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Abstract: 
The use of pharmaceuticals during pregnancy is often a necessity for the health of the mother.  Until 

recently, the placenta was viewed as a passive organ through which molecules are passed 

indiscriminately between mother and fetus.  In reality, the placenta contains a plethora of transporters, 

some of which appear to be specifically dedicated to removal of xenobiotics and toxic endogenous 

compounds.  Drug efflux transporters such as P-glycoprotein (P-gp), several multidrug resistant 

associated proteins (MRPs) and breast cancer resistant protein (BCRP) may provide mechanisms that 

protect the developing fetus.  Bile acid transporters may also play a role in exporting compounds back 

into the maternal compartment.  Steroid hormones directly influence the level of expression and 

function in some of these transporters.  Investigating the link between the hormones of pregnancy and 

these drug efflux transporters is one possible key in developing strategies to deliver drugs to the mother 

with minimal fetal risk. 
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1. Introduction 

 

Historically, the human placenta has been viewed as a protective barrier as well as a site 

for nutrient and waste exchange between mother and fetus [1].   However, instances of drug-

induced birth defects have been in part blamed on the placenta’s apparent “leakiness” to maternal 

blood-borne agents.  Accordingly, the medical community generally discourages the use of all 

drugs during pregnancy.   In reality, many women require drug therapies during pregnancy for 

illnesses such as asthma, diabetes, and HIV [1].   The unfortunate aspect of current research in 

this area is that due to the unique anatomical properties of the human placenta, no animal model 

exists that can reliably predict the potential side effects of a drug taken during pregnancy [2].    

Therefore, in current practice a woman takes a drug out of necessity in pregnancy against the risk 

of possible adverse effects on the fetus and possible teratogenic effects which can only be 

assessed at birth.    

Recently, a group of transporters in the ATP binding cassette (ABC) superfamily have 

been found in the placenta.  These include the multidrug resistant gene product 1 (MDR1) also 

known as P-glycoprotein (P-gp), several of the multidrug resistance associated proteins (MRPs), 

and breast cancer resistance protein (BCRP).  All these proteins were originally implicated in 

multidrug resistance in tumors [3-5].   However, further research has demonstrated that these 

transporters are distributed throughout many normal tissues of the body.  The transporters seem 

to be concentrated in organs involved in detoxification processes (liver, kidney, etc.) [6].     

ABC transporters exhibit a very broad substrate structure specificity including many 

xenobiotics as well as endogenous compounds such as steroids.  Table 1 summarizes some of the 

ABC transporters and their substrate specificities.   The general consensus about the 

physiological function of the ABC transporters is that they provide protection from a diverse 
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group of xenobiotics [6].  In addition, they may protect tissues from harmful effects of 

endogenous compounds.  For example, MDR1 or P-gp is believed to regulate glucocorticoid 

levels in the adrenal glands [7]. 

Current research is focusing on the role of efflux proteins in the human placenta and the 

implications for drug distribution.  Early studies suggest that P-gp serves to export xenobiotics 

into the maternal blood supply, thereby reducing chemical exposure in the fetal compartment [8].    

The rate-limiting barrier in the placenta to permeation of  substances between mother and fetus is 

a single layer of trophoblasts separates the maternal blood from the fetal capillaries [2].  In early 

pregnancy, the placenta is primarily composed of cytotrophoblasts, which continually fuse 

together to form multinucleate syncytiotrophoblasts as pregnancy progresses.   Fetal capillaries, 

supplied by the umbilical artery and drained by the umbilical vein, are found within “fingerlike” 

structures, villi, within the placenta.   Syncytiotrophoblasts form the outer layer of a villus and 

are bathed in the maternal blood on one side and are immediately adjacent to fetal capillaries on 

the opposite side.  Figure 1 illustrates the unique anatomical arrangement of the placental barrier 

(syncytiotrophoblast layer) and the fetal capillaries.  Understanding the role of efflux transporters 

in the trophoblast layer is a crucial element in devising new drug delivery strategies for pregnant 

women.  Recently, primary cultures of human cytotrophoblasts and trophoblast-like cell-lines 

such as BeWo, JAr, and HRP-1 have aided in this process [9-11]. 

