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E�cient Bulk Operations on Dynamic R-trees

Lars Arge� Klaus H. Hinrichsy Jan Vahrenholdz Je�rey Scott Vitterx

Abstract

In recent years, there has been an upsurge of interest in spatial databases. A major

issue is how to e�ciently manipulate massive amounts of spatial data stored on disk

in multidimensional spatial indexes (data structures). Construction of spatial indexes

(bulk loading) has been studied intensively in the database community. The continuous

arrival of massive amounts of new data makes it important to e�ciently update existing

indexes (bulk updating).

In this paper, we present a simple, yet e�cient technique for performing bulk update

and query operations on multidimensional indexes. We present our technique in terms

of the so-called R-tree and its variants, as they have emerged as practically e�cient

indexing methods for spatial data. Our method uses ideas from the bu�er tree lazy

bu�ering technique and fully utilizes the available internal memory and the page size of

the operating system. We give a theoretical analysis of our technique, showing that it

is e�cient both in terms of I/O communication, disk storage, and internal computation

time. We also present the results of an extensive set of experiments showing that in

practice our approach performs better than the previously best known bulk update

methods with respect to update time, and that it produces a better quality index in

terms of query performance. One important novel feature of our technique is that in

most cases it allows us to perform a batch of updates and queries simultaneously. To

be able to do so is essential in environments where queries have to be answered even

while the index is being updated and reorganized.
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1 Introduction

In recent years, there has been an upsurge of interest in spatial databases in the commercial and

research database communities. Spatial databases are systems designed to store, manage, and

manipulate spatial data like points, polylines, polygons, and surfaces. Geographic information

systems (GIS) are a popular incarnation. Spatial database applications often involve massive data

sets, such as for example EOS satellite data [12]. Thus the need for e�cient handling of massive

spatial data sets has become a major issue, and a large number of disk based multidimensional index

structures (data structures) have been proposed in the database literature (see, e.g., [5, 14, 23, 33]

for recent surveys). Typically, multidimensional index structures support insertions, deletions, and

updates, as well as a number of proximity queries like window or nearest-neighbor queries. Recent

research in the database community has focused on supporting bulk operations, in which a large

number of operations are performed on the index at the same time. The increased interest in bulk

operations is a result of the ever-increasing size of the manipulated spatial data sets and the fact

that performing a large number of single operations one at a time is simply too ine�cient to be

of practical use. The most common bulk operation is to create an index for a given data set from

scratch|often called bulk loading [13].

In this paper, we present a simple lazy bu�ering technique for performing bulk operations on

multidimensional indexes and show that it is e�cient in theory as well as in practice. We present

our results in terms of the R-tree and its variants [9, 16, 17, 19, 28], which have emerged as especially

practically e�cient indexing methods for spatial data. However, our technique applies not only to

R-trees but also to a large class of hierarchically structured multidimensional indexes, namely the

so-called class of grow-and-post trees [22].

1.1 Model of computation and previous results on I/O-e�cient algorithms

Since objects stored in a spatial database can be rather complex they are often approximated by

simpler objects, and spatial indexes are then built on these approximations. The most commonly

used approximation is the minimal bounding box : the smallest d-dimensional rectangle that includes

the object. Thus an important indexing problem is to maintain a dynamically changing set of d-

dimensional rectangles on disk such that, for example, all rectangles containing a query point can

be found e�ciently. For simplicity we restrict our attention to the two-dimensional case; the boxes

are called minimal bounding rectangles. For convenience we refer to these rectangles as being input

data; we assume that each bounding rectangle contains a pointer to the place on disk where the

real data object is stored.

For our theoretical considerations we use the standard two-level I/O model [1] and de�ne the

following parameters:

N = # of rectangles;

M = # of rectangles �tting in internal memory;

B = # of rectangles per disk block;

where N �M and 1 � B �M=2. An input/output operation (or simply I/O) consists of reading

a block of contiguous elements from disk into internal memory or writing a block from internal

memory to disk. Computations can only be performed on rectangles in internal memory. We

measure the e�ciency of an algorithm by the number of I/Os it performs, the amount of disk space

it uses (in units of disk blocks), and the internal memory computation time.1 More sophisticated

measures of disk performance involve analysis of seek and rotational latencies and caching issues [27];

however, the simpler standard model has proven quite useful in identifying �rst-order e�ects [32].

1For simplicity we concentrate on the two �rst measures in this paper. It can be shown that the asymptotic
internal memory computation time of our new R-tree algorithms is the same as for the traditional algorithms.
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I/O e�ciency has always been a key issue in database design but has only recently become a cen-

tral area of investigation in the algorithms community. Aggarwal and Vitter [1] developed matching

upper and lower I/O bounds for a variety of fundamental problems such as sorting and permuting.

For example, they showed that sorting N items in external memory requires �(N
B
logM=B

N
B
) I/Os.

Subsequently, I/O-e�cient algorithms have been developed for several problem domains, including

computational geometry, graph theory, and string processing. The practical merits of the developed

algorithms have been explored by a number of authors. Recent surveys can be found in [4, 5, 33].

Much of this work uses the Transparent Parallel I/O Environment (TPIE) [6, 31], a set of tem-

plated C++ functions and classes that allow for simple, e�cient, and portable implementation of

I/O algorithms.

1.2 Previous results on bulk operations on R-trees

The R-tree, originally proposed by Guttman [17], is a height-balanced multiway tree similar to

a B-tree [7, 11]. The leaf nodes contain �(B) data rectangles each, while internal nodes contain

�(B) entries of the form (Ptr , R), where Ptr is a pointer to a child node and R is the minimal

bounding rectangle covering all rectangles in the subtree rooted in that child. An example of an

R-tree is depicted in Figure 1.

An R-tree occupies O(N=B) disk blocks and has height O(logB N); insertions can be performed

in O(logB N) I/Os. There is no unique R-tree for a given set of data rectangles and minimal

bounding rectangles stored within an R-tree node can overlap. In order to query an R-tree to

�nd all rectangles containing a given point p, all internal nodes whose minimal bounding rectangle

contains p have to be visited. Intuitively, we thus want the minimal bounding rectangles stored

in a node to overlap as little as possible. An insertion of a new rectangle can increase the overlap

and several heuristics for choosing which leaf to insert a new rectangle into, as well as for splitting

nodes during rebalancing, have been proposed [9, 16, 19, 28].

Bulk loading an R-tree with N rectangles using the naive method of repeated insertion takes

O(N logB N) I/Os, which has been recognized to be abysmally slow. Several bulk loading algo-

rithms using O(N
B
logM=B

N
B
) I/Os have been proposed [10, 13, 18, 21, 26, 30]. These algorithms

are more than a factor of B faster than the repeated insertion algorithm. Most of the proposed

algorithms [13, 18, 21, 26] work in the same basic way; the input rectangles are sorted according

to some global one-dimensional criterion (such as x-coordinate [26], the Hilbert value of the center

of the rectangle [13, 18], or using an order obtained from a rectangular tiling of the space [21]) and

placed in the leaves in that order. The rest of the index is then built recursively in a bottom-up,

level-by-level manner. The algorithm developed in [30] also builds the index recursively bottom-up

but utilizes a lazy bu�ering strategy. The method proposed in [10] works recursively in a top-down

way by repeatedly trying to �nd a good partition of the data. This algorithm is designed for point
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Figure 1: R-tree constructed on rectangles A, B, C, . . . , I (Blocksize 3).
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data instead of rectangle data but by transforming rectangles to points in higher-dimensional space

it can still be used for rectangle data.

