
KU ScholarWorks
I/O-Efficient Algorithms for Contour Line

Extraction and Planar Graph Blocking

Item Type Article

Authors Agarwal, Pankaj K.;Arge, Lars;Murali, T. M.;Kasturi R.,
Varadarajan;Vitter, Jeffrey Scott

Citation P. K. Agarwal, L. Arge, T. M. Murali, K. R. Varadarajan, and J. S.
Vitter. “I/O-Efficient Algorithms for Contour Line Extraction and
Planar Graph Blocking,” Proceedings of the 9th Annual SIAM/ACM
Symposium on Discrete Algorithms (SODA ’98), San Francisco,
CA, January 1998, 117–126.

Publisher Society for Industrial and Applied Mathematics

Download date 2024-08-11 06:09:37

Link to Item https://hdl.handle.net/1808/7190

https://hdl.handle.net/1808/7190

I/O-Efficient Algorithms for Contour-line Extraction and
Planar Graph Blocking

(Extended Abstract)

Pankaj K. Agarwal* Lars Arget T. M. Muralit

Kasturi R. Varadarajans Jeffrey Scott Vitterq

Center for Geometric Computing
Department of Computer Science

Duke University
Durham, NC 27708429

Abstract

For a polyhedral terrain C, the contour at z-coordinate h,
denoted Ch, is defined to be the intersection of the plane
z = h with C. In this paper, we study the contour-line
extraction problem, where we want to preprocess C into a
data structure so that given a query z-coordinate h, we can
report Ch quickly. This is a central problem that arises in
geographic information systems (GIS), where terrains are
often stored as Triangular Irregular Networks (TINS). We
present an I/O-optimal algorithm for this problem which
stores a terrain C with N vertices using O(N/B) blocks,
where B is the size of a disk block, so that for any query h,
the contour ch can be computed using o(log, N + I&l/B)
I/O operations, where l&l denotes the size of Ch.

We also present en improved algorithm for a more general
problem of blocking bounded-degree planar graphs such as
TINS (i.e., storing them on disk so that any graph traversal
algorithm can traverse the graph in an I/O-efficient manner),
and apply it to two problms that arise in GIS.

*Supported in part by National Science Foundation re-
search grant CCR-93-01259, by Army Research Office MURI
grant DAAH04-96-1-0013, by a Sloan fellowship, by a National
Science Foundation NY1 award and matching funds from Xerox
Corporation, and by a grant from the U.S.-Israeli Binational Sci-
ence Foundation. Email: pankajQcs .duke . edu.

tsupported in part by U.S. Army Research Office
grant DAAH04-96-1-0013. Email: large@cs . duke. edu.

ZAffiliated with Brown University. Supported in part by Na-
tional Science Foundation research grant CCR-9522047 and by
Army Research Office MURI grant DAAH04-96-1-0013. Email:
tmaxQcs.duke.edu.

§Supported in part by National Science Foundation Grant
CCR-93-01259, by an Army Research Office MURI grant
DAAH04-96-1-0013, by a Sloan fellowship, and by a National
Science Foundation NY1 award and matching funds from Xerox
Corporation. Email: krv@cs . duke. edu.

qsupported in part by the U.S. Army Research Office under
grants DAAH04-93-G-0076 and DAAH04-96-1-0013 and by the
National Science Foundation under grant CCR-9522047. Part of
this work was done while visiting Bell Laboratories, Murray Hill,
NJ. Email: j svQcs . duke. edu.

Figure 1: A terrain represented as a TIN.

1 Introduction

In Geographic Information Systems (GIS), a polyhedral
terrain, which is the graph of a continuous, piecewise-
linear bivariate function (see Figure l), is often repre-
sented as a Triangulated Irregular Network (TIN). Since
a terrain can be stored as a planar graph, many prob-
lems in GIS can be formulated as the traversal of a por-
tion of a planar graph. Most known graph algorithms
assume that the traversed graph can be stored in inter-
nal memory and optimize CPU time.

GIS systems, however, often store and manipulate
enormous amounts of data, so we cannot assume that
it fits in internal memory. Typical CPU-efficient algo-
rithms perform poorly on such large data since they
do not exploit locality of reference, and input/output
communication (or simply I/O) becomes a significant
bottleneck. Our focus in this paper is on developing
algorithms that optimize I/O performance.

117

118

1.1 Memory model

We develop our algorithms in the standard two-level
I/O model proposed by Aggarwal and Vitter [l]. This
model defines the following parameters:

N = # of elements in the problem instance,

it4 = # of elements fitting in internal memory,

B = # of elements per disk block,

where M < N and 1 5 B 5 M/2. An I/O is the
operation of reading (or writing) a disk block from (or
into) internal memory. In this model, computations can
only be done on elements present in internal memory.

Our measures of performance of an algorithm are the
number of I/O operations (or I/OS) that it performs and
the amount of space (disk blocks) that it uses for stor-
age. Data in GIS applications is often so large that
only linear-sized data structures (which use O(N/B)
disk blocks of storage) are feasible. (Our algorithms
are also efficient in terms of CPU execution time, but
we do not discuss CPU time here due to lack of space.)

