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Abstract 

For a polyhedral terrain C, the contour at z-coordinate h, 
denoted Ch, is defined to be the intersection of the plane 
z = h with C. In this paper, we study the contour-line 
extraction problem, where we want to preprocess C into a 
data structure so that given a query z-coordinate h, we can 
report Ch quickly. This is a central problem that arises in 
geographic information systems (GIS), where terrains are 
often stored as Triangular Irregular Networks (TINS). We 
present an I/O-optimal algorithm for this problem which 
stores a terrain C with N vertices using O(N/B) blocks, 
where B is the size of a disk block, so that for any query h, 
the contour ch can be computed using o(log, N + I&l/B) 
I/O operations, where l&l denotes the size of Ch. 

We also present en improved algorithm for a more general 
problem of blocking bounded-degree planar graphs such as 
TINS (i.e., storing them on disk so that any graph traversal 
algorithm can traverse the graph in an I/O-efficient manner), 
and apply it to two problms that arise in GIS. 
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Figure 1: A terrain represented as a TIN. 

1 Introduction 

In Geographic Information Systems (GIS), a polyhedral 
terrain, which is the graph of a continuous, piecewise- 
linear bivariate function (see Figure l), is often repre- 
sented as a Triangulated Irregular Network (TIN). Since 
a terrain can be stored as a planar graph, many prob- 
lems in GIS can be formulated as the traversal of a por- 
tion of a planar graph. Most known graph algorithms 
assume that the traversed graph can be stored in inter- 
nal memory and optimize CPU time. 

GIS systems, however, often store and manipulate 
enormous amounts of data, so we cannot assume that 
it fits in internal memory. Typical CPU-efficient algo- 
rithms perform poorly on such large data since they 
do not exploit locality of reference, and input/output 
communication (or simply I/O) becomes a significant 
bottleneck. Our focus in this paper is on developing 
algorithms that optimize I/O performance. 
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1.1 Memory model 

We develop our algorithms in the standard two-level 
I/O model proposed by Aggarwal and Vitter [l]. This 
model defines the following parameters: 

N = # of elements in the problem instance, 

it4 = # of elements fitting in internal memory, 

B = # of elements per disk block, 

where M < N and 1 5 B 5 M/2. An I/O is the 
operation of reading (or writing) a disk block from (or 
into) internal memory. In this model, computations can 
only be done on elements present in internal memory. 

Our measures of performance of an algorithm are the 
number of I/O operations (or I/OS) that it performs and 
the amount of space (disk blocks) that it uses for stor- 
age. Data in GIS applications is often so large that 
only linear-sized data structures (which use O(N/B) 
disk blocks of storage) are feasible. (Our algorithms 
are also efficient in terms of CPU execution time, but 
we do not discuss CPU time here due to lack of space.) 

The model is motivated by the fact that the slow part 
of a disk access is positioning the read-write head and 
waiting for the disk to rotate into position; once that 
is done, data in subsequent locations on the disk can 
be accessed very quickly. To amortize (or hide) disk 
latency, each I/O operation transfers a large block of 
contiguous data. 

1.2 Problem statement 

We are given a terrain C, whose extent (or domain of 
definition) is the entire zy-plane. Each face of C is a 
triangle; such a terrain is called a Triangulated Irregular 
Network (TIN) in GIS. For the sake of simplicity, we 
assume that no edge or face of C is parallel to the zy- 
plane; in the full version of the paper, we describe the 
modifications to our algorithm that are needed to avoid 
this assumption. 

For a terrain C, the contour CI, at z-coordinate h is 
the intersection of C with the plane z = h. See Fig- 
ure 2 for an illustration. Since C is assumed not to have 
a horizontal face, each connected component of Ch is 
a closed polygonal chain consisting of edges (which we 
call segments) formed by the intersection of the plane 
z = h with the faces of C. If the plane does not pass 
through a vertex of C, all components are simple poly- 
gons (which we call cycles). Otherwise, each component 
is a collection of cycles, possibly sharing vertices. We 
consider the following contour-line extraction problem: 
Given a terrain C, preprocess C into a data structure 
so that given a query z-coordinate h, we can output the 
contour Ch using 0( IC’h I/B) blocks, where each cycle in 
Ch is returned as a consecutive sequence of segments in 
cyclic order. 

Figure 2: A contour of the terrain. 

