi*df ); 
end  
for  m=1:1:band 
    LF1(m)=B1(1,1,m); 
    LF2(m)=B1(2,2,m); 
    CLF21(m)=B1(1,2,m); 
    CLF12(m)=B1(2,1,m); 
end  
band1=1:1:band; 
figure(1) 
plot(band1,LF1, '-r*' , 'DisplayName' , 'n1' , 'YDataSource' , 'n1' ); 
figure(2) 
plot(band1,LF2, '-*r' , 'DisplayName' , 'n2' , 'YDataSource' , 'n2' ); 
figure(3) 
plot(band1,CLF12, '-*r' , 'DisplayName' , 'n12' , 'YDataSource' , 'n12' ); 
figure(4) 
plot(band1,CLF21, '-*r' , 'DisplayName' , 'n21' , 'YDataSource' , 'n21' ); 

5 THEORETICAL MODES IN BAND AND MODAL DENSITY PROGRAM . 

 
% USING THEORETICAL FORMULA 
clear all  
close all  
clc 
% Youngs’ modulus of Aluminum  
E=7e11; % units g/cm*s2.  
Density=2.70;  % units gms/cm3.  
h=0.64; % thickness of the Plates.  
K=h/(2*sqrt(3)); % Radius of Gyration.  Try another formula also  
C_l=sqrt(E/Density); % Longitudinal Wavespeed.  
Ap(1)=2852.840; % Surface Area of Plate 1 Lai and Soom.  
Ap(2)=2042.370; % Surface Area of Plate 2 Lai and Soom.  
for  i=1:2 
    nw(i)=Ap(i)/(4*pi*K*C_l); 
end 
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6 EXPERIMENTAL MODES IN BAND AND MODAL DENSITY PROGRA M. 

 

%% Using the Experimental Accelerometer Data  
close all  
clear all  
clc 
Mass=[4.608 3.628]; 
A=importdata( 'Plate 1_ND.mat' ); 
B=importdata( 'Plate 2_ND.mat' ); 
C=importdata( 'Plate 1_1S.mat' ); 
D=importdata( 'Plate 2_1S.mat' ); 
E=importdata( 'Plate 1_3S.mat' ); 
F=importdata( 'Plate 2_3S.mat' ); 
DFRF(:,1,1)=A.H1_2(:,2); % Inertiance FRF's  
DFRF(:,2,1)=B.H1_2(:,2); 
DFRF(:,1,2)=C.H1_2(:,2); 
DFRF(:,2,2)=D.H1_2(:,2); 
DFRF(:,1,3)=E.H1_2(:,2); 
DFRF(:,2,3)=F.H1_2(:,2); 
% Calculating Average conductance ( real Part of Mo bility) in the bands  
df=1; % in Hz 
% Constant Bands  
% Cfreq=256:512:3840;  
% band=8;  
% lowbound=round((2:512:3685)/df);  
% upbound=round((512:512:4196)/df);  
% 1/3rd octave bands with full octave bandwidths  
Cfreq=[100 125 160 200 250 315 400 500 630 800 1000  1250 1600 2000 2500 3150 
4000]; 
band=length(Cfreq); 
lowbound=round(Cfreq/sqrt(2)/df); 
upbound=round(Cfreq*sqrt(2)/df); 
COND_AVG=zeros(band,length(DFRF(1,1,:))*2); 
for  i=1:1:band 
    for  k=lowbound(i):1:upbound(i) 
        for  m=1:1:length(DFRF(1,1,:)) 
            COND_AVG(i,2*m-1)=COND_AVG(i,2*m-
1)+(imag(DFRF(k,1,m))/(2*pi*k*df)); % Plate 1 , Plate 2  
            COND_AVG(i,2*m)=COND_AVG(i,2*m)+(imag(D FRF(k,2,m))/(2*pi*k*df));  
        end  
    end  
    bandwidth(i)=upbound(i)-lowbound(i); 
    for  m=1:1:length(DFRF(1,1,:)) 
        COND_AVG(i,2*m-1)=COND_AVG(i,2*m-1)/bandwid th(i); 
        COND_AVG(i,2*m)=COND_AVG(i,2*m)/bandwidth(i ); 
    end  
end  
for  i=1:1:band 
    for  m=1:1:length(DFRF(1,1,:)) 
        modal_density(i,2*m-1)=COND_AVG(i,2*m-1)*2* Mass(1)/pi; 
        modal_density(i,2*m)=COND_AVG(i,2*m)*2*Mass (2)/pi; 
    end  
end  
for  i=1:1:band 
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    for  m=1:1:length(DFRF(1,1,:)) 
        MPB(i,2*m-1)=modal_density(i,2*m-1)*2*pi*ba ndwidth(i)*df; 
        MPB(i,2*m)=modal_density(i,2*m)*2*pi*bandwi dth(i)*df; 
    end  
end  
df=[0 1 3]; 
for  m=1:1:length(DFRF(1,1,:)) 
figure(4*m-3) 
loglog(Cfreq,modal_density(:,2*m-1), '-*r' ); 
% xlim([0 5000]);ylim([10e-5 10e-3]);  
title([ 'Modal density of Plate 1- ' ,num2str(df(m)), ' Sheets of Damping 
added' ]); 
grid on 
figure(4*m-2) 
loglog(Cfreq,modal_density(:,2*m), '-*r' ); 
% xlim([0 5000]);ylim([10e-5 10e-3]);  
title([ 'Modal density of Plate 2- ' ,num2str(df(m)), ' Sheets of Damping 
added' ]); 
grid on 
figure(4*m-1) 
loglog(Cfreq,MPB(:,2*m-1), '-*r' ); 
% xlim([0 5000]);ylim([10e-1 10]);  
title([ 'Modes per band of Plate 1- ' ,num2str(df(m)), ' Sheets of Damping 
added' ]); 
grid on 
figure(4*m) 
loglog(Cfreq,MPB(:,2*m), '-*r' ); 
% xlim([0 5000]);ylim([10e-1 10]);  
title([ 'Modes per band of Plate 2- ' ,num2str(df(m)), ' Sheets of Damping 
added' ]); 
grid on 
end 
 
