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Abstract 

 

Various methods are used to study the evolution and biogeography of the Araneae 

through time. Two new fossil spider species were described from Miocene Dominican 

amber and French Cretaceous amber. A preliminary biogeographic analysis was 

performed on the former in order to elucidate the biogeographic origins of the genus to 

which it belongs. Further, ecological niche modeling, a biogeographic technique used to 

delineate the set of tolerances and limits in multidimensional space that define where a 

species is potentially able to maintain populations, was undertaken on the brown recluse 

(Loxosceles reclusa) spider for extant distributions and potential future distributions 

given climate change. A methodological analysis addressing how error within species 

occurrence points influences model quality within ecological niche modeling was 

conducted. Results indicated that studies of lower spatial resolution are valid, if enough 

data are utilized; this has implications for using ecological niche modeling in the fossil 

record.  
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Introduction 

This thesis is a compilation of three separate, but related, projects detailing the 

biogeography and evolution of the Araneae. Biogeographic studies (and specifically 

paleobiogeographic studies) are vital because they can provide insight into the 

mechanisms promoting speciation, extinction, and the maintenance of stasis (i.e., 

macroevolutionary patterns and processes). Paleobiogeography can also elucidate the 

role that Earth history changes play in influencing evolution. 

Various methods were used to study the evolution of the Araneae, including 

mBPA (Lieberman, 2000, also referred to as LBPA by Stigall, 2008), phylogenetics, 

and niche modeling techniques (this paper and forthcoming). A new species within 

the genus Molinaranea was described from Miocene Dominican amber; this is the 

first fossil within this extant genus and extends the geographical range of the lineage 

through time (since extent members are found only in southern South America and 

the fossil is from the Dominican Republic). We performed a phylogenetic and 

modified Brooks Parsimony analysis (mBPA) on the genus in order to further 

understand the geographic origins of the lineage and its implications for the 

colonization of the West Indies. The West Indies has been designated a Conservation 

International Biodiversity Hotspot, and there has been tremendous amounts of 

discussion on 1) how to preserve this diversity and 2) how this diversity arose and/or 

how organisms colonized the islands. Debate has particularly focused on whether 

colonization occurred via vicariance or dispersal, and if the latter, by what dispersal 

mechanism. The mBPA (Lieberman, 2000) analysis indicated the lineage arrived on 

Hispaniola via dispersal, which provides another piece of evidence within the larger 
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colonization puzzle of the West Indies. Understanding how this biodiversity hotspot 

arose can help us protect these fragile regions. 

A new species of spider within the family Mecysmaucheniidae is also described 

from French Cretaceous amber. This is the first fossil within the family 

Mecysmaucheniidae, thus extending the record of this group back ~90 million years. 

Extant mecysmaucheniids are found only in southern South America and New 

Zealand, whereas the fossil was discovered in French Cretaceous amber. This find is 

quite interesting biogeographically and suggests a re-analysis of the typical 

“Gondwanan” explanation for the distribution of this group (and its sister, the 

Archaeidae). Describing and documenting new fossil species is extremely important 

not only for understanding the evolution of the Araneae, but also for elucidating past 

diversity of life on Earth. Discovery of new fossil species provides further 

biogeographic data to use in phylogenetic biogeographic and niche modeling 

analyses. This data allows you to search for congruence within and among clades, 

which would provide information on how geologic events shaped evolution. 99.9 

percent of all life on Earth is now extinct (Lieberman, 2000), and the fossil record is 

our only source on this past diversity.  

Techniques like mBPA can be used in conjunction with ecological niche 

modeling to study paleobiogeographic relationships. Ecological niche modeling looks 

at the set of environmental conditions that potentially constrains the distribution of a 

species within space (i.e., its fundamental niche). Using niche modeling within a 

phylogenetic framework can provide insight into the relative importance of abiotic 

and biotic factors in constraining distributions and ultimately influencing evolution. 

Ecological niche modeling has been applied to the fossil record (e.g., Maguire & 
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Stigall, 2008; Stigall Rode & Lieberman, 2005); however, in order to further test the 

validity of this method, we performed a methodological analysis addressing how 

spatial error within species occurrence points influences model quality. The fossil 

record places constraints on the resolution of paleo-ENM studies (Schindel, 1980; 

Sadler, 1981; Dingus & Sadler, 1982; Dingus, 1984; Lieberman, 2000), and many 

modern biologists are increasingly concerned with working only with fine-scale data 

and shy away from larger-scale studies with presence only data that are lower in 

geographic resolution. An analysis of the error within locality points and how this 

influences model quality has not been well studied, but needed to be addressed, 

especially when data from museum collections is utilized. I found that the number of 

data points was more significant in producing accurate niche models than the 

geographic resolution of individual points. This has implications for the use of ENM 

in the fossil record and suggests the models produced from this data are accurate and 

useful. In the future, further work using ENM will be performed in combination with 

mBPA analyses to address questions such as: what is driving the evolution of life 

through time, and is it primarily abiotically or biotically forced? 

In addition to the above methodological study, I used ENM to characterize the 

niche of the brown recluse spider (Loxosceles reclusa). The brown recluse is an 

infamous and medically important spider in North America; its bite can cause serious 

necrotic lesions, and it has become a feared (often unnecessarily) object in many 

North American homes. Given its notoriety, the species’ geographic range was 

surprisingly unknown and had never been quantified (Vetter 2000; Vetter 2005; 

Swanson and Vetter 2005). Bite mis-diagnoses for several medical conditions, 

including fungal infections, Herpes simplex, MRSA, chemical burns, and syphilis 
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(Vetter 2000; Vetter et al. 2003, 2004; Swanson and Vetter 2005) are quite common, 

even in states without brown recluse populations. We found that the environmental 

conditions suitable to the brown recluse (its niche) are quite similar to its known 

distribution (i.e., the Midwest), and medical professionals should think twice about 

diagnosing brown recluse bites in areas outside its natural range.  

I projected the niche of the brown recluse into the future given climate change 

scenarios (forthcoming). Since the brown recluse is such a high-profile species, 

testing hypotheses of distributional change provides valuable information to medical 

professionals and has greater potential to enhance public awareness of the impact of 

climate change on the Earth’s biota. Furthermore, by identifying potential areas of 

range expansion, public health initiatives can be designed to assure effective 

response. Affected areas can be educated on proper protocol for dealing with 

populations of L. reclusa (e.g., always shake out clothes and shoes before donning) 

and potential bites (e.g., do not excise or heat the wound). This work also has 

implications for analyzing the effect of invasive species on biodiversity. Invasive 

species are a serious concern in the current biodiversity crisis, and there is evidence 

that species invasions in deep time (which occurred due to the collapse of climatic, 

geologic, or ecologic barriers) contributed to decreased speciation and biodiversity 

decline (e.g., the Late Devonian Biodiversity Crisis at the Frasnian-Famennian 

boundary, see Lieberman, 2000; Stigall Rode & Lieberman, 2005 and Stigall & 

Lieberman, 2006).  
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CHAPTER 1 | Quality does not always trump quantity: effects of sample size 

and spatial error of species presences in ecological niche modeling 

 
Chapter Summary 
 
We investigate, using the brown recluse spider (Loxosceles reclusa), how uncertainty 
in species occurrence data affects ecological niche modeling results. In doing so, we 
address the age-old problem of which is better: quality or quantity (of species 
occurrence points). We georeferenced and assigned error to species locality points 
using the latest techniques, including Biogeomancer and the MaNIS/HerpNet/ORNIS 
Georeferencing Calculator. Three error treatments of 1, 4.5, and 18 km were used in 
conjunction with two of the more popular presence-only ecological modeling 
methods: Maxent and GARP. We assessed model quality based on a number of 
measures, including sensitivity tests and partial AUC ratios. We found no significant 
difference between partial AUC ratios of differing spatial uncertainty, and all ratios 
were statistically significant above the line of null expectations (z-tests, P< 0.001). 
Overall, the lower spatial resolution data with a greater number of occurrence points 
produced the most reliable results, while the highest-resolution data with the fewest 
points produced narrower predicted distributions. Species occurrence data is 
increasingly being digitized and assigned geographic coordinates. While this 
facilitates sharing and utilization of data from natural history museum collections, 
much of the digital locality data lack attribute information, such as the error 
associated with each assigned coordinate. This is potentially problematic because 
different applications and questions require different levels of data precision. 
However, at least in terms of larger-scale ecological niche modeling studies, we 
found that museum locality data with typical error (e.g., up to 18 km) will produce 
predicted distributions comparable with a species known distribution; quantity is 
perhaps better than quality in many circumstances.   

 

1.1 Introduction 

Ecological niche modeling (ENM) is a rich area of study that has seen tremendous 

growth in past years. Species geographic occurrence points and predictor variables 

(usually climatic or environmental parameters) are used in correlative approaches to 

make inferences about the ecological requirements for a species, which can then be 

projected onto geography. These models can be used in many applications, such as 

examining future potential distributions of species under climate change scenarios 
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(Price, 2000; Peterson et al., 2001; Pearson & Dawson, 2003; Araújo et al., 2005; 

Thuiller et al., 2005), predicting species invasions (Peterson & Vieglais, 2001; Papeş 

& Peterson, 2003; Peterson, 2003; Ficetola et al., 2007), finding unknown species 

(Raxworthy et al., 2003), determining areas in need of conservation (Pressey, 1994; 

Williams et al., 1996), analyzing paleo-distributions and related questions (Peterson 

et al., 2004; Stigall-Rode & Lieberman, 2005; Maguire & Stigall, 2009) and 

understanding the ecological requirements of species (Austin & Meyers, 1996; Costa 

et al., 2002; Hirzel et al., 2002). While there has been much research in the field of 

ENM, few have explored how model quality is affected by geographic spatial error in 

species occurrence points (Graham et al., 2008; Fernandez et al., 2009).  

Museum collections are the primary source of species occurrence points used in 

presence-only ENM. There are over 2500 million geological, biological, and cultural 

specimens housed in museums around the world (Duckworth et al., 1993), but only 

about one percent of these have been georeferenced (i.e., assigned geographic 

coordinates indicating location of collecting event, the data format used in ENM) 

(Guralnick et al., 2006). Retrospective georeferencing, or assigning coordinates from 

historical descriptions (Guralnick et al., 2007), can lead to errors or uncertainty in the 

locality data. Error is introduced from vague locality descriptions with large 

geographical extents (e.g., ”Austin, Texas”), inaccuracy in georeferencing localities 

with offset distances (e.g., “1 mi south of Rolla, Missouri”), an unknown datum, and 

uncertainty in map scale used, to name a few (Wieczorek et al., 2004; Graham et al., 

2008). Stockwell and Peterson (2002a) have estimated that the spatial resolution (or 

uncertainty) associated with museum data is generally 0.5 km and above. If a high 

degree of spatial accuracy in occurrence data is required, few data points may be 
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available that meet this standard; conversely, lowering the spatial resolution affords a 

greater number of occurrences but decreases the accuracy. The question we address 

here is which is more important for accurate ENM: quality of species occurrence 

points or quantity of occurrence points? 

In the past few years, programs have been developed to assign error to 

georeferenced locality points, such as BioGeomancer (Guralnick et al., 2006) and the 

MaNIS/HerpNet/ORNIS Georeferencing Calculator (Wieczorek et al., 2004). While 

error is now being quantified and accounted for, few have used this error as a filter to 

choose only those points that fit a certain or appropriate use and even fewer have 

examined the influence of locality error on model quality (Wieczorek et al., 2004).  

 Most recently, Fernandez et al. (2009) addressed how model accuracy degrades 

under increasing locality data uncertainty. They simulated error within an original 

dataset by randomly replicating and moving each locality point to a new position 

within a specified buffer, testing four different sizes: of 5, 10, 25, and 50 km. Model 

quality was measured through Monte Carlo simulations and a similarity measure, as 

compared to predictions generated from unaltered data. They found that the modeling 

method (i.e., BIOCLIM, DOMAIN, Maxent and GARP) influenced model quality 

more so than the simulated error associated with the data points.  

Similarly, but offering a different perspective on the issue, Graham et al. (2008) 

introduced error into georeferenced coordinates by drawing a number from a normal 

distribution with a mean of zero and a standard deviation of 5 km. They evaluated 

model quality based on a comparison of AUC scores and found that, overall, accurate 
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predictions were possible with introduced error in coordinates, although quality did 

decline.  

At a much finer spatial scale, Engler et al. (2004) evaluated whether the grain 

(spatial resolution) or the quality of occurrence points is more important for model 

accuracy using two datasets of 45 and 77 occurrence points with a spatial resolution 

of 25 and 100 meters, respectively. Model quality was assessed using a variety of 

statistical analyses, including the Gini coefficient. They found that the quality of 

points (spatial resolution and location accuracy) is more important than the quantity 

of points, differing from the findings of the aforementioned studies. The authors 

claimed that the poor results obtained with the lower resolution data may have been a 

result of a) loss of information when environmental maps were aggregated, b) a 

greater measurement error than indicated, and c) the micro-habitat specificity of 

plants, their study organism.  