The model is motivated by the fact that the slow part
of a disk access is positioning the read-write head and
waiting for the disk to rotate into position; once that
is done, data in subsequent locations on the disk can
be accessed very quickly. To amortize (or hide) disk
latency, each I/O operation transfers a large block of
contiguous data.

1.2 Problem statement

We are given a terrain C, whose extent (or domain of
definition) is the entire zy-plane. Each face of C is a
triangle; such a terrain is called a Triangulated Irregular
Network (TIN) in GIS. For the sake of simplicity, we
assume that no edge or face of C is parallel to the zy-
plane; in the full version of the paper, we describe the
modifications to our algorithm that are needed to avoid
this assumption.

For a terrain C, the contour CI, at z-coordinate h is
the intersection of C with the plane z = h. See Fig-
ure 2 for an illustration. Since C is assumed not to have
a horizontal face, each connected component of Ch is
a closed polygonal chain consisting of edges (which we
call segments) formed by the intersection of the plane
z = h with the faces of C. If the plane does not pass
through a vertex of C, all components are simple poly-
gons (which we call cycles). Otherwise, each component
is a collection of cycles, possibly sharing vertices. We
consider the following contour-line extraction problem:
Given a terrain C, preprocess C into a data structure
so that given a query z-coordinate h, we can output the
contour Ch using 0(IC’h I/B) blocks, where each cycle in
Ch is returned as a consecutive sequence of segments in
cyclic order.

Figure 2: A contour of the terrain.

Returning the segments “in sorted order” is impor-
tant in GIS applications [23], for example, when smooth-
ing is applied to a contour before it is displayed.

1.3 Previous results

In the last few years, considerable attention has been
given to the development of I/O-efficient algorithms in
many problem domains, including sorting, graph algo-
rithms, string algorithms, computational geometry, and
GIS; see [l, 2, 3, 4, 5, 8, 19, 21, 271 and the references
therein.

Although the contour-line extraction problem has
been well-studied for terrains stored as raster images
(for example, see the Marching Cubes algorithm [18]),
not much work has been done when terrains are stored
as TINS. van Kreveld [23] gives an internal-memory al-
gorithm for preprocessing a terrain into a data structure
of size O(N) so that a contour-line query at z-coordinate
h can be answered in optimal O(log, N+]Ch() time. His
algorithm stores the z-span of each triangle of the ter-
rain in an interval tree [13]. Given a query z-coordinate
h, the algorithm searches the interval tree to compute
all the faces of the terrain whose z-spans contain h,
from which it extracts the segments of ch in O(]Ch])
time. The algorithm then traverses the terrain to obtain
each contour component “in sorted order.” Using the
external interval tree recently developed by Arge and
Vitter [6], Chiang and Silva [9] extended and general-
ized van Kreveld’s approach to external memory so that
“unstructured” contour-line (or iso-surface) extraction
queries (where no traversal of the components is needed)
can be answered using an optimal O(log, N +]Ch I/B)
I/OS. However, their algorithm needs an additional
O(]Ch]) I/OS to traverse the contour in “sorted order.”
van Kreveld et al. [26] have recently presented some
related results.

Another solution to the contour-line extraction prob-
lem follows from the results of Goodrich et al. [20]

119

on the graph-blocking problem (which we formally de-
fine later). For a graph G of bounded degree d and
of size sufficiently larger than M, they show how to
store G in a data structure using O(N/ logd B) blocks
so that any path of length T in G can be traversed
using O(T/ log, B) I/OS. We can use their result to
store C in a data structure of size O(N/ log, B) so that
any contour-line extraction query h can be answered in
O(log, N+]Ch]/ log, B) I/OS, assuming that each cycle
in the contour has R(log, B) vertices.

1.4 Our results

In Section 2, we study the graph-blocking problem,
and show how to store a planar graph G of size N
and bounded degree d in optimal O(N/B) blocks so
that any path of length T in G can be traversed using
O(T/ log, B) I/OS. The linear storage bound is a sig-
nificant improvement over the results of Goodrich et al.
[20]. This result implies that we can store a terrain using
O(N/B) blocks so that contour-line extraction queries
can be answered using O(log, N +]Ch]/ log, B) I/OS,
assuming that each contour component has s2(log, B)
vertices. We also show that our graph-blocking result
can be used to perform window queries (which we define
later) on a TIN in an I/O-efficient manner.

While the graph-blocking technique can be used to
traverse any path (among a possibly exponential num-
ber of paths) in a graph, the contour-line extraction
problem itself is more restricted in the sense that a TIN
has only O(N) combinatorially distinct contours. We
exploit this fact in Section 3 to obtain optimal I/O
bounds for the contour-line extraction problem. We
present a data structure that can store a given terrain
using O(N/B) blocks so that a contour-line extraction
query at z-coordinate h can be answered in optimal
O(log, N +]Ch]/B) I/OS. In order to construct the
data structure, we sweep the terrain using a horizontal
plane and maintain a structure representing the con-
tour lines contained in the sweep plane. We use the
persistence paradigm [12, 221 to retain all versions of
this structure in order to allow contour-line queries at
any z-coordinate. In order to make this approach I/O
efficient, we first show that it is sufficient to maintain
in a persistent fashion a collection of linked lists un-
der O(N) insert, delete, and split operations. Next, we
develop an efficient external-memory implementation of
the persistent collection of linked lists under the above
operations. This data structure may be of independent
interest and may have other applications. Once the data
structure is constructed, we can answer a contour-line
query by first searching in a B-tree and then traversing
a list. We believe that our overall algorithm for contour-
line extraction is of practical use since our algorithm is
very simple.