 

7 EXPERIMENTAL POWER INPUT METHOD PROGRAM  

 

%% Using the time domain data Power Injection Metho d MESCOPE 
close all  
clear all  
clc 
t=clock; 
A=importdata( 'Test 1_point 1.mat' ); 
B=importdata( 'Test 2_point 1.mat' ); 
C=importdata( 'Test 3_point 1.mat' ); 
D=importdata( 'Test 1_point 20.mat' ); 
E=importdata( 'Test 2_point 20.mat' ); 
F=importdata( 'Test 3_point 20.mat' ); 
dt=A.X1(2,1)-A.X1(1,1); 
N=131072; 
decimate=1; 
%%  Using Eval Funciton  
for  d=1:4 
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    s = [ 'autospecd0'  int2str(d) '=zeros(N,1);' ]; 
    eval(s); 
end  
csspecd01=((conj(fft(A.X1(:,2))).*fft(A.X2(:,2)))+( conj(fft(B.X1(:,2))).*fft(
B.X2(:,2)))+(conj(fft(C.X1(:,2))).*fft(C.X2(:,2)))) /3; % Average  
csspecd02=((conj(fft(D.X1(:,2))).*fft(D.X2(:,2)))+( conj(fft(E.X1(:,2))).*fft(
E.X2(:,2)))+(conj(fft(F.X1(:,2))).*fft(F.X2(:,2)))) /3; 
for  d=3:1:8 
    s = [ 'autospecd01(:,1)=autospecd01(:,1)+(conj(fft(A.X'  int2str(d) 
'(:,2))).*fft(A.X'  int2str(d) '(:,2)));' ]; 
    eval(s); 
    s = [ 'autospecd02(:,1)=autospecd02(:,1)+(conj(fft(C.X'  int2str(d) 
'(:,2))).*fft(C.X'  int2str(d) '(:,2)));' ]; 
    eval(s); 
    s = [ 'autospecd03(:,1)=autospecd03(:,1)+(conj(fft(D.X'  int2str(d) 
'(:,2))).*fft(D.X'  int2str(d) '(:,2)));' ]; 
    eval(s); 
    s = [ 'autospecd04(:,1)=autospecd04(:,1)+(conj(fft(F.X'  int2str(d) 
'(:,2))).*fft(F.X'  int2str(d) '(:,2)));' ]; 
    eval(s); 
end  
for  d=3:1:5 
    s = [ 'autospecd01(:,1)=autospecd01(:,1)+(conj(fft(B.X'  int2str(d) 
'(:,2))).*fft(B.X'  int2str(d) '(:,2)));' ]; 
    eval(s); 
    s = [ 'autospecd03(:,1)=autospecd03(:,1)+(conj(fft(E.X'  int2str(d) 
'(:,2))).*fft(E.X'  int2str(d) '(:,2)));' ]; 
    eval(s); 
end  
for  d=6:1:8 
    s = [ 'autospecd02(:,1)=autospecd02(:,1)+(conj(fft(B.X'  int2str(d) 
'(:,2))).*fft(B.X'  int2str(d) '(:,2)));' ]; 
    eval(s); 
    s = [ 'autospecd04(:,1)=autospecd04(:,1)+(conj(fft(E.X'  int2str(d) 
'(:,2))).*fft(E.X'  int2str(d) '(:,2)));' ]; 
    eval(s); 
end  
for  d=1:4 
    s = [ 'autospecd0'  int2str(d) '=autospecd0'  int2str(d) '/9;' ]; 
    eval(s); 
end  
 