Here, we use the brown recluse spider (Loxosceles reclusa) to investigate how 

uncertainty in species occurrence data affects model quality. In doing so, we address 

the age-old problem of which is better: quality or quantity (of species occurrence 

points).  

We use two of the more popular modeling methods, GARP and Maxent. While 

Fernandez et al. (2009) and Graham et al. (2008) focused on the effects of simulated, 

degraded data, our study examines the trade-off between quantity and quality. 

Furthermore, we use the latest georeferencing tools to assign error to locality 

coordinates, a more realistic approach than artificially inserting error into a locality 

dataset. Like the present study, Engler et al. (2004) also assessed the trade-off 
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between quality and quantity of occurrence points, but our study differs from theirs in 

that it uses a mobile, widespread organism, different model development techniques, 

and a greater number of lower-resolution datasets.  

1.2 Methods 

1.2.1. Brown recluse distribution and data georeferencing 

 The brown recluse (also known as the fiddle-back spider, the brown spider, or the 

violin spider) is distributed throughout the central United States, from southern 

Illinois south to Texas and from eastern Tennessee west to Kansas and Oklahoma 

(Vetter, 2008). The species is infamous for its bite, which can cause necrotic lesions 

of medical concern (Da Silva et al., 2004; Hogan et al., 2004; Swanson & Vetter, 

2005, 2006). The distribution of the brown recluse has been studied (Gertsch & 

Ennik, 1983; Swanson & Vetter, 2005; Vetter, 2008), and therefore a fairly accurate 

range map in which to test the models is available.  

Occurrence points for L. reclusa, in the form of locality descriptions, were 

compiled from the American Museum of Natural History (AMNH), the Museum of 

Comparative Zoology (MCZ), and from individual researchers (see 

Acknowledgements).  

Georeferencing was carried out using the point-radius method (after Wieczorek et 

al., 2004), where each locality was treated as a circle with a point in the middle. The 

radius represents the maximum distance from the point within which the locality is 

expected to occur. All occurrence points were georeferenced, excluding the 

Mississippi dataset that had already been collected and assigned geographic 
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coordinates with a GPS. The error associated with the GPS data points was calculated 

using the MaNIS/HerpNet/ORNIS Georeferencing Calculator (Wieczorek et al., 

2004). Georeferencing was primarily conducted using BioGeomancer (Guralnick et 

al., 2006), since most localities simply referred to a town and state. The centre of the 

town was calculated manually using the underlying topographic map function, and 

the error was adjusted within BioGeomancer to include the full extent of the town 

(erring on the conservative side; i.e., associating the point with the most error possible 

within reason). When presented with a specific street address, the exact address was 

georeferenced, and the extent of the street was used to calculate error. Localities 

described with offset distances (e.g., “1 mi south of Rolla, Missouri”) were 

georeferenced by measuring the extent and centre of the named place (usually a town) 

in Google Earth 5.0. These measurements were then imported into the 

MaNIS/HerpNet/ORNIS Georeferencing Calculator to find the geographic 

coordinates and error associated with them. Any obviously inaccurate and/or dubious 

locality information was not georeferenced.  

1.2.2. Ecological niche modeling  

1.2.2.1. Input data 

Occurrence datasets 

The locality data was divided into three sets for model building, based on 

georeferencing errors: ≤ 1 km, ≤ 4.5 km, and ≤ 18 km spatial error. Since there were 

only 36 spatially unique points within the 1 km dataset, it was not split for external 

testing. The 4.5 km dataset was randomly divided in two, and one portion was set 

aside for external testing of the model. The same points used in the 4.5 km resolution 
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training dataset were included within the 18 km resolution training dataset, and the 

remaining lower resolution points were randomly assigned to either the 18 km 

training or testing dataset (i.e., the data were inclusive). The 4.5 km training dataset 

contained 88 spatially unique points, and the 18 km dataset was composed of 126 

spatially unique points.  

Environmental datasets 

The predictor variables consisted of seven bioclimatic variables from WorldClim 

v. 1.4 (Hijmans et al., 2005). We used three different resolutions: 30 arc-seconds, 2.5 

arc-minutes, and 10 arc-minutes data, to match the 1 km, 4.5 km, and 18 km 

resolution occurrence datasets, respectively. Worldclim variables represent 

interpolations of average monthly climate data from weather stations on a 30 arc-

second resolution grid from 1960–1990 (Hijmans et al., 2005). We used the following 

variables: 1) annual mean temperature, 2) mean diurnal range, 3) maximum 

temperature of warmest month, 4) minimum temperature of coldest month, 5) annual 

precipitation, 6) precipitation of wettest month, and 7) precipitation of driest month to 

capture the climatic dimensions that are most likely to limit the distributional extent 

of the species. These seven variables have also been used in other studies and have 

produced viable ecological niche models (e.g., Neerinckx et al., 2008; Peterson & 

Nyári, 2008).   

The bioclimatic variables were clipped to the training region, which essentially 

included the area between the Rocky Mountains and the Appalachian Mountains, 

USA (i.e., the Midwest). This training region was used to build the ecological niche 

models and was chosen because it represents an area that is most likely ecologically 
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accessible to the brown recluse (i.e., within its "M" domain, sensu Soberón & 

Peterson, 2005).  

1.2.2.2. Modeling algorithms 

Of the more popular and widely used modeling methods, we chose two 

specifically designed for predicting species distributions when only presence data are 

available: GARP (Genetic Algorithm for Rule-Set Prediction, Stockwell & Peters, 

1999) and Maxent (maximum entropy, Phillips et al., 2004). Both of these techniques 

have been employed and validated in numerous studies (e.g., see Elith et al., 2006 for 

a comprehensive comparison).  

GARP 

GARP is a machine-learning algorithm that utilizes known occurrence points and 

generated pseudo-absences. The algorithm relates these points to predictor 

(environmental) variables in an iterative, artificial-intelligence framework to create a 

set of rules describing ecological conditions potentially habitable to a species, which 

can then be projected onto geography (Stockwell & Peters, 1999). 

GARP was run using the internal testing feature (i.e., 50 percent of the input data 

were used to evaluate model quality within GARP). We ran 100 models for each 

spatial resolution (see below), with a 0.01 convergence limit and max iterations of 

1000. The ‘best subsets’ method (Anderson et al., 2003) was used to retain 10 models 

based on two error statistics, omission (excluding known presence data), and 

commission (including areas without confirmed presence of species, but which are 

potentially habitable). A soft omission threshold was used so that 20 percent of 
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models with the lowest omission error were retained; those models with intermediate 

levels of commission were then chosen from this subset. The 10 best models were 

summed in ArcMap 9.3 to create a model agreement map in GIS grid format. 

Maxent 

Maxent is also a machine-learning method for predicting species’ distributions 

using organism occurrence data. Maxent estimates a probability distribution for 

species’ occurrences by finding the distribution of maximum entropy (that which is 

closest to uniform), subject to constraints defined by the environmental parameters 

input into the model (Phillips et al., 2004; Phillips et al., 2006).  

We primarily used the default features of Maxent v. 3.3.1. We also took 

advantage of the ‘remove duplicate presences’ function. Linear, quadratic, product, 

threshold, and hinge feature types were enabled. We converted the floating-point 

output models of Maxent into integer grids (retaining first 3 decimals), which are 

easier to manipulate in a GIS-framework, using the Raster Calculator in ArcMap 9.3.  

Maxent and GARP models were trained in the Midwest region using all three 

spatial resolutions (1, 4.5, and 18 km), and each of the three resulting models was 

projected to the continental U.S., on the same three spatial resolutions. This resulted 

in a total of 6 training models and 18 projections.  

1.3. Data analyses and model evaluation 

1.3.1 Threshold-dependent tests: area predicted present, sensitivity, and expert 

opinion 
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To facilitate comparison between predictions, we reclassified the model 

agreement (GARP) and continuous (Maxent) outputs to simple 0 and 1 values (i.e., 0 

= unsuitable habitat, 1 = suitable habitat). All models were reclassified to 

presence/absence pixels within ArcMap 9.3 using threshold values that allowed a 

maximum of five percent omission error based on the presence data available. 

Obtaining binary models facilitated easy calculation of the area predicted as suitable 

for the species.  

To calculate area predicted present in square kilometers, we defined the map 

projection of all predicted distributions as USA Contiguous Albers Equal Area Conic. 

The Zonal Statistics function of ArcMap 9.3 was used to find the number of pixels 

predicted present within each state, which was then converted to square kilometers.  

It is important to note that the omission threshold was relaxed to 40 percent for 

the 1 km GARP projections. This was necessary because of lack of model agreement 

(and therefore predicted area) within the ten best GARP models.  

Sensitivity tests 

One of the tests used to assess prediction errors is sensitivity (Fielding & Bell, 

1997), which measures model quality by examining the number of test occurrences 

predicted absent by the niche models. We calculated sensitivity of the models 

produced at two of the three spatial resolutions; the 1 km resolution model could not 

be tested for the reasoning cited above.  

Expert opinion 
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Since the brown recluse’s distribution has been studied and is of medical 

importance, experts have a fairly accurate knowledge of the current distribution of the 

species. The distribution maps from Rick Vetter (Vetter, 2005, 2008), who has 

studied L. reclusa for over 10 years, were consulted in order to further evaluate model 

quality. It is important to note that ecological niche models are often difficult to test 

and validate in this way (i.e., by comparison to the realized distribution of the 

species), because the actual distribution may not mirror the potential distribution of a 

species (the niche model). Historical and biological barriers may prevent a species 

from occupying all suitable habitat (Peterson, 2006).  

All reported results are based on thresholded models, excluding the threshold-

independent ROC analyses (see below).  

1.3.2. Threshold-independent tests: Receiver operating characteristic analysis (ROC)  

Model quality was evaluated in a variety of ways, including with receiver 

operating characteristic analysis (ROC) (Fielding & Bell, 1997). This statistic was 

originally used in medicine and has been accepted as a valid evaluator of model 

quality in ENM (Elith et al., 2006). The area under the curve (AUC) in ROC analyses 

is a threshold-independent measure of model performance as compared to null 

expectations. Traditionally, the null expectation was the line linking the origin and 

upper right corner of a ROC graph (1,1), representing random models; however, we 

use the partial ROC concept of Peterson et al. (2008) where the null expectation is not 

fixed. In a partial ROC, several modifications to the original ROC are made (Peterson 

et al., 2008): (1) the x-axis represents the proportion of area predicted present, (2) the 

AUC calculations are restricted to the domain in which predictions are being made, 
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and (3) a threshold applied on the y-axis excludes high omission error rates from 

AUC calculations. ROC results are expressed as ratios of the area under the partial 

curve to the area under the trapezoid defined by the random line and the interval on 

the x-axis corresponding to the threshold applied on the y-axis. In order to compare 

model ROC AUC ratios with null expectations, the dataset must be bootstrapped and 

a Z value (standard normal approximation) obtained. We used a Visual Basic routine 

developed by N. Barve (U. of Kansas; unpubl.) to calculate AUC ratios, performing 

1000 iterations with the omission threshold set at five percent (Peterson et al., 2008; 

threshold on y-axis). The 1 km model could not be tested with the partial ROC 

analysis because there were too few points to construct an external dataset for model 

validation.  

1.4 Results 

There was no significant difference between partial AUC ratios of differing 

spatial uncertainty, regardless of what algorithm was used in the model building 

process (Table 1). The AUC ratios for the 4.5 km Maxent and GARP models were 

1.45 and 1.42, respectively, while AUC ratios for the 18 km Maxent and GARP 

models were 1.49 and 1.45, respectively. All ratios were statistically significant above 

the line of null expectations (z-tests, P< 0.001).   
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Table 1.1. Summary of statistics describing the results of the 
partial ROC analyses for GARP and Maxent, with an E = 5 

 
 

 
 

Maxent and GARP models omitted a similar number of external testing points, 

regardless of what error treatment was used. Six points were omitted from the 4.5 km 

Maxent model and 10 were not predicted present in the 4.5 km GARP model, while 

16 test points were omitted from the 18 km Maxent model and 10 points were omitted 

from the 18 km GARP model.  

The 1 km resolution data (i.e., quality of points, but not quantity) tended to 

produce narrower predicted distributions (with both GARP and Maxent) (Fig. 

1.1A,D; Table 2). Furthermore, as mentioned, the 1 km GARP projections could not 

be thresholded at a 5 percent omission error because of lack of agreement in the 10 

best models, indicating weak convergence of best models towards a comparable, 

similar outcome.  
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Models produced with the 4.5 and 18 km datasets (i.e., a greater quantity of low-

resolution occurrence points) predicted a similar amount of suitable area, regardless 

of what algorithm was used (Fig. 1.1B,C, E, F; Table 2). Maxent predicted the most 

suitable habitat using the 4.5 km resolution data, whereas GARP predicted the largest 

suitable area with the 18 km resolution data.  