Returning the segments “in sorted order” is impor- 
tant in GIS applications [23], for example, when smooth- 
ing is applied to a contour before it is displayed. 

1.3 Previous results 

In the last few years, considerable attention has been 
given to the development of I/O-efficient algorithms in 
many problem domains, including sorting, graph algo- 
rithms, string algorithms, computational geometry, and 
GIS; see [l, 2, 3, 4, 5, 8, 19, 21, 271 and the references 
therein. 

Although the contour-line extraction problem has 
been well-studied for terrains stored as raster images 
(for example, see the Marching Cubes algorithm [18]), 
not much work has been done when terrains are stored 
as TINS. van Kreveld [23] gives an internal-memory al- 
gorithm for preprocessing a terrain into a data structure 
of size O(N) so that a contour-line query at z-coordinate 
h can be answered in optimal O(log, N+]Ch() time. His 
algorithm stores the z-span of each triangle of the ter- 
rain in an interval tree [13]. Given a query z-coordinate 
h, the algorithm searches the interval tree to compute 
all the faces of the terrain whose z-spans contain h, 
from which it extracts the segments of ch in O(]Ch]) 
time. The algorithm then traverses the terrain to obtain 
each contour component “in sorted order.” Using the 
external interval tree recently developed by Arge and 
Vitter [6], Chiang and Silva [9] extended and general- 
ized van Kreveld’s approach to external memory so that 
“unstructured” contour-line (or iso-surface) extraction 
queries (where no traversal of the components is needed) 
can be answered using an optimal O(log, N + ]Ch I/B) 
I/OS. However, their algorithm needs an additional 
O(]Ch]) I/OS to traverse the contour in “sorted order.” 
van Kreveld et al. [26] have recently presented some 
related results. 

Another solution to the contour-line extraction prob- 
lem follows from the results of Goodrich et al. [20] 
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on the graph-blocking problem (which we formally de- 
fine later). For a graph G of bounded degree d and 
of size sufficiently larger than M, they show how to 
store G in a data structure using O(N/ logd B) blocks 
so that any path of length T in G can be traversed 
using O(T/ log, B) I/OS. We can use their result to 
store C in a data structure of size O(N/ log, B) so that 
any contour-line extraction query h can be answered in 
O(log, N+]Ch]/ log, B) I/OS, assuming that each cycle 
in the contour has R(log, B) vertices. 

1.4 Our results 

In Section 2, we study the graph-blocking problem, 
and show how to store a planar graph G of size N 
and bounded degree d in optimal O(N/B) blocks so 
that any path of length T in G can be traversed using 
O(T/ log, B) I/OS. The linear storage bound is a sig- 
nificant improvement over the results of Goodrich et al. 
[20]. This result implies that we can store a terrain using 
O(N/B) blocks so that contour-line extraction queries 
can be answered using O(log, N + ]Ch]/ log, B) I/OS, 
assuming that each contour component has s2(log, B) 
vertices. We also show that our graph-blocking result 
can be used to perform window queries (which we define 
later) on a TIN in an I/O-efficient manner. 

While the graph-blocking technique can be used to 
traverse any path (among a possibly exponential num- 
ber of paths) in a graph, the contour-line extraction 
problem itself is more restricted in the sense that a TIN 
has only O(N) combinatorially distinct contours. We 
exploit this fact in Section 3 to obtain optimal I/O 
bounds for the contour-line extraction problem. We 
present a data structure that can store a given terrain 
using O(N/B) blocks so that a contour-line extraction 
query at z-coordinate h can be answered in optimal 
O(log, N + ]Ch]/B) I/OS. In order to construct the 
data structure, we sweep the terrain using a horizontal 
plane and maintain a structure representing the con- 
tour lines contained in the sweep plane. We use the 
persistence paradigm [12, 221 to retain all versions of 
this structure in order to allow contour-line queries at 
any z-coordinate. In order to make this approach I/O 
efficient, we first show that it is sufficient to maintain 
in a persistent fashion a collection of linked lists un- 
der O(N) insert, delete, and split operations. Next, we 
develop an efficient external-memory implementation of 
the persistent collection of linked lists under the above 
operations. This data structure may be of independent 
interest and may have other applications. Once the data 
structure is constructed, we can answer a contour-line 
query by first searching in a B-tree and then traversing 
a list. We believe that our overall algorithm for contour- 
line extraction is of practical use since our algorithm is 
very simple. 