Even though a major motivation for designing bulk loading algorithms is the slowness of the

repeated insertion algorithm, another and sometimes even more important motivation is the pos-

sibility of obtaining better space utilization and query performance.2 Most of the bulk loading

algorithms mentioned above are capable of obtaining almost 95% space utilization (meaning that

only 1
0:95d

N
B e disk blocks are used), while empirical results show that average utilization of the

repeated insertion algorithm is between 50% and 70% [9]. However, empirical results also indicate

that packing an R-tree too much can lead to poor query performance, especially when the data

is not uniformly distributed [13]. Bulk loading algorithms typically produce R-trees with better

query performance than the repeated insertion algorithm. But no one algorithm is best for all

cases (all data distributions) [10, 21]: On mildly skewed low-dimensional data the algorithm in [21]

outperforms the algorithm in [18], while the opposite is the case on highly skewed low-dimensional

data [21]. Both algorithms perform poorly on higher-dimensional point data [10], where the algo-

rithm developed in [10] achieves the best query performance. Interestingly, in terms of I/O the

repeated insertion algorithm produces an index with a similar query performance as that of the

algorithm in [10]. In terms of total running time repeated insertion performs worse, probably be-

cause the algorithm in [10] produces an index where blocks containing neighboring nodes in the tree

are stored close to each other on disk. van den Bercken et al. [30] have independently developed a

bulk loading method that uses a lazy bu�er technique similar to the one we use in this paper. We

describe their algorithm in more detail in Section 2.3. A common misperception (cf., for example,

[10]) is that the algorithm produces an R-tree index identical to the index obtained using repeated

insertion. In reality the two R-tree indexes can be quite di�erent; van den Bercken et al. [30] report

empirical results only on the performance of the construction of multiversion B-trees [8], where

the order of elements in the leaves is unique and thus the bu�er algorithm will always construct

the same order as the repeated insertion algorithm. This equivalence does not hold for R-tree

construction and the quality of an R-tree index produced using the method has not been studied.

All algorithms mentioned above are inherently \static" in the sense that they can only be used

to bulk load an index with a given static data set. None of them e�ciently supports bulk updates.

To perform a batch of updates we would have to run the bulk loading algorithm on the combined

datasets or perform the insertions one by one using the normal insertion algorithm. In many

applications these solutions are not viable, and in fact, bulk updating is mentioned in [10] as an

important open problem. The most successful attempt to process a batch of updates seems to be

an algorithm by Kamel et al. [20]. In this algorithm, the rectangles to be inserted are �rst sorted

according to their spatial proximity (Hilbert value of the center) and then packed into blocks of

B rectangles. These blocks are then inserted one at a time using standard insertion algorithms.

Intuitively, the algorithm should give an insertion speedup of B (as blocks of B rectangles are

inserted together), but it is likely to increase overlap and thus produces a worse index in terms

of query performance. Empirical results presented in [20] support this intuition. Bulk loading

R-trees is also used in the context of the cubetree [25], a representation for the data cube [15],

using a collection of packed point data R-trees [26]. Bulk updates to the data cube are handled

by repeatedly bulk loading separate R-trees with the new items and merging a set of (original and

new) R-trees together. This algorithm implies a method for updating R-trees, namely to sort-

merge the data in the old tree with the data points corresponding to the updates and then to bulk

load a new R-tree with this sorted sequence. The merging takes advantage of sequential blocked

2A simple approach for building an R-tree using only O(N=B) I/Os is to form the leaves by grouping the input
rectangles B at a time and then build the tree in a bottom-up level-by-level manner. However, if the grouping of
rectangles is done in an arbitrary manner, the resulting R-tree will likely have extremely bad query performance,
since the minimal bounding rectangles in the nodes of the index will have signi�cant overlaps. Such R-tree algorithms
are therefore of no interest. At a minimum, constructing good R-trees is at least as hard as sorting and therefore we
refer to algorithms that use O(N

B
logM=B

N
B
) I/Os as optimal.
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access, however, the entire data set must be processed, including the original data. If the number

of updates is relatively small, the amortized cost per update can therefore be high.

1.3 Our results

In this paper, we present a simple lazy bu�ering technique for performing bulk operations on

multidimensional indexes. As mentioned, we describe the technique in terms of the R-tree family.

In the �rst part of the paper (Section 2), we present our technique and analyze its theoretical

performance. Unlike previous methods our algorithm does not need to know in advance all the

operations to be performed, something which is important in applications where updates and

queries arrive continuously, e.g., in pipelined database operations. Furthermore, our method is

general enough to handle a wide variety of bulk operations:

� Our algorithm can bulk insert N 0 rectangles into an R-tree containing N rectangles using

O(N
0

B
logM=B

N+N 0

B
+ N

B
) I/Os in the worst case.

� Using the bulk insertion algorithm an R-tree can be bulk loaded in the optimal number of

I/O operations O(NB logM=B
N
B ).

� Given N 0 queries that require O(Q logB
N
B
) I/Os (for some Q) using the normal (one by one)

query algorithm, our algorithm answers the queries in O(QB logM=B
N
B + N

B ) I/Os.

� A set of N 0 rectangles can be bulk deleted from an R-tree containing N rectangles using

O(N
0

B
logM=B

N
B
+ N

B
+Q(N 0)) I/Os, where Q(N 0) is the number of I/Os needed to locate the

leaves containing the N 0 rectangles to be deleted.

In most cases, our algorithms represent an improvement of more than a factor of B over known

methods, and our technique can even handle a batch of intermixed inserts, deletes, and queries. As

discussed in [25], being able to do so is extremely important in many environments where queries

have to be answered while the index is being updated.

In the second part of the paper (Section 3), we present the results of a detailed set of exper-

iments on real-life data. The data sets we use are the standard benchmark data set for spatial

indexes, namely, the TIGER/Line data [29]. Our experiments were designed to test our theoretical

predictions and to compare the performance of our algorithms with previously known bulk update

algorithms:

� To investigate the general e�ects of our technique we used it in conjunction with the stan-

dard R-tree heuristics to bulk load an R-tree. We compared its performance with that of

the repeated insertion algorithm. Our experiments show that we obtain a huge speedup in

construction time, and at the same time the query performance remains good. Even though

bulk loading using our technique does not yield the same index as would be obtained using

repeated insertion (contrary to popular belief [10, 30]), the quality of the index remains about

the same.

� As discussed, special-purpose bulk loading algorithms often produce signi�cantly better in-

dexes than the one obtained using repeated insertion, especially in terms of space utilization.

We are able to capitalize on a certain laziness in our algorithm, via a simple modi�cation,

and achieve dramatically improved space utilization. The modi�cation uses a heuristic along

the lines of [13, 18]. Our bulk loading experiments with the modi�ed algorithm show that we

can obtain around 90% space utilization while maintaining or even improving the good query

performance. As an added bene�t the modi�cation also improves construction time by up to

30%.
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� Finally, in order to investigate the practical e�ciency of our technique when performing

more general bulk operations, we performed experiments with bulk insertion of a large set of

rectangles in an already existing large R-tree. We compared the performance of our algorithm

with that of the previously best known bulk update algorithm [20]. Our algorithm performs

better than the algorithm in [20], in terms of both the number of I/Os used to do the

insertions and the query performance of the resulting R-tree index. We also performed bulk

query experiments that resulted in speed-ups similar to the ones obtained in our bulk loading

experiments.