Table 1.2. Amount of area (km2) predicted present in select 
states for each uncertainty treatment (based on training data) 
 

 

Altering the resolution at which the models were projected (as compared to that in 

which they were trained) had little effect, regardless of the algorithm used. For 

example, the three projections (i.e., 1 km, 4.5 km, and 18 km) produced from 18 km 

resolution data only differed at most by 0.1 percent of the area predicted present when 

using Maxent and by 0.94 percent of the area predicted present when using GARP.  
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In general, Maxent models predicted less suitable area and had less uniform 

coverage compared to those models produced with GARP. For example, the 18 km 

Maxent projection (derived from 18 km training data) estimated suitable habitat in 33 

states (counting D.C.) with 13.68 percent of area predicted habitable. The 18 km 

GARP projection, on the other hand, only predicted suitable habitat in 25 states but 

predicted 15.89 percent of area as habitable (Fig. 2.2). This may be a reflection of the 

underlying mechanics of Maxent, as the algorithm tends to give very large probability 

distribution values for environmental conditions outside the range present in the study 

area (Phillips et al., 2006). A separate Maxent output type (‘clamping’) identifies 

such areas; for example, a few small areas of California, Oregon and Washington 

were specified as suitable in the Maxent models but were also designated as 

‘clamped’ regions. 
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Fig. 1.2. Thresholded GARP and Maxent 18 km projections; occurrence points used 
to train the models are included. 
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The 4.5 and 18 km resolution occurrence data produced models that fairly 

accurately mirror the distribution of the brown recluse, as our current knowledge 

stands (Fig. 1.2). The Maxent and GARP outputs do differ in some respects from the 

maps of Vetter (2005, 2008). The ecological niche models predicted suitable habitat 

on the east coast (e.g., MD, DE, NJ, VA, NC, and SC), when the eastern-most extent 

of the brown recluse’s range is thought to be Kentucky, Tennessee, and the 

southwestern portion of Ohio (Vetter, 2005, 2008). This discrepancy either denotes a 

true error of commission (the area is not suitable to the species) or the models are 

correct, and the brown recluse is not found on the east coast because of potential 

barriers (i.e., biological or historical) or limited dispersal abilities. Possible omission 

errors include the southern portions of Louisiana and Mississippi, where the brown 

recluse is thought to reside, and parts of Texas (NB: recent study of the southern 

portion of the range of the brown recluse has suggested the species may not extend as 

far south as the map of Vetter (2008); see Vetter (2009) for details. Thus, the 

potential omission errors mentioned above may reflect the actual distribution of the 

brown recluse).   

 

1.5 Discussion and conclusions 

Natural history museum collections house a rich collection of data (Suarez & 

Tsutsui, 2004), but very little of it has been put into a format (i.e., assigned 

geographic coordinates) usable in modern analyses (e.g., ecological niche modeling). 

However, the field of biodiversity informatics and data sharing has seen promising 

advances in the past several years (Edwards, 2004), so the expectation is that data 
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with various degrees of accuracy will be increasingly available to researchers. We 

examined how error in point locality data, often introduced by retrospective 

georeferencing, influences ecological niche modeling, and we specifically analyzed 

how model quality was affected by the decision to use fewer, high-accuracy 

occurrence points versus a greater number of points with more uncertainty and error, 

a dilemma often encountered when working with museum data. Our study 

georeferenced and assigned error to museum data using the latest techniques; three 

error filters were used (1, 4.5, and 18 km), which are likely representative of the 

typical error found within museum locality data. Our study differs from most 

previous studies in that the error associated with each locality is accurately denoted, 

rather than artificially inserted into the dataset.  

We found that the quality of our models increased when using a greater number of 

lower resolution points. Similarly, but without taking into account the resolution 

issue, Stockwell and Peterson (2002b) showed that increasing model accuracy was 

obtained with increased sample sizes. Our study shows that models produced with 

fewer, high-resolution points (quality vs. quantity) tended to distort and reduce the 

predicted distribution of the brown recluse. Furthermore, the GARP algorithm did not 

fare well with the 1 km, low sample size data: the projections experienced low model 

agreement probably due to over-fitting occurring in the training region. In this 

respect, Maxent performed better with fewer locality points. Our results indicate that 

the GARP and Maxent algorithms may be robust to at least some location error, a 

result also obtained by Fernandez et al. (2009) using artificially degraded data. Our 

study differs in that we matched georeferencing error with scale of climatic predictors 

used in ENM, instead of mixing different errors with a single resolution climatic 
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dataset. A rising concern (as noted by Graham et al., 2008) is that the niche models 

themselves may be imprecise if error does not affect model quality. We contend, as 

Graham et al. (2008) did, that this does not appear to be the case, as indicated by our 

accurate-appearing models and highly statistically significant partial AUC ratios. 

Our results differ from Engler et al. (2004), who found that model quality 

decreased with decreasing spatial accuracy and from Graham et al. (2008), who found 

that although accurate models can be produced from datasets with introduced spatial 

error, the resulting models are of lower quality than those produced with non-

degraded data. The latter study did not vary the number of input points (i.e., they did 

not look at the trade-off between quantity of occurrence points and quality), which 

may explain our differing results. The former study, which did analyze the trade-off 

between quantity of occurrence points and quality of points, used a non-mobile, 

habitat-specific plant (Eryngium alpinum) as their study organism. Degraded data 

may significantly alter model results depending upon the scale of the study and nature 

of the study organism. For example, locality error may alter model quality if the 

species is only found in certain microhabitats or if the study is smaller in scale 

(Meyer, 2007). Those researchers wishing to model species distributions (SDM) 

rather than model ecological niches (ENM) (for a discussion of the differences 

between the two, see Peterson, 2006) will require higher resolution points with less 

error. Larger-scale studies (e.g., continental or regional) do not necessitate as high of 

quality of points and some error can be tolerated and still provide usable results. The 

present study falls into the latter category, where increasing the number of locality 

points increased the spatial scale of the study and allowed for a more complete 
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characterization of the ecological niche (Peterson, 2006). More research is needed to 

assess when degraded locality data should or should not be used. 

Our study has interesting implications for the use of ENM in the fossil record 

(Peterson et al., 2004; Stigall-Rode & Lieberman, 2005; Maguire & Stigall, 2009). 

Most paleontological studies are performed at lower spatial resolutions (usually a 

necessity because of the limits of resolution in the fossil record; see Schindel, 1980; 

Sadler, 1981; Dingus & Sadler, 1982; Dingus, 1984; Lieberman, 2000) than studies 

on extant organisms. Our findings suggest the lower resolution paleontological data 

may not necessarily lower the model quality (as is typically perceived) if a sufficient 

number of occurrence points are utilized. 

We find that museum locality data, although often imprecise, can be employed in 

ecological niche modeling to produce reliable results. Research in this area, however, 

is far from complete. Our study examined the effects of error up to 18 km; further 

research could investigate larger error treatments (i.e., when do the scales tip in favor 

of quality versus quantity and vice versa and in what situations/scales of study?). 

Additionally, we only examined two, presence-only model-building techniques, and it 

would be valuable to investigate whether other modeling algorithms handle error in a 

similar manner.  

Our study highlights the importance of quantifying the error associated with 

locality data, which increases transparency and allows for the correct partitioning of 

data based upon the nature of a study. We demonstrate the need for adequate 

sampling of a species range, especially if the species is relatively widespread, and we 

emphasize that knowing the limits/error of data used in modeling species distributions 
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is essential, especially when addressing important questions relating to conservation 

and the impacts of climate change on species.   
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CHAPTER 2  | First fossil Molinaranea Mello-Leitão 1940 (Araneae: 

Araneidae), from middle Miocene Dominican amber, with a phylogenetic and 

palaeobiogeographic analysis of the genus 

Chapter Overview 

The first fossil Molinaranea is described, from middle Miocene Dominican amber. 
This record extends the known range of the genus back 16 million years; it also 
extends the geographical range of the genus through time, with extant species known 
only from Chile, Argentina, the Falkland Islands, and Juan Fernandez Island. A 
parsimony-based phylogenetic analysis was performed, which indicates the fossil 
species, M. mitnickii sp. nov., is nested with M. magellanica Walckenaer, 1847 and 
M. clymene Nicolet, 1849. A modified Brooks Parsimony Analysis was conducted in 
order to examine the biogeography and origins of the fossil species in the Dominican 
Republic; the analysis suggests Molinaranea mitnickii arrived in Hispaniola from 
South America as a result of a chance dispersal event.  

 

2.1 Introduction 

Amber from the Dominican Republic has been known to the Western world since 

the second voyage of Christopher Columbus to the West Indies (Sanderson & Farr, 

1960), but its inclusions were not examined for at least another four centuries. Since 

then, extensive study of Dominican amber inclusions has provided insight into the 

diversity of life and palaeoecology at, and spanning, the time of resin extrusion (e.g. 

Perez-Gelabert, 2008). The resin was probably deposited in a single sedimentary 

basin during the early to middle Miocene (16–19 Mya), although the exact age is still 

a matter of debate (Iturralde-Vinent, 2001; see Poinar & Poinar, 1999 for an 

alternative view). Much of the amber comes from the northern Dominican Republic 

in the La Toca Formation, a 300 m thick rock sequence characterized by siltstone and 

lignite lenses. Dominican amber was produced by the extinct tree Hymenaea protera 

Poinar, 1991, a member of the Fabaceae.  
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The first Dominican amber spider was described by Ono (1981) and placed in the 

family Thomisidae Sundevall, 1833. There are now around 170 fossil spider species 

described from Dominican amber, most of which were described by Wunderlich 

(1988). Wunderlich (1988) was the first to describe spiders from Dominican amber 

belonging to the family Araneidae Simon, 1895. The Araneidae are ecribellate, 

entelegyne spiders with eight eyes in two sub-equal rows (Jocqué & Dippenaar-

Schoeman, 2007). Here we describe a new araneid species from Dominican amber. It 

represents the first fossil record of Molinaranea Mello-Leitão, 1940 and extends the 

known range of the genus back 16 million years. The presence of this genus in the 

Dominican Republic in the middle Miocene also extends the geographic range of 

Molinaranea through time; extant species are known only from Chile, Argentina, the 

Falkland Islands, and Juan Fernandez Island. A parsimony-based phylogenetic 

analysis was conducted on the seven extant taxa and the newly described fossil 

species, followed by a preliminary biogeographic analysis.  

2.1.1. Fossil Record of Araneidae 

The oldest described araneid comes from the Lower Cretaceous amber of Álava, 

Spain (Penney & Ortuño, 2006). Other fossil species have been described from upper 

Cretaceous (Turonian) New Jersey amber (Penney, 2004), the Jehol (Cretaceous) and  

Shanwang (Neogene) biotas of China (e.g. Chang, 2004 and Zhang et al., 1994, 

respectively), Baltic amber (mid-Eocene to early Oligocene) (e.g. Petrunkevitch, 

1942), the Messel Oil Shales of Germany (lower Eocene) (Wunderlich, 1986), 

Florissant Insect Beds (Tertiary) (e.g. Scudder, 1890), Quesnel Tertiary Beds in 

Canada (Scudder 1878), the Öhningen of Switzerland (Neogene) (Heer, 1865), and 
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Dominican and Mexican Chiapas amber (e.g. Wunderlich, 1988). An araneid reported 

from early Cretaceous Lebanese amber (upper Neocomian–basalAptian) 

(Wunderlich, 2004) is likely a misidentification according to Penney & Ortuño 

(2006), as is a juvenile described from Siberian amber (late Cretaceous) by Eskov & 

Wunderlich (1994). Orb-weavers have also been reported from Cretaceous Canadian 

amber (middle Campanian), but these have not been described or confirmed 

(McAlpine & Martin, 1969). The strictly fossil spider family Juraraneidae Eskov, 

1984 described from a Jurassic non-amber fossil (which would pre-date all the above) 

has been suggested as being synonymous with Araneidae, although this has yet to be 

confirmed (Penney & Selden, 2006). 

2.2 Material  

The specimen was kindly donated to DP by Keith Luzzi, who obtained it during a 

visit to the La Toca region of the Dominican Republic. The amber had been cut and 

polished prior to being received by the authors. Further cutting and polishing was 

carried out in the laboratory of Dr Michael Engel (University of Kansas) in order to 

reveal morphological characters. Drawings were done under both incident and 

transmitted light with the aid of a camera lucida attached to a Leica MZ16 

stereomicroscope. Drawings were then scanned and traced in Adobe Illustrator. 

Photographs were taken with a Leica DFC290 digital camera attached to a Leica 

M205C microscope. All measurements were taken with an ocular graticule and are in 

millimeters. 