Steroid modulation of efflux transporter expression and activity is one possible key 

component.  Hormonal levels vary widely among women, but the placenta produces roughly 1 

millimole of progesterone per day at 40 weeks gestation [12].  Progesterone has been shown to 

affect P-gp activity in other cell types, so investigation of its influence in the placenta is vital 

[13].    Modulating placental efflux transporters through hormone-related mechanisms may 
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provide an opportunity to prepare the placenta for administration of drugs during pregnancy to 

effectively minimize the risk to the fetus.  The following discussion summarizes the current 

knowledge regarding prominent placental efflux proteins.   

 

2. P-glycoprotein 

MDR1 or P-gp is the best characterized drug efflux transporter in the placenta.  P-gp’s 

size ranges from roughly 160 to 190 kilodaltons, and it is composed of 12 putative 

transmembrane domains (TMDs) and 2 nucleotide binding domains (NBDs) with ATPase 

activity [14]. 

Cordon-Cardo et al. used immunohistochemistry to show broad P-gp expression 

throughout body tissues, including placental trophoblasts [6].   Due to the presence of P-gp in a 

wide variety of tissues, each with a different physiological function, the researchers asserted that 

P-gp’s function in normal tissues might not be limited to export of xenobiotics.  In addition, 

despite the fact that the primary sequence is conserved, tissue-specific function of P-gp is a 

possibility. 

 There exists some controversy regarding the level of expression during stages of 

pregnancy.  Most researchers believe that P-gp is expressed and active throughout pregnancy 

[15,16], particularly cytotrophoblasts [15,17].  Macfarland and colleagues argued that P-gp 

activity decreased in the later stages of pregnancy and was not limited to trophoblasts [3].  

Subsequent research with microvillar membranes of term human trophoblasts refutes that claim 

[17]. 

 Recent studies in mice have shown detrimental effects to the fetus when P-gp is either 

knocked out or inhibited.   Lankas et al. found that mdr1a knockout mice lack placental P-gp and 
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have an increased fetal susceptibility to avermectin-induced teratogenicity [18].   Further 

experiments with bred heterozygotes for mdr1a and mdr1b showed that homozygous negative 

offspring had the most accumulation or drug exposure, followed by heterozygotes, then 

homozygous positive offspring.   In addition, the administration of P-gp inhibitors completely 

inhibited placental P-gp activity in heterozygous dams [19].   These two studies suggest that 

placental P-gp is active and necessary in reducing fetal drug exposure.  

 In vitro models have also been used to explore the cellular level role of P-gp in placenta.  

Pavek et al used dually perfused rat placenta to monitor the transplacental passage of 

cyclosporine.  As previously shown, P-gp acted to export the drug back into the maternal 

compartment [20].   Cell-lines derived from human choriocarcinomas, though not identical to the 

human syncytiotrophoblast layer forming the placental barrier in vivo, have been extremely 

valuable tools in assessing P-gp expression, activity, and modulation in the placenta.  The BeWo 

cell line, for instance, has been shown to have similar biochemical markers and permeability 

properties when compared to trophoblasts [9].  Unlike primary cultures, BeWo cells form 

confluent, polarized monolayers in culture, so they can be used to study transplacental transport 

of drugs.   Utoguchi et al. showed the increased accumulation of the P-gp substrates Calcein AM 

and vinblastine in the presence of a variety of inhibitors, as well as a Western blot demonstrating 

protein expression [21].  Another group found that the basolateral (fetal) to apical (maternal) 

transport of P-gp substrates exceeded the apical to basolateral transport.  In the presence of 

known P-gp inhibitors, the polarized transport was negated.  Vesicles prepared from of the apical 

and basolateral membranes also indicate that P-gp is localized to the maternal surface of 

trophoblasts [22].   
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The gene encoding P-gp, MDR1, has polymorphisms that occur with relative frequency 

among the population.  Immunohistochemical staining reveals that several mutations resulted in 

a decreased level of placental P-gp [23].    The clinical implications in the human placenta, 

however, are currently unknown and/or are unrecognized. 