One especially nice feature of our algorithms is that|from a high level point of view|the set

of bulk operations are performed precisely as in the standard on-line algorithms. For example, our

bulk insertion algorithm is conceptually identical to the repeated insertion algorithm (except of

course that the insertions are done lazily). From an implementation point of view, our algorithms

admit a nice modular design because they access the underlying index (in our case, the R-tree)

only via standard routing and balancing routines. Having implemented our algorithms we can thus

combine them with most existing indexes very easily.

2 Performing Bulk Operations on R-trees using Bu�ers

In this section, we present our technique for performing bulk operations on R-trees and analyze

it theoretically. In Section 2.1, we review the standard R-tree insertion and query algorithms and

present the general idea in our bu�er technique. In Section 2.2, we discuss the details in how a

R-tree index can be bulk loaded, and in Section 2.3 how a bulk of insertions or queries can be

performed on an existing index using the technique. In Section 2.4, we discuss how to perform

a bulk of deletions. Final remarks (including a discussion of how our method compares with a

previously proposed bu�er technique [30]) are given in Section 2.5.

2.1 R-tree basics and sketch of our technique

Before presenting the main idea in our bu�ering technique, we �rst review the algorithms for

inserting a new rectangle into an R-tree and for querying an R-tree with a rectangle. (Other

queries can be handled with similar algorithms.) Deletes are discussed in Section 2.4.

As mentioned, the R-tree is a height-balanced tree similar to a B-tree; all leaf nodes are on the

same level of the tree and a leaf contains �(B) rectangles. Each internal node v (except maybe

for the root) has �(B) children. For each of its children, v contains a rectangle that covers all the

rectangles in the child. We assume that each leaf and each internal node �ts in one disk block. An

R-tree has height O(logB
N
B
) and occupies O(N

B
) blocks. Guttman [17] introduced the R-tree and

several researchers have subsequently proposed di�erent update heuristics designed to minimize the

overlap of rectangles stored in a node [9, 16, 19, 28]. All variants of R-tree insertion algorithms

(heuristics) [9, 16, 17, 19, 28] conceptually work in the same way (similar to B-tree algorithms) and

utilize two basic functions:

� Route(r; v), which given an R-tree node v and a rectangle r to be inserted, returns the best

(according to some heuristic) subtree vs to insert r into. If necessary, the function also updates

(extends) the rectangle stored in v that corresponds to vs.

� Split(v), which given a node v, splits v into two new nodes v0 and v00. The function also updates

the entry for v in parent (v) to correspond to v0, as well as insert a new entry corresponding

to v00. (If v is the root, a new root with two children is created.)

Queries are handled in the same way in all R-tree variants using the following basic function:
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Insert(r; v)

1. WHILE v is not a leaf DO

v := Route(r; v)

2. Add r to the rectangles of v

3. WHILE too many rectangles in v DO

f := parent(v); Split(v); v := f

Query(r; v)

1. IF v is not a leaf THEN

Vs := Search(r; v)

Recursively call Query(r; v0)

for all v0
2 Vs

2. IF v is a leaf THEN

Report all rectangles in v

that intersect r

Figure 2: Abstract algorithms for inserting and querying in an R-tree rooted at node v.

� Search(r; v), which given a rectangle r and a node v, returns a set of subtrees Vs whose

associated rectangles in v intersect r.

The abstract algorithms for inserting a new rectangle into an R-tree and for querying an R-

tree with a rectangle are given in Figure 2. When performing a query many subtrees may need

to be visited. Thus it is not possible to give a better than linear I/O bound on the worst-case

complexity of a query. An insertion can be performed in O(logB
N
B ) I/Os since only nodes on a

single root-to-leaf path are visited by the (routing as well as the rebalancing) algorithm.

Our technique for e�ciently performing bulk operations on R-trees is a variant of the general

bu�er tree technique introduced by Arge [2, 3]. Here we modify the general technique in a novel way,

since a straightforward application of the technique would result in an R-tree with an (impractically

large) fan-out of m [30]. The main idea is the following: We attach bu�ers to all R-tree nodes on

every blogB
M
4B
cth level of the tree. More precisely, we de�ne the leaves to be on level 0 and assign

bu�ers of size M
2B blocks to nodes on level i � blogB

M
4B c, for i = 1, 2, . . . . (See Figure 3.) We call

a node with an associated bu�er a bu�er node. Operations on the structure are now done in a

\lazy" manner. For example, let us assume that we are performing a batch of insertions. In order

to insert a rectangle r, we do not immediately use Route(r; v) to search down the tree to �nd a

leaf to insert r into. Instead, we wait until a B rectangles to be inserted have been collected and

Blocks

Blog

M/B

M/2B
B/6 ... B

Figure 3: Bu�ered R-tree: Normal R-tree with bu�ers on every blogB
M
4B cth level
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On other than level blogB
M
4B
c:

FOR the first M=4 rectangles r in v's

buffer DO

1. n := v

2. WHILE n does not have a buffer DO

n := Route(r; n)

3. Insert r in the buffer of n

On level blogB
M
4B
c:

FOR all rectangles r in v's buffer DO

1. n := v

2. WHILE n is not a leaf DO

n := Route(r; n)

3. Add r to the rectangles in n

4. WHILE too many rectangles in n DO

f := parent(n); Split(n), n := f

Figure 4: Sketch of main idea in bu�er emptying process on node v depending on the level of v.

then we store them in a block in the bu�er of the root (which is stored on disk). When a bu�er

\runs full" (contains M=4 or more rectangles) we perform what we call a bu�er emptying process:

For each rectangle r in the bu�er, we repeatedly use Route(r; v) to route r down to the next bu�er

node v0. Then we insert r into the bu�er of v0, which in turn is emptied when it eventually runs

full. When a rectangle reaches a leaf it is inserted there and if necessary the index is restructured

using Split . In order to avoid \cascading" e�ects we only route the �rst M=4 rectangles from the

bu�er in a bu�er emptying process. Since all bu�ers these rectangles are routed to are non-full

(i.e., they contain less than M=4 rectangles), this means that no bu�er overow ( > M
2
rectangles)

can occur even if all rectangles are routed to the same bu�er. The abstract bu�er emptying process

is sketched in Figure 4.

Because of the lazy insertion, some insertions do not cost any I/Os at all while others may

be very expensive (by causing many bu�er emptying processes). However, the introduction of

bu�ers allows us to take advantage of the big block and internal memory sizes and perform the

whole batch of insertions with fewer I/Os than we would use if we performed the insertions in

the normal way. The key to this improvement is that when we empty a bu�er we route many

rectangles through a relatively small set of R-tree nodes to the next level of bu�er nodes. In fact,

the set of nodes is small enough to �t in half of the internal memory; the number of di�erent bu�er

nodes the rectangles can be routed to is bounded by BblogB
M
4B

c � M
4B
, since the fan-out of the

nodes is bounded by B. Thus the maximal number of nodes that needs to be loaded is bounded

by 2 � M
4B

= M
2B
. This means that we can route the rectangles from the bu�er in main memory :

Before we perform the bu�er emptying process sketched in Figure 4, we simply load all the relevant

nodes, as well as the �rst M
4

rectangles from the bu�er, into main memory using O(MB ) I/Os.