2.2.1. Preservation 
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 The specimen is preserved in a piece of clear amber measuring 14 ×13 × 8 mm in 

size. The original piece had a small mycetophilid (fungus gnat) and mymarid wasp 

(Hymenoptera: Chalcidoidea: Mymaridae) (Michael Engel, pers. comm. 2008) as 

syninclusions that were later removed in order to observe the spider more clearly. The 

legs and antennae of a cockroach (Order Blattaria) (Vincent Perrichot, pers. comm. 

2008) also co-occur with the spider. Small pieces of unidentified organic matter are 

present within the amber. A band of air bubbles spans diagonally across the spider. 

There are no fractures within the piece. During preparation, but before the authors 

received the specimen, the patella and distal portion of the femur of the left, first leg 

were ground away. The spider appears desiccated and almost flattened, and the right, 

fourth leg is detached and moved to the left side of the spider (Figs. 2.1A & 2.2A,C). 

The palps of the specimen are slightly twisted, which probably occurred when the 

spider was engulfed in resin. Careful observation revealed threads of silk wrapped 

around the spider’s palps, legs, and body. Silk can also be seen emerging from the 

spinnerets. The tibiae of legs 1 and 2 are flattened and appear to widen distally; this is 

probably a result of desiccation prior to entombment in resin. Further, the macrosetae 

appear to arise from cuticular protrusions. While extant members of Molinaranea 

possess macrosetae that arise from strong bases, the particularly prominent, tubercle-

like bases in M. mitnickii probably result from fossilization processes. Otherwise, the 

specimen is extremely well preserved. The holotype (along with the detached 

syninclusions) is deposited in the University of Kansas Natural History Museum, 

Division of Entomology.  

2.2.2. Abbreviations 
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Leg formula (e.g. 1423) indicates the length of each leg relative to the other legs 

from longest to shortest (in the example, 1 is the longest, followed by leg 4). 

Anatomical abbreviations: A = terminal apophysis, ALE = anterior lateral eyes, AS = 

anterior spinneret, at = anal tubercle, bl = book lung, C = conductor, co = colulus, cx 

= coxa, cy = cymbium, E = embolus, en = endite, fe = femur, la = labium, ma = 

median apophysis, MS = median spinneret, mt = metatarsus, op = opisthosoma, pc = 

paracymbium, PLS = posterior lateral spinneret, ps = prosoma, pt = patella, sa = 

subterminal apophysis, sp = spiracle, sr = sternum, st = subtegulum, tf = thoracic 

furrow, ti = tibia, tr = trochanter, ts = tarsus. Institutional abbreviations: AMNH = 

American Museum of Natural History, MCZ = Museum of Comparative Zoology, 

Harvard University. 

2.3 Systematic Paleontology 

Order ARANEAE Clerck, 1757 

Family ARANEIDAE Simon, 1895 

 

Remarks: Scharff & Coddington (1997) found four synapomorphies that support the 

monophyly of Araneidae. Our specimen shows three of these: the mesal orientation of 

the cymbium, possession of a radix, and the wide separation of lateral eye groups 

from the medians. The fourth, a narrow posterior median eye tapetum, is not visible 

in the fossil specimen. A grooved booklung cover supports the monophyly of the 

Araneidae apart from Chorizopes Pickard-Cambridge, 1870 (Scharff & Coddington, 

1997), and this character is also present in our specimen. Further, possession of a 

globose abdomen that overhangs the carapace, three tarsal claws, six simple 
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spinnerets, and numerous spines on the legs are all traits commonly found in both the 

Araneidae and our specimen. 

Molinaranea Mello-Leitão, 1940  

Type species: Molinaranea molinai Mello-Leitão, 1940 

Diagnosis: See Levi (2001).  

Distribution: Recent species are found in Chile, Argentina, the Falkland Islands, and 

Juan Fernandez Island. The fossil species is found in Dominican Republic amber (this 

paper).  

Remarks: Molinaranea was created as a monotypic genus by Mello-Leitão in 1940; 

the gender is feminine. Levi (2001) used the paramedian apophysis to help 

distinguish between genera of Araneidae, a structure that is unfortunately not 

discernable in our specimen. A filiform (thread-like) embolus is visible adjacent to 

the conductor, however, and distinguishes our specimen from members of Parawixia 

Pickard-Cambridge, 1904 and Ocrepeira Marx, 1883, which have robust emboli. 

Furthermore, our specimen can be placed with confidence within Molinaranea for the 

following reasons:  The median apophysis is prominent, forked, and projects away 

from the palpal bulb. While this morphology occurs in other genera, such as 

Parawixia, Spilasma Simon, 1897 and Ocrepeira (Levi, 1992, 1993, 1995), the 

details differ from those in our specimen. For example, our specimen and members of 

Molinaranea have prongs that do not re-curve as prominently as those in members of 

Ocrepeira. In those members of Ocepeira that do have median apophysis prongs, the 

prongs are usually of unequal thickness, differing from the quasi-equal prong widths 
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in Molinaranea and our specimen (Levi, 1993). Members of both Ocrepeira and 

Parawixia have median apophyses that typically thicken distally, whereas members 

of Molinaranea and our specimen thin distally (Levi, 1992, 1993). Members of these 

same genera also possess many processes, bumps and/or indentations on the median 

apophysis, unlike the smoother median apophyses present in Molinaranea and our 

specimen. Additionally, many Parawixia species with forked prongs on the median 

apophysis possess numerous (more than 3) tubercles on the opisthosoma (more than 

the two present in our specimen). In Spilasma, the median apophysis is commonly 

trifid distally, with relatively short prong lengths, unlike the bi-forked prongs in 

Molinaranea. Male members of Spilasma also possess a ventral, sclerotized area 

extending from the sides of the pedicel to the genital groove (Levi 1995), a feature 

lacking in our specimen. 

Molinaranea mitnickii n. sp. 

Figures 2.1– 2.3 

Material examined: Holotype and only known specimen: Amber Fossil Collection, 

University of Kansas Natural History Museum KU-NHM-ENT, DR-018, adult male, 

Dominican amber, La Toca mines, northern Dominican Republic; coll. 

TerraTreasures. 

Diagnosis: Molinaranea mitnickii can be distinguished from all other species by the 

median apophysis with long, thin/spindly, sub-equal prongs, resembling a lop-sided 

wishbone, with a proximal lobe/elbow. The ventral femora of legs 1 and 2 possess a 

row of strong macrosetae.  
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Etymology: The specific epithet is after Justin Mitnick, nephew of Keith Luzzi, the 

owner of TerraTreasures who found and donated the specimen for study.  

Description: Body length 6.95. Carapace 2.82 long, 2.0 wide, ≥ 1.88 tall; pars 

cephalica only slightly elevated (approximately 0.42). Eyes small; ALE appear to be 

on small tubercles; numerous macrosetae in the ocular region. Details of chelicerae 

and fangs obscured; small. Sternum 1.41 long, 1.04 wide; relatively short and 

rounded; lateral margins project between coxae. Endites 0.38 long, longer than wide, 

sub-oval, tooth present. Labium 0.38, as wide as long, sub-oval to sub-circlular. 

Petiole attached 0.95 from anterior of opisthosoma immediately above book lungs; 

not sclerotized. Opisthosoma 4.13 long including spinnerets (Fig. 2.2D), 3.6 long 

without spinnerets, 2.23 at widest point, height uncertain due to flattened nature of 

specimen; likely elongate and sub-oval in life; dorsal surface bears abundant, long, 

scattered setae; concentrated setae on two anterior tubercles (Fig. 2.1B). PLS longer 

than MS and AS, PLS defined in two segments (Fig. 2.2E); AS 0.43 and PLS 0.51; 

colulus present, tongue-shaped with 9 setae. Spiracle situated 0.03 anterior to co and 

0.13 to base of AS; anal tubercle 0.34.  

Leg formula 2143; leg 1 cx 0.52, tr 0.30, fe 3.16, pt 1.07, ti 4.13, mt 2.17, ts 0.63, 

total 11.98; leg 2 cx 0.50, tr 0.28, fe 3.44, pt 0.90, ti 4.13, mt 2.36, ts 0.64, total 12.25; 

leg 3 cx 0.42, tr 0.28, fe 2.36, pt 0.82, ti 1.25, mt 1.26, ts 0.48, total 6.87; leg 4 cx 

0.45, tr 0.14, fe 2.43, pt 0.98, ti 2.10, mt 2.03, ts 0.46, total 8.59. Legs long; all legs 

possess strong macrosetae (Figs. 2.1 & 2.2A–B); macrosetae originate from strong 

cuticular bases; variable in length, longer macrosetae 0.7–0.8, shorter macrosetae 

0.4–0.6; longer macrosetae appear to be concentrated on the lateral margins of tibiae 
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1and 2 and ventral surfaces of most leg segments, although this is variable; row of 

macrosetae on prolateral to ventral margin of tibia 1 and 2; row of 7–10 macrosetae 

on inferior surface of femora of legs 1 and 2; row of 3–4 macrosetae on superior 

surface of femora of legs 1 and 2; femora of leg 1 with lateral row of 7–8 macrosetae; 

scattered macrosetae, semi-aligned, on ventral femora of legs 3 and 4; tibia and femur 

of legs 1 and 2 thicker and more robust. Hook on distal margin of the first coxa; 

fourth coxa with at least one macroseta. Paired tarsal claws with teeth, unpaired claw 

simple.  

Palps large (Figs. 2.1 & 2.2F); length of palpal bulb without median apophysis ≥ 

1.09, width 0.79; median apophysis with bifurcation into long, thin spindly prongs 

(Figs. 2.2A,F & 2.3), resembling a wishbone; median apophysis 1.41 long; prongs on 

median apophysis equal, with re-curved, semi-pointed tip; median apophysis with 

proximal lobe or elbow; embolus distally filiform and situated between conductor and 

terminal apophysis (Fig. 2.3); conductor broader than terminal apophysis and attached 

in middle of bulb with a semi-pointed tip; subterminal apophysis present as a narrow 

band between embolus and terminal apophysis (Fig. 2.3); terminal apophysis lobate 

to truncate and narrow, larger than subterminal apophysis (Fig. 2.3); one macroseta 

on patella. 

Female: Unknown.  

Distribution and age: Dominican Republic amber; probably middle Miocene (16 –19 

Mya) (see Iturralde-Vinent, 2001). 
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Remarks: The species can be distinguished from M. vildav Levi, 2001 by the presence 

of a proximal lobe or elbow below the radix of the median apophysis (Fig. 2.3) 

instead of above it, by the curved tip on the lower prong of the median apophysis, and 

by the prongs which appear more separated (like a wishbone) in M. mitnickii than in 

M. vildav. Further, M. mitnickii possesses a row of macrosetae on the ventral surfaces 

of femora 1 and 2, unlike in M. vildav. The length of the median apophysis prongs 

distinguishes M. mitnickii from M. vildav, M. mammifera Tullgren, 1902, and M. 

clymene Nicolet, 1849 (significantly shorter in M. vildav, M. mammifera and M. 

clymene). M. mitnickii lacks the short, wide median apophysis characteristic of M. 

mammifera and the tufts of setae on the abdomen that are present in M. clymene 

(Levi, 2001, figs. 27 & 30). Unfortunately, much of Levi’s description and diagnostic 

characters are based on color pattern, which is usually not discernible in amber 

specimens.  
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Fig. 2.1 A–B. Interpretive drawings of Molinaranea mitnickii n. sp., holotype KU-
NHM-ENT, DR-018. A. ventral view. Note that legs 1 and 2 are not drawn past the 
patella; see Fig. 2.2B for details; B. dorsal view. Scale bar: 0.5 mm.  
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Fig. 2.2 A–F. Molinaranea mitnickii sp. nov., holotype KU-NHM-ENT, DR-018. A. 
dorsal view; B. ventral view; C. lateral view; note how the specimen appears 
flattened; D. ventral view of opisthosoma; the opisthosoma appears desiccated; the 
spiracle is visible and situated anterior to the spinnerets; the booklungs are grooved; 
E. view of anal tubercle and posterior lateral spinnerets; F. lateral view of left palpus; 
the long, bifurcating median apophysis prongs are clearly visible; although the top 
prong may appear longer, this is not so. Scale bars = 0.5 mm.  
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Fig. 2.3. Interpretive drawing of the lateral view of the right palpus. The cymbium is 
depicted as two segments because it is splayed behind the palpal bulb (but is one 
cohesive structure). The bump immediately behind the median apophysis is likely the 
tegulum. Setae on the tibial margin are not fully illustrated. Scale bar = 1 mm.  