 Another important element to consider when studying placental P-gp is the effect of 

steroids.  While the exact nature of steroid modulation of P-gp is unknown, many other studies 

support a link between the two.  Glucocorticoids are widely regarded as P-gp substrates.  Gruol 

and Bourgeois modified known steroids to produce compounds that were potent P-gp inhibitors 

as well as glucocorticoid receptor agonists [7].    Through the study of steroid analogues, the 

substituents required for transport have been determined.  The most efficiently transported 

substrates have 11, 17, and 21 hydroxyl groups [7].  Vo and Gruol found that 2 and 20 carbon 

keto groups and a 17 hydroxyl group are ideal for P-gp inhibitory activity.    In studies in which 

murine mdr1 mutations were transfected into human cells and steroid accumulation was 

monitored, the resultant mutations altered P-gp’s ability to recognize steroids, especially those 

with the17 hydroxyl and 20 keto oxygen constituents [24]. 

 Progesterone, the primary hormone of pregnancy, lacks all three hydroxyl groups 

necessary for P-gp transport, yet it is shown to bind to the protein [25].   Depending on the study, 

progesterone has shown both inhibitory (above 10 M) and stimulatory (below 1 M) effects on 

P-gp transport [13,25].   In their efforts to identify specific binding sites on P-gp, Shapiro and 

colleagues found that progesterone binds at a nontransporting, allosteric site and stimulation of 

Hoechst 33342 (H site) and Rhodamine 123 (R site) transport in the presence of 1 M 

progesterone [25].     Although progesterone’s effects specifically on placental P-gp have not 

been demonstrated, Yang et al. have performed experiments monitoring the effect of 
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progesterone on P-gp in pregnancy tissues.  Progesterone was able to inhibit 
3
H-azidopine 

photoaffinity labeling of P-gp in the endometrium of the gravid uterus in mouse.  In addition, 

they demonstrated that progesterone was able to reverse vinblastine resistance in multidrug 

resistant cells [26].     

Progesterone and chemically-related compounds have been examined to assess the 

relationship between structure and P-gp binding.  One such study found that 5 progesterone 

metabolites were more effective P-gp inhibitors than 5, suggesting a stereochemical interaction 

with the protein [27].  In another set of experiments, C-7 analogues of progesterone enhanced 

doxorubicin accumulation in P-gp expressing cells.  Some of the analogues inhibited P-gp as 

effectively as cyclosporin A and verapamil.  One of the compounds used also showed decreased 

affinity for progesterone receptors, decreasing the likelihood of progesterone toxicity [28]. 

Since progesterone is an endogenous and relatively nontoxic molecule, there has been 

much interest in co-administering it with antitumor agents to reverse multidrug resistance so 

common in cancer therapies.  A phase I trial of doxorubicin and high dose progesterone showed 

that the steroid was able to increase doxorubicin activity without altering the pharmacokinetics.  

Other actions would be required to reduce systemic toxicity, but progesterone shows potential as 

a clinical P-gp inhibitor [29].   

 The steroid and xenobiotic receptor (SXR) is a transcription factor that has been shown to 

induce proteins that are designed for xenobiotic efflux and metabolism, such as P-gp and 

cytochrome P450 3A4 [30].  Steroid hormones, in particular the pregnanes, increase the levels of 

P-gp in various cell lines [31,32].  Obviously, this could have a major impact in the placenta 

where P-gp is present and progesterone (as well as other pregnanes) is in abundance. 
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 While direct clinical evidence is still lacking, placental P-gp likely reduces xenobiotic 

accumulation in the fetal compartment.  The effects of steroids are still unclear, however, their 

overall roles seems to be a modulation of xenobiotic and hormonal transport across the placenta. 

 

3. Multidrug Resistance-associated Proteins (MRP)  

Multidrug Resistance-associated Proteins (MRPs) are a separate family of efflux 

transporters.  At this point, there are eight known MRPs, six of which have been fully sequenced 

[33].  Their size and function vary greatly.  MRPs 1,2,3 and 6 have seventeen putative 

transmembrane domains, as opposed to the twelve found in MRPs 4 and 5.  It appears that MRPs 

1 through 3 are organic anion transporters.  Often, the drugs transported are glutathione or 

glucuronate conjugates.  Neutral drugs can also be cotransported with glutathione [34].  Seelig 

and colleagues determined that the substrate specificity for MRP1, in terms of electron donating 

groups, is quite similar to P-gp.  The main difference is that P-gp shows a preference in 

transporting organic cations [35].  MRPs 4 and 5 appear to be nucleotide analogue pumps [36]. 