2 Efficient Blocking of Bounded-Degree
Planar Graphs

In the graph blocking problem [20], we are asked to store
a. (bounded-degree) graph G on disk, i.e., assign the
nodes of G to disk blocks, so that any path in G (a
sequence of nodes in which consecutive nodes are edge-
adjacent) can be traversed in an I/O-efficient manner.
The assignment of nodes of G to blocks on disk is a
preprocessing step that is fixed before any path is re-
quested. Let x be a query path in G that is to be
traversed and let v be the node in ?r that is to be tra-
versed next. We say that a node v is served if there is
some’ block in internal memory that contains v; other-
wise, we load a block containing v from disk. Once v
is served, the next node in X, which can be any node
adjacent to v, is traversed. We emphasize that the path
query is on-line in the sense that the next vertex in n
is revealed only after the current vertex is served. Our
goal is to minimize the number of blocks used to store
the graph G and the number of blocks that are loaded
to serve any query path. We allow a node to be stored
in more than one block.

We now outline an efficient scheme for blocking any
planar graph G = (V, E) with maximum degree d. Our
method is based on a technique developed by Frederick-
son [15] for partitioning planar graphs. Let (VI, . . . , Vk)
be a covering of the node set of V, that is, Vi & V and
lJi K = V. We refer to each & as a region. A node v is
interior to a region Vi if it is adjacent only to nodes in
Vi, while a boundary node is one which is present in at
least two regions. A B-division is a covering (VI, . . . , Vk)
of the node set V by k = O(N/B) regions, so that

1. each region Vi has at most B nodes,

2. any node v is either a boundary node or it is interior
to some region Vi, and

3. the total number of boundary nodes is O(N/fi).

Based on the separator theorem of Lipton and Tar-
jan [17], F’rederickson gave an algorithm for constructing
a B-division of any planar graph.

We use a B-division of G as follows: Let S be the set
of boundary nodes of the B-division. For each v E S,
we grow a breadth-first tree rooted at v until we have
included a nodes in the tree; let us call the set of
nodes in the tree the &-neighborhood of v. Note that
the @-neighbourhood of v contains all nodes whose
distance from v is smaller than 3 logd B. We divide the
set S of boundary nodes into O(N/B) subsets so that
each subset consists of at most & nodes. For each such
subset S’, we store the &?-neighborhoods of all nodes
in S’ in a single block on disk. We also store the nodes
in each region Vi of the B-division in a single block on

120

the disk. It is easy to see that our blocking scheme uses
O(N/B) blocks of storage.

Our algorithm for traversing a query path is as fol-
lows. Assume that we are currently serving the query
path x using the block b corresponding to some region
Vi. We continue serving 7r using b as long as r stays
within Vi. When R leaves region Vi, that is, it requests
a node v that is not in Vi, it does so at some boundary
node v’ E Vi. At this point, we load the block b’ that
contains the a-neighborhood of v’ into internal mem-
ory. When n leaves block b’ by requesting a node v” that
is not in the a-neighborhood of v’, we load the block
corresponding to some region Vj that contains v”. It is
apparent that for every two blocks that we load from
disk, we traverse at least (log, B)/2 nodes in 7r. Thus
we have obtained the following result, whose optimality
follows from the results of Goodrich et al. [20]:

Theorem 2.1 A planar graph with bounded degree d
can be stored using O(N/B) blocks so that any path of
length T can be traversed using O(T/ log, B) I/OS.

Since the dual graph of a planar triangulation (and
thus of a terrain stored as a TIN) is 3-regular, we can use
Theorem 2.1 to block a terrain so that any path in its
dual graph of length T can be traversed in O(T/ log, B)
I/OS. We now apply our blocking scheme to two prob-
lems that arise in GIS.

In the window quey problem, we want to preprocess
a terrain C so that, given any rectangular query win-
dow W in the zy-plane, we can report the set WC of
all triangles whose zy-projections intersect W. In inter-
nal memory, one space- and time-efficient way of solving
the problem [ll] is to construct a point-location struc-
ture on C [14], as well as a doubly-connected edge list
(DCEL) for the dual graph of C, and answer a query
by locating the triangle containing one of the corners
of W and performing a traversal of the dual graph to
report WC in O(log, N + 1 WC I) time. To solve the
problem in an I/O-efficient manner, we preprocess C
into the O(N/B) p s ace external-memory point-location
data structure described by Goodrich et al. [16], which
supports point-location queries in O(log, N) I/OS. We
block the dual graph of C as described above. We thus
obtain the following result.