%% decimating data  
for  d=1:1:4 
    for  j=1:1:N/decimate 
        autospec01(j,1)=autospecd01(j*decimate,1); 
        autospec02(j,1)=autospecd02(j*decimate,1); 
        autospec03(j,1)=autospecd03(j*decimate,1); 
        autospec04(j,1)=autospecd04(j*decimate,1); 
        csspec01(j,1)=csspecd01(j*decimate,1); 
        csspec02(j,1)=csspecd02(j*decimate,1); 
    end  
end  
clear autospecd01  autospecd02  autospecd03  autospecd04  csspecd01  csspecd02  
autospecd01=autospec01; 
autospecd02=autospec02; 
autospecd03=autospec03; 
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autospecd04=autospec04; 
csspecd01=csspec01; 
csspecd02=csspec02; 
 
%% Integration. USING TRAPEZOIDAL RULE  
df=0.25*decimate; % frequency resolution  
Cfreq=256:512:3840; 
band=8; 
lowbound=round((2:512:3685)/df); 
upbound=round((512:512:4196)/df); 
% 1/3rd octave bands with full octave bandwidths  
% Cfreq=[100 125 160 200 250 315 400 500 630 800 10 00 1250 1600 2000 2500 
3150 4000];  
% band=length(Cfreq);  
% lowbound=round(Cfreq/sqrt(2)/df);  
% upbound=round(Cfreq*sqrt(2)/df);  
M1=4.80;        % Mass of the plate 1  
M2=3.628;        % Mass of the plate 2  
Ek21=zeros(band,1);Ek11=zeros(band,1);Ek22=zeros(ba nd,1); 
Ek12=zeros(band,1);Pin1=zeros(band,1);Pin2=zeros(ba nd,1); 
for  m=1:1:band 
    for  k=lowbound(m):1:upbound(m) 
        
Ek21(m,1)=Ek21(m,1)+((M2/(2*pi))*real(autospecd02(k ))/((k*df*2*pi)^2)); 
        
Ek11(m,1)=Ek11(m,1)+((M1/(2*pi))*real(autospecd01(k ))/((k*df*2*pi)^2)); 
        
Ek22(m,1)=Ek22(m,1)+((M2/(2*pi))*real(autospecd04(k ))/((k*df*2*pi)^2)); 
        
Ek12(m,1)=Ek12(m,1)+((M1/(2*pi))*real(autospecd03(k ))/((k*df*2*pi)^2)); 
        Pin1(m,1)=Pin1(m,1)+((1/pi)*imag(csspecd01( k))/(k*df*2*pi)); 
        Pin2(m,1)=Pin2(m,1)+((1/pi)*imag(csspecd02( k))/(k*df*2*pi)); 
    end  
    DE(m,1)=(Ek11(m,1)*Ek22(m,1))-(Ek12(m,1)*Ek21(m ,1)); 
    A1(:,:,m)=[((Pin1(m,1)*Ek22(m,1))-(Pin2(m,1)*Ek 21(m,1))) 
(Pin1(m,1)*Ek12(m,1));(Pin2(m,1)*Ek21(m,1)) ((Pin2( m,1)*Ek11(m,1))-
(Pin1(m,1)*Ek12(m,1)))]; 
    B1(:,:,m)=A1(:,:,m)/(2*DE(m,1)*Cfreq(m)*2*pi); 
end  
for  m=1:1:band 
    LF1(m)=B1(1,1,m); 
    LF2(m)=B1(2,2,m); 
    CLF21(m)=B1(1,2,m); 
    CLF12(m)=B1(2,1,m); 
end  
band1=1:1:band; 
figure(1) 
plot(band1,LF1, '-r*' , 'DisplayName' , 'n1' , 'YDataSource' , 'n1' ); 
figure(2) 
plot(band1,LF2, '-*r' , 'DisplayName' , 'n2' , 'YDataSource' , 'n2' ); 
figure(3) 
plot(band1,CLF12, '-*r' , 'DisplayName' , 'n12' , 'YDataSource' , 'n12' ); 
figure(4) 
plot(band1,CLF21, '-*r' , 'DisplayName' , 'n21' , 'YDataSource' , 'n21' ); 
etime(clock,t) 