2 Efficient Blocking of Bounded-Degree 
Planar Graphs 

In the graph blocking problem [20], we are asked to store 
a. (bounded-degree) graph G on disk, i.e., assign the 
nodes of G to disk blocks, so that any path in G (a 
sequence of nodes in which consecutive nodes are edge- 
adjacent) can be traversed in an I/O-efficient manner. 
The assignment of nodes of G to blocks on disk is a 
preprocessing step that is fixed before any path is re- 
quested. Let x be a query path in G that is to be 
traversed and let v be the node in ?r that is to be tra- 
versed next. We say that a node v is served if there is 
some’ block in internal memory that contains v; other- 
wise, we load a block containing v from disk. Once v 
is served, the next node in X, which can be any node 
adjacent to v, is traversed. We emphasize that the path 
query is on-line in the sense that the next vertex in n 
is revealed only after the current vertex is served. Our 
goal is to minimize the number of blocks used to store 
the graph G and the number of blocks that are loaded 
to serve any query path. We allow a node to be stored 
in more than one block. 

We now outline an efficient scheme for blocking any 
planar graph G = (V, E) with maximum degree d. Our 
method is based on a technique developed by Frederick- 
son [15] for partitioning planar graphs. Let (VI, . . . , Vk) 
be a covering of the node set of V, that is, Vi & V and 
lJi K = V. We refer to each & as a region. A node v is 
interior to a region Vi if it is adjacent only to nodes in 
Vi, while a boundary node is one which is present in at 
least two regions. A B-division is a covering (VI, . . . , Vk) 
of the node set V by k = O(N/B) regions, so that 

1. each region Vi has at most B nodes, 

2. any node v is either a boundary node or it is interior 
to some region Vi, and 

3. the total number of boundary nodes is O(N/fi). 

Based on the separator theorem of Lipton and Tar- 
jan [17], F’rederickson gave an algorithm for constructing 
a B-division of any planar graph. 

We use a B-division of G as follows: Let S be the set 
of boundary nodes of the B-division. For each v E S, 
we grow a breadth-first tree rooted at v until we have 
included a nodes in the tree; let us call the set of 
nodes in the tree the &-neighborhood of v. Note that 
the @-neighbourhood of v contains all nodes whose 
distance from v is smaller than 3 logd B. We divide the 
set S of boundary nodes into O(N/B) subsets so that 
each subset consists of at most & nodes. For each such 
subset S’, we store the &?-neighborhoods of all nodes 
in S’ in a single block on disk. We also store the nodes 
in each region Vi of the B-division in a single block on 
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the disk. It is easy to see that our blocking scheme uses 
O(N/B) blocks of storage. 

Our algorithm for traversing a query path is as fol- 
lows. Assume that we are currently serving the query 
path x using the block b corresponding to some region 
Vi. We continue serving 7r using b as long as r stays 
within Vi. When R leaves region Vi, that is, it requests 
a node v that is not in Vi, it does so at some boundary 
node v’ E Vi. At this point, we load the block b’ that 
contains the a-neighborhood of v’ into internal mem- 
ory. When n leaves block b’ by requesting a node v” that 
is not in the a-neighborhood of v’, we load the block 
corresponding to some region Vj that contains v”. It is 
apparent that for every two blocks that we load from 
disk, we traverse at least (log, B)/2 nodes in 7r. Thus 
we have obtained the following result, whose optimality 
follows from the results of Goodrich et al. [20]: 

Theorem 2.1 A planar graph with bounded degree d 
can be stored using O(N/B) blocks so that any path of 
length T can be traversed using O(T/ log, B) I/OS. 

Since the dual graph of a planar triangulation (and 
thus of a terrain stored as a TIN) is 3-regular, we can use 
Theorem 2.1 to block a terrain so that any path in its 
dual graph of length T can be traversed in O(T/ log, B) 
I/OS. We now apply our blocking scheme to two prob- 
lems that arise in GIS. 

In the window quey problem, we want to preprocess 
a terrain C so that, given any rectangular query win- 
dow W in the zy-plane, we can report the set WC of 
all triangles whose zy-projections intersect W. In inter- 
nal memory, one space- and time-efficient way of solving 
the problem [ll] is to construct a point-location struc- 
ture on C [14], as well as a doubly-connected edge list 
(DCEL) for the dual graph of C, and answer a query 
by locating the triangle containing one of the corners 
of W and performing a traversal of the dual graph to 
report WC in O(log, N + 1 WC I) time. To solve the 
problem in an I/O-efficient manner, we preprocess C 
into the O(N/B) p s ace external-memory point-location 
data structure described by Goodrich et al. [16], which 
supports point-location queries in O(log, N) I/OS. We 
block the dual graph of C as described above. We thus 
obtain the following result. 