 MRPs are distributed throughout the body, particularly the liver.  MRP2 is believed to be 

a major transporter for biliary excretion of organic anions.  Individuals with certain MRP2 

mutations show symptoms of Dubin-Johnson syndrome, a condition characterized by 

hyperbilirubinemia [37].   MRPs 4 and 5 can readily transport cyclic nucleotides, so they 

purportedly play a role in cellular signaling pathways.  There are few proposed physiological 

functions for the other MRPs, but they remain largely unknown [36]. 

 The presence of MRPs in the placenta is somewhat controversial.  Different laboratories 

have confirmed and have denied the presence of MRP1 in synctiotrophoblasts [38,39].  Using 

immunofluorescent staining of placental slices, St. Pierre et al. found MRPs 1 to 3 on the 
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maternal surface of trophoblasts surface.  In the case of MRP1, most of the signal was detected 

in the fetal capillaries as opposed to the synctiotrophoblasts [4]. 

 BeWo cell studies have also been used to determine the extent of MRP expression.  In 

situ RT-PCR was used to show MRP1 expression in the cell line [40] and additional studies 

showed that MRP1 and 5 were present.   In the same study, MRP1 and 5 were observed in  first 

trimester and third trimester placentas.  In functional studies, the efflux of unconjugated bilirubin 

by BeWo cells was inhibited by MK571, an MRP inhibitor [41]. 

 The overall effect of the MRPs on xenobiotic removal is unknown.  However, a growing 

body of evidence suggests that, much like P-gp, it can function to reduce xenobiotic 

accumulation in the fetal compartment. 

 

4. Breast Cancer Resistance Protein (BCRP) 

Breast Cancer Resistance Protein (BCRP) is a newly discovered ABC transporter isolated from 

human breast cancer cells that were selected with doxorubicin in the presence of verapamil.  Recently, 

proteins with minor amino acid differences were cloned from mitoxantrone resistant colon cancer cells 

and human placenta cells.  These new proteins were named mitoxantrone reistance (MXR) and placenta 

ABC (ABCP) transporters, respectively [42].  One difference between BCRP and the other ABC 

transporters is the fact that it is composed of only one transmembrane region and one ATP-binding 

domain while other transporters are composed of two transmembranes regions and two ATP-binding 

domains *43+.   BCRP’s homology with the Drosphilia white gene family, a white eye pigment gene, 

suggests that BCRP requires heterodimerization or homodimerization in order to function in the 

transport activity of cytotoxic agents [44].  For this reason, BCRP is referred to as a half- transporter. 
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Consistent with P-gp and the MRPs, BCRP also confers resistance to a variety of drugs.  The drug 

displaying the highest resistance due to BCRP appears to be mitoxantrone.  Lesser but still significant 

resistance is observed with anthracyclines, daunorubicins, doxorubicin, camptothecins [45] and its 

derivatives, mainly topotecan and SN-38.  BCRP also displays cross-resistance to many topoisomerase I 

inhibitors.  Some cross-substrate recognition with P-gp and BCRP is evident.  The inhibitor, GF120918, 

for example, is perceived as a multi-inhibitor because it is found to be highly effective at reversing both 

P-gp mediated and BCRP mediated multidrug resistance *46+.    BCRP’s drug resistance is complex due to 

it’s existence as a half-transporter.   BCRP is believed to dimerize in order for it to participate in 

transport activity that results in different substrates corresponding to different dimerization partners.  

Differing affinities for substrates could also result from polymorphisms or mutations in BCRP [47].   

Lysotracker is the only known substrate that is specific for BCRP alone.   Other substrates shared with 

MDR are mitoxantrone, bisantrene, topotecan, prazosin, and rhodamine 123.   The substrates shared by 

all three, MDR, MRP, and BCRP, are daunorubicin, doxorubicin, and epirubicin [48]. 

 Work is in progress to find cell lines that express BCRP.  So far the most pronounced resistance is 

found in the human breast, placenta, colon and gastric cell lines.  Lesser but still significant resistance is 

observed in the human myeloma, small-cell lung, pancreatic, fibrosarcoma, and leukemia cell lines [49].  

The highest resistance is observed in sublines of these various cell lines that were selected with different 

cytotoxic drugs.  Therefore, it is believed that cells or cell lines that express low levels of BCRP may be 

readily induced after continuous exposure to chemotherapeutic agents. 

