
Genome-Wide Protein-Chemical

Interaction Prediction

Copyright 2011

Aaron Smalter Hall

Submitted to the graduate degree program in Electrical
Engineering and Computer Science and the Graduate Faculty

of the University of Kansas School of Engineering in partial
fulfillment of the requirements for the degree of Doctor of Philosophy.

Thesis Committee:

Dr. Jun Huan: Chairperson

Dr. Gerald Lushington

Dr. Mahesh Visvanathan

Dr. John Karanicolas

Dr. Swapan Chakrabarti

Dr. Brian Potetz

Date Defended: 8/10/2011

The Dissertation Committee for Aaron Smalter Hall certifies

That this is the approved version of the following dissertation:

Genome-Wide Protein-Chemical Interaction Prediction

Committee:

Chairperson

Date Approved

i

Abstract

The analysis of protein-chemical reactions on a large scale is critical to under-

standing the complex interrelated mechanisms that govern biological life at the

cellular level. Chemical proteomics is a new research area aimed at genome-wide

screening of such chemical-protein interactions.

Traditional approaches to such screening involve in vivo or in vitro experi-

mentation, which while becoming faster with the application of high-throughput

screening technologies, remains costly and time-consuming compared to in silico

methods. Early in silico methods are dependant on knowing 3D protein struc-

tures (docking) or knowing binding information for many chemicals (ligand-based

approaches). Typical machine learning approaches follow a global classification

approach where a single predictive model is trained for an entire data set, but

such an approach is unlikely to generalize well to the protein-chemical interaction

space considering its diversity and heterogeneous distribution. In response to the

global approach, work on local models has recently emerged to improve general-

ization across the interaction space by training a series of independant models

localized to each predict a single interaction.

This work examines current approaches to genome-wide protein-chemical inter-

action prediction and explores new computational methods based on modifications

to the boosting framework for ensemble learning. The methods are described and

compared to several competing classification methods. Genome-wide chemical-

protein interaction data sets are acquired from publicly available resources, and a

series of experimental studies are performed in order to compare the the perfor-

mance of each method under a variety of conditions.

ii

Contents

Acceptance Page i

Abstract ii

1 Introduction 1

2 Background and Related Work 8

2.1 Chemical Structures and Graph Representations 8

2.2 Data Formats for Cheminformatics 11

2.3 Protein Databases . 13

2.4 Chemical Databases . 15

2.5 Cheminformatics Databases . 17

2.6 Biological Descriptors . 19

2.6.1 Numeric Property Descriptors 20

2.6.2 Structure Fragment Descriptors 20

2.6.3 Kernels for Implicit Descriptors 21

2.7 Drug Discovery Process . 21

2.7.1 Validating Candidate Hits 22

2.7.2 Analysis of Hit Clusters 23

2.7.3 Optimization of Lead Candidates 23

2.8 Computer Aided Drug Discovery 24

2.8.1 Docking . 24

2.8.2 Machine Learning . 25

2.9 Drug Discovery Approaches . 26

2.9.1 Ligand-based Prediction 26

2.9.2 Target-based Prediction 27

iii

2.9.3 Genome-wide Prediction 28

2.10 Ensemble Learning for Genome-wide Interaction Prediction 33

3 Pattern-based Kernel Methods for Protein-chemical Interaction

Prediction 35

3.1 Structure Pattern Mining . 36

3.2 Optimal Assignment Kernel . 36

3.3 Reduced Graph Representation 38

3.4 Pattern-based Descriptors . 39

4 Approximate Alignment Kernel Methods for Protein-chemical

Interaction Prediction 40

4.1 Graph Alignment Kernel . 41

4.2 Simplified Graph Alignment Kernel 42

4.3 Graph Wavelet Analysis . 42

5 Feature Approximations for Protein-chemical Interaction Predic-

tion 48

5.1 Feature Approximation for Structure Alignment 48

5.1.1 Graph Similarity Measurement with Alignment 49

5.1.2 NP-hardness of Graph Alignment Kernel Function 50

5.1.3 Graph Node Alignment Kernel 51

5.1.4 Pattern Diffusion . 53

5.1.5 Pattern Diffusion Kernel and Graph Classification 55

5.2 Feature Approximation for Structure Matching 56

5.2.1 Graph Matching Kernel 57

5.2.2 Graph Pattern Matching Kernel 59

5.2.3 Graph Pattern Matching Kernel with Pattern Diffusion . . 60

5.2.4 Connections of Other Graph Kernels 62

5.2.5 Pattern Diffusion Kernel and Graph Classification 64

6 Bipartite Feature Selection for Protein-chemical Interaction Pre-

diction 66

6.1 Linear Kernels for Tensor Product Feature Selection 67

iv

6.2 Iterative Tensor Product Feature Selection with Integer Quadratic

Programming . 68

6.3 Regularized Logistic Regression for Tensor Product Feature Selection 69

6.4 Coordinate Descent for Regularized Logstic Regression 71

7 Similarity Boosting Studies on Genome-wide Protein-chemical

Interaction Prediction 72

7.1 Background . 72

7.2 Methodology . 75

7.3 Data Sets . 78

7.3.1 Noise Tolerance Data Sets 78

7.3.2 General Performance Data Sets 80

7.4 Experimental Protocols . 81

7.4.1 Parameter Evaluation . 82

7.4.2 Evaluation Metrics . 83

7.4.3 Comparison Methods . 83

7.5 Label Noise Tolerance Results . 84

7.6 General Performance Results . 87

8 Clustered Boosting Studies on Genome-wide Protein-chemical

Interaction Prediction 90

8.1 Background . 91

8.2 Methodology . 93

8.3 Data Sources . 95

8.4 Extracted Features . 96

8.5 Experimental Protocols . 97

8.6 Parameter Selection . 98

8.7 Feature Selection . 99

8.8 Evaluation Metrics . 99

8.9 Comparison Methods . 101

8.10 Results . 101

8.10.1 General Performance Comparisons with Clustered Boosting 101

8.10.2 Performance on Unbalanced Data 102

8.10.3 Parameter Evaluation for Clustered Boosting 104

v

8.10.4 Comparison to Similarity Boosting 105

9 Discussion and Conclusions 107

References 109

vi

List of Figures

2.1 An example chemical structure. 9

2.2 Graph representations of chemicals. 9

2.3 A Database of three labeled graphs. 11

4.1 Two wavelet functions in three dimensions, Mexican hat and Haar. 41

4.2 A chemical graph and hop distances. 46

5.1 A maximum weighted bipartite graph for graph alignment. 52

5.2 The maximum weighted bipartite graph for graph matching. . . . 58

5.3 Example pattern membership functions for GPM kernel. 60

7.1 Prediction accuracy for Nuclear Receptor data in response to train-

ing label noise. 85

7.2 Prediction accuracy for GPCR data in response to training label

noise. 85

7.3 Prediction accuracy for Ion Channel data in response to training

label noise. 86

7.4 Prediction accuracy for Enzyme data in response to training label

noise. 86

8.1 Distribution of information gain scores calculated for features using

entire data set. 100

vii

List of Tables

7.1 Number of total, positive and negative samples in each data set. . 79

7.2 Number of samples and features of each data set. 82

7.3 Number of unique chemicals and proteins in each data set. 82

7.4 Accuracy of several methods at 90% training label noise. Best

result for each data set is marked in bold. 87

7.5 Accuracy for 10 drugbank datasets comparing SimBoost to compet-

ing methods, along with average accuracy for each method. Results

marked in bold are the best for each data set. 87

7.6 Precision for 10 drugbank datasets comparing SimBoost to com-

peting methods, with averages for each method. Results marked in

bold are the best for each data set. 88

7.7 Recall for 10 drugbank datasets comparing SimBoost to competing

methods, with averages for each method. Results marked in bold

are the best for each data set. 89

7.8 Number of data sets where SimBoost performs significantly better

(at the 5% confidence level using ANOVA), for each comparison

method and statistical measure. 89

8.1 Features Calculated by PROFEAT 97

8.2 Amino Acid Attributes and Classes 97

8.3 Comparison of clustered boosting to competing methods for genome-

wide protein chemical interaction prediction, with SVM as a base

model. 102

8.4 Comparison of clustered boosting to competing methods for genome-

wide protein chemical interaction prediction, with näıve bayes as a

base model. 102

viii

8.5 F-measure comparison of clustered boosting to competing methods

as the percentage of positive samples is decreased, with näıve bayes

as the base model. 103

8.6 Accuracy comparison of clustered boosting to competing methods

as the percentage of positive samples is decreased, with näıve bayes

as the base model. 103

8.7 Comparison of clustered boosting models as the number of itera-

tions is changed, with the number of clusters determined by 10-fold

cross-validation on the training data and using näıve bayes as the

base model. 105

8.8 Comparison of clustered boosting models as the number of clusters

is changed, with the number of iterations determined by 10-fold

cross-validation on the training data and using näıve bayes as the

base model. 106

8.9 Comparison of SimBoost and clustered boosting with näıve bayes as

base model for genome-wide protein-chemical interaction prediction

with on a small, balanced selection of samples. 106

9.1 Appendix: Topological descriptiors generated by PROFEAT . . . 118

9.2 Appendix: Topological descriptiors generated by PROFEAT (cont’d)119

9.3 Appendix: Topological descriptiors generated by PROFEAT (cont’d)120

9.4 Appendix: Topological descriptiors generated by PROFEAT (cont’d)121

9.5 Appendix: Topological descriptiors generated by PROFEAT (cont’d)122

ix

Chapter 1

Introduction

Protein-chemical interaction (PCI) prediction for drug discovery has been stud-

ied extensively by researchers for many years [3,29,31]. There exist many relevant

databases [51, 55, 66] as well as features [43, 52, 61, 62] and classifiers [3, 30, 47].

Computational methods for PCI are not competitive with physical experiments

in regards to prediction accuracy, and traditionally play a supportive role in

drug discovery programs. With the availability of large structure and interac-

tion databases, researchers are now aiming their computational tools at screening

molecular libraries against proteins from the entire genome. This approach has

several advantages, such as increased opportunities for hit/lead discovery, drug

repositioning, and insights into the chemical-protein interaction network that

controls all cellular processes. Initial research into such genome-wide screening

efforts leverage existing technologies such as docking and statistical learning, and

the protein-chemical interaction prediction problem has been framed as learning a

bipartite graph which can be seen as a special case of link prediction. The current

approaches are unsatisfactory because they use models that are either strictly local

or strictly global and do not incorporate chemical and protein similarity informa-

1

tion to guide model generation. The work described in this manuscript describes a

genome-wide protein-chemical interaction prediction method that addresses these

shortcomings.

Drug discovery is a well established process consisting of multiple screening

stages followed by tuning and optimization of drug characteristics before begin-

ning clinical trials [25,38]. Of the hundreds of thousands or more compounds that

are examined in initial screens, only a small number will become drug candidates

and even fewer will become drugs. Given the enormous investments required

to develope new drugs, research into computer-based virtual screening techolo-

gies continues to be an area of active interest. The establishment and growth of

databases such as PubcChem and DrugBank ensure that researchers have many

samples of both structures and interactions with which to test and develop com-

petitive methods. Researchers are also equipped with a wide range of features to

represent chemicals, and advances in kernel functions have also produced a num-

ber of embeddings corresponding to implcit features useful for learning complex

structures such as chemicals [16, 30, 47]. Despite access to this ample data and

these powerful computation modelling tools, virtual screening remains a challeng-

ing problem, contributing to the drug design process mostly in a support capacity.

For example, docking is a widely-used method for simulation the physical interac-

tions between a chemical compund and a protein of interest [42]. This method is

highly accurate, yet very resource-intensive, with the main drawback that three-

dimensional structures must be known or simulated for docking to be applied.

For drug-like small chemicals this is not such an issue, but for very large pro-

tein structures the case is different, and the limited number of know structures

prevents this approach from coming into use for genome-wide screening. Another

2

example is traditional qualitative structure activity prediction (QSAR) [24,35,57],

where chemical attributes and substructures are used to infer binding profiles or

other responses of interest, such as absorption, dispersion, metabolism, and excre-

tion (ADME) properties. These ligand-based approaches are limited in that they

focus on only a single protein interaction of interest, and cannot generalize when

only a few ligands are known to bind to a particular protein, again making such

approaches unsuitable for genome-wide screening.

The difficulty of generating comprehensive activity models for many thousands

of compounds owes much to the complexity of chemicals as well as the systems

they interact with. Nevertheless, the rise of informatics methods across biological

disciplines, along with the continued bloom in rich sample and features sets has

continued to encourage research in this area. Current work can be divided into

two categories: those that use a single global model to predict all interactions, and

those that use a series of individual, interaction specific models. Global prediction

[22, 30, 47] utilizes samples that represent protein-chemical interaction pairs. All

known interacting and non-interacting pairs are used to train a machine learning

model to discriminate between the two classes. This approach is straightforward

for screening of interactions between chemical/proteins from one or two related

chemotypes/families. When the diversity of molecules and proteins is greater

however, such as in the case of genome-wide screening, this approach becomes less

attractive since the probability is low that a single model will generalize between

interactions drawn from many different distributions.

Recently, local prediction approaches have emerged in response to global mod-

els [5]. Local model approaches generate a separate model to predict every protein-

chemical interaction independently. The interaction specific model could take a

3

variety of forms such as a docking simulation, or a machine learner. The local

model approach addresses the generalization and accuracy issues mentioned re-

garding global models above, but are still not satisfactory. While not limited by a

single model for all interactions, local approaches fail to leverage the similarities

between proteins and chemicals that are known to exist, and also fail to share pre-

dictions between models. Additionally, local model approaches require a number

of models equal to the number of samples, which is not ideal when screening a

large volume of interactions. A new framework is needed that avoids the use of a

global model and can automatically partition the sample space into well-classified

regions.

The construction of a strong learner through the composition of many weak

learners is a well known strategy in ensemble learning and is has been studied by

many researchers. There are several challenges evident in addressing this prob-

lem and the particular limitations of current work. First of all, considering the

complexity of the protein-chemical interaction space, feature dimensionality in the

hundreds and thousands is not unexpected. Such high dimensionality can pose

trouble for even the best classifiers, and hence developing a method that supports

kernel similarity is key in order to avoid such high dimensional contexts. Second,

the interaction sample space must be covered evenly, but also in such a way that

the assembled models highlight difficult areas. Finally, class distributions and

boundary complexity may change drastically throughout the sample space.

There are many possible approaches to such issues. One way to address them

is through multi-task learning or transfer learning. In these approaches, several

different but related data sets are required, making the segmentation of the sample

space a critical component. There is some natural division in the chemical-protein

4

interaction space by protein families or chemical chemotypes, but there is no clear

division and either expert or automated partition is required. Another approach

is to use a classifier such as k-Nearest Neighbor (kNN), which assumes from the

start that similar samples should be classified similarily. The issue with kNN is

that the prediction can become confused at class boundaries or overlapping ar-

eas, and performance depends on the parameter k; and like other global models,

the optimal parameterization in one region of protein-chemical interaction space

may not be optimal for other regions. Local regression is a statistical technique

that also assumes model locality, but also suffers from a need for either uniform

segmentation (which may not be optimal for model coverage) or expert segmenta-

tion. Additionally, local regression lacks the ability to share information between

models for improved generalization.

Among the many ensemble learning methods available for adaptation to ad-

dress the challenges described above by, Boosting [27, 39] in particular has many

similarities to the local model approach. Boosting constructs a set of individual

models to make predictions targeting a specific subset of samples, and the predic-

tions are combined into an overall model for all samples. The boosting algorithm

is agnostic to model used, and thus models utilizing kernels or requirements are

readily applied. Model coverage and sample space segmentation is guided by ex-

plicitly targeting samples that are currently misclassified. The base learners used

are adapted to specific regions of the sample space, but are still combined into

a weighted model for improved generalization. Boosting differs from local mod-

els in that predictions from each boosting model are used for classifying every

unknown interaction, while in local models the predictions from each model are

used for only a specific interaction. In boosting, variation between specific models

5

is controlled by adjusting a weight distribution over the samples such that ad-

ditional models focus on samples that are poorly classified by previous models.

Thus, while standard boosting draws on many models, it does not leverage any

information regarding similarities between samples to train specialized models.

This work describes several methods based on modified boosting algorithms

that build a moderate number of models that are automatically specialized for

subsets of the overall interaction space. This approach is evaluated using a series

of chemical activity prediction experiments comparing it to competing methods.

Chemical structure data, protein sequence data, as well as chemical-protein in-

teraction data sets are obtained from publicly available repositories. Chemical

features are generated using publicly available software. Feature selection filter

features has been examined as well. Studies have been performed to compare

predictive performance across parameter choices and data sets. Experiment exe-

cution and competing method implementations are handled via the Weka software

package implemented in java. Results from prediction experiments are evaluated

using cross-validation and compared according to accuracy an darea under ROC

curve.

The remainder of this text discusses the research details as follows. First a

background section will describe the drug discovery process with discussion of

target and ligand-based approaches along with wide-scale approaches using large

sets of targets as well as ligands. This section also duscisses background on the

state of virtual screening as well as data fusion for chemical-protein interaction

prediction. Next, a series of chapters describes work on protein-chemical interac-

tion prediction. Finally, the problem of genome-wide protein-chemical interaction

prediction is examined in greater detail and two approaches for ensemble methods

6

tailored for this problem are presented with technical details. Finally, the experi-

mental studies comprehensivly evaluating the new methods are presented and the

results are discussed.

7

Chapter 2

Background and Related Work

While the research described here focuses on finding and testing computational

approches for problems described in general mathematical terms, the solutions are

motived by issues in the fields of biology and pharmaceutical chemistry. Under-

standing the purpose and merit of this research requires understanding the drug

discovery process from which it originated. This section will outline this process,

as well as the role of computer-based techniques used to support and guide it.

2.1 Chemical Structures and Graph Representations

Chemical compounds are organic molecules that are easily modeled by a graph

representation. In this approach, nodes in a graph model atoms in a chemical

structure and edges in the graph to model chemical bonds in the chemical struc-

ture. In this representation, nodes are labeled with the atom element type, and

edges are labeled with the bond type (single, double, and aromatic bond). The

edges in the graph are undirected, since there is no directionality associated with

chemical bonds. Figure 2.1 shows an example chemical structure, where unlabeled

8

Figure 2.1. An example chemical structure.

vertices are assumed to be carbon (C).

Figure 2.2 shows three sample chemical structures on the left, and their graph

representation on the right.

Figure 2.2. Graph representations of chemicals.

9

Let us make some formal definitions regarding the graph representations for

these chemical structures.

Definition 2.1.1 A labeled graph G is a quadruple G = (V,E,Σ, λ) where V

is a set of vertices or nodes and E ⊆ V ×V is a set of undirected edges. Σ is a set

of (disjoint) vertex and edge labels, and λ: V ∪ E → Σ is a function that assigns

labels to vertices and edges. Assume that a total ordering is defined on the labels

in Σ.

Definition 2.1.2 A graph G′ = (V ′, E ′,Σ′, λ′) is subgraph isomorphic to G =

(V,E,Σ, λ), denoted by G′ ⊆ G, if there exists a 1-1 mapping f : V ′ → V such

that

• ∀v ∈ V ′, λ′(v) = λ(f(v))

• ∀(u, v) ∈ E ′, (f(u), f(v)) ∈ E, and

• ∀(u, v) ∈ E ′, λ′(u, v) = λ(f(u), f(v))

.

The function f is a subgraph isomorphism from graph G′ to graph G. It is

said G′ occurs in G if G′ ⊆ G. Given a subgraph isomorphism f , the image of the

domain V ′ (f(V ′)) is an embedding of G′ in G.

Example 2.1.1 Figure 2.3 shows a set of three labeled graphs. The mapping (iso-

morphism) q1 → p3, q2 → p1, and q3 → p2 demonstrates that graph Q is subgraph

isomorphic to P and hence Q occurs in P . Set {p1, p2, p3} is an embedding of Q

in P . Similarly, graph S occurs in graph P but not Q.