Theorem 2.2 A terrain C can be stored in a data 
structure using O(N/B) blocks so that the set WC of 
all triangles in C that intersect a query window W can 
be reported using O(log, N + IWcl/(log, B)) I/OS. 

We know of no previous solution to this important 
problem that uses linear space and is efficient in I/O- 
terms. It remains open whether window queries can be 
answered using O(logB N + IWcl/B) I/OS and a linear 
space data structure. 

Using the above blocking of a terrain we can also 
improve upon the algorithm described in Section 1.3 
for answering a contour-line extraction query (assuming 
that all components have length R(log, B)). We con- 
struct an external interval tree [6] on the z-spans of the 
triangles in C, query the imerval tree to get a segment in 
each cycle in the contour, and then traverse each cycle in 
order using the path traversal scheme described above. 
Our data structure uses O(N/B) space and answers a 
contour-line query in O(log;, N+T/ log, B) I/OS, where 
T is the size of the reported contour. 

Remark 2.3 We can use a completely different ap- 
proach to solve the contour-line extraction problem by 
modifying the interval tree so that along with every seg- 
ment in the contour returned by the query, the two 
segments preceding and succeeding it on the contour 
are also returned. Using this information, we can do 
a “list-ranking” of the segments output by the query 
to obtain the segments of each cycle in the contour in 
order. The “list-ranking” takes O(T/B log,,,(T/B)) 
time [8]. Thus, we get an overall blocking scheme 
that uses O(N/B) blocks of storage and allows contour- 
extraction in O(log, N + T/B logMiB (T/B)) I/OS. We 
will provide details in the full version of the paper. 

3 Contour-Line Extraction 

We now describe our main result, an optimal solution to 
the contour-line extraction problem for a given terrain 
C. The overall approach for constructing the data struc- 
ture is quite simple: We sweep C in the (+z)-direction 
using a horizontal plane. At any height h of the sweep, 
we maintain a plane-sweep structure from which the con- 
tour C,, can be easily obtained. The plane-sweep struc- 
ture needs to be updated only when the sweep plane 
passes a vertex of the terrain. We use the persistence 
paradigm [12, 221 to create a persistent structure that 
retains all older versions of the plane-sweep structure. 
Given a query z-coordinate h, we find the relevant ver- 
sion of the plane-sweep structure, from which we can 
output the segments of Ch in “sorted order.” However, 
there are many issues that arise in making this approach 
work efficiently in terms of I/O, and we address them 
in the remainder of this paper. 

For simplicity, we assume that the z-coordinate of 
each vertex of C is distinct; this implies that no edge or 
face of the terrain is parallel to the zy-plane. We assume 
that the unbounded faces of C are sloping downward. 
In the full version of the paper, we show how these re- 
strictions can be removed. 

We say that vertices u and v of C are neighbours if 
there is an edge in C whose endpoints are u and v. Let 
C’ denote the portion of R3 that lies on or below the 
terrain C. Let zh denote the plane z = h. If zh does not 



Figure 3: A red cycle (the thick solid line) and a blue 
cycle (the thick dashed line). 

contain a vertex of C, then each connected component 
of Ch is a simple cycle that partitions zh into a bounded 
part, which we refer to as the in&de of the cycle, and 
an unbounded part, which we refer to as the outside of 
the cycle. We call a component of Ch red if, “locally,” 
the interior of zh fl C’ lies inside it; we call a component 
of Ch b&e otherwise. See Figure 3. 

We can represent the combinatorial structure of a 
component c of ch (at a height h not containing any 
vertex of C) by a cycle of the faces that contribute a 
segment to c. We represent a red component by a “red” 
cycle of faces, and a blue component by a “blue” cy- 
cle of faces. Thus, we can represent the combinatorial 
structure of Ch by a collection of these red and blue 
cycles; with a slight abuse of notation, we use ch to 
denote the combinatorial structure too. The combina- 
torial structure ch is the same for all heights between 
two consecutive vertices of C. In the following, we ex- 
amine how ch changes as we vary h from -oo to +oo, 
that is, as we sweep C with a horizontal plane in the 
(+z)-direction. 