Theorem 2.2 A terrain C can be stored in a data
structure using O(N/B) blocks so that the set WC of
all triangles in C that intersect a query window W can
be reported using O(log, N + IWcl/(log, B)) I/OS.

We know of no previous solution to this important
problem that uses linear space and is efficient in I/O-
terms. It remains open whether window queries can be
answered using O(logB N + IWcl/B) I/OS and a linear
space data structure.

Using the above blocking of a terrain we can also
improve upon the algorithm described in Section 1.3
for answering a contour-line extraction query (assuming
that all components have length R(log, B)). We con-
struct an external interval tree [6] on the z-spans of the
triangles in C, query the imerval tree to get a segment in
each cycle in the contour, and then traverse each cycle in
order using the path traversal scheme described above.
Our data structure uses O(N/B) space and answers a
contour-line query in O(log;, N+T/ log, B) I/OS, where
T is the size of the reported contour.

Remark 2.3 We can use a completely different ap-
proach to solve the contour-line extraction problem by
modifying the interval tree so that along with every seg-
ment in the contour returned by the query, the two
segments preceding and succeeding it on the contour
are also returned. Using this information, we can do
a “list-ranking” of the segments output by the query
to obtain the segments of each cycle in the contour in
order. The “list-ranking” takes O(T/B log,,,(T/B))
time [8]. Thus, we get an overall blocking scheme
that uses O(N/B) blocks of storage and allows contour-
extraction in O(log, N + T/B logMiB (T/B)) I/OS. We
will provide details in the full version of the paper.

3 Contour-Line Extraction

We now describe our main result, an optimal solution to
the contour-line extraction problem for a given terrain
C. The overall approach for constructing the data struc-
ture is quite simple: We sweep C in the (+z)-direction
using a horizontal plane. At any height h of the sweep,
we maintain a plane-sweep structure from which the con-
tour C,, can be easily obtained. The plane-sweep struc-
ture needs to be updated only when the sweep plane
passes a vertex of the terrain. We use the persistence
paradigm [12, 221 to create a persistent structure that
retains all older versions of the plane-sweep structure.
Given a query z-coordinate h, we find the relevant ver-
sion of the plane-sweep structure, from which we can
output the segments of Ch in “sorted order.” However,
there are many issues that arise in making this approach
work efficiently in terms of I/O, and we address them
in the remainder of this paper.

For simplicity, we assume that the z-coordinate of
each vertex of C is distinct; this implies that no edge or
face of the terrain is parallel to the zy-plane. We assume
that the unbounded faces of C are sloping downward.
In the full version of the paper, we show how these re-
strictions can be removed.

We say that vertices u and v of C are neighbours if
there is an edge in C whose endpoints are u and v. Let
C’ denote the portion of R3 that lies on or below the
terrain C. Let zh denote the plane z = h. If zh does not

Figure 3: A red cycle (the thick solid line) and a blue
cycle (the thick dashed line).

contain a vertex of C, then each connected component
of Ch is a simple cycle that partitions zh into a bounded
part, which we refer to as the in&de of the cycle, and
an unbounded part, which we refer to as the outside of
the cycle. We call a component of Ch red if, “locally,”
the interior of zh fl C’ lies inside it; we call a component
of Ch b&e otherwise. See Figure 3.

We can represent the combinatorial structure of a
component c of ch (at a height h not containing any
vertex of C) by a cycle of the faces that contribute a
segment to c. We represent a red component by a “red”
cycle of faces, and a blue component by a “blue” cy-
cle of faces. Thus, we can represent the combinatorial
structure of Ch by a collection of these red and blue
cycles; with a slight abuse of notation, we use ch to
denote the combinatorial structure too. The combina-
torial structure ch is the same for all heights between
two consecutive vertices of C. In the following, we ex-
amine how ch changes as we vary h from -oo to +oo,
that is, as we sweep C with a horizontal plane in the
(+z)-direction.

In order to describe the changes in ch, it will be
useful to identify three special kinds of vertices of the
terrain: a peak is a vertex that is higher than all its
neighboring vertices; a pit is a vertex that is lower than
ail its neighboring vertices, and a puss (or a saddle wer-
tez) is a vertex having four neighboring vertices that are
higher, lower, higher, and lower in cyclic order around
it. See Figure 4. We will assume for simplicity that ev-
ery saddle vertex is only “singly-saddle,” that is, it does
not have six neighboring vertices that are alternatingly
higher and lower in cyclic order around it. If the plane
zh does not include any peak, pit, or pass of C, the
components of ch will be simple cycles with non-empty
interiors. If zh contains a pass of c, two of these cycles
meet at the pass. If zh includes a peak or a pit, there
is a trivial component consisting of just the peak or the

Figure 4: Types of terrain vertices.

pit.
At the beginning of the sweep, that is, at h = -co, ch

consists of just one red cycle of the unbounded faces of
C. (This fact follows because of the assumption that all
unbounded faces of the terrain are sloping downward.)
We now describe the changes in Ch when the sweep
plane passes a vertex v whose z-coordinate is h. We
denote a face incident to v as old (resp. new) if v is the
highest (resp. lowest) vertex of f.