10

Figure 2.3. A Database of three labeled graphs.

2.2 Data Formats for Cheminformatics

Many data formats exist for the representation of chemical structures. In gen-

eral these representation formats vary in terms of descriptive richness. Chemical

structures naturally occur as a three-dimensional configuration of atoms connected

by bonds, but are often written as two-dimensional connectivity diagrams, or even

one dimension strings such as a chemical formula. This subsection reviews com-

mon chemical representation formats with attention to the level of information

provided.

The MDL molfile format is a widely used representation (named after the now

defunct company MDL Information Systems that developed the format) that can

encode structural information about a chemical compound [10]. This represen-

tation forms the basis for the better known Structured Data Format (SDF) file

which contains MDL definitions for many appended compounds, along with ad-

ditional name/value pairs of arbitrary tagged information (e.g., physicochemical

properties or metadata) available on a per-compound basis. Along with a chem-

ical identifier and header information, the MDL format lists a set of atoms and

bonds occurring in a particular chemical, with two or three dimensional positions

attached to the atoms, and connectivity information attached to the bonds. The

11

SDF format is very flexible and most software systems that utilize chemical data

will accept this format for import/export.

The Simplified Molecular Line Input Specifications (SMILES) [65] format is

a one-dimensional string representation, constructed in such a way that the two-

dimensional structure of a chemical can be recovered from the one-dimensional

string. This is possible because the atom letters in a SMILES string are ordered

according to a depth-first traversal of the chemical connectivity graph. Addition-

ally, SMILES strings can encode a number of structural and physical properties

of chemicals such as aromaticity, branching, stereochemistry and isotopes.

The Smiles Arbitrary Target Specification) SMARTS [11] is a string-based rep-

resentation of chemicals that extends the SMILES format. The focus of SMARTS

is on substructure specification a modifications to the representation language

that allow SMARTS strings to function not just as molecular encodings, but also

as queries that can be performed against chemical databases. These queries are not

performed on the string representations directly, but rather the SMARTS/SMILES

strings are converted to connectivity graphs and subgraph isomorphism is used as

criteria for matching.

The IUPAC International Chemical Identifier (InChI) [48] is a one-dimensional

string representation of chemicals, developed by the IUPAC and NIST as a world-

wide, human-readable standard for molecular representation. Unique InChI iden-

tifiers are generated from chemical structures by first normalizing the structure to

eliminate redundant information, then unique indices are assigned to atoms and

bonds, and finally converted into a serial string representation. The final string

representation contains several layers of information such as chemical formula and

connectivity, positive/negative atomic charge, stereochemistry, and isotopes.

12

The Chemical Markup Language (CML) [49] is a XML-based schema used to

describe a variety of chemical concepts such as chemicals, reactions, crystal struc-

tures, spectra, and computational chemistry information. CML is noteworthy in

that is was the first attempt by scientists to create a common exchange format for

an entire discipline. The Java Universal Molecular Browser for Objects (JUMBO)

tool is a freely available program for reading and writing CML files, as well as

converting other chemistry file formats into CML. While in development for over

a decade, CML has become part of popular ChemAxon and CambridgeSoft chem-

informatics software, and hence enjoys continued support.

2.3 Protein Databases

The number and size of databases storing protein information have both grown

significantly throughout the last decade. Many different kinds of protein databases

have emerged, each targetting different research purposes and/or organisms. This

section outlines several databases encompassing protein knowledge.

The Protein Data Bank (PDB) [4] is a large, ubiquitous resource similar to

PubChem in the scale of data and amount of use. PDB stores protein sequences

and also focuses on storing the 3D structure of various proteins, often obtaine

dthrough x-ray crystallography. A unique feature of PDB is that many scientific

organizations around the world mandate the submission of published experimental

results to PDB.

The Biomolecular Interaction Network Database (BIND) BIND [21] stores

descriptions of interactions, molecular complexes and pathways. BIND stores

only biological information about proteins, genes and their interactions, and is

structured around so called interaction pairs i.e., two interacting molecules contain

13

information about the molecules and the interaction itself. BIND also provides

the protein interaction datasets in XML format based on the PSI MI standard.

The Munich Information center for Protein Sequences (MIPS) [53] provides

whole genome protein sequence-based information for various model organisms,

integrating a number of databases (each devoted to a specific organism or contex-

tual focus) including: yeast, Neurospora crassa, human, mammalian, Arabidopsis

thaliana, and rice. While distinct, these databases are all comprehensive organism

genome resources. MIPS contains both automatic and manually curated records,

with systematic classification schemes and functional protein annotations.

The Database of Interacting Proteins (DIP) [68] stores protein-protein interac-

tions, including physical associations and chemical reactions and chemical states

of those proteins. DIP represents interactions via a binary interaction scheme, de-

picted schematically with a graph abstraction and a visual navigation tool. DIP

enforces a formal grammar for data specification, but allows description of the

interacting proteins, experimental methods underlying the interaction determi-

nation, quantifies the dissociation constant for physical associations, reports the

amino acid residue ranges for the interaction site and provides references for the

interaction.

The Molecular Interaction Network Database (MINT) [7] is a molecular in-

teractions database assembled from the literature and manual input. In addition

to a simple relational schema for representing binary relations, MINT records in-

formation about protein post-translational modifications, experimental metadata,

cellular location, pathway participation and known complexes. MINT supports

experimental verification of protein-protein interactions, and provides detailed in-

teraction data including kinetic and binding constants and associative domain

14

annotation. MINT uses an automated software system to scan abstracts and sug-

gest literature studies to be manually curated by domain experts. As of March

2011, MINT reported 90290 interactions among 31870 proteins.

2.4 Chemical Databases

Chemical databases have seen growth similar to that of protein databases.

With the increasing amount of high-throughput chemical biology screening results

generated by centers and labs around the world, a number of databases have arisen

to collect, categorize, and manage these results. Typically these databases consist

of two components, 1) a large library of chemical structures, and 2) a set of assay

results linking selections of chemicals compounds to observed bioactivities.

PubChem (http://pubchem.ncbi.nlm.nih.gov) [55] is a large resource of chemi-

cal structure and bioactivity information organized into three affiliated databases:

Compounds, Substances, and BioAssays. PubChem is maintained by the Na-

tional Center for Biotechnology Information (NCBI), part of the NIH Molecular

Libraries Program, and has become a ubiquitous resource for research in chem-

informatics and related fields. As of January 2011, the Substances section of

PubChem contains over 75 million records describing chemical mixtures, extracts,

and complexes, while the Compounds section contains over 31 million records of

well-characterized chemicals. The compound and substance records describe not

only the two-dimensional structures of chemicals, but also compound metadata,

chemical properties and links to bioactivity results and other related compounds.

These structures and other information can be obtained from PubChem in a vari-

ety of common formats such as XML or SDF. The BioAssays section of PubChem

contains results from a number of high-throughput screening programs, cataloging

15

millions of bioactivity endpoints such as toxicity or target inhibition. BioAssay

records contain descriptions of experimental protocols and other relevant infor-

mation along with the specific activity results. PubChem databases are publicly

accessible through a web-based interface that supports a fairly broad range of

query and analysis options, and the raw data and structures can be downloaded

via FTP. PubChem allows voluntary deposition of new records by researchers, and

while depositions are screened by curators, PubChem data is not exhaustively val-

idated.

ChemBank (http://chembank.broad.harvard.edu/) [36] is designed as not only

a database, but also an environment for the analysis of small molecules and their

bioactivity. It was created by the Chemical Biology Program of the Broad Insti-

tute at MIT and Harvard, with funding from the United States National Cancer

Institute. ChemBank is an intensively curated resource with a focus on high-

throughput screening data. As of August 2007 it contained information on more

than 1.2 million unique chemical structures with from at least 2500 assays. In

addition to structure and activity data, ChemBank also calculates more than 300

molecular descriptors and organizes bioassays hierarchically using metadata. It

also offers a suite of analysis tools such as searching by similarity, descriptors, or

substructures, as well as visualization of screening results and chemical-genetic

profiles.

Chemical Entities of Biological Interest (ChEBI) [32], is a database of molec-

ular entities which can refer to chemical structures or mixtures containing any

number of components. Whole molecules as well as molecule fragments, com-

plexes, or even individual atoms are indexed. The criterion for inclusion in the

database is that all of the entities are natural products of organism biology, or can

16

interfere in biological processes (such as toxins or synthetic drugs). Biomolecules

that result from genetic processes (nucleic acids, proteins, etc.) are excluded from

this database. ChEBI uses standard representations and formats from the In-

ternational Union of Pure and Applied Chemistry (IUPAC) and Nomenclature

Committee of the International Union of Biochemistry and Molecular Biology

(NC-IUBMB).

ChemDB [8] is a publicly available database of small molecules. The distin-

guishing feature of this database is that is compiled from the compound collections

maintained by over one hundred industry and public laboratories. Additionally,

ChemDB includes computationally derived predictions and annotations such as

solubility and three-dimensional structure. Currently the ChemDB database con-

tains more than 4.1 million commercially available chemical compounds, with over

8.2 million isomers. Like other drug discovery databases, an important component

of ChemDB is the analysis tools available to visualize and search chemicals and

chemical reactions, among other uses.

2.5 Cheminformatics Databases

There are many publicly available data sources from which to retrive a) chemi-

cal structures, b) protein sequences, c) protein-chemical interactions. While many

of the previously discussed databases can certainly be used in drug discovery

research, there exist several databases specifically designed with drug discovery

in mind. The chemicals stored in these databases are often filtered to contain

molecules that are already FDA approved or drug-like to some extent. Addition-

ally, these databases provide detailed information regarding drug targets as well as

computational tools to guide the drug development process. A few such databases

17

are described here.

DrugBank [66] is a drug discovery database combining detailed target infor-

mation with pharmaceutically relevant drug information. With regards to drug

targets, DrugBank stores raw sequence data, as well as conformational struc-

tures and links to associated pathways and splice variants. The drug information

records contain a number of properties relevant to drug discovery such as mode of

action and pharmacokinetic profile. As of March 2011, Drugbank stores over 6800

records for drugs, with about 1400 of those drugs considered FDA-approved and

about 5200 considered experimental. It also stores over 4400 protein sequences

with links to interacting drugs. DrugBank can be browsed or searched using

textual or similarity based queries. Records are publicly available for download.

DrugBank was developed at the University of Alberta.

BioDrugScreen [40] is a combined web-based drug discovery database and anal-

ysis server. The database portion of the service consists of the Docked Proteome

Interaction Network (DOPIN). The distinguishing feature of DOPIN is that, in

addition to storing chemical-protein and protein-protein interactions, it reports re-

sults from pre-computed docking simulations. These docking scores can be com-

bined with customized scoring functions in order to rank chemical compounds

and their possible targets. The scoring function can be arbitrarily defined to take

into account structural information or other descriptors extracted from existing

databases. BioDrugScreen also offers tools to evaluate the scoring functions and

resulting predictions, and can also perform on demand docking of user-uploaded

molecules against preprocessed targets from the PDB database.

The Therapeutic Target Database (TTD) [67] is a drug-target database fo-

cused on therapeutic applications. It indexes protein and nucleic acid targets,

18

annotating them with information about pathway participation, disease associa-

tion, corresponding drugs and other relevant properties. These records are cross-

referenced with other databases noting sequences, structures, binding affinities,

and clinical results, among other details. TTD is created by the Bioinformatics

and Drug Design Group at the National University of Singapore and currently

contains over 1,900 known, clinical, and research targets and over 5,000 approved,

clinical, and experimental drugs. This set of targets and drugs covers 61 classes

of proteins and 140 classes of drugs. TTD allows searching via textual queries on

multiple fields.

2.6 Biological Descriptors

No matter the chemical-protein interaction approach used, chemical and pro-

tein descriptors or features must first be extracted before a predictive model can

be learned. The features extracted for both protein and chemical domains can

either be represented explicitly or implicitly. In the case of explicit features, ex-

amples include features that represent unstructured numeric properties like mass

or charge [?], or features that represent sequence and graph structured data such

as paths [6, 34], cycles [61], trees [46], and general subgraphs [14]. Fragment-

based features are popular for learning on chemicals structured as graphs [28],

however physicochemical properties are also well studied for interaction predic-

tion [?]. Protein sequences are not as complex as chemicals and hence k-mer [37]

sequence features are popular as well as protein annotations such as from Gene

Ontology. Implicit features computed using a kernel function can take advantage

of any of the previously mentioned features, decomposing complex structured ob-

jects into simpler fragments that are used in the implcit representations. Using

19

this approach, graph kernels based on several types of fragments have been stud-

ied [20, 41, 64].

2.6.1 Numeric Property Descriptors

Perhaps the most common characterization of biological entities is a vector

of numeric property values. In this approach, numeric properties describing a

biological entity (such as a chemical or protein) are collected and used to project

entities into a Euclidean space with dimension equal to the number of properties.

Each entity is described by the same set of properties. There are many different

kinds of numeric properties that can be calculated for chemicals or proteins, and

each property describes the entitiy as a whole. Simple examples of such prop-

erties include total molecule mass, charge, solubility, and other physicochemical

properties. Tools for generating numeric property descriptors for chemicals and

proteins are capable of calculating hundreds of even thousands of such properties.

2.6.2 Structure Fragment Descriptors

While using numeric propery descriptors is widely accepted, the observation

that chemical/protein properties are directly dependant on their corresponding

molecular structure has lead to the use of descriptors that denote presence or ab-

sence of structural fragments in a chemical or protein. Since the space of possible

chemicals structures as well as protein sequences is infinite in theory, indexing all

structure fragment descriptors is not possible. In response to this, descriptors for

fragments up to a specified size may be generated, or else an interesting set of

structure patterns may be mined directly from a set of biological structures.

20

2.6.3 Kernels for Implicit Descriptors

Given the complexity of chemical and protein structures, it can be quite diffi-

cult to capture their essential properties using numeric descriptors. Further, using

structure fragments to index chemicals and proteins is problematic in that it can

be difficult to know a priori what the best set of fragment descriptors is. Using a

large number (hundreds or thousands) of either kind of descriptor can lead to long

model training times as well as poor generalization ability. In response to these

difficulties, many researchers use kernel functions to compute structural similarity

between two chemicals or proteins. Kernel functions are attractive in their ability

to enhance model training and generalization, but are limited in that researchers

do not have direct access to relevant descriptors and hence kernel-based models

lack explanatory capability.

2.7 Drug Discovery Process

The creation of new drugs to treat both new and old diseases a lengthy, risky,

and expensive endeavor. The complexity of this task combined with possible

health risks of new drugs has shaped modern drug design into a rigorous and

well-established practice. There are many different approaches to drug devel-

opment, but traditional non-computational methods typically fall into two cate-

gories: those using drug ligands with known pharmcological activity in order to

design a novel drug, and those that use the 3D structure of a chemical and its

target in order to select drugs with high binding affinity. These techniques are

referred to as liband-based and structure-based approaches, respectively.

Many investigators frame drug discovery using rational drug design whereby

they develope a small molecule that shows the desired activation/inhibition of a

21

biomolecular target with known therapeutic activity. This drug discovery process

consists of several stages in series over which a set of possible drugs is narrowed and

modified until finally a candidate drug is found, or else all possible compounds are

exhausted. The stages of this process, are roughly: target identification and vali-

dation, in which a biological target is isolated and shown to be effective for disease

treatment; screening and lead identification, where a large number of compounds

are screened for activity against the chosen target and promising ”leads” with de-

sired activity are identified; and lead optimization and development, where lead

compounds are modified and tuned into non-toxic, druggable compounds with

the desired target selectivity. Of course these stages may have multiple steps and

are not entirely distinct, but these are the broad strokes. Before approval for

sale, candidate drugs must pass clinical trials, which are themselves a lenghty and

difficult process, though beyond the scope of discussion here.

2.7.1 Validating Candidate Hits

The drug discovery process typically begins with a set of candidate chemicals,

or hits. A hit is a compound that has been shown to have some activity against

a protein or condition of interest. Hits are generated by preliminary experiments,

typically a biological screening experiment but virtual screening may be employed

as well. Screens are typically performed on large libraries of chemicall-diverse com-

pounds, with hits generally falling into one or more chemically related clusters of

compounds. These candidate hit compounds must then be experimentally con-

firmed with more detailed experimentation. Compounds may be re-tested using

the same screening procedure, or a subjected to secondary screening procedures.

One important component of hit confirmation is generation of a dose-response

22

curve where the activity of a compound is quantified relative to it’s concentra-

tion. Hit candidates may also be evaluated according to practical qualities like

ease of synthesis or other development costs. The most promising hits and their

chemically related clusters are selected for further evaluation.

2.7.2 Analysis of Hit Clusters

After validation, hit compounds and clusters are analyzed not only according

to their activity, but also in terms of their potential to be used as a drug. Com-

pounds must be selected according to several important criteria. Cellular toxicity

is one important property that must be minimized. Quantification of ADME

characteristics is another goal of analysis: Absorption (how well can an admin-

istered drug be absorbed by the body), Dispersion (how is a drug distributed

throughout the body and to the target of interest), Metabolism (how quickly is

the drug broken down and what are the relevant properties of the metabolites),

and Excretion (how quickly and through what route is the drug eliminated from

the body). Other properties such as solubility, cell membrane permeability, and

interaction selectivity are considered as well.

2.7.3 Optimization of Lead Candidates

Once hit compounds are analyzed to ensure effective action as a drug, the most

promising compounds are further optimized by synthesizing and testing analogs

or structural variations with different functional groups. Often this process is in-

formed through the analysis of structure-activity relationships in hit compounds

exhibiting desireable drug-like properties. A hit compound that has been suc-

cessfully optimizaed to exhibit all desired drug properties is known as a lead.

23

Lead compounds may be subjected to further analysis and if promising may be

developed for clinical trials.

2.8 Computer Aided Drug Discovery

Before the development and wide-scale adoption of computers and informat-

ics technologies, drug design experiments were carried out strictly in wet labs,

with little automation. When technologies began to mature, however, researchers

quickly developed computer-based tools to aid in the drug design process. This

research has resulted in two distinct approaches (among others): simulation and

machine learning. Simulation or docking involves detailed modeling of the phys-

ical laws and molecular dynamics governing the binding of a specific drug ligand

to a target molecule. Using machine learning, on the other hand, results in a

rapid assessment of target activity for a large number of chemical compounds.

These twos methods address different needs and find utility at different points of

the drug discovery process, with machine learning being used primarily to guide

screening for hit identification at the beginning, while docking can be used later

on to gauge the precise binding activity for a potential drug as well as predict

affects of specific adjustments to a molecule.

2.8.1 Docking

Docking refers to a molecular simulation in which the optimal orientations of

two molecules are found such that a binding event occurs to form a stable molec-

ular complex. The problem can be stated as a search problem, where the search

space is the set of all possible orientations of the two molecules. Of course this

space is much too large to search exhaustively and hence heuristics are necessary.

24

A common approach is to use molecular dynamics to produce orientations result-

ing from known physical laws and processes. Such approaches, know as ab initio

modeling, can produce high quality binding assessments, but accurate physical

simulation requires a large computational investment.

2.8.2 Machine Learning

Machine learning is a broad field of research concerned with building models

that make predictions. The application of such models to drug discovery and other

biomedical domains has received much attention by researchers. This approach

uses sets of descriptors of features to describe a chemical compound, and then

builds a model to predict some target activity.

Chemical features are numeric representations of a non-numeric object (such

as a molecule). Typically, a set of n molecules is represented with m features using

an n by m matrix. Features may be dscrete or continuous. The target activity

of a chemical compound refers to the ability of that compound to physically bind

(reversibly or irreversibly) to the target molecule. Like features, there are two cat-

egories of target activity values: continuous (e.g., weak/medium/strong binding

affinities) and discrete target properties (e.g. active vs. inactive compounds).