In order to describe the changes in ch, it will be 
useful to identify three special kinds of vertices of the 
terrain: a peak is a vertex that is higher than all its 
neighboring vertices; a pit is a vertex that is lower than 
ail its neighboring vertices, and a puss (or a saddle wer- 
tez) is a vertex having four neighboring vertices that are 
higher, lower, higher, and lower in cyclic order around 
it. See Figure 4. We will assume for simplicity that ev- 
ery saddle vertex is only “singly-saddle,” that is, it does 
not have six neighboring vertices that are alternatingly 
higher and lower in cyclic order around it. If the plane 
zh does not include any peak, pit, or pass of C, the 
components of ch will be simple cycles with non-empty 
interiors. If zh contains a pass of c, two of these cycles 
meet at the pass. If zh includes a peak or a pit, there 
is a trivial component consisting of just the peak or the 

Figure 4: Types of terrain vertices. 

pit. 
At the beginning of the sweep, that is, at h = -co, ch 

consists of just one red cycle of the unbounded faces of 
C. (This fact follows because of the assumption that all 
unbounded faces of the terrain are sloping downward.) 
We now describe the changes in Ch when the sweep 
plane passes a vertex v whose z-coordinate is h. We 
denote a face incident to v as old (resp. new) if v is the 
highest (resp. lowest) vertex of f. 

v is not a peak, pit or pass: The old faces incident 
to v belong to some cycle Q in ch, which can be 
either red or blue. These old faces disappear and 
the new faces appear in the appropriate positions 
in Q. 

v is a pit: A new blue cycle B’ consisting of the 
(new) faces incident to v appears in Ch. 

v is a peak: A red cycle R consisting of the (old) 
faces incident to v disappears from ch. 

v is a pass: This is the interesting case, when ei- 
ther two cycles merge to from a bigger cycle, or a 
cycle splits into two cycles. Old faces incident to v 
get deleted from the cycles to which they belong, 
and new faces incident to v are inserted into the 
appropriate new cycles. It can be shown that the 
interaction between the cycles falls into one of the 
following four categories: 

(a) A red cycle R splits into two red cycles Ri and 
R$. See Figures 5(b) and 5(c). 

(b) Two blue cycles BI and BZ merge into a new 
blue cycle B’. 

(c) A blue cycle B merges with a red cycle R, result- 
ing in a red cycle R’. See Figures 5(a) and 5(b). 

(d) A blue cycle B splits into a red cycle R’ and a 
blue cycle B’. 
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A simple but useful observation is the following 
lemma. 

Fig ure 5: Different ways in which cycles interact during 
the plane sweep. 

(a) A red (thick line) and a blue (dashed line) 
cycle. 

(b) One red cycle. 

(c) Three red cycles. 

Lemma 3.1 During the plane-sweep, if a face f ap- 
pears in a red cycle in Ct,, then f never appears subse- 
quently in a blue cycle. 

During a sweep in the (+z)-direction, a cycle can thus 
change in only the following ways: it appears or disap- 
pears, a face appears in ,the cycle or a face disappears 
from the cycle, the cycle splits into two cycles, or the 
cycle merges with another cycle. We observe that two 
red cycles never merge. Furthermore, we can regard 
the merging of a blue and a red cycle as if the faces of 
the blue cycle appear in the red cycle. When a blue 
cycle splits into a red and a blue cycle, we can regard 
the event as though a new red cycle appears with the 
appropriate faces. Hence, the only way in which red cy- 
cles change as we sweep C in the (+z)-direction is that 
a new red cycle appears or disappears, a face appears in 
a cycle or disappears from a cycle, or a cycle splits into 
two cycles. From Lemma 3.1, it follows that that a face 
appears and disappears from the collection of red cycles 
in C,, at most once. Moreover, the number of times that 
a red cycle splits is at most the number of passes, which 
is O(N). 

These observations lie at the heart of our scheme for 
the contour-line extraction data structure. Our scheme 
uses two data structures, one for extracting the red con- 
tour components and another for extracting the blue 
contour components. As we observe below, building 
each data structure can be formulated as maintaining 
a collection of circular lists persistently under O(N) ap- 
plications of the operations of inserts, deletes, and splits; 
we need not handle both splits and merges. We will only 
describe the data structure from which the red compo- 
nents can be extracted; the data structure for extracting 
the blue components can be built by a symmetric pro- 
cedure (in a sweep of the terrain in the (-z)-direction). 