v is not a peak, pit or pass: The old faces incident
to v belong to some cycle Q in ch, which can be
either red or blue. These old faces disappear and
the new faces appear in the appropriate positions
in Q.

v is a pit: A new blue cycle B’ consisting of the
(new) faces incident to v appears in Ch.

v is a peak: A red cycle R consisting of the (old)
faces incident to v disappears from ch.

v is a pass: This is the interesting case, when ei-
ther two cycles merge to from a bigger cycle, or a
cycle splits into two cycles. Old faces incident to v
get deleted from the cycles to which they belong,
and new faces incident to v are inserted into the
appropriate new cycles. It can be shown that the
interaction between the cycles falls into one of the
following four categories:

(a) A red cycle R splits into two red cycles Ri and
R$. See Figures 5(b) and 5(c).

(b) Two blue cycles BI and BZ merge into a new
blue cycle B’.

(c) A blue cycle B merges with a red cycle R, result-
ing in a red cycle R’. See Figures 5(a) and 5(b).

(d) A blue cycle B splits into a red cycle R’ and a
blue cycle B’.

122

A simple but useful observation is the following
lemma.

Fig ure 5: Different ways in which cycles interact during
the plane sweep.

(a) A red (thick line) and a blue (dashed line)
cycle.

(b) One red cycle.

(c) Three red cycles.

Lemma 3.1 During the plane-sweep, if a face f ap-
pears in a red cycle in Ct,, then f never appears subse-
quently in a blue cycle.

During a sweep in the (+z)-direction, a cycle can thus
change in only the following ways: it appears or disap-
pears, a face appears in ,the cycle or a face disappears
from the cycle, the cycle splits into two cycles, or the
cycle merges with another cycle. We observe that two
red cycles never merge. Furthermore, we can regard
the merging of a blue and a red cycle as if the faces of
the blue cycle appear in the red cycle. When a blue
cycle splits into a red and a blue cycle, we can regard
the event as though a new red cycle appears with the
appropriate faces. Hence, the only way in which red cy-
cles change as we sweep C in the (+z)-direction is that
a new red cycle appears or disappears, a face appears in
a cycle or disappears from a cycle, or a cycle splits into
two cycles. From Lemma 3.1, it follows that that a face
appears and disappears from the collection of red cycles
in C,, at most once. Moreover, the number of times that
a red cycle splits is at most the number of passes, which
is O(N).

These observations lie at the heart of our scheme for
the contour-line extraction data structure. Our scheme
uses two data structures, one for extracting the red con-
tour components and another for extracting the blue
contour components. As we observe below, building
each data structure can be formulated as maintaining
a collection of circular lists persistently under O(N) ap-
plications of the operations of inserts, deletes, and splits;
we need not handle both splits and merges. We will only
describe the data structure from which the red compo-
nents can be extracted; the data structure for extracting
the blue components can be built by a symmetric pro-
cedure (in a sweep of the terrain in the (-z)-direction).

In the sweep described above, we associate a plane-
sweep structure l?(h) with the sweep plane zh: I’(h) is a
collection of lists of faces, where each list stores the cy-
cle of faces in a red cycle of Ch. We distinguish between
a red cycle and the corresponding red list by regarding
the former as a combinatorial representation of a cycle
in a contour and the latter as a data structure. The
remarks above imply that we can maintain I’(h) during
the sweep by a sequence of O(N) applications of the fol-
lowing operations: create/remove an empty list, insert
a face into a list, delete a face from a list, and split a
list into two new lists.

In the next section, we present a data structure that
maintains a set of lists persistently in external memory

123

under the operations of insert, delete, and split. If the
total number of operations is N, the persistent strucure
uses O(N/B) space. Any version of the structure can be
extracted using O(T/B) I/OS, where T is the size of the
version. The preprocessing time needed to build this
structure uses O(N) I/OS. The preceding discussion
implies the following theorem, which is the main result
of our paper:

Theorem 3.2 Given a terrain C of size N, we can
construct a data structure that uses O(N/B) blocks
such that given a z-coordinate h, the contour Gh can
be extracted from the data strncture using O(logn N +

4 Data Structure

In this section we describe how to maintain a set of
ordered lists l? in a data structure L under insert, delete,
and split operations. We then show how to make L:
persistent.

An obvious choice for storing a collection of lists is to
store them in a single “super-list” one after another. In
this way inserts and deletes of elements are easy. Split-
ting a list is also easy, as it corresponds to moving a
sublist of elements from somewhere in the super-list to
(say) the end of the super-list. In internal memory such
a structure can easily be made persistent using linear
space [12, 221, and this representation is indeed almost
the one we will use. However, if we use this technique to
make an external version of the structure persistent, we
may need one new block every time we perform a split.
Thus we could end up using R(N) blocks of memory.
In order to use only O(N/B) blocks of memory, we use
a clever technique to handle splits involving small lists.
We divide split operations on lists into three groups:
major, minor and special.