Then we can perform the routing without using any I/Os at all, before using O(MB ) I/Os to write

the R-tree nodes back to disk and O(MB ) I/Os to write the rectangles to the new bu�ers. (Since

the number of bu�ers we write rectangles to is < M
4B , we only use O(MB ) I/Os to write non-full

blocks.) In total we use O(MB ) I/Os to push M
4
rectangles blogB

M
4B c levels down, which amounts

to O( 1B ) I/Os per rectangle. To route all the way down the O(logB
N
B ) levels of the tree, we thus

use O((1=(B � blogB
M
4B c)) � logB

N
B ) = O( 1B logM=B

N
B ) I/Os per rectangle. In contrast, the normal

insertion algorithm uses O(logB
N
B ) I/Os per rectangle.

The above is just a sketch of the main idea of the bu�er technique. There are still many issues

to consider. In the next three subsections we discuss the details of how the bu�er technique can be

used to bulk load an R-tree, as well as to perform more general bulk operations.

2.2 Bulk loading an R-tree

Our bulk loading algorithm is basically the standard repeated insertion algorithm, where we use

bu�ers as described in the previous subsection. A number of issues still have to be resolved in
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order to make the algorithm I/O-e�cient. For example, since a bu�er emptying process can trigger

other such processes, we use an external memory stack to hold all bu�er nodes with full bu�ers

(i.e., bu�ers containing more than M=4 rectangles). We push a reference to a node on this stack

as soon as its bu�er runs full and after performing a bu�er-emptying on the root we repeatedly

pop a reference from the stack and empty the relevant bu�er. Special care needs to be taken when

the root is not a bu�er node, that is, when it is not on level j � blogB
M
4B c, for some j. In such a

situation we simply store the top portion of the tree without bu�ers in internal memory instead of

on the disk. Note that since an R-tree|being (like a B-tree) a grow-and-post tree [22]|only grows

(shrinks) at the top, a node stays at the level of the tree it is on when it is created. This means

that if a node is a bu�er node when it is created it stays a bu�er node throughout its lifetime.

We also need to �ll in the details of how restructuring is performed, that is, how precisely the

bu�er of a node v on level blogB
M
4B c is emptied. The index is restructured using the Split function

and we need to be a little careful when splitting bu�er nodes. The detailed algorithm for emptying

the bu�er of a node on level blogB
M
4B
c is given in Figure 5: We �rst load the R-tree rooted at v

(including the leaves containing the data rectangles) into internal memory. Then all rectangles in

the bu�er are loaded (blockwise) and each of them is routed (using route) to a leaf and inserted. If

an insertion causes a leaf l to overow, Split is used to split l as well as all the relevant nodes on the

path from l to v (these nodes are all in internal memory). If the split propagates all the way up to

v we need to propagate it further up the part of the tree that is not in internal memory. In order to

do so, we stop the bu�er emptying process; we �rst write the trees rooted in the two (bu�er) nodes

v0 and v00, produced by splitting v, back to disk. In order to distribute the remaining rectangles in

the bu�er of v, we then load all of them into internal memory. For each rectangle r, we use Route

to decide which bu�er to insert r into and �nally we write each rectangle back to the relevant bu�er

on disk. It is easy to realize that we use O(M
B
) I/Os on the above process, regardless of whether

we stop the emptying process or not. Finally, the restructuring is propagated recursively up the

index using Split , with the minor modi�cation of the normal R-tree restructuring algorithm that

rectangles in the bu�er of a bu�er node being split are distributed using Route as above.

Lemma 1 A set of N rectangles can be inserted into an initially empty bu�ered R-tree using

O(NB logM=B
N
B ) I/O operations.

Proof : By the argument in Section 2.1 we use O( 1B logM=B
N
B ) I/Os per rectangle, that is,

O(N
B
logM=B

N
B
) I/Os in total, not counting I/Os used on emptying bu�ers on level blogB

M
4B
c,

which in turn may result in splitting of R-tree nodes (restructuring). When emptying a bu�er

on level blogB
M
4B
c we either push M=2 rectangles down to the leaves and the argument used in

Section 2.1 applies, or we suspend the emptying process in order to rebalance the tree. In the latter

case we may spend a constant number of I/Os to split R-tree nodes on each of the O(logB
N
B ) levels

and O(MB ) I/Os to distribute rectangles on each of the O((logB
N
B )= logB

M
4B ) = O(logM=B

N
B ) levels

with bu�ers, including the O(MB ) I/Os we used on the suspended bu�er emptying. However, we

only spend these I/Os when new nodes are created. During the insertion of all N rectangles, a

total of O(N
B
=B) R-tree nodes and a total of O(N

B
=M
B
) = O(N

M
) bu�er nodes are created. Thus the

overall restructuring cost adds up to at most O(N
B
) I/Os.

The only remaining issue is that after all the insertions have been performed it is very likely

that we still have many nonempty bu�ers that need to be emptied in order to obtain the �nal

R-tree. To do so we simply perform a bu�er-emptying process on all bu�er nodes in a breadth �rst

manner, starting with the root.

Lemma 2 All bu�ers in a bu�ered R-tree on N rectangles can be emptied in O(N
B
logM=B

N
B
) I/O

operations.
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� Load R-tree (including leaves) rooted in v into internal memory.

� WHILE (buffer of v contains rectangle r) AND (v is not split) DO

1. l := v

2. WHILE l is not leaf DO

l := Route(r; l)

3. Insert r in l

4. WHILE (too many rectangles in l) AND (v is not split) DO

f := parent(l); Split(l); l := f

� IF v did not split THEN write R-tree rooted in v back to disk.

� IF v split into v0 and v00 THEN

1. Write R-trees rooted in v0 and v00 back to disk.

2. Load remaining rectangles in buffer of v into internal memory.

3. Use Route to compute which of the two buffers to insert each rectangle in.

4. Write rectangles back to relevant buffers.

5. v := parent(v)

6. WHILE too many rectangles in v DO

f := parent(v); Split(v)

IF v is a buffer node THEN

(a) Load rectangles in buffer of v into internal memory.

(b) Use Route to compute which buffer to insert each rectangle in.

(c) Write rectangles back to buffers.

v := f

Figure 5: Bu�er emptying process on bu�er nodes v on level blogB
M
4B
c.

Proof : The cost of emptying full bu�ers can be accounted for by the same argument as the one

used in the proof of Lemma 1, and thus O(NB logM=B
N
B ) I/O operations are needed. The number

of I/Os used on emptying non-full bu�ers is bounded by O(MB ) times the number of bu�er nodes.

As there are O(NB =
M
B ) bu�er nodes in a tree on N rectangles, the bound follows.

The above two lemmas immediately imply the following.

Theorem 1 An R-tree can be bulk loaded with N rectangles in O(N
B
logM=B

N
B
) I/O operations.

2.3 Performing bulk insertions and queries

After having discussed our bulk loading algorithm, it is easy to describe how bulk inserts can be

performed e�ciently on an already existing R-tree: We simply attach bu�ers to the tree, insert the

rectangles lazily one by one, and perform a �nal emptying of all bu�ers. Using the same arguments

as in the proofs of Theorem 1, we obtain the following.

Theorem 2 A set of N 0 rectangles can be bulk inserted into an existing R-tree containing N

rectangles in O(N
0

B
logM=B

N+N 0

B
+ N

B
) I/O operations.