In the sweep described above, we associate a plane- 
sweep structure l?(h) with the sweep plane zh: I’(h) is a 
collection of lists of faces, where each list stores the cy- 
cle of faces in a red cycle of Ch. We distinguish between 
a red cycle and the corresponding red list by regarding 
the former as a combinatorial representation of a cycle 
in a contour and the latter as a data structure. The 
remarks above imply that we can maintain I’(h) during 
the sweep by a sequence of O(N) applications of the fol- 
lowing operations: create/remove an empty list, insert 
a face into a list, delete a face from a list, and split a 
list into two new lists. 

In the next section, we present a data structure that 
maintains a set of lists persistently in external memory 
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under the operations of insert, delete, and split. If the 
total number of operations is N, the persistent strucure 
uses O(N/B) space. Any version of the structure can be 
extracted using O(T/B) I/OS, where T is the size of the 
version. The preprocessing time needed to build this 
structure uses O(N) I/OS. The preceding discussion 
implies the following theorem, which is the main result 
of our paper: 

Theorem 3.2 Given a terrain C of size N, we can 
construct a data structure that uses O(N/B) blocks 
such that given a z-coordinate h, the contour Gh can 
be extracted from the data strncture using O(logn N + 

4 Data Structure 

In this section we describe how to maintain a set of 
ordered lists l? in a data structure L under insert, delete, 
and split operations. We then show how to make L: 
persistent. 

An obvious choice for storing a collection of lists is to 
store them in a single “super-list” one after another. In 
this way inserts and deletes of elements are easy. Split- 
ting a list is also easy, as it corresponds to moving a 
sublist of elements from somewhere in the super-list to 
(say) the end of the super-list. In internal memory such 
a structure can easily be made persistent using linear 
space [12, 221, and this representation is indeed almost 
the one we will use. However, if we use this technique to 
make an external version of the structure persistent, we 
may need one new block every time we perform a split. 
Thus we could end up using R(N) blocks of memory. 
In order to use only O(N/B) blocks of memory, we use 
a clever technique to handle splits involving small lists. 
We divide split operations on lists into three groups: 
major, minor and special. 

We say that a list L’ is a branch of a list L, if L’ results 
from L as a consequence of zero or more splits. That is, 
there exists a sequence of lists Lo, . . . , Lk, where L = Lo 
and L’ = Lk, such that for 1 2 i 5 k, Li is one of the 
lists formed when Li-1 is sp1it.l The set of descendants 
of a list L, which we denote by Des(L), consists of all 
elements f such that f occurs in some branch of L. 
We say that a list L is major if [Des(L)] 2 B, and 
minor if ]Des(L)] < B. We classify the split operations 
performed on the lists into three kinds. A split of a 
list L into lists L1 and Lz is (1) major if L1 and Lz 
are major lists, (2) minor if L is a minor list, and (3) 

‘Here, we think of an insert or delete operation as just modify- 
ing an already existing list in I?; that is, a list retains its “name” 
when an element is inserted in, or deleted from it. Thus, a 
“named” list is born either because of a create-empty-list opera- 
tion or because of a split operation. A “named” list dies either 
because of a split operation on it, or because of a remove-empty- 
list operation 

special if L is a major list and at least one of L1 and La 
is a minor list. Every split is major, minor, or special. 
Finally, we say that a minor list L is maximal if it is not 
a branch of any other minor list. Intuitively, minor splits 
are easier to handle than major splits because they only 
affect elements in one block. Furthermore, it is easy to 
prove the following lemma which bounds the number of 
major splits. 

Lemma 4.1 If a total of N insert, delete, and split op- 
erations are performed on I?, there are only O(N/B) 
major splits. 

4.1 Ephemeral structure 

We are now ready to define L: and describe how we im- 
plement the operations insert, delete, and split. We first 
describe L independently of how it is laid out on disk 
blocks. L is a list of the elements in I on which we 
maintain the following invariants: 

I. The elements in any major list in I are stored in 
sequential order in a contiguous subsequence in L. 

II. The elements in I that are descendants of the same 
maximal list are stored as a contiguous subsequence 
in L. 

We do not require the elements belonging to the same 
minor list of I to occur as a contiguous subsequence in 
L. However, as the following lemma shows, the invari- 
ants guarantee that the elements in the same minor list 
are not too far apart. 