 
 

A.12 
 

8 EXPERIMENTAL MODAL ANALYSIS PROGRAM 

 

%% Modal Analysis Vibrometer Data  
close all  
clear all  
clc 
Nfft=6376; % number of lines in the FRF  
nupon=176; % number of points in the grid  
frequency=25:1:6400; 
% The data is in a UFF file which is read through t he function readuff.  
% which stores data in a Matrix C.  
% % % %1 sheet damping added  
fin=fopen( 'Force_point_103_plate_1.asc' );  
C=readuff(Nfft,fin); 
DFRF=C(:,103); 
%% Picking the Natural Frequencies from the FRF.  
figure(2) 
plot(frequency,angle(DFRF(:,1)));xlim([0 4000]); 
figure(1) 
plot(frequency,abs(DFRF(:,1)));xlim([0 4000]); 
peaks=0; 
sel=input( 'Do you want to select peaks?yes or no   ' , 's' ); 
while (strcmp(sel, 'yes' )==1) 
    disp( 'press delete after zooming' ); 
    h=zoom; 
    set(h, 'Motion' , 'horizontal' , 'Enable' , 'on' ); 
    waitfor(gcf, 'CurrentCharacter' ,127) 
    % 127 is ascii code for delete  
    zoom off ; 
    disp( 'press enter after selecting peaks:Max of 10 Peaks Per iteration' ); 
    [x,y]=ginput(10);   % Max 10 peaks  
    peaks=[peaks;x]; 
    set(gcf, 'currentcharacter' ,char(4)); 
    sel=input( 'Do you want to select more peaks?   ' , 's' ); 
end  
peaks=peaks(2:end); 
for  i=1:1:length(peaks) 
    for  j=1:1:length(frequency); 
        if  abs(frequency(j)-peaks(i))<0.5 
            k(i)=j-1; 
            break  
        end  
    end  
end  
%% Calculating Mode Shapes  
for  i=1:1:length(C(1,:)) 
    for  j=1:1:length(k) 
        MS(j,i)=C(k(j),i); 
    end  
end  
f=sqrt(DFRF(:,1)); 
for  i=1:1:length(MS(:,1)) 
    ms(i,:)=MS(i,:)./f(i); 
end  
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%% Getting Lai and Soom plates Grid from position a rray generated from PSV  
%dividing the location arrays into 2 arrays for the  2 plates. 1-P1 2-P2.  
% Plate 2 has 77 points and Plate 1 has 99  
[X,Y]=readpos(nupon); 
figure(2) 
plot(X,Y); 
X2=X(1,1:77);Y2=Y(1,1:77); 
for  i=1:1:length(ms(:,1)) 
    ms1(:,:,i)=ms(i,1:77); 
end  
tolerance=0.1; 
slope=1.1288; 
for  n=1:1:11 % number of lines along which the slope is 1.1288 o n plate 2  
    m=1; % index for number of points on each of those 11 li nes.(total=7)  
    X22(m,n)=X2(1,1);Y22(m,n)=Y2(1,1);ms2(m,n,:)=ms 1(1,1,:); 
    X2=X2(1,2:end);Y2=Y2(1,2:end); 
    for  i=1:1:length(X2(1,:))  
        a=(Y2(1,i)-Y22(1,n))/(X2(1,i)-X22(1,n)); 
        if  (a-slope<tolerance) && (a-slope>0) 
            m=m+1; 
            X22(m,n)=X2(1,i); 
            Y22(m,n)=Y2(1,i); 
            ms2(m,n,:)=ms1(1,i,:); 
        end  
    end  
    for  m=1:1:length(X22(:,1)) 
        for  i=1:1:length(X2(1,:))-m+1 
            if  X22(m,n)==X2(1,i) 
                X2=[X2(1,1:i-1) X2(1,i+1:end)]; 
                Y2=[Y2(1,1:i-1) Y2(1,i+1:end)]; 
                ms1=[ms1(1,1:i-1,:) ms1(1,i+1:end,: )]; 
            end  
        end  
    end  
end  
clear ms1; 
% X21=X22(1:end,end:-1:1);Y21=Y22(1:end,end:-1:1);  
X1=X(1,78:176);Y1=Y(1,78:176); 
for  i=1:1:length(ms(:,1)) 
    ms1(:,:,i)=ms(i,78:176); 
end  
tolerance=5; 
slope=36.2308; 
for  n=1:1:11 % number of lines along which the slope is 36.2308 on plate 1  
    m=1; % index for number of points on each of those 11 li nes.(total=9)  
    X12(m,n)=X1(1,1);Y12(m,n)=Y1(1,1);ms3(m,n,:)=ms 1(1,1,:); 
    X1=X1(1,2:end);Y1=Y1(1,2:end); 
    for  i=1:1:length(X1(1,:))  
        a=(Y1(1,i)-Y12(1,n))/(X1(1,i)-X12(1,n)); 
        if  (a-slope<tolerance) && (a-slope>0) 
            m=m+1; 
            X12(m,n)=X1(1,i); 
            Y12(m,n)=Y1(1,i); 
            ms3(m,n,:)=ms1(1,i,:); 
        end  
    end  
    for  m=1:1:length(X12(:,1)) 
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        for  i=1:1:length(X1(1,:))-m+1 
            if  X12(m,n)==X1(1,i) 
                X1=[X1(1,1:i-1) X1(1,i+1:end)]; 
                Y1=[Y1(1,1:i-1) Y1(1,i+1:end)]; 
                ms1=[ms1(1,1:i-1,:) ms1(1,i+1:end,: )]; 
            end  
        end  
    end  
end  
figure(3) 
hold on 
plot(X12,Y12) 
plot(X22,Y22) 
hold off  
%Plotting the Mode Shapes  
for  i=1:1:length(peaks) 
    figure(i+4) 
    hold on 
    surf(X22,Y22,real(ms2(:,:,i))); 
    surf(X12,Y12,real(ms3(:,:,i))); 
    hold off  
    view(45,60) 
    grid on 
end  
 