In order to answer a large set of queries on an existing R-tree (such a situation often arises when

performing a so-called spatial join [24]), we simply attach bu�ers to the R-tree and perform the

queries in a lazy manner in the same way as when we perform insertions: To perform one query,

we insert the query rectangle in the bu�er of the root. When a bu�er is emptied and a query needs

10



to be recursively performed in several subtrees we simply route a copy of the query to each of the

relevant bu�ers. When a query rectangle reaches a leaf the relevant data rectangles are reported.

Theorem 3 A set of N 0 queries can be performed on an existing R-tree containing N rectangles in

O(QB logM=B
N
B + N

B ) I/O operations, where Q logB N is the number of nodes in the tree the normal

R-tree query algorithm would visit.

2.4 Performing bulk deletions

Conceptually, bulk deletions can be handled as insertions and queries: To delete rectangle r, we �rst

perform a query for r using bu�ers lazily as before and when r (or rather, one of the several copies of

r generated during the querying) reaches the relevant leaf the deletion is performed. The deletion

of a rectangle may result in a leaf containing less than B=6 rectangles (normally called \node

underow") and requires the need for restructuring of the index. Restructuring is done by merging

nodes and can propagate up the tree similar to the way splits can propagate. This corresponds

to the way deletions are handled in B-trees. Many R-tree variants instead delete a node when it

underows and reinsert its children into the tree (often referred to as \forced reinsertions"). The

idea behind this method is to try to obtain a better index by forcing a global reorganization of the

structure instead of the local reorganization a node merge constitutes. Because of the laziness in

our algorithms, we are not able to support forced reinsertion.

A couple of issues make deletes slightly more complicated to handle than insertions. First, in

contrast to insertions where bounding rectangles in the internal nodes are adjusted while rectangles

are pushed down the tree, such adjustments for deletions can only be done after a rectangle to be

deleted has been located. Thus, after emptying the bu�er of a node on level blogB
M
4B c, we might

need to travel all the way up the tree while adjusting bounding rectangles in the internal nodes.

Second, recall that when splitting a bu�er node in the insertion algorithm we redistributed the

rectangles in the bu�er between the two newly generated nodes. This cannot result in a full bu�er.

However, when merging bu�er nodes the bu�er of the resulting node might need to be emptied. In

order to insure that the size of a bu�er does not grow in an uncontrolled way, and that di�erent

restructuring operations do not interfere with each other, we therefore change the order in which

we empty full bu�ers; we do not empty bu�ers of nodes on level blogB
M
4B c (possibly leading to the

need for restructuring) before a bu�er emptying process has been performed on all internal bu�er

nodes with full bu�ers. Similarly, emptying the bu�er of a node on level blogB
M
4B c may lead to

rebalancing and the creation of new internal nodes with full bu�ers. These bu�ers are emptied

before another rebalancing operation is initiated. These modi�cations mean that the bu�er of a

node on level blogB
M
4B
c can temporarily grow bigger than M

2
rectangles.3

The detailed algorithm for emptying a node v on level blogB
M
4B
c is given in Figure 6: First the

bu�er and the rectangles in the subtree rooted in v are loaded into internal memory and the relevant

rectangles are deleted (Step 1). The resulting set of rectangles is then inserted into a subtree rooted

in one of the siblings of v; the best sibling v0 to insert the rectangles into are determined using

the Route function and then the rectangles are inserted while the tree is restructured using Split

(Step 2{4). If v0 splits the process is stopped and the remaining rectangles, as well as the rectangles

in the bu�er of v0, are distributed between the two new bu�ers as normally when splitting a bu�er

node (Step 5). If this results in a bu�er running full it is emptied as usual. After the deletion of v,

parent(v) may contain too few rectangles and the tree may need to be restructured. (This cannot

be the case if v0 was split.) As mentioned, this case is handled by merging nodes and may propagate

up the tree (Step 6); we repeatedly use Route to �nd the best sibling to merge with and merge the

3The leaves below a node on level blogB
M
4B

c can contain at most M
4

rectangles and thus only that many of the
delete rectangles in the bu�er can be \relevant". Thus, if the bu�er grows to the maximal size M

2
we can remove at

least M
4
of the rectangles in it, simply by removing rectangles that are not present in the leaves. This can easily be

performed in O(M
B
) I/Os, that is, in O(1=B) I/Os per removed rectangle.
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1. (* perform updates *)

� Load the set of rectangles R in leaves of subtree rooted in v into

internal memory and delete rest of subtree.

� FOR all rectangles r in v's buffer DO

Delete r from R (if r 2 R)

2. (* find subtree v0 to merge with *)

� Compute MBR r for R.

� Let v0 = Route(r; parent(v)).

� Load subtree rooted in v0 into internal memory.

3. WHILE (R not empty) and (v0 is not split) DO (* insert R in tree rooted in v0 *)

� Delete rectangle r from R.

� l := v0

� WHILE l is not a leaf DO

l = Route(r; l)

� Insert r in l

� WHILE too many rectangles in l DO

f := parent(l); Split(l); l := f

4. Write R-tree rooted in v0 back to disk.

5. IF v0 was split into v0 and v00 THEN (* redistribute buffer *)

� Write R-tree rooted in v00 back to disk.

� Load set of rectangles R0 in buffer of v0 into internal memory.

� Use Search to compute buffer to insert each rectangle from R0 and R in.

� Write rectangles back to relevant buffers.

� IF buffer of any node v000 full THEN empty buffer of v000.

6. WHILE too few rectangles in parent(v0) DO (* rebalance by merging *)

� v0 = parent(v0).

� Let v00 = Route(MBR(v0); parent(v0)).

� Merge v0 and v00 into new node v0.

� IF v0 is a buffer node THEN

(a) Insert rectangles from buffer of v00 into buffer of v0.

(b) IF buffer of v0 full THEN empty buffer of v0.

� IF too many rectangles in v0 THEN

split(v0)

IF v0 is a buffer node THEN

(a) Load rectangles in buffer of v0 into main memory

(b) Use Search to compute which buffers to insert each rectangle into.

(c) Write rectangles back to the two buffers.

7. WHILE v0 is not the root DO (* Update routing rectangles *)

� f := parent(v0)

� Adjust rectangle in f according to change in v0

� v0 := f

Figure 6: Bu�er emptying process on bu�er node v on level blogB
M
4B c

two nodes, remembering to merge the bu�ers if the nodes are bu�er nodes. If this produces a full

bu�er it is emptied. We do not empty other leaf bu�ers before all relevant internal nodes have had

their bu�ers emptied and the current restructuring operation is �nished. Thus we are sure that the
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bu�er emptying cannot result in another restructuring operation on the same node. If the merge

results in a node with too many rectangles, we split the node, and if it is a bu�er node, we also

redistribute the rectangles in the bu�er. In the latter case, the restructuring is �nished. Finally,

if the restructuring stops before reaching the root, we traverse the path to the root and update

rectangles (Step 7) as discussed above.

Lemma 3 A bu�er emptying process on a node on level blogB
M
4B
c (including I/Os used on rebal-

ancing but not counting I/Os used on emptying full bu�ers) can be performed in O(logB
N
B
+ M

B
(1+

X) I/O operations, where X is the number of removed bu�er nodes.

Proof : Steps 1{5 can be performed in O(M
B
) I/Os. In Steps 6 and 7 O(1) I/Os are spent on merging

or updating each of the O(logB
N
B ) nodes on a path to the root and O(MB ) I/Os extra I/Os are

spent every time two bu�er nodes are merged.