Lemma 4.2 Let f and f’ be two elements that belong to 
the same minor list in I. Then, the number of elements 
between f and f’ in L is smaller than B. 

Proof: Since f and f’ are in the same minor list, they 
are descendants of the same maximal list L. Since L is 
minor, the number of descendants of L is smaller than 
B. Invariant (II) guarantees that the descendants of L 
are contiguous in ,C, thus implying the lemma. 0 

We describe how we implement the operations needed 
on L so that the above invariants are maintained: 

1. Insert an element f into a new (empty) list L: In- 
sert f at the end of L. 

2. Insert an element f into an existing list L: If L is 
major, we scan 15 to find the “region” where the 
elements of L are stored, and insert f in the ap- 
propriate location. If L is minor, it is a branch of 
some maximal list L’. We insert f at the end of 
the subsequence in ,C consisting of the descendants 
of L’. 
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3. Delete an element f from a list L: We find and 
delete f from C. 

4. Split a list L into two lists L1 and Lz: 

(a) The split is major: The elements in L form a 
contiguous subsequence in C. The elements in 
either L1 or LZ occur as a contiguous subse- 
quence cy of this subsequence; assume, without 
loss of generality, that the elements of L1 do. 
We “break off” a: from ,C, and append it to the 
end of L. We call this operation carving the 
subsequence (Y from L. 

(b) The split is minor: No updates are made. 

(c) The split is special: One of the lists, say L1, 
is minor. We delete the elements of L1 from 
I$ and insert them at the end of .C. The list 
L1 is maximal, so this defines the “region” in L: 
containing the descendents of L1. 

It can be verified that the above operations maintain 
the invariants on L. The only operations performed on 
t are the operations of inserting an element, deleting an 
element, and carving a subsequence c~ from L. We can 
prove the following important lemma about the number 
of such operations. 

Lemma 4.3 If a total of N inserts, deletes, and splits 
are performed on l?, we perform O(N) inserts and 
deletes, and O(N/B) carve operations on .C. 

Proof: Each element is inserted and deleted once, ex- 
cept during a special split. As each element can be 
deleted and re-inserted in a special split at most once, 
the total number of inserts and deletes on 15 is O(N). 
The number of carving operations is bounded by the 
number of major splits, which is O(N/B) by Lemma 4.1. 
cl 

4.2 Laying out L on disk 

Maintaining ,C on disk now amounts to maintaining a 
single list of elements on disk under the operations in- 
sert, delete, and carve. The way we do this is similar 
to the way the leaves in a standard B-tree are main- 
tained [7, lo]. We maintain L using a linked list of 
blocks; each block b stores a contiguous subsequence 
o(b) of .C, and the pointer from block 21 points to a 
block b’ such that cr(b’) follows a(b) in L. For ev- 
ery block b in the linked list we maintain the invariant 
B/f3 5 b@>l I BP, and implement the three opera- 
tions as follows: 

1. Insert: To insert an element e after element e’ in 
,!Z, we first check if there is room for e in the block 
b containing e’. If this is the case we just insert 

2. 

3. 

A 

it. Otherwise if b contains B/2 elements, we create 
two new blocks, distribute the elements in b evenly 
among them, delete i5 from the linked list of blocks, 
and insert the two new blocks into the linked list. 

Delete: To delete an element e from L, we check 
if the block b that contains e has more than B/8 
elements and delete e if that is the case. Other- 
wise, we collect all the elements in b and one of 
the blocks adjacent to it in the list, and delete the 
two blocks. If the number of collected elements 
is less than 3B/8, we create a new block with all 
the elements and link it into the list. If the num- 
ber is greater than 3B/8 we create two new blocks, 
divide the elements evenly among them, and link 
them into the list. 

Carve: As with an insert or a delete, a carving can 
be performed by creating and deleting a constant 
number of blocks, and changing a constant number 
of pointers. 

careful analysis of the insert and delete operations 
(1 and 2 above) shows that whenever a new block is 
created it contains between 3B/16 and 3B/8 element. 
The carve algorithm can be designed such that the same 
is true for blocks created by that operation. Thus at 
least B/16 inserts/deletes, or a single carve operation, 
need to be performed on a newly created block if it is 
to be deleted as a consequence of some operation on it. 
From the bounds in Lemma 4.3 on the number of insert, 
delete, and carve operations, we obtain the following 
lemma; we omit its formal proof from this abstract. 