The relationship between a chemical compound and its target activity is typi-

cally investigated through a quantitative structure-activity relationship (QSAR).

Abstractly, any QSAR method may be generally defined as a function that maps

a chemical space to an activity space in the form of

P = k̂(D) (2.1)

whereD is a chemical structure, P is a property, and the function k̂ is an estimated

25

mapping from a chemical space to an activity space.

Different QSAR methodologies can be understood in terms of the types of

target property values (continuous or discrete), types of features, and algorithms

that map descriptors to target properties.

2.9 Drug Discovery Approaches

The drug discovery process is not identical in every case. Typically the meth-

ods used to progress through the stages of drug discovery are tailored to the par-

ticular biological considerations at hand and hence some variation is necessary.

This section outlines some genreal approaches to drug discovery from different

standpoints. Ligand-based, target-based, and genome-wide protein-chemical in-

teraction prediction are described.

2.9.1 Ligand-based Prediction

Ligand-based approaches are useful when the activity of some new set of com-

pounds must be deduced using only their similarity to a set of compounds with

known activity. Ligand-based prediction is useful when an interesting chemical

ligand has been identified, often because of observed binding activity to a protein

target, and researchers wish to understand what other protein targets the chemi-

cal might bind to. This is often the case when drug design researchers have found

a promising drug candidate after a round of target-based screening, and wish to

understand the selectivity profile of the candidate. Knowing the selectivity profile

is important for knowing what side-effects a drug may have in a patient, and hence

candidate drugs must be very selective in the targets they bind to. Many such

studies have been performed [25, 38].

26

Analysis of chemicals and activities toward protein targets other responses

first requries a suitable vocabulary for describing those chemicals. Typically this

is accomplished by enumerating sets of numeric attributes of chemicals, these at-

tributes are known as descriptors or features. Many different types of chemical

descriptors exists, from simple chemical weight, to binary values indicating pres-

ence of specific functional groups. The usage of standard sets of features ensures

that analysis of protein-chemical relationships is consistent across experiments

and researchers. The representation of chemicals using features also allows the

application of generalized statistical and machine learning methods to assist in

chemical analysis.

Quantitative structure-activity analysis (QSAR) is a widely used approach in

ligand based protein-chemical interaction prediction that leverages feature-based

representations of chemicals. Many statistical modeling techniques have been

utilized to build QSAR models, such as generalized linear models [63,70], random

forest [56, 60], Support Vector Machines [9, 12], and ensemble methods [1, 69]

among others. In principle, all the aforementioned techniques (and many other

regression and classification methods) can be utilized to construct models for

predicting the interactions of proteins and chemicals if we have a sufficiently large

training data set with high quality features.

2.9.2 Target-based Prediction

Target-based prediction is useful when a specific protein or family of proteins

has been identified as a candidate target, often for treatment of some disease or

condition, and researchers wish to identify all candidate chemical ligands that

bind to the target in order to treat the disease or condition. Many targets have

27

been studied in target-based screening studies such as G-protein coupled recep-

tors GPCRs, kinase-inhibitors, ion channels, and others [5, 29, 71]. Target-based

screening is dominant is drug design methodologies in order to identify possible

candidate drugs to treat a disease. Once proteins have been identified that are rel-

evant to a disease condition, chemical libraries are screened in order to determine

the most promising molecules for treatment.

2.9.3 Genome-wide Prediction

Ligand and target-based approaches typically focus on the activity of a single

protein or chemical against a variety of other proteins or chemicals. This ap-

proach is useful when investigators are interested in a specific protein/chemical

of value. The space of possible protein-chemical interactions is much larger than

the numnber of known interactions, however, and recently the availability of large

amounts of data characterizing numerous chemicals and proteins have made differ-

ent screening approaches possible. Now the opportunity exists to employ methods

for interaction prediction on a much larger scale, where the goal is to predict the

activity of many protein targets against many possible chemical ligands. This

many-to-many approach is able to analyze a much broader range of interactions

and has the potential to reveal many insights into the nature of the genome and

interactome. Thus such genome-wide interaction prediction has received much

interest.

This section summarizes recent work on genome-wide chemical-protein inter-

action, beginning with initial work on global mapping of the interaction space [54]

and efforts to apply existing docking [18] and support vector machine [50] tech-

nologies. More sophisticated kernel methods were later applied [29, 50], and the

28

interaction prediction problem was also formalized as link prediction on a bi-

partite graph [5, 71]. Recent work has focused on visualization of different pro-

tein/chemical data sets in order to understand their overlap, but has not dis-

counted the predictive abilities of such models [59].

Research by Paolini et al. [54] focused on making use of the large-volume of

available protein-chemical interaction data in order to construct a large drug-

target matrix that was as accurate as possible. Their work was driven by a

need to consolidate and manage a large amount of data: 4.8 million chemical

structures (275,000 biologically active), and over 600,000 chemical activity profiles

from Pfizer combined with commercial and other screening data; all totalling 25

years worth of published medicinal chemistry data. This information is used to

construct a polypharmacology network, where proteins are represented as vertices

in a graph, and edges connect protein vertices if they both bind with one or more

of the same molecules. This network reveals many clusters of proteins interacting

with similar chemicals. Besides discovering many interesting properties of this

network, the researchers also constructed predictive models for 698 protein targets

using Laplacian Bayesian classification. The models were trained for each target

using known positive and negative chemical interations and tested on the unknown

interactions. Molecules are represented in the model using fingerprint features that

index chemicals by the presence linear atom sequences. Next, linear discriminant

analysis was used to predict the activity of specific gene families against a set

of compounds. This analysis uses several molecular properties such as molecular

weight, number of hydrogen donor/acceptor bonds, and molecular solubility.

Among these earlier efforts in genome wide in silico interaction prediction

research, Gao et al. [18] developed a natural extension of accepted docking tech-

29

nology to the genome wide interaction prediction problem. Assembling a data set

of 1,055 small molecules drugs and 1,548 binding pockets from 78 unique human

targets, they applied a series of forward and inverse docking experiments. Forward

docking consists of molecular simulations of binding energies of many chemicals to

a single protein. Inverse docking consists of the opposite, where many simulations

of a single chemical are run for docking many different proteins. By performing

both forward and inverse docking for the set of drugs and targets in a library,

the entire network of drug-target interactions can be built, and potential new tar-

gets of know drugs can be discovered, thus potentially minimizing the costly drug

approval process.

Nagamine and Sakakibara [50], following research into genome wide docking

simulations, concluding that such methods are not entirely feasible due to the

limited availability of 3D structural information, although more and more such

information has become available through the years. Approaching the problem

from a machine learning viewpoint, they frame protein-chemical interaction as a

general prediction problem and apply Support Vector Machine technology. Each

protein-chemical interaction becomes a sample in their model, and a feature vector

is built by concatenating both chemical and protein features. These include chemi-

cal path frequencies, mass spectrum fragment and gap intensities, and amino acid

sequence signature clusters. Large scale experiments were conducted on Drug-

Bank data using 519 approved drugs and 291 associated targets, with 980 known

interacting pairs. The method is further validated using experiments with the

single drug MDMA against 13,487 human proteins, producing several biologically

correct predictions.

Jacob et al. [29] refined the machine learning approaches with the incorpora-

30

tion of many kernel functions to investigate genome wide interaction prediction

for investigation of G-protein coupled receptors, which is a protein superfamily

containing a large number of known therapeutic targets. Their goal was to dis-

cover novel chemical ligands for known and unknown GPCR targets, and followed

previous machine learning approaches by utilizing a Support Vector Machine clas-

sifier. Their contribution, however, to this approach is the thorough investigation

of kernel functions to embed protein-chemical interactions in an implicity defined

space that avoids high dimensional representations. They investigate several ker-

nel functions for both chemicals and proteins, and combine the two using a product

kernel. Jacob and Vert later extend the work on kernel functions for genome-wide

protein-chemical interaction prediction from the GPCR protein superfamily to

both enzymes and ion channel proteins.

Yamanishi et al. [71] also focus on prediction of small molecule interactions

against several families of human proteins: enzymes, ion channels, GPCRs, and

nuclear receptors. The contribution of this work is in the formalization of the

protein-chemical interaction prediction as a supervised learning problem on a bi-

partite graph where each chemical is represented as a vertex in one partition, and

every protein is represented as a vertex in the other partition. Kernel functions

are used to embed chemicals and proteins into separate chemical/genomic spaces,

and then combined so that both chemicals and proteins inhabit a shared pharma-

cological space. In this pharmacological space, interacting chemicals and proteins

are near each other and thus interactions between new proteins and chemicals can

be predicted by examining their distance in the pharmacological space.

Bleakley and Yamanishi [5] build on the concept of using a bipartite graph

model to predict genome-wide protein-chemical interactions. The contribution

31

of this work is in the notion of a local models where many interaction specific

models are built, instead of the typical paradigm where a single model is used to

predict all interactions. The bipartite local model approach predicts an interaction

between a protein and chemical by first building a model for the chemical against

all known proteins, and then for the protein against all known chemicals, thus

generating two predictions for the interaction. The process is repeated for each

interaction. A support vector machine classifier is used for each of the individual

models. Like earlier work, the approach is tested and validated on four protein

family datasets, enzymes, ion channels, GPCRs, and nuclear receptors. Several

literature-confirmed predictions are reported.

Following the work on genome wide protein chemical interaction prediction,

Strombergsson and Kleywegt [59] shift the focus somewhat from prediction to vi-

sualization of protein-chemical spaces, although they also comment on how their

approach can be used to identify interaction complexes in the protein-chemical

space. They compared two datasets, one from the DrugBank database and the

second from the PDB database in order to visualize the differences between the

distribution of protetin-chemical interactions in each. Proteins are represented us-

ing sequence features such as composition, order, and physicochemical properties;

chemicals are represented with a wide variety of features such as molecular prop-

erties, fingerprints, functional group presence, etc. Principle component analysis

is used to visualize the overlap of the two datasets in 3 dimensions using protein

features, chemical features, and the concatentation of both feature sets. Overlap

is quantified by measuring the percentage of nearest neighbors of each point that

are from each database. Nearest neighbor analysis is also used to make predic-

tions about new protein chemical interactions, by classifying an interaction in the

32

protein-chemical space according to the classes of the nearest interactions.

2.10 Ensemble Learning for Genome-wide Interaction

Prediction

Some of the most recent work in genome-wide protein chemical interaction

prediction has focused on ensemble methods built from local models that make

predictions about a small region of interaction space. This approach is well moti-

vated, since it is unlikely that a single model can generalize to make predictions

regarding many diverse protein families and chemotypes. There are several issues

with this current work on interaction prediction, and the research described in this

section aims to address each of these issues. Boosting is examined as a generable

ensemble learning framework, under which two modifications are made: 1) adjust

sample reweighting based on sample similarity as well as misclassification, and 2)

weight model predictions based on sample similarity as well, so that models make

predictions only for samples most similar to previous samples that were correctly

classified.

The approach proposed in [5] using local models strongly resembles the use

of ensemble methods in which a number of weakly performing classifiers are or-

ganized in such a way that their predictions can be combined into a strongly

performing classifier. In the previous approach, a local model for each unknown

protein-chemical interaction is built using only known samples that share a pro-

tein or chemical with the unknown interaction. This method is analogous to an

ensemble approach where each model makes a prediction for only a single sample,

and is built using only the most relevant data to that sample. For genome-

wide protein-chemical interaction prediction, local models are useful because the

33

chemical-protein interaction space is large and built from a diverse number of

protein families as well as chemotypes. Partitioning that space into more ho-

mogenous segments and building specialized models for each segment is a much

more reasonable approach than attempting to build a single model to make pre-

dictions predictions across all interactions. The drawback of using local models is

that each model is too specialized, and broader similarities between samples are

ignored during both learning and prediction. Further, known ensemble learning

approaches have not been explored in this context.

34

Chapter 3

Pattern-based Kernel Methods

for Protein-chemical Interaction

Prediction

Traditional approaches to graph similarity rely on the comparison of com-

pounds using a variety of molecular attributes known a priori to be involved in

the activity of interest. Such methods are problem-specific, however, and pro-

vide little assistance when the relevant descriptors are not known in advance.

Additionally, these methods lack the ability to provide explanatory information

regarding what structural features contribute to the observed chemical activity.

The method described here, referred to as OAPD for Optimal-Assignment with

Pattern-based Descriptors, alleviates both of these issues through the mining and

analysis of structural patterns present in the data in order to identify highly dis-

criminating patterns, which then augment a graph kernel function that computes

molecular similarity.

35

3.1 Structure Pattern Mining

The frequent subgraph mining problem can be phrased as such: given a set of

labeled graphs, the support of an arbitrary subgraph is the fraction of all graphs in

the set that contain that subgraph. A subgraph is frequent if its support meets a

certain minimum threshold. The goal is to enumerate all the frequent, connected

subgraphs in a graph database. The extraction of important subgraph patterns

can be controlled by selecting the proper frequency threshold, as well as other

parameters such as size and density of subgraph patterns.

3.2 Optimal Assignment Kernel

The optimal assignment kernel function computes the similarity between two

graph structures. This similarity computation is accomplished by first represent-

ing the two sets graph vertices as a bipartite graph, and then finding the set of

weighted edges assigning every vertex in one graph to a vertex in the other. The

edge weights are calculated via a recursive vertex similarity function. This section

presents the equations describing this algorithm in detail, as discussed by Frölich

et al [16]. The top-level equation describing the similarity of two molecular graphs

is:

kA(M1,M2) := maxπ

m
∑

h=1

knei(vπ(h), vh) (3.1)

Where π denotes a permutation of a subset of graph vertices, and m is the

number of vertices in the smaller graph. This is needed to assign all vertices of the

smaller graph to vertices in the large graph. The knei function, which calculates

the similarity between two vertices using their local neighbors, is given as follows:

36

knei(v1, v2) := kv(v1, v2) + R0(v1, v2) + Snei(v1, v2) (3.2)

Snei(v1, v2) :=
L
∑

l=1

γ(l)Rl(v1, v2) (3.3)

The functions kv and ke compute the similarity between vertices (atoms) and

edges (bonds), respectively. These functions could take a variety of forms, but in

the OA kernel they are RBF functions between vectors of vertex/edge labels.

The γ(l) term is a decay parameter that weights the similarity of neighbors

according to their distance from the original vertex. The l parameter controls

the topological distance within which to consider neighbors of vertices. The Rl

equation, which recursively computes the similarity between two specific vertices

is given by the following equation:

Rl(v1, v2) =
1

|v1||v2|

∑

i,j

Rl−1(ni(v1), nj(v2)) (3.4)

Where |v| is the number of neighbors of vertex v, and nk(v) is the set of

neighbors of v. The base case for this equation is R0, defined by:

R0(v1, v2) :=
1

|v1|
maxπ

|v2|
∑

i=1

(kv(a, b)|ke(x, y)) (3.5)

a = nπ(i)(v1), b = ni(v2) (3.6)

x = v1 → nπ(i)(v1), y = v2 → ni(v2) (3.7)

The notation v → ni(v) refers to the edge connecting vertex v with the ith

neighboring vertex. The functions kv and ke are used to compare vertex and edge

37

descriptors, by counting the total number of descriptor matches.

3.3 Reduced Graph Representation

One way in which to utilize the structure patterns that are mined from the

graph data is to collapse the specific subgraphs into single vertices in the original

graph. This technique is explored by Frölich et al. [17] with moderate results,

although they use predefined structure patterns, so called pharmacophores, iden-

tified a priori with the help of expert knowledge. The method described here

ushers these predefined patterns in favor of the structure patterns generated via

frequent subgraph mining.

The use of a reduced graph representation does have some advantages. First,

by collapsing substructures, an entire set of vertices can be compared at once,

reducing the graph complexity and marginally decreasing computation time. Sec-

ond, by changing the substructure size the resolution at which graph structures

are compared can be adjusted. The disadvantage of a reduced graph representa-

tion is that substructures can only be compared directly to other substructures,

and cannot align partial structure matches. As utilized in Frölich et al., this is

not as much of a burden since they have defined the best patterns a priori using

expert knowledge. In the case of the method presented here, however, this is a

significant downside, as there is no a priori knowledge to guide pattern generation

and we wish to retain as much structural information as possible.

38

3.4 Pattern-based Descriptors

The loss of partial substructure alignment following the use of a reduced graph

representation motivated us to find another way of integrating this pattern-based

information. Instead of collapsing graph substructures, vertices are simply anno-

tated with additional descriptor labels indicating the vertex’s membership in the

structure patterns that were previously mined. These pattern-based descriptors

are calculated for each vertex and are used by the optimal assignment kernel in

the same way that other vertex descriptors are handled. In this way substructure

information can be captured in the graph vertices without needing to alter the

original graph structure.

39

Chapter 4

Approximate Alignment Kernel

Methods for Protein-chemical

Interaction Prediction

The following sections outline algorithms for approximate graph alignment.

This method measures the similarity of graph structures whose nodes and edges

have been labeled with various features. These features represent different kinds of

chemical structure information including atoms and chemical bonds types among

others. To compute the similarity of two graphs, the nodes of one graph are

aligned with the nodes of the second graph, such that the total overall similarity

is maximized with respect to all possible alignments. Vertex similarity is mea-

sured by comparing vertex descriptors, and is computed recursively so that when

comparing two nodes, the immediate neighbors of those nodes are also compared,

and the neighbors of those neighbors, and so on.

40

Figure 4.1. Two wavelet functions in three dimensions, Mexican
hat and Haar.

4.1 Graph Alignment Kernel

An alignment of two graphs G and G′ (assuming |V [G] ≤ |V [G′]|) is a 1-1

mapping π : V [G] → V [G′]. Given an alignment π, define the similarity between

two graphs, as measured by a kernel function kA, below:

kA(G,G
′) := maxπ

∑

v∈V [G] kn(v, π(v))+

∑

u,v ke((u, v), (π(u), π(v)))
(4.1)

The function kn is a kernel function to measure the similarity of nodes and

the function ke is a kernel function to measure the similarity of edges. Intuitively,

equation 4.1 use an additive model to compute the similarity between two graphs

by computing the sum of the similarity of nodes and the similarity of edges.

The maximal similarity among all possible alignments is defined as the similarity

between two graphs.

41

4.2 Simplified Graph Alignment Kernel

A direct computation of the graph alignment kernel is computationally inten-

sive and is unlikely to be scalable to large graphs. With no surprise, the graph

alignment kernel computation is no easier than the subgraph isomorphism prob-

lem, a known NP-hard problem 1. To derive efficient algorithms scalable to large

graphs, the graph kernel function is simplified with the following formula:

kM(G,G′) = max
π

∑

v∈V [G]

ka(f(v), f(π(v))) (4.2)

Where π : V [G] → V [G′] denotes an alignment of graph G and G′. f(v) is a

set of features associated with a node that not only include node features but also

include information about topology of the graph where v belongs to.

Equation 4.2, computes a maximal weighted bipartite graph, which has an

efficient solution known as the Hungarian algorithm. The complexities of the

algorithm is O(|V [G]|3). See [17] for further details.

Provided below is an efficient method, based on graph wavelet analysis, to

create features to capture the topological structure of a graph.

4.3 Graph Wavelet Analysis

Originally proposed to analyze time series signals, wavelet analysis transforms

a series of signals to a set of summaries with different scale. Two of the key

insights of wavelet analysis of signals are (i) using localized basis functions and (ii)

1Formally, showing a reduction from the graph alignment kernel to the subgraph isomorphism
problem is needed. The details of such reduction are omitted due to their loose connection to
the main theme of the current paper, which is advanced data mining approach as applied to
cheminformatics applications

42

analysis with different scales. Wavelet analysis offers efficient tools to decompose

and represent a function with arbitrary shape [13, 19]. Since invented, wavelet

analysis has quickly gained popularity in a wide range of applications outside

time series data, such as image analysis and geography data analysis. In all these

applications, the level of detail, or scale is considered as an important factor in

data comparison and compression. Figure 4.1 shows two examples of wavelet

functions in a 3D space, the Haar and Mexican Hat.