Using this lemma we can then prove the following.

Lemma 4 A set of N 0 rectangles can be bulk deleted from an R-tree containing N rectangles using

O(N
0

B logM=B
N
B + N

B +Q(N 0)) I/O operations, where Q(N 0) is the number of I/O operations needed

to locate the rectangles in the tree using batched query operations.

Proof : All bu�er emptying processes performed on other than level blogB
M
4B c bu�er nodes during

insertion of the deletes into the root bu�er, as well as during the �nal emptying of all bu�ers, can

be accounted for as in the proof of Theorem 3.

According to Lemma 3, we spend O(logB
N
B + M

B ) I/Os, plus O(MB ) I/Os per deleted bu�er

node, when emptying a bu�er node on level blogB
M
4B c. The number of bu�er nodes is bounded by

O(NB =
M
B ) by the start of the algorithm so the last term contributes a total of O(NB ). The rest of the

I/O cost can be amortized over the M rectangles in the bu�er, so that each rectangle is charged

O( 1
M
(logB

N
B
+ M

B
) = O((logB

N
B
)=BM

B
+ 1

B
) = O((logB

N
B
)=B logB

M
B
) = O( 1

B
logM=B

N
B
) I/Os and

the lemma follows.

The only nonstandard R-tree operation used by our delete algorithm (and the only new op-

eration compared with those used by the insertion algorithm) is the merging of two nodes. This

operation can easily be implemented using an operation for inserting a whole subtree at a given

level (and in a given node) of the tree. This operation is one of the standard R-tree operations

used in forced reinsertion. Thus, as mentioned in the introduction, our algorithm possesses the nice

property that it only accesses the index through the standard routines.

2.5 Further remarks

In the previous sections, we have discussed how to perform insertions, deletions, and queries using

bu�ers. Our technique can easily be modi�ed such that a batch of intermixed updates and queries

can be performed e�ciently (even if they are not all present at the beginning of the algorithm,

but arrive in an on-line manner). Being able to do so is extremely important in many on-line

environments, where queries have to be answered while the index is being updated [25]. Bu�ers are

attached and the operations are performed by inserting them block-by-block into the bu�er of the

root. Bu�er emptying is basically performed as discussed in the previous sections. Only the bu�er

emptying process for nodes on level blogB
M
4B c has to be modi�ed slightly. Since the modi�cations

are similar to the ones used in the basic bu�er tree we refer the interested reader to [2] for details.

As mentioned in the introduction, there exists a variety of approaches for bulk loading multi-

dimensional indexes. Most of these algorithms are optimized for a speci�c application area, e.g.,

geographic information systems, VLSI design, or multimedia databases, where the data to be pro-

cessed has speci�c distributions and/or dimensionality. The goal of the present work was to design
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a general technique for bulk update operations on multidimensional indexes, and we do not regard

our proposed technique as a competitor to specialized bulk loading algorithms. Instead, we can

build upon these algorithms in the following way: when bulk loading a multidimensional R-tree

from scratch, we can choose the best bulk loading algorithm (heuristic) for the problem at hand,

build the index using this technique, and �nally (re-)attach bu�ers in order to perform subsequent

bulk operations e�ciently. Apart from our new technique, the only known methods for performing

bulk operations other than bulk loading are the algorithms by Kamel et al. [20] and the method that

can be derived from the algorithm by Roussopoulos et al. [25]. As discussed in the introduction,

the amortized update cost of the latter method can be very high. The algorithm in [20] on the

other hand has a good amortized performance and we therefore include a practical comparison of

the bulk insertion performance of this algorithm and our proposed technique in Section 3.4. Table 1

contains a comparison of the capabilities of the di�erent bulk techniques.

Technique
Bulk Operation

Loading Insertions Deletions Queries Intermixed

Berchtold et al. [10]4
p

| | | |

Kamel and Faloutsos [19]
p

| | | |

Kamel et al. [20]
p p

| | |

Leutenegger et al. [21]
p

| | | |

van den Bercken et al. [30]
p

| | | |

Roussopoulos et al. [25]
p p

5
p

5 |
p

5

(this paper)
p p p p p

Table 1: Comparison of di�erent bulk processing techniques.

As mentioned, a bu�ering method similar to our approach has previously been presented by van

den Bercken, Seeger, and Widmayer [30]. However, while our approach supports all kinds of bulk

operations, the approach in [30] only supports bulk loading. To bulk load an R-tree, the algorithm

in [30] �rst constructs an R-tree with fanout M
B by attaching bu�ers to all nodes and performing

insertions in a way similar to the one used in our algorithm. The leaves in this R-tree are then

used as leaves in the R-tree with fanout B that will eventually be constructed. The rest of this

tree is produced in a bottom-up manner by successively applying the bu�er algorithm to the set of

rectangles obtained when replacing the rectangles in each node on the just constructed level with

their minimal bounding rectangle. The number of I/Os used on performing the bulk loading is

dominated by the construction of the leaf level, which asymptotically is the same as the algorithm

we develop. In practice, however, the additional passes over the data, even though they involve data

of geometrically decreasing size, represent a signi�cant percentage of the total time. Bulk loading

using our method corresponds to the leaf level phase of the algorithm in [30] and will therefore be

more e�cient in practice Furthermore, the bottom-up construction is inherently o�-line, since all

data needs to be known by the start of the algorithm, and the algorithm is therefore unsuitable for

bulk operations other than bulk loading. Another advantage of our bulk loading technique being

on-line can be illustrated by considering pipelining ; Consider four relations A, B, C, and D, each

of which is indexed by an R-tree. In order to process the multi-way join A 1 B 1 C 1 D, one can

perform two two-way joins, e.g., A 1 B and C 1 D, and then join the resulting data sets. If the

join operator requires the input relations to be indexed, two indexes have to be constructed for the

intermediate results of A 1 B and C 1 D. Using our technique this construction can be started

while the �rst two joins are processed, whereas all o�-line algorithms need to wait for the �rst two

4Does not work directly with rectangular data, see Section 1.2
5Method can be derived from the original algorithm [25] but involves bulk loading a new data structure.
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joins to be computed. In summary, both the method proposed in [30] and our method utilize a

lazy bu�ering approach, but our technique is more e�cient, on-line, and it allows for much more

general bulk operations.

3 Empirical Results

In this section, we discuss our implementation of the algorithms presented in the last section and

give empirical evidence for their e�ciency when compared to existing methods. In Section 3.1, we

describe our implementation and the experimental setup. Section 3.2 is dedicated to an empirical

analysis of the e�ects of bu�ering, and in Section 3.3 we discuss how to improve our algorithms

using heuristics similar to the ones used in [13, 18]. Finally, in Section 3.4, we compare the I/O

cost and query performance of our bulk insertion algorithms with that of the one proposed in [20].