Lemma 4.4 A collection of lists I? can be maintained 
on disk in L, under N inserts, deletes, and splits, so that 
only O(N/B) blocks are created and O(N/B) pointers 
changed in total, and so that at any point in time the 
current version of L is stored in a linked list of O(lLl/B) 
blocks. 

As an aid to making our blocked data structure ,C 
persistent, we impose one final invariant on each block 
b in in the ephemeral structure L: At most B/2 updates 
are done on b f;om the time it is created. In order to 
maintain this invariant on the ephemeral structure ,C, we 
introduce a new operation on the blocks in L called the 
copy operation; to copy a block b, we simply copy the 
elements stored in b into a new block b’. To implement 
the new invariant, we store with each block a count of 
how many updates have been performed on it. Once the 
count of a block b reaches B/2, we copy the elements in 
b to a new block b’, delete b, and insert b’ in b’s place 
in the linked list. It is st.raightforward to see that this 
modification does not chrtnge the result in Lemma 4.4. 
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4.3 Persistent structure 

We now show how to make the blocked data structure 
L: persistent. Due to lack of space, we omit some of the 
details, which we will provide in the full version of the 
paper. Driscoll et al. [12] describe general techniques 
for making an internal memory data structure persis- 
tent, and it is easy to use their so-called node-copying 
technique to obtain a (partially) persistent linked list in 
internal memory under insertions and deletions, so that 
if a total of K operations and pointer changes are per- 
formed on the list, the space used by the whole structure 
is O(K) (see also [22]). Any “old” version of the list of 
length L can be traversed in O(L) steps once the head 
of the list has been located. The head can be located in 
O(log, K) time using a search tree. 

We make our external structure L persistent using a 
two-level scheme: (i) We make the linked list of blocks 
that store L persistent using the technqique mentioned 
above for making an internal memory linked-list per- 
sistent, except that each element of the list is a block 
on disk. It follows from Lemma 4.4 and the above dis- 
cussion that the persistent list uses O(N/B) space and 
that any “old” version of C which is L blocks long can 
be traversed in O(L) I/OS. (ii) We make the individual 
blocks persistent simply by storing all updates done on 
a block inside the block. Given a time t and a block 
b existing at that time, it is then easy to reconstruct 
the elements actually present in b at time t. The in- 
variant imposed on each block above guarantees that at 
most B/2 updates are performed on the elements in a 
block from the time it is created until it is deleted, and 
since each block stores at most B/2 elements, we are 
guaranteed to have room for the updates in the block. 

We can now describe, given a query time t, how to 
report the set of lists stored in L at time t. First we use 
O(log, N) I/OS to query a B-tree built on the “head 
blocks” and obtain the first block of C(t). Then we then 
traverse L to obtain the blocks comprising C(t). The 
invariants maintained on L and Lemma 4.2 imply that 
r(t) can. be obtained efficiently from C(t), as follows: 
For each major list in I’(t), Invariant I implies that while 
scanning C(t), we will process the elements of the list 
in contiguous blocks and in order. For a minor list, 
Lemma 4.2 implies that all elements in it are stored 
within a constant number of contiguous blocks of C(t). 
Hence, when we process a minor list, we need to read 
into internal memory only a constant number of blocks 
to load all the elements of that list, and we can then 
reconstruct the ordered list in internal memory. Thus, 
a scan of C(t) suffices to output I’(t), and Lemma 4.4 
and the discussion in this section give us our final result. 

Theorem 4.5 A collection of ordered lists I? can be 
maintained on disk under N inserts, deletes, and splits, 

using O(N/B) blocks, such that r(t), the version of I’ at 
time t can be retrieved using O(log, N + jJ?l/B) I/OS. 

5 Conclusions 

In this paper we have considered graph-traversal prob- 
lems motivated by applications in GIS. We believe that 
the algorithms developed in this paper are of great prac- 
tical interest. We are currently implementing our algo- 
rithms for contour-line extraction in order to verify this 
belief. 

GIS applications are a fertile source of important new 
problems, especially in the area of I/O-efficient algo- 
rithms. One related problem that we mention here is 
the problem of performing a windowing query using lin- 
ear space and in O(log, N + IV&I/B) I/OS. 
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