Intuition. With wavelet analysis as applied to graph representations chemical

structure, for each atom, features about the atom and its local environment are

collected at different scales. For example, information can be collected about the

average charge of an atom and it’s surrounding atoms, then assign the average

value as a feature to the atom. Information can also be collected about whether

an atom belongs to a nearby functional group, whether the surrounding atoms of

a particular atom belong to a nearby functional group, and the local topology of

an atom to its nearby functional groups.

In summary, conceptually the following two types of insights are gained about

the chemicals after applying wavelet analysis to graph represented chemical struc-

ture:

• Analysis with varying levels of scale. Intuitively, at the finest level, two

chemical structures are compared by matching the atoms and chemical

bonds in the two structures. At the next level, comparison of two regions is

performed (e.g. chemical functional groups). At an even coarser level, small

regions may be grouped into larger ones (e.g. pharmacophore), and two

chemicals are compared by matching the large regions and the connections

43

among large regions.

• Non-local connection. In a chemical structure, two atoms that are not di-

rectly connected by a chemical bond may still have some kind of interaction.

Therefore when comparing two graphs and their vertices cannot depend only

on the local environment immediately surrounding an atom, but rather must

consider both local and non-local environment.

Though conceptually appealing, current wavelet analysis is often limited to

numerical data with regularly structures such as matrices and images. Graphs,

however, are arbitrarily structured and may represent innumerable relationships

and topologies between data elements. In order to define a reasonable graph

wavelet functions, the following two important concepts are introduced:

• h-hop neighborhood

• Discrete wavelet functions

The former, h-hop neighborhood, is essentially used to project graphs from a

high dimensional space with arbitrary topology into a Euclidean space suitable

for operation with wavelets. The h-hop measure defines a distance metric between

vertices that is based on the shortest path between them. The discrete wavelet

function then operates on a graph projection in the h-hop Euclidean space to

compactly represent the information about the local topology of a graph. It is the

use of this compact wavelet representation in vertex comparison that underlies the

complexity reduction achieved by this method. Based on the h-hop neighborhood,

a discrete wavelet function is used to summarize information in a local region of

a graph and create features based on the summarization. These two concepts are

discussed in detail below.

44

h-hop neighborhood In this section the following definitions are introduced.

Definition 4.3.1 Given a node v in a graph G the h-hope neighborhood of

v, denoted by Nh(v), is the set of nodes that are (according to the shortest path)

exactly h hops away from v.

For example if h = 0, then N0(v) = v and if h = 1, then N1(v) = {u|(u, v) ∈

E[G]}.

Here fv denotes the feature vector associated with a node v in a graph G. |f | is

the feature vector length (number of features in the feature vector). The average

feature measurement, denoted by f j(v) for nodes in Nj(v) is

f j(v) =
1

|Nj(v)|

∑

u∈Nj(v)

fu (4.3)

Example 4.3.1 The left part of the Figure 4.2 shows a chemical graph. Given a

node v in the graph G, label the shortest distance of nodes to v in the G. In this

case N0(v) = v and N1(v) = {t, u}. If the feature vector contains a single feature

of atomic number, f 1(v) is the average atomic number of atoms that are at most

1-hop away from v. In this case, since N1(v) = {t, u} and {t, u} are both carbon

with atomic number equal to eight, then f 1(v) is equal to eight as well.

4.3.0.1 Discrete wavelet functions

In order to adapt a wavelet function to discrete structure such as graphs, a

wavelet function ψ(x) must be applied to the h-hop neighborhood. Towards that

end, a wavelet function ψ(x) (such as the Haar, or Mexican Hat) can be scaled

to have support on the domain [0, 1), with integral 0, and partition the function

45

Figure 4.2. A chemical graph and hop distances.

into h+ 1 intervals. Then compute the average, ψj,h, as the average of ψ(x) over

the jth interval, 0 ≤ j ≤ h as below.

ψj,h ≡
1

h+ 1

∫ (j+1)/(h+1)

j/(h+1)

ψ(x)dx (4.4)

With neighborhood and discrete wavelet functions, wavelet analysis can be

applied to graphs. This analysis is called wavelet measurements, denoted by Γh(v),

for a node v in a graph G at scale up to h > 0.

Γh(v) = Ch,v ∗
h

∑

j=0

ψj,h ∗ f j(v) (4.5)

where Ch,v is a normalization factor with C(h, v) = (
∑h

j=0

ψ2
j,h

|Nk(v)|
)−1/2

Define Γh(v) as the sequence of wavelet measurements as applied to a node v

with scale value up to h. That is Γh(v) = {Γ1(v),Γ2(v), . . . ,Γh(v)}. Call Γ
h(v) the

wavelet measurement vector of node v. Finally insert the wavelet measurement

46

vector into the alignment kernel with the following formula.

kΓ(G,G
′) = max

π

∑

v∈V [G]

ka(Γ
h(v),Γh(π(v))) (4.6)

where ka(Γ
h(v),Γh(π(v)) is a kernel function defined on vectors. Two popular

choices are linear kernel and radius based function kernel.

Example 4.3.2 The right part of Figure 4.2 shows a chemical graph overlayed

with a wavelet function centered on a specific vertex. It is clear how the wavelet

is most intense at the central vertex, hop distance of zero, corresponding to a

strongly positive region of the wavelet function. As the hop distance increases

the wavelet function becomes strongly negative, roughly at hop distances of one

and two. At hop distance greater than two, the wavelet function returns to zero

intensity, indicating negligible contribution from vertices at this distance.

47

Chapter 5

Feature Approximations for

Protein-chemical Interaction

Prediction

This chapter discusses approximations for chemical structure features in the

context of both structure alignment and matching. In both approaches, chem-

ical features describing elements of chemical structures (such as specific atom

properties or membership of atoms in structure fragment features) are diffused

throughout the chemical graph, allowing for more relaxed alignment and match-

ing of chemical structures.

5.1 Feature Approximation for Structure Alignment

The work presented in this chapter aims to leverage existing frequent pat-

tern mining algorithms and explore the application of kernel classifiers in building

highly accurate graph classification algorithms. Towards that end, a technique

48

is demonstrated called graph pattern diffusion kernel (GPD). In this method, all

frequent patterns are first identified from a graph database. Then subgraphs are

mapped to graphs in the graph database and nodes of graphs are projected to

a high dimensional space with a specially designed function. Finally a graph

alignment algorithm is used to compute the inner product of two graphs. This

algorithm is tested using a number of chemical structure data sets. The experi-

mental results demonstrate that this method is significantly better than competing

methods such as those based on paths, cycles, and other subgraphs.

Here the design of the pattern diffusion kernel is presented. The section begins

by first presenting a general framework. It is proved, through a reduction to

the subgraph isomorphism problem, that the computational cost of the general

framework can be prohibitive for large graphs. The pattern based graph alignment

kernel is then presented. Finally a technique is shown called “pattern diffusion”

that can significantly improve graph classification accuracy in practice.

5.1.1 Graph Similarity Measurement with Alignment

An alignment of two graphs G and G′ (assuming |V [G]| ≤ |V [G′]|) is a 1-1

mapping π : V [G] → V [G′]. Given an alignment π, define the similarity between

two graphs, as measured by a kernel function kA, below:

kA(G,G
′) = max

π

∑

v

kn(v, π(v)) +
∑

u,v

ke((u, v), (π(u), π(v))) (5.1)

The function kn is a kernel function to measure the similarity of node labels

and the function ke is a kernel function to measure the similarity of edge labels.

Equation 5.1 uses an additive model to compute the similarity between two graphs.

The maximal similarity among all possible mappings is defined as the similarity

49

between two graphs.

5.1.2 NP-hardness of Graph Alignment Kernel Function

It is no surprise that computing the graph alignment kernel is an NP-hard

problem. It is proved this with a reduction from the graph alignment kernel

to the subgraph isomorphism problem. In the following paragraphs, assuming

there exists an efficient solver of the graph alignment kernel problem, it is shown

that the same solver can be used to solve the subgraph isomorphism problem

efficiently. Since the subgraph isomorphism problem is an NP-hard problem, with

the reduction mentioned before, it is proved that the graph alignment kernel

problem is therefore an NP-hard problem as well. Note: this subsection is a

stand-alone component of this work, and readers who choose to skip this section

should encounter no difficulty in reading the rest of the text.

Given two graphs G and G′ (for simplicity, assume nodes and edges in G and

G′ are not labeled as usually studied in the subgraph isomorphism problem), use

a node kernel function that returns a constant 0. Define an edge kernel function

ke : V [G]× V [G]× V [G′]× V [G′]→ R as

ke((u, v), (u
′, v′)) =











1 if (u, v) ∈ E[G] and (u′, v′) ∈ E[G′]

0 otherwise

With the constant node function and the specialized edge function, the kernel

function of two graphs is simplified to the following format:

kA(G,G
′) = max

π

∑

u,v

ke((u, v), (π(u), π(v))) (5.2)

The NP-hardness of the graph alignment kernel is established with the follow-

50

ing theorem.

Theorem 5.1.1 Given two (unlabeled) graphs G and G′ and the edge kernel

function ke defined previously, G is subgraph isomorphic to G′ if and only if

Ka(G,G
′) = |E[G]|

Proof 5.1.1 If: notice from the definition of ke that the maximal value ofKa(G,G
′)

is |E[G]|. Given Ka(G,G
′) = |E[G]|, it is claimed that there exists an alignment

function π : V [G] → V [G′] such that for all (u, v) ∈ E[G], (π(u), π(v)) ∈ E[G′].

The existence of such a function π guarantees that graph G is a subgraph of G′.

Only if: Given G is a subgraph of G′, there is an alignment function π :

V [G] → V [G′] such that for all (u, v) ∈ E[G], (π(u), π(v)) ∈ E[G′]. According to

Equation 5.2, Ka(G,G
′) = |E[G]|.

Theorem 5.1.1 shows that the graph alignment kernel problem is no easier than

the subgraph isomorphism problem and hence is at least NP-hard in complexity.

5.1.3 Graph Node Alignment Kernel

To derive an efficient algorithm scalable to large graphs, the idea is that a

function f is used to map nodes in a graph to a high (possibly infinite) dimensional

feature space that captures not only the node label information but also the

neighborhood topological information around the node. If such a function f is

obtained, the graph kernel function may be simplified with the following formula:

kM(G,G′) = max
π

∑

v∈V [G]

kn(f(v), f(π(v))) (5.3)

51

Where π : V [G] → V [G′] denotes an alignment of graph G and G′. f(v) is a

set of “features” associated with a node.

With this modification, the optimization problem that searches for the best

alignment can be solved in polynomial time. To derive a polynomial running time

algorithm, a weighted complete bipartite graph is constructed by making every

node pair (u,v) ∈ V [G] × V [G′] incident on an edge. The weight of the edge

(u,v) is kn(f(v), f(u)). Figure 5.1, shows a weighted complete bipartite graph for

V [G] = {v1, v2, v3} and V [G
′] = {u1, u2, u3}. Highlighted edges (v1, u2), (v2, u1),

(v3, u3) have larger weights than the rest of the edges (dashed).

With the bipartite graph, a search for the best alignment becomes a search

for the maximum weighted bipartite subgraph from the complete bipartite graph.

Many network flow based algorithms (e.g. linear programming) can be used to

obtain the maximum weighted bipartite subgraph. The Hungarian algorithm is

used with complexity O(|V [G]|3). For details of the Hungarian algorithm see [2].

Kn(v2,u1)

v1

v2

v3

u1

u2

u3

Kn(v1,u2)

Kn(v3,u3)

Figure 5.1. A maximum weighted bipartite graph for graph align-
ment.

Applying the Hungarian algorithm to graph alignment was first explored by

[17] for chemical compound classification. In contrast to their algorithm, which

52

utilized domain knowledge of chemical compounds extensively and developed a

complicated recursive function to compute the similarity between nodes, a new

framework is developed here that maps such nodes to a high dimensional space

in order to measure the similarity between two nodes without assuming any do-

main knowledge. Even in cheminformatics, experiments show that this technique

generates similar and sometimes better classification accuracies compared to the

method reported in [17].

Unfortunately, using the Hungarian algorithm for assignment, as used by [17]

is not a true Mercer kernel. Since the kernel function described here uses this

algorithm as well, it is also not a Mercer kernel. Like in [17], however, practically

this kernel still performs competitively.

5.1.4 Pattern Diffusion

This section introduces a technique “pattern diffusion” to project nodes in a

graph to a high dimensional space that captures both node labeling information

and local topology information. This design has the following advantages as a

kernel function:

• The design is generic and does not assume any domain knowledge from a

specific application. The diffusion process may be applied to graphs with

dramatically different characteristics.

• The diffusion process is straightforward to implement and can be computed

efficiently.

• It is proved that the diffusion process is related to the probability distribu-

tion of a graph random walk (in Appendix). This explains why the simple

53

process may be used to summarize local topological information.

Below, the pattern diffusion kernel is outlined in three steps.

In the first step, a seed is identified as a starting point for the diffusion. In

this design, a “seed” could be a single node, or a set of connected nodes in the

original graph. In the experimental study, frequent subgraphs are used for seeds

since a seed can easily be compared from one graph to a seed in another graph.

However, there is no requirement that frequent subgraphs must be used.

In the second step given a set of nodes S as seed, recursively define ft in the

following way.

The base f0 is defined as:

f0(u) =











1/|S| if u ∈ S

0 otherwise

Given some time t, define ft+1 (t ≥ 0) with ft in the following way:

ft+1(v) = ft(v)× (1−
λ

d(v)
) +

∑

u∈N(v)

ft(u)×
λ

d(u)
(5.4)

In the notation, N(v) is the set of nodes that connects to v directly. d(v) is the

node degree of v, or d(v) = |N(v)|. λ is a parameter that controls the diffusion

rate.

The formula 5.4 describes a process where each node distributes a λ fraction

of its value to its neighbors evenly and in the same way receives some value from

its neighbors. Call it “diffusion” because the process simulates the way a value

is spreading in a network. The intuition is that the distribution of such a value

encodes information about the local topology of the network.

54

To constrain the diffusion process to a local region, one parameter called dif-

fusion time is used, denoted by τ , to control the diffusion process. Specifically the

diffusion process is limited to a local region of the original graph with nodes that

are at most τ hops away from a node in the seed S. For this reason, the diffusion

is referred to as “local diffusion”.

Finally, for the seed S, define the mapping function fS as the limit function

of ft as t approaches to infinity, or

fS = lim
t→∞

ft (5.5)

5.1.5 Pattern Diffusion Kernel and Graph Classification

This section summarizes the discussion of kernel functions and shows how

they are utilized to construct an efficient graph classification algorithm at both

the training and testing phases.

5.1.5.1 Training Phase

In the training phase, divide graphs of the training data set D = {(Gi, Ti,)}
n
i=1

into groups according to their class labels. For example in binary classification,

there are two groups of graphs: positive or negative. For multi-class classification,

there are multiple groups of graphs where each group contains graphs with the

same class label. The training phase is composed of four steps:

• Obtain frequent subgraphs for seeds. Identify frequent subgraphs from each

graph group and union the subgraph sets together as the seed set S.

• For each seed S ∈ S and for each graph G in the training data set, use

fS to label nodes in G. Thus the feature vector of a node v is a vector

55

LV = {fSi
(v)}mi=1 with length m = |S|.

• For two graphs G,G′, construct the complete weighted bipartite graph as

described in section 5.1.3 and compute the kernel Ka(G,G
′) using Equation

5.3.

• Train a predictive model using a kernel classifier.

5.1.5.2 Testing Phase

In the testing phase, the kernel function is computed for graphs in the testing

and training data sets. The trained model is used to make predictions about

graph in the testing set.

• For each seed S ∈ S and for each graph G in the testing data set, fS is used

to label nodes in G and create feature vectors as done in the training phase.

• Equation 5.3 computes the kernel function Ka(G,G
′) for each graph G in

the testing data set and for each graph G′ in the training data set.

• Use kernel classifier and trained models to obtain prediction accuracy of the

testing data set

5.2 Feature Approximation for Structure Matching

This section expands on the GPD kernel presented in the previous section, by

defining a similar kernel function that uses a matching-based set kernel instead of

an alignment kernel. This method is termed a Graph Pattern Matching (GPM)

kernel. The advantage of this modification is that the GPM kernel, unlike GPD,

is guaranteed to be positive semi-definite, and hence a true Mercer kernel. This

56

algorithm was tested using 16 chemical structure data sets. The experimental re-

sults demonstrate that this method outperforms existing state-of-the-art methods

with a large margin.

This section presents the design of a graph matching kernel with diffusion. The

section begins by first presenting a general framework for graph matching. Then

the pattern based graph matching kernel is presented. Finally a technique called

“pattern diffusion” is discussed that significantly improves graph classification

accuracy in practice.

5.2.1 Graph Matching Kernel

To derive an efficient algorithm scalable to large graphs, a function Γ : V → R
n

is used to map nodes in a graph to a n dimensional feature space that captures not

only the node label information but also the neighborhood topological information

around the node. If there is such a function Γ, the following graph kernel may be

defined:

Km(G,G
′) =

∑

(u,v)∈V [G]×V [G′]

K(Γ(u),Γ(v)) (5.6)

K can be any kernel function defined in the co-domain of Γ. This function Km

is called a graph matching kernel. The following theorem indicates that Km is

symmetric and positive semi-definite and hence a real kernel function.

Theorem 5.2.1 The graph matching kernel is symmetric and positive semi-definite

if the function K is symmetric and positive semi-definite.

Proof sketch: the matching kernel is a special case of the R-convolution kernel

and is hence positive semi-definite as proved in [45].

57

The kernel function can be visualized by constructing a weighted complete bi-

partite graph: connecting every node pair (u,v) ∈ V [G]×V [G′] with an edge. The

weight of the edge (u,v) is K(Γ(v),Γ(v)). Figure 5.2 shows a weighted complete

bipartite graph for V [G] = {v1, v2, v3} and V [G′] = {u1, u2, u3}. Highlighted edges

(v1, u2), (v2, u1), (v3, u3) have larger weights than the rest of the edges (dashed).

Kn(v2,u1)

v1

v2

v3

u1

u2

u3

Kn(v1,u2)

Kn(v3,u3)

Figure 5.2. The maximum weighted bipartite graph for graph
matching.

From the figure it can be seen that if two nodes are quite dissimilar, the weight

of the related edge is small. Since dissimilar node pairs usually outnumber similar

node pairs, if a linear kernel is used for nodes, kernel function may be noisy and

hence lose the signal. In this design, the RBF kernel function is used, as specified

below, to penalize dissimilar node pairs.

K(X, Y) = e
−||X−Y ||22

2 (5.7)

where ||X||22 is the squared L2 norm of a vector X .

58

5.2.2 Graph Pattern Matching Kernel

One way to design the function Γ is to take advantage of frequent patterns

mined from a set of graphs. Intuitively if a node belongs to a subgraph F , there

is some information about the local topology of the node. Following the intuition,

given a node v in a graph G and a frequent subgraph F , a function ΓF is designed

such that

ΓF (v) =











1 if u belongs an embedding of F in G

0 otherwise

The function ΓF is called a “pattern membership function” since this function

tests whether a node occurs in a specific subgraph feature (“membership to a

subgraph”).

Given a set of frequent subgraphs F = F1, F2, . . . , Fn, each membership func-

tion is treated as a dimension and the function ΓF is defined as below:

ΓF(v) = (ΓFi
(v))ni (5.8)

In other words, given n frequent subgraph, the function Γ maps a node v in G

to a n-dimensional space, indexed by the n subgraphs, where values of the features

indicate whether the node is part of the related subgraph in G.