3.1 Our implementation

In order to evaluate the practical signi�cance of our bu�er algorithm, we implemented the original

repeated insertion algorithm for R-tree construction [17], the bulk insertion algorithm developed

in [20], and our proposed bu�ered bulk insertion algorithm. We also implemented the standard

rquery algorithm [17]. Our implementations were done in C++ using TPIE [31, 6]. TPIE supports

both a stream-oriented and a block-oriented style of accessing secondary storage. A TPIE stream

represents a homogeneous list of objects of an arbitrary type, and the system provides I/O-e�cient

algorithms for scanning, merging, distributing, and sorting streams. The block-oriented part of

TPIE supports random accesses to speci�c blocks. TPIE supports several methods for actually

performing the I/Os. All these methods work on standard UNIX �les. For example, one method

uses the standard I/O system calls fread and fwrite, while another relies on memory mapping

(the mmap and munmap calls). In our experiments, we used the method based on memory mapping

and when we refer to the number of I/Os performed by an algorithm we refer to TPIE's count of

how many mmap operations were performed (both reads and writes involve mapping a block). The

actual physical number of I/Os performed is very likely to be less than this count, as the operating

system can choose to keep a block in internal memory even after it is unmapped.

A conceptual bene�t of our algorithms is that from an abstract point of view they are similar

to the normal algorithms where the operations are performed one by one. Our algorithms admit a

nice modular design because they only access the underlying R-tree through the standard routing

and restructuring procedures. We used the block-oriented part of TPIE to implement a standard

R-tree [17] that served as a base for realizing the di�erent update approaches. Using the stream-

oriented part of TPIE we stored all the bu�ers of an index in one separate stream. As a consequence

of this modular design we are able to attach bu�ers to any existing index, regardless of how it has

been created. After all of the bulk operations have been performed (and all bu�ers have been

emptied) we can even decide to detach the bu�ers again without a�ecting the updated index.

Therefore our bu�er algorithm can be regarded as a generic \black box" that takes an arbitrary

index and returns an updated version while only accessing the public interface of the index.

Our experiments were performed on a machine with a block size of 4 Kbytes (Sun SparcStation20

running Solaris 2.5) which allowed for an R-tree fanout of 100. However, following recommendations

of previous empirical studies [9, 17], we only used a maximal fanout of 50. Similarly, we used a

minimal fanout of 50/6 which has previously been found to give the best query performance. For

simplicity, we added bu�ers in our implementation to all nodes instead of only to nodes on every

blogB
M
4B cth level. Theoretically, by using a bu�er size of only B blocks we obtain a bulk loading

I/O bound of O(N
B
logB

N
B
). In practice, this is not signi�cantly di�erent from the theoretical

O(N
B
logM=B

N
B
) bound obtained in Section 2.

As test data we used the standard benchmark data used in spatial databases, namely rectangles

15



State Category Size Objects Category Queries Results

Rhode Island (RI) Roads 4.3 MB 68,278 Hydrography 701 1,887

Connecticut (CT) Roads 12.0 MB 188,643 Hydrography 2,877 8,603

New Jersey (NJ) Roads 26.5 MB 414,443 Hydrography 5,085 12,597

New York (NY) Roads 55.7 MB 870,413 Hydrography 15,568 42,489

Table 2: Characteristics of test data.

obtained from the TIGER/Line data set [29] for the states of Rhode Island, Connecticut, New Jersey

and New York. In all our bulk loading and updating experiments we used rectangles obtained from

the road data of these states. Our query experiments consisted of overlap queries with rectangles

obtained from hydrographic data for the same states. The queries reect typical queries in a

spatial join operation. In order to work with a reasonably small but still characteristic set of

queries, we used every tenth object from the hydrographic data sets. In the construction and

updating experiments, we used the entire road data sets. The sizes of the data sets are given in

Table 2. The third column shows the size of the road data set after the bounding rectangles have

been computed, that is, it is the actual size of the data we worked with.

For simplicity we in the following only present the results of query experiments performed

without bu�ers. When bu�ers were used, we observe speed-ups similar to the speed-ups observed

in the bulk loading experiments presented in the next section. For example, when querying an R-

tree built upon the the RI (CT) road data set with all rectangles obtained from the corresponding

hydrography data set without using bu�ers the overall number of I/O operations was around 60; 000

(310; 000). In contrast, performing the queries with bu�ers reduced the I/O count to less than 4; 000

(16; 000)|an improvement by at least a factor of 15!

3.2 E�ects of adding bu�ers to multidimensional indexes

In order to examine the general e�ects of adding bu�ers to a multidimensional index, we �rst

performed a set of bulk loading experiments where we compared the performance of our algorithm

(in the following referred to as BR for bu�er R-tree) with that of the standard repeated insertion

algorithm. (Since the repeated insertion algorithm takes unsorted data and inserts it, we will use

UI when referring to it.) We performed experiments with bu�ers of size bB=4c, bB=2c and b2Bc
blocks. With our choice of B = 50 this corresponds to bu�ers capable of storing 600, 1250 and

5000 rectangles, respectively.

Figure 7 (a) shows that our algorithm (BR) dramatically outperforms the repeated insertion

algorithm (UI) as expected. Depending on the bu�er size, we reduce the number of I/O operations

by a factor of 16{24. Our experiments on query performance given in Figure 7 (b) show that the

introduction of bu�ers a�ects the structure of the resulting index. More speci�cally, too large a

bu�er size decreases query performance for the following reason: When inserting objects one-by-one

the routing rectangles in the tree are updated after each operation and thus rectangles are always

routed the best possible way (according to the chosen heuristics). When using bu�ers on the other

hand, the inserted rectangles have to be routed through the bu�ers to the leaves before they a�ect

the routing rectangles. The larger bu�ers the later the rectangles reach the leaves and the later the

routing rectangles are updated. Thus some later rectangles may be routed to non-optimal subtrees.

However, our experiments also show that by carefully tuning the bu�er size we are able to produce

an index of the same quality as the index produced by UI.

Our conclusion from this �rst set of experiments is that bu�ers can indeed be used to speed

up spatial index algorithms without sacri�cing query performance. Since our main objective was

to design and test algorithms capable of performing more general bulk operations than just bulk

loading, we did not empirically compare our bulk loading algorithm with other such algorithms (for

16



a conceptual comparison see Section 2.5). The purpose of this �rst set of experiments was just to

examine the e�ects of bu�ering on the behavior of index structures where the query performance

is sensitive to the order in which data elements are inserted. Specialized bottom-up R-tree bulk

loading algorithms are likely to outperform our algorithm because of the smaller number of random

I/Os (as opposed to sequential I/Os) performed in such algorithms. For this reason, a wise choice

for bulk loading|as discussed in Section 2.5|would be to construct the index using the best

bulk loading heuristic for the speci�c problem at hand and then attach bu�ers to speed up bulk

insertions, bulk queries, and bulk deletes.

3.3 Improving the space utilization

As discussed in the introduction, special-purpose bulk loading algorithms often produce signi�-

cantly better indexes than the ones obtained using repeated insertion, especially in terms of space

utilization. There exist several heuristics for improving the space utilization of two-dimensional

R-trees from less than 70% [9] to almost 95% [13, 18, 21]. One key question is therefore whether

we can take advantage of some of these heuristics in our bu�er algorithm in order to improve space

utilization, and without sacri�cing the conceptual advantage of not having to know all updates by

the start of the algorithm.

It turns out that by modifying our bu�er emptying algorithm for nodes on the level just above

the leaves we are indeed able to combine the advantages of our bu�ering method and the so-called

Hilbert heuristic [18]: As in the algorithm discussed in Section 2 we start by loading all leaves into

internal memory. Instead of repeatedly inserting the rectangles from the bu�er using the standard

algorithm, we then sort all the rectangles from the bu�er and the leaves according to the Hilbert

values of their center. The rectangles are then grouped into new leaves that replace the old ones.