We say that a list L’ is a branch of a list L, if L’ results
from L as a consequence of zero or more splits. That is,
there exists a sequence of lists Lo, . . . , Lk, where L = Lo
and L’ = Lk, such that for 1 2 i 5 k, Li is one of the
lists formed when Li-1 is sp1it.l The set of descendants
of a list L, which we denote by Des(L), consists of all
elements f such that f occurs in some branch of L.
We say that a list L is major if [Des(L)] 2 B, and
minor if]Des(L)] < B. We classify the split operations
performed on the lists into three kinds. A split of a
list L into lists L1 and Lz is (1) major if L1 and Lz
are major lists, (2) minor if L is a minor list, and (3)

‘Here, we think of an insert or delete operation as just modify-
ing an already existing list in I?; that is, a list retains its “name”
when an element is inserted in, or deleted from it. Thus, a
“named” list is born either because of a create-empty-list opera-
tion or because of a split operation. A “named” list dies either
because of a split operation on it, or because of a remove-empty-
list operation

special if L is a major list and at least one of L1 and La
is a minor list. Every split is major, minor, or special.
Finally, we say that a minor list L is maximal if it is not
a branch of any other minor list. Intuitively, minor splits
are easier to handle than major splits because they only
affect elements in one block. Furthermore, it is easy to
prove the following lemma which bounds the number of
major splits.

Lemma 4.1 If a total of N insert, delete, and split op-
erations are performed on I?, there are only O(N/B)
major splits.

4.1 Ephemeral structure

We are now ready to define L: and describe how we im-
plement the operations insert, delete, and split. We first
describe L independently of how it is laid out on disk
blocks. L is a list of the elements in I on which we
maintain the following invariants:

I. The elements in any major list in I are stored in
sequential order in a contiguous subsequence in L.

II. The elements in I that are descendants of the same
maximal list are stored as a contiguous subsequence
in L.

We do not require the elements belonging to the same
minor list of I to occur as a contiguous subsequence in
L. However, as the following lemma shows, the invari-
ants guarantee that the elements in the same minor list
are not too far apart.

Lemma 4.2 Let f and f’ be two elements that belong to
the same minor list in I. Then, the number of elements
between f and f’ in L is smaller than B.

Proof: Since f and f’ are in the same minor list, they
are descendants of the same maximal list L. Since L is
minor, the number of descendants of L is smaller than
B. Invariant (II) guarantees that the descendants of L
are contiguous in ,C, thus implying the lemma. 0

We describe how we implement the operations needed
on L so that the above invariants are maintained:

1. Insert an element f into a new (empty) list L: In-
sert f at the end of L.

2. Insert an element f into an existing list L: If L is
major, we scan 15 to find the “region” where the
elements of L are stored, and insert f in the ap-
propriate location. If L is minor, it is a branch of
some maximal list L’. We insert f at the end of
the subsequence in ,C consisting of the descendants
of L’.

124

3. Delete an element f from a list L: We find and
delete f from C.

4. Split a list L into two lists L1 and Lz:

(a) The split is major: The elements in L form a
contiguous subsequence in C. The elements in
either L1 or LZ occur as a contiguous subse-
quence cy of this subsequence; assume, without
loss of generality, that the elements of L1 do.
We “break off” a: from ,C, and append it to the
end of L. We call this operation carving the
subsequence (Y from L.

(b) The split is minor: No updates are made.

(c) The split is special: One of the lists, say L1,
is minor. We delete the elements of L1 from
I$ and insert them at the end of .C. The list
L1 is maximal, so this defines the “region” in L:
containing the descendents of L1.

It can be verified that the above operations maintain
the invariants on L. The only operations performed on
t are the operations of inserting an element, deleting an
element, and carving a subsequence c~ from L. We can
prove the following important lemma about the number
of such operations.

Lemma 4.3 If a total of N inserts, deletes, and splits
are performed on l?, we perform O(N) inserts and
deletes, and O(N/B) carve operations on .C.

Proof: Each element is inserted and deleted once, ex-
cept during a special split. As each element can be
deleted and re-inserted in a special split at most once,
the total number of inserts and deletes on 15 is O(N).
The number of carving operations is bounded by the
number of major splits, which is O(N/B) by Lemma 4.1.
cl

4.2 Laying out L on disk

Maintaining ,C on disk now amounts to maintaining a
single list of elements on disk under the operations in-
sert, delete, and carve. The way we do this is similar
to the way the leaves in a standard B-tree are main-
tained [7, lo]. We maintain L using a linked list of
blocks; each block b stores a contiguous subsequence
o(b) of .C, and the pointer from block 21 points to a
block b’ such that cr(b’) follows a(b) in L. For ev-
ery block b in the linked list we maintain the invariant
B/f3 5 b@>l I BP, and implement the three opera-
tions as follows:

1. Insert: To insert an element e after element e’ in
,!Z, we first check if there is room for e in the block
b containing e’. If this is the case we just insert

2.

3.

A

it. Otherwise if b contains B/2 elements, we create
two new blocks, distribute the elements in b evenly
among them, delete i5 from the linked list of blocks,
and insert the two new blocks into the linked list.