Example 5.2.1 In Figure 5.3, it is shown that two subgraph features F1 and

F2. F1 have an embedding in Q at {q1, q2} and F2 occurs in Q at {q1, q3}. The

occurrences are depicted using shadings with different color and orientations. For

node q1, a subgraph F1 is considered as a feature, and ΓF1(q1) = 1 since q1 is part

of an embedding of F1 in Q. Also, ΓF1(q3) = 0 since q3 is not part of an embedding

59

of F1 in Q. Similarly, ΓF2(q1) = 1 and ΓF2(q3) = 1. Hence ΓF1,F2(q1) = (1, 1)

and ΓF1,F2(q3) = (0, 1). The values of the function ΓF1,F2 are also illustrated in

the same figure using the annotated Q.

b

b

a ab

bb

Q
F 2

F 1

q 2

q 1

q 3

b

b

a

q 2

q 3

q 1

1, 0

0 , 1

1 , 1

A nnota ted Q

Figure 5.3. Example pattern membership functions for GPM ker-
nel.

5.2.3 Graph Pattern Matching Kernel with Pattern Diffusion

This section introduces a better technique than the pattern membership func-

tion to capture the local topology information of nodes. This technique is called

“pattern diffusion”. It’s design has the following advantages:

• It is generic and does not assume any domain knowledge from a specific ap-

plication. The diffusion process may be applied to graphs with dramatically

different characteristics.

• The diffusion process is straightforward to implement and can be computed

efficiently.

• It is prove that the diffusion process is related to the probability distribution

of a graph random walk. This explains why the simple process may be used

to summarize local topological information.

60

Below, the pattern diffusion kernel is outlined in three steps.

In the first step, a seed is identified as a starting point for the diffusion. In

this design, a “seed” could be a single node, or a set of connected nodes in the

original graph. In the experimental study, frequent subgraphs are always used for

seeds since a seed from one graph can be easily compared to a seed in another

graph.

In the second step given a set of nodes S as seed, a diffusion function ft is

recursively defined in the following way.

The base f0 is defined as:

f0(u) =











1/|S| if u ∈ S

0 otherwise

Define ft+1 (t ≥ 0) with ft in the following way:

ft+1(v) = ft(v)× (1−
λ

d(v)
) +

∑

u∈N(v)

ft(u)×
λ

d(u)
(5.9)

In the notation, N(v) = {u|(u, v) is an edge } is the set of nodes that connects

to v directly. d(v) = |N(v)| is the node degree of v. λ is a parameter that controls

the diffusion rate.

The formula 5.9 describes a process where each node distributes a λ fraction

of its value to its neighbors evenly and in the same way receives some value from

its neighbors. It is called “diffusion” because the process simulate the way a value

is spreading in a network. The intuition is that the distribution of such a value

encodes information about the local topology of the network.

To constrain the diffusion process to a local region, one parameter called dif-

fusion time, denoted by τ , is used to control the diffusion process. Specifically the

61

diffusion process is limited to a local region of the original graph with nodes that

are at most τ hops away from a node in the seed S. In this sense, the diffusion

should be named “local diffusion”.

Finally in the last step, for the seed S, define the mapping function ΓdS as the

limit function of ft as t approaches to infinity, or

ΓdS = lim
t→∞

ft (5.10)

And given a set of frequent subgraph F = F1, F2, . . . , Fn as seeds, define the

pattern diffusion function ΓdF as:

ΓdF(v) = (ΓdFi
(v))ni (5.11)

5.2.4 Connections of Other Graph Kernels

5.2.4.1 Connection to Marginalized Kernels

Here the connection of pattern matching kernel function to the marginalized

graph kernel [34] is shown, which uses a Markov model to randomly generate

walks of a labeled graph.

Given a graph G with nodes set V [G] = {v1, v2, . . . , vn}, and a seed S ⊆ V [G],

for each diffusion function ft, construct a vector Ut = (ft(v1), ft(v2), . . . , ft(vn)).

According to the definition of ft, Ut+1 = M × Ut where the matrix M is defined

as:

M(i, j) =























λ
d(vj)

if i 6= j and i ∈ N(j)

1− λ
d(vi)

i = j

0 otherwise

62

In this representation, compute the stationary distribution (fS = limt→∞ ft)

by computing M∞ × U0.

Notice that the matrix M corresponds to a probability matrix corresponding

to a Markov Chain since

• all entries are non-negative

• column sum is 1 for each column

Therefore the vector M∞ × U0 corresponds to the stationary distribution of

the local random walk as specified by M . In other words, rather than using

random walk to retrieve information about the local topology of a graph, the

stationary distribution is used to retrieve information about the local topology.

The experimental study shows that this in fact is an efficient method of graph

classification.

5.2.4.2 Connection to Optimal Assignment Kernel

The optimal assignment (OA) kernel [17] carries the same spirit of the graph

pattern matching kernel in that OA uses pairwise node kernel function to con-

struct a graph kernel function. OA kernel has been utilized for cheminformatics

applications and is found to deliver good results empirically.

There are two major differences between GPM and the OA kernel. (1) OA

kernel is not positive semi-definite and hence is not Mercer kernel in a strict sense.

Non Mercer kernel functions are used to train SVM model and the problem is that

the convex optimizer utilized in SVM will not converge to a global optimal and

hence the performance of the SVM training may not be reliable. (2) OA utilizes

a complicated recursive function to compute the similarity between nodes, which

make the computation of the kernel function runs slowly for large graphs [58].

63

5.2.5 Pattern Diffusion Kernel and Graph Classification

This section summarizes the discussions presented so far and shows how the

kernel function is utilized to construct an efficient graph classification algorithm

in both the training and testing phases.

5.2.5.1 Training Phase

In the training phase, graphs of the training data set D = {(Gi, Ti,)}
n
i=1 are

divided into groups according to their class labels. For example in binary classi-

fication, two groups of graphs: positive or negative. For multi-class classification,

graphs are partitioned according to their class label where graphs have the same

class labels are grouped together. The training phase is composed of four steps:

• Obtain frequent subgraphs. Identify frequent subgraphs from each graph

group and union the subgraph sets together as the seed set F .

• For each graph G in the training data set, use the node pattern diffusion

function ΓdF to label nodes in G. Thus the feature vector of a node v is a

vector LV = (ΓdFi
(v))mi=1 with length m = |F|.

• For two graphs G,G′, construct the complete weighted bipartite graph as

described in section 5.2.1 and compute the kernel Km(G,G
′) using Equation

5.6 and Equation 5.7.

• Train a predictive model using a kernel classifier.

5.2.5.2 Testing Phase

In the testing phase, the kernel function is computed for graphs in the testing

and training data sets. The trained model is used to make predictions about

64

graph in the testing set.

• For each graph G in the testing data set, use ΓdF to label nodes in G and

create feature vectors as in the training phase.

• Use Equation 5.6 and Equation 5.7 to compute the kernel functionKm(G,G
′)

for each graph G in the testing data set and for each graph G′ in the training

data set.

• Use kernel classifier and trained models to obtain prediction accuracy of the

testing data set

65

Chapter 6

Bipartite Feature Selection for

Protein-chemical Interaction

Prediction

This section describes previous work on structure feature selection for protein-

chemical interaction prediction. While this work does not relate to the feature

relationship inference approach described here, it does deal with feature selection

in a context where feature relationships are known ahead of time. In the previous

work, an interaction between a chemical and protein is modeled using the tensor

product between the chemical and protein feature vectors. Since each of the tensor

product features is related to the originals features a regular, structured way, this

structure can be exploited for efficient and accurate feature selection. This work

demonstrates the value of using feature relationships (known here a priori) in

feature selection for chemical-protein interaction prediction.

66

6.1 Linear Kernels for Tensor Product Feature Selection

The idea of SVM RFE [23] was adopted to select features in the feature tensor

product space. Rather than directly apply RFE to select features in the tensor

product space, the approach selects domain A and domain B features in the

original space and hence obtains a subspace of the tensor product space. Consider

an object from domain A represented by a set of features A = {a1, a2, ...an} and

an object from domain B represented by as a set of features B = {b1, b2, ...bm},

the goal is to select a subset of domain A features features A′ ⊂ A, and a subset

of domain B features B′ ⊂ B to perform fast classification in the feature tensor

product space. This goal is formalized as:

argmax
A′,B′

∑

i∈A′

∑

j∈B′

Wi,j (6.1)

subject to |A′| = q and |B′| = p where q and p are the desired number of

features selected from each domain and Wi,j is the weight of the feature formed

by ai × bj in the tensor product space.

Features describing a cross-domain A-B interaction are generated by taking

the tensor product between the domain A feature vector and domain B feature

vector. An SVM model is then generated using this combined feature set, and

this model gives us the weights corresponding to each A-B feature pair. These

weights become the matrix W and a subset of features is selected that maximizes

the sum over the submatrix W ′. The remaining features are then used to again

train the SVM model and the process repeats until the desired number of features

has been selected.

67

6.2 Iterative Tensor Product Feature Selection with

Integer Quadratic Programming

This section shows the connection of the iterative tensor product feature selec-

tion problem to the mixed-integer quadratic programming problem (MIQP). The

connection is demonstrated by rewriting the formalization of the bipartite feature

selection problem as an integer quadratic programming problem.

min
x

1

2
zTHz (6.2)

With zi ∈ {0, 1}, i = 1, .., n + m subject to the constraints A1 · z ≤ q and

A2 · z ≤ p.The z vector is a column binary vector. Given n domain A features

and m domain mathcalB features, z has length n +m. A1 = [1, 1, ..1, 0, 0, ..., 0]T

is a binary column vector with a leading n number of ones followed by m zeros.

A2 = [0, 0, ..0, 1, 1, ..., 1]T is a binary column vector with a leading n number of

zeros following by m ones. The matrix H corresponds to weights between domain

A and B pairs, but the weight matrix constructed from the SVM model cannot

be used directly since it is dimension n×m. Instead, a matrix must be used that

is (n+m)× (n+m), and embed the n×m weight matrix twice. The regions of H

that correspond to within-domain A-A or B-B pairs are empty and add nothing

to the minimization problem. The regions corresponding to A-B pairs are filled

with the proper weight from the SVM model. This weight is negated since the

QP problem works on minimization while the goal is maximization.

If the original weight matrix between domain A and domain B features is a

n × m matrix, then H is a (n + m) × (n + m) matrix. MATLAB was used for

solving the quadratic programming optimizations.

68

For learning on homogenous data, in order to enforce selection of only a single

set of features in a single domain, the MIQP problem can be simplified. Instead

of mapping W into H twice, the negated W may be used instead of H and use a

single constraint.

6.3 Regularized Logistic Regression for Tensor Product

Feature Selection

Given features derived from two domains, A = fA1 ..f
A
mA and B = fB1 ..f

B
mB the

goal is to select subsets of those features, rA ∈ {0, 1}n
A

and rB ∈ {0, 1}n
B

which

are bit vectors where each bit represents inclusion/exclusion of a feature. Features

from each domain are then combined by taking the tensor product, A⊗ B. This

section explores the integration of feature selection into the logistic regression

problem. The approach described here rests on the manipulation of rA and rB in

the optimization problem to enforce domain space feature selection.

First, let the original L1-regularized logistic regression optimization problem

be defined as,

argmin
w

1

n

n
∑

i=1

yix
T
i w − log(1 + exp(xTi w)) + λ

m
∑

i=1

|wi| (6.3)

with data, (xi, yi) ∈ R
m×{−1, 1}, i = 1..n, optimization variables w ∈ R

m,v ∈ R,

and regularization parameter λ ≥ 0. To integrate feature selection into the logistic

regression problem, we must change both the basic optimization function as well

as add penalization terms. With rA and rB as domain feature selection vectors,

let n = nA ∗nB, m = mA ∗mB and define s ∈ {0, 1}m, s = rA⊗rB as the selection

vector for the corresponding tensor product space. We will transform this into a

69

diagonal matrix z,

z ∈ {0, 1}m
A

× {0, 1}m
B

(6.4)

With zi,j = 0, i 6= j and zi,j = si, i = j. Now the logistic regression problem can

be rewritten as,

argmin
w

1

n

n
∑

i=1

yix
T
i w − log(1 + exp(xTi zw)) + L1 (6.5)

L1 = λ
m
∑

i=1

|wi| ∗ si (6.6)

using s and z to enforce proper selection of features in the tensor product space.

Finally, regularization terms must be added to control the number of features

selected in ra and rb. This final problem must optimize for these new variables:

arg min
w,rA,rB

1

n

n
∑

i=1

yix
T
i w − log(1 + exp(xTi zw)) + L1 (6.7)

L1 = λ1

m
∑

i=1

|wi| ∗ si + λ2

mA
∑

i=1

|rAi |+ λ3

mB
∑

i=1

|rBi | (6.8)

Note that, in this formulation, the number of features selected in each domain

cannot be fixed to a specific number. Instead, the parameters λ2 and λ3 control

the penalty for selecting more features. Values for these parameters must be

selected so the corresponding terms contribute to the minimization process, yet

do not dominate it.

This problem formulation is intuitive, but requires several parameters and the

use of mixed data types (binary and real-valued) that must be optimized. Instead,

an alternative formulation is adopted to remove the binary r ∈ {0, 1} vectors and

70

replace them with r ∈ R
m. We then set w = rA ⊗ rB and optimize only rA and

rB. This problem is written as,

arg min
rA,rB

1

n

n
∑

i=1

yix
T
i w − log(1 + exp(xTi w)) + L1 (6.9)

L1 = λ1

mA
∑

i=1

|rAi |+ λ2

mB
∑

i=1

|rBi | (6.10)

Where w = rA ⊗ rB.This form of the problem is mathematically more attrac-

tive, though perhaps less intuitive. Both models have been implemented and this

simpler model found to provide better performance, and hence this model was

used in experimental studies.

6.4 Coordinate Descent for Regularized Logstic

Regression

To solve the convex optimization problem, we implemented an algorithm that

sequentially optimizes each single variable using a line search, and hence refer to

it as a coordinate descent method. To optimize a feature rAj the gradients of the

loss and penalty terms are calculated as,

∇rAj =
1

n

n
∑

i

e−yi(x
T

i
zw) ∗ (−yi

∑mB

k xi,l ∗ wl ∗ r
B
k
)

1 + e−yi(x
T

i
zw)

+ λ1 ∗
rAj

√

rAj
2
+ ǫ

(6.11)

where l = (j − 1) ∗ mB + k, giving the index for w corresponding the the j’th

rA feature and k’th rB feature. The equations are similar for a feature rBk . For

learning on homogenous data the implementation is altered so that optimization is

done to features in only one domain and mirrored in the other (identical) domain.

71

Chapter 7

Similarity Boosting Studies on

Genome-wide Protein-chemical

Interaction Prediction

The SimBoost method for genome-wide chemical-protein interaction predic-

tion will be reviewed and then compared to competing methods and evaluated

according to prediction accuracy, precision, and recall. SimBoost is also com-

pared to Local Models in terms of tolerance to noise in the interaction data. This

chapter discusses the relevant data sources, evaluation metrics, and competing

methods. Experimental results are presented as well.

7.1 Background

Some of the most recent work in genome-wide protein chemical interaction

prediction has focused on ensemble methods built from local models that make

predictions about a small region of interaction space. This approach is well moti-

72

vated, since it is unlikely that a single model can generalize to make predictions

regarding many diverse protein families and chemotypes. There are several issues

with this current work on interaction prediction, and the research proposed in this

section aims to address each of these issues. Boosting is proposed as a generable

ensemble learning framework, under which two modifications are proposed: 1)

adjust sample reweighting based on sample similarity as well as misclassification,

and 2) weight model predictions based on sample similarity as well, so that models

make predictions only for samples most similar to previous samples that were cor-

rectly classified. This section first explores the connection between local models

and boosting, then outlines the technical details required to modify boosting for

the genome-wide interaction prediction setting.

The approach proposed in [5] using local models strongly resembles the use

of ensemble methods in which a number of weakly performing classifiers are or-

ganized in such a way that their predictions can be combined into a strongly

performing classifier. In the previous approach, a local model for each unknown

protein-chemical interaction is built using only known samples that share a pro-

tein or chemical with the unknown interaction. This method is analogous to an

ensemble approach where each model makes a prediction for only a single sample,

and is built using only the most relevant data to that sample. For genome-

wide protein-chemical interaction prediction, local models are useful because the

chemical-protein interaction space is large and built from a diverse number of

protein families as well as chemotypes. Partitioning that space into more ho-

mogenous segments and building specialized models for each segment is a much

more reasonable approach than attempting to build a single model to make pre-

dictions predictions across all interactions. The drawback of using local models is

73

that each model is too specialized, and broader similarities between samples are

ignored during both learning and prediction. Further, known ensemble learning

approaches have not been explored in this context.

Recent work in genome-wide protein chemical interaction prediction has fo-

cused on ensemble methods built from local models that make predictions about

a small region of interaction space. This approach is well motivated, since it is

unlikely that a single model can generalize to make predictions regarding many

diverse protein families and chemotypes. There are several issues with this current

work on interaction prediction, and the research described in this section aims to

address each of these issues. Boosting is proposed as a generable ensemble learning

framework, under which two modifications are made: 1) adjust sample reweight-

ing based on sample similarity as well as misclassification, and 2) weight model

predictions based on sample similarity as well, so that models make predictions

only for samples most similar to previous samples that were correctly classified.

The boosting algorithm, following AdaBoost [26] is as follows:

Boosting works by constructing a series of models, each weighted so that it

favors accurate predictions regarding samples that have been misclassified by pre-

vious samples. The final predictions are then made by a voting arrangement where

each model contributes a vote weighted by itś overall prediction accuracy. Here

the similarity between boosting and local models can be seen, in that they both

rely on a series of specialized models that each make predictions favoring only

specific samples. The difference between boosting and local models is that boost-

ing incorporates all individual model predictions into an overall set of predictions,

while local models do not weight samples in response to misclassification rates.

The drawback to boosting is that is does not pay attention to sample similar-

74

Algorithm 1 AdaBoost

Require: data (x1, y1), ..., (xn, yn)
class labels xi ∈ X, yi ∈ Y = {−1,+1}

1: First, initialize sample weights wi =
1

n
, i = 1, ..., n.

2: for t = 1 to T : do
3: Fit a classifier Gt(x) : X → {−1,+1} to the training data with weights wi.
4: Compute the sample-weighted error:

errt =
∑n

i=1wiI[yi 6= Gt(xi)]
5: Compute the classifier weight, using errt as computed in the previous step:

αt =
1

2
log

1− errt
errt

6: Finally, update the sample weights:

wi ←
wi exp(αtI[yi 6= Gt(xi)])

Zt
where Zt is a normalization factor.

7: end for

8: The final classifier is output as:
G(x) = sign(

∑T
t=1 αtGt(x))

ity when computing sample weights, and also does not restrict model predictions

to only the relevant samples. The remaining material in this section describes

boosting variations and relevant details.

7.2 Methodology

Boosting is a well known ensemble learning framework that is usable with

many types of classifiers, and which can be robust to overtraining and provide

high generalization ability. Boosting works by constructing a series of models,

each weighted so that it favors accurate predictions regarding samples that have

been misclassified by previous samples. The final predictions are then made by a

voting arrangement where each model contributes a vote weighted by itś overall

prediction accuracy. Here the similarity between boosting and local models can

be seen, in that they both rely on a series of specialized models that each make

75

predictions favoring only specific samples. The difference between boosting and

local models is that boosting incorporates all individual model predictions into an

overall set of predictions, while local models do not weight samples in response to

misclassification rates. The drawback to boosting is that is does not pay attention

to sample similarity when computing sample weights, and also does not restrict

model predictions to only the relevant samples.