Following the recommendations in [13] we are careful not to �ll the leaves completely. Instead

we �ll them up to 75% of capacity and include the next candidate rectangle only if it increases

the area of the minimal bounding rectangle of the rectangles in the leaf by no more than 20%.

Since the space utilization of the tree is mainly determined by how much the leaves are �lled, this

modi�cation improves our space utilization signi�cantly. The main reason for selecting the Hilbert

heuristic was that this heuristic is very well suited for the kind of two-dimensional data we are

working with [18]. The general idea in our improvement works for other heuristics as well. For
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Figure 7: E�ects of bu�ering on build and query performance (I/O in thousands)
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Figure 8: Building and querying with modi�ed bu�er emptying algorithm (I/O in thousands)

high-dimensional point data for example, we could easily replace the Hilbert heuristic by a (variant

of) the method by Berchtold et al. [10].

In order to evaluate the modi�ed algorithm, we repeated the bulk loading experiments from

Section 3.2. The results of these experiments were very encouraging: With all bu�er sizes we

improved space utilization to approximately 90% and at the same time we improve the construction

time by around 30% compared with our original algorithm. We also noticeably reduced the query

time of the algorithm using the largest bu�er size and for each data set we were able to produce at

least one index matching the query performance obtained by the original bu�er algorithm. In most

cases we were even able to produce a better index than the one produced using repeated insertions.

The results are summarized in Figure 8. The detailed I/O costs of the experiments, as well as of

the experiments from Section 3.2, are presented in Table 3.

3.4 Bulk updating existing R-trees

Finally, in order to investigate the practical e�ciency of our technique when performing more

general bulk operations, we performed experiments with bulk insertion of a set of rectangles into

an already existing R-tree. We compared the performance of our bu�er algorithm (with a bu�er

size of 5000 rectangles) with the naive repeated insertion algorithm (UI), as well as with the bulk

update algorithm of Kamel et al. [20]. As mentioned, this algorithm sorts the rectangles to be bulk

inserted according to the Hilbert value of their centers and groups them into blocks. These blocks

are then inserted using the repeated insertion algorithm. (Since this algorithm sorts the rectangles

and groups them into nodes, we refer to it as SN.) To allow for a fair competition we used the

I/O-e�cient external sorting algorithm in TPIE to sort the rectangles. We allowed the sort to

use 4 Mbytes of main memory. This should be compared to the maximal internal memory use of

around 300 Kbytes of the bu�er algorithm. The 4 Mbytes represent what is typically allocated

to a single process in a database environment. Increasing the allocated memory would result in

a certain speed-up for the sorting part of the algorithm, while insertions and queries would not

be a�ected by the size of the available memory. Note that allocating a larger amount of memory

would mean that the algorithms would not really be on-line since a large number of inserts would

be collected before being performed.

For each state we constructed two base R-trees with 50% and 75% of the objects from the road
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Data Bu�er Building Querying Packing

Set Size Standard Modi�ed Standard Modi�ed Standard Modi�ed

RI

0

600

1,250

5,000

495; 909

32; 360

26; 634

21; 602

495; 909

23; 801

16; 140

11; 930

5; 846

5; 546

6; 429

8; 152

5; 846

5; 858

6; 632

5; 322

56%

60%

60%

59%

56%

88%

89%

90%

CT

0

600

1,250

5,000

1; 489; 278

94; 286

76; 201

62; 584

1; 489; 278

74; 244

50; 983

38; 588

27; 699

28; 569

32; 586

40; 600

27; 699

28; 947

27; 591

32; 352

56%

59%

59%

60%

56%

88%

90%

91%

NJ

0

600

1,250

5,000

3; 376; 188

211; 467

168; 687

142; 064

3; 376; 188

167; 401

117; 971

92; 578

43; 156

53; 874

50; 183

57; 571

43; 156

56; 844

50; 743

61; 485

56%

59%

59%

59%

56%

88%

90%

91%

NY

0

600

1,250

5,000

7; 176; 750

448; 645

357; 330

299; 928

7; 176; 750

345; 038

250; 704

203; 165

160; 235

160; 232

180; 205

243; 704

160; 235

175; 424

155; 338

196; 972

56%

59%

59%

59%

56%

88%

89%

90%

Table 3: Summary of the I/O costs for all construction experiments.
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Figure 9: Bulk updating results for UI, SN and BR (bu�er 5000) (I/O in thousands)

data set using BR and inserted the remaining objects with the three algorithms.6 Experiments

showed that the algorithms SN and BR outperform UI with respect to updating by the same order

of magnitude, and that our algorithm (BR) additionally improves over SN. (Refer to Figure 9

(a).) As far as query performance is concerned, our experiments showed that SN results in worse

indexes than the repeated insertion algorithm (UI). On the other hand, the indexes generated by

our algorithm (BR) are up to 10% better than the indexes produced by SN, and they match or even

improve the query performance obtained by indexes updated using UI. (See Figure 9 (b).) The

major problem with SN with respect to query performance is that it does not take into consideration

the objects already present in the R-tree; all new leaves are built without looking at the index to

be updated.

6To avoid clustering e�ects, we did not build the R-trees using the �rst 50% (resp., 75%) of the data, but instead
we skipped every second object (resp., every fourth object) in the data set when building the trees.
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Data Update Update with 50% of the data Update with 25% of the data

Set Method Building Querying Packing Building Querying Packing

RI

UI

SN

BR

259; 263

15; 865

13; 484

6; 670

7; 262

5; 485

64%

92%

90%

145; 788

14; 490

13; 301

8; 148

8; 042

6; 981

66%

91%

91%

CT

UI

SN

BR

805; 749

51; 086

42; 774

40; 910

40; 593

37; 798

66%

92%

90%

428; 163

44; 236

42; 429

39; 016

39; 666

35; 968

69%

91%

90%

NJ

UI

SN

BR

1; 777; 570

120; 034

101; 017

70; 830

69; 798

65; 898

66%

92%

91%

943; 992

106; 712

95; 823

66; 715

71; 383

66; 030

71%

91%

91%

NY

UI

SN

BR

3; 736; 601

246; 466

206; 921

224; 039

230; 990

227; 559

66%

92%

90%

1; 988; 343

229; 923

210; 056

238; 666

249; 908

233; 361

71%

91%

90%

Table 4: Summary of the I/O costs of all update experiments.

The detailed I/O costs of all update experiments are given in Table 4. Our experiments show

that our bulk update algorithm outperforms the previously known algorithms in terms of update

time, while producing an index of at least the same quality. The overall conclusion of our experi-

ments is that our bu�er technique is not only of theoretically interest, but also a practically e�cient

method for performing bulk updates on dynamic R-trees.

4 Conclusions

In this paper, we have presented a new bu�er algorithm for performing bulk operations on dynamic

R-trees that is e�cient both in theory and in practice. Our algorithms allows for simultaneous

updates and queries which is essential in many on-line environments. Furthermore, all operations

can be pipelined. One key feature of our algorithm is that from a high level point of view the bulk

operations are performed precisely as if bu�ers were not used. For example, our bulk insertion

algorithm is conceptually identical to the repeated insertion algorithm. From an implementation

point of view another key feature of our algorithm is that it admits a nice modular design because it

only accesses the underlying index through the standard routing and restructuring routines. Having

implemented our bu�ering algorithms we can thus combine them with the most e�cient existing

index implementation for the problem class at hand.
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