function  [X,Y]=readpos(nupon) 
fin=fopen( 'Positions.txt' ); %input from asc file  
for  p=1:15   %14 to skip- 15 to be read number of initial lines to skip  
    line=fgetl(fin); 
end  
%%%%% Position  
if  line(5:6)~= '-1'  
    for  p=1:nupon   
        % reading character stings and converting into numb ers and  
        % storing them  
        X(p)=str2num(line(42:53)); 
        Y(p)=str2num(line(55:66)); 
        line=fgetl(fin); 
    end  
end      
fclose(fin); 
 
% Given by Dr. Ewing edited accordingly.  
function  [transfer_function]=readuff(Nfft,fin) 
% fin=fopen('Circular Plate 6th May top_2.asc');    %input from asc file  
  
for  p=1:5   %number of initial lines to skip  
    line=fgetl(fin); 
end  
n=0;    %index of point number  
while  feof(fin)==0 
    %%%%% Transfer Function  
    if  line(1)== 'T'  
%         if line(1:10)=='Transfer F'             
            n=n+1; 
            q=0;    %index of current fft line  
            for  p=1:10   %continue to read and write 10 more lines  
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               line=fgetl(fin); 
            end  
            for  p=1:(Nfft-1)/3  %Nfft-1: 2 reading at the end of each frf, 3 
fft lines per row  
                line=fgetl(fin); 
                q=q+1; 
                % reading character stings and converting into numb ers and  
                % storing them  
                
transfer_function(q,n)=str2num(line(1:13))+1i*str2n um(line(14:26)); 
                q=q+1; 
                
transfer_function(q,n)=str2num(line(27:39))+1i*str2 num(line(40:52)); 
                q=q+1; 
                
transfer_function(q,n)=str2num(line(53:65))+1i*str2 num(line(66:78)); 
            end  
            line=fgetl(fin); 
            q=q+1; 
            
transfer_function(q,n)=str2num(line(1:13))+1i*str2n um(line(14:26)); 
    end      
    line=fgetl(fin); 
end  
fclose(fin); 
 

9 EXPERIMENTAL T.S.E.A METHOD PROGRAM  

 