7.2.0.3 Similarity-based Sample Weighting

In order to modify boosting to take advantage of sample similarity, the sample

weighting step must be modified to incorporate similarity alongside miss classi-

fication. By averaging the sample weights according to similarity, the effect of

misclassified samples is reduced. Given n samples, let K be the n by n matrix of

normalized sample similarities such that K(i, j) is the similarity between samples

i and j, where 0 ≤ K(i, j) ≤ 1 and K is symmetric, with K(i, j) = 1 indicating

strong similarity and K(i, j) = 0 indicating weak similarity. The sample weight

update equation can then be redefined as:

w′
i ←

∑n
j=1K(xi, xj) w

′
j

Zt
exp(−αtI[yi 6= Gt(xi)]) (7.1)

So that w′
i is the similarity-weighted sum of all sample weights, and Z-t is a

normalization factor. Note that when K is the identity matrix the equation for

w′
i reduces to the previous reweighting equation for wi.

The choice of K can be made arbitrarily, computed, or learned. In the case

where samples are known to be organized into discrete groups C1, ..., Cm, and K

can be chosen so that for each Ci and a pair of samples (a, b), K(a, b) = 1 if a, b

are members of Ci and zero otherwise, with each a, b belong to only one Ci. In

76

this case each sample in the group will be weighted the same.

If explicit feature vectors for samples are available, the similarity matrix K

can be computed according to a distance metric such as Euclidean distance, or

they are not available a similarity function such as a kernel function can be used.

Using different similarity/kernel functions will embed samples into different vector

spaces and hence induce different sample weightings.

7.2.0.4 Similarity-based Prediction Weighting

The boosting equation for building the final classifier uses a weighted sum of

the local classifiers, but not only does each classifier contribute equally to each

prediction, but each classifier is also weighted by its global accuracy on the entire

data set. Both of these cases contradict the intuition that each local model is

specialized for a subset of samples and thus should make predictions regarding

only those samples.

Like the modifications to boosting for sample weighting, modifying the boost-

ing prediction function uses a matrix K of similarities between samples, 0 ≤

K(i, j) ≤ 1 and K(i, j) = K(j, i), for all i, j = 1, ..., n. A kernel K(x, xi) be-

tween some unknown sample x and previous samples xi is also required. The

loss function terms can be redefined to parameterize errt and αt so that the final

classifier G(x) incorporates the similarity between a new sample x and previously

well classified samples:

77

err′t(x) =
n

∑

i=1

K(x, xi) wi I[yi 6= Gt(xi)] (7.2)

α′
t(x) =

1

2
ln
1 − err′t(x)

err′t(x)
(7.3)

G′(x) = sign(
T
∑

t=1

α′
t(x)Gt(x))) (7.4)

where the term err′t(x) weights model predictions to favor models that perform

well on samples most similar to the unknown sample x. The normal loss function is

weighted by the similarity term K(x, xk) in order to minimize the contribution of

samples that are dissimilar to x. Note that when K(x, xk) = 1 for all k = 1, ..., n,

this equation reduces to the original errt. The wi here is the same wi from the

original equations, computed during the last boosting iteration.

7.3 Data Sets

This section describes the characteristics of the data sets used to evaluate

general classification performance, as well as tolerance to interaction label noise.

7.3.1 Noise Tolerance Data Sets

In order to measure the tolerance of the SimBoost and Local Model classi-

fiers to noise in the training labels, a gold standard data set of high quality with

known positive and negative interactions is required. The authors of Local Mod-

els evaluated their method on such a collection of data [5] and have made this

data set available along with the protein and chemical similarities used in their

evaluation studies. In order to compare our method to Local Models we have

78

elected to use this data as well. The data is not ideal for an overall evaluation

since it is divided into 4 distinct classes of interactions involving enzymes, nuclear

receptors, g-protein coupled receptors (GPCRs) and ion channels. The sizes and

characteristics of these data sets are given in table 2. Chemical compounds for

this data were taken from the DRUG and COMPOUND areas of the KEGG LIG-

AND database [33] and protein amino acid sequences were taken from the KEGG

GENES database. Chemical similarity was determined using graph alignment

and the protein similarities determined using sequence alignment. Further details

regarding data are available in the Local Models paper.

Table 7.1. Number of total, positive and negative samples in each
data set.

Data Set # Samples # Positives # Negatives # Proteins # Chemicals
Nuc. Receptors 1404 90 1314 26 54

GPCRs 21185 635 20550 95 223
Ion Channels 42840 1476 41364 204 210
Enzymes 295480 2926 292554 664 445
Total 360909 5127 355782 989 932

Selected 3200 1600 1600 861 502

It is evident that the interaction space is very sparse, that is, very few positive

interactions compared to negative interactions. Many classifiers are dependent on

the class balance of a data set, and given sparse data can easily devolve into a

trivial classifier predicting all samples as members of the dominant class. To com-

bat this difficulty, some classifier parameters can be tuned to avoid this behavior.

The parameter tuning process often requires another level of cross-validation, and

hence can be time consuming to find the best parameters to ensure a fair com-

parison between methods. In order to avoid the complications that a class bias

introduce, we have randomly sampled a set of negatives equal to the number of

positives. This random selection was done 5 times generating 5 subsets of each

79

data set, each with a different random selection of negative protein-chemical pairs.

In order to measure tolerance to noise, the interaction labels for each of the data

subsets were set randomly in increasing amounts ranging from 0% (no noise) to

100% (all labels are random) in increments of 10%, for 11 total experiments for

each subset. Each of the data subsets was divided into half for training, and the

other half for testing, and various levels of noise was introduced into the training

data, creating 11 experimental results for each of the 5 subsets in each data set.

The results are averaged over the 5 random subsets at each noise level, for all four

data sets and both methods.

7.3.2 General Performance Data Sets

In order to evaluate interaction prediction on some typical interaction data, we

have randomly sampled a number of interactions from the DrugBank [66] repos-

itory and assembled them into several data sets. A number of sets ranging from

100-400 samples and 100-200 features were collected and the general performance

of SimBoost and related methods was evaluated. In each dataset, a balanced

number of positive and negative samples were randomly selected. Because Drug-

bank offers only a list of known positive interactions and does not provide a list

of known negative interactions, a set of synthetic negative samples was created

by first selecting protein-chemical pairs known to interact, and then substituting

another protein/chemical for the original one, such that feature similarity between

them is low.

For each dataset, we created 10 randomized trials. For each trial, 10-fold

cross-validation was used to evaluate each method’s performance, requiring 10

experiments each with one 10% segment of the data used for testing with the

80

remaining 90% used for training. This or a total of 100 sets experimental results

per method per data set, which are averaged into the final measures of accuracy,

sensitivity, and specificity. For classifiers requiring parameter optimization, such

as SVM, internal 5-fold cross-validation on the training data is used to select the

best parameter. Details on parameter selection for various methods are given

below.

Features were extracted using the training data during each experiment. For

chemicals, frequent subgraph features [28] were generated, and frequent k-mers

were generated for proteins. In these experiments, k = 4 was used to generate

the k-mers, which were then filtered by frequency. The frequency threshold for

both subgraphs and k-mers was chosen so that the desired number of features was

obtained, as well as a balanced number of protein/chemical features. For instance,

if 200 features is desired, a frequency threshold would be chosen such that 100

frequent subgraphs were obtained as well as 100 frequent k-mers. SimBoost and

SVM both use a linear kernel to compute similarity between samples based on

these features.

Tables 3 and 4 show the number of samples and features in each data set, as

well as the number of unique proteins and chemicals.

7.4 Experimental Protocols

In order to establish the utility of SimBoost on protein-chemical interaction

data, a series of interaction prediction data sets were constructed as described

above. Experimental evaluation of this data was performed using the Weka soft-

ware. The SimBoost and Local Models methods were implemented as Weka mod-

ules in Java and compared to other Weka implementations of competing methods.

81

Table 7.2. Number of samples and features of each data set.

Index # Samples # Features
1 100 100
2 150 100
3 150 150
4 200 100
5 200 200
6 300 150
7 300 300
8 400 100
9 400 150
10 400 200

Table 7.3. Number of unique chemicals and proteins in each data
set.

Index # Unique Chem. # Unqiue Prot.
1 36 28
2 45 34
3 52 43
4 49 37
5 76 60
6 64 51
7 113 80
8 48 40
9 70 52
10 87 65

This section discusses some details on experimental methodology regarding param-

eter selection for various classifiers, evaluation metrics, and competing methods.

7.4.1 Parameter Evaluation

SimBoost is dependent on two parameters, in addition to the features/kernels

selected: the base learner used, and the number of iterations/models. A good

starting base learner would be näıve Bayes, due to its lack of a parameter that

will need tuning and strong theoretical performance, but other base learners will

82

be evaluated as well. The parameter that controls number of iterations/models

will have significant impact on performance as well, and a range of values should

be evaluated on a number of data set sizes in order to establish a correlation

between the number of data samples and number of models needed to effectively

discriminate between samples. For SimBoost and AdaBoost, the number of it-

erations was fixed at 10, and both used näıve Bayes as the base classifier. The

näıve Bayes method has no parameters to optimize. For the SVM parameter

selection, as mentioned above, within each experimental cross-validation fold, a

smaller internal 5-fold cross-validation experiment was performed to select the

best C parameter.

7.4.2 Evaluation Metrics

For the general performance studies, comparisons will be made primarily on

the basis of: interaction prediction accuracy, sensitivity, and specificity. These

statistics will be recorded and averaged over all cross-validation trials in these

experiments. Accuracy is defined as (TP + TN)/S where TP is number of true

positives, TN is number of true negatives and S is the total number of testing

samples. Precision (TP/(TP +FP)) and recall (TP/(TP +FN)) are defined also

in terms of FP , number of false positives and FN , the number of false negatives.

For the label noise tolerance studies, accuracy will be reported as well.

7.4.3 Comparison Methods

For general performance comparisons, the proposed SimBoost method will be

compared to several competing methods. First, it will be compared to the typical

boosting algorithm as a baseline comparison. It will also be compared to a single-

83

model (non-ensemble) version of the base classifier used. Finally, SimBoost is

compared to popular global classifiers such as SVM, as well as the local classifiers

proposed in previous work [5].

The noise tolerance of SimBoost will be evaluated in comparison to the Local

Models, using the same data set as well as similarity kernel used by the Local

Models authors in their evaluation.

7.5 Label Noise Tolerance Results

The following tables show the performance of SimBoost and Local Models for

the gold standard data sets, as the amount of noise in the interaction labels is

increased.

For the Nuclear Receptor data set, the results are ambiguous as the accuracy

and AUC are unstable as the amount of label noise is increased. This effect

may be due to the very small size of the data set. The second, larger data set

with GPCRs is much more clean and stable, showing a clear deterioration of the

Local Models approach as label noise is introduced. This is contrasted with a

very slow decline in the performance of the SimBoost method, which has strong

performance up to 70 and 80% label noise. Both methods perform around 50%

accuracy when the amount of noise is increased to 100%, as expected. The results

for the Ion Channel data set are not as clear as the GPCR results, largely because

the performance for Local Models starts off much lower and so the decline in

performance as noise is introduced is not as steep. The results for the Enzyme

data is a mix between those from the other data sets. The accuracy for Local

Models is lower than SimBoost, and declines accordingly, while the accuracy for

SimBoost declines relatively slowly while most of the noise is introduced, and then

84

drops sharply at the highest levels of label noise.

Figure 7.1. Prediction accuracy for Nuclear Receptor data in re-
sponse to training label noise.

Figure 7.2. Prediction accuracy for GPCR data in response to train-
ing label noise.

Table 5 shows the performance of SimBoost, Local Models, and several other

methods at the highest level of training label noise tested, 90%. Showing that in

all cases, the accuracy for SimBoost is the best. It is notable that on two of that

85

Figure 7.3. Prediction accuracy for Ion Channel data in response
to training label noise.

Figure 7.4. Prediction accuracy for Enzyme data in response to
training label noise.

data sets, SimBoost is able to achieve 70% accuracy when 90% of the training

data labels are noise.

86

Table 7.4. Accuracy of several methods at 90% training label noise.
Best result for each data set is marked in bold.

Set SimBst AdaBst SVM Loc.Model
Nuc. Receptor 61.11 55.55 56.22 52.89

GPCR 72.18 61.30 57.01 55.51
Ion Channel 57.55 54.79 53.58 52.58
Enzyme 70.80 59.07 51.47 47.60

7.6 General Performance Results

The following tables and figures present results for experiments comparing the

general performance of SimBoost to a variety of competing methods. Table 7.5

presents a comparison of classification accuracy for each of the methods across

the ten datasets.

Table 7.5. Accuracy for 10 drugbank datasets comparing SimBoost
to competing methods, along with average accuracy for each method.
Results marked in bold are the best for each data set.

Set SimBst AdaBst Nai.Bayes SVM Loc.Model
1 65.3 57.1 61.1 60.0 61.2
2 59.9 54.8 58.8 54.9 58.2
3 59.9 54.6 57.3 56.4 56.3
4 61.1 59.7 58.1 58.9 59.4
5 59.7 56.7 58.1 56.3 56.5
6 57.5 55.5 56.4 57.3 56.2
7 58.1 57.3 57.3 53.3 56.4
8 57.5 56.4 56.6 57.3 56.9
9 57.1 56.1 57.2 58.3 57.0
10 58.5 57.9 56.2 58.6 56.9

Avg. 59.5 56.6 57.7 57.2 57.5

The results obtained show that the SimBoost method is significantly better

than AdaBoost at the 1% level in 6 of the 10 datasets, and significant at the 10%

level for one more. Significance was determined using 2-way ANOVA. SimBoost

is also more accurate than näıve Bayes at the 1% level in 9 of the datasets, and

worse in one. Finally SimBoost claims a higher accuracy than SVM with a 1%

87

Table 7.6. Precision for 10 drugbank datasets comparing SimBoost
to competing methods, with averages for each method. Results marked
in bold are the best for each data set.

Set SimBst AdaBst Nai.Bayes SVM Loc.Model
1 66.6 58.6 60.8 60.7 60.7
2 62.1 55.0 59.7 55.6 58.7
3 61.6 55.7 58.1 57.3 57.0
4 61.9 60.3 57.4 59.2 58.7
5 60.0 56.6 57.6 56.4 56.4
6 57.2 55.7 55.7 57.4 55.7
7 58.1 57.5 56.5 52.9 55.7
8 57.6 56.9 56.2 56.6 56.6
9 56.9 55.8 56.7 58.6 56.7
10 59.0 58.2 56.0 58.9 56.6

Avg. 60.1 57.0 57.4 57.3 57.2

confidence level for 6 of the data sets, and is worse than SVM in two of the sets.

Results for precision are similar to those for accuracy, although compared to

AdaBoost, SimBoost is has significantly better precision for only 4 of the sets at

1% and one set at 10%. In the other cases, SimBoost is better but not significantly

so. Again, SimBoost is significantly better than näıve Bayes at the 1% level for

9 of the 10 data sets. Compared to SVM, SimBoost is significantly better in 6 of

the datasets at 1% and one set at 10%; SVM has better precision in two of the

data sets.

The results for comparing methods in terms of recall are somewhat different

than for accuracy and precision. SimBoost is significantly better than AdaBoost

in 8 of the datasets, all at the 1% level, and worse in only two. Näıve Bayes,

however, was better than SimBoost in recall for all data sets. The results for

SVM are somewhat mixed: SimBoost is again better in 4 of the data sets at 1%

significance, and better in another data set at the 5% level, although SimBoost is

worse for three of the data sets.

88

Table 7.7. Recall for 10 drugbank datasets comparing SimBoost to
competing methods, with averages for each method. Results marked
in bold are the best for each data set.

Set SimBst AdaBst Nai.Bayes SVM Loc.Model
1 65.6 53.0 67.4 58.8 63.0
2 55.9 52.0 58.9 55.7 61.4

3 58.6 51.1 60.5 55.2 61.1

4 58.7 59.8 63.9 61.4 64.3

5 61.0 55.3 64.2 54.7 62.6
6 61.3 53.6 65.9 56.0 63.4
7 60.0 53.9 63.8 51.7 62.7
8 60.5 54.5 63.5 62.1 62.7
9 56.7 59.4 62.0 56.6 59.9
10 58.8 56.8 61.1 59.6 61.9

Avg. 59.7 54.9 63.1 57.1 62.3

Table 7.8. Number of data sets where SimBoost performs signif-
icantly better (at the 5% confidence level using ANOVA), for each
comparison method and statistical measure.

Statistic AdaBoost NäıveBayes SVM LocalModel
Accuracy 6 9 7 9
Precision 4 9 7 9
Recall 8 10 4 10

Overall, p-values generated by performing 2-way ANOVA across all datasets

indicates that the SimBoost method is better than compared methods with greater

than 99% confidence (p-values were less than 10−10).

89

Chapter 8

Clustered Boosting Studies on

Genome-wide Protein-chemical

Interaction Prediction

This chapter describes in detail the experimental studies performed to evalu-

ate the clustered boosting method described previously. This chapter begins with

a discussion of background and methodology is provided. Next, the data sources

and representations for chemicals, proteins, and interactions is presented. Fol-

lowing that, the experimental protocols used are discussed along with the feature

selection, parameter selection, and evaluation measures. Finally, the experimental

results are presented and discussed. General performance of clustered boosting

on genome-wide protein-chemical interaction prediction is evaluated compared to

competing methods. The performance of clustered boosting is evaluated on both

balanced and unbalanced selections of data. The response of clustered boosting

to variations in the input parameters is also examined. A comparison of clustered

90

boosting to SimBoost is performed in terms of accuracy and computation time.

8.1 Background

Similarity boosting performs an implicit specialization of base models using

kernel similarity. The specialization of each model is due to the smooth reweight-

ing of samples according to misclassification and spatial proximity over boosting

iterations. While this approach produces a model with some attractive qualities,

in particular the tolerance to label noise, it’s limitation is in the computational

effort required to perform a summation for every sample over kernel similarities

between all other samples.

In contrast to this implicit specialization process, it is also possible to explicitly

specialize models. Instead of using real value sample weights to specialize models

toward a specific subset of samples, a binary function can be used to indicate

inclusion/exclusion of samples in one of an ensemble of models. A computationally

efficient approach is to assign samples into disjoint partitions, and assign a model

to each partition. If samples are allowed to be included in more than one model,

the total number of samples used to train with will increase. By assigning each

sample to only one partition at a time, the total number of samples used to train

over all models will be equal to the number of samples used to train a single global

model. This approach may admit some computational gains over using a global

model if the base model used has time complexity worse than linear with respect

to the number of training samples.

Clustering is a well-studied area of machine learning designed to partition sam-

ples into disjoint regions. One of the earliest and most straightforward clustering

methods is k-means. In k-means clustering a number of cluster means or centroids

91

are selected and samples are assigned to the closest cluster. Cluster means are

then updated to reflect the center of mass for the assigned samples. The sam-

ple assignment is performed again and the process continues for a set number of

iterations or until convergence.

Clustering is an unsupervised method, and can be used for classification by

assigning the same class labels to unknown samples as the majority class of labels

found in the corresponding clusters. In the case of genome-wide protein-chemical

interaction prediction imay not be reasonable to assume that the interaction space

could be easily partitioned into disjoint regions of identical labels. More often

the case is that non-interacting samples appear throughout the entire interaction

space although the distribution may be uneven. Positively interacting samples

then accrue in certain regions of enrichment, overlapping to various degrees with

negative samples.

While it may not be possible to directly partition the genome-wide interaction

space into disjoint regions of identically labeled samples, it is not unreasonable

that a supervised model could be trained to accurately predict the class labels

for a cluster of interaction samples. An ensemble of models may then be learned,

each corresponding to a cluster of samples. In this way the ensemble of models is

directly specialized, each to a different region of the interaction space. This en-

semble can then be used to make predictions for unknown samples by following the

boosting framework and building a weighted additive model from the ensemble.

This approach leads to the clustered boosting method described in the following

sections.