Two newly developed monoclonal antibodies, BXP-34 and BXP-21, have been used to 

characterize the cellular localization of BCRP in normal human tissue.  BXP-34 is suitable for 

immunoprecipitation and immunohistochemistry experiments, but not Western blots.  On the 

other hand, BXP-21 is used is in Western blots as well as immunocytochemistry and 

http://dx.doi.org/10.1016/S0169-409X(02)00174-6
http://kuscholarworks.ku.edu/dspace/


Young, A.M., Allen, C.E., and Audus, K.L. (2003) Efflux transporters of the placenta. Adv. Drug Del. Rev. 55, 125-132.  PMID: 
12535577.  Publisher’s official version: http://dx.doi.org/10.1016/S0169-409X(02)00174-6  
 Open Access version:  http://kuscholarworks.ku.edu/dspace/. 

11 
 

immunohistochemistry [5].   Consequently, the tools for characterizing BCRP are still emerging 

and the role of this transporter in moving endogenous substances or xenobiotics in the placenta is 

currently unknown.   

Although BCPR’s precise physiological role is not known, many scientists have made 

speculated on functions depending on the location of the protein in vivo.  In the placenta, BCRP 

is believed to function in the maternal-fetal barrier by effluxing drugs away from the fetus, which 

results in protection of the fetus.  BCRP is hypothesized to be important in preventing the 

intestinal (re-)uptake of drugs.  Finally, BCRP has been found in the kidney suggesting that it 

might play a role in mediating hepatobiliary excretion of transported drugs [50].  

 

 

 

5. Bile Acid Transporters 

The transport of bile acids between maternal and fetal compartments is essential in 

maintaining a healthy pregnancy.  MRP and BSEP (bile salt export pump, or sister P-gp) 

expression are interrelated, and can be induced by various steroid hormones and xenobiotics 

[51].    Xie and colleagues found that stimulation of SXR conferred resistance to lithocholic acid 

toxicity [52].  Although BSEP has not been found in placenta, potentially, SXR serves as a 

control center for a whole host of transporters as yet unknown.  The hormonal activation of SXR 

makes the placenta an especially susceptible target, particularly in view of recent studies by 

Pascual et al. [53].  Pascual et al. used the placental efflux of bile acids to attempt development 

of a novel drug delivery technique that would reduce fetal cisplatin exposure.   Cisplatin is used 

to treat ovarian cancer during pregnancy, often with detrimental effects to the fetus.  By 
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attaching the drug to glycocholic acid, Pascual et al. were able to significantly reduce the 

cisplatin levels in both the maternal and fetal organs in a rat model [53].   The transporters 

involved were not identified specifically, but previous research found an anion exchanger system 

between bile acid and bicarbonate on the basolateral membrane of the trophoblast [54,55].    

Although bile acid transporters are still relatively uncharacterized with respect to multidrug 

resistance, the Pascual et al. [53] study suggests the feasibility of considering certain efflux 

mechanisms in therapy schemes to reduce fetal drug exposure.   

 

6. Conclusion 

 Ideally, a pregnant woman could take the drugs needed for optimum health, while doing 

no harm to the fetus.   A realistic goal is to exploit tissue mechanisms that would reduce fetal 

drug exposure and recent evidence suggests that efflux transporters might be targeted to 

modulate drug distribution across the placental barrier.  Understanding the complex nature of the 

functions at the molecular and cellular level, and the hormonal modulation of these efflux 

transporters will help to further this endeavor.    
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Table 1.  Summary of major drug efflux transporters and their association with the 

placenta 

 

Transporter Placental location Substrates Refs. 

P-gp (MDR1) Trophoblast 
Organic cations, steroids, 

anticancer agents 

3,6,13,20,25,3

5 

MRP1 

Trophoblast but 

predominantly in 

fetal capillary 

Organic anions, glutathione 

and glucuronate conjugates 
4,33,35 

MRP2 Trophoblast Similar to MRP 1 and 3 4,33 

MRP3 Trophoblast Similar to MRP 1 and 2 4,33 

MRP4-5 Unknown Nucleotide analogs 33,36 

MRP6-8 Unknown Unknown 33,36 

BCRP( MXR, 

ABCP) 
Trophoblast Anticancer agents 5,44,45 
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Figure legends 

Figure 1.  Illustration of the anatomical arrangement of the syncytiotrophoblast (placental barrier) and 

the fetal capillaries as would appear in a cross-section of a human placental villus.     
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