 

 2.4 Phylogenetic Analysis 

2.4.1. Taxa Analyzed 

Molinaranea clymene Nicolet, 1849; ♂	  from Chile, Osorno Prov., Puyehue, 500 m, 

MCZ 76602 (coll. L.E. Peña, 26.I.1969); ♀	  from Chile, Osorno Prov., Termas de 

Puyehue, MCZ 76601 (coll. H. Levi, 10.III.1965).  
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Molinaranea fernandez Levi, 2001; ♀ (holotype) & ♂ (allotype) from Chile, Juan 

Fernandez Island, Mas a Tierra, Valle Anson, Plazoleto de Yunque, 200–250 m, 

AMNH (coll. B. Malkin, 1–28.IV.1962); ♂ & ♀ allotypes from Juan Fernandez 

Islands, Mas a Tierra, Valle Anson, Plazoleto de Yunque, 200–250 m, Camote Side, 

AMNH (coll. Borys Malkin, 1-28.IV.1962).  

Molinaranea magellanica Walckenaer, 1847; ♂ from Chile, Osorno Prov., Puyehue, 

500 m, MCZ 69796 (coll. L.E. Peña, 26.I.1969); ♂ from Chile, Llanquihue Prov., 

Correntoso, MCZ 79160 (coll. L. Peña, XII.1968); ♂ from Chile, Magallanes, 

Laguna Amarga, Natales, MCZ 79161 (coll. L. Peña, 14–21.XII.1960); ♂ from 

Chile, Llanquihue Prov., Chemisa, MCZ 79162 (coll. L. Peña, 13.XII.1968); ♀ from 

Chile Cautín, Villarrica, MCZ 76600 (coll. H. Levi, 3.III.1965), and ♀ from Chile, 

Concepcion Prov., Rio Andalien, AMNH (coll. German Munoz, 10.IV.1977). 

Molinaranea mammifera Tullgren, 1902; ♂ from Chile, Osorno Prov., 7.7 km 

north-east of Termas de Puyehue, Valdivian rainforest, AMNH (coll. A. Newton & 

M. Thayer, 19–25.XII.1982); ♂ from Chile, Osorno Prov., Parque Nac., Puyehue, 4.1 

km east of Anticura, 430 m, trap site 662, AMNH (coll. A. Newton & M. Thayer, 19–

26.XII.1982); ♀ from Chile, Conception Prov., Ramuntcho, MCZ 76599 (coll. 

Cekalovic, 22.III.1975), and ♀ from Chile, Palena Prov., Chaiten, 0–100 m, AMNH 

(coll. N.I. Platnick & R.T. Schuh, 4.XII.1981).  
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Molinaranea phaethontis Simon, 1896; ♂ from Chile, Santiago Prov., El-Manzano, 

AMNH (coll. L.E. Peña, 13.X.1982); 2 ♀♀ from Chile, Region de la Araucaría (IX), 

Melleco Prov., Malalcahuello, AMNH (coll. L.E. Peña, 9–15.XII.1985).  

Molinaranea surculorum Simon, 1896; ♂ from Chile, region del Bío-Bío (VIII), 

Bío-Bío Prov., El Manzano, near Contulmo, AMNH (coll. L.E. Peña, 15.XII.1985); 2 

♂♂ & ♀ from Chile, Nuble Prov., Las Cabras, AMNH (coll. L. Umana, 26–

28.XII.1986); ♂ from Chile, Valdivia, Santo Domingo, AMNH (coll. E. Krahmer, 

19.IX.1976); ♂ from Chile, Region de Los Lagos (X), Valdivia Prov., Purolón, 

north-west of Panguipulli, AMNH (coll. L.E. Peña, 10.I.1985); ♂ from Chile, Osorno 

Prov. coast, Pucatrihue, MCZ 76598 (coll. L. Peña, I.III.1968); ♀ from Chile, Osorno 

Prov., Osorno Coast, MCZ 76597 (coll. L.E. Peña, I–III.1968), and ♀ from Chile, 

Valdivia, AMNH (coll. E. Krahmer, 5.XII.1976).  

Molinaranea vildav Levi, 2001; ♂ & ♀ from Chile, Valdivia, AMNH (coll. E. 

Krahmer, 8.XII.1976); ♀ (holotype) from Chile, Valdivia Prov., Valdivia, AMNH 

(coll. E. Krahmer, 15/20.XI.1978).  

Parawixia bistriata Rengger, 1836; ♂ & ♀ from Argentina, Tucuman, MCZ 78553 

(coll. J.A. Kochalka, 30.XI.1986). 
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Parawixia rigida Pickard-Cambridge, 1889; ♀ from Costa Rica, Heredia, La Selva, 

near Puerto Viejo, MCZ 81173 (coll. W.G. Eberhard, 31.I.1981); ♂ from Costa Rica, 

Puntarenas, Osa Peninsula, Sirena, MCZ 81174 (coll. W.G. Eberhard, 31.I.1981). 

Parawixia rimosa Keyserling, 1892; ♀ from Columbia, Huila, 19.3 kilometers east 

of Sta. Leticia, MCZ 80109 (coll. W.G. Eberhard, 29.II.1976); ♂ from Columbia, 

San Pedro, Sierra Nevada de Santa Marta, MCZ 80978 (coll. J. Kochalka, 3.IV.1975). 

 

NB:  additional members of Parawixia, Ocrepeira, and Spilasma were also examined 

within the course of this study, primarily to delineate amongst palpal structures.  
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2.4.2. Methods 

The data matrix (Table 1) was analyzed using PAUP v.4.0 (Swofford, 1998). 

Eleven species were included in this analysis. The genus Parawixia (Araneidae) was 

chosen as the outgroup, using P. bistriata Rengger, 1836, P. rigida Pickard-

Cambridge, 1889, and P. rimosa Keyserling, 1891 as representative members, 

because Levi (2001) posited this genus is closely related to Molinaranea. This 

suggestion was based on five synapomorphies Molinaranea shares with Parawixia, 

Ocrepeira, and Eriophora Simon, 1864, including an unusually long scape and 

median apophysis, the attachment of the median apophysis above the radix, the 

proximal sculpturing of the median apophysis at its insertion above the radix, and a 

projection of the median apophysis away from the palpal bulb (NB: both M. clymene 

and M. magellanica were originally misclassified as Parawixia). The fifth 

synapomorphy Levi (2001) mentioned, distal branching of the median apophysis, is 

often absent in Parawixia (and other genera); we therefore included in our analysis 

two members of Parawixia that lack this feature, P. bistriata and P. rimosa, and one 

that possesses it, P. rigida. Parawixia bistriata is a common colonial orb weaver 

found throughout Brazil, Bolivia, Paraguay, and northeast Argentina and occupies the 

area between the Dominican Republic (amber fossil locality) and Chile (extant 

Molinaranea range). Parawixia rigida is found throughout Central America, and P. 

rimosa is found in Columbia, Ecuador, Peru and southern parts of Central America. It 

should be noted that Scharff and Coddington (1997) did not include Molinaranea and 

Parawixia in their phylogenetic analysis of the Araneidae, and therefore did not 

address or confirm the sister relationship of these two groups.  
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 An exhaustive search was performed to determine the most parsimonious tree for 

the data matrix. All nineteen characters were treated as unordered and unweighted; 

multistate taxa were treated as polymorphisms. Bootstrap and Jackknife analyses 

were conducted using 1000 replications in a heuristic, step-wise search that sampled 

five random trees per replication. Groups were retained that were compatible with the 

50% majority rule consensus tree. A test for Bremer support was also performed 

(Bremer, 1988). All data were compiled into Nexus files using Mesquite v. 2.5 

(Maddison & Maddison, 2008) and MacClade v. 4.08 (Maddison & Maddison, 2005). 

Tree graphics were created using FigTree v.1.1.2 (Rambaut 2008) and Adobe 

Illustrator.  

2.4.3. Characters 

Males were the primary provider of character data because the fossil specimen is 

male. Female character data was used to bolster and support the positions of the 

extant taxa. Character one presents some difficulty since P. bistriata and P. rimosa do 

not have prongs and therefore cannot be coded for prong state. There are essentially 

two ways to deal with this situation: these taxa can be coded as a “?” or they can be 

coded as a multistate, where a particular state would indicate lack of prongs. Coding 

inexplicable characters as a “?” can lead to impossible ancestral states and unjustified 

trees and generally should be avoided (Waggoner, 1996; Lieberman, 1998). Further, 

coding inexplicable characters as a “?” is equivalent to ignoring data, as we know 

there are no prongs present in these species (Waggoner, 1996). Therefore, we chose 

to code this character as a multistate, with state three equal to “no prongs”. We 

acknowledge that in doing so this can decrease character independence and increase 
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the weight of certain characters. We coded character 1 as a polymorphism for M. 

surculorum because we observed specimens that both lacked and possessed prongs 

(NB: if the species was coded as only possessing prongs, the topology of the tree 

would not change). Additionally, M. clymene was coded as having equal prongs in 

character one, although Levi (2001) suggests this species possesses a longer lower 

prong. Character 6 was coded as a polymorphism for M. clymene because Levi (2001) 

stated the species possesses macrosetae on the ventral side of the fourth coxae, but we 

did not observe this in the specimen studied. Levi (2001) noted M. phaethontis 

Simon, 1896 lacks ventral setae on all its femora; however, rows of macrosetae were 

present on the third and fourth femora of the specimen we studied. Levi (2001) also 

stated the ventral femora of M. fernandez Levi, 2001 are clothed in double rows of 

short macrosetae; we found only the third and fourth femora to have rows of 

macrosetae in this species (note: both Levi and ourselves studied male allotypes of M. 

fernandez from the AMNH). Further, Levi (1992) indicated P. rimosa has a row of 

ventral macrosetae on the second femur, while we observed rows of macrosetae on all 

ventral femora except the first. Characters are listed below:  

2.4.3.1. Male Characters: 

1. median apophysis prongs, assuming bi-pronged — (no prongs = 3  / shorter upper 

prong = 2 / longer upper prong = 1 / equal prongs  = 0) 

2. prongs on median apophysis — (present = 1 / short or reduced [≤ ~ 0.08] = 0) 

3. male opisthosoma shape — (hump above spinnerets  = 1 / lacks distinctive hump = 

0). The hump was defined by the ability to draw an imaginary horizontal line 
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from the anterior tubercles (in lateral view) of the opisthosoma to the posterior-

most point of the abdomen that would intersect at a ~ 90 degree angle with a 

vertical line drawn from the spinnerets to the same posterior point on the 

opisthosoma.  

4. macrosetae on ventral side of fourth coxa — (present = 1 / absent = 0) 

5. anterior opisthosoma tubercles — (concentrated setae present  = 1 / lacks 

concentrated setae = 0) 

6. opisthosoma setae — (opisthosoma clothed in long [≥ 0.15 mm] setae, usually 

projecting outward from abdomen = 1 / possesses short or no setae on 

opisthosoma = 0) 

7. eye area with black/brown pigment — (present = 1 / absent = 0) 

8.macrosetae arrangement on ventral/ventro-lateral side of first femur — (strong row 

present = 2 / scattered or weak row [but more than three] or combination of state 2 

and 0 = 1 / no row of spines = 0) 

9. macrosetae arrangement on ventral/ventro-lateral side of second femur — (strong 

row present = 2 / scattered or weak row [but more than three] or combination of 

state 2 and 0 = 1 / no row of spines = 0) 

10. macrosetae arrangement on ventral/ventro-lateral side of third femur — (strong 

row present = 2 / scattered or weak row [but more than three] or combination of 

state 2 and 0 = 1 / no row of spines = 0) 
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11. macrosetae arrangement on ventral/ventro-lateral side of fourth femur — (strong 

row present = 2 / scattered or weak row [but more than three] or combination of 

state 2 and 0 = 1 / no row of spines = 0) 

12. strong row of macrosetae on dorsal side of fourth femur — (present = 1 / absent 

or otherwise = 0) 

13. filiform(thread-shaped) embolus — (present = 1 / absent or otherwise = 0) 

14. posterior macrosetae on sternum — (present = 1 / absent = 0) 

15. median apophysis length from base to longest prong tip — (≥ 1.40 = 2 / 0.84–1.18 

= 1 / ≤ 0.67 = 0).  

16. tubercles on opisthosoma — (≥ 4 = 1 / 0–3 present = 0) 

17. macrosetae on ventral, fourth trochanter — (present = 1 / absent = 0) 

2.4.3.2. Female characters: 

18. posterior median plate of epigynum (see Levi, 2001, fig. 6) — (plate T-shaped in 

ventral view = 1 / Y-shaped or otherwise = 0) 

19. stem of posterior median plate of epigynum — (stem of plate about as thick as the 

two wide lateral arms/projections = 1 / no defined stem or lateral arms or stem not 

as thick as lateral arms  = 0) 

2.4.4. Results 

The parsimony analysis yielded two most parsimonious trees (Fig. 2.4) of 41 

steps, with a Consistency Index (CI) of 0.6944 (excluding uninformative characters) 
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and a Retention Index (RI) of 0.6944 (excluding uninformative characters). Our 

strongest nodes were those uniting M. fernandez /M. Mammifera, P. rigida/P. rimosa, 

and the whole of Molinaranea, which had Bootstrap and Jackknife values (Fig. 2.4) 

of 76 & 71, 71 & 64, and 91 & 83, respectively. The node uniting M. fernandez/M. 

mammifera and P. rigida/P. rimosa had a Bremer value of 1 (Bremer, 1988). We 

performed the test of Hillis (1991) (the g1 statistic) to determine if our results 

departed from those generated using random data, which they did at the 0.01 level (g1 

value of -0.733936).  