%% Transient Statistical Energy Analysis  
clear all  
close all  
clc 
N=30000; 
load( 'exp1.mat' , 'AFFT1' ); 
AFFTE1=AFFT1(1:N,:,:); 
clear AFFT1 
load( 'exp2.mat' , 'AFFT2' ); 
AFFTE2=AFFT2(1:N,:,:); 
clear AFFT2 
%%% using local accelerations for transmitted energ y.  
% spatial average 2,3,4 columns are the acceleromet ers 1,2,3 on plate 1 and  
% 5,6,7 columns are the accelerometers 4,5,6 on pla te 2.  
for  k=1:1:length(AFFTE1(1,1,:)) 
    AFFT1(:,1,k)=AFFTE1(:,1,k);  
    AFFT1(:,2,k)=(AFFTE1(:,2,k)+AFFTE1(:,3,k)+AFFTE 1(:,4,k))/3; 
    AFFT1(:,3,k)=(AFFTE1(:,5,k)+AFFTE1(:,6,k)+AFFTE 1(:,7,k))/3; 
    AFFT1(:,4,k)=AFFTE1(:,8,k); 
    AFFT2(:,1,k)=AFFTE2(:,1,k);  
    AFFT2(:,2,k)=(AFFTE2(:,2,k)+AFFTE2(:,3,k)+AFFTE 2(:,4,k))/3; 
    AFFT2(:,3,k)=(AFFTE2(:,5,k)+AFFTE2(:,6,k)+AFFTE 2(:,7,k))/3; 
    AFFT2(:,4,k)=AFFTE2(:,8,k); 
end  
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decimate=4; 
asd=length(AFFTE1(1,1,:)); 
%% decimating data  
for  d=1:1:asd 
    for  i=1:1:4 
        for  j=1:1:N/decimate 
            AFFT1t(j,i,d)=AFFT1(j*decimate,i,d); 
            AFFT2t(j,i,d)=AFFT2(j*decimate,i,d); 
        end  
    end  
end  
clear AFFT1 AFFT2 
for  d=1:1:asd 
    for  i=1:1:8 
        for  j=1:1:N/decimate 
            AFFTE1t(j,i,d)=AFFTE1(j*decimate,i,d); 
            AFFTE2t(j,i,d)=AFFTE2(j*decimate,i,d); 
        end  
    end  
end  
clear AFFT1 AFFT2 AFFTE1 AFFTE2 
AFFT1=AFFT1t; 
AFFT2=AFFT2t; 
AFFTE1=AFFTE1t; 
AFFTE2=AFFTE2t; 
clear AFFT1t  AFFT2t  AFFTE1t  AFFTE2t  
%% 
df=0.25*decimate; % frequency resolution  
Cfreq=256:512:3840; 
band=8; 
lowbound=round((2:512:3685)/df); 
upbound=round((512:512:4196)/df); 
% 1/3 rd octave with full octave bins  
% Cfreq=[100 125 160 200 250 315 400 500 630 800 10 00 1250 1600 2000 2500 
3150 4000];  
% band=length(Cfreq);  
% lowbound=round(Cfreq/sqrt(2)/df);  
% upbound=round(Cfreq*sqrt(2)/df);  
M1=4.608;        % Mass of the plate 1 Assumed  
M2=3.628;        % Mass of the plate 2  
x1=1:1:33;  % x is the number of times time data is taken  
x=1:1:34;   % x is the number of times time data is taken  
%INTEGRATING 
Ek21=zeros(band,length(x));Ek11=zeros(band,length(x ));Ek22=zeros(band,length(
x));Ek12=zeros(band,length(x)); 
Etr211=zeros(band,length(x));Etr212=zeros(band,leng th(x)); 
for  m=1:1:band 
%     for n=1:1:length(AFFT1(1,1,:))-1  
    for  n=1:1:length(AFFT1(1,1,:)) 
        for  k=lowbound(m):1:upbound(m) 
            
Ek21(m,n)=Ek21(m,n)+((M2/(2*pi))*real(AFFT1(k,3,34) *conj(AFFT1(k,3,n)))/((k*d
f*2*pi)^2)); 
            
Ek11(m,n)=Ek11(m,n)+((M1/(2*pi))*real(AFFT1(k,2,34) *conj(AFFT1(k,2,n)))/((k*d
f*2*pi)^2)); 
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Ek22(m,n)=Ek22(m,n)+((M2/(2*pi))*real(AFFT2(k,3,34) *conj(AFFT2(k,3,n)))/((k*d
f*2*pi)^2)); 
            
Ek12(m,n)=Ek12(m,n)+((M1/(2*pi))*real(AFFT2(k,2,34) *conj(AFFT2(k,2,n)))/((k*d
f*2*pi)^2)); 
            