92

Algorithm 2 K-Means Clustered Learning

Require: training set {(xi, yi)}
n
i=1,

base learner h
number of clusters C

1: Initialize cluster means µ1, ..., µC
2: while Clusters have not converged do

3: Assign samples to the closest cluster for each c = 1, ..., C:
Sc = {xi : ||xi − µc|| ≤ ||xi − µj|| for all j = 1, ..., C}

4: for c = 1 to C do

5: Train a base learner hc on the set {(xi, yi)|xi ∈ Sc}
6: Update the cluster mean as:

µc =
1

∑

xi∈Sc

I(hc(xi) = yi)

∑

xi∈Sc

xiI(hc(xi) = yi)

7: end for

8: end while

9: Return clusters and models.

8.2 Methodology

This section describes new work on boosting with clustering for genome-wide

protein chemical interaction prediction.

One option to incorporate the decision function into the clusters is the use

of supervised or semi-supervised clustering. This section describes a learning

algorithm that finds a set of clustered models by iterative moving cluster centroids

toward regions of better predictive performance. The key insight is to cluster

samples such that the samples in each cluster can be accurately predicted by a

model learned just for that cluster. The major algorithmic difference is that in the

cluster update step, cluster centroids are moved to the region of space enriched

with accurately predicted samples. A k-means algorithm based on this approach

is outlined.

Given random initial clusters, clustered learning begins with a set of models

that are similar, but with some slight variation due to the random assignments.

93

Through iteration, those slight differences are magnified by retraining the model

on data it was better at predicting. In this way clustered learning progressively

refines the clusters to maximize the accuracy of each model.

This formulation bears a resemblance to AdaBoost, with a series of models

constructed in each iteration. This connection can be made clear by defining a

classification algorithm based on clustered learning, but combining each of the

base models in the same fashion as AdaBoost. Some modifications are required

for this approach. First, since the center of mass for clusters changes in every

iteration along with the cluster base model, clusters may not converge, and hence

a limit on the number of iterations is required. Another issue is weighting of

the individual cluster models and how their predictions are combined to create a

unified model.The clustered boosting classifier with these modifications is given

as follows.

The final model also bears a resemblance to tree boosting, in that it is an

additive model where each base model is also additive. In both methods, the

inner summation is used as a convenience for selection of a lead node in the case

of tree boosting, or a cluster in the case of clustered boosting.

One practical issue is that in some circumstances clusters may contain zero

samples. This can arise if a cluster centroid is surrounded closely by other cluster

centroids. When this situation occurs the cluster is removed. However a threshold

for removal is required since the cluster samples may be used for cross-validation

to select parameters for a cluster classifier. In this case the number of samples

in the cluster must exceed the number of cross-validation folds, and hence the

threshold with which to eliminate a cluster must be high enough so this case will

not occur. This threshold is not meant as a model parameter to tune in order to

94

Algorithm 3 Clustered Boosting

Require: training set {(xi, yi)}
n
i=1,

base learner h
number of clusters C
number of iterations T

1: Initialize cluster means µ0
1, ..., µ

0
C

2: for t = 1 to T do

3: Assign samples to the closest cluster for each c = 1, ..., C:
Stc = {xi : ||xi − µ

t−1
c || ≤ ||xi − µ

t−1
j || for all j = 1, ..., C}

4: for c = 1 to C do

5: Train a base learner htc on the set {(xi, yi)|xi ∈ S
t
c}

6: Calculate the well-classified, kernel-weighted center of mass:

µ̂tc =
1

∑

xi∈St
c

I(htc(xi) = yi)

∑

xi∈St
c

xiI(h
t
c(xi) = yi)K(µtc, xi)

7: Move the cluster centroid to the center of mass:
µtc = µ̂tc

8: Calculate the classifier error rate for the new clusters:

ǫtc =
1

|Stc|

∑

xi∈St
c

I(htc(xi) = yi)

9: Calculate the classifier weight for each cluster:

αtc =
1

2
log

1− ǫtc
ǫtc

10: end for

11: end for

12: Final model is given as:

F (x) = sign(
T
∑

t=1

C
∑

c=1

αtCh
t
c(xi)I(x ∈ S

t
c)

adjust model performance, but rather a mechanism for handling an error case.

8.3 Data Sources

Data for the experimental studies presented here is obtained from a variety

of sources. Three kinds of data are required: chemical structures, protein se-

quences, and protein-chemical interactions. The data sources used to obtain this

information are described.

95

The authors of the local models approach evaluated their method on a col-

lection of data [5] and have made this data set available along with the protein

and chemical similarities used in their evaluation studies. In order to compare

our method to local models we have elected to use this data as well. Yaman-

ishi et al. originally assembled this data set in 2008 [71], and the authors stated

they recovered the interactions from KEGG BRITE, BRENDA, SuperTarget, and

DrugBank and use this data as a ’gold standard’ reference set. In order to per-

form a comparison using this data set, we have randomly selected a balanced set

of 3200 interaction samples, with exactly 1600 positives and 1600 negatives. The

sizes and characteristics of these data sets are given in the previous chapter.

Chemical structures were obtained in SDF format from KEGG DRUG and

COMPOUND databases. Protein sequences were recovered from KEGG GENES

database. For the preliminary studies, explicit features were not available for some

of the data and in this case the pre-computed similarities were provided with the

data used in these experiments. For the preliminary studies, chemical similarity

was determined using graph alignment and the protein similarities determined

using sequence alignment. Further details regarding data are available in the

Local Models paper [5].

8.4 Extracted Features

For the gold standard studies extraction of general protein and chemical fea-

tures was performed. The PROFEAT [44] server was used to computer a large

number of features for both proteins and chemicals. PROFEAT offers an exten-

sive selection of protein features, and we generated over 1000 different features

of various types. The following table outlines and describes these features, along

96

with a table describing protein classes as used by some features calculations.

Table 8.1. Features Calculated by PROFEAT

Group Name
1 Amino acid composition
2 dipeptide composition
3.1 Normalized Moreau-Broto autocorrelation
3.2 Moran autocorrelation
3.3 Geary autocorrelation
4.1 Composition
4.2 Transition
4.3 Distribution
5.1 Sequence-order-coupling numbers
5.2 Quasi-sequence-order
6 pseudo-amino acid composition
7 amphiphilic pseudo-amino acid composition
8 topological descriptors at atomic level
9 total amino acid properties

Table 8.2. Amino Acid Attributes and Classes
Property Class 1 Class 2 Class 3

Hydrophobicity polar neutral hydrophobic
Normalized van der Waals volume 0-2.78 2.95-4.0 4.03-8.08

Polarity 4.9-6.2 8.0-9.2 10.4-13.0
Polarizibility 0-1.08 0.128-0.186 0.219-0.409

Charge positive neutral negative
Secondary structure helix strand coil
Solvent accessibility buried exposed immediate

Generation of protein features with PROFEAT used the default settings. For

chemical features, PROFEAT generates only the topological descriptors.

8.5 Experimental Protocols

In order to establish the utility of clustered boosting on protein-chemical in-

teraction data, a series of interaction prediction data sets were constructed as

97

described above. Experimental evaluation of this data was performed using the

Weka software. The clustered boosting and local models methods were imple-

mented as Weka modules in Java and compared to other Weka implementations of

competing methods. This section discusses some details on experimental method-

ology regarding parameter selection for various classifiers, evaluation metrics, and

competing methods.

For each dataset, we created 10 randomized trials. For each trial, 10-fold

cross-validation was used to evaluate each method’s performance, requiring 10

experiments each with one 10% segment of the data used for testing with the

remaining 90% used for training. This process was repeated on 5 trials with

randomly ordered samples for a total of 50 sets experimental results per method

per data set, which are averaged into the final measures of accuracy, precision,

recall, and F-measure. For classifiers requiring parameter optimization, such as

SVM, internal 10-fold cross-validation on the training data is used to select the

best parameter.

8.6 Parameter Selection

Clustered boosting is dependent on two parameters, in addition to the fea-

tures/kernels selected and the base classifier used: the number of clusters, and

the number of iterations. As shown in previous work, näıve Bayes is a reasonable

base classifier, due to its lack of a parameter that will need tuning and strong

theoretical performance, but other base learners have been evaluated as well. The

parameters that control number of clusters/iterations will have significant impact

on performance as well. For clustered boosting, the number of clusters and iter-

ations was selected using grid search over results from 10-fold cross-validation on

98

the training data. The parameters were both selected from the set {5, 15, 25}. For

AdaBoost, the number of iterations was selected in the same way using 10-fold

cross-validation on the training data, with the parameter also chosen from the

set {5, 15, 25}. In many comparisons the näıve Bayes as the base classifier, how-

ever SVM is also used in the general performance comparison. The näıve Bayes

method has no parameters to optimize. SVM parameter selection is performed

in the same was as described for clustered boosting and AdaBoost, with the C

parameter selected from the set {10−1, 100, 101}.

8.7 Feature Selection

Feature selection using training data was performed in order to filter out fea-

tures that have low utility. Features were ranked using information gain (IG)

between each feature vector and the class labels. A low cutoff score of 0.01 was

used to eliminate the most uninformative features. The distribution of IG scores

calculated for all features is heavily skewed toward low scores, with 556 features

having zero calculated IG. The cutoff of 0.01 was chosen to eliminate these low

utility features while retaining as many features with some utility as possible. The

following figure shows the IG score distributions. Note that score rankings and

distributions for each specific experiment will deviate from these results slightly

as they are calculated for the training data only.

8.8 Evaluation Metrics

For the general performance studies, comparisons are made primarily on the

basis of: interaction prediction accuracy, sensitivity, and specificity. These statis-

99

0 0.01 0.03 0.05 0.07 0.09 0.11 0.13
0

100

200

300

400

500

600

700

800

Information Gan

N
u
m

b
e
r

o
f

S
a
m

p
le

s

Figure 8.1. Distribution of information gain scores calculated for
features using entire data set.

tics will be recorded and averaged over all cross-validation trials in these experi-

ments. Accuracy is defined as (TP+TN)/S where TP is number of true positives,

TN is number of true negatives and S is the total number of testing samples. Pre-

cision (TP/(TP + FP)) and recall (TP/(TP + FN)) are defined also in terms

of FP , number of false positives and FN , the number of false negatives. The

F-measure is reported in most studies as well, which is the harmonic mean of

precision and recall: (2 ∗P ∗R)/(P +R), where P and R are precision and recall,

respectively.

100

8.9 Comparison Methods

For general performance comparisons, clustered boosting will be compared

to several competing methods. First, it is compared to the typical boosting al-

gorithm as a baseline comparison. It will also be compared to a single-model

(non-ensemble) version of the base classifier used. Finally, clustered boosting is

compared to the local models approach described by Bleakley and Yamanishi

previously [5].

8.10 Results

8.10.1 General Performance Comparisons with Clustered Boosting

In this study, the clustered boosting methods are compared to competing

methods for genome-wide protein-chemical interaction prediction. These methods

are evaluated using a random class balanced sample of 3200 interactions from the

combined gold standard protein-chemical interaction data set.

Clustered boosting is first compared to AdaBoost, SVM, and LocalModels,

with each meta classifier using SVM as well. For accuracy, precision, and F-

measure, clustered boosting performs better than all other methods with signif-

icance at the 5% level according to 2-way ANOVA. Clustered boosting is also

significantly better in terms of recall than AdaBoost and SVM, while local mod-

els perform significantly better. There is always a tradeoff between precision and

recall, and it is evident that the local models approach trades an increase in total

positive samples found for a decrease in the true positive rate.

Clustered boosting is also compared to competing methods using AdaBoost

as the base classifier. In these experiments, many of the results are similar to

101

those obtained using SVM as the base classifier, with the exception that the local

models approach does not appear to make the same tradeoff between precision and

accuracy, and instead produces a more balanced classification profile. Clustered

boosting is significantly better than all other methods in all measured statistics,

with the exception of recall compared to AdaBoost. In this case clustered boosting

is better, but not significantly so.

Table 8.3. Comparison of clustered boosting to competing methods
for genome-wide protein chemical interaction prediction, with SVM as
a base model.

Methods
Statistic ClustBoost AdaBoost SVM LocalModel
Accuracy 0.75 0.73 • 0.73 • 0.65 •
F-measure 0.76 0.74 • 0.74 • 0.71 •
Precision 0.74 0.73 • 0.73 • 0.61 •
Recall 0.78 0.75 • 0.76 • 0.86 ◦
◦, • statistically significant improvement or degradation

Table 8.4. Comparison of clustered boosting to competing methods
for genome-wide protein chemical interaction prediction, with näıve
bayes as a base model.

Methods
Measure ClustBoost AdaBoost NäıveBayes LocalModel
Accuracy 0.71 0.69 • 0.66 • 0.64 •
F-measure 0.72 0.71 • 0.66 • 0.63 •
Precision 0.71 0.69 • 0.67 • 0.65 •
Recall 0.73 0.72 0.65 • 0.62 •

◦, • statistically significant improvement or degradation

8.10.2 Performance on Unbalanced Data

In this study, clustered boosting is compared to competing methods as the

ratio of positive to negative samples is decreased. Näıve bayes was used as a base

102

learner in these studies because of the faster computation time. Additionally,

these results were generated using a slightly smaller random selection of 2000

samples from the complete set of protein-chemical interactions.

The results for accuracy show that clustered boosting continues to perform

significantly better than competing methods as the percentage of positive samples

included decreases. The results for F-measure show somewhat more variation.

The clustered boosting method consistently outperforms each of the competing

methods, although the performance increase is not always significant. Clustered

boosting is significantly better than local models in all cases, and it is significantly

better than both AdaBoost and näıve bayes in 3 of the 5 data sets.

Table 8.5. F-measure comparison of clustered boosting to compet-
ing methods as the percentage of positive samples is decreased, with
näıve bayes as the base model.

% Positives ClustBoost AdaBoost NäıveBayes LocalModel
50% 0.71 0.70 • 0.69 • 0.66 •
40% 0.63 0.62 0.62 0.58 •
30% 0.56 0.55 0.55 • 0.48 •
20% 0.46 0.41 • 0.44 • 0.38 •
10% 0.32 0.22 • 0.30 0.24 •

◦, • statistically significant improvement or degradation

Table 8.6. Accuracy comparison of clustered boosting to competing
methods as the percentage of positive samples is decreased, with näıve
bayes as the base model.

% Positives ClustBoost AdaBoost NäıveBayes LocalModel
50% 70.76 67.98 • 66.56 • 64.78 •
40% 69.82 68.03 • 65.08 • 64.14 •
30% 72.38 69.40 • 65.54 • 65.20 •
20% 76.41 72.56 • 65.59 • 67.94 •
10% 86.13 82.52 • 75.35 • 76.94 •

◦, • statistically significant improvement or degradation

103

8.10.3 Parameter Evaluation for Clustered Boosting

The performance of clustered boosting is dependent on several parameters

chosen during model construction. In order to analyze the response of clustered

boosting to changes in these parameters, we have performed several studies mea-

suring predictive performance as each parameter is indepedently varied. The

number of clusters as well as the number of iterations are both important param-

eters in clustered boosting. The number of clusters determines the total number of

models used to cover the sample interaction space, and by extension, determines

the average number of samples used to train each model. The number of iterations

determines how much opportunity each of the cluster models has to move toward

the nearest group of well-classified samples. If the number of iterations is too

low, the randomly selected clusters will not have the chance to move to optimal

locations. If the number of iterations is too large, cluster models may stop moving

and the contribution to the final model will be overwhelmed by only the models

generated from the most recent clusters.

8.10.3.1 Response to Change in Number of Iterations

These results were obtained using a half-size data set of 1600 samples. The

number of iterations for clustered boosting was varied between 5 and 100, and

in each experiment the number of clusteres was determined using 10-fold cross-

validation on the training data. The results detailing the response of clustered

boosting to the number of iterations chosen shows a minimal amount of variation.

The various statistics do not fluctuate much over the parameter range, and do

not vary significantly. One trend, however, is that the performance at the lowest

number of iterations is generally worse.

104

Table 8.7. Comparison of clustered boosting models as the number
of iterations is changed, with the number of clusters determined by
10-fold cross-validation on the training data and using näıve bayes as
the base model.

Number of Iterations
Statistic 5 10 15 25 50 100
Accuracy 0.68 0.69 0.69 0.69 0.69 0.69
F-measure 0.68 0.69 0.69 0.69 0.70 0.70
Precision 0.68 0.69 0.70 0.69 0.69 0.69
Recall 0.69 0.69 0.70 0.69 0.70 0.70
Train Time (s) 298.99 521.09 734.35 1298.95 2803.06 3479.53

8.10.3.2 Response to Change in Number of Clusters

As in the previous results, these results were obtained using a half size data

set of 1600 samples. The number of clusters for clustered boosting was varied

between 5 and 100 as well, and similarly the number of iterations was chosen using

10-fold cross-validation on the training data for each experiment. The results of

these experiments are more clear than those obtained when varying the number of

iterations. The performance according to each of the statistics gradually increases

as the number of clusters increases. The training time results reveal, however, that

the gradual performance boost using more clusters comes at a cost of increased

computation time. In general, increasing the number of clusters should reduce the

amount of data each model must learn, however as cluster centroids are adjusted

the number of data points assigned to each cluster may become imbalanced. In

the case of large numbers of clusters there is additional overhead as well.

8.10.4 Comparison to Similarity Boosting

For this experiment the results were obtained using a small, balanced sample

of 100 interactions. Näıve bayes was used as a base model. The results com-

105

Table 8.8. Comparison of clustered boosting models as the number
of clusters is changed, with the number of iterations determined by
10-fold cross-validation on the training data and using näıve bayes as
the base model.

Number of Clusters
Statistic 5 10 15 25 50 100
Accuracy 0.66 0.66 0.68 0.68 0.71 0.71
F-measure 0.67 0.67 0.68 0.69 0.71 0.71
Precision 0.65 0.66 0.68 0.69 0.72 0.73
Recall 0.69 0.68 0.69 0.69 0.71 0.69
Train Time (s) 704.71 714.18 849.15 831.50 1453.18 1798.46

paring clustered boosting and similarity boosting show that performance is not

significantly different, although clustered boosting performs slightly better. The

training time results indicate a large difference however. It is clear even for small

data sets that clustered boosting is faster by at least an order of magnitude.

Table 8.9. Comparison of SimBoost and clustered boosting with
näıve bayes as base model for genome-wide protein-chemical interac-
tion prediction with on a small, balanced selection of samples.

Dataset ClustBoost SimBoost
Accuracy 59.00 58.60
Train Time (s) 0.25 3.57
◦, • statistically significant improvement or degradation

106

Chapter 9

Discussion and Conclusions

Ensemble learning uses a series of models to make predictions about predictions

about samples and combines those predictions in a meaningful way. It is hopeless

to use multiple copies of the exact same models and therefore specialization of

each model is required. A central issue in ensemble learning then is exactly how

this specialization is done. In classic boosting the specialization is done according

to sample misclassification. This approach is practical for many types of data,

however in the case of protein-chemical interaction prediction it is limited by the

fact that misclassified interaction samples may not share similarities suitable for

prediction and generalization using a single model. For this reason it is more

useful to specialize base models by sample similarity and spatial distribution.

The similarity and clustered boosting methods described here are two attempts

at addressing the limitation of traditional boosting for genome-wide interaction

prediction.

SimBoost is a method for genome-wide protein-chemical interaction prediction

that utilizes protein and chemical similarity to reduce the model’s sensitivity to

mislabeled training samples. This method has been evaluated in a number of

107

protein-chemical interaction experiments and compared to competing methods.

The results gathered show that in the protein-chemical interaction cases eval-

uated, the SimBoost approach to interaction prediction provides a degree of toler-

ance to noise in the interaction labels that is not found in local model approaches.

Overall, the SimBoost method shows competitive performance on a range of data

sets. It’s performance on the gold-standard data sets indicate that it is also tol-

erant to noise in the data class labels, a situation common in real world data

sets.

Clustered boosting is an ensemble learning method for protein-chemical in-

teraction prediction that explicitly specializes base models to disjoint regions of

the interaction space. When applied to genome-wide prediction studies, clus-

tered boosting consistently outperforms competing methods. Clustered boosting

has been evaluated on balanced and unbalanced data selected from established

protein-chemical interactions.