2.4.5. Discussion 

The analysis resulted in an unresolved clade that includes M. mitnickii (fossil 

taxon), M. clymene, and M. magellanica, within a larger grouping of M. fernandez, 

M. mammifera, and M. vildav (Fig. 2.4). Molinaranea surculorum was the most basal 

taxon. Neither the fossil taxon, M. mitnickii, nor what appears to be the most 

widespread taxon, M. magellanica, placed basally.  
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Fig. 2.4. Strict consensus cladogram resulting from the parsimony analysis. The fossil 
taxon, M. mitnickii, is depicted in light grey; note that it does not resolve basally but 
rather in the middle of the tree. The nodal values are from the statistical tests: the first 
is the Bremer Support value, the second is the Bootstrap value, and the third is the 
Jackknife value. Trees for the Bootstrap and Jackknife analyses were generated using 
50% majority rule consensus.  

 

 2.5 Biogeographic Analysis 

 

The genus Molinaranea has not been found in the fauna of the modern Dominican 

Republic or the surrounding areas. While this could reflect deficient knowledge of the 

spider diversity in the region, it is unlikely since members of Molinaranea are fairly 

large, conspicuous spiders and weavers of orb webs. The presence of Molinaranea in 

Dominican amber (middle Miocene in age) therefore presents an interesting 

palaeobiogeographical question, since extant members of the genus are currently 

found only in the southwestern portion of South America. There are three general 

explanations for the observed pattern: (1) the genus was originally endemic to the 

Dominican Republic region and dispersed to South America (with subsequent 

divergence), later becoming extinct in the Dominican Republic and surrounding 

region; (2) the genus was originally endemic to South America and dispersed to the 
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Dominican Republic where it speciated, later becoming extinct in the Dominican 

Republic and surrounding region; or (3) the genus was originally in South America 

and the Caribbean region (or was even more widespread), and divergence in the West 

Indies involved either vicariance or dispersal; members of the genus later became 

extinct throughout northern South America, the Caribbean, and any other areas. All 

three options must take into account the tectonic history of the region, which is a 

matter of contention among geologists (Dengo & Case, 1990; Donovan & Jackson, 

1994; Hedges, 2001, 2006; Iturralde-Vinent & MacPhee, 1999; Iturralde-Vinent & 

Lidiak, 2006). According to Iturralde-Vinent (2006), only after the Middle Eocene 

was there a permanent landmass in the Caribbean that could provide a home for 

terrestrial biota. Donnelly (1992) and Hedges (1996c), however, while agreeing there 

was probably no continuous sequence of emerged land since the Cretaceous, 

speculated that some areas of Cuba, northern Hispaniola, and possibly Puerto Rico 

may have been exposed since the late Cretaceous. It should be noted, however, that 

strict continent-island vicariance sensu Rosen (1975, 1985) is problematic (see 

Iturralde-Vinent & MacPhee, 1999 for details).  

We used our strict consensus tree to perform a preliminary biogeographic study 

using a modified Brooks Parsimony Analysis (Lieberman & Eldredge, 1996; 

Lieberman, 2000) to elucidate which of the above three hypotheses might be a viable 

explanation for the presence of Molinaranea in the Dominican Republic. Although 

the number of fossil taxa and areas involved limits this analysis, it is a first step 

towards understanding the biogeographic patterns implied by our phylogeny.  
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2.5.1. Methods 

A detailed discussion of the methods involved in modified Brooks Parsimony is 

beyond the scope of this paper; see Lieberman & Eldredge (1996) and Lieberman 

(2000) for details. We created an area cladogram by replacing the taxa with the 

geographic area in which the taxa were found (Fig. 2.5). We used six areas: (1) 

Dominican Republic, (2) Juan Fernandez Island, (3) southwestern Chile and 

southwestern Argentina, (4) north/central South America, including Brazil, northeast 

Argentina, Paraguay, and Bolivia,  (5) Central America, and (6) northwest South 

America, including Columbia, Ecuador, and Peru. Defining areas is problematic (see 

Lieberman, 2000 for a review on this topic); however, we defined our areas on both 

geological and biological grounds. The ancestral nodes of the area cladogram were 

then optimized using a modified Fitch parsimony algorithm (Fitch, 1971). The area 

cladogram was used to generate a geodispersal matrix, which provides insight into the 

relative time that barriers fell (allowing for expansion of taxa), and a vicariance 

matrix, which provides insight into the relative time that barriers formed (isolating 

taxa). Each matrix was analyzed in PAUP v.4.0 (Swofford, 1998) using an exhaustive 

search; characters were treated as ordered.  
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Fig. 2.5. Area cladogram obtained by replacing terminal taxa with the areas in which 
they are found. These are: (1) Dominican Republic, (2) Juan Fernandez Island, (3) 
southwest Chile & southwest Argentina, (4) north/central South America (includes 
Brazil, northeast Argentina, Paraguay, and Bolivia), (5) Central America, and (6) 
northwest South America (includes Columbia, Ecuador, and Peru). The numbers at 
the nodes are the optimized locations of the ancestral taxa. The fossil taxon, M. 
mitnickii, is depicted in gray.  

 

2.5.2. Results 

The vicariance analysis yielded a single most parsimonious tree of 15 steps, 

whereas the geodispersal analysis yielded three most parsimonious trees of 21 steps 

(Fig. 2.6). Only the Juan Fernandez Island/SW Chile & SW Argentina and 

north/central South America/Central America nodes were resolved in both analyses. 

When the relationships between the vicariance and geodispersal trees are correlated, 

such as with Juan Fernandez Island and SW Chile & SW Argentina, it suggests the 

processes affecting geodispersal and vicariance in these regions are similar and the 

regions are relatively close to each other (which they are). Coincident patterns often 

indicate that cyclical processes, such as rise and fall of sea level, played a role in 

alternating dispersal and vicariance between the two regions. The connection between 
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north/central South America and Central America may on the one hand reflect larger-

scale processes and patterns of geodispersal and vicariance, or, on the other hand, 

may simply be a result of sampling bias.  The Dominican Republic probably placed 

basally due to the low diversity (i.e., one taxon) representing this region (see 

Lieberman, 2000).  

Results from the modified Fitch parsimony algorithm (Fig. 2.5) suggests that the 

ancestor of the Dominican fossil dispersed into the Dominican Republic from the 

southwestern portion of South America. It must be noted that incomplete sampling 

due to extinction of taxa and lack of fossil traps in South and Central America (such 

as amber deposits) may have artificially biased our data by making the ancestral 

ranges appear more constrained than they really were. The ancestor of the Dominican 

fossil may have been more widespread in South America, making the mechanism of a 

dispersal event, for example from the northernmost region of South America, more 

realistic (i.e. the likelihood of a chance dispersal event having occurred, via any 

mechanism, from southern South America to the Caribbean is low). Unfortunately, 

the scarcity of fossil localities in Central and South America hinders our ability to 

observe what taxa were present where at different stages in Earth history. Members of 

this genus have not been found in other fossil deposits around the world, providing 

some indication the lineage was not globally distributed. Although our study was 

constrained by the limited number of fossil species and ranges and by the probable 

extinction that occurred within the lineage, we performed the analysis using the only 

data available; discovery of further fossil specimens or a modified phylogeny could 

verify or disprove our study. What is important is that our biogeographic analysis 

most strongly supports a dispersal event from South America to the Dominican 
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Republic (rather than having originated in the Dominican Republic - option 1. A 

vicariant origin is similarly not supported).  

Fig. 2.6. The vicariance tree and strict consensus of three geodispersal trees. The 
nodal numbers are bootstrap and jackknife values, respectively. Trees for the 
bootstrap and jackknife analyses were generated using 50% majority rule consensus; 
no jackknife values were obtained for the vicariance tree.  A test of Hillis (1991) was 
also performed, and the data departed from random at the 0.01 level (g1 value of -
1.572235 and -0.734178 for the vicariance and geodispersal trees, respectively). Note 
that bootstrap values may have been artificially inflated by including autopomorphies 
within the analysis. 
 

2.5.3 Discussion  

Given that our data suggests a dispersal event (option 2), there are three tenable 

methods by which this chance dispersal could have occurred: (1) over-water dispersal 

sensu Hedges (1996a,b) and Hedges et al. (1992, 1994), (2) a GAARlandia (Greater 

Antilles + Aves ridge) landspan around 32 Mya sensu MacPhee & Iturralde-Vinent 

(1994, 1995), Iturralde-Vinent & MacPhee (1999), and Iturralde-Vinent (2006), and 

(3) ballooning. Here, we discuss each of these possibilities.  
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 (1) Over-water dispersal hypothesizes that organisms arrived in the West Indies 

by floating on flotsam directed by ocean currents, mostly from the northeastern coast 

of South America (the direction of current flow). This process was thought to have 

occurred throughout the Cenozoic. A study by Heatwole & Levins (1972) looked at 

organism transport on the Puerto Rican bank and found flotsam colonized by insects, 

pseudoscorpions, spiders, mites and worms 0.5–16 km out to sea. Vertebrates have 

also been documented to be capable of over-water travel on flotsam, especially after 

seasonal hurricanes (Censky, Hodge & Dudley, 1998). There has been much dispute 

regarding the over-water dispersal hypothesis (see MacPhee & Iturralde-Vinent, 2005 

for criticisms), and the debate continues as to whether this is a viable mechanism for 

the colonization of the West Indies (especially for terrestrial vertebrates).  

(2) The landspan hypothesis was championed by MacPhee & Iturralde-Vinent 

(1994, 1995) and Iturralde-Vinent & MacPhee (1999) and is based on the presumed 

presence of an exposed strip of land or series of islands (along the Aves ridge) 

running from the northern Greater Antilles to northwestern South America at about 

the time of the Eocene–Oligocene transition. MacPhee & Iturralde-Vinent (1994, 

1995) used this theory to explain the origin of vertebrates in the West Indies, but this 

bridge may have aided invertebrate dispersal as well. As with the over-water dispersal 

hypothesis, there has been heated discussion as to whether the landspan hypothesis 

provides a viable mechanism for the colonization of the West Indies.  

(3) Ballooning is the technique by which spiders extrude silken threads and are 

carried away on air currents. Spiders have been known to land on ships many miles 

out to sea (Darwin, 1839), and this dispersal ability may account for the presence of 
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at least some spider species in the West Indies. It is important to note, however, that 

Miocene amber contains both highly dispersive taxa (such as the Araneidae and 

Tetragnathidae) and also poorly dispersive taxa (Theraphosidae and Dipluridae). 

Penney (2008) suggested the presence of non-ballooning, poorly dispersive taxa in 

Miocene amber supports the GAARlandia landspan hypothesis (however this does 

not refute the hypothesis that poorly dispersive taxa could have floated over on 

flotsam from South America sensu Hedges, 1996,a,b).  

The above processes all likely played a role in colonizing the West Indies, at least 

for arachnids. As referred to above, studies of various lineages differ on which of the 

dispersal and/or vicariance models is supported, and additional studies are needed in 

order to search for coincident patterns among different clades so as to tease apart the 

overall colonization pattern for the West Indies, if one is ever to emerge.  Large-scale 

geological processes usually influence the Earth's biota in concert.  

2.6 Extinction  

The presence of Molinaranea in Miocene Dominican amber and its absence from 

the modern fauna of Hispaniola and elsewhere in the Caribbean region suggests the 

genus became extinct in the Dominican Republic, and presumably throughout much 

of its former range. A similar pattern can be seen in many other Dominican amber 

fossil arthropods. Riodinid butterflies provide a good example: two genera found in 

Dominican amber, Voltinia Stichel, 1910-11 and Theope Doubleday, 1847, no longer 

exist in the Greater Antilles, and only a single riodinid species lives there presently 

(Peñalver & Grimaldi, 2006). Ants offer another example: individuals of the genus 
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Leptomyrmex Mayr, 1862 are present in Dominican amber, but the only members 

alive today reside in Australia (Poinar, 1993).  