Etr211(m,n)=Etr211(m,n)+((1/pi)*imag(AFFT1(k,4,n)*c onj(AFFTE1(k,4,34)))/(k*df
*2*pi));     % why not? - for directional change  
            
Etr212(m,n)=Etr212(m,n)+((1/pi)*imag(AFFT2(k,4,n)*c onj(AFFTE2(k,4,34)))/(k*df
*2*pi));     %- 
        end  
        A(:,:,n,m)=2*2*pi*Cfreq(m)*[Ek21(m,n) -Ek11 (m,n);Ek22(m,n) -
Ek12(m,n)]; 
        C(:,:,n,m)=[Etr211(m,n);Etr212(m,n)]; 
        B(:,n,m)=A(:,:,n,m)\C(:,:,n,m); 
    end  
end  
for  i=1:1:band 
    ans(:,i)=B(:,34,i);   %% row1 n21 row2 n12  
end  
B=B(:,1:33,:); 
AE1=ones(x(end),band); 
AE2=ones(x(end),band); 
for  i=1:1:band 
    AE1(:,i)=AE1(:,i)*ans(1,i); % asymptotic values  
    AE2(:,i)=AE2(:,i)*ans(2,i); % asymptotic values  
end  
for  m=1:1:4 
    figure(1) 
    subplot(2,2,m) 
    semilogy(x,AE1(:,m),x1,B(1,:,m), '-*r' , 'DisplayName' , 'n21' , 
'YDataSource' , 'n21' );ylim([1e-5 1e-1]);xlim([0 35]); 
    title([ 'Coupling Loss Factor \eta21(t) in band 
' ,num2str(m)], 'FontWeight' , 'bold' , 'FontSize' ,10); 
    ylabel( 'Loss Factor (unitless)' ); 
    xlabel( 'time (sec)' ); 
    AX=legend( '\eta21' , '\eta21(t)' , 'location' , 'south' ); 
    LEG = findobj(AX, 'type' , 'text' ); 
    set(LEG, 'FontSize' ,8) 
end  
hgsave( 'TSEA_NO_DAMPING_eta21(t)_fig_1.fig' ); 
for  m=5:1:band 
    figure(2) 
    subplot(2,2,m-4) 
    semilogy(x,AE1(:,m),x1,B(1,:,m), '-*r' , 'DisplayName' , 'n21' , 
'YDataSource' , 'n21' );ylim([1e-5 1e-1]);xlim([0 35]); 
    title([ 'Coupling Loss Factor \eta21(t) in band 
' ,num2str(m)], 'FontWeight' , 'bold' , 'FontSize' ,10); 
    ylabel( 'Loss Factor (unitless)' ); 
    xlabel( 'time (sec)' ); 
    AX=legend( '\eta21' , '\eta21(t)' , 'location' , 'south' ); 
    LEG = findobj(AX, 'type' , 'text' ); 
    set(LEG, 'FontSize' ,8) 
end  
hgsave( 'TSEA_NO_DAMPING_eta21(t)_fig_2.fig' ); 
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for  m=1:1:4 
    figure(3) 
    subplot(2,2,m) 
    semilogy(x,AE2(:,m),x1,B(2,:,m), '-*r' , 'DisplayName' , 'n12' , 
'YDataSource' , 'n12' );ylim([1e-5 1e-1]);xlim([0 35]); 
    title([ 'Coupling Loss Factor \eta12(t)in band 
' ,num2str(m)], 'FontWeight' , 'bold' , 'FontSize' ,10); 
    ylabel( 'Loss Factor (unitless)' ); 
    xlabel( 'time (sec)' ); 
    AX=legend( '\eta12' , '\eta12(t)' , 'location' , 'south' ); 
    LEG = findobj(AX, 'type' , 'text' ); 
    set(LEG, 'FontSize' ,8) 
end  
hgsave( 'TSEA_NO_DAMPING_eta12(t)_fig_1.fig' ); 
for  m=5:1:band 
    figure(4) 
    subplot(2,2,m-4) 
    semilogy(x,AE2(:,m),x1,B(2,:,m), '-*r' , 'DisplayName' , 'n12' , 
'YDataSource' , 'n12' );ylim([1e-5 1e-1]);xlim([0 35]); 
    title([ 'Coupling Loss Factor \eta12(t)in band 
' ,num2str(m)], 'FontWeight' , 'bold' , 'FontSize' ,10); 
    ylabel( 'Loss Factor (unitless)' ); 
    xlabel( 'time (sec)' ); 
    AX=legend( '\eta12' , '\eta12(t)' , 'location' , 'south' ); 
    LEG = findobj(AX, 'type' , 'text' ); 
    set(LEG, 'FontSize' ,8) 
end  
hgsave( 'TSEA_NO_DAMPING_eta12(t)_fig_2.fig' ); 
 