Delete: To delete an element e from L, we check
if the block b that contains e has more than B/8
elements and delete e if that is the case. Other-
wise, we collect all the elements in b and one of
the blocks adjacent to it in the list, and delete the
two blocks. If the number of collected elements
is less than 3B/8, we create a new block with all
the elements and link it into the list. If the num-
ber is greater than 3B/8 we create two new blocks,
divide the elements evenly among them, and link
them into the list.

Carve: As with an insert or a delete, a carving can
be performed by creating and deleting a constant
number of blocks, and changing a constant number
of pointers.

careful analysis of the insert and delete operations
(1 and 2 above) shows that whenever a new block is
created it contains between 3B/16 and 3B/8 element.
The carve algorithm can be designed such that the same
is true for blocks created by that operation. Thus at
least B/16 inserts/deletes, or a single carve operation,
need to be performed on a newly created block if it is
to be deleted as a consequence of some operation on it.
From the bounds in Lemma 4.3 on the number of insert,
delete, and carve operations, we obtain the following
lemma; we omit its formal proof from this abstract.

Lemma 4.4 A collection of lists I? can be maintained
on disk in L, under N inserts, deletes, and splits, so that
only O(N/B) blocks are created and O(N/B) pointers
changed in total, and so that at any point in time the
current version of L is stored in a linked list of O(lLl/B)
blocks.

As an aid to making our blocked data structure ,C
persistent, we impose one final invariant on each block
b in in the ephemeral structure L: At most B/2 updates
are done on b f;om the time it is created. In order to
maintain this invariant on the ephemeral structure ,C, we
introduce a new operation on the blocks in L called the
copy operation; to copy a block b, we simply copy the
elements stored in b into a new block b’. To implement
the new invariant, we store with each block a count of
how many updates have been performed on it. Once the
count of a block b reaches B/2, we copy the elements in
b to a new block b’, delete b, and insert b’ in b’s place
in the linked list. It is st.raightforward to see that this
modification does not chrtnge the result in Lemma 4.4.

125

4.3 Persistent structure

We now show how to make the blocked data structure
L: persistent. Due to lack of space, we omit some of the
details, which we will provide in the full version of the
paper. Driscoll et al. [12] describe general techniques
for making an internal memory data structure persis-
tent, and it is easy to use their so-called node-copying
technique to obtain a (partially) persistent linked list in
internal memory under insertions and deletions, so that
if a total of K operations and pointer changes are per-
formed on the list, the space used by the whole structure
is O(K) (see also [22]). Any “old” version of the list of
length L can be traversed in O(L) steps once the head
of the list has been located. The head can be located in
O(log, K) time using a search tree.

We make our external structure L persistent using a
two-level scheme: (i) We make the linked list of blocks
that store L persistent using the technqique mentioned
above for making an internal memory linked-list per-
sistent, except that each element of the list is a block
on disk. It follows from Lemma 4.4 and the above dis-
cussion that the persistent list uses O(N/B) space and
that any “old” version of C which is L blocks long can
be traversed in O(L) I/OS. (ii) We make the individual
blocks persistent simply by storing all updates done on
a block inside the block. Given a time t and a block
b existing at that time, it is then easy to reconstruct
the elements actually present in b at time t. The in-
variant imposed on each block above guarantees that at
most B/2 updates are performed on the elements in a
block from the time it is created until it is deleted, and
since each block stores at most B/2 elements, we are
guaranteed to have room for the updates in the block.

We can now describe, given a query time t, how to
report the set of lists stored in L at time t. First we use
O(log, N) I/OS to query a B-tree built on the “head
blocks” and obtain the first block of C(t). Then we then
traverse L to obtain the blocks comprising C(t). The
invariants maintained on L and Lemma 4.2 imply that
r(t) can. be obtained efficiently from C(t), as follows:
For each major list in I’(t), Invariant I implies that while
scanning C(t), we will process the elements of the list
in contiguous blocks and in order. For a minor list,
Lemma 4.2 implies that all elements in it are stored
within a constant number of contiguous blocks of C(t).
Hence, when we process a minor list, we need to read
into internal memory only a constant number of blocks
to load all the elements of that list, and we can then
reconstruct the ordered list in internal memory. Thus,
a scan of C(t) suffices to output I’(t), and Lemma 4.4
and the discussion in this section give us our final result.

Theorem 4.5 A collection of ordered lists I? can be
maintained on disk under N inserts, deletes, and splits,

using O(N/B) blocks, such that r(t), the version of I’ at
time t can be retrieved using O(log, N + jJ?l/B) I/OS.

5 Conclusions

In this paper we have considered graph-traversal prob-
lems motivated by applications in GIS. We believe that
the algorithms developed in this paper are of great prac-
tical interest. We are currently implementing our algo-
rithms for contour-line extraction in order to verify this
belief.

GIS applications are a fertile source of important new
problems, especially in the area of I/O-efficient algo-
rithms. One related problem that we mention here is
the problem of performing a windowing query using lin-
ear space and in O(log, N + IV&I/B) I/OS.