Various models have been called upon in order to explain these extinction 

patterns in the West Indies. Peñalver & Grimaldi (2006) have cited insularization as 

the cause of the riodinid extinctions in the Greater Antilles (the authors suggest 

riodinid butterflies colonized the Greater Antilles when the landmasses were 

potentially closer to or actually fused with the mainland in the early Miocene or late 

Oligocene, but this is a tentative hypothesis and one that is complicated by the 

convoluted geology and tectonics of the region). Hall, Robbins & Harvey (2004) 

invoked Plio-Pleistocene cooling, habitat disruption, and xerophytization as possible 

extinction triggers for the riodinid butterflies and other arthropod groups, but 

Peñalver & Grimaldi (2006) argued that this model does not fit the riodinid example 

because a close living relative of the now extinct Dominican species resides in 

xerophytic environments in Mexico. Regardless, there seems to be consensus that the 

climate in the West Indies was considerably more arid during the Pleistocene, which 

may have had an influence on the biota (Bonatti & Gartner, 1973; Pregill & Olson, 

1981; Schubert & Medina, 1982; Schubert, 1988).  

The disjunct distribution between many Dominican fossil species and their extant 

relatives is mirrored in the rest of the world. Fossils have provided evidence (e.g. 

Eskov, 1987, 1992 for archaeid spiders; Wedmann & Makarkin, 2007 for mantidflies) 

that many lineages once thought to be Gondwanan in origin were present in the 

northern hemisphere and likely relicts of a previously widespread distribution. The 

discovery of a fossil species of Molinaranea in the Dominican Republic (given 
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modern members are restricted to southern South American) provides another 

example of a lineage with a likely relict extant distribution.  

Modern members of Molinaranea inhabit three areas within the temperate 

rainforest of southern Chile and Argentina: the Valdivian rainforest, the north 

Patagonian rainforest, and the Magellanic rainforest. All of these rainforests are 

characterized by evergreen broadleaf trees, evergreen conifers, and abundant 

epiphytes (Levi, 2001; Veblen & Alaback, 1996). Since modern members of the 

genus reside in what appears to be a relatively constrained niche space, one might be 

inclined to assume the habitat of the Dominican Republic in the middle Miocene was 

similar to that of southern Chile and surrounding regions. However, it is thought 

Dominican amber was probably deposited in a warm, humid tropical forest, unlike the 

modern temperate forest of southern Chile (Iturralde-Vinent, 2001).  

Pleistocene glaciations significantly affected the climate and environment of 

southern South America, and during glacial maxima ice would have covered most of 

the forest that today supports Molinaranea (McCulloch et al. 2000; Hulton et al. 

2002). This suggests members of Molinaranea occupied areas other than their current 

residence during the glaciations, perhaps tracking preferred habitat (unless they 

survived in mountainous refugia sensu Haffer, 1969 for Amazonian bird fauna). Since 

Hispaniola was a distinct island during the Pleistocene, members of Molinaranea may 

not have been able to escape changes in climate or track habitat as effectively as their 

South American counterparts; this, in part, could explain their absence from the 

modern West Indies. 
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CHAPTER 3  | First fossil Mecysmaucheniidae (Arthropoda: Chelicerata: 

Araneae), from Lower Cretaceous (uppermost Albian) amber of Charente-

Maritime, France 

Chapter Overview 

The first known fossil mecysmaucheniid spider, Archaemecys arcantiensis n. gen. n. 
sp., is described, from Lower Cretaceous (Upper Albian) amber of Charente-
Maritime, France. This is the first fossil spider to be formally described from French 
Cretaceous amber and extends the geological record of Mecysmaucheniidae back into 
the Cretaceous, the family having previously been known only from the Recent. The 
fossil differs from other Mecysmaucheniidae in having four, rather than two 
spinnerets, so can be considered plesiomorphic with respect to modern members of 
the family in this character. The amber of the Archingeay–Les Nouillers area is 
uniquely considered to have largely preserved a litter fauna, and our specimen 
corroborates this hypothesis.  

 

3.1 Introduction  

Spiders (Araneae) are an extremely diverse order of arachnids, with 40,462 extant 

species in 3694 genera and 109 families (Platnick, 2008). They are characterized by 

numerous synapomorphies, including the presence of spinnerets on the abdomen for 

producing silk, naked fangs and associated venom glands (in most species), two body 

regions, eight legs, and pedipalps modified in the male for sperm transfer. 

The Mecysmaucheniidae, a relatively small family within the Araneae, is 

composed of seven genera and 25 known species (Platnick, 2008). They are small, 

haplogyne, ecribellate spiders found in New Zealand and southern parts of South 

America (primarily Chile and Argentina) (Jocqué & Dippenaar-Schoeman, 2006). 

The type genus Mecysmauchenius was first described by Simon (1884) as a member 

of the Archaeidae Koch & Berendt, 1854. Mecysmaucheniids are distinguished from 
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other spiders by the presence of chelicerae originating from a foramen in the carapace 

and only two spinnerets (Forster & Platnick, 1984). Mecysmaucheniids belong to the 

superfamily Palpimanoidea, which has had a long and controversial history. Forster & 

Platnick (1984) enlarged the Palpimanoidea (originally it only included the 

Huttoniidae Simon, 1893, Palpimanidae Thorell, 1870 and Stenochilidae Thorell, 

1873) to include the Archaeidae (and therefore the Mecysmaucheniidae), removing 

them from the araneoids. They also significantly enlarged the superfamily by 

including the Micropholcommatidae Hickman, 1944, Mimetidae Simon, 1881, 

Pararchaeidae Forster & Platnick, 1984 and Holarchaeidae Forster & Platnick, 1984 

on the basis of two diagnostic characters: cheliceral peg teeth and a raised cheliceral 

gland. Although some accepted Forster & Platnick’s revision (Coddington & Levi, 

1991; Coddington et al., 2004), others have contested the arrangement. According to 

Schütt (2000), Micropholcommatidae and Mimetidae should be placed within the 

Araneoidea, although the placement of the Archaeidae and Mecysmaucheniidae in 

Palpimanoidea was still dubious at best. Griswold et al. (2005) agreed with Schütt in 

that the Mimetidae should belong to the Araneoidea; however, they claimed that 

many of the palpimanoid familial placements are still debatable. Others have 

suggested that peg teeth are homoplasious (Coddington et al., 2004; Schütt, 2000) 

and therefore should not serve as one of the diagnostic characters of the 

Palpimanoidea.  

The archaeids were first described from Baltic amber fossils by Koch & Berendt 

(1854) and were considered an extinct group for some thirty years until extant species 

were found in Madagascar. The mecysmaucheniids were described soon after from 

specimens in Chile and were placed as a genus under the Archaeidae (Simon, 1884). 
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Mecysmaucheniids were considered a subfamily of the Archaeidae by Simon (1895), 

and some people continued to hold this view (see Wunderlich, 1986, 2004; Eskov, 

1987, 1992). Lehtinen (1967) suggested the subfamily be raised to family level, 

which would include Mecysmauchenius Simon, 1884, Pararchaea Forster, 1955 and 

Zearchaea Wilton, 1946. Although Lehtinen’s placement of the Pararchaea and 

Zearchaea was contested by Forster & Platnick (1984), these authors retained the 

Mecysmaucheniidae as a distinct family (see Forster & Platnick, 1984 for a detailed 

taxonomic history of the archaeids and related taxa).  

There has been no formal description of a fossil mecysmaucheniid to date. Eskov 

(1987) tentatively assigned Archaea conica (see Koch & Berendt, 1854, fig. 10) to 

the subfamily Mecysmaucheniinae because of its short chelicerae and only slightly 

elevated cephalic region of the carapace, even though the Baltic amber type specimen 

had been lost. Eskov (1992) later created a new genus, Baltarchaea, for A. Conica; 

the species was listed under Mecysmaucheniidae in the table in Penney (2003b, Table 

1). A description of a fossil mecysmaucheniid was said to be in preparation in Eskov 

& Golovatch (1986), but no such paper resulted, and the designation was likely 

changed to an archaeid (see Eskov, 1987).  

Lacroix (1910) was the first to describe Cretaceous amber from France, but it was 

not until the 1970s that extensive study of the fossiliferous material in French ambers 

was undertaken (Perrichot et al., 2007). The most fossiliferous French amber deposit 

from the Cretaceous is the Archingeay–Les Nouillers (herein referred to simply as 

Archingeay) locality (Perrichot et al., 2007). The amber from Archingeay is late 

Albian in age and is unique in that a large percentage of the inclusions represent litter 
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fauna (Néraudeau et al., 2002). It is thought that the resin was exuded from a member 

of the plant family Araucariaceae, and the abundant resin flowed directly onto the 

ground (Néraudeau et al., 2002). The fossil assemblage of Archingeay is mainly 

composed of insects, but other arthropods are also present (Perrichot et al., 2007; 

Néraudeau et al., 2002). Nine percent of the total arthropod inclusions in Albian 

French amber are arachnids (Perrichot et al., 2007). Hitherto, no spider fossils have 

been described from the Cretaceous of France, although they were referred to by 

Schlüter (1978) and Néraudeau et al. (2002), and members of the family Zodariidae 

were mentioned as being present by Perrichot (2004) and Perrichot et al. (2007). 

Cretaceous spiders are relatively rare but have been described from Siberia 

(Eskov & Zonshtein, 1990; Eskov & Wunderlich, 1994), New Jersey (Penney, 2002; 

Penney, 2004a), the Isle of Wight (Selden, 2002), Lebanon (Penney & Selden, 2002; 

Penney, 2003a; Wunderlich & Milki, 2004), Canada (Penney, 2004c; Penney & 

Selden, 2006), Myanmar (Grimaldi et al., 2002; Penney, 2003b, 2004b, 2005), 

Botswana (Rayner & Dippenaar-Schoeman, 1995), Brazil (Mesquita, 1996; Selden et 

al., 2002; Selden et al., 2006), Australia (Jell & Duncan, 1986) and Spain (Selden, 

1989; Selden, 1990; Selden & Penney, 2003; Penney, 2006; Penney & Ortuño, 2006). 

Here, we provide the first description of a fossil mecysmaucheniid, from Cretaceous 

(Late Albian) French amber. Living mecysmaucheniids are litter-dwellers, like most 

of the fauna from Archingeay amber, but are confined to South America and New 

Zealand. The find of a mecysmaucheniid in Cretaceous Laurasia suggests a more 

widespread, or at least different, distribution for this family in the Mesozoic than 

today. 
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3.2 Methods 

The specimen was cut, polished and encased in clear resin before the authors 

received it. Drawings were done under both incident and transmitted light with a 

camera lucida attached to a Leica MZ16 stereomicroscope. Drawings were scanned 

and re-traced using Adobe Illustrator. Photographs were taken with a Cannon Digital 

Rebel XTi attached to the microscope and manipulated in Adobe Photoshop. Fig. 

3.1D was taken with a Leica DFC420 C camera attached to a Leica DM 2500 

microscope; Leica Application Suite software was used to take a multifocus z-stack 

so as to achieve sharp focus throughout the image. Measurements were made using an 

ocular graticule.  

Microtomography at the European Synchrotron Radiation Facility (ESRF) in 

Grenoble, France was attempted; however, the competing mediums within the amber 

piece (air, resin, arthropod cuticle, glue, and Canada balsam used for mounting) were 

problematical, and obtaining an image proved to be extremely difficult. In order to 

prepare the specimen for microtomography, it was removed from the clear, recent 

resin by gentle heating on a hot plate. Excess amber was cut away from the specimen 

so as to increase imaging ease; during this process, a small portion of the opisthosoma 

was unintentionally removed.  

Fortuitously, removal of the specimen from the recent resin allowed for improved 

views of difficult to observe areas (i.e., we were able to observe cheliceral peg teeth). 

The specimen was mounted on a pin attached to a microscope stage so that the piece 

was rotatable at all angles. Further imaging was done with a Leica DFC420 C camera 
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attached to a Leica M205 C microscope. Figure 3.3 is a stack of three images merged 

using Helicon Focus software (www.heliconsoft.com/heliconfocus.html). 

3.3 Abbreviations 

Leg formula (e.g. 1423) indicates the length of each leg relative to the other legs 

from longest to the shortest (in the example, leg 1 is longest, followed by leg 4). 

Abbreviations are as follows: ALS = anterior lateral spinnerets, AME = anterior 

median eyes, BL = book lung, cl = claw, co = colulus, cx = coxa, EF = epigastric 

furrow, fe = femur, LC = left chelicera, mt = metatarsus, mx = maxilla, op = 

opisthosoma, PLS = posterior lateral spinnerets, pp = pedipalp, ps = prosoma, pt = 

patella, RC = right chelicera, sr = spiracle, st =sternum, T = trichobothrium, ti = tibia, 

tr = trochanter, ts = tarsus, 2–4 = walking legs 2–4. All measurements are in mm. 