% Calculating Averaged FFT’s And FRF’s  
% loading Time Domain data  
close all  
clear all  
clc 
B=importdata( 'Pt1.mat' ); 
A(:,1)=B.X1(:,1); 
A(:,2)=B.X1(:,2); 
A(:,3)=B.X2(:,2); 
A(:,4)=B.X3(:,2); 
A(:,5)=B.X4(:,2); 
A(:,6)=B.X5(:,2); 
A(:,7)=B.X6(:,2); 
A(:,8)=B.X7(:,2); 
A(:,9)=B.X8(:,2); 
SF=131072;                 % number of samples per hammer Hit.  
% samples=132:131:4400;    
samples=34:33:1090;    % number of samples in per 1 msec of data  
samples(end+1)=SF; 
n=1;           % number of Hits to be considered  
na=6;          % number of accelerometers  
nd=8;          % number of accelerometers + force input + transduc ed 
for  i=1:1:nd   % plot time domain  
    figure(i) 
    plot(A(1:20000,i+1)); 
end  
AFFT1=zeros(SF,nd,length(samples)); 
%AFRF1=zeros(SF,na,length(samples));  



 
 

A.19 
 

for  k=1:1:length(samples) 
    [AFFT,AFRF]=fourierfunction(A,SF,n,samples(k));  
    AFFT1(:,:,k)=AFFT(:,:); 
%     AFRF1(:,:,k)=AFRF(:,:);  
    clear AFRF AFFT 
end  
% fourier transformation of truncated and total dat a.  
save( 'exp1' , 'AFFT1' ); 
clear A AFFT1 B AFRF1 
 
function [AFFT,AFRF]=fourierfunction(A,SF,n,Samples) 
    X=0:SF:n*SF;   % X= number of hits+1.  
    Y=X+Samples;   % truncating it at some time interval  
    D=zeros(SF,length(A(1,:)),n); 
for  i=1:1:n 
    temp=A(X(i)+1:Y(i),:); 
    for  j=1:1:Samples 
        D(j,:,i)=D(j,:,i)+temp(j,:); 
        % D is a 3D array whose every sheet has data from o ne hit.  
    end  
end  
clear temp  A 
for  i=1:1:n     % number of Hammer Hits.  
    for  j=2:5   
        % column1 has the time, 2 has force input, 3-8 are the  
        % accelerometers 1-6 and 9 is the force transducer.  
        FFT(:,(j-1),i)=fft(D(:,j,i)); 
        if  j~=2 
            FRF(:,(j-2),i)=fft(D(:,j,i))./fft(D(:,2 ,i)); 
        end  
    end  
    for  j=6:9 
        FFT(:,(j-1),i)=fft(D(:,j,i)); 
        if  j~=9 
            FRF(:,(j-2),i)=fft(D(:,j,i))./fft(D(:,2 ,i)); 
        end  
    end  
end  
% FFT is the matrix containing the FFT's of the for ce and acceleration  
% FRF is the matrix containing the FRF's  
AFRF=zeros(SF,length(FRF(1,:,1))); 
AFFT=zeros(SF,length(FFT(1,:,1))); 
for  i=1:1:n 
    AFRF(:,:)=AFRF(:,:)+FRF(:,:,i);  
    AFFT(:,:)=AFFT(:,:)+FFT(:,:,i); 
end  
clear FRF FFT D 
AFRF=AFRF/n;    % AFRF is the matrix containing the averaged FRF's  
AFFT=AFFT/n;    % AFFT is the matrix containing the averaged FFT's  
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APPENDIX B. CONSTRAINED LAYER DAMPING PLACEMENT ON THE 

EXPERIMENTAL PLATES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EXPERIMENTAL COUPLED PLATES – NOT DRAWN TO SCALE 

53 cm 

37 cm 

4.5 cm 

15 cm 

3.4 cm 

0.75 cm 

6 cm 

6.5 cm 

7 cm 

8.75 cm 

8.25 cm 

18.75 cm 

61 cm 

47 cm 5.65 cm 

4.5 cm 