Clustered boosting approaches genome-wide interaction prediction from the

same point of view as similarity boosting: sample similarity and nearness can be

used to specialized models and improve generalization ability. The difference be-

tween the two approaches is that similarity boosting uses global sample reweight-

ing to implicitly specialize base models according to the similarity. Clustered

boosting, on the other hand, explicitly partitions the sample space and iteratively

adjusts the models in each partition toward groups of well classified samples.

108

References

[1] D. K. Agrafiotis, W. Cedeno, and V. S. Lobanov. On the use of neural network

ensembles in QSAR and QSPR. Journal of chemical information and computer

sciences, 42:903–911, 2002.

[2] R. Ahuja, T. Magnanti, and J. Orlin. Network flows. SIAM Review, 37 No.1, 1995.

[3] A. Ben-Hur and W. S. Noble. Kernel methods for predicting protein-protein inter-

actions. Bioinformatics, 21(Suppl 1):i38–i46, 2005.

[4] H. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. Bhat, H. Weissig, I. Shindyalov,

and P. Bourne. The protein data bank. Nucleic Acids Research, 28:235–42, 2000.

[5] K. Bleakley and Y. Yamanishi. Supervised prediction of drug target interactions

using bipartite local models. Bioinformatics, 25:2397–2403, 2009.

[6] K. Borgwardt and H. Kriegel. Shortest-path kernels on graphs. In Proceedings of

the International Conference on Data Mining (ICDM), 2005.

[7] A. Chatr-aryamontri, A. Ceol, L. M. Palazzi, G. Nardelli, M. V. Schneider,

L. Castagnoli, and G. Cesareni. Mint: the molecular interaction database. Nucleic

Acids Res, 2007.

[8] J. Chen, S. J. Swamidass, Y. Dou, and P. Baldi. Chemdb: a public database of

small molecules and related chemoinformatics resources. Bioinformatics, 21:4133–

4139, 2005.

109

[9] K. K. Chohan, S. W. Paine, and N. J. Waters. Quantitative structure activity

relationships in drug metabolism. Current Topics in Medicinal Chemistry, 6:1569–

1578, 2006.

[10] A. Dalby, J. G. Nourse, W. D. Hounshell, A. K. I. Gushurst, and D. L. e. a.

Grier. Description of several chemical structure file formats used by computer

programs developed at molecular design limited. Journal of Chemical Information

and Computer Sciences, 32:244–255, 1992.

[11] Daylight theory manual, 2011.

[12] J. A. de Sousa and J. Gasteiger. Prediction of enantiomeric excess in a combi-

natorial library of catalytic enantioselective reactions. Journal of Combinatorial

Chemistry, 7:298–301, 2005.

[13] A. Deligiannakis and N. Roussopoulos. Extended wavelets for multiple measures. In

Proceedings of the 2003 ACM SIGMOD international conference on Management

of data, 2003.

[14] M. Deshpande, M. Kuramochi, and G. Karypis. Frequent sub-structure-based

approaches for classifying chemical compounds. IEEE Transactions on Knowledge

and Data Engineering, 2005.

[15] DRAGON. http://www.talete.mi.it.

[16] H. Fröhlich, J. Wegner, F. Sieker, and A. Zell. Kernel functions for attriubted

molecular graphs - a new similarity-based approach to ADME prediction in clas-

sification. QSAR & Combinatorial Science, 25(4):317–326, 2006.

[17] Fröohlich, J. Wegner, F. Sieker, and A. Zell. Kernel functions for attributed molec-

ular graphs - a new similarity-based approach to ADME prediction in classification.

QSAR & Combinatorial Science, 2006.

[18] Z. Gao, H. Li, H. Zhang, X. Liu, L. Kang, X. Luo, W. Zhu, K. Chen, X. Wang, and

H. Jiang. Pdtd: a web-accessible protein database for drug target identification.

BMC Bioinformatics, 9(1):104, 2008.

110

[19] M. Garofalakis and A. Kumar. Wavelet synopses for general error metrics. ACM

Transactions on Database Systems (TODS), 30(4):888–928, 2005.

[20] T. Gärtner, P. Flach, and S. Wrobel. On graph kernels: Hardness results and

efficient alternatives. In Sixteenth Annual Conference on Computational Learning

Theory and Seventh Kernel Workshop, 2003.

[21] B. GD, D. I, W. C, O. BF, P. T, and H. CW. Bind–the biomolecular interaction

network database. Nucleic Acids Res., 29(1):242–5, 2001.

[22] S. Gomez, W. Noble, and A. Rzhetsky. Learning to predict protein-protein inter-

actions from protein sequences. Bioinformatics, 19(15):1875–1881, 2003.

[23] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer clas-

sification using support vector machines. Machine Learning, 46:389–422, 2002

January.

[24] C. Hansch, A. Kurup, R. Garg, and H. Gao. Chem-bioinformatics and QSAR: A

review of QSAR lacking positive hydrophobic terms. Chemical Reviews, 101:619–

672, 2001.

[25] C. Hansch, A. Leo, S. B. Mekapati, and A. Kurup. QSAR and ADME. Bioorganic

& Medicinal Chemistry, 12:3391–3400, 2004.

[26] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning:

Data Mining, Inference, and Prediction. Springer-Verlag, 2001.

[27] T. Hertz, A. Bar-Hillel, and D. Weinshall. Boosting margin based distance func-

tions for clustering. In Proc. of the International Conference on Machine Learning,

2004.

[28] J. Huan, W. Wang, and J. Prins. Efficient mining of frequent subgraph in the

presence of isomorphism. In Proceedings of the 3rd IEEE International Conference

on Data Mining (ICDM), pages 549–552, 2003.

[29] L. Jacob, B. Hoffmann, V. Stoven, and J.-P. Vert. Virtual screening of gpcrs: an in

silico chemogenomics approach. Technical Report HAL-00220396, French Center

for Computational Biology, 2008.

111

[30] L. Jacob and J.-P. Vert. Protein-ligand interaction prediction: an improved

chemogenomics approach. Bioinformatics, 24(19), 2008.

[31] F. JL, M. M, M. S, S. K, and S. R. Genome scale enzyme-metabolite and drug-

target interaction predictions using the signature molecular descriptor. Bioinfor-

matics, 24(2):225–33, 2007.

[32] D. K, de Matos P, E. M, H. J, Z. M, M. A, A. R, D. M, G. M, and A. M. Chebi:

a database and ontology for chemical entities of biological interest. Nucleic Acids

Res, 36:344–50, 2008.

[33] M. Kanehisa, S. Goto, M. Hattori, K. F. Aoki-Kinoshita, M. Itoh, S. Kawashima,

T. Katayama, M. Araki, , and M. Hirakawa. From genomics to chemical genomics:

new developments in kegg. Nucleic Acids Research, 34:D354–357, 2006.

[34] H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized kernels between labeled

graphs. In Proceedings of the International Conference on Machine Learning

(ICML), 2003.

[35] A. Kovatcheva, A. Golbraikh, S. Oloff, Y. D. Xiao, W. Zheng, P. Wolschann,

G. Buchbauer, and A. Tropsha. Combinatorial QSAR of ambergris fragrance com-

pounds. J. Chem. Inf. Comput. Sci., 44:582–595, 2004.

[36] S. KP, G. GA, H. MP, B. NE, C. HA, N. S, B. S, S. JP, M. J, S. M, F. P, T. NJ,

S. SL, and C. PA. Chembank: a small-molecule screening and cheminformatics

resource database. Nucleic Acids Res, 36:351–9, 2008.

[37] R. Kuang, E. Ie, K. Wang, K. Wang, M. Siddiqi, Y. Freund, and C. Leslie. Profile-

based string kernels for remote homology detection and motif extraction. Journal

of Bioinformatics and Computational Biology, 3 (3):527–550, 2005.

[38] H. Kubinyi. Quantitative relationships between chemical-structure and biological-

activity. Drug Discovery Today, 2:457–467, 1997.

[39] T. Kudo, E. Maeda, and Y. Matsumoto. An application of boosting to graph

classification. In NIPS, 2004.

112

[40] L. L, B.-E. K, B. PH, R. JJ, H. JR, N. JA, P. ME, and M. SO. Biodrugscreen:

a computational drug design resource for ranking molecules docked to the human

proteome. Nucleic Acids Res, 38:765–73, 2010.

[41] R. L, S. SJ, S. H, and B. P. Graph kernels for chemical informatics. Neural

Networks, 18:1093–1110, 2005.

[42] A. R. Leach, B. K. Shoichet, and C. E. Peishoff. Prediction of protein-ligand inter-

actions. docking and scoring: Successes and gaps. Journal of medicinal chemistry,

49(20):5851–55, 2006.

[43] C. Leslie, E. Eskin, and W. Noble. The spectrum kernel: a string kernel for svm

protein classification. In Proceedings of the Pacific Symposium on Biocomputing

2002, World Scientific, Singapore, 2002.

[44] Z. Li, H. Lin, L. Han, L. Jiang, X. Chen, , and Y. Chen. Profeat: A web server for

computing structural and physicochemical features of proteins and peptides from

amino acid sequence. Nucleic Acids Res, 34:32–7, 2006.

[45] S. Lyu. Mercer kernels for object recognition with local features. In IEEE Computer

Vision and Pattern Recognition, pages 223–229, 2005.

[46] P. Mahe and J. Vert. Graph kernels based on tree patterns for molecules. Technical

Report HAL:ccsd-00095488, Ecoles des Mines de Paris, September 2006.

[47] S. Martin, D. Roe, and J.-L. Faulon. Predicting protein-protein interactions using

signature products. Bioinformatics, 21(2):218–226, 2005.

[48] A. McNaught. The iupac international chemical identifier:inchi. Chemistry Inter-

national (IUPAC), 28(6), 2006.

[49] P. Murray-Rust, H. S. Rzepa, and M. Wright. Development of chemical markup

language (cml) as a system for handling complex chemical content. New J. Chem.,

pages 618–634, 2001.

[50] N. Nagamine and Y. Sakakibara. Statistical prediction of protein chemical inter-

actions based on chemical structure and mass spectrometry data. Bioinformatics,

23:2004–2012, 2007.

113

[51] Y. Okuno, J. Yang, K. Taneishi, H. Yabuuchi, and G. Tsujimoto. GLIDA: GPCR-

ligand database for chemical genomic drug discovery. Nucleic Acids Res., 2006(9).

[52] Oyama, Satoshi, Manning, and C. D. Using feature conjunctions across examples

for learning pairwise classifiers. In 15th European Conference on Machine Learning

(ECML2004), 2004.

[53] P. P, K. S, O. M, B. B, D.-K. I, F. G, M. C, M. P, S. V, M. HW, R. A, and

F. D. The mips mammalian protein-protein interaction database. Bioinformatics,

21(6):832–834, 2005.

[54] G. V. Paolini, R. H. B. Shapland, W. P. van Hoorn, J. S. Mason, and A. L. Hopkins.

Global mapping of pharmacological space. Nature Biotechnology, 24:805–815, 2006.

[55] Pubchem. http://pubchem.ncbi.nlm.nih.gov.

[56] R. Put, Q. S. Xu, D. L. Massart, and Y. V. Heyden. Multivariate adaptive regres-

sion splines (MARS) in chromatographic quantitative structure-retention relation-

ship studies. Journal of Chromatography, 1055(A):11–19, 2004.

[57] M. Shen, C. Beguin, A. Golbraikh, J. P. Stables, H. Kohn, and A. Tropsha. Applica-

tion of predictive QSAR models to database mining: identification and experimen-

tal validation of novel anticonvulsant compounds. J. Med. Chem., 47:2356–2364,

2004.

[58] A. Smalter, J. Huan, and G. Lushington. Structure-based pattern mining for chem-

ical compound classification. In Proceedings of the 6th Asia Pacific Bioinformatics

Conference, 2008.

[59] H. Strombergsson and G. Kleywegt. A chemogenomics view on protein-ligand

spaces. BMC Bioinformatics, 10(Suppl 6):S13, 2009.

[60] V. Svetnik, A. Liaw, C. Tong, J. C. Culberson, R. P. Sheridan, and B. P. Feuston. A

classification and regression tool for compound classification and QSAR modeling.

Journal of chemical information and computer sciences, 43:1947–1958, 2003.

114

[61] S. W. Tamas Horvath, Thomas Gartner. Cyclic pattern kernels for predictive

graph mining. Proceedings of the 10th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, 2004.

[62] D. Tao, X. Li, X. Wu, W. Hu, and S. J. Maybank. Supervised tensor learning.

Journal of Knowledge and Information Systems, 13, 2007.

[63] I. V. Tetko. Neural network studies. 4. introduction to associative neural networks.

Journal of chemical information and computer sciences, 42:717–728, 2002.

[64] S. V. N. Vishwanathan, K. M. Borgwardt, and N. N. Schraudolph. Fast computa-

tion of graph kernels. In In Advances in Neural Information Processing Systems,

2006.

[65] D. Weininger. Smiles, a chemical language and information system. 1. introduc-

tion to methodology and encoding rules. Journal of Chemical Information and

Modeling, 28(31), 1988.

[66] D. S. Wishart, C. Knox, A. C. Guo, S. Shrivastava, M. Hassanali, P. Stothard,

Z. Chang, and J. Woolsey. Drugbank: a comprehensive resource for in silico drug

discovery and exploratin. Nucleic Acids Res., 2006(1).

[67] C. X, J. ZL, and C. YZ. Ttd: Therapeutic target database. Nucleic Acids Res,

20(1):412–5, 2002.

[68] I. Xenarios, E. Fernandez, L. Salwinski, X. J. Duan, M. J. Thompson, E. M.

Marcotte, and D. Eisenberg. Dip: The database of interacting proteins: 2001

update. Nucleic Acids Res, 29:239–241, 2001.

[69] Y. Y. Xiao and M. R. Segal. Prediction of genomewide conserved epitope profiles

of hiv-1: Classifier choice and peptide representation. Statistical Applications in

Genetics and Molecular Biology, 4, 2005.

[70] Y. Xue, H. Li, C. Y. Ung, C. W. Yap, and Y. Z. Chen. Classification of a diverse set

of tetrahymena pyriformis toxicity chemical compounds from molecular descriptors

by statistical learning methods. Chem. Res. Toxicol., 19 (8), 2006.

115

[71] Y. Yamanishi, M. Araki, A. Gutteridge, W. Honda, and M. Kanehisa. Prediction

of drug target interaction networks from the integration of chemical and genomic

spaces. Bioinformatics, 24(13):i232–i240, 2008.

116

Appendices

117

Table 9.1. Appendix: Topological descriptiors generated by PRO-
FEAT

Name
Number of Atoms
Number of Heavy atoms
Number of H atoms
Number of B atoms
Number of C atoms
Number of N atoms
Number of O atoms
Number of F atoms
Number of P atoms
Number of S atoms
Number of Cl atoms
Number of Br atoms
Number of I atoms
Number of Bonds
Number of non-H Bonds
Number of rings
Molecular weight
Average molecular weight
Number of H-bond donnor
Number of H-bond acceptor
Number of 3-member rings
Number of 4-member ings
Number of 7-member rings
Number of 5-member non-aromatic rings
Number of 6-member non-aromatic rings
Number of 5-member aromatic rings
Number of 6-member aromatic rings
Number of heterocyclic rings
Number of N heterocyclic rings
Number of O heterocyclic rings
Number of S heterocyclic rings

118

Table 9.2. Appendix: Topological descriptiors generated by PRO-
FEAT (cont’d)

Name
Fingerprint for primary carbocation
Fingerprint for secondary carbocation
Fingerprint for tertiary carbocation
Fingerprint for organohalide
Fingerprint for amonium ion
fingerprint for primary amonium
fingerprint for secondary amonium
fingerprint for tertiary amonium
fingerprint for nitro
fingerprint for nitrile
fingerprint for diazo
fingerprint for phenol(Ph-OH)
fingerprint for primary alcohol
fingerprint for second alcohol
fingerprint for tertiary alcohol
fingerprint for Ph-O-Ph
fingerprint for ether(R-O-R)
fingerprint for aldehyde(R-CHO)
fingerprint for ketone(R-CO-R)
fingerprint for carboxylic acid(R-COOH)
fingerprint for carboxylate ion(R-COO(-))
fingerprint for acyl cation(R-CO(+))
fingerprint for ester(R-COOR)
fingerprint for Acid anhydride(R-CO-O-COR)
fingerprint for Alkoxide ion(R-O(-))
fingerprint for peroxide(R-O-O-R)
Fingerprint for epoxide(c-O-c ring)
Fingerprint for diol(C(OH)-C(OH)-)
Fingerprint for organosilicon
Fingerprint for organoarsenical
Fingerprint for thiol(R-SH)
Fingerprint for thiophenol(Ph-SH)
Fingerprint t for R-S-R
Fingerprint for Ph-S-Ph
Fingerprint for sulfonic acid
Fingerprint for thioketone(R-C=S)
Fingerprint t for phosphonic acid
Fingerprint for phosphinic acid
Fingerprint for organophophosphate ester

119

Table 9.3. Appendix: Topological descriptiors generated by PRO-
FEAT (cont’d)

Name
Fingerprint for carboxylic thioester
Fingerprint for sulfate ester
Fingerprint for thiophosphate ester
Fingerprint for amide
Fingerprint for alpha-amino acid
Fingerprint for hydroxynitrile
Fingerprint for oxime
Fingerprint for nitrate ester
Fingerprint for acid halide(RCOX)
Number of rotable bonds
Schultz molecular topological index
Gutman molecular topological index
Topological charge index G1
Topological charge index G2
Topological charge index G3
Topological charge index G4
Topological charge index G5
Mean topological charge index J1
Mean topological charge index J2
Mean topological charge index J3
Mean topological charge index J4
Mean topological charge index J5
Global topological charge index J
Wiener index
Mean Wiener index
Harary index
Gravitational topological index
Molecular path count of length 1
Molecular path count of length 2
Molecular path count of length 3
Molecular path count of length 4
Molecular path count of length 5
Molecular path count of length 6

120

Table 9.4. Appendix: Topological descriptiors generated by PRO-
FEAT (cont’d)

Name
Total path count
Xu index
Modified Xu Index
Balaban Index J
Platt Number
First Zagreb Index(M1)
Second Zagreb Index(M2)
First Modified Zagreb Index
Second Modified Zagreb Index
Quadratic index(Q)
0th edge connectivity index
Edge connectivity index
Extened edge connectivity inndex
0th Kier-Hall connectivity index
1th Kier-Hall connectivity index
Mean Randic Connectivity index
2th Kier-Hall connectivity index
Simple topological index by Narumi
Harmonic topological index by Narumi
Geometric topological index by Narumi
Arithmetic topological index by Narumi
0th valence connectivity index
1th valence connectivity index
2th valence connectivity index
0th order delta chi index
1th order delta chi index
2th order delta chi index
Pogliani index

121

Table 9.5. Appendix: Topological descriptiors generated by PRO-
FEAT (cont’d)

0th Solvation connectivity index
1th Solvation connectivity index
2th Solvation connectivity index
1th order Kier shape index
2th order Kier shape index
3th order Kier shape index
1th order Kappa alpha shape index
2th order Kappa alpha shape index
3th order Kappa alpha shape index
Molecular Flexibility Index
Topological radius
Topological diameter
Graph-theoretical shape coefficient
Eccentricity
Average atom eccentricity
Mean eccentricity deviation
Average distance degree
Mean distance degree deviation
Unipolarity
Rouvary index
Centralization
Variation
Dispersion
Log of PRS INDEX
RDSQ ondex
RDCHI index
Optimized 1th connectivity index
Logp from connectivity
BCUT descriptors
Moreau-Broto Autocorrelation descriptors
Moran Autocorrelation descriptors
Geary Autocorrelation descriptors

122