References

PI

PI

[31

141

151

bl

[71

PI

PI

WI

A. Aggarwal and J. S. Vitter. The Input/Output com-
plexity of sorting and related problems. Communica-
tions of the ACM, 31:11X-1127, 1988.

L. Arge. The buffer tree: A new technique for optimal
I/O-algorithms. In Proc. Workshop on Algorithms and
Data Structures, LNCS 955, pages 334-345, 1995.

L. Arge. Eficient External-Memory Data Structures
and Applications. PhD thesis, University of Aaxhus,
Denmark, February/August 1996.

L. Arge. External-memory algorithms with applica-
tions in geographic information systems. In M. van
Kreveld, J. Nievergelt, T. Roes, and P. Widmayer, edi-
tors, Algorithmic Foundations of GIS. Springer-Verlag,
1997.

L. Arge, D. E. Vengroff, and J. S. Vitter. External-
memory algorithms for processing line segments in ge-
ographic information systems. Algorithm&, to appear.

L. Arge and J. S. Vitter. Optimal dynamic interval
management in external memory. In Proc. IEEE Symp.
on Foundations of Comp. Sci., pages 566-569, 1996.

R. Bayer and E. McCreight. Organization and main-
tenance of large ordered indexes. Acta Infomaatica,
1:173-189, 1972.

Y.-J. Chiaug, M. T. Goodrich, E. F. Grove, R. Tamas-
sia, D. E. Vengroff, and J. S. Vitter. External-memory
graph algorithms. In Proc. ACM-SIAM Symp. on Dis-
crete Algorithms, pages 139-149, 1995.

Y.-J. Chiang and C. T. Silva. I/O optimal isosurface
extraction. In Proc. IEEE Visualization, 1997.

D. Comer. The ubiquitous B-tree. ACM Computing
Surveys, 11:121-137, 1979.

126

[ll] M. de Berg, M. van Kreveld, R. van Oostrum, and
M. Overmars. Simple traversal of a subdivision with-
out extra storage. In Proc. 3rd ACM Workshop on
Advances in GIS, pages 77-84, 1995.

[12] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E.
Tarjan. Making data structures persistent. J. Comput.
Syst. Sci., 38:86-124, 1989.

[13] H. Edelsbrunner. A new approach to rectangle intersec-
tions, part I. Int. J. Computer Mathematics, 13:209-
219, 1983.

[14] H. Edelsbrunner, L. J. Guibss, and J. Stolfi. Optimal
point location in a monotone subdivision. SIAM J.
Comput., 15:317-340, 1986.

[15] G. N. Prederickson. Fast algorithms for shortest paths
in planar graphs, with applications. SIAM Journal of
Computing, 16:1004-1022, 1987.

[16] M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S.
Vitter. External-memory computational geometry. In
Proc. IEEE Symp. on Foundations of Comp. Sci., pages
714-723, 1993.

[17] R. J. Lipton and R. E. Tarjan. A separator theorem
for planar graphs. SIAM Journal of Applied Math.,
36:177-189, 1979.

[18] W. E. Lorensen and H. E. Cline. Marching cubes:
a high resolution 3D surface construction algorithm.
Computer Graphics, 21:163-169, 1987.

[19] J. Nievergelt and P. Widmayer. Spatial data struc-
tures: Concepts and design choices. In M. van Kreveld,
J. Nievergelt, T. ROOS, and P. Widmayer, editors, Al-
gorithmic Foundations of GIS. Springer-Verlag, 1997.

[20] M. H. Nodine, M. T. Goodrich, and J. S. Vitter. Block-
ing for external graph searching. Algorithmica, 16:181-
214, August 1996.

[21] H. Samet. Applications of Spatial Data Struc-
tures: Computer Graphics, Image Processing, and GIS.
Addison-Wesley, MA, 1989.

[22] N. Sarnak and R. E. Tarjan. Planar point location using
persistent search trees. Communications of the ACM,
29:669-679, 1986.

[23] M. van Kreveld. Efficient methods for isoline extraction
from a digital elevation model based on triangulated
irregular networks. In Proc. 6th Int. Symp. on Spatial
Data Handling, pages 835-847. to appear in Int. J. on
GIS.

[24] M. van Kreveld. Variations on sweep algorithms: Effi-
cient computation of extended viewsheds and classifica-
tions. In Proc. 7th Int. Symp. on Spatial Data Handling,
pages 13A.15-13A.27, 1996.

[25] M. van Kreveld. Digital elevation models: overview and
selected TIN algorithms. In M. van Kreveld, J. Niev-
ergelt, T. ROOS, and P. Widmayer, editors, Algorithmic
Foundations of GIS. Springer-Verlag, 1997.

[26] M. van Kreveld, R. van Oostrum, C. Bajaj, V. Pas-
cucci, and D. Schikore. Contour trees and small seed
sets for isosurface traversal. In Proc. ACM Annual
Symposium on Computational Geometry, pages 212-
220, 1997.

[27] J. S. Vitter and E. A. M. Shriver. Algorithms for
parallel memory, I: Two-level memories. Algorithmica,
12:110-147, 1994.