3.4 Preservation and morphological interpretation  

The specimen is preserved in a piece of cloudy, light orange amber; 

approximately 4.5 mm x 3.5 mm. Prior to receipt by the authors, the piece of amber 

containing the specimen had been cleaved in half to the left of the abdomen and 

subsequently glued back together. Small air bubbles and pieces of organic material 

are present. The opisthosoma of the spider is translucent and the spinneret attachment 

points can be viewed internally. Many features of the specimen are difficult to study 

due to the cloudiness of the amber (many, tiny air inclusions). No other syninclusions 

co-occur with the specimen.  

Penney (2003b) considered the wrinkled opisthosoma in his Cretaceous Burmese 

amber specimen of Afrarchaea grimaldii (Araneae: Archaeidae) to be the 
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consequence of typical preservational processes that occur in amber. Repeated 

mention, however, of a wrinkled abdomen in archaeids, and the presence of wrinkles 

in our specimen, leads us to suggest this may be a specific preservational trait of 

mecysmaucheniids and closely related families. Koch & Berendt (1854, figs 9 & 10) 

figured parallel abdominal folds in their drawings of Baltic amber archaeids, and 

Eskov (1992), Penney (2003b) and Wunderlich (2004) all mention wrinkles and folds 

in the abdomens of their archaeid amber specimens.  

The organic material has shrunk in most of the specimen, as is the rule in amber 

preservation, leaving a ghostly but faithful outline of the original surface. The cuticle 

has shrunk from the distal end of the leg segments, leaving only the outline of the 

original surface (Fig. 3.1E). In the tarsi, however, the cuticle is absent from the 

proximal end of the podomere, and a slight constriction occurs, indicating the area 

was unsclerotized in the living organism (a character that is present in both archaeids 

and mecysmaucheniids).  

3.5 Systematic Paleontology 

Order ARANEAE Clerck, 1757 

Suborder OPISTHOTHELAE Pocock, 1892 

Superfamily PALPIMANOIDEA sensu Forster & Platnick, 1984 

Family MECYSMAUCHENIIDAE Simon, 1895 

 

Remarks: Mecysmaucheniidae are diagnosed as having two spinnerets and chelicerae 

originating from a foramen in the carapace. Although our specimen has four 

spinnerets and we cannot be certain the chelicerae originate from a foramen in the 

carapace, we place the specimen in Mecysmaucheniidae on account of the following 
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characters: The unsclerotized, constricted area on the base of the tarsal segments in 

our specimen appears to be a synapomorphy uniting the archaeids and 

mecysmaucheniids (Forster & Platnick, 1984; H. Wood pers. comm.) and places our 

specimen firmly among these families. The lack of a constricted neck or greatly 

heightened cephalic area (characteristic of Archaeidae), and the presence of four 

spinnerets (cf. six in archaeids), suggests our specimen should be included within 

Mecysmaucheniidae. Our reasoning is that, while mecysmaucheniids have only two 

spinnerets, this is a reduction from the plesiomorphic six (i.e. an apomorphy). Loss of 

spinnerets (or their reduction to patches of spigots) has occurred several times within 

the Palpimanoidea (Forster & Platnick, 1984) and is a character of known polarity. It 

is likely that reduction is a trend within the Mecysmaucheniidae and the condition in 

Archaemecys n. gen. represents a stage in the reduction. Archaeids have two spiracle 

openings, unlike the single opening seen in the mecysmaucheniids and our specimen. 

Additionally, Forster & Platnick (1984) mentioned that the spiracle is often 

sclerotized in mecysmaucheniids, a character observed in our fossil. Archaemecys, 

like other mecysmaucheniids, does not have tubercles on the carapace, and the 

chelicerae in the fossil are shorter and stouter than those usually found in archaeids. 

Archaeids have spatulate hairs on the tibia and metatarsus of leg 1 (Forster & 

Platnick, 1984), but the Mecysmaucheniidae, including our specimen, do not. 

Additionally, our specimen does not have a femoral hump, as is present in archaeids 

(see Wunderlich, 2004). A Pararchaeidae affinity can be ruled out because, as 

mentioned above, the pararchaeids do not possess the unsclerotized, constricted area 

at the bases of the tarsi. This aside, our specimen has plumose leg setae, not the 
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serrate or smooth setae found in pararchaeids, and the legs are stout, unlike the 

slender legs characteristic of pararchaeids.  

Genus Archaemecys n. gen.  

Figures 3.1– 3.3 

Type species: Archaemecys arcantiensis n. sp., by present and monotypic designation  

Material examined: Holotype and only known specimen, subadult male, MNHN 

ARC11R deposited in the Muséum national d’Histoire naturelle, Paris.  

Etymology: The genus name is derived from the Greek archae, meaning primitive or 

ancient, and the modern genus Mecysmauchenius, which the fossil somewhat 

resembles.  

Stratigraphic horizon: Lower Cretaceous, Uppermost Albian, subunit A1s12 

(Néraudeau et al., 2002). 

Diagnosis: Archaemecys can be distinguished from all other genera of 

Mecysmaucheniidae by the presence of four spinnerets, a strongly sclerotized ring 

around the spinnerets, and a sclerotized tracheal spiracle.  

Remarks: The genus differs from other mecysmaucheniids by the presence of four 

spinnerets. All extant Mecysmaucheniidae have only two spinnerets, a derived 

condition. Additionally, Archaemecys has a particularly robust sclerotized ring 

around the spinnerets, and its legs are much shorter and stouter than in extant 

mecysmaucheniids. 
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Archaemecys arcantiensis n. sp.  

Figures 3.1– 3.3 
 

Arachnida Salticidae—Néraudeau et al. (2002, fig. 6.8) 

Type locality: Archingeay-Les Nouillers, Charente-Maritime, south-west France.  

Etymology: The specific epithet is based on Arcantiatum, former Latin name of the 

locality Archingeay from which the fossil originates.   

Diagnosis: As for the genus.  

Description: Body length 3.10. Carapace 1.31 long, 0.94 wide, ≥ 0.66 high; pars 

cephalica highly elevated so that carapace, when viewed from side, appears 

subrectangular in outline; without tubercles. Only AME visible on anterior face of 

carapace. Chelicerae with ≥ 11 peg teeth (Fig. 3.3); peg teeth ~0.17 long, chelicerae 

0.71 long; fang ≥ 0.35 long; chelicerae appear to originate from a foramen, although 

this is not certain; sclerotized lip/projection above where chelicerae originate (Fig. 

3.3). Sternum 0.34 wide, 0.57 long, lateral margins project slightly between coxae.  

Maxillae converge slightly, almost circular in shape. Petiole encircled by 

sclerotized plate (Fig. 3.2A); rugose epigastric plate, flanked by book lung covers 

(Fig. 3.2B). Opisthosoma 1.42 long, approximately 1.10 wide, height uncertain; likely 

sub-globular in life; dorsal surface not preserved so presence of scutum not known. 

Opisthosomal cuticle wrinkled in subparallel lines, bearing short, plumose setae, each 

originating from a prominent follicle. Four spinnerets and anal tubercle surrounded by 

well-developed chitinous ring (Fig. 3.2B); ALS well defined in two segments (Fig. 
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3.1D), posterior spinnerets smaller; patch of cuticle with short setae in front of ALS, 

possibly a colulus. Spiracle situated well anterior to spinnerets; fortified with cuticle 

ring (Figs 3.1A, B, C).  

Leg formula 1423; leg 1 cx 0.23, tr 0.16, fe 0.57, pt 0.25, ti 0.39, mt, 0.39, ts 0.39, 

total 2.38; leg 2 cx 0.18, tr 0.19, fe 0.52, pt 0.20, ti 0.38, mt 0.33, ts 0.33, total 2.13; 

leg 3 cx 0.17, tr 0.18, fe 0.45, pt 0.21, ti 0.39, mt 0.33, ts 0.28, total 2.01; leg 4 cx 

0.25, tr 0.16, fe 0.54, pt 0.20, ti 0.44, mt 0.41, ts 0.33, total 2.33. Plumose setae on all 

leg segments; no spines; each metatarsus with single trichobothrium, most likely on 

dorsal surface (trichobothrium located seven-tenths of way along metatarsus from 

proximal end in legs 2–4); tibiae 2–4 with at least one (up to 3) trichobothria (Fig. 

3.2). Legs relatively short and stout. Tarsi with unsclerotized constriction at the base 

of the tarsus (Fig. 3.1E). Three tarsal claws on unsclerotized onychium; paired claws 

with 4, possibly 5 teeth, unpaired claw simple. Pedipalp rounded and bulbous, 0.37 

long, 0.16 wide.  
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Fig. 3.1 A–E. Archaemecys arcantiensis n. gen., n. sp. A. dorsal view of the 
specimen; B. ventral view of the specimen; C. opisthosoma. Notice the pronounced 
wrinkling of the cuticle and the sclerotized rings around the tracheal spiracle and the 
spinnerets; D. lateral view of the spinnerets, anterior to the left. The anterior two 
spinnerets (left) are relatively large, with two segments, while the posterior two 
spinnerets (right) are smaller; E. close-up of metatarsus and tarsus third leg segment 
showing the unsclerotized portion at the base of the tarsus. Scale bars: 0.5 mm, except 
for C., which is 0.2 mm. 
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Fig. 3.2 A–B. Interpretive drawings of Archaemecys arcantiensis n. gen., n. sp. A. 
dorsal view of specimen; B. ventral view of specimen. See text for explanation of 
abbreviations. Scale bar = 0.5 mm.  
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Fig. 3.3. Archaemecys arcantiensis n. gen. n. sp. Anterior view of the chelicerae and 
pedipalps. Notice the peg teeth on the chelicerae and the heightened profile of the 
carapace. Scale bar = 0.1 mm. 

 

3.6 Remarks 

While we are only able to view four spinnerets, we cannot completely rule out the 

possibility of 6, as there may be a very small median pair (this it is unlikely since we 

are able to view inside the opisthosoma to the point of spinneret attachment). 

Regardless, even if the specimen possesses six spinnerets, this would not change its 

placement within the Mecysmaucheniidae. Although the archaeids and pararchaeids 
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have 6 spinnerets, these families do not share the other characters found in our 

specimen (see remarks section above). Additionally, losing spinnerets is a fairly 

common phenomenon within the Araneae. Extant mecysmaucheniids have lost four 

spinnerets in the reduction to the two the family currently possesses; given this, it 

seems quite possible that a primitive mecysmaucheniid would have four, or even six, 

spinnerets.  

3.7 Discussion   

This is the first description of a fossil mecysmaucheniid and extends the range of 

the family back to the Cretaceous (Late Albian). Archaeids have been described from 

Late Cretaceous (Penney, 2003b) amber and are known from the Jurassic (Eskov, 

1987; Selden et al., 2008); it follows that mecysmaucheniids are also present in the 

Mesozoic, since they are sister to the archaeids.  

Mecysmaucheniids are commonly found in the litter layer of forests (Forster & 

Platnick, 1984; Jocqué & Dippenaar-Schoeman, 2006). Since the Archingeay amber 

fauna is considered a unique representative of a litter fauna (Néraudeau et al., 2002; 

Perrichot et al., 2007), our spider specimen corroborates this observation and supports 

the hypothesis that resin flowed directly onto the forest floor, thereby engulfing our 

spider and the many other organisms found in this amber.  

Recent mecysmaucheniids occur only in New Zealand and South America 

(specifically Argentina and Chile) (Jocqué & Dippenaar-Schoeman, 2006; Platnick, 

2008), while archaeids are found only in Australia, South Africa and Madagascar. 

The presence of fossil archaeids and mecysmaucheniids in Eurasia poses interesting 

biogeographical questions. Although the present distribution of mecysmaucheniids 
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and archaeids may be an artifact of sampling bias, this seems unlikely, and it is 

especially curious that mecysmaucheniids occur in precisely those parts of Gondwana 

from which archaeids are absent. The particular distributions of these two families 

may represent a case of competitive exclusion or, more likely, since they are sister 

taxa, may result from a divergence in the distant geological past and/or extinction due 

to climatic or geological events.  

3.8 Note on Wunderlich (2008) 

A work published recently by Wunderlich (2008) referred to Archaemecys 

arcantiensis n. gen. n. sp. (this paper) as Palaeomecysmauchenius (this was a 

manuscript name—we provided Wunderlich with a preliminary draft of the present 

paper in 2007) and placed our specimen in his new subfamily Lacunaucheniinae. We 

refute this placement on the following grounds: Archaemecys possesses a ring around 

the spinnerets (contra members of Lacunaucheniinae) and does not, to our 

knowledge, have three pairs of spinnerets (a trait of Lacunaucheniinae). Furthermore, 

Wunderlich (2008) indicated we support the theory of ousted relicts (the hypothesis 

that northern lineages were ousted to the southern hemisphere by more competitive 

taxa). This is false: we simply stated that Archaeidae and Mecysmaucheniidae may 

have had a more widespread distribution in the Mesozoic, so their extant range is 

perhaps a relict of a previous pancontinental distribution, although this remains to be 

tested within a rigorous scientific framework.  
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